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Abstract

For event analysis, the information from both before and after the event
can be crucial in certain scenarios. By incorporating a contextualized per-
spective in event analysis, analysts can gain deeper insights from the events.
We propose a contextualized visual analysis framework which enables the
identification and interpretation of temporal patterns within and across mul-
tivariate events. The framework consists of a design of visual representation
for multivariate event contexts, a data processing workflow to support the
visualization, and a context-centered visual analysis system to facilitate the
interactive exploration of temporal patterns. To demonstrate the applicabil-
ity and effectiveness of our framework, we present case studies using real-
world datasets from two different domains and an expert study conducted
with experienced data analysts.

Keywords: Visual Analytics, Event analysis, Contextualized analysis,
Interactive exploration, Visualization design

1. Introduction

In some event analysis scenarios, analysts are focused on a specific type
of event. For example, a football analyst may want to analyze passing events
during a football game. A typical approach is to extract and analyze the
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Figure 1: The visual analysis system for multivariate event contexts. The system has 5
views: the Timeline (A) which shows the distribution of event occurrences over time, the
Context View (B) which shows the visual representations of contexts, the Reference View
(C) which provides reference information for analysts, the Parallel Coordinates View (D)
which shows the original values of variates and supports filtering, and the Space View (E)
which shows the trajectories of contexts.

occurrences of such events. However, event analysis goes beyond the moments
of occurrence. Analysts may also be interested in the causes, consequences,
and other aspects related to the events. In many cases, this information is
likely to be found from before and after the events. From this perspective,
focusing solely on the moment of the occurrence may not provide sufficient
information for event analysis. Therefore, it is meaningful to reframe event
analysis tasks from a contextualized perspective.

For a multivariate time series with events recorded, we can define an event
context as a multivariate time slice surrounding the point of time when an
event occurs. Shifting the analysis object from the event occurrence to the
event context introduces several challenges:

The first challenge is that event context, compared to event occurrence, is
a more complex object to visualize. Its visual representation should be easy
to understand, and should allow analysts to observe the changes over time
within the context. Secondly, analyzing multivariate event contexts requires
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sual analysis of event contexts could be a flexible and open-ended process,
requiring the integration of human insight.

To deal with these challenges, we propose a framework for visually repre-
senting and exploring multivariate event contexts. The framework includes
three main components: a design of visual representation for multivariate
event contexts, a data processing workflow, and a context-centered visual
analysis system.

We apply this framework to two real-time datasets and present case stud-
ies. In the first case, we analyze passing event contexts in a football match,
identifying several distinct behavior patterns across different passing event
contexts and offering insights into tactical strategies. In the second case, we
analyze harsh braking event contexts in a truck’s driving records, identify-
ing several driving patterns and uncovering various driving behaviors and
responses to road conditions. These case studies demonstrate the general
applicability of our framework to various domains. We also conduct an ex-
pert study to collect feedback on our analysis framework and system, which
helped validate the effectiveness of our approach.

Overall, our study makes the following contributions:

• We propose a multivariate event context analysis framework that helps
analysts identify and explore temporal patterns within event contexts
through interactive visual analysis.

• We introduce a method for visualizing multivariate event contexts,
which includes a visual representation design based on color coding
and high-dimensional context information ordering.

• We provide a context-centered visual analysis system to support the
processing and exploration of event contexts.

2. Related Works

Our work is closely related to existing studies on multivariate data visu-
alization and event visual analysis. This section provides an overview of the
related works in these fields.

3
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Multivariate data visualization is a widely studied area. Cui (2019) pro-
vides a literature review on visual analytics, in which he categorizes and
discusses the applications of multivariate data visualization. A primary ap-
proach is to represent multivariate information in a single chart or view, such
as using parallel coordinate plots. 3D visualization and animation can also
increase the number of variables represented in a single view. Another ap-
proach to visualizing multivariate data is to construct multiple related views.
The information that can be displayed in a single chart is limited. There-
fore, in recent studies, multiple views are often adopted for multivariate data
visualization. Multiple views are often realized as interactive visual analysis
systems, such as Smartadp (Liu et al., 2016), which analyzes large-scale GPS
trajectory data for billboard placement, and Srvis (Weng et al., 2018), which
solves ranking decision problems by combining spatial environmental infor-
mation. Wang et al. (2022) also provide a multi-view visual analysis system
for spatio-temporal data to help developers observe when, where and how
the model failure happens in autonomous driving systems.

Multivariate data poses challenges to visualization due to its complex-
ity. Excessive volume, multiple dimensions, and information redundancy
may all cause difficulties in visualization. Therefore, data mining techniques
are widely used to simplify multivariate data before visualization. The cor-
responding techniques include dimensionality reduction, projection, cluster-
ing, sampling, and others. Nonato and Aupetit (2018) provide a literature
review on multivariate projections (MDPs) for visual analytics, categorizing
MDP methods, transformations, analysis tasks, and layout enhancements.
Kisilevich et al. (2010) provide an overview of spatio-temporal clustering,
especially trajectory clustering. Andrienko and Andrienko (2013) support
using clustering and interactive analysis for large-scale spatio-temporal data,
and apply color assignments to projected data. TPFlow (Liu et al., 2018)
models multivariate spatio-temporal data as tensors, proposing an algorithm
that automatically segments the data into uniform partitions and extracts
potential patterns from each of them. Deng et al. (2023) develop a data min-
ing framework to extract evolution patterns from large-scale spatio-temporal
series and propose a technique called GeoChron which leverages the evolu-
tion pattern to organize and visualize large-scale spatio-temporal series in a
pattern-aware and narrative-preserving way.

In our work, we use various multivariate visualization methods, utiliz-
ing both single-chart representations of multiple dimensions (e.g., parallel
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techniques such as dimensionality reduction and clustering to support data
visualization.

Our work is innovative in the visualization of event contexts. To the best
of our knowledge, there has been limited research dedicated to the visual-
ization of event contexts. Andrienko and Andrienko (2024) visualizes event
contexts in matrices. And in our work, we propose a visual representation
specifically designed for multivariate event contexts.

2.2. Event visual analysis
Substantial work has been done on the detection, comparison, and visual

analysis of event sequences. In these studies, flow charts, Sankey diagrams,
and their variations are often used to visualize the temporal order, synchro-
nization, and interaction of events. Due to the complexity of event analysis
tasks, each work focuses on specific aspects of event analysis or approaches
them from different perspectives.

