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ABSTRACT

This thesis describes the development of an

inelastic stability analysis for restrained pin-ended steel 

beam-columns having an axial load, biaxial end moments and 

lateral loads in X and Y directions along the length. The 

lateral loads may be a combination of several distributed 

and concentrated loads. The beam-column cross-sections are

uniform along the length, and may be doubly or singly 

symmetric. Ultimate loads can be obtained by increasing 

some or all components of the loads. The analysis can be 

made with or without considering residual stresses and 

torsion effects. The analysis essentially consists of

obtaining eguilibrium shape corresponding to increasing

values of the principal variables up to the peak of the

applied load versus deflection curves. The Newton-Raphson

method is employed for the iteration in the analysis.

Solutions of the integration of stress resultants are 

obtained with the Gaussian guadrature formulae.

Experiments of eight full-scale steel beam-columns 

loaded uniaxially and biaxially are reported and used to 

check the validity of the analytical method. The 

slenderness ratios of the beam-columns tested were 78 and 

117. These values were chosen to cover the intermediate and 

the slender beam-columns. The discrepancy between the 

observed and calculated strength remains an average of 93% 

with a standard deviation of 8%.
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The theoretical model was applied to generate 

interaction curves for pin-ended steel beam-columns with 

concentrated and linearly distributed loads. The results 

were compared with BS 5400:Part3. Further, the theory was 

also used to study the effects of residual stresses and 

torsion on the calculated collapse loads. It was found that 

residual stresses could reduce the beam-column strenqth by 

up to 15%, whereas reduction as much as 35% was found due to 

the torsional effects on beam-columns with slenderness ratio 

60.
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NOTATION

The following notations have been used in the text.

Any deviation or addition has been defined locally.

A = area of cross-section

a = distance of an elemental area from the centre of

twist

a c = distance of the centre of the compression flanqe 

to the centre of twist

at = distance of the centre of the tension flanqe to 

the centre of twist

b = flanqe width

Cfc = stiffness of the compression flanqe

Cft = stiffness of the tension flanqe

D = distance between centre line of flanqes

d = depth of section

d .1 = distance of any point , v.) to the neutral axis

dn = distance of the centroid to the neutral axis

E = elastic modulus

G = elastic shear modulus

H = weiqhtinq coefficient of the Gaussian quadrature

I = moment of inertia

IP = polar moment of inertia

I w = warpinq riqidity

I X = moment of inertia about X axis

IV = moment of inertia about Y axis
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Ivc = moment of inertia of the compression flanqe about

Y axis

XYt = moment of inertia of the tension flanqe about

Y axis

h = moment of inertia about £ axis

= moment of inertia about y axis

K = Waqner effect = j"a^dA

KXl = stifness of manor axis restraininq beam at L

K xo = stiffness of manor axis restraininq beam at 0

K n vl = stiffness of minor axis restraininq beam at L

Kyo = stiffness of minor axis restraining beam at 0

k t = St. Venant torsion constant

L, 1 = lenqth of beam-column

M = moment

% = moment resistance

PLDxc = major axis moment resistance of the member, with 

respect to the extreme fibre

M_Dvc = minor axis moment resistance of the member, with 

respect to the extreme fibre

M-fc = minor axis moment of the compression flanqe

M ft = minor axis moment of the tension flanqe

MP = plastic moment

M r = ultimate moment with residual stresses considered

M _ rxl = major axis restraininq moment at L

Mrxo = major axis restraininq moment at 0

M _ ryl = minor axis restraininq moment at L
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Mryo = minor axis restraining moment at 0

= ultimate moment with torsion effect neglected

- axial force, normal force

M I txl = total major axis moment at L

M.txo = total manor axis moment at 0

M 1 tyl = total minor axis moment at L

Mtyo = total minor axis moment at 0

M u = ultimate moment

MX = major axis moment

M . xl = major axis moment at L

Mxo = major axis moment at 0

MV = minor axis moment

MV
= yield moment

M . vl
= minor axis moment at L

MVO = minor axis moment at 0

Mz = torsional moment

= moment about £ axis

MtSex
= external moment about £ axis

Mt • tin = internal moment about axis

M^ = moment about V axis

Mn 'ex external moment about y axis

M”in = internal moment about y axis

Mf = moment about t axis

MtS ex = external moment about r axis

M>. s m = internal moment about r axis

nP = number of point loads
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radius of gyration

nl = number of point loads in the

section

P = axial force

PD = axial force resistance

PX
= point load at the X direction

P point load at the Y direction
V

py = yield axial force

Rxo = minor axis reaction force at 0

RVO = major axis reaction force at 0

r

left side of the

major

S = elastic section modulus

S _ yield stress
V

s = lenqth of typical element

= flanqe thickness

t — web thicknessw

u = minor axis displacement

uc = minor axis displacement of the centroid

U a. Ct = minor axis displacement of the compression flanqe

caused by the twist

Ufc = minor axis displacement of the compression flanqe

uft = minor axis displacement of the tension flanqe

utt = minor axis displacement of the tension flanqe

caused by the twist

V. f c : shear of the compression flanqe

V
ft : shear of the tension flanqe

axis displacementv
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1

V c = manor axis displacement of the centroid

w = displacement component

= stiffness of the section about £ axis

X o = X coordinate of shear centre

= stiffness of the section about V axis

vo = Y coordinate of shear centre

Z = elastic section modulus

Z = error magnitude

ZP = plastic section modulus

z . = distance of station 'i' from end 0

zPi
= distance of point load ’ i’ from end 0

a = inclination of neutral axis with respect to the

£ axis

Q = end moment ratio

€ = strain

1 = strain of elemental area 'i'

6 O = strain of the centroid

e W1 = warpinq straint of an elemental area 'i'

0 = anqle of twist

a = stress

°rc = compressive residual stress

°rt = tension residual stress

= rotation about X axis at L

^xo = rotation about X axis at 0

*Y1 = rotation about Y axis at L

*vo = rotation about Y axis at 0
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Ci),
1

= distance of elemental area a^ from the

centroid

0 = curvature

«>f c = curvature about V axis of the compression flange

ft = curvature about V axis of the tension flange

= flange curvature about v axis caused by warping

♦t = total curvature

= curvature about k axis

= curvature about v axis

< a > = a if a>0, and 0 if a<0
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1. INTRODUCTION

1.1. GENERAL

Whether the structure be man-made or created by 

nature, the column is a key element in resisting collapse 

under qravity loading, in buildings, bridges, plants and 

trees. When the axial compression load is combined with 

bending, then the members can be specified as beam-columns. 

The bending may result from lateral loading, applied end 

moments, or eccentric application of axial load. Since 

compression members in actual structures such as trusses and 

frames have unavoidable bending moments along the members 

due to the eccentricity of axial force, initial deflection 

or restraint from adjacent members, no column with purely 

axial load actually exists. Thus, all compression members 

could be treated and desiqned as beam-columns.

1.2. OUTLINE OF PREVIOUS WORK ON BEAM-COLUMNS

A review of literature on axially loaded column is 

available in several textbooks, and is not repeated here. 

The present review relates primarily to beam-columns.

Von Karman [1] was the first to recognize the fact 

that the deflected axis of any column could be represented 

by a portion of the deflection curve of an axially loaded 

column. Based on this concept he gave a general and exact 
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theory for the determination of the in-plane buckling loads 

of rectangular steel columns with small and egual 

eccentricities of loading at each end.

Westergaard and Osgood [2], in 1928, simplified Von 

Karman's solution of eccentrically loaded compression 

members by assuming the deflected centreline of the column 

to be a sinusoidal curve. Based on this simplification and 

an actual stress-strain relationship, they discussed 

analytically the behaviour of eccentrically loaded columns 

and initially curved columns. It was found from their 

computations that this simplification on the deflected shape 

of a column resulted only in a slight deviation from the 

more accurate solution and the simplified approach gave 

values which lie on the safe side. However, the analytical 

expressions obtained by Westergaard and Osgood are still so 

complex that numerical results can be evaluated only through 

a graphical procedure.

Realizing that the complexity of Westergaard and 

Osgood's [2] solution was caused by the nonlinearity of the 

actual stress-strain relationship, Jezek [3] proposed his 

theory by idealizing the material as elastic-perfectly 

plastic. Further, jezek established the eguilibrium only at 

midheight of the beam-column. The solution based upon these 

assumptions leads to analytical expressions for the ultimate 

load-carying capacity of eccentrically loaded in-plane beam-

-22-



columns or rectangular cross-sections. It was found by 

Jezek that, in qeneral, the values of the maximum strength 

computed from his approximate equations were higher than the 

values determined from the exact solution using the real 

stress-strain curve. But, for all practical purposes, 

Jezek's approximate equations qive satisfactory results.

All the work discussed above was done without 

considerinq torsion. Waqner [4] was the first to 

investigate torsional buckling of open thin walled sections. 

But Wagner based his theory upon the arbitrary assumption 

that the centre of rotation during buckling coincides with 

the centre of shear, which, in general, was not found in 

practice. The results of Wagner's analysis are therefore 

not exact.

Goodier [5,6,7] extended the governing differential

equations to include beam-column under biaxial bending with

identical loading conditions at each end. Goodier's

equations were simplified by the assumption that the 

twistinq and displacements of any cross section of the beam-

column were small compared to the eccentricities of the

loadinq. Discussions of the theory were given by Bleich

[8], and Timoshenko and Gere [9].

