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Abstract

Generalised Linear Models are widely used for analysing multivariate data with non-normal

responses for which the Iteratively Reweighted Least Squares algorithm is the main device to

solve small and medium scaled problems. The popularity of this algorithm is due to the fact

that is reduced to solving a series of weighted least square instances that are computationally

less expensive than the general purpose optimisation algorithms that could solve the underlying

maximum likelihood problem. Deploying the Iteratively Reweighted Least Squares algorithm

may be affected by convergence issues, sensitivity to starting values, and more importantly,

by significant parameter estimation error. A recent paper has shown how effective shrinkage

estimation could be to improve the estimation error of the ordinary least square estimator

without increasing the computational cost. The efficiency of these novel shrinkage estimators

is explained by their design to reduce the theoretical Mean Square Error that is achieved by

introducing a small bias with a sizable reduction in the new estimators’ variance. We show in

this paper that the Iteratively Reweighted Least Squares algorithm could significantly benefit

from replacing in each iteration the least square estimators with our shrinkage estimators. In

addition, we introduce an optimisation method to obtain more reliable starting values, further

enhancing convergence. Simulation studies and real-data applications demonstrate that our

proposed methods improve convergence speed, stability, and overall performance compared to

standard Generalised Linear Model non-penalised implementations.

Keywords: Generalised Linear Model, Shrinkage Estimation, Iteratively Reweighted Least

Square.

JEL classification: C10; C87; C63.

1. Introduction

1.1. Motivation

Generalised linear models (GLMs) extend traditional linear regression methods to multivariate

data that have non-Gaussian distributed dependent variables. The most common way to fit

GLMs is the Iteratively Reweighted Least Squares (IRLS) algorithm, which iteratively updates
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the weights and solves a weighted least squares (WLS) problem at each step until convergence.

However, IRLS has various limitations. First, it can fail to converge in some cases (Marschner,

2011). Second, WLS estimation error is affected by the instability of covariance matrix inver-

sion which is due to i) poor empirical eigenvalues estimation (Ledoit and Wolf, 2004; Asimit

et al., 2025b) and ii) non-zero asymptotic Mean Square Error (MSE) of the Ordinary Least

Square (OLS) estimator in the Kolmogorov setting where both the sample size and number

of covariates get large (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016;

Asimit et al., 2025b). Third, IRLS is sensitive to starting values, and poor initial guesses may

require many iterations, suboptimal solutions, or complete convergence failure (Green, 1984;

Marschner, 2011).

The motivation of this paper is to address two issues countered in GLM estimation that are

explained above. Firstly, the OLS/WLS estimator can be improved by using the shrinkage

estimators coined in Asimit et al. (2025b), and therefore, it is expected that enhancing the esti-

mation error in each iteration of IRLS would improve the GLM estimation error; in fact, this has

been observed in a very small real data analysis in Asimit et al. (2025b) where those shrinkage

estimators are shown to outperform OLS. Secondly, we propose an optimisation method to find

better starting values for IRLS deployments, which reduce IRLS’s sensitivity to initial estimates

and improve its overall performance.

1.2. Literature Review

GLMs provide a way to analyse data when the response variable does not follow a normal dis-

tribution. They are often used in medicine (Boyle et al., 1997; Field and Wilcox, 2017; Kapre

et al., 2020), biostatistics (Xia et al., 2013; Sohn and Li, 2018), actuarial science (Debón et al.,

2008; Peters et al., 2009; Mouatassim and Ezzahid, 2012; Delong et al., 2021) and so on. The

standard GLM assumes that the response variable follows a distribution from the exponential

family for which its mean value is linked to a linear predictor (a linear combination of the inde-

pendent variables) through a functional known as link function (LF); the presence of the linear

predictor explains the GLM terminology. A common approach for estimating the model pa-

rameters is Maximum Likelihood Estimation (MLE), typically computed by Newton’s Method

or Fisher Scoring; both are carried out via the Iteratively Reweighted Least Squares (IRLS)

algorithm (Nelder and Wedderburn, 1972). However, IRLS requires a matrix inversion at each

step, which can be computationally unstable and/or expensive, especially for large or high-

dimensional data; note that Quasi-Newton methods such as Broyden-Fletcher-Goldfarb-Shanno

(BFGS), Davidon-Fletcher-Powell (DFP), and Limited-memory BFGS (L-BFGS) approximate

the Hessian to reduce the computational cost. Other optimisation approaches have been pro-

posed, including Interior-Point Methods for large-scale L1-regularised logistic regression (Koh

et al., 2007), Smooth-Threshold Generalised Estimating Equations (SGEE) for correlated longi-

tudinal data (Li et al., 2013), and self-concordant optimisation techniques for some power GLMs

equipped with power LFs (Asimit et al., 2025a). Marra and Radice (2017) extended GLMs by

proposing bivariate copula additive models for jointly modelling multiple continuous responses,

estimating parameters via penalised likelihood using a trust-region algorithm implemented in the
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R package GJRM1. IRLS is also used with great success in various other problems, such as Non-

linear Regression (Wood, 2017), Heteroscedastic Linear Models (Hooper, 1993), Generalised

Symmetric Linear Models (Villegas et al., 2013), Vector Generalised Linear/Additive Models

(Yee and Stephenson, 2007), and Conway-Maxwell-Poisson regression (Chatla and Shmueli,

2018).

Beyond standard GLMs, IRLS has also been used for estimation in cases where key model as-

sumptions are relaxed. For example, some contingency tables do not conform to the usual GLM

structure, and a composite LF is used to relate each observation to multiple linear predictors

(Thompson and Baker, 1981). When there is limited prior support for a specific LF, parametric

(Scallan et al., 1984) or P-spline methods (Muggeo and Ferrara, 2008) can be used to estimate

the link flexibly, relaxing the assumption of a known LF. IRLS has been applied in settings

where the response is not scalar, such as symbolic polygonal data (do Nascimento et al., 2024).

Additionally, IRLS is used for estimation with missing data, such as in the E- and M-steps of the

EM algorithm for GLMs, where parameters are iteratively updated using standard IRLS-based

routines (Ibrahim et al., 1999).

IRLS has also been employed in various areas, including deviance-based model selection (Sakate

and Kashid, 2014), subsampling for Bayesian methods (Lachmann et al., 2022), and variable

selection using iterative reweighting and thresholding (Fan and Li, 2001). However, our main

focus is on improving the IRLS estimation procedure itself. We propose a modified IRLS

algorithm that replaces the usual WLS step with some of the shrinkage estimators discussed

in Asimit et al. (2025b), namely (simple) Slab Regression (SR), Generalised Slab Regression

(GSR), Stein Estimator (St), and Diagonal Shrinkage (DSh); such modification enhances the

stability and efficiency of GLM estimation. These shrinkage estimators introduce a small bias

with the advantage of significantly reducing the variance of the resulting estimator, which in

turn improves the overall performance measured via MSE.

The shrinkage estimators from this paper are inspired by Stein’s paradox, which showed that

the MSE of the MLE mean vector estimator could be reduced through shrinkage at least in

the Gaussian case (Stein, 1956, 1960; James et al., 1961). This puzzling result is concluded

in a Bayesian setting and the most known shrinkage estimator is the James-Stein estimator

(James et al., 1961) and its adaptations to unknown or diagonal covariance matrices (Baranchik,

1970; Stein, 1981). Later advances introduced shrinkage estimators for high-dimensional data

where the number of covariates exceeds the sample size (Chételat and Wells, 2012), but the

shrinkage estimation that we have referred so far is only available under Gaussian assumptions.

A somehow non-parametric approach has recently risen where linear shrinkage estimators are

available under a specific distributional structure (Wang et al., 2014; Bodnar et al., 2019), but

such developments are a great step ahead towards distribution-free estimators.

We should clarify that shrinkage may be understood in many ways. The Stein-type shrinkage

estimators that we have discussed so far are designed to improve a high-dimensional estimator

by combining the information across the constituents of the parameter vector that needs to be

1GJRM is available at https://cran.r-project.org/web/packages/GJRM/index.html.
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estimated. Specifically, parametric and non-parametric assumptions are considered to end up

with a linear shrinkage estimator (1− ρ)θ̂+ ρθtarget for θ, where θ̂ is the most common estima-

tor (e.g., MLE for mean vector shrinkage estimation) and θtarget is a parsimonious estimator

that could be also deterministic. Note that the same idea could be deployed for covariance

matrix shrinkage estimation (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005; Ledoit and

Wolf, 2012) and precision matrix shrinkage estimation (the inverse of the covariance matrix)

(Bodnar et al., 2016). While shrinking the covariance matrix may improve the OLS estimation,

shrinking the OLS estimator is a better choice to reduce the estimation error in multiple linear

regression (Asimit et al., 2025b). Penalised estimators for multiple linear regression, GLM and

many other machine learning models rely on penalisation to overcome overfitting and poor out-

of-sample performance, and/or achieve parsimonious models; numerous examples are possible,

and here are well-known penalised methods related to our research topic: Tikhonov penalisation

(Tikhonov, 1963; Hoerl and Kennard, 1970), Basic pursuit (Chen and Donoho, 1994), LASSO

(Tibshirani, 1996), Elastic-Net (Zou and Hastie, 2005), Generalised LASSO (She, 2009; Tib-

shirani and Taylor, 2011), etc. While most of them shrink the OLS estimator around zero,

i.e., θtarget = 0, when these penalised methods are applied to least square estimation, penalised

regression is sought to be shrinkage estimators, but one could see now the conceptual differences

between the class of penalised regression estimators and Stein type shrinkage estimators. In

summary, this paper incorporates fully non-parametric Stein-type shrinkage estimators into the

IRLS algorithm to enhance the GLM estimation without increasing the computational time.

1.3. Our Contributions

We propose new methods for solving GLM that aim to reduce the estimation error and enhance

convergence by introducing data-driven starting values. Our contribution is three-fold. First,

we enhance the IRLS-based algorithm by replacing the standard WLS estimator with shrinkage

estimators (SR, GSR, St, and DSh). Our simulation results show that St-based IRLS consis-

tently lowers the estimation error as compared to the usual IRLS, while GSR and DSh can also

offer improvements under various settings via synthetic and real data. Second, the proposed

shrinkage solutions often converge in fewer iterations, making them more computationally ef-

ficient. For Poisson and Gamma GLMs with log and sqrt LFs, the modified IRLS algorithms

converge faster than the standard IRLS. For Logistic regression (LR), they perform at a similar

speed while maintaining efficiency. Third, we introduce an optimisation-based approach for

choosing starting values, improving convergence for both the standard IRLS and the shrinkage-

based methods. Our simulations indicate that this approach leads to higher convergence rates,

especially for GLMs with sqrt LF when deployed in R.

The paper is organised as follows. Section 2 reviews existing methods for GLM fitting, focusing

on Newton’s method, Fisher Scoring and IRLS. Section 3 introduces the shrinkage estimators

considered in this paper. In Section 4, we discuss our approach for selecting starting values and

illustrate it with a small simulation. Section 5 presents a larger simulation study comparing our

shrinkage-based approaches with standard GLMs for LR, Poisson, and Gamma models, while

Section 6 provides some real data analyses. Finally, Section 7 summarises our main findings.
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2. Background

In this section, we present an overview of GLMs, their formulation, and the standard numerical

methods used for parameter estimation. We begin by describing the exponential dispersion

model, which underlies GLMs, and then introduce the most common estimation approach MLE.

