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SUMMARY
Genome-wide association studies (GWASs) of high-dimensional traits, such as blood cell or metabolic traits,
often use univariate approaches, ignoring trait relationships. Biological mechanisms generating variation in
high-dimensional traits can be captured parsimoniously through a GWAS of latent factors. Here, we intro-
duce flashfmZero, a zero-correlation latent-factor-basedmulti-trait fine-mapping approach. In an application
to 25 latent factors derived from 99 blood cell traits in the INTERVAL cohort, we show that latent factor
GWASs enable the detection of signals generating sub-threshold associations with several blood cell traits.
The 99% credible sets (CS99) from flashfmZero were equal to or smaller in size than those from univariate
fine-mapping of blood cell traits in 87% of our comparisons. In all cases univariate latent factor CS99 con-
tained those from flashfmZero. Our latent factor approaches can be applied to GWAS summary statistics
and will enhance power for the discovery and fine-mapping of associations for many traits.
INTRODUCTION

Many genetic variants associated with disease risks or quantita-

tive traits have been identified by genome-wide association

studies (GWASs).1 Many examples of pleiotropy exist among

these findings, where a variant affects several traits, often by

affecting a pathway upstream of multiple related traits.2 When

genetic variants affect a group of traits through a common

pathway, methods that leverage the shared signal in the compo-

nent of genetic variation common to all the traits, while account-

ing for residual correlation, areable to identify associated variants

(multi-trait GWASs, e.g., MTAG3) and pinpoint causal variants

(multi-trait fine-mapping, e.g., flashfm4) more powerfully than

methods that analyze traits individually. Such approaches pro-

vide an efficient way to gain statistical power without increasing

sample size.

A complete blood count (CBC) report is an example of a

multivariate phenotype in which correlation between the

component traits arises, in part because of a common depen-

dence on variation in one or more biological processes. All

types of blood cells derive from a common stem cell type, the

hematopoietic stem cell (HSC), and different types of blood

cells interact, for instance, in hemostasis and in immune re-
Cell Genomics 5, 100847, M
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sponses. CBCs include measurements of hemoglobin concen-

trations and of blood concentrations of reticulocytes, mature

red blood cells, platelets, and the different types of white blood

cells. Additionally, they often contain measurements of the

mean cell volumes of several cell types. GWASs of CBC traits

have been conducted using samples of hundreds of thousands

of participants, identifying hundreds of associations with ge-

netic variants. Many of these associations are shared by biolog-

ically related traits. For example, genetic variants that increase

mean platelet volume usually also reduce platelet count, pre-

sumably because the proportion of blood volume occupied

by platelets is physiologically regulated.5 The missense variant

rs3184504 in SH2B3, which encodes lymphocyte adapter

protein (LNK), is associated with traits measuring properties

of reticulocytes, mature red cells, neutrophils, eosinophils,

basophils, lymphocytes, and monocytes.6 LNK encodes an

adaptor protein that regulates cytokine signaling in HSCs and

plays a crucial role in HSC self-renewal and the differentiation

of all the major blood cell lineages.7,8 Because CBCs typically

contain at least two dozen traits measured simultaneously,

many of which are genetically and biologically correlated,

they provide an ideal testing ground for multi-trait association

methods.
ay 14, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Genetic studies of high-dimensional phenotypes, such as pro-

files of gene expression, protein or metabolite levels, rely heavily

on univariate analyses, partly because most multi-trait GWAS

methods are limited computationally to a handful of traits. Conse-

quently, such studies do not leverage the information in associa-

tion signals shared across phenotypes. Some multi-trait GWAS

methods use individual-level data to fit a multivariate linear

model, jointly testing for association between a variant and

each of several traits (e.g., GEMMA9). Summary-level (GWAS

summary statistics) methods have the advantage that their

computational efficiency does not depend on sample size.

They can be broadly partitioned into methods that: (1) jointly

model effect size estimates from several traits (e.g., MTAG3), or

(2) reduce the dimension of the genome-wide joint distribution

of the GWAS effect sizes frommultiple traits through factor anal-

ysis (e.g., genomicSEM10 or FactorGo11).

Rather than taking a dimension reduction approach to the dis-

tribution of effect sizes aggregated from multiple single-trait

GWASs, we take a different perspective and use factor analysis

to investigate the GWASs of latent factors that underlie the traits.

Factor analysis captures the covariation between multiple traits

by modeling them jointly as linear combinations of a set of com-

mon latent factors (plus independent error terms). Such latent

factors can correspond to common sources of biological varia-

tion for which we can estimate GWAS summary statistics.

Current multi-trait fine-mapping methods that allow multiple

causal variants are not scalable to high-dimensional traits.

CAFEH12 and mvSuSiE13 are multi-trait extensions of SuSiE14

fine-mapping: CAFEH assumes that traits are independent and

it allows for missing trait measurements, while mvSuSiE models

trait correlations and requires complete data. Flashfm4 accounts

for trait correlations and leverages information between traits in

a Bayesian framework, allowing for missing trait measurements;

the prior on the model space allows traits to have shared and

distinct causal variants and upweights multi-trait models with

shared causal variants. CAFEH and flashfm provide trait-spe-

cific posterior probabilities of causality for each trait, analogous

to MTAG multi-trait GWASs.3 In contrast, mvSuSiE outputs a

posterior probability that each variant is causally associated

with at least one trait and uses a second metric (the local false

sign rate) to infer which the associated traits are.

We introduceflashfmZero, anextensionofflashfm to jointly fine-

map association signals from any number of latent factors by tak-

ing advantage of their zero-correlation from varimax rotation.

flashmZero rapidly fine-maps signals with multiple uncorrelated

traits (or latent factors). We also show that latent factor GWAS

summary statistics can be derived from observed trait GWAS

summary statistics and a factor loadingmatrix from the trait corre-

lation matrix. This widens use of the latent factor GWAS and

flashfmZero to summary-level datasets, offering the flexibility to

include individuals with incomplete trait measurements.

To illustrate the performance of a latent factor GWAS and sin-

gle/multiple latent factor fine-mapping and to compare them,

respectively, with a univariate GWAS and univariate fine-map-

ping of multiple traits, we focus on 99 blood cell traits measured

in a subset of the INTERVAL cohort of UK blood donors15–17

who have measurements for all traits. We interpret the results

of our analyses in the context of fine-mapping results from UK
2 Cell Genomics 5, 100847, May 14, 2025
Biobank (UKBB) as part of a much larger study.6 We show

that fine-mapping of signals using latent factors has better res-

olution than fine-mapping of the measured traits, with further

gains by flashfmZero. Using the INTERVAL study, we also apply

flashfmZero to latent factor GWAS summary statistics sepa-

rately computed from GWAS summary statistics of (1) 99 blood

cell traits15,16 and (2) 184 metabolic traits.18

RESULTS

Identification of latent factors underlying variation in
blood cell traits
We used blood cell trait data from the extended CBC reports

generated by Sysmex XN hematology analyzers in >45,000

generally healthyUKblooddonors from the INTERVAL study15–17

(Table S1).We applied factor analysis with the varimax rotation to

data from 18,310 INTERVAL participants with complete data

to identify groups of blood cell traits sharing common latent fac-

tors.UsingHorn’s parallelmethod,weselectedamodel including

25 statistically uncorrelated latent factors (Figure S1, STAR

Methods).

We calculated scaled factor loadingsCij to quantify each latent

factor’s contribution to each trait, i.e., the proportion of variance

in blood cell trait i explained by latent factor j, relative to the total

variance explained jointly by the 25 latent factors (Table S2;

STAR Methods). We describe the principal effects of the latent

factors on the blood cell traits in Table S3.

Generally, blood cell traits that receive high contributions from

the same latent factor belong to the same broad blood cell type

(Figure 1; Table S2). For example, latent factor ML4 primarily ex-

plains variation in reticulocyte traits, while ML8 andML5 are spe-

cific to basophil and platelet traits, respectively. Increased ML10

corresponds to increasedplatelet countwithout affecting platelet

volume or other platelet characteristics. The volume of blood

occupied by platelets (Plateletcrit [PCT]) therefore goes up with

ML10. Increased ML17 corresponds to more reactive lympho-

cytes, while increased ML23 corresponds to reduced average

cell volume, increased average cellular complexity, increased

variability in cellular complexity, and increasedaverageRNAcon-

tent of both lymphocytes and monocytes.

Typically, the highest contributing latent factor is shared by

highly correlated traits (Table S4), but there is no one-to-one

mapping between latent factors and blood cell traits. Impor-

tantly, multiple latent factors make major contributions (i.e.,

Cij > 20%) to variation in some blood cell traits. For example,

latent factor ML2—which varies closely with the mass of hemo-

globin per red blood cell (mean corpuscular hemoglobin

[MCH])—is a major contributor to variation in multiple red blood

cell traits. It has a 41% contribution to RBC-SFL-DW (red blood

cell side fluorescence distribution width) and 96% to RBC-FSC

(red blood cell forward scatter). On the other hand, although

ML21—which principally affects the distribution width of the

mass of hemoglobin in red cells (red blood cell forward scatter

distribution width [RBC-FSC-DW])—has a 25% contribution to

RBC-SFL-DW, it contributes very little to variation in RBC-

FSC. Notably, traits from the same broad cell type do not neces-

sarily have the same primary contributing factor. For instance,

ML1—which varies closely with neutrophil count (NEUT#)—is



Figure 1. Latent factors cluster blood cell traits grouped by broad cell type into groups with common underlying variance generating

mechanisms

Descriptions of the 99 traits, including abbreviations and full names, are given in Table S1 and their trait covariance matrix is given in Table S4. A line between a

latent factor (open rounded rectangles, e.g., ML11) and trait (colored rectangles, e.g., IG% or IG#) indicates a latent factor contribution of at least 20% to the trait;

line thickness is proportional to Cij; solid lines for positive factor loadings and dashed lines for negative factor loadings. Traits are categorized by broad cell type

according to the color code in the legend. Latent factors were calculated in 18,310 INTERVAL participants. Source data in Table S2, interpretations in Table S3.
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the primary factor contributing to seven white cell traits that are

direct functions of NEUT#, for six of which it contributes more

than 83% of the total latent factor generated variance. On the

other hand, ML22 makes the principal contribution to variation

in average neutrophil volume (neutrophil forward scatter [NE-

FSC], 91%), average neutrophil granularity/complexity (neutro-

phil side scatter [NE-SSC], 69%) and average neutrophil nucleic

acid content (neutrophil side fluorescence [NE-SFL], 88%).