-23-



Neal [10], following Goodier's work, in 1950 

studied the phenomenon of lateral buckling in deep mild 

steel beams of rectangular cross-section. The study was 

carried out from both a theoretical and an experimental 

point of view. Neal obtained numerical solutions for a beam 

simply supported at the ends, carrying a central load 

passing through the centroid of the cross-section, and a 

cantilever carrying a single concentrated load. The

solutions were obtained by using finite difference 

approximations for the first and second derivatives of the 

angle of twist. Later, Wittrick [11] extended the method to 

include strain hardening.

Goodier's simplified equations have been solved 

exactly by Culver [12,13] and approximately by Thurlimann 

[14], Dabrowski [15] and Prawel and Lee [16]. The numerical 

results of Thurlimann and Dabrowski are all within 1% of the 

exact values qiven by Culver. The result of prawel and Lee, 

however, differ significantly, in certain cases, from the 

exact values. Errors as large as 25% for the deflections 

and 7% for the total stress have been obtained. Dabrowski 

considered the problem of biaxial bending from an energy 

standpoint and utilized the Rayleiqh-Ritz method to obtain a 

solution. Thurlimann, on the other hand, dealt directly 

with the equations of biaxial bending and obtained a 

solution using results from the problem of in-plane bending. 

Considering the close agreement between the result of the 
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approximate solutions of Thurlimann and Dabrowski and the 

exact solution, for the pupose of design calculations, the 

approximate solutions seem to be more advantageous than the 

exact solution. The approximate solutions may be performed 

on a desk calculator whereas the exact solution requires a 

digital computer to obtain numerical results in a reasonable 

amount of time. However, until the accuracy of the 

approximate solutions is established for a wide range of 

problems, use of the exact solution seems warranted.

Chwalla was the first to work on the restrained 

elastic-plastic column. The work has been reported by 

Bleich E8J. Chwalla presented a procedure to calculate 

equilibrium configurations for columns under eccentric axial 

loads. The method was applied to a three-bay column, the 

centre bay acted on by external moments applied at the ends 

of this bay. Numerical results were given for special cases 

and could be adopted as a check on any future simplified 

method for investigation of the same or related problem.

More research was undertaken by Biilaard, 

Fishermann and Winter E171. They developed a solution to 

the problem of elastically restrained columns by limiting 

the study to members that did not fail by local or lateral- 

torsional instability. Experimental work was carried out on

eighteen columns, half on square bars and the others on

I-sections. To investigate the influence of residual

-25-



stresses, "half of the specimens were annealed. The columns 

were tested with fixed degrees of elastic restraint and with 

various eccentricities. Ultimate loads were determined as 

well as loads which caused first local yielding. Two 

computational methods for restrained column of any cross- 

sectional shape, bent in symmetrical single curvature were 

presented. The first one was an exact method and the other 

was based on certain assumptions. Agreement between 

experiment and theory was satisfactory. Later the extension 

of the methods to deal with unsymmetrical bending was 

developed by Bijlaard [18]. Cases with unequal end

eccentricities and unequal end restraints could be solved 

with the methods.

Further and rather more extensive work was carried 

out in the University of Cambridge by Baker and his 

associates [19] who worked for the Steel Structures Research 

Committee to investigate the plastic behaviour of structures 

for the design method development. In the experiment, 

symmetrical single and double curvature cases were 

investigated. The influence of various end conditions were 

examined. Firstly the plastic theory applied to columns of 

rectanqular cross-section was discussed. Even a rectangular 

section had little direct practical use, the discussion was 

really important to serve as an introduction to the more 

difficult problems involving I sections. Agreement between 

the experimental and theoretical results was very good, the 

-26-



average error on the collapse loads was less than 5%. A 

great difference between observed and theoretical results 

occured in a case where a column had been bent in double 

curvature. The collapse load obtained when the effects of 

unloading were ignored was 12.3% too low. When the effects 

of unloading were included, the collapse load was 7.9% too 

high. The most likely explanation of the excessive value 

obtained when unloading was allowed for was the presence of 

imperfections, which would lead to asymmetric form of 

failure in the actual column. Further, some approximate 

methods of calculating collapse loads were also given.

Horne L20j was the first to derive for the 

curvature of an initially straight prismatic member of 

rectangular cross-section subjected to any combination of 

axial load and bending moment about a principal axis. The 

material was assumed to show elastic-perfectly plastic 

behaviour, with a finite drop of stress at yield. Using 

these results, expressions for the shape of elastic-plastic 

compression members at all stages of plasticty were derived. 

It was shown how solutions for the collapse loads of 

eccentrically loaded struts and of members with ends 

restrained in certain directions could be obtained without 

resorting to numerical procedures.



Horne [21,22] has also provided some design data.

In 1964, theoretical solutions based on modification to an 

elastic analysis for beam-columns subjected to any ends 

moment ratio with both ends free to warp and simply 

supported about the strong and weak axis was published. The 

stability criteria were that plastic hinges may form at 

either end of the beam-column length. Governing eguations 

for bending and torsion involving minor axis imperfections 

were reduced to a set of six non-linear equations. These 

were solved iteratively to give the maximum safe axial load 

in terms of major and minor axis slenderness ratios, the 

torsional parameter and the end moment ratio for which the 

above mentioned stability criteria were satisfied. The 

theory was based on equivalent moment approach which assumed 

that the behaviour of a beam-column under an axial load and 

two different end moment ratios about the strong axis was 

the same as a beam-column subjected to the same axial load 

and a uniform strong axis moment M where M was a function X X

of the end moment ratio. The presence of residual stresses 

was not considered. Extensive sets of design charts were 

produced based on this approach.

In 1959 Galambos [23] provided solutions for the 

inelastic lateral torsional buckling of wide flange beam-

columns under uniaxial uniform bending. Lateral torsional 

buckling of H-columns is complicated by the occurence of 

twisting and warping of the column cross-section.
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Analytical solutions for inelastic lateral torsional

buckling of columns are also difficult to obtain owing to

the non-linearity of the governing differential equations

In Galambos' s work the effect of residual stresses was

considered In the inelastic range, due to primary

deflections in the presence of axial load, the bending and

torsional stiffnesses of a beam-column vary along the

length. To simplify the solution, the stiffness of the

beam-column was assumed to be uniform along the length and

egual to the magnitude at the beam-column end An upper

bound solution was thus achieved It would have been

possible to obtain a lower bound solution by evaluating the 

moment along the length of the column. However to evaluate 

these, recourse would have had to be taken to some form of 

numerical technique to establish the equilibrium shape of 

the beam column under a given loading. This equilibrium 

shape of the beam-column in the inelastic range may be 

determined by a number of iterative methods. In the United 

State the Column Deflection Curve [24J has been used to find 

equilibrium shapes in the plane of bending as would have 

been necessary in this case.

A further extension along the same lines was made 

by Ojalvo [24] who described how convenient nomographs could 

be developed for the design of columns with one end hinged 

and also for columns with equal applied end moments and 

equal rotational restraints. The type of column failure
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considered was that of bending about one principal axis of 

the cross section. The plane of bending was also the plane 

of thrust, applied moments, and the restraining moments. 

Graphical methods of performing calculations with non-linear 

rotational restraints and unegual end eccentricities were 

also given.

More accurate solutions for inelastic lateral

torsional buckling of beam-columns under major axis bending

were then developed by Galambos and Fukumoto [25 j. In this

work they reported the solution for the one end moment case.

The solution of the problem which consisted of two separate 

steps was one of trial and error. The first step consisted

of calculating the coefficients appearing in the finite

difference eguations of lateral-torsional buckling for the 

yielded beam-column at evenly spaced points along the length

of the member. The operations that were involved consisted 

of the solution of involved analytical expressions. The 

results of the first computational step were used to set up 

the simultaneous equations that furnished the buckling 

determinant. This determinant was solved in the second step 

by a larger and faster computer. Further, they [25j showed 

graphically the fact that lateral-torsional buckling could

reduce the strengths of beam-column considerably. It was 

also shown that the loading case with one end moment only 

was less severe than the case with two equal end moments.
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Another paper was presented by Johnston [26] in 

1971. He analyzed the inelastic behaviour of concentrically 

loaded rectangular column with the aid of a digital 

computer. in the procedure adopted, small increments of 

strain caused by axial shortening and bending curvature were 

successively superimposed after bending began at tangent 

modulus load. The superimposition of each incremental 

strain distribution resulted from a corresponding deflection 

°f the column. The incremental stress distribution should 

be such that eguilibrium exists between the internal and the 

external bending moments and thrust.

Birnstiel and Michalos [27], following the related 

work of Johnston [26], presented a general procedure for 

determining the ultimate carrying capacity of columns loaded 

eccentrically with respect to their principal axes. The 

method was restricted to columns of wide flange sections 

made of elastic-perfectly plastic material without residual 

thermal strains. Warping strains due to nonuniform twist 

were considered. However, their procedure reguires 

successive trials and corrections and needs considerable 

computational effort for a solution.