We then discuss three widely used solvers for GLMs in Sections 2.1–2.3, emphasising their main

features and typical usage scenarios.

A univariate GLM setting assumes that the response variable Y , defined on Y ⊆ ℜ, is explained
by covariates/features X defined on X ⊆ ℜp. Let {Pθ,ϕ : θ ∈ Θ ⊆ ℜ, ϕ ∈ Φ ⊆ ℜ} be the

parametric set of distributions for Y , which is assumed to be an exponential dispersion model

in canonical form with canonical parameter θ if its probability density/mass function is

fY (y; θ, ϕ) = exp

{
θy − b(θ)

a(ϕ)
+ c(y, ϕ)

}
. (2.1)

Here, a(·), b(·) and c(·, ·) are real-valued functions defined on Φ, Θ and Y ×Φ, respectively, and

ϕ is the dispersion parameter. Under standard conditions, the mean and variance of Y are

E
[
Y
]
= b′(θ) and Var

[
Y
]
= a(ϕ)b′′(θ).

The estimation procedure assumes an independent sample Y1, . . . , Yn such that Yi is distributed

as in (2.1) with its own parameter θi and ϕ; the conditional mean is linked through a linear

predictor ηi = xT
i β via a real-valued function h:

E[Yi|Xi = xi] = h
(
xT
i β
)

for any i = 1, . . . , n, (2.2)

where xi is a d-dimensional vector of realised features/covariates. The inverse function of h

(provided it exists) is the LF and is denoted by g = h−1. The ϕ could vary and common

assumption is that a(ϕi) = a(ϕ)/wi, where wi > 0 are given weights (or wi = 1 if weights are

not provided).

The most common estimation method for GLMs is MLE, and the log-likelihood function for an

independent sample of size n is

ℓ(β) =
n∑

i=1

θiyi − b(θi)

a(ϕ)
+ c(yi, ϕ), where θi =

(
b′
)−1 ◦ h

(
x⊤
i β
)
,

Here, the symbol ◦ denotes function composition. Maximising the above is equivalent to min-

imising the following objective function

C(β) = −
n∑

i=1

wi

(
θiyi − b(θi)

)
. (2.3)

Although GLMs are often described in terms of the exponential family and the LF g, the

estimation procedure depends directly on the function h. A common choice is the canonical LF
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defined by

h(η) = b′(η), η ∈ ℜ. (2.4)

The technical conditions for the existence and uniqueness of the MLE estimate are well-known

– e.g., see (Wedderburn, 1976; Mäkeläinen et al., 1981) – and require a strictly concave log-

likelihood function and some boundary conditions. These conditions are satisfied by the instance

in (2.3) if functions a, b and h satisfy certain regularity conditions. These constraints formalise

the concept of proper GLM coined in Asimit et al. (2025a). The MLE solutions could be on

the boundary of the parameter space, which makes the estimation quite problematic, but we

exclude such extreme cases from our analysis; this is observed in the LR when there exists a

hyperplane that perfectly separates the two classes, which is also known as complete separation,

case in which there is a continuum of points on the boundary where the absolute maximum is

attained (Albert and Anderson, 1984).

Minimising (2.3) could be done by either using an off-the-shelf solver designed for global (or

convex) optimisation problems if the functional C is not convex (or convex). Convex instances

are available for some specific GLMs, and a subset of such convex sets consists of self-concordant

instances that have an efficient implementation (Asimit et al., 2025a). The vast majority of

GLMs are non-convex and Newton’s Method is the standard solver, where the main goal is to

solve the non-linear system ∇C(β) = 0; a second-order Taylor expansion leads to an iterative

procedure for finding an approximation to the MLE of GLM parameter β

β̂(t+1) = β̂(t) −H−1
C
(
β̂(t)

)
∇C
(
β̂(t)

)
for all integers t ≥ 0. (2.5)

Computational challenges may arise due to many reasons, one of which is when the global

minimum is not an interior point case in which Newton’s Method fails to converge. Also,

inverting the Hessian matrix can be difficult when the problem size is large, and an alternative

is to use the Fisher information matrix (the expected value of the Hessian), which leads to the

Fisher Scoring Method. Both methods (Newton and Fisher Scoring) use a second-order Taylor

approximation and, in some cases, yield equivalent results, which is not guaranteed unless some

conditions are satisfied; for details, see Section 2.1 and 2.2. An interesting fact is that for GLMs

with non-canonical LFs, Newton’s Method usually converges faster than the Fisher Scoring

Method (Wood, 2011). An alternative solver is via the IRLS algorithm that approximates

a stationary point of (2.3) through a for-loop procedure where a WLS instance (with given

weights) is run in every loop which is computationally very efficient; for more details, see Nelder

and Wedderburn (1972); McCullagh et al. (1989) or Section 2.3. This explains why IRLS is

the standard GLM solver given its computational advantage. However, an IRLS variant that

employs step-halving may further improve convergence, which is implemented in the R package

glm22.

The next sections present some technical details about various GLM solvers that we have men-

2The glm2 package is available at https://cran.r-project.org/web/packages/glm2/index.html.
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tioned above to supplement the high-level information presented so far.

2.1. Newton’s Method

We begin with Newton’s Method, a standard iterative procedure for solving the non-linear

system ∇C(β) = 0. Starting from an initial guess β(0), the parameter estimate is updated as

in (2.5). This approach is straightforward when both the gradient and the Hessian of the cost

function C(β) are available. However, if the number of parameters p is large or the Hessian

matrix is ill-conditioned, the method may lose accuracy or fail to converge. Equations (2.6)

and (2.7) show the gradient and Hessian computations, and the canonical LF in (2.4) simplifies

them considerably.

The gradient of C(β) with respect to βj is given by

∂C
∂βj

=

n∑
i=1

wi

(
b′(θi)− yi

) dθi
dβj

=

n∑
i=1

wi

(
b′(θi)− yi

)h′(ηi)
b′′(θi)

xij , (2.6)

where ηi = x⊤
i β for all 1 ≤ i ≤ n and θi = (b′)−1 ◦ h(ηi). Similarly, the (j, k) entry of the

Hessian matrix is

(
HC(β)

)
jk

=
n∑

i=1

wi

{(
h′(ηi)

)2
b′′(θi)

+
(
b′(θi)− yi

)(h′′(ηi)

b′′(θi)
−
(
h′(ηi)

)2
b′′′(θi)(

b′′(θi)
)3

)}
xijxik. (2.7)

When the canonical LF defined in (2.4) is chosen, the (2.6) and (2.7) then simplify to

∂C
∂βj

=
n∑

i=1

wi

(
b′(θi)− yi

)
xij and

(
HC(β)

)
jk

=
n∑

i=1

wi b
′′(θi)xijxik.

In matrix form of (2.5), one can write HC(β
(t)) = X⊤W∗X and ∇C(β(t)) = X⊤z∗, where

X ∈ ℜn×(p+1) includes a column of ones for the intercept, and the diagonal matrix W∗ and

vector z∗ depend on ηi = x⊤
i β

(t) and θi = (b′)−1 ◦ h(x⊤
i β

(t)).

Newton’s Method is attractive because it can converge quickly under suitable conditions, but

careful attention must be paid to Hessian inversion and the choice of initial values. In the next

section, we describe the Fisher Scoring Method, which replaces the observed Hessian with the

Fisher information matrix in the update step.

2.2. Fisher Scoring Method

Fisher Scoring is another iterative procedure for estimating GLMs. Unlike Newton’s Method,

which uses the observed Hessian in (2.7), Fisher Scoring replaces the Hessian with its expected

value, known as the Fisher information matrix.

When we modify (2.7) by replacing yi with its expectation b′(θi), the Fisher information matrix

for each (j, k) entry becomes

(
HC(β)

)
jk

=

n∑
i=1

wi

(
h′(ηi)

)2
b′′(θi)

xijxik.
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This adjustment simplifies computation and reduces processing time. If the LF is canonical, this

matrix coincides with the Hessian in Newton’s Method, causing the two methods to be identical.

However, with non-canonical LFs, Newton’s Method may converge more rapidly because it uses

the observed Hessian (Wood, 2011).

In practice, Fisher Scoring can be simpler when a closed-form expression for the Fisher informa-

tion matrix is readily available, but it may become less efficient in complex or high-dimensional

settings. As a result, the choice between Fisher Scoring and Newton’s Method often depends on

the model structure, the LF, and computational considerations. We next introduce the IRLS

algorithm, a procedure that frames the estimation process as a sequence of WLS problems.

2.3. IRLS Implementation

As anticipated, IRLS is an effective GLM solver, which was introduced in Nelder and Wed-

derburn (1972) and has been the standard technique for GLM implementations. A detailed

explanation of IRLS is given in Wood (2017) and we only provide a brief overview.

At iteration t ≥ 1, let the linear predictor be η
(t)
i = x⊤

i β
(t) and the mean response µ

(t)
i = h(η

(t)
i )

for each i. The algorithm typically starts with µ
(0)
i = yi and η

(0)
i = h−1(µ

(0)
i ), although

adjustments may be required during implementation; see Section 4 for further discussion. At

each step, IRLS solves the WLS problem

β̂(t+1) := argmin
β

(
z(t) −Xβ

)⊤
W(t)

(
z(t) −Xβ

)
,

where the weight matrix W(t) and the pseudo-response z(t) are defined by

W(t) = diag

((
h′
(
η
(t)
i

))2
V
(
µ
(t)
i

) )
, z

(t)
i = η

(t)
i +

yi − µ
(t)
i

h′
(
η
(t)
i

) , (2.8)

with V
(
µ
(t)
i

)
being the fixed variance function associated with the chosen distribution. Details

on how to derive (2.8) can be found in Appendix B.

IRLS is implemented in statistical software such as R’s glm2, Matlab’s fitglm, and Python’s

statsmodels.GLM. Each package includes specific convergence criteria, stability features, or

stopping rules; see Appendix B. Moreover, our study focuses on the case n > p. When n ≤ p,

the design matrix does not have full rank, and our OLS-based methods including IRLS, become

problematic. In those cases, penalised approaches such as LASSO or Elastic-Net are more

appropriate. Since our shrinkage estimators build on the OLS formulation, we require n > p.

Having now described the three main approaches to GLM estimation, we turn to our proposed

shrinkage estimators, which incorporate these standard frameworks while aiming to reduce MSE

and improve estimation stability without enforcing sparsity.
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3. Overview of Shrinkage Linear Regression Estimators

This section introduces four shrinkage estimators that replace the WLS step in the IRLS algo-

rithm. These estimators, GSR, St, and DSh, have been studied in Asimit et al. (2025b) and

are motivated by Stein’s paradox (Stein, 1956, 1960; James et al., 1961). Stein’s work shows

that an unbiased estimator for a mean vector can often be improved by shrinking it toward a

simpler target. All four estimators reduce the MSE compared to the OLS estimator and they

are conceptually different than biased estimators obtained via penalisation. While our shrink-

age estimators have a final form similar to a class of penalised regression estimators, the main

difference between these two choices is that our shrinkage estimators do not require any form

of cross-validation – like all penalised regressions require – and those shrinkage parameters are

estimated by minimising the theoretical MSE of the shrinkage parameter vector. This improves

the estimation error of the regression parameters, and in turn, out-of-sample performance for

the dependent variable is enhanced.

