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 A B S T R A C T

Although various difference-based methods are utilized to analyze asymmetry in buyer–supplier matched-pair 
data within the literature, these approaches are ad hoc and do not always address differences across multiple 
dimensions. Furthermore, they do not provide a significance test. This paper extends the concept of the paired 
t-test for dyad-level differences by developing a Mahalanobis distance-based metric in multiple dimensions, 
along with a significance test. The metric and the significance test can be used in empirical research to identify 
dyads in a dataset that are significantly asymmetric at any selected confidence level. In practice, the method can 
identify those suppliers for a buyer that have significantly mismatched expectations relative to other suppliers. 
The paper utilizes simulated datasets to compare the proposed metric with other distance-based metrics that 
lack a significance test. Finally, the paper applies a retail dataset to demonstrate (1) the utility of the metric in 
identifying significantly asymmetric dyads and (2) the use of the same distance concept to consolidate multiple 
items in any buyer or supplier construct into a single score for the construct, rather than using factor scores. The 
latter approach is lossless, in contrast to factor analysis. Using distance-based metrics with this retail dataset 
in a structural equation model suggests that asymmetry can negatively affect relationship-specific operational 
performance for buyers and suppliers. This study contributes a robust methodological framework, offering a 
structured basis for future research in the measurement of dyadic asymmetry.
1. Introduction

Empirical analysis of dyadic data is integral to the buyer–supplier 
literature (Ellram and Murfield, 2019). Analyzing these relationships 
differs from merely examining suppliers, as seen in supplier selection 
within the analytical literature (e.g., Bhutta, 2003). Of particular inter-
est are the performance of the relationship and its antecedents (O’Toole 
and Donaldson, 2002; Yang et al., 2009; Autry and Golicic, 2010; Liu 
et al., 2012). An antecedent proposed is the asymmetry in the rela-
tionship (for example, Klein et al., 2007; Liu et al., 2012; Villena and 
Craighead, 2017; Vanpoucke et al., 2022). However, methodological 
guidance on the use of dyadic data for asymmetry has received little 
attention in the supply chain literature. Researchers have employed 
diverse and ad hoc methods without being able to test whether the 
asymmetry of any dyad in a random sample is statistically significant 
or justify its suitability for regression or other statistical models.

This paper aims to narrow this gap by proposing a method to 
measure asymmetry or any other differences between the matched 
buyer and supplier data in dyadic datasets, along with a statistical test 
for significance. It also demonstrates the application of the method to a 
dyadic retail data set, including testing the link between asymmetry and 
relationship performance using structural equation modeling (SEM).

E-mail addresses: m.sodhi@city.ac.uk, m.sodhi@citystgeorges.ac.uk.

The paired t-test can measure asymmetry when there is only one 
dimension of interest for the dyads, such as buyer and supplier log-
sales, provided the paired variables are normally distributed. In these 
cases, we calculate the difference between the values of the buyer and 
the supplier to perform the paired t-test, identifying which dyads are 
significantly different (for a chosen significance level) and therefore 
asymmetric. In addition, we can use the difference in a regression or an 
SEM model to examine the relationship between asymmetry (measured 
as the difference) and relationship performance.

This paper examines the difference, measured by the Mahalanobis 
distance, across multiple paired dimensions between the buyer and 
the supplier, along with a significance test. The normality assumption 
underlying the t-test thus becomes a multinormal assumption. Just 
as the paired t-test is robust against any violation of the normality 
assumption, the proposed statistic is also resilient against breaches of 
the multinormal assumption, as demonstrated with a real-life dataset. I 
also illustrate how we can utilize the Mahalanobis distance to provide 
scores for multi-item constructs instead of factor scores to test the link 
between asymmetry and relationship performance.

This paper aims to methodologically enrich the buyer–supplier 
stream within the empirical literature on supply chain management 
in two ways. First, it provides a multidimensional difference-based 
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statistic with a significance test to measure asymmetry in dyads, such as 
perceptual gaps, asset-specific differences, or mismatched expectations 
from the relationship. Current methods for identifying such gaps are 
ad hoc and lack a statistical significance test, whereas this paper 
generalizes the paired t-test to multiple dimensions, including dyadic 
data for buyer–supplier pairs.

Second, the paper also presents a more speculative contribution by 
proposing using the same distance-based metric as a single lossless 
measure for multi-item constructs instead of factor scores from factor 
analysis for regression or SEM applications. Given matched-pair buyer 
and supplier data, (1) the asymmetry between the buyer and supplier 
items across multiple dimensions (possibly from various constructs) 
could be measured and checked for significance, and (2) the buyer and 
supplier constructs could be represented by the distance-based metric 
that captures data from the constructs’ items. Thus, for a dyadic dataset, 
the buyer and supplier constructs, and the asymmetry (or asymmetries) 
between the buyer and supplier in dyads could all be represented as 
distances for use in regression or SEM.

In the remainder of this paper, Section 2 discusses using dyadic 
datasets in the buyer–supplier relationship literature, including vari-
ous ways to measure asymmetry and their limitations, to outline the 
research gap of interest. Section 3 proposes a modified Mahalanobis 
distance between two random vectors (the buyer’s and the supplier’s 
responses to multiple paired questions) and a test for the statistical 
significance of the asymmetry in any dyad for a chosen confidence 
level. Section 4 uses simulated datasets to identify asymmetric dyads 
employing the proposed test. We compare the Mahalanobis distance 
with the Manhattan and Euclidean distances to demonstrate the im-
portance of having a significance test, as proposed. Section 5 illustrates 
(1) the proposed metric and (2) its variant for buyer-only and supplier-
only variables in constructs with a real-life dyadic retail dataset to 
identify significantly asymmetric dyads and explain the performance of 
the relationship using SEM. In Section 6 we conclude with implications 
for further research.

2. Limitations in measuring asymmetry in the empirical buyer–
supplier literature

When collecting and analyzing dyadic data to test theories about 
buyer–supplier relationships, researchers must remember that consid-
erations differ from those for analyzing a single party. As an analogy, 
consider a survey of married couples with matched-pair data obtained 
from husbands and wives about their relationship. We can then ex-
amine their relationship by exploring the differences between their 
responses to matched-pair questions.

Empirical research using dyadic data analysis should account for the 
following key issues in matched-pair buyer–supplier datasets (Kenny 
et al., 2006):

1. Unit of analysis: In matched-pair data, the unit of analysis is the
dyad, not the individual buyer or supplier.

2. Types of variables: In a dyad, certain variables in the data set 
of a researcher in dyadic data pertain only to the buyer, while 
others relate solely to the supplier. In addition, some variables 
are paired to reflect the comparable characteristics of buyers and 
suppliers or their responses to the same questions about their 
relationship.

3. Non-independence of variables: Paired variables between the
buyer and supplier are generally not independent. This non-
independence can result from various sources, including compo-
sitional effects (e.g., how the dyad was formed), partner effects 
(the behavior of one party influences the outcome of the other), 
mutual influence (each party’s outcomes affect the other), or 
common fate (both share the same industry or supply chain 
environment) (Kenny et al., 2006, pp. 4–5, 25–52). Ignoring 
this non-independence or analyzing only one side of the dyad 
2 
can lead to incorrect inferences. Hence, it is essential to ex-
plicitly incorporate data from both sides of the dyad, avoiding 
oversimplified approaches like averaging, and to respect the 
non-independence of the data.

The empirical buyer–supplier literature does not consistently follow 
these principles. Many researchers have focused solely on either buyers 
or suppliers while making broader dyadic claims. For example, Terpend 
et al. (2008) found that only 6 out of 151 empirical buyer–supplier 
studies published between 1986 and 2005 collected responses from 
both buyers and suppliers. A notable example is Kumar et al. (1995), 
who explored interdependence asymmetry, total interdependence, in-
terfirm conflict, trust, and commitment, but surveyed only car dealers 
(buyers). These dealers shared a relatively small number of auto com-
panies as suppliers, implying their responses were not independent. 
Similarly, Saeed et al. (2005) drew conclusions about dyads based 
solely on surveys from vice presidents of buying firms.

Even when both buyer and supplier responses are collected, re-
searchers have taken different approaches. One group treats buyers and 
suppliers as two independent populations for comparison (see Table  1, 
first row). Others apply various ad hoc techniques to analyze matched 
pairs, measuring asymmetry one dyad at a time, either on a single 
dimension or using aggregated measures across multiple dimensions 
(Table  1, second row).

Buyers and suppliers as separate groups. Comparing buyers and 
suppliers does not require paired data, nor is asymmetry measured 
at the dyad level. Studies in this area employ mainly separate re-
gression models (Heide and Miner, 1992; Ambrose et al., 2010), PLS 
models (Cheung et al., 2010), or SEM models (Johnston and Kristal, 
2008) for buyers and suppliers, and then compare the corresponding 
coefficients. Another approach has been to correlate the responses of 
the buyers and suppliers (Campbell, 1997; Spekman et al., 1997; Krause 
et al., 2007). Alternatively, paired t tests can be used to compare 
specific attributes of the buyer and the supplier (Ellram and Hendrick, 
1995).

Measuring asymmetry using a single paired variable. With a 
single matched variable per dyad, researchers often calculate the differ-
ence and apply a paired t-test. Even when multiple paired variables are 
available, these are sometimes analyzed sequentially to identify which 
relationships exhibit significant differences at the dyad level (Forker 
and Stannack, 2000; Barnes et al., 2007; Liu et al., 2009; Oosterhuis 
et al., 2013). Some researchers modify the difference, for example, 
taking the absolute value or using a ‘splined’ form (setting negative 
differences to zero) to include asymmetry as a variable in regression or 
other models (Gulati and Sytch, 2007; Villena and Craighead, 2017). 
In these cases, as many asymmetry variables are created as there are 
matched-pair variables of interest (Nyaga et al., 2013; Montes-Sancho 
et al., 2022).