A few years later, Harstead, Birnstiel and Leu [28] 

improved the procedure mentioned above by introducing a 

systematic correction procedure. Since then, the laborious 

trial and correction could be reduced to a few cycles by 
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solvinq a system of linear equation for the corrections at 

each station alonq the columns. Birnstiel and his 

associates [29] also conducted experiments on isolated 

H-columns subjected to biaxial loading. The result of these 

tests and the effects of warping restraint at column ends on 

the ultimate load-carrying capacity of the column, and the 

effect of residual thermal strains on the behaviour of the 

column were examined and compared. The agreement between 

the numerical and experimental results appeared to be 

satisfactory. Harstead, Birnstiel and Leu [28] stated that 

Goodier's equations are not applicable at large loads to 

elastic problems such as those selected by Culver [12,13]. 

This is due to the fact that, as the value of rotation of 

the beam-column cross-section become large, the error in 

Goodier's approximation becomes considerable.

It has not been possible to obtain analytical 

solutions to the differential equations of bending of 

elasto-plastic compression members composed of the common 

structural sections. In part, this difficulty is caused by 

the inability to express curvature explicitly in terms of 

moment and thrust. Hauck and Lee [30] solved the problem by 

evaluating a series of elliptic integrals, i.e. the 

integration of the nonlinear differential equation was 

performed analytically. The process of analytical 

integration has been extended for H-section members bent 

about their major axes. This has been solved by idealizing
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the member cross-section as being composed of a series of

thin--walled elements.

As an extension to the case of elastically

restrained beam-columns, Milner [31] appears to be the first 

to report the theoretical and experimental study of 

restrained and biaxially loaded H-section beam-columns. A 

computational procedure was developed to enable a 

theoretical study of restrained elastic—plastic columns. 

The governing differential eguations of eguilibrium -were 

first expressed in terms of finite differences and a 

numerical integration procedure was adopted for the 

solution. His main purpose was to determine the significant 

parameters affecting the behaviour of the elastically 

restrained H-section beam-columns subjected to biaxial 

loading. Milner's results indicated that the effect of 

unloading after yielding occured in biaxially loaded beam-

columns, was to raise the collapse load by a small 

increment. The effect of the order of load application upon 

the failure load was observed to be significant. Also, the 

effects of residual stresses were less when the loading was 

eccentric and decreased as the eccentricity increased so 

that this effect could be small for restrained beam-columns.

More development and solutions of elastically 

Restrained beam-columns under biaxial bending and torsion 

using finite difference methods for numerical solutions were 
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reported by Vinnakota and his associates [32,33,34] in 1975. 

The method could be employed to solve the problem on columns 

loaded by equal or unequal end moments with symmetrical or 

unsymmetrical rotational restraints at ends. The influences 

of material yielding, residual strain as well as warping 

strains that resulted from the twisting of the cross-section 

°f column, were included in the analysis. The equilibrium 

equations were formulated with respect to an arbitrary 

coordinate system and no reference was made to the shear 

centre, centroid, or principal axis. This way the shift in 

fhe shear centre and the shift and rotation of principal 

exes of the elastic core, as yielding of the cross-section 

Progress was taken care of automatically. Further, the 

Predicted ultimate loads and load deformation responses 

showed satisfactory agreement with the available test and 

enalytical results.

Sharma and Gaylord [35] applied Jezek's concept to 

biaxially loaded beam-columns and assumed, as well, an 

elastic-perfectly plastic idealization for the material and 

sinusoidal variations for the lateral displacements and 

r°tation of the cross-section of the deflected axis of the 

beam-column. The solution of the equations of equilibrium 

Was simplified by only considering equilibrium at midheight 

of the beam-column between the applied force at the ends of 

beam-column and the internal resistance of the midheight 

°f the beam-column.

-34-



Employing a similar technique adopted by Fukumoto 

and Galambos [23], Lim and Lu [36] studied the occurence of 

inelastic lateral torsional buckling of laterally 

unsupported beam-columns restrained against weak axis 

lending and warping at the column ends. Both the tangent 

modulus and the reduced modulus solution were provided. The 

same technique was extended to cover the case of inelastic 

lateral torsional buckling problems in continuous beam-

columns with warping and weak axis bending restraints at the 

joints.

A more approximate method of analysis for biaxially 

loaded restrained columns has been described by 

Santathadaporn and Chen [37]. The problems to be solved are 

limited to the case of symmetrical loading. The deflected 

shape of the column was assumed to be a sine function. The 

unalytical procedure required calculation of the internal 

forces including torsional moments of the elastic-plastic 

Cr°ss-section. For this the column cross-section was 

divided into finite elements. The strain and stress at each 

element were computed as the average values at its centroid. 

Numerical integration was performed by summing up the effect 

all the elements. The equations were expressed in a 

different form and were derived for the rate of change of 

forces as variables denoting infinitesimal increment. 

Similarly the rate of change of external forces at mid-span 

°f the column were developed. Yielding and instability 
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effect were incorporated in the stiffness matrix [38] which 

can be interpreted as the tangent of the load deformation 

curve. The actual solution process was iterative and 

equilibrium was only satisfied at mid-height of the column.

The Newton-Raphson iterative approach was extended

fo solve the general case of asymmetrical biaxial bending of

Pin ended columns by Virdi [39,40]. The theory was

developed in connection with studies on composite concrete 

columns. in the analysis, all twisting effects are ignored 

because of the large twisting rigidity of the solid cross-

section. Thus the method is quite simplified and applicable 

to many biaxially loaded beam-columns of solid sections such 

as reinforced concrete or steel concrete composite sections 

as well as torsionally stiff bare steel beam-columns. In 

order to calculate the internal forces of a section, the 

section was divided into finite elements as was adopted by

Harstead, Birnstiel and Leu [28]. Moment-thrust-curvature 

relationships were computed by summing up the effect of all 

^be small elements and using an interpolation technique. In 

computing these relationships the exact nature of the 

stress-strain curve was accounted for by idealizing it as 

rnultilinear curve. Residual stresses could also be 

lricorporated. A finite difference scheme was employed to 

determine the stable deflected shape. A set of trial 

deflections was assumed along the length and curvatures 

computed. Moment-thrust-curvature relations were then 
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computed for given axial load. To follow, external moments 

were calculated and compared with the internal moments. The 

solution process was iterative and the Newton-Raphson 

correction procedure was set up at this stage for obtaining 

the new deflected shape. Subsequent deflected shapes were 

obtained for increasing axial loads applied eccentrically.

a later development, Virdi improved the integration of 

stress resultants using Gaussian quadrature formuale [40].

In a more recent work Sen [41] presented an

analytical method to solve the problem of determining the

failure load of steel beam-columns. The problem

investigated was that often encountered in practice of major

axis asymmetrical 

tests covered

bending with

beam-columns

minor imperfections. The 

of short to intermediate

slenderness (45-74) on which high axial loads could be 

sustained and in effect explored the plastic hinge rotation 

capacity in this load range. The theoretical work covered 

torsional effects and asymmetric bending. A numerical 

solution based on central finite differences was adopted in 

t^tie study and the method employed was Successive Over 

Relaxation. The method developed covered initial curvature, 

residual stress and a non linear stress-strain curve. 

However, the solution was for double symmetric I-section 

only.
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A detailed description of available design methods 

has been published by Chen and Atsuta [42,43]. They 

Presented precisely the basic theoretical principles, 

methods of analysis in obtaining the solutions of beam-

columns, and the recent developments of theories of 

hiaxially loaded beam-columns. It was shown how those 

theories could be used in the solution of practical design 

problems. Residual stress imperfections, and elastic- 

Plastic behaviour were included in their methods. After 

Presenting the basic theory systematically, from the most 

elementary to the most advanced stage of development, they 

Proceeded directly to the solutions of particular problems. 

The various methods of solutions were presented. In most 

cases, numerical results were given in terms of tables, 

charts, and diagrams which furnished values of critical 

loads for various beam-column problems.

Later, more recent developments in design methods 

were presented by Lui and Chen [44]. A deterministic 

aProach was used to assess the strength of centrally loaded 

H-columns, taking into consideration the effects of residual 

stresses, initial out-of-straightness, and small end 

Restraints. The column types used in the study included 

■tlot~rolled wide-flange shapes and flame-cut H-shapes. The 

deterministic column strength data were generated with the 

^■id of a computer. These data were analysed and 

Categorised, resulting in the development of a set of 
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restrained-end multiple column curves. These curves were 

then compared with the current column design curves to show 

the effect of small restraint on the maximum strength of 

columns. in addition, the new column curves were compared 

W1th the basic column curves [45], and effective length 

factors, expressed as a function of the magnitude of end 

restraint, were proposed.

Interaction between elastic buckling and plastic 

collapse has been studied by Ho [46]. Investigation was 

carried out on the failure of beam-columns subjected to 

^xial compression, transverse loading, and unequal end 

foments. a formula was proposed to predict the failure load 

°f such beam-columns. Derivation of the formula was based 

°n the concept of interaction between the two modes of 

failure, i.e. elastic buckling and plastic collapse of the 

beam-column. The effects of initial deformation, residual 

stresses and the spread of plasticity in the beam-column 

were considered. Subsequent application of the formula to 

other more qeneral cases showed that good agreement with 

results obtained either theoretically or experimentally 

could be achieved.
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1«3. SUMMARY OF RESEARCH AND FORMULATION OF THE PROBLEM

The behaviour of beam-columns has been the subject 

of research for many years. A substantial amount of work, 

both experimental and theoretical, has been done on the 

problem of bare steel beam-columns. Usually, the deflected 

shape of the beam-column is assumed to be a sine function 

and the stability of the structure is checked at the 

midlength only. in the traditional approach, the 

development of the methods are based on the elastic limit of 

the structures. The recent development of the limit state 

approach to design has focused attention on simplifying 

design procedures and accuracy of the results obtained. It 

is possible to make an accurate analysis of the behaviour of 

steel beam-columns which includes the effect of torsion, 

residual stress and imperfections. However, the more 

accurate are the results expected, the more factors are 

needed to be considered and the more complicated problems to 

be solved. Thus, it seems to be impossible to get 

simplicity and accuracy at the same time. Since approximate 

solutions are more advantageous than the exact one, design 

rules are usually based on an appoximate analysis and 

certain effects may be covered by means of a safety factor. 