In penalised regression, model estimation is obtained by minimising

β̂ := argmin
β∈ℜp+1

1

2
||y−Xβ||22 + g(β), (3.1)

where a penalty function g : ℜp → ℜ+ – e.g., λ∥β∥1 in the LASSO or λ∥β∥22 in Ridge regression

– encourages model’s sparsity and/or reduces overfitting. Note that our shrinkage estimators

are designed to improve the estimation error, and not to attain a sparse model.

The shrinkage estimators are grouped into two classes. The first class, known as slab regressions,

are discussed in Section 3.1 where shrinkage is achieved by adding a quadratic term to the loss

function. This is the only shrinkage regression estimator that resembles to penalised regression

estimators, but SR penalisation parameters are estimated rather than using cross-validation.

Interestingly, the SR estimator is a special case of the Generalised LASSO estimator introduced

in Tibshirani and Taylor (2011) which relies on cross-validation. The GSR estimator is seemingly

similar to SR, but GSR significantly adjusts the eigenvalues of the covariance matrix which is

done in a controlled manner (by minimising the MSE of the shrinkage estimator). Moreover,

SR changes the eigenvalues and eigenvectors of the covariates covariance matrix, while GSR

preserves the original eigenvectors and adjusts the eigenvalues like ridge regression (Hoerl and

Kennard, 1970) that again relies on cross-validation. This could explain why our numerical

experiments on synthetic and real data tend to recommend GSR more often than SR.

The second class is presented in Section 3.2, and is defined through multiplicative shrinkage.

That is, the OLS estimator is scaled by a data-derived diagonal matrix, β̂(D) = D β̂OLS with

D ∈ ℜ(p+1)×(p+1). Note that Hocking et al. (1976) used the same definition, but their shrinkage

model assumed standardised data, which is restrictive and inefficient since reducing the MSE on

transformed data does not have the same effect on the original data; such restriction is removed

in Asimit et al. (2025b) where the multiplicative shrinkage – described in Section 3.2 and used

in this paper – were first introduced. Two shrinkage estimators are discussed in Section 3.2,

namely, St and DSh; both estimators share the same property as GSR by preserving the original

eigenvectors and adjusting the eigenvalues of the the covariates covariance matrix.
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3.1. Slab Regression (SR and GSR)

The SR estimator imposes a quadratic constraint on a selected linear combination of the pa-

rameters, and it is defined as follows:

β̂SR(µ;u) := argmin
β∈ℜp+1

1

2
∥y −Xβ∥22 + µ

(
uTβ

)2
,

where µ ≥ 0 controls the shrinkage and u ∈ ℜp+1 specifies the direction (for example, u = 1).

The GSR estimator generalises this idea by allowing shrinkage along multiple directions and is

given by

β̂GSR(µ) := argmin
β∈ℜp+1

1

2
∥y −Xβ∥22 +

∑
l∈L

µl

(
uT
l β
)2
,

where each µl ≥ 0 controls the shrinkage in the direction given by ul, the eigenvectors of

Σ = XTX.

3.2. Multiplicative Shrinkage (St and DSh)

In the multiplicative approach, the OLS estimator is directly scaled through a diagonal matrix

D. The St estimator applies a single global shrinkage parameter, i.e., D = aIp+1, and the

shrinkage estimator for a is as follows:

β̂St = â∗ β̂OLS, where â∗ :=

(
β̂OLS

)T
β̂OLS(

β̂OLS
)T

β̂OLS +MSE
(
β̂OLS

)∧∈ [0, 1).

The DSh estimator extends this idea by applying coefficient-specific shrinkage factors, i.e.,

D = diag(b), and the shrinkage estimator for b is as follows:

β̂DSh = diag(b̂∗) β̂OLS, with b̂∗k =
(β̂OLS

k )2

(β̂OLS
k )2 + σ̂2 σk

∈ [0, 1),

where σ̂2 is the estimated error variance and σk is the kth diagonal entry of Σ = XTX.

4. IRLS Starting Values

The performance and convergence of the IRLS algorithm in fitting GLMs depend strongly on

the choice of starting values. Poor starting values may lead to many iterations or even a failure

to converge, and even when the starting values are near the true parameters, the algorithm can

be unstable unless they are very close to the global optimal solution. These issues are more

common in models with nonlinear or complex LFs. In this section, we describe practical choices

for starting values by reviewing the default behaviour in the glm2 package and presenting a

convex optimisation method that is solely used to compute improved starting values for the IRLS

algorithm. Convex optimisation methods provide reliable solutions for estimating parameters;

unlike IRLS, they do not rely on iterative updates but yield starting values that lead to more

10



stable IRLS performance; CVXR in R, CVXPY in Python, or CVX in MATLAB implement these

approaches.3

The current default starting values used in glm2 are discussed in Section 4.1, while our proposed

starting values are provided in Section 4.2.

4.1. Starting Values in glm2

The default starting values in glm2 for the mean response, µ
(0)
i , are often set as µ

(0)
i = yi, which

a natural choice. However, this can cause numerical problems depending on the underlying

distribution and its associated LF. We now provide some examples to illustrate our point.

Assume now a LR with a logit LF, where the log-likelihood is given by

l(η; y) =
n∑

i=1

[yi log(h(ηi)) + (1− yi) log(1− h(ηi))] .

Although it is theoretically sound to set µ
(0)
i = h

(
η
(0)
i

)
, numerical issues occur if µ

(0)
i is near

0 or 1 due to the log term in the above. This issue is overcome in practice by making some

adjustments; e.g., µ
(0)
i = yi+0.5

2 and η
(0)
i = log

(
µ
(0)
i /
(
1− µ

(0)
i

))
are chosen in glm2.

Assume now a Poisson regression (PoR) with a generic LF h, where the log-likelihood is given

by

l(η; y) =

n∑
i=1

[−h(ηi) + yi log(h(ηi))− log(yi!)] .

Here, µ
(0)
i = h

(
η
(0)
i

)
is a common starting point, but this may be problematic when µ

(0)
i = 0.

For example, log LF choices (h(η) = eη) in glm2 are adjusted by taking µ
(0)
i = yi + 0.1 and

η
(0)
i = log(yi + 0.1). Similarly, sqrt LF choices (h(η) = η2) are adjusted in glm2 by taking

µ
(0)
i = yi + 0.1 and η

(0)
i =

√
yi + 0.1.

Assume now a Gamma regression (GaR) with a generic LF h, where the log-likelihood is given

by

l(η; y) =

n∑
i=1

[
− 1

ϕ

(
yi

h(ηi)
+ log(h(ηi))

)
+

1− ϕ

ϕ
log(yi)

]
− n log

(
ϕ

1
ϕΓ

(
1

ϕ

))
.

Once again, the typical starting value, µ
(0)
i = h

(
η
(0)
i

)
, may be far from being ideal when yi or

µ
(0)
i is near zero. The starting values are not adjusted in glm2 for Gamma regression, and this

could be a problem for a user that has examples with small values for the dependent variable.

This is not uncommon in practice, and one example is insurance claims data – such as medical

insurance – where very small claims are possible.

Table 1 summarises the adjusted default starting values and the validation checks implemented

in the glm2 package for different models and LFs. Note that if yi is very small, then log(yi) or
√
yi may still be unstable for the Gamma distribution. During the IRLS iterations, the updated

predictor η
(t)
i = x⊤

i β
(t) can become non-positive, causing problems that fail validity checks for

3Available at: https://stanford.edu/~boyd/software.html
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η
(t)
i . Even after adjusting the default starting values in glm2, instabilities and early failures

may frequently occur.

Table 1: Internal Starting Values and Validations in glm2 for Various Distributions and LFs

Model LF Adjusted Initial Mean µ
(0)
i Initial Predictor η

(0)
i Valid η

(t)
i ?

LR logit yi+0.5
2

log
(

µ
(0)
i

1−µ
(0)
i

)
TRUE

PoR sqrt yi + 0.1
√
yi + 0.1 if η

(t)
i > 0

PoR log yi + 0.1 log(yi + 0.1) TRUE

GaR sqrt yi
√
yi if η

(t)
i > 0

GaR log yi log(yi) TRUE

Notes: This table shows the starting values and checks used by the glm2 package for different models (LR, PoR,

and GaR) and LFs. The adjusted initial mean µ
(0)
i and predictor η

(0)
i are chosen to ensure numerical stability.

The final column indicates whether the predictor η
(t)
i remains valid during iterations. For simple LFs like logit

and log, the predictor stays valid throughout. For the sqrt LF, the predictor must be positive; if it becomes
non-positive or non-finite, the model may become unstable or fail to converge.

4.2. Optimisation-Based Starting Values

We have outlined in Section 4.1 the importance and possible pitfalls of starting values for de-

ploying IRLS solutions, and we also discussed some bespoke solutions made in glm2. We now

provide a novel optimisation-based method to define starting values that are data-driven and

LF-driven, which adapts the well-known bespoke solutions available in the existing packages.

Our method minimises the difference between a transformed version of the initial mean response

(g∗(µ
(0)
i )) and the linear predictor (x⊤

i β
(0)); g∗ is defined to ensure that the initial linear pre-

dictor is valid and that any necessary constraints are met, as detailed in Table 1. The starting

value is the solution of the instance given as (4.1) min
β(0)

n∑
i=1

(
g∗
(
µ
(0)
i

)
− x⊤

i β
(0)
)2

s.t. x⊤
i β

(0) ≥ ϵ, for all 1 ≤ i ≤ n if required by the chosen LF,

(4.1)

where µ
(0)
i = h

(
η
(0)
i

)
and ϵ > 0 is a parameter – ϵ is usually small and the default value in our

implementations is 10−6 – that ensures η
(0)
i = x⊤

i β
(0) ≥ 0 as indicated in Table 1. The choice

of g∗ is essential in (4.1) and one may make different setting; for example, g∗(µ) =
√
µ and

g∗(µ) = log(µ+0.1) are natural choices for the sqrt LF and log LF, respectively. The inequality

constraints in (4.1) may be discarded in some cases as anticipated in Table 1; e.g., logit or log

do not require extra restrictions.

In a nutshell, the starting value solution in (4.1) relies on a scalable convex quadratic instance

that aims to reduce the distance between x⊤
i β

(0) and g∗
(
µ
(0)
i

)
. Our solution could address

different issues such as i) lack of convergence and ii) excessive iterations. In order to test such

claims we compare the convergence performance of Poisson and Gamma GLMs with sqrt LF by

using our proposed starting values and the default starting values in Matlab, Python, and R.

Table 2 reports the number of convergence failures – lower numbers indicate better convergence

performance – based on each software implementation (reported outside the brackets) and our

starting values (reported inside the brackets). For example, when we look at Poisson GLM

12



for R’s implementation in glm2, we compare the convergence failures of glm2 with its starting

solution to glm2 with our starting solution in (4.1), so that we have like-for-like analysis. Values

tabulated in Table 2 are based on N = 100 samples of size n = 500 based on the first Data

Generation Process (DGP1) that is provided in Appendix C.