Measuring and testing asymmetry using multiple paired vari-
ables. Some studies reduce several paired variables to one by averaging 
buyer and supplier values and taking their difference as if the construct 
were one-dimensional. Others compute a composite of the absolute 
differences, known as a ‘‘degree-symmetry’’ score (Straub et al., 2004; 
Klein et al., 2007; Liu et al., 2012). Liu et al. (2012) explain the 
calculation as follows:

1. Sum all items for a construct and standardize the buyer and 
supplier values between 0 and 1, denoted as 𝐶1 (buyer) and 𝐶2
(supplier).

2. Compute the average 𝐶Deg = (𝐶1 + 𝐶2)∕2 to represent dyad 
magnitude.

3. Calculate symmetry as 𝐶Sym = min(𝐶1, 𝐶2)∕max(𝐶1, 𝐶2).
4. Average the two: 𝐶𝐷𝑆 = (𝐶Deg + 𝐶Sym)∕2.

However, neither Straub et al. (2004) nor Klein et al. (2007) provide 
statistical properties of this score for inferential use, nor do they justify 
its use in PLS or SEM. The CDS score has several limitations:
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Table 1
Approaches to asymmetry in the literature analyzing dyadic buyer–supplier data.
 Buyers and suppliers as separate 
groups

Paired (dyadic) data in one 
dimension

Paired (dyadic) data in multiple 
dimensions

 

 - Chow tests: Heide and Miner 
(1992) and Ambrose et al. (2010); 

- PLS models: Cheung et al. (2010); 

- SEM models: Johnston and Kristal 
(2008);

- Correlations: Campbell (1997), 
Spekman et al. (1997) and Krause 
et al. (2007);

- T-tests: Ellram and Hendrick 
(1995);

- Separate SEM models: Whipple 
et al. (2015)

- Paired t-tests (Forker and Stannack, 
2000; Barnes et al., 2007; Liu et al., 
2009; Oosterhuis et al., 2013)

- Modified differences (absolute, 
splined): Nyaga et al. (2013), Gulati 
and Sytch (2007), Brinkhoff et al. 
(2015), Villena and Craighead (2017) 
and Montes-Sancho et al. (2022)

- Degree-symmetry score (Straub 
et al., 2004; Klein et al., 2007; Liu 
et al., 2012); 

- Mahalanobis distance (this paper)

 

- It is not a pure indicator of asymmetry; it conflates average 
magnitude with relative symmetry.

- Its use in regression is not well-defined.
- No statistical significance test is associated with it, so thresholds 
for ‘high’ or ‘low’ asymmetry are subjective.

Alternative approaches. Not all researchers treat asymmetry as a 
difference between the buyer and the supplier in a dyad. Even when us-
ing dyadic datasets, one approach is to measure asymmetry separately 
for the buyer and the supplier (Lumineau et al., 2022; Vanpoucke et al., 
2022).

Another challenge is the use of difference-based metrics in regres-
sion and similar statistical models (Edwards, 2001, 2002). Edwards and 
Parry (2018) proposed polynomial regression with degree-2 equations 
(as an approximation of whatever function of the difference is intended 
to capture asymmetry) along with response surface methodology to in-
terpret the results. The difficulty here lies in interpreting these models 
clearly. However, some scholars continue to use both difference-based 
and polynomial regression approaches, even if not explicitly for asym-
metry analysis (e.g., Vanpoucke et al., 2022). In general, the use 
of asymmetry measures in regression and related statistical models 
remains an area that needs further investigation.

Research gap. The ‘gap’ in the literature that this article seeks to 
address is a difference-based asymmetry measure using paired data in 
multiple dimensions and a significance test. In addition, this measure 
should be applied to regression or other statistical models. There may 
be asymmetry measures that do not depend on the difference between 
the buyer’s and the supplier’s responses in a dyad; similarly, other 
quantities of interest in addition to the asymmetry may depend on this 
difference. The focus here is on the differences in matched pairs in 
multiple dimensions. Therefore, this paper aims to develop:

1. A statistically justified way to collapse the difference in multiple 
dimensions between paired constructs for buyer–supplier dyads to a 
scalar quantity (to be used, e.g., as a measure of asymmetry) with a 
test of significance to determine if this scalar is significantly different 
from zero and

2. A similar scalar (score) for reducing buyer-only and supplier-only 
variables (or items for constructs) to test hypothesized links between 
constructs or variables in statistical models.

This approach focuses specifically on differences in matched pairs 
in multiple dimensions to enable rigorous and testable modeling of 
asymmetry in dyadic relationships in regression and SEM models.

3. An innovative metric for asymmetry in dyads

This paper considers any selected subset of paired items, potentially 
aligned with the same factor construct, as a vector in the correlated 
3 
dimensions that the individual items represent, with asymmetry serving 
as a scalar function of the vector difference between the two vectors 
representing the paired buyer and supplier items. Consequently, we 
measure the asymmetry between the buyer and the supplier in any dyad as 
a distance function of the vector difference between the buyer and supplier 
vectors representing their responses to any subset of items. By examining 
different subsets of paired variables, such as items of buyer and seller 
constructs, multiple difference-based measures (‘‘asymmetry’’) can be 
generated for each dyad.

3.1. Theoretical preliminaries

We assume a dataset comprising data on buyer–supplier dyads, 
where each observation includes responses from both the buyer and 
the supplier to a matched set of paired questions, each pair consisting 
of one question directed at the buyer and a corresponding one to the 
supplier, or to otherwise comparable items (e.g., the size of either 
party). The buyers’ and suppliers’ responses are organized in ascending 
order and are assumed to be of interval type; that is, numerically 
higher responses indicate judgments of more desirable outcomes for 
the dyad. For example, on a 7-point scale, a difference between scores 
of 7 and 5 is equivalent in magnitude to that between 3 and 1. 
Although we do not assume that these discrete Likert-scale responses 
are normally distributed, we can still treat them as if they were for 
practical analytical purposes (Johnson and Creech, 1983).

Alternatively, there could be continuous variables from secondary 
sources, such as the logarithm of the annual revenues for the buyer 
and the supplier, respectively. Variables might be classified as ‘‘be-
tween dyads’’ (e.g. duration of the relationship, same for both parties), 
‘‘within-dyad’’ (e.g., reward allocation in case of supply chain savings), 
or ‘‘mixed’’ (again, e.g., annual revenues) (Kenny et al., 2006).

As noted above, for any dyad, we represent the buyer’s and sup-
plier’s responses to a selected subset of questions as vectors. We are 
interested in the difference between these two (random) vectors to 
indicate asymmetry in the dyad. The dimensions of the two vectors 
are correlated when the buyer’s (and also the seller’s) responses are 
correlated. The Mahalanobis distance serves as an appropriate scalar 
function (in providing a score) to measure the length of a vector in cor-
related dimensions. Researchers are familiar with its use as a distance 
function between a fixed point and a distribution to identify outliers in 
regression. Here, we consider a modification that analyzes the distance 
between two random vectors drawn from a multidimensional distribu-
tion. The Mahalanobis distance function, as proposed here, collapses 
the n-dimensional difference vector (or any other vector) into a scalar, 
providing a metric for the asymmetry between the buyer and the 
supplier.
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Table 2
Comparison of distance metrics in 𝑛-dimensional non-orthogonal space.
 Aspect Mahalanobis distance (proposed) Euclidean distance (L2) Manhattan distance (L1)  
 Definition Distance between two points while 

accounting for the correlation between 
dimensions; incorporates the covariance 
structure.

The straight-line distance between two 
vectors in n-dimensional space, assuming 
the dimensions are orthogonal

The ‘city-block’ distance between any two 
points, assuming the dimensions are 
orthogonal

 

 Calculation Square root of the sum of squares of the 
differences in each dimension

Sum of the absolute value of the differences 
in each dimension

 

 Covariance structure Taken into account Ignored Ignored  
 Test of significance 
(difference = 0?)

Yes, presented in this paper N/A N/A  
Table 3
A dyadic dataset showing data structure with 𝑛 paired questions (among other variables) for 1..𝑚 dyads, each with the buyer’s responses 𝑥𝑘
and the supplier’s responses 𝑦𝑘, with asymmetry or any other relationship-specific variable as a function 𝑓 (𝑥𝑘 , 𝑦𝑘) for the 𝑘’th dyad.
 Dyad Buyer responses Supplier responses Asymmetry or relationship-specific variable 
 1 𝑥11 , 𝑥12 , … , 𝑥1𝑛 𝑦11 , 𝑦12 , … , 𝑦1𝑛 𝑓 (𝑥1 , 𝑦1)  
 2 𝑥21 , 𝑥22 , … , 𝑥2𝑛 𝑦21 , 𝑦22 , … , 𝑦2𝑛 𝑓 (𝑥2 , 𝑦2)  
 ⋮ ⋮ ⋮ ⋮  
 𝑘 𝑥𝑘1 , 𝑥𝑘2 , … , 𝑥𝑘𝑛 𝑦𝑘1 , 𝑦𝑘2 , … , 𝑦𝑘𝑛 𝑓 (𝑥𝑘 , 𝑦𝑘)  
 ⋮ ⋮ ⋮ ⋮  
 𝑚 𝑥𝑚1 , 𝑥𝑚2 , … , 𝑥𝑚𝑛 𝑦𝑚1 , 𝑦𝑚2 , … , 𝑦𝑚𝑛 𝑓 (𝑥𝑚 , 𝑦𝑚)  
There are many other distance functions: Manhattan distance (L1), 
which is the sum of the absolute values of the item values; Euclidean 
(L2) distance, calculated as the square root of the sum of squares of the 
individual values, which serves as another measure that provides the 
magnitude of a vector; and Minkowski distance, which generalizes L1 
and L2 (Table  2). However, these distance functions do not account for 
(1) the different variances in the items (although we can normalize the 
items using their means and standard deviations), (2) the correlations 
between the different items or dimensions, or (3) multiple scales (Berry 
et al., 2010). Mahalanobis distance overcomes these limitations by 
generalizing the Euclidean distance from orthogonal axes to correlated 
ones (De Maesschalck et al., 2000) and by scaling the value of each 
dimension by the standard deviation of the corresponding item.