ML22 also makes the principal contribution to average eosino-

phil volume (eosinophil forward scatter [EO-FSC], 70%),

average eosinophil granularity/complexity (eosinophil side scat-
ter [EO-SSC], 93%), and average eosinophil nucleic acid con-

tent (eosinophil side fluorescence [EO-SFL], 63%), suggesting

that the latent factor captures a biological mechanism common

to the two types of granulocytes.

A GWAS of latent factors identifies additional
association signals over a blood cell trait GWAS
For each of the 25 latent factors and 99 blood cell traits, we

conducted a GWAS using individual-level trait measurements

and genotype data from the 18,310 participants who contrib-

uted to the factor analysis. The process we used to obtain latent
Cell Genomics 5, 100847, May 14, 2025 3
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Figure 2. Flow diagram of latent factor GWAS summary statistics estimation

Computation of latent factor GWAS summary statistics using (A) individual-level complete data: estimate latent factor scores from factor analysis of the observed

traits then performGWAS on each latent factor using genotype data. (B) Using observed trait GWAS summary statistics (allowing for missing trait measurements):

estimate the factor loading matrix from the trait covariance matrix, for use with the observed trait GWAS summary statistics to calculate latent factor GWAS

summary statistics.
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factor GWAS summary statistics is illustrated in Figure 2A.

Later, we relax the requirement for individual-level complete

data and show that latent factor GWAS summary statistics

can be computed from the observed trait GWAS summary sta-

tistics, allowing for missing trait measurements (STARMethods;

Figure 2).

To identify genetic association signals discovered by a latent

factor GWAS but not a blood cell trait GWAS, we first selected

the genome-wide significant (GWS) variants (p < 53 10�8) asso-

ciated with each latent factor and clumped them by linkage

disequilibrium (LD) (r2 > 0.6). We then identified traits that

receive a contribution of at least 1% from the latent factor and

examined the trait p values for association with the lead variants

(those with the smallest p value) from each of the latent factor

clumps. Out of 3,399 lead variant associations, 3,036 had a

GWS association with a connected blood cell trait, 211 had ev-

idence for association at a suggestive significance threshold

(53 10�8 < p < 13 10�6) and 152 had no evidence at a sugges-

tive threshold (1 3 10�6 < p) at any of the connected blood cell

traits (Table S5).

Next, to explore the signals across latent factors and blood

cell traits, we formed LD clumps (r2 > 0.6) of the set of variants

with a GWS association with at least one of the 99 traits; sepa-

rately, we formed clumps of the set of variants with a GWS as-

sociation with at least one of the 25 latent factors. We assumed

each clump to represent a distinct association signal and

considered a signal identified by the blood cell traits to have

been identified by the latent factors if any variant in the corre-

sponding trait clump exhibited a GWS association with a latent

factor. Symmetrically, we considered a latent factor signal to
4 Cell Genomics 5, 100847, May 14, 2025
have been identified by the blood cell traits if any variant in the

corresponding clump exhibited a GWS association with a blood

cell trait. As expected, we found that blood cell trait clumps that

are significantly associated with multiple blood cell traits are

more likely to be significantly associated with a latent factor (Ar-

mitage test for trend p < 10�25); 67% (98/146) of the clumps

associated with exactly two traits and 86% (102/119) of the var-

iants associated with exactly three traits were also associated

with a latent factor (Figure 3; Table S6). In contrast, 32% (96/

301) of clumps associated with just one trait were also associ-

ated with a latent factor.

The advantage of factor analysis is illustrated by the 31 clumps

that do not exhibit GWS associations with a blood cell trait, but

that are significantly associated with a latent factor because

they are moderately associated with several traits. For example,

we found an association between ML8 and rs9310935 near

IL5RA (per allele effect size estimate = �0.058SD, 95% confi-

dence interval [�0.078SD,�0.037SD], p = 3.33 10�8) (Figure 4).

IL5RA encodes the interleukin-5 receptor alpha subunit of a het-

erodimeric cytokine receptor found on the surface of eosinophils

and basophils. Interleukin-5 signaling induces the differentiation

and maturation of eosinophils in the bone marrow. Therapies

specifically targeting this protein, such as benralizumab, are

effective at blocking interleukin-5 signaling, reducing basophil

and eosinophil counts through apoptosis, and therefore treating

eosinophilic airwaydiseases suchassevereeosinophilic asthma.

A significant association between rs9310935 and basophil

count has been detected previously in a multi-ancestry meta-

analysis,19 but thesignal did not reach theGWSthreshold ineither

our single blood cell trait GWAS in INTERVAL or in a substantially
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Figure 3. Clumps associated with multiple

blood cell traits aremore likely to be associ-
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This stacked barplot counts both blood-cell-trait-

associated variant clumps and latent factor-

associated variant clumps (MAF > 0.003, LD

clumped r2 > 0.6). The x axis indicates the number

of distinct traits GWS associated with at least one

variant in a clump. The y axis indicates frequency.

Red bars count trait signals shared with latent

factor(s), green bars count trait clumps not asso-

ciated with latent factors, and the blue bar shows

31 clumps associated only with a latent factor. All

GWAS data were based on 18,310 INTERVAL

participants. Source data in Table S6B.
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larger GWASof European ancestry participants.6,15 However, we

did find moderate-to-weak evidence for association between

rs9310935 and four basophil-related traits to which ML8 contrib-

utes variance (Figure 4; Table S5). Several other ML8-associated

variants in the IL5RA regionwere associatedwithwhite blood cell

traits in our analysis, aswell as inpreviousstudies16 (Figures4and

S2). rs9310935 remains significantly associated with ML8 when

conditioning on the previously published lead variants, suggest-

ing that its association signal is distinct from those previously

identified (Figures 4 and S2).

Despite analyzing a relatively small sample (18,310 partici-

pants) compared with a previously published GWAS of blood

cell traits, we identified 6 distinct GWS associations with the

latent factors, after conditioning on the 3,559 lead variants

from a recent large GWAS of complete blood cell traits16 and

Sysmex extended blood count traits.15 These included the as-

sociation between ML8 and rs9310935 in IL5RA. None of the 6

associated variants showed GWS evidence for association in

our univariate analyses of the blood cell traits in the same par-

ticipants (STAR Methods). In summary, among the 6 variants

exhibiting novel associations, 4 of the variants were common

(MAF > 0.01) with different likely causal genes and 2 were low

frequency (0.003 < MAF < 0.01) from the same likely causal

gene (Tables 1 and S7).

Oneof thecommonvariants (rs6064377,MAF=0.33)wasasso-

ciated with ML6 (per allele effect size estimate = �0.0609SD,

95% confidence interval [�0.083SD, �0.039SD], p = 4.6 3

10�8), variation in which causes a change in hemoglobin (HGB)

concentration and hematocrit (HCT) mediated by a change in

red blood cell count (RBC#) while mean red corpuscular volume

and MCH remain constant. The variant exhibited moderate evi-

dence for association with HGB, HCT, and RBC#, with 1.5 3

10�7 < p < 1.3 3 10�5 (Figure S3; Table S5). rs6064377 lies near
Ce
the gene FAM210B, which encodes the

protein family with sequence similarity

210 member B, a mitochondrial mem-

brane protein that is activated by

GATA-1, a critical transcription factor for

erythroid differentiation. FAM210B is

thought to play a key role in regulating

mitochondrial iron import to allow heme

synthesis, thereby regulating erythropoi-
esis and iron transport, consistent with the associations seen

with red blood cell traits.20

Fine-mapping resolution gains are highest for joint
latent factor fine-mapping
We considered 217 genomic regions that contain GWS associa-

tions with any blood cell trait at least 20% of the variance of

which is explained by a latent factor with a signal in the same re-

gion (STAR Methods). Within each region, we applied JAMdy-

namic single-trait fine-mapping21,22 to each latent factor (JAM

latent factor) with a GWS association in the region and to all

blood cell traits (JAM blood cell trait) that receive a contribution

of at least 20% from these latent factors and have a GWS asso-

ciation in the region (Figure S4). We also applied multi-trait latent

factor fine-mapping (flashfm latent factor) with flashfmZero

(STAR Methods).

In previous simulation comparisons of multi-trait fine-mapping

methods applied separately to European and African genetic

ancestry individuals, flashfm had slightly higher power and lower

false discovery rate (FDR) than mvSuSiE.22 Moreover, mvSuSiE

had noticeably higher FDR in the European sample, where there

are longer LD blocks. As mvSuSiE requires complete data,13 we

applied it within the subset of 18,310 individuals and compared

the results with those from flashfmZero in regions highlighted as

having biologically likely causal variants. Our summary statistics

version of flashfmZero can further improve fine-mapping resolu-

tion over methods requiring complete data because it is possible

to include individuals who do not have measurements for all

traits.

LetCS99JAM�blood� cell� trait be the size (number of variants) of a

JAMbloodcell traitCS99 (99%credible set),CS99JAM� latent� factor

bethesizeofaJAMlatent factorCS99,andCS99flashfm� latent� factor

be the size of a flashfm latent factor CS99. We refer to a method
ll Genomics 5, 100847, May 14, 2025 5



Figure 4. Basophil-related latent factor ML8 is associated with rs9310935, which exhibits moderate evidence for association with multiple
basophil-related traits

(A) Regional association plot for ML8 (top panel), highlighting rs9310935 and conditional regional association plot for ML8 (middle panel), conditioned on 11 lead

SNPs for basophil-related traits from previous publications, as detailed in Figure S2.