Table 2: Number of failures to convergence with sqrt LF DGP1

p 1% n 10% n

ρ -0.5 0 0.5 -0.5 0 0.5

Panel A: Poisson Distribution

µ=0

R 0 (0) 0 (0) 20 (0) 1 (0) 0 (0) 0 (0)

Matlab 39 (39) 68 (68) 86 (86) 13 (13) 15 (15) 11 (11)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

µ=3

R 9 (0) 67 (0) 100 (0) 57 (0) 100 (1) 100 (0)

Matlab 75 (75) 96 (96) 100 (100) 96 (96) 100 (100) 100 (100)

Python 0 (0) 0 (0) 1 (0) 1 (0) 0 (0) 0 (0)

µ=5

R 96 (0) 100 (1) 100 (1) 100 (0) 100 (0) 100 (0)

Matlab 99 (99) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

Python 0 (0) 4 (0) 5 (0) 0 (0) 0 (0) 1 (0)

Panel B: Gamma Distribution

µ=0

R 100 (3) 100 (2) 100 (1) 100 (0) 100 (2) 100 (0)

Matlab 100 (99) 100 (100) 100 (100) 68 (67) 92 (92) 100 (100)

Python 100 (100) 100 (100) 98 (80) 98 (96) 98 (96) 99 (90)

µ=3

R 100 (1) 100 (0) 100 (3) 100 (0) 100 (0) 100 (0)

Matlab 100 (100) 100 (99) 100 (100) 61 (65) 82 (81) 100 (100)

Python 98 (92) 100 (38) 99 (0) 97 (42) 100 (0) 99 (0)

µ=5

R 100 (1) 100 (1) 100 (1) 100 (0) 100 (0) 94 (0)

Matlab 100 (100) 100 (100) 100 (100) 65 (64) 82 (83) 99 (100)

Python 99 (1) 99 (0) 98 (0) 97 (0) 99 (0) 93 (0)

Notes: This table shows the number of convergence failures for glm2 over N = 100 replications, each with
n = 500 observations. The numbers outside parentheses are for the default starting values within R, Matlab
and Python, and the numbers inside parentheses are for our optimisation-based adjusted starting values. Bold
numbers indicate cases where our starting values produced fewer failures than the default. A convergence failure
means that the algorithm does not reach a valid solution within a maximum of 10, 000 iterations. The results
are reported for different mean parameters µ and predictor correlations ρ at sample proportions of 1% and 10%
of the total sample size. Panel A shows results for the Poisson distribution, while Panel B shows results for the
Gamma distribution.

As shown in Table 2, our optimisation-based starting value solution could significantly improve

the convergence for Poisson and Gamma GLMs, especially for R’s glm2; similar improvements

are observed in MATLAB’s fitglm and Python’s statsmodels.GLM. These findings indicate

that our method produces stable and feasible starting values that are always “no worse” than

the existing bespoke solutions. Similar results are shown in Appendix D for second Data

Generation Process (DGP2) that is described in Appendix C.
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5. Simulation study

This section presents a series of simulation experiments designed to evaluate the performance

of several GLM estimation methods. In our study, we compare the standard IRLS method –

as given in R’s package glm2 – with our IRLS method for which the WLS step is replaced by

the four previously-mentioned shrinkage approaches (SR, GSR, St, and DSh). Note that all

four shrinkage-based GLMs proposed in this paper are implemented in our new R package,

savvyGLM 4. In Section 5.1, we describe the design of these experiments and the performance

metrics used. Then our evaluation focuses on two key aspects: i) the reduction in the L2 error

between the “true” and estimated regression coefficients in Section 5.2, and ii) computational

efficiency as measured by the number of iterations required for convergence in Section 5.3.

5.1. Simulation Design and Performance Metrics

Synthetic datasets of size n = 500 are generated under various configurations. The simulations

vary two main factors: the correlation coefficient ρ among predictors, with values -0.75, -0.5,

0, 0.5, and 0.75; and the predictor-to-sample size ratio, with p/n set at 1%, 10%, 25%, and

50%. For each combination, 250 independent replications were performed. The GLM models

considered include LR for both balanced and imbalanced datasets, as well as Poisson and

Gamma regression models, each implemented with both sqrt and log LFs. Further details on

the IRLS algorithm and the DGP1 are provided in Appendix B and Appendix C, respectively.

The estimation accuracy is quantified by the Mean L2 Error (ML2), defined as the average

Euclidean distance between the estimated and true regression coefficient vectors over the N

replications:

ML2(model) =
1

N

N∑
k=1

L2

(
β̂model
k

)
, where L2

(
β̂model
k

)
=

√√√√ p∑
j=1

(
β̂model
k,j − βtrue

k,j

)2
.

Here, βtrue
k,j is the true jth regression coefficient for the kth dataset, and β̂model

k,j is the corre-

sponding estimated coefficient. To facilitate comparison, we compute the Relative Mean L2

Error (RML2) of each model relative to the benchmark (glm.fit2 IRLS implementation) as

RML2 =
ML2

(
benchmark

)
−ML2

(
model

)
ML2

(
benchmark

) .

A positive RML2 indicates an improvement over the benchmark. Table 3 summarises the true

response distributions and predictor structures used in the simulations under different LFs.

5.2. Analysis of Estimation Accuracy

The estimation accuracy of the proposed shrinkage approaches (SR, GSR, St, and DSh) was

evaluated against the benchmark glm2 by comparing their L2 errors under various statistical

4Available at: https://github.com/Ziwei-ChenChen/savvyGLM
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Table 3: True response distribution and predictors used in GLM with different LFs.

Model LF True Response Predictor Used in GLM

LR logit Yi ∼ Binomial
(
1, 1/(1+e−ηi )

)
h(ηi) = 1/(1+e−ηi )

PoR sqrt Yi ∼ Poisson(η2i ) h(ηi) = η2i
PoR log Yi ∼ Poisson(eηi ) h(ηi) = eηi

GaR sqrt Yi ∼ Gamma(η2i , 1) h(ηi) = η2i
GaR log Yi ∼ Gamma (eηi , 1) h(ηi) = eηi

Notes: This table shows the true response distributions and the predictors used in the GLM models with different
LFs. The first column gives the model type (LR, PoR, and GaR). The second column lists the LF used. The
third column shows the true response distribution used in the simulations, and the fourth column shows the
predictor function used in the GLM. Data are generated according to the specified response distribution and the
corresponding LF is applied for model fitting.

scenarios. Figures 1 and 2 show the frequency with which each model achieved the lowest L2

error over 250 replications, while Tables 4–6 present the corresponding RML2 values.

For LR, the results in Figure 1 and Table 4 indicate that the shrinkage-based models generally

have lower L2 errors than glm2, especially when the predictor-to-sample size ratio p/n is low

(e.g., 1%). As p/n increases, the benefits become smaller and the performance of our methods

becomes similar to that of glm2. Under balanced data, our methods handle strong negative

correlations (ρ < 0) well, but for imbalanced data the results depend on ρ and tend to improve

when ρ > 0. In some cases, GSR and SR achieve the lowest L2 error most frequently, although

the overall gain may be small or even negative when a few replications perform poorly.

For Poisson and Gamma GLMs with the sqrt LF shown in Figures 2a, 2b and Table 5, our

shrinkage-based models generally achieve lower L2 errors than glm2. In these settings, the St

or DSh models often show larger error reductions and are the best performers more frequently,

especially at higher p/n ratios and when ρ is strongly negative. The SR usually performs sim-

ilarly to glm2, while GSR shows moderate improvements by yielding positive RML2 errors.

Figures 2c, 2d and Table 6 present results using the log LF. In these cases, GSR or St consis-

tently produce the highest improvements in relative mean L2 error and the lowest L2 errors,

particularly at higher p/n ratios (e.g., 50%). Although DSh may perform less well when p/n is

very small, it still shows positive improvements in most cases, while SR remains similar to glm2.

Overall, the log LF appears to offer greater benefits than the sqrt LF, with these gains increasing

as the correlation rho becomes more positive. Moreover, under the sqrt LF, the Gamma model

benefits more from shrinkage than the Poisson model. In summary, our shrinkage-based GLMs

generally outperform or are at least comparable to glm2, although the size of improvement de-

pends on the distribution, LFs, and correlation structure. Among the proposed methods, the St

stands out as the most consistently effective, especially at high p/n ratios. Table 7 summarises

the overall trends in this section under different settings.

5.3. Analysis of Computational Efficiency

The computational efficiency of the models was evaluated by comparing the number of iterations

required to achieve convergence. Figures 3 and 4 provide a visual representation of the iteration

counts, which highlight how often each model reached convergence with the minimum number

of iterations across 250 replications for each scenario.

15



GSR
St

DSh
SR

GLM2

GSR
StSRDSh

GLM2

GSR

SR
StGLM2DSh

GSR

SR
StDShGLM2

GSR
St

SRGLM2DSh

GSR
DShStSR
GLM

2

GSR

StSR
DS
h

GL
M2

SR GS
R DS

h St
GL
M2

St
GS

R
DS

h SR
GL

M2
St

DS
h GS

R SR
GL

M
2

GSR
DSh
GLM2
SR
St

GSR

SR
St
GLM2
DSh

SR

GSR

GLM2

DSh
St

GSR

SR
DSh
GLM2
St

GSR

SR
DSh

GLM2
St

GSR
DShGLM2SRSt

GSR

DShGLM
2SRSt

GS
R

DS
hSt

SRGL
M2

St

DS
h

SRGL
M2

GS
R

StDS
h

SRGS
R

GL
M
2

p/n=1%

p/n=10%
p/n=25%

p/n=50%

n=500, N=250, n(Y=0)=5%n, L2 Error for LR
rho -0.75
rho -0.5
rho 0
rho 0.5
rho 0.75

(a) LR with Imbalanced data (n(Y = 0) = 5%n)
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(c) LR with Balanced data (n(Y = 0) = 50%n)

Figure 1: Comparison of L2 errors for the LR model. Top row: models with imbalanced data.
Bottom row: models with balanced data. Longer bars indicate better performance.

For LR, Figure 3 indicates that the SR and GSR models perform similarly to the benchmark

glm2, with no notable difference in iteration counts. In contrast, the DSh and St models gen-

erally require more iterations than glm2, regardless of whether the data are balanced or imbal-

anced. This suggests that for LR, our proposed methods do not provide a clear computational

advantage and may even converge more slowly in some cases.