Obviously, accurate information about these effects is 

needed for this purpose. Although torsion effects have been 

considered in many design methods, relatively little 

information is available about its magnitude for design 

Purposes.
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In this study, a rigorous method of the ultimate 

load analysis of steel beam-columns has been developed. The 

solution may be obtained with or without considering the 

effects of torsion, residual stresses and imperfections on 

the beam strength. The effect of torsion on the steel beam-

column ultimate load is explored by means of a parametric 

study. Before the relevant design data can be used with 

confidence, it is necessary to prove the validity of the 

theory through carefully selected experiments. The validity 

°f the computer program is also proved by comparing the 

results with the available experimental and theoretical 

data. Design data and graphs are presented for future 

developments. The analytical procedure, in general is 

similar to the previous method used by Virdi [39,40] to

study composite concrete columns with the notable difference

being the inclusion of torsional effects in the present

study. Thus, the actual deflected shapes of the beam-

columns are determined by iteration and stability is

examined at each nodal point.

SCOPE AND LAYOUT OF THE THESIS

The qeneral objective of this thesis was to obtain 

analytical method which could be employed to simulate 

Actual tests for determination of the collapse load of bare 

steel beam-columns under biaxial bending.
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In Chapter 2 the theory adopted to develop the 

proposed analytical method is outlined. The assumptions 

taken are described and the equations are derived.

Chapter 3 describes the computer program BECOL 

written to determine the ultimate load of monosymmetric I 

steel beam-columns, including the residual strain and 

torsional effects. In this chapter, the computation 

procedure is outlined.

Chapter 4 introduces the experimental work. In 

this part, details of the test programme, material tests, 

load paths followed during the tests, instrumentation, 

loadinq rig test procedures and test results are described.

Chapter 5 deals with the validity of the computer 

program. For this purpose, the validity is examined in the 

light of comparisons with the existing solutions of biaxial 

bending for beam-columns. Comparison between the 

theoretical and the experimental results is also presented 

in this chapter.

Application of the method is demonstrated to 

qenerate design data in Chapter 6. It is followed by 

discussion of the results obtained. Finally, conclusions 

drawn from the theoretical and experimental results are 

outlined in Chapter 7.
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2. FAILURE LOAD THEORY

2.1. INTRODUCTION

The general approach in obtaining the failure load 

of a beam-column is to calculate the deflected shape under a 

small fraction of the design load. For equilibrium, the 

external forces and moments are balanced by the internal 

stress-resultants. Moment-thrust-curvature relations can be 

adopted to compute the internal stress-resultants. This 

requires information about steel stress-strain relations and 

any residual stresses in the cross-section.

Iteration for calculating the deflected shape which 

satisfies the equilibrium conditions may be done using 

Newton-Raphson method [47,48,49]. After the equilibrium 

conditions have been obtained, the computation may proceed 

with further loadinq increments. These steps are repeated 

until a deflected shape in equilibrium with the applied 

loadinq can no lonqer be obtained. The final load 

combination which satisfies the equilibrium condition may be 

specified as the ultimate load of the beam-column.

For a given cross-section under a constant thrust, 

the variation of moment with curvature is linear in the 

elastic range. In the inelastic range the relation becomes 

non-linear and is also affected by the presence of residual 

stresses.
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The numerical inteqration method adopted here is 

similar to the one suqqested by Virdi [47,48,49]. The 

cross-section is divided into a few rectanqular blocks for 

computing the internal forces. Gauss quadrature formulae 

are used to obtain the inteqration involved. Residual 

stress can be easily accounted for.

2.2. ASSUMPTIONS

The major assumptions are as follows :

(a) Deflections are small, so that curvature can be

represented by the second derivative of the

deflections.

(b) The lateral loads act throuqh the original centroidal 

axis of the beam-column.

(c) The cross sections are uniform over the lenqth of the 

beam-column.

(d) The effect of shear stresses on the yielding of the 

section is neqliqible. Further, the shear stresses 

have no effect on deflections or in producinq a 

combined stress yield condition.

(e) The shear modulus G is assumed to retain its full 

elastic value after yield has taken place.

(f) Local bucklinq of individual rectangular elements 

comprising the section, is ignored.
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2.3 STEEL STRESS-STRAIN RELATIONS

Most previous studies reported in literature, have 

adopted an elastic-perfectly plastic bilinear curve. The 

effect of strain hardeninq has usually been iqnored.

The theory developed here is based on a multi-

linear stress-strain characteristic. Any experimental 

stress-strain curve can be idealised as a multi-linear curve 

with a desired deqree of accuracy. This also enables the 

analysis for bilinear elastic perfectly plastic 

characteristics.

2.4. RESIDUAL STRESSES

The residual stresses are defined as those stresses 

that remain in structural member after the rollinq or 

fabrication processes. To satisfy the conditions of 

equilibrium, the axial force and moments obtained by 

inteqratinq the residual stresses actinq on any cross-

section must be zero. It is now recoqnised that in order to 

obtain a better understandinq of inelastic beam-column 

behaviour it is necessary to consider residual stresses.

Residual stresses are introduced into a member due 

to coolinq of different parts of the section after the hot 

rollinq process. The portion of a member that cools most 

slowly develops residual tension that is balanced by 
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residual compression in other portions of the member. in 

the fabrication of metal structures, flat plates and 

straight beams are often formed or straightened at room 

temperatures into desired shapes. These cold-forming 

operations obviously cause inelastic deformations and 

residual stresses, since the steel retains its formed shape. 

The magnitude and distribution of residual stresses across 

the section are highly variable, depending on the shape and 

size of the section and manufacturing process.

The typical hot-rolled H shape has residual 

compression in its flanqe tips, and residual tension in the 

vicinity of the flanqe-web junction, which cools slowly. 

According to Brockenbrough and Johnston E50] residual 

stresses from cooling are approximately constant along the 

lenqth of a column, whereas cold-straightening stresses 

frequently occur only at particular locations where the 

member has been straiqhtened. For most columns, the maximum 

compressive stresses caused by cold straightening are of 

about the same magnitude as those caused by cooling, but 

Brockenbrough and Johnston have shown that residual stresses 

which result from cooling are more important from the stand 

point of column strength.

Two residual stress patterns are frequently 

considered in studyinq inelastic beam-column behaviour. The 

first pattern is shown in Fig. 2.1 and assumes linear 
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variation between points of extreme stress. The second 

pattern is shown in Fig. 2.2. The variation is parabolic 

with compressive stresses in the web. In using these 

patterns in moment-thrust-curvature relations, the residual 

stresses are first converted to residual strains. The 

strains due to the applied loads are superimposed on the 

residual strains. The net stresses in the section can now 

be determined using the net strain so obtained and the 

material stress-strain characteristic.

In the results presented in this thesis, the first 

residual stress pattern has been adopted. Based on the 

condition that residual stresses are self-equilibrating, the 

tensile residual stress a in the web can be obtained 

using :

b. t _

art ~ ffrc b7t ~+"t .?d - 2t^y
f w f

. . . .(2.1)

where b = flanqe width

tf = flanqe thickness

d = depth of the section

t = width of the webw

= compressive residual stress rc

a = tensile residual stress
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2.5. INTERNAL STRESS-RESULTANTS

2.5.1. Internal Stress-Resultant Equations

Fiq. 2.3. shows a beam-column with its applied 

loadinq. The loading consits of an axial force N, lateral 

forces and p , and end-moments about the X and Y axes. 

The right hand screw rule has been adopted for positive 

moments. Fig. 2.4 shows the general displacements of a 

cross-section. Equilibrium has to be satisfied in the 

deflected state of the beam-column.

The cross-section is initially in position 1

Under the action of external forces, the cross-section moves

to position 2, giving the u and v displacements shown

Displacements u, the twist and the coordinates of S,

viz. x and yo o are all positive as shown. The quantities u,

v and 0 are small so that the geometry of small

displacements applies.

The cross-section undergoes twisting during

deformation. Thus, the member principal axes X and Y rotate

through an angle 0 , taking the orientation of axes £ and v

The displacement components u and vc c of a point S at

(Xo/Vo) relative to the centroid, become

v,

u = u + 0.y c o

v = v - 6. x c o

....... (2.2)

....... (2.3)
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those

Another geometric change which occurs during the

beam-column displacement is the inclination of the f axis

to the original Z axis caused by the slope du/dz and dv/dz.