Let there be 𝑚 dyads in the sample. Consider the 𝑘’th dyad, 1 ≤
𝑘 ≤ 𝑚. Let 𝑥𝑘 be the 𝑛-dimensional random vector representing the 
responses for the buyer and 𝑦𝑘 the 𝑛-dimensional random vector repre-
senting the supplier’s responses with asymmetry in the 𝑘’th dyad being 
a function of 𝑥𝑘 and 𝑦𝑘 (Table  3).

The buyer responses in the vector 𝐱𝐤 can be correlated, as can 
the supplier responses 𝐲𝑘, especially if the responses are to items 
that are related, e.g., by being in the same construct. Moreover, the 
corresponding items, assumed to be paired, within 𝐱𝑘 may be correlated 
with those in 𝐲𝑘. The joint vector [𝐱𝑘 𝐲𝑘] is assumed to be drawn from 
a multivariate normal distribution with mean [𝝁𝒙 𝝁𝒚] and covariance:

𝛴 =
[

𝛴𝑥 𝑐𝐼𝑛
𝑐𝐼𝑛 𝛴𝑦

]

where 𝐼𝑛 is the identity matrix of size 𝑛. Therefore, the buyer vectors 
𝐱𝑘, for 1 ≤ 𝑘 ≤ 𝑚, are a random sample from a multivariate normal 
distribution with mean vector 𝝁𝒙 and covariance matrix 𝜮𝒙. Similarly, 
the supplier vectors 𝐲𝑘, from 𝑘 = 1 to 𝑚, are a random sample from a 
multivariate normal distribution with mean vector 𝝁𝒚 and covariance 
matrix 𝜮𝒚 .

Furthermore, paired elements within 𝐱𝑘 and 𝐲𝑘 are correlated across 
dyads in the population with covariance 𝐜 = [𝑐1, 𝑐2,… , 𝑐𝑛], or item-
wise correlation 𝝆 = [𝜌1, 𝜌2,… , 𝜌𝑛] between paired items of buyers and 
suppliers 𝑛.

3.2. Measuring asymmetry as a difference with mahalanobis distance

It follows that the difference vector 𝐱𝑘 − 𝐲𝑘 is also drawn from a 
multivariate normal distribution with mean (𝝁𝒙 − 𝝁𝒚) and covariance 
𝛴 + 𝛴 + 2𝐜𝐼 . The centered vector difference between the buyer 
𝑥 𝑦 𝑛

4 
and supplier response vectors in the 𝑛 questions is (𝐱𝑘 − 𝐲𝑘) when 
𝝁𝒙 = 𝝁𝒚 , or (𝐱𝑘 − 𝐲𝑘 − 𝛿) when 𝝁𝒙 = 𝝁𝒚 + 𝛿. In addition, the weights 
𝐰 = [𝑤1, 𝑤2,… , 𝑤𝑛] can be used to apply item-level weights to these 
differences. The rest of this paper assumes 𝑤𝑖 = 1 for 𝑖 = 1,… , 𝑛, with 
the covariance matrix adjusted accordingly.

Asymmetry in the 𝑘th dyad can now be measured using Maha-
lanobis distance:
𝐺𝑘 =

√

(𝐱𝑘 − 𝐲𝑘 − 𝛿)⊤𝛴−1
𝑥−𝑦(𝐱𝑘 − 𝐲𝑘 − 𝛿)

The population covariance matrices 𝛴𝑥, 𝛴𝑦, and 𝛴𝑥−𝑦 can be esti-
mated from a random sample of dyads. Let the sample means of buyer 
and supplier responses across all dyads be �̄� and �̄�, respectively. Then 
𝑆𝑥 and 𝑆𝑦 are consistent estimators of 𝛴𝑥 and 𝛴𝑦, computed as:

𝑆𝑥 = 1
𝑚 − 1

𝑚
∑

𝑘=1
(𝐱𝑘 − �̄�)(𝐱𝑘 − �̄�)⊤

and

𝑆𝑦 =
1

𝑚 − 1

𝑚
∑

𝑘=1
(𝐲𝑘 − �̄�)(𝐲𝑘 − �̄�)⊤

Similarly, 𝑆𝑥−𝑦 can be estimated directly from the data or derived 
from 𝑆𝑥, 𝑆𝑦, and estimates of 𝐜. A commonly recommended minimum 
sample size for stable estimates of 𝑆𝑥, 𝑆𝑦, and 𝑆𝑥−𝑦 is 30 dyads (Johnson 
and Wichern, 2013).

The Mahalanobis distance-based measure of asymmetry in the 𝑘th 
dyad is estimated, with 𝑆 replacing 𝛴, as:

𝐺𝑘 =
√

(𝐱𝑘 − 𝐲𝑘 − 𝛿)⊤𝑆−1
𝑥−𝑦(𝐱𝑘 − 𝐲𝑘 − 𝛿)

We can also use Mahalanobis distance to map the responses of 
either party in the dyad as distances from the origin if we want to 
replace all the buyer-only variables corresponding to a buyer construct 
with a single value; likewise, for supplier-only constructs (Fig.  1). Un-
like dimensionality-reducing techniques such as principal components 
or factor analysis, information in all the dimensions is used for the 
Mahalanobis distance.

Mahalanobis distance can also be used to measure each party’s 
response vector length from the origin. Doing so collapses any subset 
of buyer-only (or supplier-only) items, say those related to a construct, 
into a single scalar value analogous to a factor score (see Fig.  1). All the 
relevant dimensions are used, so the method is lossless, which contrasts 
with dimensionality-reducing methods such as principal components or 
factor analysis that discard some variance.
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Fig. 1. The vectors representing the buyer’s and the supplier’s responses to the selected 
group of paired questions 𝑄1 , 𝑄2 ,… , 𝑄𝑛 for the 𝑘’th dyad with Mahalanobis distance 
𝐷𝐵

𝑘  (buyer) and 𝐷𝑆
𝑘  (supplier) from the fixed-point origin, respectively, with the 

difference between these two vectors having Mahalanobis distance 𝐺𝑘. The dimensions 
corresponding to 𝑄1 to 𝑄𝑛 are correlated and, therefore, not orthogonal.

Let the buyer and supplier be denoted by 𝐵 and 𝑆, respectively. 
Then, for the 𝑘′th dyad, the Mahalanobis distances of buyer’s and the 
supplier’s respective response vectors are given by:

𝐷𝐵
𝑘 =

√

𝐱⊤𝑘𝛴−1
𝑥 𝐱𝑘

and

𝐷𝑆
𝑘 =

√

𝐲⊤𝑘𝛴−1
𝑦 𝐲𝑘

These scalar quantities, 𝐷𝐵
𝑘  and 𝐷𝑆

𝑘 , represent the magnitude of 
the buyer’s and the supplier’s responses for the 𝑘’th dyad over a set 
of items, respectively. If the items correspond to a latent construct for 
the buyer (or supplier), the distances serve as multivariate factor score. 
When using estimates, 𝑆𝑥 and 𝑆𝑦 replace the population covariances 𝛴𝑥
and 𝛴𝑦. To make comparisons more consistent, we can use the pooled 
covariance matrix:
𝑆pooled = 1

2 (𝑆𝑥 + 𝑆𝑦)

This pooled estimator replaces 𝛴𝑥 and 𝛴𝑦 when calculating Maha-
lanobis distances across dyads in the above equations.

3.3. A statistical test of significance for the proposed metric

In any sample of dyads, some dyads may exhibit greater asymmetry 
than others. Therefore, we need a way to determine whether the 𝑘’th 
dyad is significantly asymmetric, i.e., whether the buyer’s and supplier’s 
responses in that dyad come from the same population. Specifically, we 
are testing the null hypothesis regarding the equality of the population 
means for both the buyer’s and the supplier’s responses in the 𝑘th dyad, 
i.e., the mean difference vector (𝐱𝑘 − 𝐲𝑘) equals the population mean 
difference 𝜹 = 𝝁𝒙 − 𝝁𝒚 . We can then obtain

Proposition 1.  Let 𝐺𝑘 be the Mahalanobis distance-based measure of 
asymmetry for the 𝑘 of 1,… , 𝑚 dyads with 𝑆𝑥−𝑦 as a consistent estimator 
of the covariance matrix 𝛴𝑥−𝑦. The test statistic
𝐺2 = (𝐱 − 𝐲 − 𝜹)⊤𝑆−1 (𝐱 − 𝐲 − 𝜹)
𝑘 𝑘 𝑘 𝑥−𝑦 𝑘 𝑘

5 
then has a chi-square distribution with 𝑛 degrees of freedom, that is, 𝐺2𝑘 ∼
𝜒2(𝑛) as 𝑚 → ∞, where 𝑛 is the length of the asymmetry vector (𝐱𝑘 − 𝐲𝑘), 
i.e., the number of pairs of elements.