In contrast, for Poisson and Gamma GLMs with the sqrt LF, Figures 4a and 4b demonstrate

that the St or DSh models generally converge more quickly than glm2, requiring fewer iterations

across most tested p/n ratios. The SR also shows improved efficiency in scenarios with smaller

p/n ratios (e.g., 1%) and positive ρ values although this advantage is less consistent. For
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Table 4: Relative Mean L2 Errors For LR

Extreme Rare Event Case:
n(Y =0)
n(Y =1)

= 5
95

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR 1.48% 0.08% 0.01% 0.00% 0.73% 0.14% 0.01% 0.00% 1.62% 0.88% 0.04% 0.00%

GSR -0.74% 2.15% 0.26% 0.07% 3.43% 1.72% 0.24% 0.08% 4.71% 0.80% 0.02% 0.04%

St 0.97% 0.58% 0.01% 0.00% 2.47% 0.31% -0.05% 0.01% 2.28% 0.30% -0.05% 0.02%

DSh 3.25% -1.41% -0.09% 0.00% 1.78% -1.32% -0.15% 0.01% 1.47% -0.92% -0.21% 0.00%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 1.77% 0.03% 0.03% 0.00% 1.07% -0.01% 0.02% 0.00%

GSR 5.10% 0.26% 0.09% -0.07% 4.02% -1.05% 0.26% -0.08%

St 3.12% 0.62% -0.09% 0.04% 3.65% 0.14% -0.17% 0.07%

DSh 1.71% -0.15% -0.26% -0.01% 1.26% -0.04% -0.36% 0.05%

Rare Event Case:
n(Y =0)
n(Y =1)

= 10
90

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR 0.96% 0.16% 0.01% 0.00% 1.08% 0.22% 0.01% 0.00% 3.02% 0.01% 0.04% 0.00%

GSR 3.18% 2.89% 0.33% 0.09% 3.78% 2.20% 0.28% 0.09% 5.64% 0.03% -0.07% 0.01%

St 3.03% 0.73% 0.04% 0.01% 2.51% 0.30% 0.08% 0.01% 2.24% -0.06% -0.09% 0.05%

DSh 1.65% -2.74% -0.05% 0.01% 1.71% -1.69% -0.06% 0.01% 1.52% -0.99% -0.24% 0.01%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 3.98% -0.18% 0.03% 0.00% 1.99% -0.07% 0.02% 0.00%

GSR 4.81% -1.31% 0.14% -0.04% 3.90% -1.59% 0.35% -0.07%

St 2.60% 0.05% -0.14% 0.09% 2.94% -0.10% -0.23% 0.14%

DSh 1.43% -0.08% -0.26% 0.07% 0.91% -0.13% -0.40% 0.12%

Balanced:
n(Y =0)
n(Y =1)

= 50
50

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR 7.55% 0.67% 0.02% 0.00% 6.77% 0.53% 0.03% 0.00% 4.16% -0.21% 0.03% 0.00%

GSR -1.64% 4.16% 0.50% 0.10% -0.90% 0.46% 0.40% 0.08% 4.78% -1.06% 0.57% 0.02%

St 2.55% 0.08% 0.01% -0.01% 2.46% 1.18% -0.06% 0.00% 1.36% 0.31% 0.31% -0.01%

DSh 0.56% -2.83% 0.19% 0.08% 0.92% -0.84% 0.09% 0.09% -1.16% 0.11% 0.42% 0.03%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 3.74% 0.02% 0.00% 0.00% 2.27% -0.01% 0.00% 0.00%

GSR 3.12% -0.90% 1.60% 0.12% 2.15% -0.74% 3.38% 0.21%

St 0.62% 0.26% 0.49% 0.03% 0.46% 0.14% 1.09% 0.06%

DSh -2.17% 0.14% 0.78% 0.12% -2.64% 0.04% 1.91% 0.29%

Notes: This table shows the relative Mean L2 errors for the LR using the logit LF. The errors are given
as percentages relative to the benchmark glm2. Negative values indicate worse performance than glm2, while
positive values indicate better performance. Bold numbers mark the best performance for each setting. Results
are reported for different predictor-to-sample size ratios p/n and correlation values ρ. All models used the same
starting values, which were computed using an optimisation-based procedure provided in Section 4.2. Note that
all models converged in all 250 replications with n = 500.

the log LF, Figure 4c and 4d show that both Poisson and Gamma GLMs exhibit noticeable

improvements in convergence efficiency with the St estimator, which consistently requires fewer

iterations than glm2 across all p/n ratios. The DSh and GSR models also display competitive
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(c) PoR with log LF
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Figure 2: Comparison of L2 errors for PoR and GaR using two LFs. Top row: models with the
sqrt LF. Bottom row: models with the log LF. Longer bars indicate better performance.

performance in several scenarios, which further supports their efficiency under this setting.

However, the SR aligns closely with glm2 in terms of iteration counts, indicating no significant

computational gains in this case. Notably, the St demonstrates particular strength for the

Gamma GLM with the log LF, which achieves reduced iteration counts in most scenarios.

Overall, these results suggest that the St and DSh models consistently converge faster than

glm2 for Poisson and Gamma GLMs, while the SR and GSR models offer mixed improvements

that depend on the predictor-to-sample ratio and the chosen LF.
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Table 5: Relative Mean L2 Errors For PoR and GaR with sqrt LF

Possion Distribution

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR -4.69% -0.29% 0.19% 0.26% -3.11% -0.40% 0.07% 0.18% 4.20% 0.02% 0.19% 0.11%

GSR 0.45% 3.91% 9.05% 13.79% 0.23% 2.33% 5.92% 9.93% 0.22% 1.67% 3.70% 5.96%

St 0.72% 13.46% 18.35% 6.46% 0.44% 5.84% 13.32% 6.84% 0.21% 2.41% 6.16% 5.26%

DSh 0.03% 3.08% 8.24% 10.77% -0.30% 1.17% 3.32% 8.04% -0.43% 0.41% 1.14% 4.54%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR -0.32% 0.33% 0.09% 0.00% -2.33% 0.17% 0.02% 0.01%

GSR -0.12% 0.77% 2.06% 3.75% -0.09% 0.49% 1.49% 3.18%

St 0.11% 1.97% 4.60% 2.55% 0.01% 2.12% 3.10% 1.62%

DSh -0.34% 0.41% 1.13% 3.08% -0.36% 0.42% 1.41% 2.57%

Gamma Distribution

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR -0.17% -0.03% -0.04% 0.36% 0.14% -0.01% -0.11% -0.24% 0.66% 0.04% 0.14% 0.15%

GSR 0.62% 8.47% 13.97% 16.21% 0.41% 4.39% 6.17% 9.78% 0.27% 2.22% 2.26% 4.57%

St 1.14% 8.00% 16.70% 22.71% 0.56% 3.80% 5.07% 8.73% 0.27% 1.70% 2.75% 4.96%

DSh 0.31% 8.60% 22.44% 34.52% 0.13% 4.43% 13.02% 24.36% 0.01% 2.15% 7.21% 14.22%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 1.34% 0.01% -0.05% -0.14% -1.59% 0.02% 0.07% 0.10%

GSR -0.02% 1.56% 2.70% 4.91% -0.17% 1.49% 3.32% 6.33%

St 0.16% 1.36% 2.04% 4.12% 0.01% 1.55% 4.39% 8.02%

DSh -0.25% 1.58% 5.41% 11.75% -0.42% 1.42% 5.37% 12.01%

Notes: This table shows the relative Mean L2 errors for the PoR and GaR using the sqrt LF. The errors are
given as percentages relative to the benchmark glm2. Negative values indicate worse performance than glm2,
while positive values indicate better performance. Bold numbers mark the best performance for each setting.
Results are reported for different predictor-to-sample size ratios p/n and correlation values ρ. All models used
the same starting values, which were computed using an optimisation-based procedure provided in Section 4.2.
Note that not all models converged in all N = 250 replications with n = 500; see Section Appendix D for more
details on convergence.

6. Real Data Analysis

In this section, we assess the out-of-sample performance of our shrinkage-based approaches (SR,

GSR, St, and DSh) compared to the benchmark glm2. The evaluation is carried out on two

types of datasets: i) the Crabs and Heart datasets from the glm2 package and ii) a U.S. flood

insurance dataset. In both studies, we perform N = 110 replications. In each replication,

the data are randomly split into 70% training and 30% testing sets. Prediction performance

is measured by the MSE and reported as MSE ratio = MSEglm2/MSEmodel. A ratio greater

than one indicates that our shrinkage-based GLMs yield a lower MSE than glm2. For both

studies, after discarding the five highest and five lowest ratios, the MSE ratio and the count of

replications where the ratio exceeds one are computed from the remaining 100 replications. The

performance is reported for both log and the sqrt LFs. Preprocessing details for the Crabs and

Heart datasets can be found in the documentation of the glm2 package, while the preprocessing

of the flood insurance dataset is described in Appendix E.
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Table 6: Relative Mean L2 Errors For PoR and GaR with log LF

Poisson Distribution

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR 19.39% 2.16% 1.08% 0.56% 14.01% 2.19% 0.78% 0.55% 8.63% 1.28% 0.64% 0.34%

GSR 33.17% 31.17% 31.00% 30.24% 27.28% 27.82% 29.37% 29.35% 2.33% 10.26% 20.96% 26.89%

St 14.53% 12.91% 24.81% 37.89% 9.00% 18.93% 30.22% 40.47% 3.92% 16.67% 30.31% 41.27%

DSh 1.67% 8.34% 19.86% 27.81% -8.08% 8.85% 21.77% 27.79% -12.42% 5.58% 21.24% 28.10%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 3.96% 0.22% 0.12% 0.07% 1.35% 0.02% 0.03% 0.02%

GSR 5.27% 16.23% 24.25% 28.66% 7.53% 21.87% 27.81% 29.98%

St 5.74% 22.87% 35.37% 43.66% 11.02% 31.38% 40.98% 45.71%

DSh -8.30% 12.01% 24.63% 29.07% 1.39% 20.28% 27.99% 30.69%

Gamma Distribution

ρ = -0.75 ρ = -0.5 ρ = 0

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

SR 20.70% 2.24% 0.98% 0.51% 17.33% 1.73% 0.92% 0.53% 10.92% 1.21% 0.53% 0.20%

GSR 29.99% 32.63% 34.92% 39.55% 23.02% 30.52% 33.36% 37.18% 3.50% 16.63% 26.31% 33.35%

St 18.42% 48.64% 58.29% 65.34% 11.15% 35.69% 47.62% 56.74% 6.33% 24.90% 37.64% 47.79%

DSh 5.99% 36.99% 44.72% 50.54% -5.60% 23.24% 34.70% 41.90% -10.17% 12.27% 26.51% 34.51%

ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50%

SR 4.65% 0.19% 0.09% 0.04% 1.69% 0.03% 0.00% 0.01%

GSR 3.13% 18.53% 27.37% 32.90% 7.03% 23.52% 30.22% 34.09%

St 3.38% 26.61% 39.42% 47.68% 10.60% 34.25% 44.11% 49.79%

DSh -10.54% 14.30% 27.31% 33.29% 1.57% 21.82% 30.01% 33.81%

Notes: This table shows the relative Mean L2 errors for the PoR and GaR using the log LF. The errors are given
as percentages relative to the benchmark glm2. Negative values indicate worse performance than glm2, while
positive values indicate better performance. Bold numbers mark the best performance for each setting. Results
are reported for different predictor-to-sample size ratios p/n and correlation values ρ. All models used the same
starting values, which were computed using an optimisation-based procedure provided in Section 4.2. The true
regression parameters (detailed in Appendix C) ensure that the expected response remains within a reasonable
range, preventing the generation of overly large Y values that could cause IRLS failures. Note that all models
converged in all N = 250 replications with n = 500.