Thus twisting the beam- column together with u and v

displacements means that forces computed in the X-Y-Z

computed for thediffer fromcoordinate system

% - n - f system

Curvature of any such section may be determined 

with the finite difference methods, a technique for the 

reduction of continuum to a system with a finite number of 

deqrees of freedom. The basis of the method is that the 

derivatives of functions at a point can be approximated by 

an algebraic expression consisting of the value of the 

function at that point and several nearby points. Detail of 

finite difference methods are available in several textbooks

(see, for example, Collatz [51] and Vinnakota [52]). In 

this method, central differences will give more accurate 

results than backward or forward differences. For this 

reason, central differences will be adopted for the proposed 

analytical method. The first and the second derivatives of 

a function (Fig. 2.5) may be approximated with the following 

equations :

_1_
2 Az

+ ui-1 ...(2.4)

)

)
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Internal stress-resultant equations of elastic 

members

textbooks

have been discussed extensively in many 

[9]. By virtue of the assumption regarding plane

sections, the elongation e is proportional to the distance

from the neutral axis. In the elastic case, the stress at

any fibre is proportional to the strain The moments

and are approximated by the following equations :

d2v
EI^

dz 

d2u
EI,-- 2

dzz

(2.5)

. . (2.6)

where: E = elastic modulus

I^ = moment of inertia about £ axis

1^ = moment of inertia about y axis

The twisting moment including pure torsion,

Wagner-effect and warping is written in the form :

<30
dz

d_0
dz

......(2.7)+ K
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where : G shear modulus

t = thickness of typical element

s = length of typical element

a = stress in a small element

a = distance of the element from the centre of

twist

I = warping rigidity

0 = anqle of rotation of the section

In studying failure load, inelastic behaviour of

the material has to be considered. Since the assumption 

regarding plane sections is applied, then the elongation e 

is proportional to the distance from the neutral axis. But 

it should be noted, the stress is not proportional to the 

strain in the inelastic range.

Accordingly the deteriorated stiffness about £ axis 

may be expressed as :

dA

(2.10)

where a small area of the cross section

A

a stress of the small area dA 

lever arm of dA to £ axis 

A total area of the cross section

Similarly about the rj axis the stiffness becomes :



The Wagner effect term K in Equation (2.7) can be

1

..... (2.12)

where = distance from the dA to the centre of twist

If the stiffness of the compression and tension

flanqe are denoted z z
by Cf and Cft' then

C. fc

Cft

where : A = areas

( o-*  £ ) dA (2.13)

( o’* £ / <t>v ) dA (2.14)

of the tension and compression flange

The shear centre, S , of a monosymmetric I section

(Fig.2.6) can be calculated with the following

equations E 53] :

p
yc

......(2.15)
I yc + Iyt

I 
yt

a — .... (2.16)c
Iyc + Tyt

iyc
a - .... (2.17)t

Tyc + Tyt
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where I and I are the section minor axis second moment yc yt

of area of the compression and tension flange respectively. 

The values of P thus range from 0 for a tee-beam with 

flange in tension to 1 for a tee-beam with flange in 

compression. For an equal flanged beam, P is 0.5 .

The contribution of the twist 6 to the flange 

deflections can be shown with the following equations :

= a . 6 ............ (2.18)c

= - a . e ............ (2.19)

minor axis displacement of the compression 

flanqe caused by the twist

minor axis displacement of the tension flange 

caused by the twist

Curvature which is caused by the warping 

deflections at flanges generates strains in the flange-

elements. These warping strains should be considered in the 

stress computation. Distribution of the strains can be seen 

in Fig. 2.7.

Takinq the warping deflection into account, total 

displacements of the compression and tension flange, ufc an<^ 

Uf are expressed as :

u^ ss u + 0. a ..... (2.20)r c c
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uft = u - 9,at

Based on Equations

curvatures of compression and

can be determined by :

A d^u d2 0(p —
fc , 2 ‘ ac‘ 2

dz dz

. d2u d2 0
= -d-2~ at‘_a;r

..... (2.21)

(2.20) and (2.21), the

tension flanges, and

• •••••(2•22)

......(2.23)

As mentioned previously, the stiffnesses of the

compression and tension flanqe are C^c and respectively. 

Then the flanqe bending mements, and M^t may be obtained 

with the following equations :

Mfc = Cfc-<
,2d u
dz2

d2 0
+ ac- 2

dz
) .... (2.24)

Mft = cff(
d2u 
"d?”

d2 0
at*"  2

dz
) .... (2.25)

The respective flange shear, V^c and V.^, after

neqlecting the certain product of small quantities become :

....... (2.26 )
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........(2.27)

The resisting warping torque about C, M j. is wf
expressed as :

Mwf = vfc-ac - Vffat (2.28)

Combining Equations (2.5)-(2.6) with Equations

(2.10)-(2.11), resisting bending moments may be obtained

with the following equations :

(2.29)

(2.30)

From Equations (2.7)-(2.9) and Equations

(2.13)-(2.30 ), twisting moment resistances can be computed

M o'. £ . dA

as follows

Mr <gk t -k )
dM-

+ < -4-
az

dMft 
-ar--at ’ . . .(2.31). a c . a

2.5.2 Moment-Thrust-Curvature Relations

There are nine variables involved in the moment-

thrust-curvature relations when torsional effects are

considered. The variables are : moments M , M and 
y Mz'

axial force N, primary curvature of the beam <t>, secondary
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curvature of the flanges due to warping 4> , distance of the 

neutral axis to the origin d , inclination of the neutral 

axis a and angle of twist of the section 0.

For convenience, in the next derivation, moments

M , M andx y M z will be replaced by V and M^.

respectively. With reference to Fiq. 2 .8. , correlation

between those variables may be written as :

= M + M . 0 x y ...........(2.32)

= M - M .0 y x
...........(2.33)

= Mz
...........(2.34)

There are four equations of equilibrium relating to 

those nine unknowns. Thus by assigning values to any five 

of the variables, the other four can be determined. The 

curvature <t> and inclination of the neutral axis a may be 

obtained with the following equations :

........(2.35)

........(2.36)

where : 0^ = curvature about £ axis

= curvature about V axis

4*  = total curvature

a = inclination of neutral axis with respect to

the -axis.
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With reference to Fig. 2.9. the strain distribu-

tion across the section can be obtained from :

‘o = dn ....... (2.37)

d .
and e. = (1 - -gi- ) ....... (2.38)

n

where : e = strain at the origin 0

= strain at any point (

ch = distance of any point to the neutral

axis

With reference to Fig. 2.7, strain due to warping

may be obtained with the following equation : 

........ (2.39)

where : e = warping strain of an elemental area ’i'.

4>w = flange curvature about V axis caused by

warping

In order to calculate the internal stress-
i

resultants of a section, the value of the strains obtained 

from Equation (2.38) should be modified by taking the 

residual and warping strains into account. By using the 

stress-strain characteristic of the material, the stress a 

corresponding to the strain « is determined. Thus, the 

internal stress resultants are :
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........(2.40)

........(2.41)

........(2.42)

2.5.3. Computational Method

To obtain the actual internal stress-resultants of

a section, numerical integration procedure has to be 

applied. The section is usually devided into a grid of 

small elements. The strain and the stress in each element 

are determined using the procedure described above. 

Accordingly, Equations (2.40) - (2.42) may be approximated 

as follows :

elements.

r i=n
N = / <7 .dA = L Aa. . a . . .1

. . . .(2.43)
A n=l

r i=n= J v- V .dA = 22 Aa. . 71li i
...(2.44)

A i=l

r i=n
Mtj = J « -dA = £ Aai- ffi- ..(2.45)

A i=l

where a. is the element area, V. and t. are
1 i

the respective
1

lever arms for £ and V axes and n is the total number of
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This method has been adopted by Gesund [54], Virdi 

[39] and Sen [41]. An alternative method is to adopt the 

Gauss Quadrature Formulae which have been shown by Virdi 

[47,48,49] to be highly versatile and yet remarkably rapid.

According to the Gauss Quadrature Formulae, a 

definite integral between the limits -1 and +1 can be 

replaced by a weighted sum of the values of the integrand at 

certain specific points. Thus :

C1 i=m
/ f( $ ) .d £ = 22 ......(2.46)

-1 i=l

where lb are the weighting coefficients, ^1 = ai are 

specified Gauss points and m is the number of 'Gauss points' 

used in the integration. The higher the value of m, the 

greater is the accuracy achieved. It is pointed out that 

the integration is exact if f(£) is a polynomial of degree 

up to (2m-l). Values of lb and a^ are available in tabular 

form [55,56].

Similarly a double integral can be replaced by a

double summation :



where and Hj are the weighting coefficients and a^ and b^

where the functionare the coordinates of Gauss points

f(^,7?) is to be evaluated. The equation implies a square

area between the limits -1 and +1 for two axes % and *1  .

However, any rectangular area can be successfully

mapped onto the square area limits -1 and +1, as shown in

Fig . 2.10. The converse mapping, from the so called natural

coordinates(£,v) to the Cartesian coordinates (x,y) 

readily performed through the following equations :

x
P

x
q

x=[ (1-0 (1-’?) (1+0(1-’?) (1-0(1+’?) (1+0(1+’?)]

is

(2.48)x r

x s

YP

yq

y=[ (1-O (1-’?) (l+OU-i) (1-0(1+’?) (1+0(1+’?)] yr (2.49)

The elemental area

ys

d£.d7? gets transformed to dx. dy

thus :

(2.50)

where,

X
p

[J]

-(1-0 (l-7?) -(1+V) (l+*7) yp

yq (2.51)

(l-o (1+0 yr

ys

1

4
X

q
X r

x s
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Thus an integral in Cartesian coordinates can be

evaluated as follows :

1 1
/9(x,y) -dX-dY = f /g(x,y) -lj|-d « •d’?