For example, some studies approach event analysis from a sequence anal-
ysis perspective. Eventpad (Cappers and van Wijk, 2017) offers a graph-
oriented approach to analyzing event sequences, enabling both temporal anal-
ysis of the sequences and structural analysis of associated multivariate data.
DecisionFlow (Gotz and Stavropoulos, 2014) processes high-dimensional tem-
poral event sequences of thousands of different types, supporting interac-
tive real-time analysis of high-dimensional event sequence data. Sequence
Braiding (Di Bartolomeo et al., 2020) focuses on event alignment and com-
parison. IVESA (Bernard et al., 2024) focuses on the analysis of time-
stamped event sequences (TSEQs), which are time-oriented event occurrence
sequences without value information. In this research direction, some other
studies focus on causality analysis in event sequences. Jin et al. (2020) ap-
plies Granger causality testing to explore causality in spatio-temporal events.
VAC2 (Zhu et al., 2024) provides a combined causality visual analysis system
to help users effectively explore combined causes in temporal event sequences
data.

There are also application-focused event studies. PassVizor (Xie et al.,
2020) deals with football passing event sequences, helping to reveal dynamic
patterns and tactics in passes. Pmu tracker (Arunkumar et al., 2022) provides
a visualization platform for epicentric event propagation analysis in the power
grid.
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Although treating events as sequences is valuable, examining events within
contexts can be equally important. For instance, Frequence (Perer and Wang,
2014) is an interactive frequent event sequence mining and visualization inter-
face that considers the user’s temporal context by defining pattern duration
in sequences. CoNTA (Cappers and van Wijk, 2016) supports contextual
analysis of network traffic alerts. Andrienko et al. (2011) propose a concep-
tual model supporting the analysis of movement data with spatio-temporal
context. Chen et al. (2019) introduce a workflow for analyzing movement
events, including event contextualization, context pattern detection, and ex-
ploration. In their work, they visualize and compare event contexts based on
a single attribute.

In our work, we define event contexts as multivariate time slices sur-
rounding the event occurrences, and focus on the exploration of patterns
within them. Our definition of “context” is distinguished from the concept
“episode” as used in other works on temporal pattern analysis, such as Shi-
rato et al. (2023b) and Andrienko et al. (2023). The key difference lies in the
event-centered nature of “context”, whereas “episode” does not emphasize the
presence of events. In the realm of temporal pattern analysis, our approach
is explicitly event-oriented.

To our knowledge, there have not been studies that approach multivariate
event visual analysis from a contextualized perspective. Thus, in this paper,
we provide a framework for the contextualized visual analysis of multivariate
events.

3. Overview

In this chapter, we will first introduce our target data type and provide a
specific definition of event contexts. Next, we will present the analysis tasks
derived from discussions with experts. Finally, we will give an overview of the
multivariate event context analysis framework we propose and the methods
employed.

3.1. Data and definitions
Our framework is designed for multivariate time series data, which should

include time and several other numerical variables. Specifically, when the
data contains variables representing spatial information, it is referred to as

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
oftrajectory data. Though spatial variables are not essential in our target data,

our framework includes functions for trajectory analysis.
Occurrences of events and their types should be recorded in the data.

Furthermore, it is important to note that the framework is designed for an-
alyzing recurring events instead of sporadic or anomalous events. Therefore,
the data should include multiple records of the same event type. For instance,
the tracking data in a football match might record multiple occurrences of
passing events.

To use our framework, time series with uniform time intervals is the most
suitable. For time series with non-uniform time intervals, methods such
as interpolation are needed to unify the intervals before extracting event
contexts.

For a time series that meets the above conditions, with T time points
and n variables, we denote it as X = {xt}T×n, where xt is the multivariate
data entry at time point t. The time intervals in this series are equal and
denoted as ∆t. Event(t) ∈ {0, 1} is a binary variable that indicates whether
a target event occurs at time point t. If a target event occurs at t, we define
its context Ct as a time slice around t. To be specific,

Ct = {X[t− a∆t, t+ b∆t] | Event(t) = 1} , a, b ∈ N

The event context Ct includes (a + b + 1) data entries, where a entries are
before the event, and b entries are after the event. The values of a and b are
selected by the analyst based on the specific analysis scenario.

3.2. Analysis tasks
Our framework is designed for experienced data analysts. We aim to pro-

pose an visual analysis framework that help analysts in gaining insights into
events from a contextualized perspective. We discussed with several experts
who have more than 5 years of experience in data analysis, and gathered their
requirements for analyzing multivariate event contexts. During the discus-
sions, the experts raised several needs related to the mining of contexts, the
recognition of temporal patterns, and the interpretability of these patterns.
From the discussions with experts, we derive the following analysis tasks:

• T1: Visualize multivariate event contexts.

• T2: Identify event contexts with similar temporal patterns.

• T3: Interpret the meanings of temporal patterns within similar event
contexts.
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To support the analysis tasks, we propose the following analysis frame-
work as shown in Fig.2. In the framework, the target data goes through
a data processing workflow to generate visual representations of event con-
texts. Then, we provide a context-centered visual analysis system that allows
users to identify and interpret patterns within contexts interactively. In the
system, users can also perform real-time data processing tasks such as clus-
tering.

Figure 2: The multivariate event context analysis framework. The framework consists of a
design of visual representation for multivariate event contexts, a data processing workflow,
and a context-centered visual analysis system.

The visual representation of event contexts is designed based on a “build-
ing block” metaphor. It enables comparisons based on similarity and the
identification of temporal patterns within the contexts. A detailed introduc-
tion to the visual representation of event contexts is in Section 4.

The data processing workflow consists of 4 steps. In Step 1 Event con-
text extraction, the event contexts Ct are extracted from original data X.
The collection of all the data entries included in extracted event contexts is
denoted as a data subset C = {Ct}. In Step 2 Projection and coloring, C is
reduced to two dimensions to enable the use of a 2-D colormap, which assigns
a representative color to each data entry. In Step 3 Clustering and Step 4
Reorderng, event contexts are clustered and ordered based on similarity. De-
tails about the data processing workflow will be discussed in Section 5. For
each step, various statistical algorithms will be considered and compared.

8
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In order to visualize multivariate event contexts (T1), we first work on
the design of visual representation for event contexts.

Multivariate event context is a complex object. It contains multiple vari-
ables as well as temporal information. First, we consider how to represent
multivariate information in the visual representation. Visualizing event con-
texts requires a simplification of information, since it is impractical to visually
display all the variables within a context. One feasible approach is to retain
similarity only. More specifically, we can set a design goal: when comparing
two visual representations of contexts, the viewer should be able to assess
their similarity. We can obtain the similarities between data entries through
dimensionality reduction. However, results of dimensionality reduction al-
gorithms involve unavoidable distortions. Therefore, the representation that
we design allows only approximate judgments of similarity.