Table 7: Summary of the Analysis of Estimation Accuracy

Model and LF Key Findings Overall Best

LR with logit LF SR, GSR, and St perform at least as well as glm2 GSR

PoR with sqrt LF GSR, St, and DSh outperform glm2 St

GaR with sqrt LF GSR, St, and DSh beat glm2 DSh

PoR with log LF All shrinkage methods improve on glm2 St

GaR with log LF All estimators outperform glm2 St

Notes: The results summarise the main trends observed in the simulation studies about estimation accuracy.
Overall, the proposed shrinkage GLM methods either outperform or match the benchmark glm2. The improve-
ment depends on the predictor-to-sample size ratio p/n and the correlation parameter ρ.
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Figure 3: Comparison of iterations for the LR model. Top row: models with imbalanced data.
Bottom row: models with balanced data. Longer bars indicate better performance.

6.1. Crabs and Heart Datasets from glm2

Table 8 compares the performance of Poisson GLMs on the Crabs and Heart datasets for both

LFs. Panels A and B show the model counts and MSE ratio statistics, respectively, under the log

LF. In Panel A, the row labelled best reports how many times each model achieved the lowest

MSE, while the row labelled win glm2 shows how many replications each shrinkage model

outperformed glm2. For example, on the Crabs dataset, GSR achieved the lowest MSE in 28

replications, and on the Heart dataset, DSh topped the chart in 52 replications. By contrast,

glm2 was best in only 10 replications for both datasets. Panel B shows the corresponding MSE

ratios. The DSh model achieves an average ratio of 1.0444 on the Heart dataset, while GSR
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Figure 4: Comparison of iterations for PoR and GaR using two LFs. Top row: models with the
sqrt LF. Bottom row: models with the log LF. Longer bars indicate better performance.

attains an average ratio of 1.013 on the Crabs dataset. Both ratios exceed one, which indicates

an improvement over glm2.

Panels C and D show results for the sqrt LF. In Panel C, DSh leads in 35 replications on the

Crabs dataset compared to 26 for glm2, while SR leads in 27 replications on the Heart dataset

compared to 20 for glm2. Panel D shows the MSE ratio statistics, where DSh reaches an average

ratio of 1.0064 on the Crabs dataset, and St achieves 1.0211 on the Heart dataset. Overall, these

findings suggest that our shrinkage-based GLMs provide modest but consistent improvements

over glm2, depending on both the dataset and the chosen LF.
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Table 8: Poisson GLM for Crabs and Heart data

Poisson GLM with log LF

Panel A: Model Counts

Crabs dataset Heart dataset

glm2 SR GSR St DSh glm2 SR GSR St DSh

best 10 14 35 23 28 10 20 16 12 52

win glm2 - 57 74 38 56 - 40 39 54 65

Panel B: MSE Ratios

Average - 1.0030 1.0131 0.9791 1.0128 - 0.9810 0.9887 1.0002 1.0444

25% quantile - 0.9974 0.9982 0.9088 0.9632 - 0.8959 0.9298 0.9310 0.9334

50% quantile - 1.0010 1.0112 0.9573 1.0089 - 0.9686 0.9800 1.0173 1.0768

75% quantile - 1.0080 1.0285 1.0520 1.0577 - 1.0774 1.0331 1.0550 1.1949

Poisson GLM with sqrt LF

Panel C: Model Counts

Crabs dataset Heart dataset

glm2 SR GSR St DSh glm2 SR GSR St DSh

best 26 17 15 17 35 20 27 15 24 23

win glm2 - 22 36 32 48 - 58 36 39 44

Panel D: MSE Ratios

Average - 0.9663 0.9901 0.9704 1.0064 - 1.0086 0.9818 1.0211 0.9775

25% quantile - 0.9293 0.9782 0.9031 0.9662 - 0.9954 0.9421 0.9100 0.8136

50% quantile - 0.9660 0.9915 0.9550 0.9971 - 1.0039 0.9900 0.9563 0.9355

75% quantile - 0.9979 1.0064 1.0343 1.0483 - 1.0224 1.0237 1.1613 1.1617

Notes: This table shows the performance of Poisson GLM on the Crabs and Heart datasets using both log
and sqrt LFs. In Panels A and C, the row labelled best gives the number of replications where each model
achieved the lowest MSE, and the row labelled win glm2 shows the number of replications where the model
beat the benchmark glm2, which are computed from the middle 100 replications after removing the five highest
and five lowest ratios based on N = 110 replications. Panels B and D present the mean and the 25%, 50%,
and 75% quantiles of the MSE ratio. Bold numbers mark the best performance compared to glm2; glm2 is the
reference model and is marked with a dash. All models used the same starting values from the optimisation-based
procedure provided in Section 4.2, with a maximum of 250 iterations and a tolerance of 10−6.

6.2. U.S. Flood Insurance Dataset

This section examines the performance of Gamma GLMs on a U.S. flood insurance dataset

obtained from “OpenFEMA”5. The dataset comprises claims from the National Flood Insurance

Programme (NFIP) across 50 U.S. states. For our analysis, we focus on claims from Florida

(FL), Texas (TX), and Louisiana (LA), states with the highest number of flood-related claims.

The dependent variable, ratioCoverage, is defined as the ratio of amountPaidOnBuildingClaim

to totalBuildingInsuranceCoverage and is capped at the 99th percentile to reduce the effect

of extreme values. The dataset includes 15 covariates that describe financial, building, and

geographic features; details can be found in Appendix E. Data from 2014 to 2023 are used

separately for out-of-sample performance analysis. For each year and state, we calculate the

average MSE ratio (AMR) and the count (CNT) of repetitions where the ratio exceeds one.

Tables 9 and 10 summarise the performance of Gamma GLMs using the sqrt and log LFs,

respectively. For the sqrt LF, the overall count summary in Panel A shows that the DSh con-

5The dataset is available at https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2.
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sistently achieves the highest win counts compared to glm2 across most of the 100 replications.

In many cases, the DSh is identified as the best overall model. The SR, GSR, and St models

also show modest improvements over glm2; in some years and states, the average MSE ratios

for SR and GSR models are close to or above one, indicating competitive performance even

though their overall win counts are generally lower than those of DSh. In contrast, for log OF,

the performance difference is more obvious. The overall results indicate that the St leads with

the highest win counts and best overall performance in most settings. The SR and GSR models

also provide moderate improvements that vary by state and year, yet they still outperform glm2

on average. Besides, the DSh performs worse under log LF than under sqrt LF, with fewer but

still respectable wins compared to the St. Overall, these results indicate that the St is the most

effective method when using log LF, while the DSh is most competitive with sqrt LF.

Extreme flooding events recorded by the National Centre for Environmental Information

(NCEI)6 provide additional context for the results presented. Several major disasters impacted

the study regions during the analysis period (2014-2023). In Texas, extreme rainfall and flood-

ing events in 2015, 2016, 2017, and 2019 caused billions of dollars in losses. The 2016 Louisiana

flood, a historic event, destroyed over 50,000 homes, while Hurricanes Laura and Delta in 2021

brought widespread damage to homes across Texas and Louisiana. In Florida, Hurricane Ian

in 2022 caused significant damage, and historical rainfall with flash flooding occurred in 2023.

These events emphasise the importance of robust models in predicting flood-related losses.

For the log LF, at least one of our four shrinkage-based GLMs outperforms the benchmark

glm2 in every year and state. In particular, the St consistently delivers superior predictions

during extreme events. For the sqrt LF, the performance varies by event; while our shrinkage

models generally provide predictions comparable to or better than glm2 in most years, the

AMR falls below one for the 2019 extreme events in Texas and Louisiana. Nevertheless, the

DSh remains a robust choice under other extreme conditions. Overall, Tables 9 and 10 indicate

that the proposed shrinkage-based GLMs, especially the St and DSh models, achieve higher

estimation accuracy than the standard glm2 approach. Overall, the analysis of the real data

shows that our non-parametric Stein-type shrinkage GLMs consistently produce lower MSEs

than the benchmark GLM method across different LFs and states. These results indicate that

the proposed methods may provide more reliable predictions for this flood insurance application.

7. Conclusions

The first two contributions of this paper are related to the introduction of novel shrinkage solu-

tions to GLM modelling. We have proposed new IRLS implementations for GLM modelling by

integrating several non-parametric shrinkage estimators into the IRLS algorithm. Our solutions

are shown to reduce the estimation error without increasing the computational time. The third

contribution of this paper is that we have introduced an optimisation-based approach to find

enhanced starting values for GLM deployments. Such a solution helps overcome the common

issues with the traditional IRLS method, such as its sensitivity to starting values and possible

6Available at: https://www.ncei.noaa.gov/access/billions/
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Table 9: Gamma GLM with sqrt LF for Flood data

Year n
AMR CNT

SR GSR St DSh SR GSR St DSh

Florida (FL)

2014 2,352 0.9996 0.9951 0.8930 1.0626 22 0 0 72

2015 1,080 1.0014 1.0058 0.9704 1.0456 64 51 14 81

2016 5,044 0.9986 0.9985 0.9932 1.0026 0 1 0 59

2017 16,216 0.9998 0.9997 0.9950 1.0043 17 12 0 90

2018 2,864 1.0199 0.9988 1.0067 1.4336 78 58 79 100

2019 492 0.9999 0.9867 0.9306 1.0526 47 8 0 82

2020 6,322 0.9996 0.9991 0.9918 0.9848 24 6 0 0

2021 384 1.0251 1.1188 1.1889 2.4489 92 96 100 100

2022 31,061 0.9980 0.9998 0.9998 1.0009 3 30 26 68

2023 7,754 0.9955 1.0098 1.0187 1.1426 9 55 100 100

Texas (TX)

2014 654 1.0003 0.9893 0.7971 1.1199 56 1 0 86

2015 8,972 0.9995 0.9990 0.9614 1.0044 25 0 0 54

2016 10,508 0.9992 1.0008 0.9977 0.9842 7 77 0 5

2017 61,211 0.9996 0.9999 0.9993 1.0023 33 43 17 78

2018 2,091 0.9886 0.9978 0.9953 0.9839 0 29 0 22

2019 8,998 0.9995 0.9998 0.9970 0.9866 10 39 0 0

2020 1,191 1.0070 0.9990 0.9965 1.0561 32 31 22 49

2021 1,237 0.9983 1.0037 1.0001 1.0036 10 72 48 57

2022 346 1.0037 1.1391 1.0293 1.4331 64 100 82 82

2023 285 1.0020 1.1167 2.0324 3.1536 71 100 100 100

Louisiana (LA)

2014 486 0.9972 0.9830 0.9178 1.1090 0 0 0 75

2015 488 0.9939 0.9817 0.9017 1.0403 0 9 0 62

2016 26,704 0.9997 1.0001 0.9982 1.0001 13 67 0 57

2017 1,741 1.0014 1.0061 0.9961 1.0094 70 77 20 43

2018 346 1.0049 1.0551 1.0112 1.0871 60 79 57 62

2019 2,031 0.9983 0.9997 0.9931 0.9781 6 46 0 11

2020 2,737 1.0004 0.9988 0.9913 0.9824 58 23 0 24

2021 11,615 0.9998 1.0001 0.9977 0.9989 37 55 0 36

2022 123 1.0293 1.0541 1.0305 1.0231 78 53 67 46

2023 109 1.0000 0.9628 0.6973 0.9648 48 22 0 40

Panel A: Count Summary (FL, TX, LA)

glm2 SR GSR St DSh

2014-2023 win glm2 - 12 12 8 22

2014-2023 best 5 1 5 0 19

Notes: This table shows the AMR and the CNT of replications with an MSE ratio greater than one, comparing
Gamma GLM with the sqrt LF between the benchmark glm2 and our proposed models (SR, GSR, St, and DSh).
For Florida 2015, out of 110 replications, all models converged 108 times; in other settings, all models converged in
all 110 replications. After excluding the five highest and five lowest ratios, the AMR and CNT are calculated over
the remaining 100 replications. Bold numbers in columns 3–6 indicate the model with the largest improvement
in AMR for each setting, and bold numbers in columns 7–10 show the model with the highest CNT. Panel A at
the bottom summarises the overall count of replications in which each model outperformed glm2 and identifies
the best overall model. All models used the same starting values from the optimisation-based procedure provided
in Section 4.2, with a maximum of 250 iterations and a tolerance of 10−6.