(B) Forest plot showing the rs9310935 effect size estimates and corresponding 95% confidence intervals for ML8 and its 6 linked basophil traits. All GWAS data

were based on 18,310 INTERVAL participants. rs9310935 details in Table S7.
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as having improved resolution over another method if it tends to

construct smaller CS99s than the other method.

To compare results of the univariate blood cell trait fine-map-

ping to those of the single-trait and multi-trait (if at least two

latent factors had a signal in the region) latent factor fine-map-

ping, we matched each blood cell trait to the latent factor that

is the highest contributor to it, among latent factors that had a

signal in the corresponding region (Figure S4). For comparisons

between JAM latent factor and flashfm latent factor we matched

by latent factor as these methods both return a CS99 for

each latent factor. This resulted in 1,238 comparisons between

CS99JAM�blood� cell� trait and CS99JAM� latent� factor , 725 compari-

sons betweenCS99JAM�blood� cell� trait andCS99flashfm� latent� factor ,

and 211 comparisons between CS99JAM� latent� factor and

CS99flashfm� latent� factor .

JAM latent factor has improved resolution over JAM

blood cell trait. In 76% (937/1,238) of their comparisons,

CS99JAM� latent� factor %CS99JAM�blood� cell� trait; in 58% (725/

1,238) of them CS99JAM� latent� factor <CS99JAM�blood� cell� trait.

flashfm latent factor further improves resolution over JAM blood

cell trait, as CS99flashfm� latent� factor %CS99JAM�blood� cell� trait in

86% (624/725) of their comparisons and CS99flashfm� latent� factor

<CS99JAM�blood� cell� trait in 71% (517/725) of them. When

latent factors have no shared causal variants, as suggested
6 Cell Genomics 5, 100847, May 14, 2025
by no overlap in their CS99, flashfm latent factor and JAM

latent factor give similar results (as previously illustrated for

flashfm4). As flashfm methods have improved resolution over

single-trait methods when traits share causal variant(s), we

observe that CS99flashfm� latent� factor %CS99JAM� latent� factor in

97% (205/211) of the comparisons and CS99flashfm� latent� factor

<CS99JAM� latent� factor in 45% (95/211) of them (Figure 5;

Table S8).

We use the marginal posterior probability (MPP) of causality

for a variant to assess accuracy of latent factor fine-mapping re-

sults. We compared the prioritized variants (MPP > 0.90) by our

analyses with those prioritized (MPP > 0.95) in UKBB (approxi-

mately 500k individuals)6; we allowed a lower prioritization

threshold in our comparatively smaller analysis, but most of

our high-confidence variants do satisfy MPP > 0.95 (Table S8).

For this comparison we focused on 36 regions that met two

conditions: (1) contained a prioritized variant by JAM blood

cell trait, JAM latent factor, or flashfm latent factor in the

INTERVAL analysis (MPP > 0.90), and by FINEMAP23 in UKBB

(MPP > 0.95),6 and (2) the causal association in INTERVAL

fine-mapping involved one of the 29 ‘‘classical’’ CBC traits

analyzed in UKBB or with their linked latent factor(s) (STAR

Methods). In 69% (25/36) of regions, at least one high-confi-

dence variant identified by blood cell trait or latent factor



Table 1. Latent factors allow the identification of associations that are not detectable in a blood cell trait GWAS of 18,310 individuals

Variant

(chr:bp, rsID) MAF

Likely

causal

gene

Biological support for

likely causal candidate gene

Latent factor

[cell type]

(conditional p value)

Conditional b

(standard error)

Blood cell traits

min pvalue

(trait name)

3:3101825

(rs9310935)

0.4762 IL5RA IL5RA encodes the interleukin-5

receptor alpha subunit of a

heterodimeric cytokine receptor

found on the surface of

eosinophils and basophils;

therapies specifically targeting

IL5-ra are effective at blocking

interleukin-5 signaling and

reducing basophil and

eosinophil counts

ML8 [basophils]

(6.5 3 10�9)

�0.0630 (0.0104) 2.3 3 10�7

(BASO%)

5:40975803

(rs540446526)

5:41018263

(rs559314725)

0.0036

0.0031

C7 C7 involves complement

component 7, part of the

terminal complement pathway

of the innate immune system,

which can activate platelets;

patients with C7 deficiency show

abnormal platelet aggregation,

which can be corrected with

addition of C7

ML18 [platelet]

(1.0 3 10�8)

ML18 [platelet]

(2.2 3 10�8)

�0.5132 (0.0901)

�0.5402 (0.0971)

7.0 3 10�7

(PLT-FSC-DW)

4.8 3 10�7

(PLT-FSC-DW)

18:23024328

(rs72878322)

0.3587 ZNF521 zinc finger protein 521 (ZNF521)

is a C2H2-type zinc finger

transcription factor, which has

been shown to repress erythroid

differentiation by inhibiting

GATA-1 activity, and to block

B-lymphoid differentiation

in primary hematopoietic

progenitors by antagonizing

early B-cell factor 1

ML8 [basophils]

(1.8 3 10�8)

�0.0624 (0.0112) 2.8 3 10�7

(BASO%)

20:54884793

(rs6064377)

0.3277 FAM210B (family

with sequence

similarity 210

member B)

FAM210B encodes a

mitochondrial membrane

protein which is activated by

GATA-1, a critical transcription

factor for erythroid

differentiation; FAM210B is

thought to play a key role in

regulating mitochondrial iron

import to allow heme

synthesis, thereby regulating

erythropoiesis and iron transport

ML6 [mature red

blood cells]

(4.4 3 10�8)

�0.0618 (0.0112) 1.8 3 10�7 (HCT)

21:23426550

(rs117617749)

0.0642 AP000472.2 unclear - coding gene desert ML6 [mature red

blood cells]

(4.1 3 10�8)

0.1172 (0.0214) 2.9 3 10�7 (RBC#)

Conditional two-sided p values are calculated from association analyses conditioning on previously identified lead variants from large GWAS of blood

cell traits.15,16 Further details in Table S7.
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approaches matched those identified in UKBB (Table S8). In an

additional 11% (4/36) of regions, the prioritized variants of latent

factor approaches matched those identified in UKBB, but no

variants were prioritized by the blood cell trait fine-mapping.

Among the 25 regions where fine-mapped variants from both

blood cell trait and latent factor approaches matched those in

UKBB we found 9 regions for which latent factor fine-mapping

prioritized causal variants for more traits than by blood cell trait

fine-mapping. For example, in a region containing PIEZO1 (a

gene with a primary role in blood vessel formation and vascular
structure24), there were four correlated variants (r2 > 0.8) in the

CS99 for the mature red cell trait mean corpuscular hemoglobin

concentration (MCHC), of which rs861400 (16:88862343) and

rs551118 (16:88856084) had the highest (0.69) and second high-

est (0.27) MPP, respectively (Figure S5). However, rs551118 had

the highest MPP for the immature red cell traits reticulocyte

count (RET#) (MPP = 0.94; CS99 size = 4), reticulocyte percent-

age (RET%) (MPP = 0.88; CS99 size = 8), and reticulocyte pro-

duction index (RPI) (MPP = 0.56; CS99 size = 8). ML12 primarily

contributes to MCHC, while ML13 is the primary contributor to
Cell Genomics 5, 100847, May 14, 2025 7



0 100 200 300 400

0
10

0
20

0
30

0
40

0

JAM blood cell trait CS99 size

JA
M

 la
te

nt
 fa

ct
or

 C
S9

9 
si

ze
A

0 100 200 300 400

0
10

0
20

0
30

0
40

0

JAM blood cell trait CS99 size

fla
sh

fm
 la

te
nt

 fa
ct

or
 C

S9
9 

si
ze

B

0 100 200 300 400

0
10

0
20

0
30

0
40

0

JAM latent factor CS99 size

fla
sh

fm
 la

te
nt

 fa
ct

or
 C

S9
9 

si
ze

C

Figure 5. Latent factor fine-mapping yields smaller 99% credible sets (CS99) than blood cell trait fine-mapping, with the largest resolution

gain from joint fine-mapping of multiple latent factors

There are (A) 1,238 comparisons between ‘‘JAM blood cell trait’’ and ‘‘JAM latent factor,’’ (B) 725 comparisons between JAM blood cell trait and ‘‘flashfm latent

factor,’’ and (C) 211 comparisons between JAM latent factor and flashfm latent factor. CS99 sizes larger than 400 are not plotted; 11 CS99 for JAMblood cell trait,

10 CS99 for JAM latent factor, and 8 CS99 for flashfm latent factor. All GWAS data were based on 18,310 INTERVAL participants. Source data in Table S8.
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RET#, RET%, and RPI (Figure S6). Our joint fine-mapping of the

latent factors (flashfmZero) led to high-confidence that rs551118

is causally associated with both ML12 (MPP = 0.97) and ML13

(MPP = 0.96) (Figure S5). This suggests that rs551118 is the likely

causal variant for MCHC, RET#, RET%, and RPI, which are

linked with ML12 and ML13. The basophil-related traits linked

with ML8 appear to have a distinct causal variant from

rs551118, although we were unable to pinpoint it; rs904801

(16:88517105) has the highest MPP (0.338) for ML8 and has

r2 = 0.002 with rs551118.