Secondly, we consider how to represent temporal information in the visual
representation. In the definition provided in Section 3.1, a multivariate event
context is a combination of data entries at multiple time points. We thus
consider designing the visual representation of a event context as a combina-
tion of representations of various time points. The advantage of this design
lies in that it aligns the data level definition and the visual representation of
an event context, making it easy to understand.

Therefore, we have developed the visual representation for multivariate
event contexts as described below. We first project all the data entries in-
cluded in the event contexts (denoted as C in Section 3.3) onto a 2-D plane.
As shown in Fig.3, using a 2-D colormap, each data point can be assigned
a corresponding color. In visualizations, color coding is regularly used to
represent changes in data values. Color coding can represent both changes
in a single dimension such as changes over time (Bernard et al., 2012), and
changes in two dimensions such as changes over a 2-D plane (Andrienko and
Andrienko, 2023). We use color coding to represent the proximity of the pro-
jected data. In terms of comparison, similar colors indicate closer proximity.
For example, with reference to the colormap, we can see that red points are
closer to orange points, while blue points are farther away.

Assume that we have an example event context with 5 data entries (where
a = b = 2). Now, each data entry has a color representing it, as shown in
Fig.4-a. Next, as illustrated in Fig.4-b, we represent each data entry as a
colored block and stack them from top to bottom in time order. To be
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Figure 3: With data projection and a 2-D colormap, each data entry can be assigned a
representative color based on similarity.

specific, in this case, block t3 in the middle represents the data entry in
which the event occurs. Block t1 and t2 represent the two data entries before
the event. Block t4 and t5 represent the two data entries after the event.
This design can be seen as a “building block” metaphor, where each colored
block represents a data entry, and assembling them together creates the event
context. It allows analysts to observe temporal changes within the context.
For example, a transition from blue to yellow can be observed in this example
context, indicating the potential temporal changes at the variable level.

Figure 4: An event context and its visual representation. We use colored blocks to rep-
resent each data entry, and stack them together to form the visual representation of an
event context.

Moreover, we consider how to display a large number of event contexts
and make it easier for analysts to identify common patterns among them.
When individual event contexts are placed together as shown in Fig.5-a, their
colors make them comparable for analysts. To visualize multiple contexts,
we arrange them horizontally together as shown in Fig.5-b. However, this
is not sufficient for the task of pattern identification (T2). When there is
a large number of contexts, clustering and ordering are needed to improve

10
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After this rearrangement, contexts that look most similar will be placed
together. This approach makes it easier for analysts to identify common
patterns among event contexts.

Figure 5: The display of the visual representations of event contexts.

In summary, using this “building block” metaphor, we represent each data
entry as a colored block and assemble them into the visual representation of
an event context. The representations are further arranged and displayed
based on similarity to ensure that similar contexts are placed together, mak-
ing pattern identification easier for analysts. In the next section, we will
discuss in detail all the methods used to generate and arrange these visual
representations.

5. Data processing workflow

In this section, we present the data processing workflow. The workflow
is used to extract event contexts from raw data and represent them visually
as described in the previous section. The workflow includes 4 steps: event
context extraction, projection and coloring, clustering, and reordering. We
will detail each step of the data processing workflow and discuss the selection
of statistical methods.

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of5.1. Step 1: Event context extraction

As is mentioned in section 3.1, the target data for extracting event con-
texts is multivariate time series, with events of interest recurring over time.
Analysts need to first determine the time interval and the length of event
contexts. By definition, they need to choose the ideal time interval ∆t and
the number of data entries they would like to include before and after the
event (i.e, a and b).

We can offer some guiding principles for making choices of time interval
and context length. Firstly, the choice of context length should depend on
the nature of the specific event. For example, constructing event contexts
in minutes is acceptable for driving records, but may not be suitable for
fast-changing events in football matches. As for the time interval, the rate of
change in the phenomenon under analysis should be taken into consideration.
Besides, the choice of the time interval is constrained by the quality of the
raw data. The smaller the granularity of the raw data, the more choices
the analyst has in choosing the time interval. However, when raw data
granularity meets the requirements, we still advise analysts not to include
too many data entries in the context, as this may lead to overlaps in the
visualization.

Figure 6: For each event occurrence recorded in the original data X, an event context can
be extracted. The extracted contexts are time slices with the same length, columns, and
time intervals. Then, all the data entries included in event contexts form the data subset
C.

Fig.6 illustrates the context extraction process. We denote the data sub-
set C = {Ct} as the collection of all the data entries extracted from original

12
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texts, certain data entries might be included in multiple event contexts. But
they will not be duplicated in data subset C.

Before moving on to the next steps, some data preprocessing measures are
suggested for the data subset C. We suggest removing outliers and normal-
izing the data because the algorithms we use, such as k-means, are sensitive
to outliers. To reduce multicollinearity in dimensionality reduction, we also
recommend eliminating highly correlated variables.

5.2. Step 2: Projection and coloring
After extracting data subset C from the original data, it is reduced to

two dimensions so that a representative color can be assigned to each data
entry using a 2-D colormap. These colors are used in constructing the visual
representation of event contexts. Closer colors indicate greater similarity.

The choice of dimensionality reduction method is worth discussing. In
our practice, we experimented with MDS, t-SNE, and auto-encoders, which
are commonly used methods for dimensionality reduction. MDS and t-SNE
are manifold learning algorithms, while auto-encoders are self-learning neural
networks. Our experiments show that MDS has a high time cost for large
data sets, making it unsuitable for the task. Auto-encoders are faster but
produce unstable results, with projection distributions varying significantly
across runs. In contrast, t-SNE offers better stability and has acceptable time
costs. Another advantage of t-SNE is that it preserves local neighborhoods
within data. In our analysis, we focus on groups of similar event contexts
as our goal is to identify patterns. Therefore, it is essential to accurately
recognize contexts close to each other in the original space. However, it is
important to note that clusters farther apart in t-SNE results may not be
comparable in terms of distance. The t-SNE algorithm gives close positions
only to close neighbors, while slightly less similar data points can be placed
quite far apart, which will result in getting a very different color.

In the rest of this paper, we use t-SNE as the default projection method.
However, other methods may have advantages in different scenarios.