Proof.  Let the eigen-decomposition of the population covariance ma-
trix 𝛴𝑥−𝑦 be

𝛴𝑥−𝑦 = 𝑈𝛬𝑈⊤ = 𝑈𝛬
1
2 (𝑈𝛬

1
2 )⊤

where 𝛬 is a diagonal matrix of eigenvalues and 𝑈 is an orthogonal 
matrix whose columns are the corresponding eigenvectors. Then, 𝑈−1 =
𝑈⊤ and 𝛴−1

𝑥−𝑦 = 𝑈𝛬−1𝑈⊤. The vector (𝐱𝑘−𝐲𝑘−𝜹) is multivariate normal 
with mean 0 and covariance matrix 𝛴𝑥−𝑦. Therefore, we can write
𝐱𝑘 − 𝐲𝑘 − 𝜹 = 𝑈𝛬1∕2𝐙

where 𝐙 is an 𝑛-dimensional standard normal random vector with zero 
mean and 𝐼𝑛 covariance.

Substituting into the test statistic:
𝐺2𝑘 = (𝐙⊤𝛬1∕2𝑈⊤)(𝑈𝛬−1𝑈⊤)(𝑈𝛬1∕2𝐙) = 𝐙⊤𝐙.

Hence, 𝐺2𝑘 is the sum of squares of 𝑛 independent standard normal 
random variables, i.e. 𝐺2𝑘 ∼ 𝜒2(𝑛).

Since 𝑆𝑥−𝑦 is a consistent estimator of 𝛴𝑥−𝑦, we have 𝑆𝑥−𝑦 → 𝛴𝑥−𝑦
as 𝑚 → ∞, and so the distribution of 𝐺2𝑘 converges to the chi-square 
distribution with 𝑛 degrees of freedom. □

Proposition  1 allows us to test whether the asymmetry between the 
buyer and the supplier in any dyad 𝑘 is statistically significant. For a 
chosen significance level 𝛼 (e.g., 0.05), we reject the null hypothesis 
when the test statistic 𝐺2𝑘 exceeds the (1 − 𝛼) percentile of the 𝜒2
distribution with 𝑛 degrees of freedom.

3.4. Robustness to assumption violations

In practice, the paired t-test is quite robust against violations of nor-
mality. Additionally, researchers treat Likert scale variables as normally 
distributed and continuous. Section 5 illustrates the test statistic 𝐺2𝑘
to identify significantly asymmetric dyads in a matched-pair dataset 
from the retail sector. This robustness is reflected in the test statistic 
𝐺2𝑘 , which has a chi-square distribution despite violating assumptions 
regarding the data and its joint distribution.

If the distribution of any variable is highly skewed, the researcher 
can transform the data using the logarithm. The researcher could 
seek a larger sample size if the test statistic 𝐺2𝑘 does not follow a 
chi-squared distribution. As with a paired t-test, a sample size ex-
ceeding 30 is always advisable. SEM typically requires large datasets 
for testing hypotheses, but collecting large sets of matched-pair data, 
with each observation corresponding to a dyad, is challenging. With 
dimensionality reduction, this approach offers a solution by requiring 
fewer observations for SEM. As we shall see in Section 5, using Maha-
lanobis distance to reduce dimensionality can decrease the number of 
observations needed compared to using SEM with latent variables.

Implicitly, the covariance matrix is assumed to be invertible, as 
in many statistical methods. Not being able to invert the covariance 
matrix suggests practical problems related to the choice of variables. 
If one variable is fully explained by a subset of the others, leading 
to multicollinearity, we would need to drop it, just as we would 
in regression. It may also be that some variable is either missing a 
considerable number of values or has exactly the same value across 
all rows; in such cases, it would be better to drop it. In addition 
to these practical measures, there are statistical tests – determinant, 
rank, and condition number – to evaluate the covariance matrix before 
attempting to invert it. There is another potential violation in that 
the responses across dyads (observations) in a real dataset may not be 
independent, as assumed. In a buyer–supplier matched pair dataset like 
the one used in Section 5, some large buyers may belong to multiple 
dyads as they purchase from various suppliers. Similarly, some large 
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suppliers may sell to many buyers in the dataset. For the test statistic, 
such a lack of independence across dyads may not matter if it has 
the expected distribution, as seen in Section 5. However, we should 
exercise caution when using regression or SEM. One workaround is to 
cluster the standard errors of the regression coefficients (White, 1980; 
Wooldridge, 2002, 2003).

3.5. Other measures of distance

The Manhattan (L1) and Euclidean (L2) distances can also be scaled 
by their standard deviation to address one of the shortcomings of these 
approaches compared to the Mahalanobis distance. (As with Maha-
lanobis distance, we can adjust the difference by 𝜹.) The normalized 
Euclidean distance is obtained by ignoring the correlation terms of the 
covariance matrix 𝑆𝑥−𝑦 (unlike the Mahalanobis distance):

𝐺′
𝑘 =

√

(𝐱𝑘 − 𝐲𝑘 − 𝜹)⊤diag(𝑆𝑥−𝑦)−1(𝐱𝑘 − 𝐲𝑘 − 𝜹)

The test statistic 𝐺′2
𝑘  corresponding to this measure would follow a 𝜒2

distribution with 𝑛 degrees of freedom only if the real covariance matrix 
were diagonal. However, the real covariance matrix is unlikely to be 
diagonal for paired items in a dyadic dataset.

Similarly, the Manhattan or L1 distance can be normalized as:

𝐺′′
𝑘 = |𝑥𝑘 − 𝑦𝑘|

′diag(𝑆𝑥−𝑦)−1

⎡

⎢

⎢

⎢

⎢

⎣

1
1
…
1

⎤

⎥

⎥

⎥

⎥

⎦

However, there is no known distribution for the sum of half-normal 
distributed variables (under our assumption that 𝐱𝑘 and 𝐲𝑘 are drawn 
from multivariate normal distributions with the same mean), so there 
is no significance test. Here, we use the same 𝜒2 distribution with 
𝑛 degrees of freedom to test significance with the (normalized) L1 
metric in our tests solely for comparison, even though it is not a valid 
test metric. Simulations described in the next section suggest this is a 
workable assumption, with the distribution appearing as non-central 
chi-squared.

Numerical example. Consider two paired items, 𝑄1 and 𝑄2, in 
a matched-pair dataset with the same mean values (so 𝛿 = 0). In 
the fifth dyad (𝑘 = 5), the buyer’s response to the two questions is 
𝑥5 = [4 7] and the supplier’s response is 𝑦5 = [7 4], so the difference 
is 𝑥5 − 𝑦5 = [−3 3].

We can obtain the covariance matrix 𝑆𝑥−𝑦 by taking 𝑥𝑘 − 𝑦𝑘 across 
all dyads, 𝑘 = 1 to 𝑚. Let this covariance matrix be:

𝑆𝑥−𝑦 =
[

3.42 2.55
2.55 2.8

]

, 𝑆−1
𝑥−𝑦 =

[

0.91 −0.83
−0.83 1.11

]

Also, ignoring covariances,

diag𝑆𝑥−𝑦 =
[

3.42 0
0 2.80

]

, (diag𝑆𝑥−𝑦)−1 =
[

0.292 0
0 0.357

]

Now we can compute all three distances for the fifth dyad:

• Mahalanobis distance

𝐺5 =

√

[−3 3]
[

0.91 −0.83
−0.83 1.11

] [

−3
3

]

= 5.76

• Euclidean distance

𝐺′
5 =

√

[−3 3]
[

0.292 0
0 0.357

] [

−3
3

]

= 2.42

• Manhattan distance

𝐺′′
5 = [3 3]

⎡

⎢

⎢

1
√

3.42
1

√

⎤

⎥

⎥

= 3.42

⎣ 2.80 ⎦

6 
Only 𝐺2𝑘 has a known distribution, i.e., a chi-square distribution 
for any 𝑘 with 𝑛 = 2 degrees of freedom. Here 𝐺25 = 5.762 =
33.15, which is greater than 5.99, the 95th percentile of the chi-
square distribution with two degrees of freedom. As such, the 
‘‘asymmetry’’ by way of the Mahalanobis distance is significant 
at the 5% level.

4. Comparing with other distance metrics using simulated dyadic 
datasets

As with any test statistic, Type I and Type II errors will arise when 
performing the corresponding significance test. We can control Type I 
errors, which represent false positives (incorrect identification of a dyad 
as asymmetric, that is, wrongly convicting the innocent), by selecting 
a confidence level of 1%, 5%, and so on. However, we cannot control 
Type II errors, which signify false negatives (failing to identify a dyad 
as asymmetric, i.e., allowing the guilty to escape punishment). In this 
context, we compare false positive (Type I) and false negative (Type II) 
errors using inference metrics based on the Mahalanobis distance, the 
normalized Euclidean distance, and the normalized Manhattan distance 
with three random datasets. As with any significance test, the focus is 
on Type I errors, which are the only ones we can control.

4.1. Creating the random datasets

To compare different metrics including the one proposed for Type 
I and Type II errors, I first generated three datasets of matched buyer–
supplier pairs in 10 dimensions as follows:

I. Create covariance matrices
I first created three 10 × 10 covariance matrices 𝛴1, 𝛴2, and 𝛴3, 

setting the diagonal terms 𝜎𝑖𝑖 = 1 to ensure unit variances.