After mvSuSiE identifies variant(s) with high posterior probabil-

ity of causality for at least one trait (PIP), its local false sign rate

(lfsr) is used to interpret which traits are associated with the var-

iant(s); a recommended threshold13 is lfsr < 0.01. Applying

mvSuSiE to all traits observed to have a signal in the PIEZO1 re-

gion also identified two potential causal variants: rs551118

(16:88856084) and rs904801 (16:88517105) with PIP values of

0.978 and 0.945, respectively. However, none of the traits had

lfsr < 0.01 at either of these variants (Table S9). Weakening the

threshold to lfsr < 0.05 suggests that all traits (related to red

blood cells and basophils) have rs551118 as a causal variant,

and none are impacted by rs904801. However, rs551118 is un-

likely to be causal for basophil-related traits, which have 9.9 3

10�4 < p < 0.038, whereas rs904801 is GWS for these traits

(p < 2.4 3 10�10) (Table S5). Moreover, mvSuSiE identified

rs551118 as a causal variant for red blood cell traits, but not ba-

sophils, in an application to 16 blood cell traits within the Euro-

pean ancestry complete data subset of UKBB (248,980 individ-

uals).13 This suggests that large samples are needed for

mvSuSiE to identify which traits have particular causal variants.

For smaller studies (�20,000 individuals), mvSuSiE contributes

to high-level identification of potential causal variants, but does

not to a refined interpretation of the traits that are impacted by

particular variants.

There were four regions in which only flashfmZero was able to

prioritize variants that matched those identified in UKBB. In one

of these regions, flashfmZero prioritized rs1175550 (1:3691528),

an intronic variant of SMIM1 (a regulator of red blood cell forma-

tion and the gene encoding the antigen underlying the Vel blood
8 Cell Genomics 5, 100847, May 14, 2025
group25), for three latent factors (ML4, ML12, ML14) that are all

related to red blood cell traits (Figure 6). This result was validated

by UKBB fine-mapping, which prioritized rs1175550 for nine red

blood cell traits (e.g., HGB, RBC#, MCHC, RET#). It is also sup-

ported by published data showing rs1175550 to be an expres-

sion quantitative trait loci (eQTL) for SMIM1 and a modulator of

Vel blood group antigen expression.26 The flashfmZero CS99s

contained a single variant, a noticeable improvement over the

blood cell trait CS99s—all containing rs1175550—with sizes

30–58 (Figure 6). rs1175550 had the highest MPP (0.24–0.59) in

the univariate fine-mappings of the associations with HLSR#

(high light scatter reticulocyte count), HLSR% (high light scatter

reticulocyte percentage of red cells), MFR (medium fluorescent

percentage of reticulocytes), andMCHC, and the second highest

MPP (z0.20) for IRF (immature fraction of reticulocytes) and LFR

(low fluorescent percentage of reticulocytes), with the highest

confidence variant (rs1175549 [1:3691727], MPP z 0.26) being

in high LD (r2 = 0.83) with rs1175550. rs1175550 was second

(MPP = 0.12) for RDW-SD (red cell distribution width—standard

deviation), after rs7513053 (1:3709487; MPP = 0.44, r2 = 0.69

with rs1175550). For RET-SFL (reticulocyte side fluorescence)

rs1175550 ranked eighth (in a CS99 of 46 variants), with moder-

ate LD (r2 = 0.47) with the top variant (rs1175548 [1:3693032],

MPP = 0.33). Single-trait latent factor fine-mapping improved

resolution with CS99 sizes of 5–27; rs1175550 had the highest

MPP for ML4 (MPP = 0.42) and ML12 (MPP = 0.92) and sec-

ond-highest for ML14 (MPP = 0.18), although it has r2 = 0.69

with the top variant, rs7513053 (1:3709487) (MPP = 0.33).

flashfmZero further refined the CS99 values for the three latent

factors, with rs1175550 having MPP > 0.99 (Figure 6).

The application of mvSuSiE to the SMIM1 region gave results

that agreed with flashfmZero, identifying rs1175550 (1:3691528)

as a causal variant for at least one trait (PIP = 0.999). All traits with

a signal in the region had lfsr < 0.01 (Table S9). This suggests

that, in samples of this size (�18,000 individuals), mvSuSiE per-

forms well when all traits share a causal variant, but that it has

some difficulty identifying the traits impacted by causal variants

when a region contains distinct causal variants for subsets of

traits (as for PIEZO1).



Figure 6. Latent factors and fine-mapping in the SMIM1 region
(A) Correlations between latent factors and blood cell traits exhibiting genetic associations show high correlations between each latent factor and their linked

traits, and among traits with a common latent factor. The three latent factors only contribute substantial variance to red blood cell traits—ML4 to six traits, ML12 to

MCHC, and ML14 to RDW, as indicated by the correlation blocks.

(B) Comparison of 99% credible sets (CS99) for blood cell traits and latent factors. The multi-trait latent factor CS99s each contain one variant, refining the

univariate latent factor CS99s, which in turn refine the univariate trait CS99s. Variants indicated by rsID on the y axis belong to at least one CS99, while columns

correspond to CS99 from fine-mapping indicated on the x axis. Univariate latent factor CS99s are denoted by latent factor name (e.g., ML12), and those for multi-

trait latent factors are appendedwith an asterisk (e.g., ML12*). Colored circles show variantmembership in theCS99 for each trait, with colors (labeled by letters in

the legend) indicating groups of variants (with marginal posterior probability [MPP] > 0.01, r2 > 0.8) as calculated by the fine-mapping method; group ‘‘0’’ variants

had MPP < 0.01 and were not assigned to a group. Each circle’s area is proportional to the MPP that the variant is causally associated with the trait. Columns are

grouped (open boxes top row) by latent factor contributions to traits, and within each group columns are ordered by CS99 size (e.g., ML12* has 1 variant, ML12

has 5, and MCHC has 58). All GWAS and trait correlations were based on 18,310 INTERVAL participants. Detailed results in Table S8.
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Where latent factors are not biologically related, the flashfm-

Zero and single-trait latent factor fine-mapping results are iden-

tical. For example, in a region containing TMCC2, we fine-map-

ped signals from 12 blood cell traits, of which 9 are platelet traits

and 3 are basophil traits (Figure S7). No variants were prioritized

by fine-mapping of individual blood cell traits; CS99 sizes were

16–52 for platelet traits and 18–19 for basophil traits (Figure S8).

The 9 platelet traits are linked toML5, which had aCS99 contain-

ing 8 variants. Likewise, the 3 basophil traits are linked to ML8,

for which the CS99 was reduced to 12 variants. The CS99s of

the basophil and platelet traits do not overlap, suggesting that

they are unlikely to share any causal variants in this region, and

hence flashfmZero results were identical to those from single-

trait latent factor fine-mapping (Figure S8).

Improved fine-mapping of signals in a latent factor
GWAS estimated from summary statistics
We extended our method to use GWAS summary statistics, alle-

viating the need for complete individual-level data, and applied it

to blood cell traits in up to 43,059 INTERVAL participants. We

derived 25 latent factors from this larger sample (Figure S9),

showing similar contributions to the 99 blood cell traits as factors

derived from the subset of 18,310 participants (Figure S10). We

selected 11 regions in which we had previously fine-mapped sig-

nals with blood cell traits and their latent factors using the com-

plete data and repeated the fine-mapping using the summary

statistics approach in the larger sample (Table S10).
In general, both approaches agreed on the selection of vari-

ants with the highest MPPs. As expected, in the larger sample,

we identified association signals with additional traits and/or

latent factors in some regions. We also observed that prioritized

variants tend to have higher MPPs in the larger sample

(Table S10) compared with the smaller sample (Table S8). We

focus on the results of the comparison for SMIM1 and PIEZO1

(Table S9).

In the region containing PIEZO1, flashfmZero prioritized

rs551118 (16:88856084) for ML12 and ML13, in agreement

with the complete data analysis in the smaller sample. As for

the complete data analysis, there was improved fine-mapping

resolution for the latent factors over the observed traits. Further

resolution gains were apparent with flashfmZero, including the

refinement of the CS99s for ML12 and ML13 to a single causal

variant (16:88856084). In the larger sample, four additional latent

factors (ML10, ML14, ML15, ML20) and three additional traits

(RDW-SD, MacroR, BASO-SFL-DW) showed signals in the re-

gion; RDW-SD and MacroR have contributions from ML14 and

BASO-SFL-DW has contributions from ML8. The fine-mapping

of ML14 in the larger sample also prioritized 16:88856084 with

an MPP just below 0.99 (Tables S9 and S10).

Within theSMIM1 region, comparedwith our previous analysis

in the smaller sample, the summary-statistic-based analysis

identified GWS associations with three additional red blood

cell traits (HFR, RET#, RET%) and one additional latent factor

(ML20). Single latent factor fine-mapping refined the CS99s of
Cell Genomics 5, 100847, May 14, 2025 9
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the observed traits and flashfmZero further refined all CS99s to

the single variant rs1175550 (1:3691528) (Tables S9 and S10).

This agrees with our results from the smaller sample.

Latent factors underlying variation in metabolic traits
provide improved fine-mapping resolution
To demonstrate that our latent factor approach is generalizable

beyond blood cell traits, we applied our framework to a set of

184 metabolic traits from the Nightingale Health nuclear mag-

netic resonance (NMR) assay platform (Table S11), also assayed

in up to 40,849 participants from the INTERVAL study. We

derived 21 latent factors from the trait variance-covariance

structure (Figure S11; Table S12), which broadly corresponded

to distinct biological categories but with varying specificity. For

example, ML17 was specific to the ketone body acetone and

ML8 was specific to conjugated linoleic acid (Table S13), while

ML1-ML5 all ranked highly for a large number of lipid and lipo-

protein parameters, reflecting the trait covariance structure

(Table S14). We derived latent factor GWAS summary statistics

from the factor loading matrix, trait covariance matrix, and

NMR GWAS summary statistics.18

We fine-mapped associations in 11 1MB regions in which

both latent factors and NMR traits had GWS association signals.

Consistent with our blood cell trait analyses, we observed a

general pattern that latent factor fine-mapping gave better

resolution than fine-mapping of NMR traits, and flashfmZero

gave better resolution than single-trait latent factor fine-map-

ping (Table S15). We identified previously reported causal vari-

ants in well-knownmetabolic genes. For example, ML2 (contrib-

utor to lipids in pro-atherogenic particles) prioritized p.R46L

(rs11591147; 1:55505647), a loss-of-function missense variant

in PCSK9. PCSK9 encodes proprotein convertase subtilisin/

kexin type 9, which degrades the low density lipoprotein (LDL)

receptor and regulates levels of LDL-cholesterol in circulation.