5.3. Step 3: Clustering
In most cases, analysts need to handle a large number of event contexts.

Therefore, To assist analysts in identifying contexts with shared patterns
(T2), the visual representations of event contexts should be displayed in an

13
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that analysts can study them in clusters or smaller groups.
K-means, a partition-based clustering algorithm that can efficiently han-

dle large numbers of samples, is used here to cluster event contexts. Event
contexts need to be transformed in order to make them processable for k-
means. To be specific, for each event context, the matrix Ct is flattened
into a vector vec(Ct) with (a + b + 1) × n dimensions, where vec(Ct) =
[x(t−a∆t), x(t−(a−1)∆t), ..., x(t+b∆t)]. K-means is then applied on these vectors.

K-means requires a predefined number of clusters. In practice, there is
no standard answer for the optimal number of clusters, and analysts cannot
determine beforehand how many groups the contexts should be divided into.
Therefore, in our work, a human-in-the-loop approach is adopted, allowing
analysts to decide the number of clusters. Reference information will be
provided for analysts in the visual analysis system and support real-time
clustering. Analysts can continually adjust the number of clusters until they
achieve the ideal results.

5.4. Step 4: Reordering
K-means only provides an initial grouping of event contexts. Before pro-

ceeding with pattern identification (T2), the arrangement of event contexts
needs to be further optimized within each group. Fig.7-a shows a group of
contexts arranged in their original order (typically the time order of their
occurrences). In this order, the contexts are visually disorganized. Ide-
ally, similar looking context representations should be close to each other,
as shown in Fig.7-b. This will improve visual coherence, and also ensure
that neighboring event contexts are the most similar. Therefore, the reorder-
ing of event contexts within clusters is another important step in the data
processing workflow.

Figure 7: A cluster of contexts before and after reordering.

Event contexts can either be reordered based on their original form Ct ∈

14
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t ∈ R(a+b+1)×2 produced in Step
2. It is essential to recognize that statistical methods define similarity in
different ways. Similarity encoding can vary significantly due to differences
in definitions of distance and the inherent random variations present in some
algorithms. Therefore, although the colors of contexts are assigned based
on similarity, reordering using other statistical methods does not guarantee
consistent results. To avoid inconsistency, we suggest reordering based on C ′

t

instead of Ct. This is because the similarity of the projected 2-D data aligns
with the similarity of their assigned colors. As is shown in Fig.8, reordering
on projected data yields better visual coherence.

Figure 8: Comparison of reordering based on original contexts Ct and their projected
forms C ′

t.

Essentially, reordering event contexts is a similarity-based vector sorting
task on vec(C ′

t). One potential approach is dimensionality reduction again,
such as using MDS or t-SNE to reduce event context vectors to one dimension
and then sorting them based on the projected values. Another approach we
consider is principal component analysis (PCA), since ordering vectors by
the first principal component value is also reasonable, as it explains most
of the variance in the original data. We also experiment with the OPTICS
algorithm, a density-based clustering algorithm that generates a similarity
sequence as a byproduct. In short, OPTICS works by sequentially selecting
the nearest neighbors of a given point, and then arranging similar objects
together according to the sequence produced.

Fig.9 shows the reordering results produced by MDS, t-SNE, PCA, and
OPTICS. Compared to the original order, all of the results show improve-
ment. Among these, OPTICS has several advantages. It offers slightly better
visual coherence than the other methods, and is also the most time-efficient.
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to place hard-to-sort examples at the end of each cluster, which is visually
beneficial.

Figure 9: Comparison of reordering results produced by OPTICS, t-SNE, MDS, and PCA.

Some analysts may prefer t-SNE for consistency, as it is previously used
in data projection. However, t-SNE is highly sensitive to parameter settings.
In practice, we observe that without proper parameter tuning, t-SNE may
fail to converge. Perplexity, a crucial parameter for t-SNE, must be adjusted
based on data size. In this case, perplexity requires manual adjustment for
each cluster since the number of event contexts per cluster may vary signifi-
cantly. In contrast, OPTICS does not have this issue. Its parameter selection
does not significantly affect the output. Therefore, due to its advantages in
parameter selection flexibility, time efficiency, and ordering characteristics,
we choose OPTICS as the default reordering method.

After completing these 4 steps of the data processing workflow, analysts
can obtain organized visual representations of event contexts. In the next
section, we will introduce the context-centered visual analysis system that
allows analysts to engage in data processing and exploration.

6. Context-centered Visual Analytics System

This section provides a detailed introduction to the interactive visual
analysis system (Fig.1) designed to support exploratory analysis. This sys-
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events (T1). Moreover, T2 and T3 will primarily be accomplished through
the interactive analysis of analysts using the system. The system has 5 views:
the Context View, the Reference View, the Parallel Coordinates View, the
Timeline, and the Space View. The Context View displays the visual rep-
resentations of contexts. The Reference View provides reference information
related to clustering and projection. The Parallel Coordinates View allows
researchers to examine and filter original data values. The Timeline and
the Space View display the temporal and spatial information of contexts.
Interactivity and cross-view linking are implemented across all views.

6.1. Context View (B)
The Context View (Fig.1-B) is the core of the system and the center of

interactive exploration. Here, the visual representations of event contexts are
displayed according to clustering results. At the top of the view, analysts
can select the number of clusters and perform real-time clustering. Addi-
tionally, contexts within each cluster will be reordered based on similarity
automatically.

By default, contexts are colored according to the projected color. Ana-
lysts can choose to color the contexts by any variable using the dropdown
menu at the top. This single-variable coloring function helps analysts trace
specific visual patterns back to the original variables.

Additional interactions with the Context View can be carried out through
brushing. Since clustering and reordering tend to place similar contexts to-
gether, analysts can easily brush and select groups of similar contexts for
further exploration. Analysts can select contexts either partially or fully,
and the selected parts will be filtered and highlighted across all views.

6.2. Reference View (C)
The Reference View (Fig.10) provides analysts with reference information

related to projection and clustering. It consists of 3 sub-views:

• Reachability Plot: Positioned at the top, the Reachability Plot is gener-
ated by OPTICS. This sequence represents the density-based clustering
structure of all contexts. Analysts can generally estimate the number of
potential clusters by observing the number of valleys in the reachability
plot.

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 10: The Reference View. This view consists of 3 sub-views: the Reachability Plot
(top), the Data Projection View (lower left), and the Context Projection View (lower
right).

• Data Projection View: Positioned in the lower left, this view displays
the 2-D projections and colors of data entries in C = {Ct}, representing
the results of Step 2 in the data processing workflow. Here, analysts can
observe the distribution of the projected data entries and the proximity
of their corresponding colors.

• Context Projection View: Positioned in the lower right, this view shows
the 2-D projection of entire contexts (i.e, the 2-D projection of vec(Ct)
using t-SNE), allowing analysts to see how contexts are distributed on
a 2-D plane. This view serves as a reference for clustering.