• For 𝛴1, all off-diagonal terms were set to a positive value 𝜎𝑖𝑗 = 0.4
for all 𝑖 ≠ 𝑗, where 𝑖 and 𝑗 index the row and column from 1 to 
𝑛 = 10.

• For 𝛴2, off-diagonal values were mixed in sign: 𝜎𝑖𝑗 = +0.4 if (𝑖+𝑗)
was even, and 𝜎𝑖𝑗 = −0.4 otherwise.

• 𝛴3 is an identity matrix with all off-diagonal terms set to zero.

All three matrices are positive-definite, allowing us to use Cholesky 
decomposition (e.g., Golub and Van Loan, 1996) to obtain the Cholesky 
matrices 𝐻1, 𝐻2, and 𝐻3, respectively.

II. Generate buyer and supplier responses for each dyad
There were three simulation runs for 1000 dyads using each of the 

three matrices, 𝐻1, 𝐻2, and 𝐻3, taking the sample covariance matrix 
𝑆 to the same as the population correlation matrix 𝛴. The supplier and 
buyer responses are assumed to share the same (population) covariance 
matrix.

For each dyad 𝑘, the ‘buyer’ response was generated as:

𝐱𝑘 = 𝐻𝑍,

and a ‘supplier’ response as:

𝐲𝑘 = 𝐻𝑍′,

where 𝑍 and 𝑍′ are vectors generated with 𝑛 = 10 independent 
standard normal variables. This procedure was repeated for each dyad, 
with 𝑘 = 1 to 1000, using 𝐻1, 𝐻2, and 𝐻3, respectively, to obtain three 
datasets, each with 1000 dyads.
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III. Introducing asymmetry in the dataset
Next, asymmetry was introduced in only the first 100 dyads (of the 

total 1000 dyads) in each dataset by shifting the buyer vector by +1.25
and the supplier vector by −1.25 for each of the ten dimensions.

Thus, we have three datasets with known covariance structure 
between buyer and supplier responses, where dyads 1–100 are sig-
nificantly asymmetric by construction (mean difference ≠ 0), and 
dyads 101–1000 are not asymmetric, as their differences are from a 
population with mean zero.

4.2. Identifying significantly asymmetric dyads with type I/II errors

With the three datasets and known asymmetric dyads in place, I 
tested the significance of each dyad using the test statistics correspond-
ing to the proposed metric, the Euclidean distance, and the Manhattan 
distance. The following test was performed for each dyad to identify 
which ones are significantly asymmetric. For a chosen significance level 
of 𝛼, say 0.05, I rejected the null hypothesis when the proposed test 
statistic 𝐺2𝑘 using Mahalanobis distance (similarly, 𝐺′2

𝑘  for Euclidean 
or 𝐺′′2

𝑘  for Manhattan) exceeds the (1 − 𝛼) percentile value of the 𝜒2
distribution with 𝑛 degrees of freedom. The procedure involved the 
following three steps:

1. Calculate the distance metrics: All three metrics – based on the 
Mahalanobis distance 𝐺𝑘, the normalized Euclidean distance 𝐺′

𝑘, 
and the normalized Manhattan distance 𝐺′′

𝑘 , respectively – were 
computed for each dyad in all the datasets.

2. Significance test: Any dyad in each dataset is considered sig-
nificantly asymmetric if the asymmetry statistic (𝐺2𝑘 , 𝐺′2

𝑘 , or 𝐺′′2
𝑘 ) 

exceeds the critical value of the chi-squared distribution with 10 
degrees of freedom at the 10%, 5%, or 1% significance level.

3. Calculate false positives and false negatives: Using the fact 
that the first 10% of all the dyads in each dataset (subject 
to randomness in the generated data) were constructed to be 
asymmetric, I counted:

• False positives — when non-asymmetric dyads were incor-
rectly identified as asymmetric (Type I error – ‘‘innocent, 
wrongly convicted’’) from dyads 101–1000

• False negatives — when actually asymmetric dyads were not 
identified (Type II error – ‘‘guilty, not convicted’’) from 
dyads 1–100.

This procedure was repeated to identify false positives and false 
negatives for each metric across all nine simulation runs.

4.3. Results

The simulation results (Table  4) show that only the proposed metric 
using the Mahalanobis distance has the same percentage of Type I 
errors as the chosen significance level, while this is not the case with 
the other two metrics. Therefore, using a desired confidence level, the 
proposed metric using the Mahalanobis distance can effectively control 
the false positive error. In contrast, the other two metrics exhibit not 
only larger Type I errors, but also errors that are uncontrollable, which 
is not surprising, since the test metric does not have a chi-square or 
any other known distribution. Thus, the Mahalanobis distance enables us 
to test significance when applying a difference-based view of asymmetry in 
multiple variables (Table  4).

Our key findings are:
- Only the Mahalanobis distance correctly controls Type I error 
(false positives).

- Euclidean and Manhattan metrics ‘‘identify’’ more dyads as asym-
metric than appropriate, but the identification is based on the 
chi-square distribution (as with the Mahalanobis distance) even 
though we do not have a known distribution for these distances.
7 
As such, the Mahalanobis distance-based metric offers a valid test 
for asymmetry across multiple dimensions and is superior to alterna-
tives that lack significance testing foundations. We cannot say anything 
about the power of the test using Euclidean or Manhattan distance 
because the inference test based on these metrics does not have the 
correct proportion of Type I errors. Therefore, comparing the Type II 
errors of these two metrics to Type I errors is incorrect.

There seem to be more false negatives (Type II errors) with the 
proposed Mahalanobis-distance-based metric, especially when the co-
variance matrix has only positive correlations. However, such claims 
require further work with power-related tests.

5. Application of the metric on a retail buyer–supplier dyadic 
dataset

Recall that the goal of this paper is to propose (1) a statistically 
justified method to combine matched buyer and supplier variables 
(constructs) to create relationship-specific variables, such as asymmetry 
for the relationship, and (2) a consistent and statistically robust way 
to use buyer and supplier variables in addition to relationship-specific 
variables in regression or SEM.

Using a retail dyadic dataset, I now illustrate both applications for 
buyer–supplier relationships in the grocery sector. The dataset, used 
previously by Sodhi and Son (2009) and Son et al. (2016), has responses 
to matched-pair questions from the buyer and the supplier in 74 buyer–
supplier relationships. These relationships involve 12 buyers, including 
large discount stores, supermarket chains, and Internet shopping out-
lets, and 70 suppliers, including some large international players, such 
as Tesco on the buyer side and Coca-Cola, Kimberley-Clark and Nestlé 
on the supplier side. I also discuss how to account for the 74 dyads 
consisting of only 12 buyers, as many dyads have the buyer in common. 
The matched-pair questions capture buyer and supplier perceptions 
regarding their relationship, so I interpret the differences between their 
responses as asymmetry for this illustration.

The survey used two questionnaires, one for the supplier and one 
for the buyer, featuring paired questions that required responses on a 
seven-point Likert-type scale. The questionnaire included ten questions 
adapted from past studies and five additional questions for relational-
specific operational performance (Table  A.1): Questions 1–3 focused 
on the information technology (IT) capabilities of the partners and the 
level of relationship-specific IT assets; Questions 4, 5 (originally reverse 
coded), and 6 examined trust versus the buyer’s power; Questions 7 and 
8 investigated corporate cultural similarities between the partners; and 
Questions 9 and 10 assessed the level of commitment from either party 
to their relationship. A summary of the responses from the buyers and 
suppliers is presented in the (Table  A.2).

5.1. Identifying significantly asymmetric relationships

For this illustration, I used all the ten paired questions Q1–Q10 
to obtain a single measure of asymmetry. I computed Mahalanobis 
distances for each dyad. Ten of the 74 dyads had 𝐺2𝑘 > 18.31, the 95th 
percentile of 𝜒2(10), and therefore were significantly asymmetric at the 
level 5% (Table  5).

Robustness against violations of assumptions. This dataset vio-
lates the assumptions of normality and multi-normality underlying our 
proposed measure and test of significance. The responses on a 7-point 
Likert scale (DeVellis, 2012) are not distributed normally. However, 
using statistics based on normal-distribution assumptions is common 
when the data are responses on a Likert scale (Johnson and Creech, 
1983). Here, univariate tests of normality (D’Agostino et al., 1990; 
Royston, 1991) indicate that the measure for asymmetry based on 
Q1–Q10 was consistent with a normal distribution, as were the distance 
measures for relationship attributes and the operational performance 
for the supplier. However, for the buyer, both distance measures were 
skewed. Additionally, tests of multivariate normality using Mardia, 