We also found that ML12 (contributor to omega-3 fatty acids)

prioritized the missense variant 11:68562328 (rs2229738) in

CPT1A in a single-variant CS99. CPT1A encodes carnitine pal-

mitoyltransferase 1A, a rate-limiting enzyme in the fatty acid

oxidation pathway.

We found that latent factor fine-mapping was able to dissect

multiple signals in a region. For example, the region containing

TOMM40L and APOA2 had GWS-associated variants with 6

latent factors andwith 12 observed traits, each ofwhich had con-

tributions of at least 20% from the6 latent factors. Joint latent fac-

tor fine-mapping showed that there are at least 3 distinct signals

in this region. The CS99 sizes for the observed traits ranged from

4 to 52with theMPPof the topSNP varying from0.10 to 0.81. Us-

ing latent factor fine-mappingweare able toprioritize one variant,

1:161619363 (rs10737488; MPP = 0.93) for association with

ML13, which contributes to very low-density lipoprotein particle

compositions. Joint latent factor fine-mapping prioritized the

same variant for association with ML13 (MPP = 0.93), and prior-

itized 1:161623025 (rs61804164; MPP = 0.97) for association

with ML10 (contributor to large and extra-large lipoprotein com-

positions). The variant 1:161194641 (rs4656292) has the largest

MPP (but hasMPP< 0.90) for association with small andmedium

high density lipoprotein (HDL) traits (with CS99 sizes of 4–9) and

for association with the latent factors ML3 (contributor to small
10 Cell Genomics 5, 100847, May 14, 2025
and medium HDL traits, four variants in flashfmZero CS99) and

ML14 (contributor to albumin concentration, four variants in

flashfmZero CS99) (Table S15).

DISCUSSION

Using blood cell traits and metabolic traits as examples of

high-dimensional phenotypes with heterogeneous correlation

structures, we demonstrated that, where multiple phenotypes

capturing common biological variation have beenmeasured, ge-

netic association analysis of latent variables from factor analysis

complements univariate analyses. This approach has two main

advantages. Firstly, latent factors identify groups of measured

traits influenced by common biological mechanisms, enabling

inferences about groups of traits that share the same underlying

factors. Secondly, a GWAS of latent factors can boost power to

detect signals that may bemissed in a GWAS of measured traits,

when a variant exhibits only moderate evidence for association

with each of multiple measured traits.

The example of SMIM1 and red blood cell traits demonstrates

that multi-trait fine-mapping of latent factors using flashfmZero

can significantly improve resolution. This is because orthogonal

latent factors may share causal variants if they capture aspects

of a common biological process, even though they are, by math-

ematical definition, uncorrelated. However, we note that when

the latent factors are not biologically related, it is less likely that

they will share causal variants. In such instances, multi-trait

latent factor fine-mapping will give similar results to univariate

latent factor fine-mapping, although there will often be resolution

gains over univariate fine-mapping of the measured traits.

We first investigated the analysis of a latent factor GWASwhen

individual-level data are available on the traits and genotypes.

We used the complete data subset of study participants to

calculate latent factor scores and performed GWASs with the

latent factors. We also compared flashfmZero with mvSuSiE

multi-trait fine-mapping,13 which requires complete data. In

smaller studies (�20,000 individuals), mvSuSiE could not dissect

the relationships between variants and traits, but was able to do

so in a substantially larger study13 (>200,000 individuals). How-

ever, flashfmZero applied to the smaller study showed agree-

ment with mvSuSiE applied to the larger study.

A latent factor GWAS using individual-level data is performed

independently of an observed trait GWAS. However, we derived

an approach to conducting a latent factor GWAS using only

observed trait summary-level data, removing the complete

data requirement. This also widens the scope of the latent factor

approach to summary-level datasets freely available on-line,

where the trait correlation may be estimated directly from indi-

vidual-level trait data or using methods such as cross-trait LD

Score regression.27

We demonstrated flashfmZero on uncorrelated latent factors

derived from quantitative traits. Like flashfm,4 we may apply

our latent factor framework and flashfmZero to binary traits. Bi-

nary trait GWAS summary statistics from a linear model may be

used directly in flashfm using the genetic correlation estimated

by cross-trait LD Score regression,27 while log odds-ratios

from a logisticmodel should be converted to a linear approxima-

tion.28 If binary traits have low/zero correlation, factor analysis is



Please cite this article in press as: Zhou et al., Improved genetic discovery and fine-mapping resolution through multivariate latent factor analysis of
high-dimensional traits, Cell Genomics (2025), https://doi.org/10.1016/j.xgen.2025.100847

Article
ll

OPEN ACCESS
inappropriate, but flashfmZero could be applied directly to any

number of binary traits. For correlated binary traits, factor

analysis using genetic correlation may estimate the number of

latent factors underpinning multiple outcomes and the corre-

sponding factor loadings. Latent factor GWAS summary statis-

tics may then be calculated with the ‘‘latentGWAS’’ function in

our flashfmZero package, followed by flashfmZero fine-map-

ping. Further work is needed to understand possible applica-

tions to rare diseases as to how well latent factors capture their

variability.

Our analyses have illustrated the value of latent factor GWASs,

with clear gains in fine-mapping, especially when signals from

multiple latent traits are jointly fine-mapped. Further gains could

be attained by incorporating functional annotations in the prior

probabilities, an approach taken in PAINTOR,29 PolyFun.30 An

extension of flashfm31 that incorporates functional annotations

was applied to fine-map glycemic trait genetic associations

and has been shown to give significant improvements in resolu-

tion over annotation-agnostic flashfm and annotation-informed

FINEMAP.23

Finally, flashfmZero has potential to inform shared therapeu-

tics. For example, PIPE (pleiotropy informing prioritization and

evaluation) uses pleiotropic evidence to prioritize and evaluate

therapeutic targets by considering genetic variants identified

by a cross-disease GWAS.32 Its authors suggest that including

flashfm-identified shared causal variants could give improve-

ments. Integrating latent factors underlying many diseases or

disease-related traits, and the improved prioritization of their

shared causal variants via flashfmZero, may reveal additional

insights to strengthen PIPE. Popular platforms like Priority in-

dex33 and Open Targets Genetics34 translate GWAS associa-

tions into drug target prediction, but they do not yet integrate

pleiotropic evidence. However, both incorporate statistical co-

localizations between trait GWAS signals and eQTL. Consid-

ering flashfmZero’s gains in causal variant prioritization, it has

high potential to identify shared causal variants underlying

latent factors that explain multiple diseases and traits. More-

over, leveraging information between latent factors gives an

alternative strategy to gain power that is crucial for smaller

GWASs, as is common in eQTL studies and in under-repre-

sented populations. Integration of flashfmZero with Priority in-

dex and Open Targets Genetics could improve drug target

identification and prioritization.

Limitations of the study
Calculation of latent factor GWAS summary statistics from the

observed trait GWAS summary statistics for a particular variant

requires that summary statistics are available for all the observed

traits. However, as the traits are measured in the same cohort,

statistics for most variants are likely to be present for all traits.

Currently, flashfmZero assumes a single genetic ancestry

group.Weaccount for population structure by usingGWASsum-

mary statistics from a linear mixed-model (e.g., BOLT-LMM35).

Extending to multi-ancestry studies would be useful, although

not straightforward. Latent factor GWASs could be conducted

within each genetic ancestry group. However, latent factors

from each group must be equivalent for any analyses across

groups, such as meta-analysis using MR-MEGA36 or multi-
ancestry fine-mapping of latent factor signals via MGflashfm22

or an extension of MeSuSiE.37

MGflashfm multi-group/ancestry multi-trait fine-mapping al-

lows inclusion of genetic variants not present in all ancestry

groups, identifying both shared and ancestry-specific causal var-

iants. It uses flashfm to leverage information between traits within

each group and performs joint analysis across groups using

ancestry-specific LD panels. Future work includes adapting

latent factor GWAS and flashfmZero to theMGflashfm framework

for multi-group/ancestry multiple latent factor fine-mapping.
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Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Jennifer Asimit (jennifer.asimit@mrc-bsu.cam.

ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Summary statistics from the latent factor GWAS are available from the

GWAS catalog (https://www.ebi.ac.uk/gwas/) with accession numbers

GCST90559243, GCST90559244, GCST90559245, GCST90559246, GCST

90559247, GCST90559248, GCST90559249, GCST90559250, GCST9055

9251, GCST90559252, GCST90559253, GCST90559254, GCST90559255,

GCST90559256, GCST90559257, GCST90559258, GCST90559259, GCST

90559260, GCST90559261, GCST90559262, GCST90559263, GCST9055

9264, GCST90559265, GCST90559266, GCST90559267. Custom code

for the INTERVAL blood cell trait analyses that use complete data

are available at https://github.com/fz-cambridge/flashfmZero-INTERVAL-

analysis and on Zenodo, https://doi.org/10.5281/zenodo.14992774.38 Fully

annotated scripts for the summary-statistics-based approach applied to

the NMR traits of INTERVAL are available as articles at https://jennasimit.

github.io/flashfmZero and on Zenodo, https://doi.org/10.5281/zenodo.

13305579.39 This same code was used for the summary-statistic-based

analysis of the blood cell traits, but with minor changes.

FlashfmZero and our latent GWAS summary statistics estimation are freely

available in our flashfmZero R package at https://jennasimit.github.io/flash

fmZero and on Zenodo, https://doi.org/10.5281/zenodo.13305579.39
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

INTERVAL is a cohort of 48,725 generally healthy adult blood donors recruited through NHS Blood and Transplant, the English Blood

Service, between 2012 and 2014.17,42 The cohort was originally established for a clinical trial to assess the effect of variation in inter-

donation time intervals on the health of blood donors.43 The sample size of the cohort was determined in order to control the power to

detect i) an operationally significant difference in donation rate and ii) a clinically significant difference in a measure of quality of life

between trial arms.17 The study was approved by the Cambridge East Research Ethics Committee and informed consent was ob-

tained from all participants during recruitment.