The Reference View responds to interactions in the Context View. After
re-clustering, different marks will represent different clusters in the Con-
text Projection View, allowing analysts to examine clustering results. When
contexts are brushed and selected in the Context View, they will also be
highlighted in the Data Projection View and the Context Projection View.

6.3. Parallel Coordinates View (D)
The Parallel Coordinates View (Fig.1-D) enables analysts to examine

the original variables in detail, which is important for pattern interpretation
(T3). In this view, the polylines are displayed in projected colors of corre-
sponding data entries. Analysts can also choose to color the lines by single
variable or by time from event using the dropdown menu at the top (Fig.11).
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Figure 11: Analysts can choose to color the lines in the parallel coordinates view by
projected color, a single variable, or time from event.

The Parallel Coordinates View and the Context View will respond each
other (Fig.12). In the Parallel Coordinates View, analysts can brush on the
axes to restrict variable values. Brushing multiple axes allows for multiple
restrictions. Therefore, the Parallel Coordinates View assists analysts in
filtering event contexts under specific situations during exploration.

Figure 12: The Context View and the Parallel Coordinates View will respond to each
other. Brushing and filtering can be done in both views.

6.4. Timeline (A) and Space view (E)
The Timeline (Fig.1-A) and the Space View (Fig.1-E) are used to display

temporal and spatial information respectively. The Timeline has 2 parts.
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The lower part is draggable, with all the events and their information marked
at their time of occurrence.

Figure 13: Two trajectories plotted in the Space View and their corresponding event
context visual representations.

The Space View is used to draw trajectories when spatial variables are
included in the event contexts. As shown in Fig.13, we plot trajectories using
scatter points, and the colors of the trajectories correspond to those in the
visual representations of contexts. Within a trajectory, the points increase
in size over time.

When brushing happens in the Context View, the selected event contexts
will be highlighted on the Timeline, and their trajectories will be plotted in
the Space View.

7. Case study

In this work, our goal is to propose a general framework which is applica-
ble in different event context analysis scenarios. Therefore, in this section we
will apply the framework to datasets from two different domains. The first
dataset consists of data collected from a football match, where we identify
and explore various passing context patterns. The second dataset contains
driving records, where we explore driving patterns in harsh braking contexts.

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of7.1. Case 1: Passing event contexts in a football match

In Case 1, we demonstrate how analysts can use our framework to identify
passing event contexts with similar patterns (T2) and analyze the meanings
of these patterns in terms of player behavior and tactical considerations (T3).

The data are collected from a match in the 2018-19 Bundesliga season.
This data records the positions of all players and the ball on the field every
40 milliseconds, resulting in around 3.5 million records throughout the game.
Additionally, the dataset logs ball possession status and specific events such
as passing and shooting. Based on the original records, some calculated
metrics are also included in the dataset, such as positions within the team
space. The team space is a spatial reference system proposed by Andrienko
et al. (2019) for football analysis. The team space represents the relative
placements of the players within a team. In the team space, the coordinates
of an object represent its relative position within the current team formation.
In this case, the Space View represents the team space (as shown in Fig.14).
Other quantitative indicators in the dataset include measures of threat and
pressure, defined by Andrienko et al. (2017). Pressure assesses the defensive
team’s force exerted on the ball or attacking players.

Figure 14: The Space View represents the team space in Case 1. The orientation of the
team is as indicated in the figure.

In the football match, we focus on the abundant passing events. We
take 25 data entries both before and after a pass at 40-millisecond interval,
forming a 2-second context around the pass. We extract 130 passing event
contexts of one team, and import them into the system for exploration. We
include variables such as ball speed, ball height, pressure on the ball, pressure
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attacking team’s goal, distance of the ball from the defensive goal, and the
ball’s location within the team space.

7.1.1. Determining the number of clusters
We first need to choose an appropriate number of clusters. This decision

can be guided by the Reference View and the current clustering result dis-
played in the Context View. In this case, the reachability plot shows the
existence of at least 3 valleys (Fig.15-a). The Context Projection View also
suggests that the contexts may be divided into roughly 3 groups. Therefore,
we begin by selecting 3 clusters and perform clustering within the system,
yielding the results shown in Fig.15-b. With 3 clusters, k-means produces
results that align well with context projection.

Figure 15: Clustering results of passing event contexts with different cluster number.

However, when observing the Context View, analysts may find that this
result is too general, with too many contexts in the same cluster. We can
increase the number of clusters as needed and compare the results. Re-
clustering can be done directly within the system. Fig.15-c shows the results
when the number of clusters is set to 5. Compared to 3 clusters, increasing
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number has no universally correct answer. It is a decision made by the
analyst based on a comprehensive consideration over the Reference View
and the Context View. In this case, we proceed with 5 clusters.

7.1.2. General features of clusters
Once the number of clusters is determined, analysts can explore the gen-

eral characteristics of each cluster through interactions. For example:

Figure 16: The Parallel Coordinates Views and the Space Views of cluster 1 to 5.

Cluster 1 (Fig.16-a): Passing contexts in this cluster share a common
trait. They occur at the farthest distance from the opponent’s goal, closest
to the team’s own goal. Although the team is in possession, they are not
yet in a position to attack and are, in fact, facing considerable pressure from
their opponents.

Cluster 2 (Fig.16-b): This cluster has a positional characteristic, with the
ball trajectories generally located in the rear-right section of the team space.
These passes are closer to the opponent’s goal than those in Cluster 1, but
they are still relatively distant. The coloring reveals that contexts in Cluster
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2, which will be explored in the following.
Cluster 3 (Fig.16-c): Compared to Cluster 2, passes in Cluster 3 are closer

to the opponent’s goal. Contexts in Cluster 3 can also be further divided to
see more specific sub-patterns.

Cluster 4 (Fig.16-d): Most of the passes in this cluster are concentrated
in the front of the team space, indicating that these are forward passes close
to the opponent’s goal. Some passes within this cluster are very close to the
goal, suggesting that the team is in an active offensive phase, seeking scoring
opportunities.

Cluster 5 (Fig.16-e): These passes are concentrated in a specific location
within the team space, positioned at a moderate distance from the opponent’s
goal. Cluster 5 also contains distinct sub-patterns.

In summary, we can broadly describe the characteristics of passing event
contexts within each cluster. However, there are more specific patterns within
clusters. The next step is to brush and explore these similar contexts individ-
ually and investigate the behavioral patterns they represent. As mentioned,
our system applies OPTICS to reorder the contexts within each cluster, ar-
ranging them by similarity. This allows analysts to brush sub-patterns di-
rectly within each cluster.