M.S. Sodhi International Journal of Production Economics 287 (2025) 109653 
Table 4
Simulation results on datasets with positive, mixed, and zero correlations using different significance levels: Total significantly asymmetric dyads 
identified; true positives identified; false negatives (Type II error) having failed to identify significantly asymmetric dyads; and false positives 
(Type I error) having falsely identified dyads as asymmetric even though they were not. Asymmetry is measured by (a) the proposed metric 
using Mahalanobis distance, (b) the (normalized) Euclidean distance, and (c) the (normalized) Manhattan distance. Number of dyads 𝑚 = 1000
with 100 asymmetric (with the buyer and supplier data drawn from a distribution with other means).
 Total identified True positives False negat. False posit.
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 1a. Positive 10% 123 199 175 47 86 82 53 14 18 76 113 93  
 1a. Positive 5% 68 162 129 29 82 75 71 18 25 39 80 54  
 1a. Positive 1% 20 114 71 13 71 57 87 29 43 7 43 14  
 1b. Positive 10% 153 211 189 56 90 86 44 10 14 97 121 103  
 1b. Positive 5% 86 167 135 41 81 77 59 19 23 45 86 58  
 1b. Positive 1% 30 123 76 24 75 60 76 25 40 6 48 16  
 1c. Positive 10% 145 212 198 49 87 87 51 13 13 96 125 111  
 1c. Positive 5% 77 182 142 34 84 82 66 16 18 43 98 60  
 1c. Positive 1% 21 126 83 11 76 61 89 24 39 10 50 22  
 2a. Mixed 10% 187 215 179 92 98 97 8 2 3 95 117 82  
 2a. Mixed 5% 135 168 129 88 97 90 12 3 10 47 71 39  
 2a. Mixed 1% 73 119 74 66 87 66 34 13 34 7 32 8  
 2b. Mixed 10% 167 203 182 93 96 96 7 4 4 74 107 86  
 2b. Mixed 5% 116 164 122 86 96 91 14 4 9 30 68 31  
 2b. Mixed 1% 73 113 66 69 87 63 31 13 37 4 26 3  
 2c. Mixed 10% 208 212 185 95 99 98 5 1 2 113 113 87  
 2c. Mixed 5% 156 172 134 93 98 96 7 2 4 63 74 38  
 2c. Mixed 1% 97 126 78 81 93 71 19 7 29 16 33 7  
 3a. Zero 10% 186 186 140 97 97 94 3 3 6 89 89 46  
 3a. Zero 5% 138 138 84 94 94 78 6 6 22 44 44 6  
 3a. Zero 1% 87 87 28 78 78 28 22 22 72 9 9 0  
 3b. Zero 10% 172 172 135 93 93 91 7 7 9 79 79 44  
 3b. Zero 5% 126 126 83 91 91 77 9 9 23 35 35 6  
 3b. Zero 1% 81 81 34 76 76 34 24 24 66 5 5 0  
 3c. Zero 10% 176 176 133 97 97 96 3 3 4 79 79 37  
 3c. Zero 5% 126 126 91 90 90 82 10 10 18 36 36 9  
 3c. Zero 1% 83 83 33 78 78 33 22 22 67 5 5 0  
Table 5
Significantly asymmetric dyads at 5% and 1% levels.
 Buyer Supplier in dyad 𝑘 (test statistic 𝐺2

𝑘)  
 1 1 (34.12**); 2 (11.73); 3 (11.51); 4 (7.54)  
 2 5 (13.94); 6 (19.74*); 7 (14.27); 8 (23.48**); 9 (5.72); 10 

(29.55**); 11 (14.79)
 

 3 12 (8.74); 13 (19.93*); 14 (13.13); 15 (6.74); 16 (4.68); 17 
(5.09); 18 (5.19); 19 (14.09); 20 (3.77)

 

 4 21 (1.56); 22 (2.11); 23 (5.21); 24 (12.02); 25 (4.18); 26 
(4.19); 27 (3.98); 28 (6.57); 29 (2.26); 30 (10.51); 31 
(3.79); 32 (7.88); 33 (3.51)

 

 5 34 (2.52); 35 (3.55); 36 (9.86); 37 (3.04); 38 (2.55); 39 
(5.25); 40 (3.39); 41 (8.06); 42 (2.43); 43 (11.18)

 

 6 44 (15.08); 45 (7.92); 46 (10.91); 47 (7.85); 48 (6.26); 49 
(21.96*)

 

 7 50 (15.76); 51 (13.55)  
 8 52 (8.87)  
 9 53 (7.25); 54 (8.37); 55 (12.87); 56 (5.24); 57 (2.34); 58 

(8.47); 59 (7.31)
 

 10 60 (11.44); 61 (19.68*); 62 (16.92); 63 (1.96); 64 (15.06);
65 (29.17**); 66 (16.27); 67 (5.37); 68 (15.34)

 

 11 69 (10.34)  
 12 70 (20.20*); 71 (11.24); 72 (15.34);73 (21.26*); 74 (13.32)  
Note: * 𝑝 < 0.05 (critical value: 𝐺2

𝑘 > 18.31), ** 𝑝 < 0.01 (critical value: 𝐺2
𝑘 > 23.21).
8 
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Fig. 2. An SEM model to test the relationship between buyer (supplier) relationship performance and buyer (supplier) relationship attributes. There is one model for the buyer 
and one for the supplier, and connecting the two models are the buyer–supplier asymmetry and the correlated residual errors.
Henze-Zirkler, and Doornik-Hansen methods on the buyers’ relation-
ship attributes and the suppliers’ attributes rejected multi-normality. 
Despite these assumption violations, the measure for testing asymme-
try, 𝐺2𝑘 , had a 𝜒2 distribution, albeit with slightly fewer degrees of 
freedom than the number of questions. More research is needed to 
investigate robustness against different non-normal data distributions.

5.2. Use in Structural Equation Modeling (SEM)

The literature indicates that the strength of the relationship influ-
ences the relationship-specific operational performance for both the 
buyer and the supplier. One could consider two separate models, one 
for the buyer and one for the supplier (Whipple et al., 2015), combining 
the two sides using the average or another composite approach, or 
simply neglecting one side. However, in these instances, we cannot uti-
lize dyad-specific variables, such as asymmetry. Alternatively, we could 
explicitly incorporate the buyer and supplier constructs within the same 
model alongside their corresponding paired constructs, then introduce 
relationship-specific variables such as asymmetry to connect relevant 
paired constructs across the two models. The researcher must also 
account for covariances between the paired constructs as necessary.

Five measures were calculated using the Mahalanobis distance for 
this minimal model for illustration, which has no control variables:

- 𝐷𝐵,𝑅
𝑘 : Buyer relationship attributes

- 𝐷𝑆,𝑅
𝑘 : Supplier relationship attributes

- 𝐷𝐵,𝑂
𝑘 : Buyer operational performance

- 𝐷𝑆,𝑂
𝑘 : Supplier operational performance

- 𝐺𝑅
𝑘 : Asymmetry in relationship attributes

There are the two distance measures, 𝐷𝐵,𝑅
𝑘  and 𝐷𝑆,𝑅

𝑘 , to capture the 
multi-attribute relationship values for the buyer and supplier, respec-
tively, and two distance measures, 𝐷𝐵,𝑂

𝑘  and 𝐷𝑆,𝑂
𝑘 , to capture the 

multi-attribute operational performance of the buyer and supplier, 
respectively. These represent the distances of the (random) vectors 
from the origin to reduce the dimensionality of the buyer and supplier 
variables. The fifth metric is the asymmetry measure 𝐺𝑅

𝑘 , based on rela-
tionship attributes, which indicates the distance between two (random) 
vectors (see Fig.  2 and Table  6).

The literature indicates a link between asymmetry and relationship-
specific performance for either party. The hypothesized link can be 
9 
tested by two simultaneous equations for the relationship-specific oper-
ational performance, one for the buyer 𝐵 and the other for the supplier 
𝑆 in the 𝑘th dyad:

𝐷𝐵,𝑂
𝑘 = 𝛼𝐵 + 𝛽𝐵𝐷

𝐵,𝑅
𝑘 + 𝛾𝐵𝐺

𝑅
𝑘 + 𝜖𝑘

𝐷𝑆,𝑂
𝑘 = 𝛼𝑆 + 𝛽𝑆𝐷

𝑆,𝑅
𝑘 + 𝛾𝑆𝐺

𝑅
𝑘 + 𝜖′𝑘

with co-varying residuals 𝜖𝑘 and 𝜖′𝑘 and 𝑘 = 1 to 𝑚. The coefficients of 
the second term in the first equation 𝐷𝐵,𝑅

𝑘  help us to check whether 
the relationship attributes of the buyer are positively related to the 
relationship-specific operational performance of the buyer. The same 
holds for the supplier with 𝐷𝑆,𝑅

𝑘  in the second equation. The third set of 
terms in the two equations represents asymmetry, allowing us to check 
whether 𝐺𝑅

𝑘  has negative coefficients to test whether asymmetry has a 
detrimental effect on the relationship-specific operational performance 
for either party. The fourth set of terms, 𝐶𝐵

𝑘  and 𝐶𝐵
𝑘 , represents control 

variables such as buyer and supplier revenues, omitted here. Finally, 
asymmetry and the correlated aspects of the relationship may affect 
the relationship-specific operational performance of the buyer in the 
same way as it does the supplier. Thus, we expect the residuals e and 
e’ for relationship-specific performance for the buyer and the supplier 
to co-vary and we need to accommodate this covariance in the model 
(Fig.  2).

The Appendix lists the variables relating to the attributes of the 
buyers and suppliers within each dyad in the retail dataset. These in-
clude matched-pair questions Q11–Q15 regarding relationship-specific 
performance for the buyer and the supplier (Tables  A.3 and A.4). For 
further details on the data, see Sodhi and Son (2009).

Model fit. I fitted the two simultaneous equations for the
relationship-specific operational performance of the buyer and the 
supplier using the SEM module in Stata with the method mlvl for 
handling the missing data on the revenues of some suppliers in the 
dataset. The 𝜒2 value of the model compared to the saturated model 
is low at 0.334 (p = 0.846), indicating a fit close to the saturated 
model. In contrast, the baseline model versus the saturated model has 
a 𝜒2 value of 36.27 (p = 0.000), indicating that this model is much 
better than the baseline model. Regarding the model’s fit, RMSEA (root 
mean square error of approximation) is 0.000, the probability that
RMSEA < 0.05 is 0.870, CFI (comparative fit index) is 1.000, and CD
(coefficient of determination) is 0.349.