A -1 -1

i=m j=m
= E E V V,Ji •••(2.52)

i=l j=i 1 3 kXi'yjJ

where (x^,y_.) are the Gauss points in Cartesian coordinates.

It will now be shown how the Gauss quadrature can 

be used to evaluate the integrals in Equations (2.53) - 

(2.55), representing the moment-thrust-curvature relations. 

The steel section may be represented by three rectangular 

blocks as shown in Fig. 2.11.

Then the integrals in each rectangle can be 

replaced with the following equations :

i=m j=m
N = E

i=l
E 
i=i

..... (2.53)

i=m j=m
= E E ..... (2.54)

i=l 3=1

i=m j=m
M, = E

i=l
E
1=1

..... (2.55)
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Values of the axial force N and the neutral axis 

inclination a are assumed and the curvature <t> is varied 

between specified limits. To obtain the values of and Mt ? 

in every combination of N, a and </>, the iteration of the 

neutral axis position can be done with the Newton-Raphson 

method.

Firstly dn is assumed, with Equation (2.38) the 

strain in every Gauss point is computed. Secondly with 

Equation (2.39), the strains due to warping at the Gauss 

points of the flanges can be obtained. Then, stresses can 

be computed using those strains obtained previously and 

considering residual strains. Further, the internal axial 

force may be obtained from Equations (2.47) - (2.52). 

These steps are repeated with a small increment Ad^ to dn, 

and the value of the internal axial force obtained is • 

The correction of d^ can be computed with the following 

equation :
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Convergence is normally achieved within two or 

three cycles. However, success of this iterative procedure 

depends on how close the chosen initial values are to the 

final values. If the assumed values are very far, the 

process may fail to converge even if there is a solution.

Once the cross-sectional stresses are obtained 

using Eguations (2.37)-(2.38), the inelastic resistances of 

the section can be computed easily from 

Equations (2.53)-(2.55).

Comparison between the result of the computer 

program and moment-thrust-curvature curves given by 

Chen [40] for WF8x31 section can be seen in Fig. 2.12. The 

differences between two curves are small.

2.6. EXTERNAL FORCE EQUATIONS

To calculate the equilibrium configuration of a 

beam-column subject to an axial load N, lateral loads Px and 

Py and moments about X and Y axes, it is necessary to 

compute external forces at a general displaced section. 

Several methods for calculation are available in literature 

(see, for example, Chen and Atsuta [43]). The external 

forces at a typical cross-section for an assumed 

configuration are shown in Fig. 2.3. The right hand screw 

rule will be adopted for positive moment in the following 
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external force equations. The forces acting in the Z-X and 

the Z-Y plane are shown in Fig. 2.3. The applied moments at 

a distance z from the left end of the beam-column are :

i=nl
M = M -R z-N.v - y P ..<z-z.> ... ....(2.57)X xo yo c yi i

i=nl
M = M +R . z+N.u + y P ..<z-z.> ....(2.58)
y yo xo c . 4^ XI 1

i =1

i=np
R = (-M +M , - y P . .(L-z .))/L . ...(2.59)xo yo yl i=l X1

i=np
R = (M -M , - V P ..(L-z.))/L yo xo xl yi 1

where : M = applied major axis bending moment at 0 
xo

= applied major axis bending moment at L

M = applied minor axis bending moment at 0 
yo

M = applied minor axis bending moment at L

N = applied axial force

P^ = applied point load in the X direction

Py = applied point load in the Y direction

R = minor axis reaction force at 0 
xo

R = major axis reaction force at 0yo J

np = number of point loads

nl = number of point loads to the left side of the

section
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twist

Moments Mx and M are 
y affected by the angle of

of the section 0 . For convenience, in the next

derivation moments Mx and My will be transformed to the axes 

£ and 77 using the following equations :

= M + X 0.M
y

= M - 0 .M
y X

....... (2.61)

....... (2.62)

In addition to components of and M q along the £ 

and 77 axes, they also have components along the axis which 

is perpendicular to the cross-section and is inclined from

the Z axis. These components result in a twisting moment, 

as shown in Fig. 2.13.

= M .du/dz + M .dv/dzx y .......(2.63)

where sin (du/dz) = du/dz and

sin (dv/dz) = dv/dz

A second contribution to M £• is due to the end

shears, as shown in Fig. 2.14.

+. v ...... (2.64)
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A third contribution to M>- arises due to components

N du/dz and N dv/dz acting through the centroid. Therefore 

the third contribution of torque about the centre of twist

is :

........(2.65)

The fourth contribution arises due to the

transversal loads as shown in Fig 2.15 may be expressed :

i=nl
E P •(u-u.)
i=l yi 1

i=nl
Z pxi(v-vi) 
i=l X1

(2.66)

The fifth contribution arises due to the reaction

at the both ends as shown in Fig. 2.16 is

M<5
i=np L - z
-.Epxi-v e-E-)

i=np
+ y p ..u < 

i=i yi

L

L

The total twisting moment is the sum of all

components which have been mentioned above, thus

M<1 + + Mf3 + Mf4 + Mf5 (2.68)
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Combining Equations (2.56) - (2.68)/ the external

moments become :

i=np
M , = M + +M . + V p ..(L-z.)} - N.v£ xo L xo xl yi 1 c

i=nl
- p .<z-z.>+ 0[ M + ———{-M + M ,yi i L yo L 1 yo yl

i=l

i=np i=nl
- L Pxi(L-zi)} + N-Uc + 22 Pxi‘<z-zi> ] ••••(2.69)

i=l i=l
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z i=nP
Mr = [Mxo + "l “{"Mxo  +Mxl + .s Pyi -(L-Zi”

- N-Ve- JT Pyi <»-«!> * N.yo ] -g_

z i=np
+ [ M + ---{-M +m _ - V p . . (L-z.)}yo L yo y 1 /■< x 1 v 1' J

1=1

i=nl
+ N.uc + y ?xj_ <z—z^> + N.xo ] dv 

dz

The Equations (2.57)-(2.71) do not include the 

effect of initial imperfections and end restraints. The 

necessary modifications are discussed below.

-68-



The forces m the X-Z plane of a restrained beam-

column with imperfections, u q are shown in Fig. 2.16. 

Similar imperfections, v are present in the Y-Z plane, and

total deflections, u and 

derivation as follows :

u = u + uc o

v = v + vc o

v will be used in the next

....... (2.72)

....... (2.73)

where u and u are initial and total deflections in X axis, o

and v and v are initial and total deflections in Y axis.o

Referring to Fig. 2.17 the boundary conditions

become :

M.txo M + xo Mrxo
...... (2.74)

M n = M 4- M ...... (2.75)
1-xl Xl rxl

M + M .......(2.76)
tvo yo ryo

M , = M 4- M ...... (2.77)
tyl yi ryl

where : ,txo M, tyo

txl M 1 tyl

M rxo Mryo

M i / rxl M , ryl

= total major and 

respectively

= total major and 

respectively

= major and minor

0 respectively

= major and minor

L respectively

minor moments at 0

minor moments at L

restraint moments at

restraint moments at
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When the restraint is in the elastic range, 

restraint moments may be expressed as the Equations (2.78 - 

2.81). To determine the restraint effect in the elastic and 

inelastic range, virdi [40] has shown it is convenient to 

use the moment-end rotation characteristic of the end 

restraints (Fig. 2.18).

M rxo -K (z=0)xo dz (2.78)

Mrxl Si dv
-dz (z=L) (2.79)

Mryo So
du
dz (z=0) (2.80)

M n ryl
du

Kyl dz (z=L) (2.81)

where : K , xo Si stiffnesses of major axis end

restraints at 0 and L, respectively

So' S1 stiffnesses of minor axis end

restraints at O and L, respectively

M , M rxo rx major axis restraining moments at O

and L, respectively

M , M , ryo ryl
minor axis restraining moments at 0

and L, respectively

1

Finally, the external bending moments may now be

written as :
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i=np i=nl
+ E Pvi (L-Zi) ) - N.vc - E pyi <^i> 

1=1 1=1

+ N,v ] + r M + M + -7- { M ,o dz yo ryo L yl

i=nl
+ M . - M - M - (L-z.) }ryl yo ryo xi 1

i=nl v
+ N.u + V P . <z-z.> ] + -=•— { Mc xi 1 dz L y

i=np
+ M - M , - M n + y P . (L-z.) }

ryo yi ryl i=l xi 1

u
+ __c_ { M +xo M rxo M _ xl - M , rxl

(L-zi) (u-u±)

(v-V±) V
L

i=np
E p
i=l

xi (L-z±)

i=np
i?l Pyi (L-zi) ..... (2.84)
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Equations 2.82-2.84 can be applied to beam-columns 

with axial and concentrated transverse loads. Solution to 

the problem on beam-columns with distributed load can be 

made with approximation, the load is divided into several 

divisions and each division is represented by a concentrated 

load as shown in Fig. 2.18.
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3. SOLUTION FOR DEFLECTED SHAPE

3.1. THEORY

The method is based on satisfying equilibrium 

between internal stress resultants and external forces using 

equations developed previously. Two basic algorithms are 

required for calculating the deflected shape of the beam-

column. The first one relates to the stress resultants 

within the section for an assumed strain distribution over 

the cross-section. Moment-thrust-curvature relations 

described in Chapter 2 are adopted for this purpose. The 

second algorithm deals with convergence to the values of the 

asumed deflections, so that the internal stress resultants 

balance the external forces.