7.1.3. Exploring specific patterns
We can take a set of contexts from Cluster 3 as an example (Fig.17).

These six contexts share the same pattern. Their projected colors shift from
purple-gray to purple-red. This pattern may interest analysts as it indicates
variable-level changes around the pass. After brushing these contexts, we
observe similar passing trajectories in the Space View. In the team space,
these passes are generally horizontal, directed towards the left side of the
team. By changing the coloring based on different variables, we find that two
other variables show significant changes around the pass: the ball speed and
the pressure on the ball. As shown in Fig.17, ball speed increases significantly
after the pass, while defensive pressure on the ball decreases substantially.
This suggests that these passes are intended to relieve defensive pressure by
transferring the ball horizontally.

In Cluster 2, we can also identify a set of unique passing event contexts
(Fig.18). Their visual representations show a color transition from cyan to
light brown. After brushing these contexts, we observe similar trajectories in
the Space View. It becomes apparent that these are long-range passes from
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Figure 17: A set of passing event contexts selected from Cluster 3.

the back of the team’s formation towards the front. When we adjust the
coloring based on different variables, we notice several variables change as
the pass occurs. As illustrated, the ball speed increases significantly after the
pass. Notably, the ball’s height also rises considerably, indicating that these
are powerful long passes. Additionally, by examining the distance from the
ball to the opponent’s goal and the potential threat to the team’s own goal,
we see that these passes start near the team’s own goal, and are directed
away from it. In most instances, the threat to the team’s own goal decreases
after the passes. Therefore, we can deduce the behavior pattern under these
passing contexts. These are long passes happened near the team’s own goal,
directed towards the opponent’s goal. The likely objective of these passes is
to get the ball away from the team’s own goal and shift towards an offensive
stance.

7.1.4. Pattern exploration starting from specific situations
In the previous section, we demonstrate an exploration process that be-

gins from the Context View. Analysts first identify visual patterns of interest
and then investigate the underlying behavior via interactive analysis. How-
ever, this is not the only exploration path. If analysts are interested in a
specific situation, they can start from the Parallel Coordinates View by re-
stricting variable values to filter particular situations.

For instance, an analyst may be interested in contexts where the team
has a high chance of scoring (Fig.19). The analyst could first set the distance
to the opponent’s goal to a range of 0–0.3, representing close proximity to
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Figure 18: A set of passing event contexts selected from Cluster 2.

the goal. To narrow down further, the analyst could set the pressure on
the ball to a low range, indicating minimal defensive pressure on the ball.
This setting filters a situation where the team is close to the opponent’s goal
with low defensive pressure, maximizing the scoring opportunity. Most of
these filtered passing event contexts appear in Cluster 4. Returning to the
Context View, the analyst can then compare these contexts to examine their
similarities and differences (Fig.20):

The first group of contexts shows high pressure on the ball before the
pass, indicating that the player successfully bypassed defenders with the pass,
reducing the pressure level. In the second group, initial defensive pressure is
lower, and the passes bring the ball significantly closer to the opponent’s goal
while avoiding defenders. The third group of contexts occurs very close to
the opponent’s goal, with the ball in the closest possible position throughout
the match and with the highest threat level toward the goal. Clearly, this
group of passing event contexts represents the most offensive scenarios in the
entire match.

If the analyst is interested in contexts where the team’s own goal is under
threat (Fig.21), they can set the distance to the opponent’s goal to a range
of 0.7–1.0, indicating proximity to the team’s own goal. The analyst can
narrow down further by setting a high threat level to the team’s goal, filtering
a situation where their goal faces serious danger and has a risk of conceding.
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Figure 19: The filtered contexts where the team has a high chance of scoring.

Figure 20: Exploration of the filtered contexts by variate in Cluster 4.

These filtered contexts appear in Cluster 1. After returning to the Context
View and coloring by the threat to their own goal, two main patterns emerge
(Fig.22):

In the first two groups, the passes help clear the ball away from the goal,
reducing the threat of conceding. In the third group, the players choose to
pass toward their own goal, which increases the potential threat but decreases
the immediate pressure on the ball. This set of contexts illustrates a defensive
tactic where the team responds to high pressure near their goal by passing
back to evade opponents.

In this case study using football data, we demonstrate how to use the
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Figure 21: The filtered contexts where the team’s own goal is under threat.

Figure 22: Exploration of the filtered contexts by variate in Cluster 1.

framework we proposed to explore patterns within passing event contexts.
We show how analysts can interactively perform clustering and exploration
within the system. Given that football players typically cooperate in for-
mations during a match, it is likely that the contexts with shared patterns
can reveal the team’s strategy in similar situations, or more specifically, the
coordination between specific players within the team.

7.2. Case 2: Harsh braking event contexts in driving records
In Case 2, we focus on the harsh braking event contexts in driving records.

Compared to Case 1, this case requires constructing event contexts from
datasets with uneven time intervals. Additionally, we analyze contexts with
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event contexts with similar patterns (T2) and analyze the meanings of these
patterns in terms of driver behavior and responses to road conditions (T3).

We use data from the records of a truck driving in Greece over a period
of 3 months. The data include vehicle information such as model and fuel
tank size, as well as movement data like location, direction, speed, engine
status, mileage, and fuel level. Driving events such as harsh braking, sharp
turns, and rapid accelerations were recorded at corresponding timestamps.

This data is previously used in the work of Chen et al. (2019), in which
the authors discussed the length of event contexts with domain experts, and
decided to choose ±5 minutes. We adopt this choice and construct 10-minute
long event contexts with 60-second time intervals by averaging the original
data entries. In this case, we focus on the contexts of harsh braking events. In
total, we extract 300 harsh braking event contexts and import them into the
system for analysis. The included variables are latitude, longitude, altitude,
speed, and steering angle.

In the Reference View (Fig.23), the reachability plot shows around 6
distinct valleys. Here we skip the step of determining the number of clusters
which has been discussed in Case 1, and choose to have 6 clusters. Given the
larger number and longer time span of the harsh braking event contexts (10
minutes), the visual representations show more complex patterns than those
of passing event contexts.

Figure 23: Harsh braking event contexts in driving records.

There are some interesting contexts in Cluster 5 (Fig.24-a). In these
contexts, the visual representations transition from purple to cyan. After
coloring by different variables, the following pattern is revealed: the vehicle
remains almost stationary during the first half of the context, then gradually
begins to move. After a harsh braking event, the vehicle maintains a high
speed and goes straight while the altitude gradually decreases. This pattern
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and then maintains a high speed while going downhill. This driving pattern
recurs frequently, and the paths are quite consistent. We can infer that this
might be a slope that the truck often drives through on its routine route.