Buyer clusters in the dyads. Recall that the dyads in the dataset 
come from 12 retailers and 70 suppliers. Therefore, we could observe 
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Table 6
Mapping of relationship attributes and performance metrics.
 Relationship attributes Operational performance 
 Buyer in the 𝑘th dyad 𝐷𝐵,𝑅

𝑘 =
√

𝑥⊤𝑘 (𝑆
𝑅
pooled)

−1𝑥𝑘 𝐷𝐵,𝑂
𝑘 =

√

𝑥⊤𝑘 (𝑆
𝑂
pooled)

−1𝑥𝑘  
 Supplier in the 𝑘th dyad 𝐷𝑆,𝑅

𝑘 =
√

𝑥⊤𝑘 (𝑆
𝑅
pooled)

−1𝑦𝑘 𝐷𝑆,𝑂
𝑘 =

√

𝑥⊤𝑘 (𝑆
𝑂
pooled)

−1𝑦𝑘  
 Asymmetry in the 𝑘th dyad 𝐺𝑅

𝑘 =
√

(𝑥𝑘 − 𝑦𝑘 − 𝛿)⊤𝑆−1
𝑥−𝑦(𝑥𝑘 − 𝑦𝑘 − 𝛿)  
Table 7
SEM results: Effects of buyer/supplier attributes and asymmetry on operational performance.
 Standardized variable Coefficient estimate Std. error (a) P > |𝑧| (b) P > |𝑧| 
 Buyer’s operational performance in the relationship: 𝐷𝐵,𝑂

𝑘 Constant 2.0430** 0.7761 0.008 0.118  
 Buyer attribute 𝐷𝐵,𝑅

𝑘 0.4816** 0.0852 0.000 0.001  
 Asymmetry 𝐺𝑅

𝑘 −0.2409∗ 0.1022 0.018 0.086  
 Supplier’s operational performance in relationship: 𝐷𝑆,𝑂

𝑘 Constant 3.8523** 1.1057 0.000 0.000  
 Supplier attribute 𝐷𝑆,𝑅

𝑘 0.3245** 0.0975 0.001 0.001  
 Asymmetry 𝐺𝑅

𝑘 −0.2906∗∗ 0.1035 0.005 0.018  
 Variance
 𝑒.𝐷𝐵,𝑂

𝑘 0.7739 0.0772 – –  
 𝑒.𝐷𝑆,𝑂

𝑘 0.8522 0.0711 – –  
 Covariance
 𝑒.𝐷𝐵,𝑂

𝑘 & 𝑒.𝐷𝑆,𝑂
𝑘 0.2925** 0.1065 0.006 0.009  

 Likelihood ratio 𝜒2 𝑝 > 𝜒2 𝑝 > 𝜒2  
 Model vs. Saturated 0.334 0.846 N/A  
 Baseline vs. Saturated 36.273** 0.000 N/A  
Note: * 𝑝 < 0.05 ** 𝑝 < 0.01 *** 𝑝 < 0.001; Number of observations = 74.
Table A.1
Survey questions on buyer–supplier relationship dimensions.
 Q# Posed to (about) Questiona  
 Q1 Both (information sharing) My company shares standardized information externally with 

⟨the name of the supplier/buyer⟩
 

 Q2 Both (information sharing) My company shares customized information externally with 
⟨the name of the supplier/buyer⟩

 

 Q3 Both (information sharing) My company invests in technology designed to facilitate 
information exchange with ⟨the name of the supplier/buyer⟩

 

 Q4 Both (trust/power) The ⟨name of the supplier/buyer⟩ is one of our prime 
suppliers/buyers.

 

 Q5 Buyer (trust/power) My company avoids exercising power to ⟨the name of the 
supplier⟩. 
Supplier: My company feels that the ⟨name of the buyer⟩
leads the business relationship by exercising power.

 

 Q6 Both (trust/power) The business relationship with the ⟨name of the 
supplier/buyer⟩ is based on trust.

 

 Q7 Both (corporate culture) The ⟨name of the supplier/buyer⟩ places as much importance 
on meeting their commitment as we do.

 

 Q8 Both (corporate culture) The ⟨name of the supplier/buyer⟩ is as willing to bring about 
change as we are.

 

 Q9 Both (commitment) My company expects that the supply chain partnership with 
⟨name of the supplier/buyer⟩ will continue long term.

 

 Q10 Both (commitment) My company intends to establish a closer partnership with 
⟨the name of the supplier/buyer⟩.

 

a Customized with the buyer’s or supplier’s name. Q5 to the supplier was reverse-coded for the statistical analysis. As indicated, all questions 
are paired with slightly different wording in Q5.
correlations across several dyads that share the same retailer among 
the 12 retailers (Handley and Gray, 2015). In other words, the retailer 
serves as a level for these dyads. Consequently, when running SEM in 
Stata, we can specify a clustering variable to account for such level 
effects or correlations and to adjust for cluster correlation (Rogers, 
1993). This procedure clusters the standard errors of the regression 
coefficients (White, 1980; Wooldridge, 2002, 2003).

The resulting 𝑝 values of the coefficients changed only slightly 
(Table  7, column (b)), indicating that clustering of dyads by retailer 
does not have a significant effect; the dyads appear to be independent 
of each other.
10 
5.3. Interpretation of results

The results in this illustrative example align with the literature con-
cerning the relationship between asymmetry and relationship-specific 
operational performance. The SEM model, when compared to the sat-
urated model, is insignificant, whereas the baseline model, in compar-
ison to the saturated model, is highly significant. Thus, the model is 
useful (Table  7).

1. Buyer and supplier relationship attributes matter for per-
formance. The operational performance specific to the buyer 
relationship 𝐷𝐵,𝑂 is positively and significantly related to the 
𝑘
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Table A.2
Summary of responses by buyers (Q1b–Q10b) and suppliers (Q1s–Q10s) to questions 
Q1–Q10 on relationship attributes.
 (a) Buyers’ relationship attributes
 Item Mean SD Q1b Q2b Q3b Q4b Q5b Q6b Q7b Q8b Q9b  
 Q1b 4.66 1.967 –  
 Q2b 4.38 1.710 0.84 –  
 Q3b 3.14 1.808 0.28 0.35 –  
 Q4b 5.09 1.305 0.36 0.28 0.43 –  
 Q5b 5.28 1.360 0.60 0.45 0.26 0.27 –  
 Q6b 5.31 1.344 0.57 0.48 0.01 0.23 0.72 –  
 Q7b 5.34 1.174 0.60 0.53 0.33 0.52 0.52 0.55 –  
 Q8b 5.49 1.241 0.59 0.42 0.24 0.52 0.48 0.52 0.83 –  
 Q9b 5.62 1.107 0.66 0.61 0.24 0.43 0.62 0.76 0.65 0.58 –  
 Q10b 5.68 1.074 0.51 0.46 0.23 0.47 0.60 0.73 0.61 0.60 0.82 
 (b) Suppliers’ relationship attributes
 Item Mean SD Q1s Q2s Q3s Q4s Q5s Q6s Q7s Q8s Q9s  
 Q1s 4.04 1.724 –  
 Q2s 4.01 1.634 0.81 –  
 Q3s 3.00 1.783 0.46 0.54 –  
 Q4s 5.30 1.362 0.09 0.12 0.03 –  
 Q5s 4.46 1.377 0.02 0.13 0.26 0.22 –  
 Q6s 5.34 1.337 0.44 0.41 0.22 0.35 −0.10 –  
 Q7s 4.97 1.414 0.35 0.40 0.28 0.37 0.10 0.69 –  
 Q8s 5.12 1.414 0.42 0.44 0.24 0.40 0.06 0.60 0.65 –  
 Q9s 5.96 1.091 0.08 0.15 −0.04 0.39 0.16 0.40 0.37 0.29 –  
 Q10s 6.07 1.163 0.01 0.04 −0.13 0.33 0.13 0.27 0.32 0.24 0.88 
 (c) Difference in buyers’ and buppliers’ relationship attributes
 Item Unadj. SD Q1d Q2d Q3d Q4d Q5d Q6d Q7d Q8d Q9d  
 mean  
 Q1d 0.62 1.85 –  
 Q2d 0.36 1.82 0.74 –  
 Q3d 0.14 2.14 0.23 0.32 –  
 Q4d −0.20 1.74 0.21 0.17 0.05 –  
 Q5d 0.82 2.28 0.26 0.22 0.22 0.26 –  
 Q6d −0.03 1.86 0.37 0.32 0.11 0.37 0.32 –  
 Q7d 0.36 1.76 0.33 0.38 0.17 0.52 0.24 0.60 –  
 Q8d 0.36 1.83 0.28 0.22 0.15 0.60 0.16 0.44 0.72 –  
 Q9d −0.34 1.59 0.18 0.32 −0.08 0.44 0.34 0.56 0.47 0.33 –  
 Q10d −0.39 1.59 0.05 0.24 0.01 0.54 0.29 0.46 0.48 0.38 0.83 
Note: Items Q1–Q10 were posed as matched pairs to buyers and suppliers. Correlations 
are below the diagonal. Means and SDs are unadjusted. Differences computed as buyer 
minus supplier values.