For the reduction of continuum to a system with a

finite number of degrees of freedom, finite difference 

methods are employed in computing derivatives of functions. 

Let the beam-column length be divided into n equal segments 

as shown in Fig. 3.1. End 0 is identified as nodal point 1 

and end L as nodal point (n+1). Further, to simplify the 

derivation, deflections u., v. and 0. will be replaced by 11 1

W3i 2' W3i-1 an^ W3i resPect:*- vel-V•

If 'in' and 'ex' are used as subscripts for 

internal resistances and external forces respectively, then

(3.1)

(3.2)

(3.3)
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As described in Chapter 2, Equations (3.1) - (3.3) 

are functions of deflections. When the deflections do not 

satisfy the equilibrium conditions, there will be some 

differece between the internal stress resultansts and the 

external forces. These errors will be written as Z. Thus, 

there are three equations of Z that can be obtained for 

every nodal point. In qeneral, the equation of Z may be 

expressed as :

Z. = Zi(w1,w2 

= M.
1 .m

w ) m'w3'
M.1 ex

(3.4)

where : m 3(n+l)

To qet the correct deflection values, the Newton-

Raphson method is employed for the iteration According to

this method, the correction value be obtained6 . maywi J

from :

azi azl azl

wi W2 ■5-r ....

3Z2 dZ2 dZ2

W1 dw2 ““ • • • • •
<5w 3

aZ3 aZ3 dZ3
dw dw2 ....

dZ m 5Zm 3Zm
dw, _ aw2

“““T —— — • • • • •
dw3

dz_
— «* “

1 6 w z,dw 1 1m
dz„

dw
'*2 Z2

m
dZ3 3 w„
w 3 3
m

.... ... • • • •

. . . ....

dZm 3w zdw m m
m

........ ( 3.5)
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The next trial value of w^ can be computed with :

wi+1 = w*  + 5Wi .........(3.6)

where k is the number of iteration.

The Jacobian matrix elements in Equation (3.5) are 

derivatives of Z. Equations (3.1) - (3.4) show that Z is a 

function of internal stress resultants and external forces. 

In computing internal stress resultants, strains and 

stresses within a section are affected by the curvature 

which is the second derivative of deflections. With the 

help of finite difference methods, derivatives of functions 

at a point are approximated by an algebraic expression 

consisting of the value of the function at that point and 

several nearby points. in this thesis, only three points 

are considered in the moment-thrust-curvature computation. 

This approximation makes a number of matrix element values 

become zero and the problem becomes simplified.

In computing the elements of Jacobian matrix, the 

end restraint effects, when present, should be considered. 

Without considering these, iteration of deflections may 

oscilate and not converqe. Rotation of an end restraint 

generates moments which can influence the external forces at 

all nodal points. Neglecting the third order derivative, 

rotations about t axis at both ends of the beam-column can 

be approximated with finite difference methods as follows :



xo 2 Az ( 3w 2 + 4W5 - Wg ) (3.7)

xl o-r-- ( 3w2 Az m-1 4w . + w _ m-4 m-7 ) ..(3.8)

Taking zero values for deflections at both ends

into account, Equations (3.7) (3.8) yield

^xo “ 2^Az ( 3w 5 W8 >  (3.9)

*X1 * "2’Az“ ( " 4wm-4 + Wm-7 * .......(3.10)

Similarly

Ko = ~2~Sz~ ( 4w 4 ■ W7 >  (3.11)

\p , = -x-A ( - 4w _ + w )  (3.12)yl 2Az m-5 m-8

The restraint moment Equations (2.88) - (2.91) can

be reformed :

K
M

xo
rxo 2 Az

..... (3.13)3w 5 " W8 ’
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M , rxl
= - -2'iz- ( 4wm-4 - Wm-7 > ......(3.14)

K
Mryo

=_ Y2__( 4w - w )2 A z k 4 4 7 ' ......(3.15)

M nryl

jr
= —Y1— ( 4w - w„ Q )

2 Az 5 8
• • • • • .(3*16)

From Equations (3.13) - (3.18) derivatives of Mrxi

and M . may be written as ryi J follows

d Mrxi (n+l-i) 4Kxo
.... (3.19)

dw5 n 2 Az

d Mrxi (n+l-i) Kxo
......(3.20)

dWg n 2 A z

™rxi (i-1) 4Kxl
......(3.21)— — — — — — “ •

d w . m-4
n 2 A z
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dMrxi (i-1) Kxl
.....(3.22)

5wm-7 n 2 Az

dM ryi 
" d w4

_ ^n+l-i)
n 2 Az .....(3.23)

dM . ryi (n+l-i) Kyo
.....(3.24)d W7 n ’ 2 A z

dMryi (i-1) 4Kyi
• ...... (3.25)dw _m- 5 n 2 Az

dM ryi
dw _m-8 n 2 Az .....(3.26)

3.2. COMPUTATIONAL PROCEDURE

Based on the theory described above, a step by step 

procedure for obtaining failure loads is now outlined.

Step 1 Read in beam lenqth, cross-sectional data, stress-

strain characteristics of the beam material, 

residual-stress and imperfection data, number of 

used nodal and Gauss points, restraint data, 

loadinq conditions and loading increments.

Step 2 Compute geometric properties, section-area, Gauss-

point coordinates, Jacobian matrix determinant, 

torsion constant and shear centre of the section.
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Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Compute residual-strain.

Assume the imperfection and trial values for beam 

deflections.

Compute rotation of the beam ends and derivative 

values needed for the next steps.

For every nodal point, compute the external-moments 

due to the workinq load.

For every nodal point, compute the moment-thrust-

curvature relations for given curvature and axial- 

force. Linear interpolation method is adopted to 

qet the neutral-axis position. Strain due to 

warpinq is considered. The internal-moments are 

computed after the neutral-axis position has been 

obtained.

Compute the difference values between the external 

and internal moments. The differences so obtained 

are used to determine the correction of deflections

in the Step 14. If the iteration is in the first

cycle, then the next step will be Step 9.

Otherwise, it will be Step 14.

Chanqe the value of u at nodal point (i). Then, 

compute the internal-moments at nodal points (i—1) , 

(i) and (i+1) . Compute the values of :
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' Ju^ ' ' aiL '

dMf(i) aM (i+D ^(i+D dMr(i+i)
d ui dtn dth du.

Step 10 Similarly for change of value of v, compute :

aM”(i) 
d v .

1

aM£(i)
av± ' d v . '

1
avi <

Step 11 Change the value of 0 at node (i) • Compute the

internal-moments at node (i-1), (i) and (i+1).

Then, compute the values of :

5M?(i-l) dM”(i-l) aMf(i-l) dM«(i) dM”( 

' dt>± ‘ de± '

5Mf(i) aM?(i+i) '9M”(i+i) dMf(i+i)
d0± ' d0± ' d0i ddj_

Step 12 Compute the element matrix values as the effect of

restraint moments.
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Step 13 After the Steps 9-12 have been done at all the

nodal points along the beam, the matrix 

equation (3.5) may now be formed. Steps 9-13 have 

to be done once only, at the first cycle.

Step 14 Compute the correction values of the beam-

deflections with the help of the matrix obtained

from Steps 9-12. If all the correction values are 

less than the specified minimum correction values, 

then it may be assumed that the stable deflected 

shape has been obtained and Step 15 may now follow. 

Otherwise, correction to deflections should be 

made, and computation may be continued to Step 5. 

If the correction of deflections have been done 

several times, and stability cannot be obtained, 

then the loads should be reduced to the previous 

level at which convergence had been obtained. 

Reductions are also made to the loading increments. 

After the reduction to the loading increment has 

been done several times as specified, and the 

convergence still cannot be obtained, then the 

final load for which convergence has been obtained, 

may be specified as the collapse load.

Step 15 Increase the loads by the specified increment, and

repeat Steps 5-14.
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In determining flange shear (Eq. 2.38-2.39) in

Step 11, it is found that, in elastic range, Equation (2.4) 

will give zero value to dM^/dz, because the incremental 

value of 6 at nodal point n affects the same to the flange 

moments, and , moments at nodal points (n-1) and 

(n+1). To make the iteration converge, Equation (2.4) for 

the first derivative should be modified. With reference to 

Fig. 3.2, the first derivative Equation (2.4) may be 

expressed as :

_1_
A z . . . .(3.27)

where 1

c n

are correction terms.
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Assuming values of c at two nodal points nearby are

equal may be determined as followsc n

c = - ■n "7“ i4 n-1 - M - n M , _ + n+1 M ) n+2 1 .. .(3.28)

or,

c = - ._1_ (m
4 ' n-2

- M + M , _ ) . . .(3.29)n n-1 n n+1

The particular equations used depend on the location of the

point n.