Participants were genotyped by Affymetrix (Santa Clara, Ca, USA) with theUKBiobank Axiom array using DNA extracted frombuffy

coat by LGC Genomics (UK). Standard Affymetrix quality control (QC) procedures were applied to the resulting data, which excluded

genotyping probeswith low signal intensity, sampleswith low call rates and variants with low call rates or low confidence calls. Further

QC procedures were applied—to the full dataset andwithin each genotyping batch—to remove rare variants, multiallelic variants, var-

iantswith a poor call rate, variants out of HWE and variants exhibiting allele frequency variability across batches. Variants were pruned

to ensure no pair exhibited strong LD. Samples exhibiting evidence for contamination, excess heterozygosity, non-European ancestry

or discordance of phenotypic and genotypic sex were removed. Subsequently, haplotype phases were imputed using SHAPEIT3 and

missing genotypes were imputed from the 1000 Genomes Phase 3-UK10K reference panel using the PBWT.44,45

Extended complete blood counts (CBCs) were measured from EDTA treated blood samples taken from INTERVAL participants

using two Sysmex XN haematology analysers at UK Biocentre (Stockport, UK). Because a flow cytometry channel of one instrument

was misconfigured during the first 90 days of the study, data for some platelet variables are missing for some participants. The

extendedCBCproduced by the Sysmex instrumentmeasures various properties of the peripheral blood, including hemoglobin levels

and properties of reticulocytes, mature red cells, platelets, neutrophils, eosinophils, basophils, monocytes and lymphocytes. These

properties include cell concentrations, measures of cell maturity, properties of cell volume distributions and properties of the distri-

butions of cell fluorescence and cell side-scatter measured by flow cytometry.

Each variable in the CBC was adjusted to remove variance explained by technical covariables including, the identity of the

measuring instrument, the age of the blood sample at the time of measurement, the time of day of the measurement, time dependent

instrumental drift and instrument recalibration events. Measurements taken more than 36 h after venipuncture were excluded. Sub-

sequently, we adjusted each variable to remove variance explained by sex, menopausal status, age, smoking habits, drinking habits,

log-height and log-weight. Finally measurements that were outliers in univariate and cell-type specific multivariate distributions were

removed. The phenotypes were then rank inverse normalised.

More detailed descriptions of the QC procedures applied to the genotype and phenotype data are given by Akbari et al.15 and Astle

et al.16

A non-fasting serum sample was taken from INTERVAL blood donors before donation at the enrollment visit. High-throughput NMR

spectroscopy-basedmetabolic profiling was used to quantify 230metabolic traits from these serum samples. The metabolic profiles

include routine lipids and individual lipids and their composition in 14 lipoprotein subclasses, fatty acids, amino acids, ketone bodies,

glycolysis-relatedmetabolites, and various other measures. Thirty-eight participants were removed from analysis due to a proportion

of missing data >30% across lipid traits. Genetic analyses were implemented in BOLT-LMM and were adjusted for age, sex and 10

genetics PCs and were rank inverse normalised.

METHOD DETAILS

Factor analysis of quantitative traits
Let there be P observed traits measured inN individuals. Under the factor analysis model, we explain the variability in the P traits by a

smaller number ofK (K<P) latent (unobserved) factors that are related to the traits through aP3K factor loadingmatrix L. Let mj be the

mean of observed trait j and 1N be an N-vector (column) of ones. Under this model, the observed P3N trait matrix Y is modeled by

Y = M+ LF + ε

where M is the P3N mean matrix (M = ðm1;.;mPÞT 1TN), F is the K3N matrix of factor scores and ε is a P3N error term matrix with

mean zero. A common approach to estimating the factor loadings matrix L is through maximum likelihood, which only requires the

trait correlation matrix. When individual-level trait measurements are available, pairwise complete observations may be used to es-

timate the Pearson correlation coefficient between each pair of traits. Otherwise, GWAS summary statistics may be used in methods

such as cross-trait LD score regression27 to estimate the trait correlations.
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We applied factor analysis in R40 using the ‘‘fa’’ function in the psych library,46 with the arguments fm = ‘‘ml’’, for a maximum likeli-

hood factor analysis and rotate = ‘‘varimax’’. The varimax rotation preserves the orthogonality of latent factors (factor scores), so that

they are uncorrelated.

We used Horn’s parallel method, as implemented by the ‘‘fa.parallel’’ function in the psych library, to select the number of latent

factors based on the observed trait data. In Horn’s parallel method, eigenvalues are calculated from the observed data and from

‘‘noisy’’ random data. These two sets of eigenvalues are often compared in a scree plot, which displays the eigenvalue for each num-

ber of factors. The eigenvalues of the observed data will be larger than those from the random data until a certain point - this point

where the observed data eigenvalues first become smaller than those from random data is the suggested number of factors.

Upon estimating the factor loadings, if individual-level trait measurements are available, the factor scores (latent factor values) may

then be estimated by least squares as

bF =
�
LTL

�� 1
LT ðY � YÞ; (Equation 1)

where Y is a P3N matrix of trait sample means, as an estimate of M: This is implemented in R using the ‘‘fa’’ function in the psych

library.46

A trait correlation matrix is sufficient to construct latent factors by computing their loadings and to quantify the contribution of each

factor (re-scaled factor loadings) to each observed trait. However, our initial objective is a first principles view, not only to compute the

loadings, but also to compute the values of the latent factors for each individual (i.e., the factor scores). This requires individual-

level data.

In order to calculate factor scores for each individual from the factor loadings and the measured traits, we only used participants

that have measurements for all the measured traits. The application of imputation approaches such as Multivariate Imputation by

Chained Equations (MICE)47 was inappropriate, because the measurements were not missing independently by trait; subsets of in-

dividuals were missing certain platelet measurements, as described above in the INTERVAL cohort section. Consequently, rather

than introducing noise through poor quality imputation, we opted to reduce the sample size. We later relax the requirement of com-

plete data by deriving an estimate of latent factor GWAS effect estimates that only requires the factor loading matrix (obtained from

factor analysis using the trait correlation matrix) and observed trait GWAS effect estimates. This avoids the need for individual-level

data and allows flexibility to missing trait measurements.

Factor analysis of blood cell traits using complete data

Initially, we used factor analysis to calculate latent factors from 99 blood cell traits from the INTERVAL cohort17,42 using the

observed trait measurements matrix for complete data, which enabled us to compute the values of the latent factors for each in-

dividual (i.e., the factor scores). Upon subsetting the INTERVAL study to participants who have measurements for each of the 99

blood cell traits, the final sample size was reduced from 43,059 to 18,310. Blood cell traits are categorised by broad cell type. Com-

pound red blood cell, mature red blood cell, and immature red blood cell traits are all red blood cell traits. Compound white cell,

lymphocyte, eosinophil, monocyte, basophil, and neutrophil traits are all white blood cell traits. A compound red cell trait is a trait

that depends on measurements of mature red blood cells and reticulocytes, while a compound white cell trait is a trait that de-

pends on measurements of lymphoid and myeloid white cells. A description of the blood cell traits, including their broad biological

categories is given in Table S1.

Using the 18,310 x 99 matrix of blood cell trait measurements as input, we selected the number of latent factors by applying the

‘‘fa.parallel’’ function in the psych R package46 with the argument fm = ‘‘ml’’ for a maximum likelihood factor analysis. The fa.parallel

function implements Horn’s method and outputs a scree plot that compares the eigenvalues calculated in the data and in random

datasets. The number of latent factors is selected such that the data-calculated eigenvalues are larger than those based on the

random datasets. This indicated that 25 latent factors was an optimal choice (Figure S1). The blood cell trait covariance matrix in

the INTERVAL study amongst the complete samples is given in Table S4.

We applied factor analysis in R using the ‘‘fa’’ function in the psych library,46 with the arguments nfactors = 25 for 25 latent factors,

fm = ‘‘ml’’, for a maximum likelihood factor analysis and rotate = ‘‘varimax’’. The varimax rotation preserves the orthogonality of latent

factors (factor scores), so that they are uncorrelated.

Custom code for factor analysis of the complete data is available at https://github.com/fz-cambridge/flashfmZero-INTERVAL-

analysis.38

Factor analysis of blood cell traits allowing for missing trait measurements

Relaxing the requirement of complete data for all individuals, we calculated the correlation matrix for the 43,059 INTERVAL study

participants, where each pairwise Pearson correlation coefficient was calculated from the pairwise complete data for the trait

pair. The number of observed measurements for each trait ranged from 29,084 to 40,466 with a median of 38,951 and the number

of complete pairwise measurements ranged from 25,515 to 40,466 with a median of 36,338.

A scree plot (using ‘‘fa.parallel’’ in the psych package with the argument fm = ‘‘ml’’) indicated that 25 latent factors was an optimal

choice (Figure S9), which is in agreement with our complete data analysis on the subset of 18,310 INTERVAL study participants (Fig-

ure S1). As the input data is a correlation (or covariance) matrix, rather than individual-level data, we must specify the number of pair-

wise complete observations, n.obs, which we set to the median, 36,338. However, we note that we found the latent factor results to

be robust to the setting of n.obs, as identical results were obtained when setting n.obs to the maximum of 40,466.
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Weapplied factor analysis in R40 using the ‘‘fa’’ function in the psych library,46 with the arguments nfactors = 25 for 25 latent factors,

fm = ‘‘ml’’, for a maximum likelihood factor analysis and rotate = ‘‘varimax’’.