Table A.3
Summary of responses by buyers (Q11b–Q15b) and suppliers (Q11s–Q15s) to questions 
Q11–Q15 regarding relationship-specific performance.
 Q# Posed to (about) Question  
 Q11 Buyer (lead time)

Supplier (lead time)
Buyer: Reduction of lead time from 
order placement to the ⟨name of the 
supplier ⟩ to the receipt of the order.
Supplier: Reduction of lead time from 
receipt of an order from ⟨name of the 
buyer⟩ to the fulfillment of the order.

 

 Q12 Both 
(responsiveness)

Supply chain responsiveness.  

 Q13 Both (cost) Cost reduction of all SCM activities 
related to ⟨name of the supplier/buyer ⟩.

 

 Q14 Both (forecast 
accuracy)

Increased forecasting accuracy.  

 Q15 Both (inventory) Reduced inventory level.  
Note: Questions Q11–Q15 were paired for buyers and suppliers. Q11 has different 
wording for buyer and supplier to reflect lead time on their respective ends of the 
supply chain.

attributes of the buyer relationship 𝐷𝐵,𝑅
𝑘 , and similarly, the 

performance of the supplier 𝐷𝑆,𝑂
𝑘  is positively and significantly 

related to the attributes of the supplier relationship 𝐷𝑆,𝑅
𝑘 .

2. Asymmetry impacts relationship-specific performance neg-
atively. Both the buyer’s and the supplier’s relationship-specific 
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Table A.4
Summary of responses to questions Q11–Q15 on relationship-specific performance.
 (a) Buyer relationship-specific performance
 Item Mean SD Q11b Q12b Q13b Q14b 
 Q11b 5.45 1.406 –  
 Q12b 5.45 1.356 0.95 –  
 Q13b 5.39 1.422 0.92 0.91 –  
 Q14b 5.43 1.325 0.89 0.91 0.89 –  
 Q15b 5.45 1.416 0.88 0.89 0.86 0.88  
 (b) Supplier relationship-specific performance
 Item Mean SD Q11s Q12s Q13s Q14s  
 Q11s 5.36 1.171 –  
 Q12s 5.23 1.161 0.63 –  
 Q13s 5.05 1.104 0.63 0.79 –  
 Q14s 5.08 1.382 0.66 0.75 0.73 –  
 Q15s 4.62 1.497 0.60 0.62 0.62 0.71  
Note: Responses reflect buyer and supplier evaluations of relationship-specific perfor-
mance on five matched items (Q11–Q15). Correlation coefficients are reported below 
the diagonal.

operational performance are negatively and significantly related 
to the level of asymmetry between them, as measured by our 
proposed measure 𝐺𝑘.

3. Residuals are positively covariant. Residuals for the customer 
and supplier relationship-specific operational performance mod-
els are significantly and positively covariant, suggesting that 
asymmetry affects their results in a similar direction.

4. Interaction terms are unnecessary. Interaction effects (𝐷𝐵
𝑘 ×

𝐺𝑘 and 𝐷𝑆
𝑘 × 𝐺𝑘) were not significant. Although these have 

been proposed as a proxy for asymmetry (see Edwards, 2001, 
p. 270), our Mahalanobis distance-based metric directly captures 
asymmetry without the need for interactions.

5. Control variables are partly informative. Retailer revenues 
were significant when tested as control variables; however, sup-
plier revenues could not be tested due to missing data. The 
revenue difference between the two also appeared significant 
in some specifications, though values were missing for many 
suppliers.

6. Asymmetry-based splits show no performance differences.
To test whether significantly asymmetric dyads biased results, 
the sample was split using significance thresholds 10% and 20% 
for asymmetry. No significant differences in buyer performance 
were found in the 10% split (𝑡 = 0.5306, 𝑝 = 0.3023) or the 20% 
split (𝑡 = 0.6424, 𝑝 = 0.2369). A MANOVA confirmed that there 
was no significant difference in buyer–supplier performance in 
these splits, supporting the robustness of including all dyads in 
SEM.

These results are consistent with the findings of Liu et al. (2012), 
among others, who used the ‘degree symmetry’ metric to evaluate 
dyadic relationships.

6. Discussion

This paper has focused on how to statistically approach buyer–
supplier dyadic data in multiple dimensions by reviewing the variety 
of methods currently in use. It has identified a research gap concerning 
a metric for an attribute such as asymmetry across multiple matched 
dimensions between the buyer and the supplier in each dyad, such that:

1. We have a statistical significance test for it, and
2. We can use it meaningfully in regression, SEM, or other statisti-
cal models.

I proposed a Mahalanobis distance-based metric and a significance 
test, assuming a multivariate normal distribution for the vectors. In 
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this context, asymmetry serves as a distance function that captures the 
difference between the paired buyer and supplier vectors. I conducted 
simulations to demonstrate the superiority of the proposed metric over 
other distance metrics, particularly in controlling the Type I error. 
The simulations also indicated that the significance test performs as 
expected, unlike statistics based on Euclidean or Manhattan distance.

I also used a real-life dyadic dataset from the retail sector to identify 
significantly asymmetric dyads. With this dataset, I demonstrated how 
we could apply the metric in SEM with buyer and supplier constructs 
and asymmetry, all represented by measures based on the Mahalanobis 
distance. The results align with the literature, suggesting that the metric 
could help study buyer–supplier relationships using dyadic data sets.

The primary contribution of this paper to the empirical dyadic 
literature on buyer–supplier relationships is the provision of a testable 
measure of asymmetry. This measure reduces the difference vector 
between the buyer’s and the supplier’s responses in 𝑛 dimensions to a 
scalar. The square of the metric follows a 𝜒2 distribution with 𝑛 degrees 
of freedom, allowing us to test whether the difference (asymmetry) is 
significantly different from zero at a chosen significance level. Thus, 
we can identify which buyer–supplier relationships are significantly 
asymmetric.

A secondary and more speculative contribution is using Maha-
lanobis distance as a lossless method in place of factor scores to 
reduce multiple correlated variables (e.g., items in a construct) to 
a single scalar. However, developing SEM models with Mahalanobis 
distance-based scores instead of factors requires further investigation.

6.1. Further research in measuring asymmetry

Asymmetry is a vast area of study, and this paper proposes a specific 
measure based on pairwise differences, augmented with a significance 
test. Other approaches include comparing buyers with suppliers as 
separate groups (see Table  1) or using polynomial regression (Edwards 
and Parry, 2018). More research is needed to assess the suitability of 
each method depending on the context.

1. Power and outlier handling: The power of the significance 
test should be evaluated, including under conditions where some 
variables are negatively correlated. In addition, the robustness of 
the metric against masking (obscuring outliers) and swamping 
(false outlier identification) needs assessment (Hadi, 1992).

2. Assumption violations: We must understand how robust the 
metric is to violations of (a) multivariate normality and (b) 
the equality of population covariance matrices for buyers and 
suppliers.

3. Lossless dimension reduction: The secondary contribution of 
this paper – the replacement of constructs with Mahalanobis 
distances from the origin – must be justified empirically and 
practically. Can Mahalanobis distance truly replace factor scores 
without loss of interpretability?

6.2. Implications for using the asymmetry metric in SEM

We also need to compare the use of various asymmetry metrics in 
SEM and other models using simulated and real dyadic datasets. Re-
testing datasets from existing studies using the proposed metric would 
be a logical starting point.

Incorporating dyad-specific variables (such as asymmetry) opens 
several new possibilities, especially if groups of matched-pair items 
are treated as vectors. For instance, asymmetry could be evaluated 
even in control variables. Our finding that firm revenue differences are 
significantly related to performance outcomes aligns with Villena and 
Craighead (2017).

However, caution is needed:

• Edwards (2001, 2002) raised concerns about using difference-
based metrics in regression and SEM.
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• Sample size requirements must be considered (Shah and Gold-
stein, 2006).

• The power and practical feasibility of applying our test in SEM 
models must be validated (Roh et al., 2013).

Although this paper focused on dyads, the proposed asymmetry 
measure could also be used in triads, for example, in evaluating a 
supplier’s relationships with two buyers or a buyer’s relationships with 
two suppliers. This could inform research such as that by Yang et al. 
(2022), who explored triadic agency problems.

6.3. Implications for practice

The proposed metric has practical utility beyond our retail case 
study:

• An OEM managing multiple suppliers can identify ‘‘gaps’’ in 
expectations versus delivery, using the metric to guide continuous 
improvement or supplier replacement.

• Large manufacturers can use matched-pair surveys and the asym-
metry metric to categorize suppliers by significance levels of 
asymmetry and communicate priorities accordingly.

• The metric can help with sustainability auditing. Firms could 
assess gaps in sustainability expectations using matched items and 
eliminate or assist suppliers accordingly (Montes-Sancho et al., 
2022; Bhutta, 2003; Ho et al., 2010).

• Instead of radar charts or unweighted differences, a manager 
could use the single-score asymmetry metric to prioritize rene-
gotiation with highly asymmetric suppliers. This accounts for the 
differing variance between dimensions, providing more accurate 
and objective prioritization.

Thus, the Mahalanobis distance-based asymmetry metric introduced 
in this paper is theoretically justified and practically applicable in 
buyer–supplier research.

In conclusion, this paper contributes a robust, testable, and prac-
tically useful method to measure asymmetry in buyer–supplier dyads. 
Replacing several related items with their Mahalanobis distance from 
the origin in SEM or regression may also be interesting as a lossless 
method instead of performing factor analysis and then using the factor 
scores for constructs. The article opens new directions for research and 
offers managers a powerful tool to diagnose and improve supply chain 
relationships.
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