Figure 24: (a) A set of harsh braking event contexts from Cluster 5. (b) A set of harsh
braking event contexts from Cluster 1.

In some event contexts in Cluster 1 (Fig.24-b), there are more intricate
patterns which may interest the analyst. After coloring by different variables,
it becomes evident that this pattern is most closely related to changes in the
steering angle. In the early part of the contexts, the driver begins moving
forward while turning the steering wheel to the right. After a harsh brake, the
driver quickly steers left, then switches back to the right, and finally returns
the wheel to the left at the end of the context. This pattern represents the
driver’s behavior on a winding road. The reason for the harsh brake is also
revealed. To go through the road, the driver needs to adjust the steering angle
frequently. To safely complete these turns, the driver brakes to decelerate.

In Clusters 4 and 6, similar patterns related to steering angle can be
observed. The contexts in Cluster 4 (Fig.25-a) represent a driving sequence
involving a left turn, a harsh brake, and a right turn. The contexts in Cluster
6 (Fig.25-b) show an even more complex pattern where the driver switches
between left and right turns frequently. Examining the relation between
steering angle and speed in the Parallel Coordinates View reveals a consistent
behavior: when the steering angle is large (with values approaching 0 or 1),
the driver tends to decelerate. Conversely, when going straight (with angle
values near 0.5), the speed is often higher. This pattern aligns with common
driving practices, since reducing speed during turns and increasing it on
straight paths helps maintain safe control over the vehicle.
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Figure 25: Harsh braking event contexts with patterns related to steering angle in Cluster
4 and Cluster 6.

In this case study of driving data, we focus on harsh braking event con-
texts with a longer time span. These event contexts show more complex and
diverse patterns. Using the analysis framework we proposed, we are able to
identify and analyze the underlying patterns in these more intricate contexts.
The framework assists analysts in identifying groups of event contexts that
occur under similar road conditions and enables them to observe the driving
behavior patterns associated with these contexts.

8. Expert Study

In order to examine the effectiveness of our analysis framework, we con-
ducted an expert study with five data analysis experts. In this section, we
will present the feedback from experts on our framework and visual analysis
system.

8.1. Participant background
We invited five experts with over five years of experience in data analysis

to participate in our study. Three of these experts (denoted as E1, E2, and
E3) had at least three years of experience in visual analytics, and had also
developed visual analysis systems. E1 had additional experience in event
analysis, including anomalous event and user interaction event analysis. The
other two experts (denoted as E4 and E5) had no experience in visual ana-
lytics.
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The study began with a 20-minute tutorial introducing the concept and
definition of event context and our method for visualizing it. We also intro-
duced our visual analysis system and demonstrated how to interpret patterns
within a set of event contexts using the system.

Next, we invited participants to use our visual analysis system and com-
plete four operational tasks:

Task 1: Perform real-time clustering with the help of the Reference View.
Task 2: Select a single event context of interest, explore and identify its

feature.
Task 3: Select a group of event contexts with common temporal patterns,

explore and interpret the patterns.
Task 4: Start from a situation of interest, filter and explore the event

contexts under this situation.
Finally, we conducted interviews with each expert. We asked two sets

of questions, one about our visual analysis system and the other about our
overall analysis framework.

8.3. Operational tasks
For the operational tasks, we used the same dataset as in Case Study 1,

which included 130 passing event contexts from a football match. We will
detail the experts’ performance and feedback in each task.

In Task 1, experts were asked to perform real-time clustering with the
help of the Reference View. This task aimed to test whether our design
for real-time clustering is feasible, and whether sufficient information was
provided for analysts to determine the number of clusters. All the experts
were able to understand the information provided by the Reference View,
and completed clustering within three minutes. We recorded the number
of clusters chosen by the experts and asked for the reasons of their choices.
Among the experts, E5 referenced the Reachability plot and the Context
Projection View, and chose to directly select three clusters. The other experts
preferred to compare the clustering results of different cluster numbers before
making a decision. The number of clusters chosen varied from three to seven,
reflecting their individual preferences. E1 considered “cluster numbers within
a certain range are all acceptable.”

In Task 2, we asked experts to select an event context of interest from the
context view and analyze its feature. This task aimed to assess if analysts
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found that experts tended to choose contexts with significant color variation.
E3 specifically chose a context with the greatest color difference by checking
the distribution of colors in the Data Projection View. We observed that
experts preferred to use the Parallel Coordinate View in this task, and were
able to interpret the reason of color changes from the perspective of at least
one variable.

In Task 3, we further invited experts to select a group of event contexts
with common temporal patterns and interpret these patterns. This task
aimed to test whether our system could effectively support pattern iden-
tification and interpretation. We found that experts increasingly used the
single-variable coloring function in the Context View, as it could help observ-
ing temporal patterns across multiple contexts based on a specific variable.
In this task, experts showed varying interests and analysis paths. For exam-
ple, E2, a football enthusiast, showed great interest in this task and enjoyed
integrating domain knowledge into the exploration. During the analysis, E2
identified three different passing patterns: backward passes, long passes, and
offensive plays. E3 selected a set of orange contexts and discovered that they
were distributed distinctly in the Context Projection View. E3 sought to
explore what made these contexts unique, and found out that these were
passes occurred closest to the opponent’s goal, posing the greatest threat.
E3 also referred to the Timeline to identify the sequential relationships be-
tween these offensive passes. Overall, every expert was able to identify event
contexts with similar patterns, and was able to interpret the patterns using
various functions in the system.

In Task 4, we asked the experts to think of a specific situation and use
the Parallel Coordinates View to filter event contexts under that situation.
This task aimed to assess if our system could support event context analysis
starting from a specific situation. The experts thought of various situations
and successfully filtered and analyzed the contexts. For example, E2 first
filtered a situation involving offensive plays by restricting the pressure on
the ball and the threat to the defensive goal. E2 then restricted the left-right
variable in the team space to observe attacks from both the left and the right
side of the team. E2 concluded that the team was more proficient in attacking
from the right side. E3 was curious about a situation where the football was
close to the opponent’s goal but did not pose any threat. E3 found that there
were indeed passes that occurred under such situation. E1, E2 and E5 all
noticed that the event contexts they filtered under a specific situation were

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofmostly clustered together and located close to each other. They concluded

that our method effectively groups similar event contexts together.

8.4. Expert feedback
At the end of the expert study, we conducted interviews with each expert.

We organize the expert feedback collected from these interviews as follows.

8.4.1. On the visual analysis system
We first asked experts a set of questions related to the usage of the visual

analysis system. The experts agreed that the system enabled them to perform
clustering, identify event contexts with similar patterns, and further explain
these patterns.