slow convergence.
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Table 10: Gamma GLM with log LF for Flood data

Year n
AMR CNT

SR GSR St DSh SR GSR St DSh

Florida (FL)

2014 2,352 1.0003 1.0119 1.0120 0.7049 53 100 100 0

2015 1,080 0.9999 0.9927 1.0818 0.5939 42 43 73 5

2016 5,044 0.9991 1.0023 1.2121 0.6306 31 59 90 2

2017 16,216 1.0004 1.0011 1.0498 1.0125 69 49 100 81

2018 2,864 1.0038 1.0352 1.9156 1.3277 79 74 100 100

2019 492 1.0002 1.1060 0.7845 0.9167 48 82 23 37

2020 6,322 0.9994 1.0057 1.1855 0.8866 21 86 100 11

2021 384 1.0015 1.0318 3.9377 11.8067 53 57 100 98

2022 31,061 0.9999 1.0017 1.2538 1.0739 27 36 100 100

2023 7,754 1.0000 1.0130 1.1238 1.1901 52 100 100 100

Texas (TX)

2014 654 1.0004 1.0208 1.0111 1.0700 60 87 62 52

2015 8,972 1.0000 1.0041 1.0038 0.8629 47 93 100 0

2016 10,508 1.0000 0.9982 1.5168 0.8082 58 36 100 0

2017 61,211 1.0002 0.9977 1.0438 0.9506 69 2 100 0

2018 2,091 1.0011 0.9999 1.1147 0.9720 57 52 100 43

2019 8,998 1.0001 1.0054 1.0900 0.9244 81 93 100 11

2020 1,191 1.0008 1.1014 1.7522 1.6257 54 91 100 100

2021 1,237 0.9996 1.0425 1.4041 2.9765 47 53 100 100

2022 346 1.0104 1.2986 8.9405 12.7265 81 91 100 100

2023 285 1.0041 2.2491 57.4642 35.8121 50 100 92 96

Louisiana (LA)

2014 486 1.0008 0.9882 1.0020 0.9573 73 41 58 50

2015 488 1.0157 1.1516 1.6037 1.1029 100 88 100 55

2016 26,704 1.0003 0.9961 1.0789 0.9788 75 21 100 30

2017 1,741 1.0000 1.0185 1.6185 0.8984 47 65 100 18

2018 346 1.0026 1.1247 1.6582 1.3682 74 74 84 55

2019 2,031 1.0025 1.0318 1.1489 1.0099 75 82 100 34

2020 2,737 1.0002 0.9886 1.2053 0.9996 66 4 100 48

2021 11,615 1.0014 1.0078 1.3132 1.1159 99 92 100 100

2022 123 1.0091 1.2438 1.8381 1.7034 74 60 84 62

2023 109 1.0018 1.1547 0.8654 0.4590 75 69 32 5

Panel A: Count Summary (FL, TX, LA)

glm2 SR GSR St DSh

2014-2023 win glm2 - 25 23 28 15

2014-2023 best 0 0 3 22 5

Notes: This table shows the AMR and the CNT of replications with an MSE ratio greater than one, comparing
Gamma GLM with the log LF between the benchmark glm2 and our proposed models (SR, GSR, St, and DSh).
Every model converged in all 110 replications across all settings. After excluding the five highest and five lowest
ratios, the AMR and CNT are calculated over the remaining 100 replications. Bold numbers in columns 3–6
indicate the model with the largest improvement in AMR for each setting, and bold numbers in columns 7–10
show the model with the highest CNT. Panel A at the bottom summarises the overall count of replications in
which each model outperformed glm2 and identifies the best overall model. All models used the same starting
values from the optimisation-based procedure provided in Section 4.2, with a maximum of 250 iterations and a
tolerance of 10−6.

comments and insightful discussions, which significantly contributed to refining this work.

The authors would like to express their sincere gratitude to Professor Rosalba Radice and Dr

Dimitrina Dimitrova for their valuable guidance, thoughtful suggestions, and encouragement

throughout the development of this paper.

26



References

Albert, A. and Anderson, J. A. (1984). On the existence of maximum likelihood estimates in

Logistic regression models. Biometrika, 71(1):1–10.

Asimit, V., Badescu, A., Chen, Z., and Zhou, F. (2025a). Efficient and proper generalised linear

models with power link functions. Insurance: Mathematics and Economics, 122(May):91–118.

Asimit, V., Cidota, M. A., Chen, Z., and Asimit, J. (2025b). Slab and shrinkage linear regression

estimation. https://openaccess.city.ac.uk/id/eprint/35005/.

Baranchik, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal

distribution. The Annals of Mathematical Statistics, 41(2):642–645.

Bodnar, T., Gupta, A. K., and Parolya, N. (2016). Direct shrinkage estimation of large di-

mensional precision matrix. Journal of Multivariate Analysis, 146:223–236. Special Issue on

Statistical Models and Methods for High or Infinite Dimensional Spaces.

Bodnar, T., Okhrin, O., and Parolya, N. (2019). Optimal shrinkage estimator for high-

dimensional mean vector. Journal of Multivariate Analysis, 170:63–79. Special Issue on

Functional Data Analysis and Related Topics.

Boyle, P., Flowerdew, R., and Williams, A. (1997). Evaluating the goodness of fit in models of

sparse medical data: a simulation approach. International journal of epidemiology, 26(3):651–

656.

Chatla, S. B. and Shmueli, G. (2018). Efficient estimation of Com–Poisson regression and a

generalized additive model. Computational Statistics & Data Analysis, 121:71–88.

Chen, S. and Donoho, D. (1994). Basis pursuit. In Proceedings of 1994 28th Asilomar Conference

on Signals, Systems and Computers, volume 1, pages 41–44. IEEE.

Chételat, D. and Wells, M. T. (2012). Improved multivariate normal mean estimation with

unknown covariance when p is greater than n. The Annals of Statistics, 40(6):3137 – 3160.

Debón, A., Montes, F., and Puig, F. (2008). Modelling and forecasting mortality in Spain.

European Journal of Operational Research, 189(3):624–637.
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Appendix A. Summary of Supplementary Material

This supplementary material complements our paper by providing additional technical details

about the topics discussed in the paper, a full description of the data generation process and

how the real data have been pre-processed, but also further empirical evidence that supplements

the evidence provided in the main paper. That is, Appendix B outlines the standard IRLS,

Appendix C explains the data generation process used to produce the synthetic data used in this
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paper, while Appendix D further evidence about the lack of convergence in GLM deployment

Finally, Appendix E describes the flood insurance data, which are the real data used in our

numerical experiments.

Appendix B. Fitting GLM with the IRLS Procedure

This section outlines the implementation of the IRLS algorithm for fitting GLMs. A succinct

description is provided and the unfamiliar reader may wish to find further details in the stan-

dard GLM literature (Wood, 2017) though our description is sufficient to understand the GLM

implementation we propose in this paper.

The starting point is maximising the log-likelihood in (2.3), which implies finding the corre-

sponding stationary points:

n∑
i=1

ωi(yi − µi)

V (µi)

∂µi

∂βj
= 0, for all j ∈ {0, . . . , p},

where ωi are some exogenous weights if available, otherwise, all are assumed to be equal to 1;

note that µi = h(ηi) and ηi = x⊤
i β, while V (µi) is the variance function. These equations are

equivalent to minimising an WLS-like instance given by

S =

n∑
i=1

(yi − µi)
2

V (µi)
,

which is solved iteratively. At iteration k ≥ 0, the following WLS problem is solved

β̂(k+1) = argmin
β

∥∥∥√W(k)
(
z(k) −Xβ

)∥∥∥2 ,
where pseudodata z(k) and weight matrix W(k) are

z
(k)
i = η

(k)
i +

yi − µ
(k)
i

h′
(
η
(k)
i

) , W
(k)
ii =

(
h′
(
η
(k)
i

))2
V
(
µ
(k)
i

) for all j ∈ {1, . . . , n}, (B.1)

with µ
(k)
i = h(η

(k)
i ) and h′ being the derivative of the inverse LF.

In summary, the IRLS algorithm proceeds as follows:

1. Initialisation: Set starting values µ
(0)
i = yi and η

(0)
i = h−1(yi), adjusting if necessary

to ensure valid choices (e.g., µ
(0)
i > 0 for log LF). Compute z(0) and W(0) via (B.1), and

solve the initial WLS

β̂(0) =
(
X⊤W(0)X

)−1
X⊤W(0)z(0).

2. Iteration: For each iteration k ≥ 0,

(a) Update η
(k)
i = x⊤

i β̂
(k) and µ

(k)
i = h(η

(k)
i ), and compute z(k) and W(k) via (B.1).
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(b) Solve the WLS instance to update the parameters’ estimates

β̂(k+1) =
(
X⊤W(k)X

)−1
X⊤W(k)z(k).

(c) The iterative process terminates when the chosen convergence criterion is met. Note

that the default stopping criteria differ between the implementations in R, MAT-

LAB, and Python.

R (glm.fit2): The default convergence is based on the relative change in deviance:∣∣∣Dev(k+1) −Dev(k)
∣∣∣

0.1 +
∣∣∣Dev(k+1)

∣∣∣ < τ,

where τ (default, e.g., 10−8) is a small tolerance. Step-halving is applied if the

deviance increases.

MATLAB (fitglm): The default convergence check monitors the change in regres-

sion coefficients:

max
i

∣∣∣β(k+1)
i − β

(k)
i

∣∣∣ ≤ τ ×max

(√
ϵ, max

i

∣∣∣β(k)
i

∣∣∣) ,

where default τ is typically set to 10−6, and ϵ ≈ 2.2204× 10−16.

Python (statsmodels.GLM): The default convergence is determined by the absolute

change in deviance: ∣∣∣Dev(k+1) −Dev(k)
∣∣∣ ≤ τ,

with default τ is usually chosen to be 10−8.

Note that the variance functions V (µ) depends on the distributional assumptions; e.g., V (µ) =

µ(1 − µ) for LR, V (µ) = µ for Poisson GLM, and V (µ) = µ2 for Gamma GLM. The choice of

LF determines h−1 and h′, which are needed in deploying IRLS.