Factor analysis of metabolic traits allowing for missing trait measurements

Amongst 230 NMRmetabolic panel traits measured in 40,849 INTERVAL study participants, we excluded one trait (ace; acetate) for a

high proportion of missingness (not measured in 82% of the participants). These traits had high levels of correlation (9 pairs with cor-

relation above 0.999 and 86 pairs with correlation above 0.99), resulting in a singular covariance matrix, which caused computational

issues in factor analysis. Therefore, we sequentially removed the trait with the highest number of pairwise correlations above 0.99

until all correlations were less than or equal to 0.99; 45 traits were excluded from this processing. The proportion of missingness

for the resulting 184 traits ranged from 0 to 39% with an upper quartile of 0.008. A description of the NMRmetabolic traits, including

their broad biological categories, is given in Table S11.

Using the trait covariance matrix (Table S14), we selected 21 latent factors based on Horn’s parallel method and the ‘‘fa.parallel’’

function in the psych library of R (Figure S11). We applied factor analysis in R40 using the ‘‘fa’’ function in the psych library,46 with the

arguments nfactors = 21 for 21 latent factors, fm = ‘‘ml’’, for a maximum likelihood factor analysis and rotate = ‘‘varimax’’.

Custom code for removal of traits with high missingness and high correlation, and for carrying out the factor analysis is available at

https://jennasimit.github.io/flashfmZero/articles/Example_Part1.html.39

Interpretation of latent factors
Let Lij be the factor loading of latent factor j (j=1, .,L) for observed trait i (i=1,.P). We define the contribution of latent factor j to

observed trait i by Cij =
L2
ijPL

k = 1
L2
ik

, to aid in mapping the contributions of the latent factors back to each observed trait. These

scaled factor loadings indicate the proportion of variance in each observed trait i that is explained by latent factor j, relative

to the total variance explained jointly by the latent factors. That is, for each observed trait, the contributions from all factor load-

ings sum to one.

To understandwhich observed traits are explained by each latent factor, we collect observed traits that have the same top-contrib-

uting latent factor (Figure S4). We automate this in our ‘‘factor_contributions’’ function within the flashfmZero package,39 which takes

the factor loading matrix as input and returns the latent factor contributions (re-scaled factor loadings) and factor loading matrix with

observed traits ordered by maximum contributing latent factor.

Blood cell trait latent factor interpretations

Concordance of the latent factors obtained from our 18k and 43k analyses was illustrated by plotting the latent factor contributions

based on the 43k sample against those of the 18k sample (Figure S10). Latent factor contributions indicated that latent factors cluster

blood cell traits grouped by broad cell-type into groups with common underlying variance generating mechanisms (Figure 1, source

data in Table S2). We describe the principal effects of the latent factors on the blood cell traits in Table S3, in which we note the broad

type of blood cell corresponding to the traits to which each latent factor makesmajor contributions and give descriptions of the effect

of an increase in each latent factor on selected blood cell traits.

Metabolic trait latent factor interpretations

Latent factor contributions indicated that latent factors broadly corresponded to distinct biological categories but with varying spec-

ificity. Details of the scaled factor loadings that show the contributions for each latent factor to each NMR trait are given in Table S12.

Interpretations of the latent factors relative to NMR traits are given in Table S13.

Custom code for calculating latent factor contributions using the ‘‘factor_contributions’’ function within the ‘flashfmZero’ pack-

age39 is available within the flashfmZero package at https://jennasimit.github.io/flashfmZero/articles/Example_Part1.html. Analo-

gous code was used for the blood cell traits.

GWAS of latent factors using summary statistics
We remove the limitation of requiring complete data and derive an approach to calculating GWAS summary statistics for latent fac-

tors that only requires GWAS summary statistics of all observed traits, their covariance matrix, and the factor loading matrix. Briefly,

the observed trait covariance (or correlation) matrix is used to obtain the factor loading matrix. Then, the factor loading matrix,

observed trait covariancematrix, and observed trait GWAS summary statistics are used to compute the latent factor GWAS summary

statistics (for each latent factor, variant effect estimates and their standard errors) directly. Our latent factor GWAS calculation is im-

plemented in the ‘‘latentGWAS’’ function of the flashfmZero package.39

To take advantage of the lower dimension latent factors, we had conducted aGWASon each latent factor using complete data. In a

GWAS, we test trait Yj for marginal association with a genetic variant xk, via the linear model

Yij = a+ bxik + εi;

where Yij is the trait j measurement at individual i and xik is the genotype of variant k for individual i. In matrix form, for multiple traits

with independent estimation of effect estimates (i.e., parallel GWAS of each trait and not a multi-trait GWAS), we have

YT = 1Na
T + xgb

T + ε; (Equation 2)
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where a = ða1;.;aPÞT , b = ðb1;.; bPÞT , and ε is a N3P error term matrix with mean zero. Likewise, when individual-level data are

available to estimate factor scores we test latent factor Fj for genetic association with variant xg (vector of N genotype observations at

gth variant) using

Fij = a�
j + xigb

�
j + εij;

or in matrix form for multiple latent factors

FT = 1Na
�T + xgb

�T + ε; (Equation 3)

where a� = ða�
1;.;a�

KÞT , b� = ðb�1;.;b�KÞT , and ε is a N3K error term matrix with mean zero.

Alternatively, if GWAS summary statistics are available for each trait, we may estimate the latent factor GWAS summary statistics,

without the need for any individual-level data, since (1) and (3) give us

1Nba�T + xg bb�T = ðY � YÞTL�LTL
�� 1

Then, by substituting in estimates based on 2, we obtain

1Nba�T + xg bb�T =
�
1Na

T + xgbbT � YT
�
L
�
LTL

�� 1
;

so that, upon matching coefficients, we have

bb� =
�
LTL

�� 1
LTbb:

Therefore, upon estimating factor loadings L via the trait correlation matrix, it is possible to estimate the latent factor GWAS effect

estimates bb� via the trait GWAS effect estimates bb. Likewise, the covariance matrix of the latent factor effect estimates may be esti-

mated by

Varðbb�Þ =
�
LTL

�� 1
LTVarðbbÞL�LTL

�� 1
;

where ½VarðbbÞ�ij = CovðYi;YjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðbbi ÞVarðbbj Þq

, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðbbi Þq

is the standard error of the variant’s effect estimate for observed trait i,

as provided by the trait’s GWAS summary statistics.

It follows that the latent factor genetic associations may be assessed via the Z-statistic,

Zj =
bb�
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

Var
�bb�

j

�i
ij

r ; for latent factor j:

We note that this formulation removes the limitation of requiring complete data to estimate latent factor GWAS summary

statistics.

GWAS of latent factors of blood cell traits and of metabolic traits

Within R,40we applied the ‘‘latentGWAS’’ function of the flashfmZero package39 to the observed trait GWAS summary statistics of the

99 blood cell traits15,16 and of the 184metabolic traits18 in the samemanner. For simplicity, we describe these steps for themetabolic

traits and custom code is available within the flashfmZero package at https://jennasimit.github.io/flashfmZero/articles/Example_

Part2.html.39

When calculating the latent factor GWAS summary statistics from the observed trait GWAS summary statistics, each variant

must have the same effect allele across all traits. To simplify this harmonisation process, the function ‘‘harmoniseGWAS’’ is avail-

able in the flashfmZero package. This function also includes filtering of variants - we set the minimum MAF, minMAF = 0.005, and

minimum INFO score, minINFO = 0.4. After harmonising the observed trait GWAS, the latent factor GWAS were then calculated

using the ‘‘latentGWAS’’ function in the flashfmZero package, which outputs a list of GWAS summary statistics for each latent

factor.

Multi-trait fine-mapping with flashfmZero
The multi-trait fine-mapping method, flashfm,4 leverages information between traits while allowing for multiple causal variants that

are not necessarily shared between traits. It is flexible to missing trait measurements. When there are shared causal variants, flashfm

has been shown to improve fine-mapping resolution and increase the number of high-confidence variants, compared to single-trait

fine-mapping.4,48 Otherwise, it gives comparable results to single-trait fine-mapping.

Flashfm requires the trait correlation matrix and is currently limited to six traits at most. However, we take advantage of the uncor-

related latent factors that result from using a varimax rotation, resulting in a diagonal correlation matrix. Under this condition, we have

extended flashfm to multiple-trait fine-mapping of an unlimited number of (uncorrelated) latent factors. We call this extendedmethod

flashfmZero and implement it within R40 in the flashfmZero function of the flashfmZero package,39 which can be combined with any

single-trait fine-mapping method that outputs multi-SNP model posterior probabilities, such as JAM21 FINEMAP,23 and FiniMOM.49

Within the flashfmZero package, we also provide the wrapper function FLASHFMZEROwithJAMd that runs our dynamic version of
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JAM (dynamically select maximum number of causal variants based on the data) together with flashfmZero; this is the function that

we used in all analyses.

ForM uncorrelated traits, the joint Bayes’ factor BFM can be expressed as the product of the marginal trait BFj, j=1,.M.Without

loss of generality, the next steps focus onM = 2 traits. As in flashfm,4 the joint prior probability pi,j
(1,2) for modelsMi

(1) andMj
(2) for traits

1 and 2, respectively, is defined as the product of the marginal prior probabilities when there is no model overlap of causal variants

and is upweighted when there is sharing. That is, pipjk
1fMð1Þ

i
XM

ð2Þ
j

sBgti;j, where k is a sharing parameter and ti;j is a correction factor

that guarantees that the prior probability of traits having particular model sizes is consistent for different values of k; both parameters

are derived in a combinatorial manner as in flashfm.4 It follows that the trait-adjusted posterior probability for model Mi
(1) of trait 1 is

calculated from

Pr

 
M

ð1Þ
i jData

!
fPPi

X
j

PPjk
1

n
M

ð1Þ
i

XM
ð2Þ
j

sB

o
ti;j

which is easily generalised to any number of traits M due to the traits being uncorrelated.