We also asked the experts which views or functions in the system they
found most helpful. Almost all experts chose the Context View and the Space
View, describing them as “intuitive” or “rich of information”. Regarding
the interpretation of temporal patterns within contexts, we observed two
preferences among the experts. E1, E4, and E5 preferred using the Parallel
Coordinates View, while E2 and E3 favored single-variable coloring function
in the Context View.

Regarding the system’s usability, the experts gave positive feedback.
However, we noticed that E4 and E5, who had no prior experience in visual
analysis, required more time to learn the system and raised more questions
during the study. E4 mentioned that “for those unfamiliar with visual analyt-
ics, understanding and using the numerous interactive features in the system
requires learning.” E5 mentioned that “there are many views in the system
thus I sometimes get lost”. We agree with E4’s opinion that “tutorials and
demonstrations of the system are crucial.” Regarding our system, we con-
sider providing detailed tutorials and demonstrations essential, especially for
users unfamiliar with visual analytics.

8.4.2. On the analysis framework
We then asked the experts a set of questions about our analysis frame-

work, including their opinions on our definition of event context, visual rep-
resentations, and analysis methods.

The experts approved our definition of event context and the design of
its visual representation. E4 commented that “the visualization design is
rational and effective; though it is a little challenging, it can be understood
with training and explanation.”
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effectively supports the tasks of pattern identification and interpretation. E3
commented that “the method successfully grouped similar patterns together,
enabling analysts to clearly see the temporal patterns.” E1 commented that
“it provides overviews as well as details.”

8.4.3. Advantages of contextualized analysis of events
We discussed with experts about the advantages of analyzing events from

a contextualized perspective. We derive from the discussions that the main
advantage of a contextualized perspective is it introduces the temporal di-
mension into individual events. This enables causal and situational analysis
of events, and thus enhances the practical applicability.

E1, E4, and E5 mentioned that without a contextualized perspective, it
is impossible to analyze the cause, course, and consequence of an event. E2
approved of the necessity of analyzing the context of events, as every event
occurs under a situation. From this perspective, the preceding of the context
represents the situation faced, the event itself represents the response to this
situation, and the succeeding of the context represents the result of that
response. Therefore, understanding the whole context is essential in many
analysis scenarios.

Furthermore, the experts comments that the strengths in causal and sit-
uational analysis make the contextualized perspective beneficial in practical
applications. For instance, E1 mentioned that “in many analytical scenarios,
the context allows analysts to see more tactics or strategies.” E2 mentioned
that “situational analysis within contexts is particularly beneficial for tasks
such as capability assessment for sports players and responsibility determi-
nation for traffic accidents.”

8.4.4. Suggestions for improvement
At last, we collected suggestions for improvement from the experts. For

the system, E3 and E5 suggested for more interactions starting from the
Timeline which would help analysts better understand the connections be-
tween sequential events. E4 suggested adding more operational hints to the
system interface to guide users. Regarding the analysis method, E2 and E5
believed that incorporating automated result generation capabilities could
make our framework suitable for users with less analytical experience. We
agree with these suggestions and regard them as valuable directions for future
work.
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of9. Discussions

In this section, we will discuss some of the design choices, limitations,
and future directions of our work.

9.1. Color usage
Our visualizations presented have a high reliance on colors. Color serves

as the primary visual channel in our design. We choose to use colors due to
the effectiveness and scalability of 2-D colormaps in representing 2-D infor-
mation (Bernard et al., 2015). However, this design choice imposes certain
requirements on the color resolution capabilities of the analysts and their
equipment. Our approach relies on users’ ability to identify and compare the
differences in colors. Therefore, it has certain applicability limitations.

9.2. Dimensionality reduction methods
Our approach has a high reliance on dimensionality reduction methods,

which are applied multiple times at different levels of data processing. Dur-
ing the analysis process, it is essential for analysts to have a understanding
of the dimensionality reduction method they use. For example, the default
method used in this work, t-SNE, is a neighborhood-preserving dimension-
ality reduction algorithm. When performing similarity analysis based on
projected colors, analysts must be aware that only colors relatively close are
comparable. Otherwise, incorrect similarity judgments may occur.

9.3. Scalability
Although the increase in data volume reduces the efficiency of the sta-

tistical methods we use, the primary scalability challenges in our work stem
from visualizations. The increase in data volume can slow down the response
speed of the visual analysis system and cause overlaps in views such as the
Context View and the Parallel Coordinate View.

For individual event contexts, the Context View can clearly display the
color changes in contexts with fewer than about 30 data entries. For contexts
with more data entries, it is recommended to increase the time interval and
reduce the number of data entries. Another feasible solution, as we adopted
in Case 1, is to include all data entries in data processing, but to sample
within the contexts when drawing them in the system.

As for the overall data volume, we tested the system with datasets of
varying sizes. We observed that the primary limiting factor in the system’s
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occur in the Context View when the total number of contexts exceeds about
500. As a solution to handling large amounts of contexts, we suggest clus-
tering the contexts and importing each cluster into the system separately for
analysis.

9.4. User involvement
In this work, we leave substantial room for the analyst’s involvement

within our framework. As for data processing, the decisions on the time
interval, the length of contexts, as well as the number of clusters, are made
by analysts. This is because the selection of these parameters can vary greatly
depending on the specific analytical scenario.

As for visual analysis, we also do not prescribe a fixed analytical process
for analysts. This is because we observed that the process of exploring event
contexts is typically open-ended and non-linear. From our expert study, we
also observed that the analysts have various interests, and their interests tend
to emerge gradually during their exploration. Therefore, we only suggest that
analysts first complete the clustering. After that, as demonstrated in Case
1, analysts can either start from interesting patterns in the Context View or
from filtering specific situations using the Parallel Coordinates View.

Overall, in this work we do not aim at providing an automated or struc-
tured solution to users. Instead, we choose to leave more decision-making
space for users to ensure flexibility and adaptability. However, this choice
also results in limitations in our target user group. Based on expert sugges-
tions, in future work, we will work on incorporating more automation and
intelligence to reduce our reliance on user knowledge.

10. Conclusion

In this study, we present a framework for the visual analysis of multi-
variate event contexts, which consists of a design of visual representation, a
data processing workflow, and a context-centered visual analysis system. By
incorporating a contextualized perspective in event analysis, the framework
facilitates the identification and interpretation of temporal patterns within
and across events. We present case studies using real-world datasets from
two different domains and an expert study conducted with experienced data
analysts to demonstrate the applicability and effectiveness of our framework.
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