Appendix C. Data Generation Process

This section describes how data are generated in this paper. We use two variants, namely,

DGP1 and DGP2. The DGP2 setting is the same as DGP1 except that all coefficients are

made positive, i.e. the “true” model parameters are chosen as βDGP2
j = |βDGP1

j |. Therefore,

we describe only DGP1, which we do for the three GLM models (LR, Poisson, and Gamma)

and various LF choices. Specifically, we only consider the canonical LF for LR, which is the

logit LF, i.e., g(µ) = log
(
µ/(1− µ)

)
; its inverse LF is h(η) =

(
1 + e−η

)−1
. Further, we include

log LF g(µ) = log(µ) and square root LF g(µ) =
√
µ for Poisson and Gamma GLMs; their

corresponding inverse LFs are h(η) = eη and h(η) = η2, respectively, which are defined on the

entire real line as the linear predictor η. Note that the canonical LF for Poisson GLM is the

log LF, which is considered in our paper, but we do not include the canonical LF for Gamma

GLM which is improper; for details, see e.g. (Asimit et al., 2025a).
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We now provide the details about DGP1 for each LR, Poisson, and Gamma GLMs and clarify

the data generation corresponding to the chosen LF. Note that our implementations do not

question whether we choose the “right” LF, and thus, LF selection is not the purpose of our

analyses. Simply speaking, the “true” LF is used in the GLM deployment so that we evaluate

the estimation error purely from the IRLS’ perspective which is the fairest way. Establishing

that our IRLS solver is “better” than the standard IRLS solver gives us confidence to use our

solver for research questions such as LF selection, penalised GLM to reduce overfitting, optimal

subset from the covariates’ space, etc.

Step 1: Generate the covariate matrix X = {Xi,j}n×p
i=1,j=1 from a multivariate normal distri-

bution with mean zero, unit variances and structured correlation matrix Σ. The off-diagonal

elements of Σ are defined such that Cov(Xa,j , Xb,j) = ρ|a−b|, where −1 < ρ < 1 controls the

strength of dependence. This means that Σ is a Toeplitz matrix.

Step 2: Define the regression coefficients βDGP1
j for all j ∈ {0, . . . , p}:

(a) For LR with logit LF, and Poisson/Gamma GLMs with sqrt LF, we use alternating signs

and increasing magnitudes, i.e., 1,−1, 2,−2, . . ..

(b) For Poisson and Gamma GLMs with log LF, we use:

βDGP1
j = (−1)j · 0.1 · 0.95⌈j/2⌉, for all j ∈ {0, . . . , p},

to ensure the responses stay within reasonable ranges and avoid numerical issues during

IRLS procedures. Using setting (a) for these GLMs would make the response’s conditional

mean to explode numerically, which would be unfeasible synthetic data for any GLM

solver.

Step 3: For each i ∈ {0, . . . , n}, compute the linear predictor ηi = βDGP1
0 +

∑p
j=1 β

DGP1
j xi,j

and generate the response variable Yi as follows:

(a) For LR, generate Yi ∼ Binomial(1, (1 + e−η)−1). We first generate a large sample (e.g.,

5, 000 observations), and then select samples of 500 based on the desired proportions

between the two states (Y = 0 and Y = 1) so that the response variable is bal-

anced/imbalanced as desired.

(b) For Gamma GLM, generate Yi ∼ Gamma(µi, 1) where µi = η2i and µi = eηi for sqrt LF

and log LF, respectively.

(c) For Poisson GLM, generate Yi ∼ Poisson(µi) where µi = η2i and µi = eηi for sqrt LF and

log LF, respectively.

Appendix D. Simulation Convergence Failures in GLMs with sqrt LF

Table D.11 is complementary to Table 2 and reports the number of convergence failures for

Poisson and Gamma GLMs with a sqrt LF and DGP2 setup in Appendix C. Results are
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based on N = 100 replications with a sample size n = 500, under varying correlation values

ρ and covariate-to-sample size ratios p/n. We compare three software implementations – R,

Matlab, and Python – by using their default starting values (values outside parentheses)

and the proposed optimisation-based starting values (values inside parentheses) as explained in

Section 4.2.

We now discuss the results in Table 2. For Poisson GLM in Panel A, the convergence failures

mainly occur when the mean parameter µ = 0, particularly in R and Matlab. Using the

optimisation-based starting values eliminates these failures in R and slightly improves perfor-

mance in Matlab, while Python shows no failures in any setting. At higher mean values

(µ = 3 and 5), all methods achieve full convergence regardless of the starting values. For

Gamma GLM in Panel B, the convergence issues are more common, especially when µ = 0.

The optimisation-based starting values substantially reduce failures in R and Python and lead

to slight improvements in some Matlab cases. As for Poisson GLM, the cases in which µ = 3

or 5 always converge for all solvers. Overall, the optimisation-based starting values lead to

improved or equal convergence rates as compared to the default solvers in R, Matlab, and

Python.

Table D.12 is complementary to Table 5 and reports the number of convergence failures across

N = 250 replications with a sample size n = 500 for Poisson and Gamma GLMs fitted with a

sqrt LF and DGP1 setup in Appendix C. All results use only our optimisation-based starting

values and are presented across different correlation levels ρ and covariate-to-sample size ratios

p/n. For Poisson GLM in Panel A, the convergence is consistently achieved by GSR, St, and

DSh across all scenarios; in contrast, glm2 and SR show occasional convergence failures, mostly

in high-dimensional settings (i.e., p/n = 50%) or under strong correlation. For Gamma GLM

in Panel B, convergence is slightly more challenging, and we observe that solvers based on GSR

and DSh perform well with only a few failures; SR and St methods show slightly more failures

under some combinations of high p/n ratios and extreme ρ values, while the default glm2 solver

also experiences convergence issues under these same conditions. Overall, the optimisation-

based starting values lead to slight improvement or equal convergence rates when applied to

our shrinkage regression as compared to the default solver in R.

Appendix E. Description of Flood Data Insurance

This section describes the flood insurance data that have one dependent variable (Y ) where

Y = X1/X2 and 15 covariates (X2 to X16) that provide information on financial aspects,

structural details, and the location of insured properties; further details are in Table E.13.

Variable Y represents the proportion of insurance coverage used in claims and serves as a

measure to assess the adequacy of flood insurance coverage. To address the influence of extreme

values, Y was capped at its 99th percentile.

Data have been preprocessed following insurance industry standard procedures and details can

be found in (Asimit et al., 2025a), which include bounding numerical covariates, reducing the

number of categories for some categorical variables, and the usual one-hot-encoding. The most

important pre-processing aspects are as follows: i) examples with only positive values for X2,
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Table D.11: Number of failures to convergence with sqrt LF DGP2

p 1% n 10% n

ρ -0.5 0 0.5 -0.5 0 0.5

Panel A: Poisson Distribution

µ=0

R 22 (0) 2 (0) 0 (0) 3 (0) 0 (0) 1 (0)

Matlab 90 (90) 62 (62) 51 (51) 10 (10) 10 (10) 11 (11)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

µ=3

R 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Matlab 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

µ=5

R 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Matlab 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Panel B: Gamma Distribution

µ=0

R 100 (2) 100 (2) 100 (2) 100 (0) 100 (0) 100 (0)

Matlab 100 (99) 100 (100) 100 (100) 99 (100) 96 (96) 69 (68)

Python 99 (71) 100 (98) 100 (99) 99 (98) 98 (93) 95 (98)

µ=3

R 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Matlab 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

µ=5

R 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Matlab 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Python 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Notes: This table shows the number of convergence failures for glm2 over N = 100 replications, each with
n = 500 observations. The numbers outside parentheses are for the default starting values within R, Matlab and
Python, and the numbers inside parentheses are for our optimisation-based adjusted starting values described
in Section 4.2. Bold numbers indicate cases where our starting values produced fewer failures than the default.
A convergence failure means that the algorithm does not reach a valid solution within a maximum of 10, 000
iterations. The results are reported for different mean parameters µ and predictor correlations ρ at sample
proportions of 1% and 10% of the total sample size. Panel A shows results for the Poisson distribution, while
Panel B shows results for the Gamma distribution.

X3, and X4 are retained to avoid numerical issues during logarithmic transformation; ii) X7,

originally a character field for deductible codes, was converted to numeric values on descriptions

provided in the FEMA NFIP Claims Dataset and restricted to be strictly positive; iii) X6 is

capped at its 99th quantile to handle outliers and is lower bounded by 0 (including 0); iv) X15

and X16 are used together and grouped into clusters to represent the location of buildings;

v) categorical variables such as X10, X11 and X14 are reduced to two groups based on their

meaning so that very low-frequency categories are avoided; vi) X12 is converted to building’s

age in years and we group these into three categories.
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Table D.12: Convergence Performance For PoR and GaR with sqrt LF

Panel A: Poisson Distribution

ρ = -0.75 ρ = -0.5 ρ = 0 ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

GLM2 0 0 0 2 0 0 0 5 0 0 0 4 0 0 0 2 0 1 0 2
SR 0 0 0 2 0 0 0 5 0 0 0 5 0 0 0 3 0 0 0 3
GSR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
St 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DSh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Panel B: Gamma Distribution

ρ = -0.75 ρ = -0.5 ρ = 0 ρ = 0.5 ρ = 0.75

p/n 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50% 1% 10% 25% 50%

GLM2 3 1 1 1 1 0 2 1 3 2 0 1 4 1 2 0 1 2 0 1
SR 3 0 1 1 1 0 2 0 4 2 0 0 4 1 0 1 1 0 0 3
GSR 3 0 1 0 1 0 0 0 3 2 0 0 4 1 0 0 1 0 0 1
St 3 1 2 3 1 0 2 4 3 2 1 0 4 1 0 0 1 0 0 2
DSh 3 0 1 0 1 0 2 0 3 2 0 0 4 1 0 0 1 0 0 1

Notes: This table reports the number of convergence failures for the PoR and GaR using the sqrt LF across
different correlation coefficients ρ and covariate-to-sample size ratios p/n. Each entry shows how many out of
N = 250 replications with n = 500 failed to reach a valid solution within a maximum of 250 iterations, using the
optimisation-based procedure described in Section 4.2 to adjust starting values. Panel A presents results for the
Poisson L2 error results; see Table 5.

Table E.13: Summary of Data Preprocessing for Flood Insurance Dataset

Variable Type Regrouped Bounded One-hot Resulting
Encoded Columns

Y – ratioCoverage Numeric No Yes No N/A
X1 – amountPaidOnBuildingClaim Numeric No Yes No N/A
X2 – totalBuildingInsuranceCoverage Integer No Yes No N/A
X3 – buildingPropertyValue Numeric No Yes No N/A
X4 – buildingDamageAmount Integer No Yes No N/A
X5 – numberOfFloorsInTheInsuredBuilding Integer No No No N/A
X6 – waterDepth Integer No Yes No N/A
X7 – buildingDeductibleCode Character No Yes No N/A
X8 – elevatedBuildingIndicator Integer No No Yes 2
X9 – postFIRMConstructionIndicator Character No No Yes 2
X10 – ratedFloodZone Character Yes No Yes 2
X11 – buildingDescriptionCode Integer Yes No Yes 2
X12 – originalConstructionDate Character Yes No Yes 3
X13 – replacementCostBasis Character Yes No Yes 2
X14 – causeOfDamage Character Yes No Yes 2
X15 – latitude Numeric Yes No Yes 4
X16 – longitude Numeric Yes No Yes 4

Notes: This table summarises the dependent variable and features used in the US flood insurance dataset.
The last column, Resulting Columns, indicates the number of new variables created after one-hot encoding or
clustering; numeric variables that are not transformed “N/A” is shown.
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