Fine-mapping of associations of blood cell traits and their latent factors

Within the complete INTERVAL data subset for blood cell traits, we first investigated gains from fine-mapping association sig-

nals using latent factors that are uncorrelated by construction, over fine-mapping association signals using a larger number of

correlated traits. We constructed regions based on the latent factor association signals. For each latent factor, we used dis-

tance-based clumping to identify lead SNPs with a distance of at least 250kb, which were then centered ±250kb to form re-

gions. Regions that overlapped amongst traits were merged. We further expanded our regions by integrating them with those

from fine-mapping signals from 29 blood cell traits in UK Biobank6 and merging any that overlapped, so that our regions con-

tained those used in the UK Biobank fine-mapping. This resulted in 217 regions with lengths ranging from 500,000bp to

2,996,725bp.

Within these regions, we fine-mapped genome-wide association signals (P< 53 10� 8, MAF>0.005) with all the latent factors and

with all the blood cell traits that have a contribution of at least 20% from these latent factors (Figure S4). Single-trait fine-mapping

of latent factors and blood cell traits was carried out with JAMdynamic,22 which is an extension of JAM21 that dynamically selects

the maximum number of causal variants based on the data. When multiple latent factors had a signal in a region, we also used our

zero-correlation version of flashfm, as available in the wrapper function FLASHFMZEROwithJAMd(https://jennasimit.github.io/

flashfmZero/).

For fine-mapping, we used an LD matrix calculated from the 18,310 participants in the INTERVAL cohort that contributed to the

GWAS. In particular, within R40 we used the bigsnpR library to read in bgen genotype files that were previously subset to the required

region by using qctool (https://enkre.net/cgi-bin/code/qctool/dir?ci=trunk).We then used the alignGWAS function within the flashfm-

Zero package to ensure that variants in all GWAS are aligned to the same alleles as in the genotypes file for LD calculation. We used

best-guess genotypes with a certainty threshold of 0.2, such that the genotype at a variant took on values 0,1, or 2 if their dosage was

within 0.2 of the respective value; otherwise, the genotype was coded as NA in the correlation calculation; this process for is available

in the LDqc function of the flashfmZero package. For each variant, we calculated the proportion of individuals with non-missing best-

guess genotypes, and excluded any variants that had a non-missing proportion below 80%. Finally, we calculated LD using the big-

cor function of bigsnpR to calculate pairwise-complete correlations.

In our comparisons of the fine-mapping resolution of the three approaches: (i) ‘JAM blood cell trait’ (JAMdynamic on each blood

cell trait); (ii) ‘JAM latent factor’ (JAMdynamic on each latent factor); (iii) ‘flashfm latent factor’ (flashfmZero on each set of latent fac-

tors), we considered the CS99 size and variants with PP > 0.90, matching on traits (Table S8). That is, when comparing blood cell trait

results to latent factor results, we match each blood cell trait to the latent factor that is the highest contributor to it. Custom code is

available at https://github.com/fz-cambridge/flashfmZero-INTERVAL-analysis.38 All genetic physical positions are given in GRCh37

coordinates.

We considered a variant to be a high-confidence causal variant if it had MPP > 0.90 and cross-checked our results with the

high-confidence causal variants (MPP > 0.95) from the UK Biobank analysis6 for validation; as our sample size is substantially

smaller than that of UK Biobank, we used a slightly lower threshold when defining high-confidence. We identified 53 regions where

a high-confidence variant was detected by either single-trait or multi-trait fine-mapping of the latent factor association signals and

also detected in UK Biobank. Amongst these 53 regions, 17 regions are not comparable because our analyses included only latent

factors that are linked to extended Sysmex traits, whereas the UK Biobank analyses did not include all the extended Sysmex

traits. Therefore, we focused on 36 regions in cross-checking our latent factor fine-mapping results with those of the UK Biobank

study. We also note that there were 9 regions where no high-confidence variants were identified by our latent factor analyses, but

there was prioritisation by ‘JAM blood cell trait’—in 5 of these regions there was alignment with the UK Biobank results and in the

remaining 4 regions there was not an exact match in the high-confidence variants selected in INTERVAL and UK Biobank

(Table S8). We highlight fine-mapping in the regions harboring SMIM1 (Figure 6), PIEZO1 (Figures S5 and S6), and TMCC2

(Figures S7 and S8).
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For comparison purposes, we applied mvSuSiE,13 using the ‘‘mvsusie_rss’’ function in mvsusieR, to two regions where the likely

causal variant has biological support. In our implementation of mvSuSiE we used the canonical prior and followed the author’s sug-

gestion of estimating the residual variance using the variants with absolute Z score below 2 for all traits - this required using the

mvsusieR functions ‘‘cov_canonical’’ and ‘‘create_mixture_prior’’. Within mvsusie_rss we also set coverage to 0.99. Details of these

comparison results are in Table S9.

We selected eleven regions in which we had previously fine-mapped genetic association signals with blood cell traits and their

latent factors using the complete data (18k) and repeated the fine-mapping using the summary statistics approach in the larger sam-

ple (43k) (Table S10). To calculate latent factor GWAS we first harmonised all observed trait GWAS so that all variants are aligned to

the same allele across GWAS (using the ‘‘harmoniseGWAS’’ function in flashfmZero), then applied the ‘‘latentGWAS’’ function within

flashfmZero. As for our previous analysis, we also used harmoniseGWAS to ensure that variants in all GWAS were aligned with the

same alleles in the genotype file used for LD calculation. We included all variants having MAF >0.005 and INFO >0.4 in each GWAS,

and the latent GWAS calculation only includes variants that are present for all observed trait GWAS - this was not an issue as all traits

were measured in the same cohort.

To aid in summarising the fine-mapping results from each trait and latent factor across all regions, we provide the ‘‘FMsummary_

table_general’’ function in the flashfmZero package. An example pipeline is available at https://jennasimit.github.io/flashfmZero/

articles/Example_Part2.html.39

Fine-mapping of associations of metabolic traits and their latent factors

We fine-mapped associations in eleven 1MB-regions in which both latent factors and NMR traits had genome-wide significant (GWS)

association signals. As in the blood cell trait fine-mapping, we compared the fine-mapping resolution of the three approaches: (i)

‘JAM metabolic trait’ (JAMdynamic on each metabolic trait); (ii) ‘JAM latent factor’ (JAMdynamic on each latent factor); (iii) ‘flashfm

latent factor’ (flashfmZero on each set of latent factors), we considered the CS99 size and variants with PP > 0.90, matching on traits.

All details for LD and latent GWAS calculations follow the same steps described above for blood cell traits.

Custom code for our fine-mapping analyses is available within the flashfmZero package at https://jennasimit.github.io/flash

fmZero/articles/Example_Part2.html.39

QUANTIFICATION AND STATISTICAL ANALYSIS

GWAS and conditional analyses of blood cell traits and their latent factors
Within the 18,310 individuals complete data subset from the INTERVAL cohort, we first used an inverse normal rank transformation

on each of the 99 blood cell traits using the ‘‘RankNorm’’ function of the RNOmni R library. We then calculated latent factor scores for

each of our 25 latent factors by applying factor analysis (using the fa function in the R psych library) to the individual-level transformed

trait data (only individuals with a measurement for each of the 99 traits were included). By providing individual-level data instead of a

covariance or correlationmatrix, the latent factor scores are output with the factor analysis results within the scores component of the

output list. These latent factor scores were also transformed using an inverse normal rank transformation on each of the 25 latent

factors.

Each of the 25 latent factors and 99 blood cell traits was tested for genetic associations within the sample of 18,310 individuals from

the INTERVAL cohort using BOLT-LMM35 with the following covariates: dummy variables indicating the donor clinic at which the

blood sample was taken and the score vectors corresponding to the leading ten principal components of genetic variation in the

study sample. This follows the approach taken in a previous large-scale GWAS of blood cell traits (that included the INTERVAL

cohort) in 173,480 European descent individuals16 and a GWAS of flow cytometry derived (Sysmex) blood cell traits in 41,515

INTERVAL cohort participants15 (https://github.com/ParsaAkbari/UKBB500K-Conditional-Analysis).

All the traits were inverse normal-rank transformed prior to running BOLT-LMM. We report the infinitesimal mixed model associ-

ation test p-value (‘‘P_BOLT_LMM_INF’’) of each genetic variant with each trait and details of lead variants from latent factor GWAS,

including levels of association for blood cell traits that have contributions from each latent factor are available in Table S5. All genetic

physical positions are given in GRCh37 coordinates. The GWAS summary statistics for our 25 latent factors from this complete data

subset are available at the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) under accession numbers GCST90559243-

GCST90559267.

To identify potentially novel association signals in our latent factor GWAS of 18,310 individuals, we conditioned on all the lead var-

iants identified in the previously published large-scale GWAS of common blood cell traits16 and the GWAS of Sysmex blood cell

traits.15

We obtained a list of unique variants that are genome-wide significant for any of the 99 blood cell traits, through LD clumping

(r2 > 0.6) on the merged list of associated variants. Then, at each unique variant we recorded the number of blood cell traits that

were associated with the variant; if the variant was not associated with a blood cell trait, but it had a tag variant (in the same clump)

that was associated, the trait was enumerated. To identify unique variants missed by blood cell traits, we enumerated the unique

independent genome-wide significant variants obtained only by latent factors, based on LD clumping (r2 > 0.6) of their associated

variants, allowing for the variant or one of its tag variants to be associated. Counts of unique clumps with genome-wide significant

variants identified by blood cell traits and/or latent factors are given in Table S6.
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Details of conditional lead variants associated with latent factors of blood cell traits are given in Table S7 and highlighted in Figure 4

(with additional details in Figure S2) and Figure S3. Within Table S7 we include the most serious consequence of each variant, as

annotated by the Variant Effect Predictor (VEP)41 and list association evidence for these variants from previous blood cell trait pub-

lications, as available in the Common Metabolic Diseases Knowledge Portal (https://hugeamp.org/).

ADDITIONAL RESOURCES

This work involves data collected from the INTERVAL BioResource, which involves participants from the INTERVAL trial (ISRCTN

24760606).
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