3.3. COMPUTER PROGRAM "BECOL”

The program BECOL has been written for the 

inelastic stability of restrained pin-ended beam-columns 

havinq an axial load, biaxial end moments and some lateral 

loads in X and Y directions along the lenqth. The beam-

column cross-sections are uniform along the length, and may 

be double or single symmetric ones. The cross-section 

consists of three parts, the web and the two flanges. Every 

part may have different stress-strain characteristics. 

Different Gauss point numbers can be used for the flanges 

and the web, in the directions X and Y. The applied end 

moments in the two bending planes may all be different. The 

restraints at both ends are applied in the form of moment-
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rotation characteristics which can be nonlinear. Lateral 

loads on the beam-column act through the oriqinal centroidal 

axis. Ultimate loads can be obtained by increasing some or 

all components of the loads.

As described in Chapter 2, the analysis essentially 

consists of obtaining equilibrium shapes corresponding to 

increasing values up to the peak of the applied load versus 

deflection curve. The Newton Raphson method is employed for 

the iteration in the analysis.
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4. EXPERIMENTAL WORK

4.1. INTRODUCTION

A total of eiqht full scale tests were carried out 

on eccentrically loaded steel beam-columns. The test 

proqramme was oriqinally proposed to explore the steel beam-

column behaviour in the inelastic ranqe. It was intended to 

study the effect of torsion on steel beam-column ultimate 

load.

4.2. DETAIL OF TEST PROGRAMME

Full scale tests were conducted on pin-ended steel 

beam-columns of 203mm - 203mm @ 46kq/m Universal Beam 

section. The tests reported here were divided into two 

qrouos of lenqth, namely S and L. All beam-columns in the 

qroup S were 4m lonq, and the others were 6m. These lenqth 

were chosen to represent the intermediate and the slender 

beam-columns respectively. Three loadinq types as shown in 

Fiq. 4.1 were adopted. Loadinq Type A was a combination of 

an axial load and a manor axis bendinq moment at both ends 

of the beam-column. The major axis end moment ratio was 

1/3. Loadinq Type B was a combination of an axial load and 

a major axis bendinq moment at each end of the beam-column. 

The major axis end moment ratio was -1. Loadinq Type C was 

a combination of an axial load and biaxial bendinq moment at 
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both ends of the beam-column. The major and minor axes end 

moment ratios were 1/3 and 1 respectively. In all tests, 

bending moments at both ends were held constant, whereas the 

axial load was varied from zero up to the collapse load.

Details of the cross section properties

loading used are shown in Table 4.1.

and the types of

4.3. MATERIAL TESTS

The tensile test specimens, as shown in Fig. 4.2,

were taken from the cross-section of the rolled beam-column 

in accordance with BS 18. One was cut from the flange and 

the other two were cut from the web. During the tensile 

tests, two strain gauges were scanned throuqh a computerised 

data logger. A plotter was attached to the computer to 

print the strain-stress curves. The test results are shown 

in Fig. 4.3 and Tables 4.2 - 4.4. In the theoretical work 

reported later, these stress-strain curves have been used 

for the computations.

4.4. INSTRUMENTATION

Strains were measured at three pre-selected 

sections in every specimen by means of electrical resistance 

strain gauges. There were thirty gauges in every section. 

The gauges were applied back-to-back on the flanges and the 

web of specimens according to the pattern shown in Fig. 4.4.
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These qauqes were intended to measure the strain 

distribution at the section, so that the yield zone could be 

detected. The length of each qauqe was 6mm with an average 

gauge factor of 2.14 (supplied by the manufacturer).

Before mounting the strain gauge element on the 

surface of the specimens, the surface was smoothed and 

cleared of all dirt, so that the gauges could be mounted 

properly. In order to make the strain gauges work 

satisfactorily, it was necessary to prevent them from coming 

into contact with moisture. Absorption of moisture by the 

gauge matrix could result in an apparent reduction of the 

gauge factor and in extreme cases passage of current through 

a damp gauge could result in failure of wire due to 

corrosion. Ingress of moisture was prevented by coating the 

gauge with polythylene sheet obtained from CN Adhesives.

Better measuring results could be expected by using smaller 

cuantities of CN Adhesive spread as thinly as possible. 

After mounting and wiring up, a protective covering was 

placed over the gauges and the strain gauge circuit was 

tested.

During the beam-column testing period, strain

gauges were scanned through a computerised data logger,

SPECTRA-ms Measurement System. A SPECTRALAB software was

used to scan, process, store and print the data collected.
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Deflection of specimens under loading was measured 

using dial gauges. These gauges were supported on a rig 

isolated from the loading rig. Deflections were measured at 

five sections. These were located at guarter length, 

midlength, three-guarters length and one section close to 

each of the ends. Normally, there were three gauges in 

every section, one gauge was reguired for horizontal 

direction and the other two for vertical direction. With 

the two gauges in the vertical direction, it was intended to 

measure the twisting angle as well. The gauges had an 

accuracy of 0.01mm and could travel 25mm. Measurement of 

lateral displacement was also done at both ends of the beam-

column, because, as a beam-column specimen was loaded the 

load cell and bearing rotated about axes parallel to the X 

and Y axes. These rotations resulted in displacements of 

the beam-column ends. Owing to friction at the moving 

surfaces, there was a tendency for dial gauges to stick, 

particularly if the spring return was relied upon to make 

the gauge follow the movement of the test specimen. To 

prevent this the gauges were tapped lightly before taking a 

reading.

To record rotational displacement at midlength of 

the beam-column, a mirror was set up at the web. The mirror 

reflected the readings from a stationary scale placed at an 

appropriate distance to give reasonable magnification of 

movements viewed through a telescope after each increment of 

load. The arrangement is shown in Fig. 4.5.
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4.5 LOADING RIG

A riq to test beam-columns of lenqth from 4m to 9m 

was available in the departmental laboratories. It was 

desiqned to test columns in the horizontal position, to 

enable easy monitorinq of various qauqes, and to keep the 

entire column lenqth under observation throuqhout the 

duration of the test. A qeneral arranqement of the riq 

toaether with some equipment used durinq the tests, is shown 

in Fiq. 4.6-4.8.

The riq consists mainly of a substantial steel 

reaction block, desiqned and constructed to support a 

maximum horizontal load of 5000kN at a heiqht of lm. This 

force was transferred to the stronq reinforced concrete 

floor. Detail of the reaction block at the ends are shown 

in Fiq. 4.9.

In the first test, it was found that one of the 

reaction blocks lifted up under load. To prevent the riq 

from deflectinq exessively, two sets of Macalloy bars were 

then placed in the riq. The riq already had provision for 

these bars but due to somewhat low ultimate load expected, 

it was initially considered unnecessary to install these 

bars. Thus the horizontal reaction was obtained partly from 

these Macallov bars and partly from the stronq concrete 

floor.
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The horizontal testinq position of the beam-columns 

provided convenient with reqard to instrumentation, 

recordinq and overall observation. To test the beam-column 

horizontallv, the dead weiqht of the specimen obviously 

qenerated additional bendinq moment, but this effect was 

assumed to be small and could be neqlected.

The pin ended condition of the test was achieved by 

applvinq the load throuqh a Glacier bridqe bearinq of 

rotational, non-translational type at the jack end. At the 

load cell end, freedom of rotation was provided bv a tiltinq 

plate with a concave surface, and the load cell itself had a 

matchinq close fittinq convex head, coated with PTFE.

The axial loadinq was applied by a double-actinq 

hydraulic cylinder iack with a capacity of 5000kN maximum. 

This axial load was measured bv a diqital voltmeter 

connected to the load cell, and also by a meter in the pump 

circuit which activated the iack. The end moments were 

applied throuqh moment-arms and a separate small hydraulic 

-jack with capacity 300kN. The force qenerated bv this small 

-iack was measured by a meter in the pump circuit only.

To indicate the extent of yield zones, the first 

specimen was white-painted and the second one was white-

washed. It was found that the white-wash could qive better 

indication of the yield zone than the paint used. 

Accordinqlv the rest of the specimens were white-washed.
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4.6 LOAD PATH FOLLOWED DURING THE TESTS

At the beqinninq of each test, full end moments 

were applied first, followed by a small axial load. The 

axial load was incremented by small amounts, up to failure. 

When the applied axial load reached about 80% of the 

predicted collapse load value, the loadinq increment was 

then reduced to 25kN. This amount was dictated by the 

accuracy of the scale used.

4.7. TEST PROCEDURE

For each specimen, a preliminary test was conducted 

to ensure the proper functioninq of the instruments. This 

was applied to every specimen before the actual test. In 

the preliminary test, full bendinq moments at both ends and 

only axial loads up to a quarter of the predicted collapse 

load were applied. Durinq this period, all the instruments 

were checked, and reset when necessary.

All initial qauqe readinqs were recorded before the 

start of the actual test. The full bendinq moment at both 

ends were then applied. Another set of readinqs were 

recorded at this staqe, which included all strain qauqe 

readinqs, the major and minor axis dial qauqe readinqs and 

the mirror readinq for twist at the midlenqth. The bendinq 

moment at both ends were held constant by monitorinq the 

meter of the pump circuit. Axial loads were then applied in 
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small increments. After each increment a complete set of 

readings was also recorded. During the test, travel 

capacity of the dial qauqes was checked. Resetting of dial 

gauaes was effected before they could not travel further.

In the inelastic range it was necessary to wait 

until the specimen settled down before taking strain and 

displacement readings. A specimen was considered to be in 

eguilibrium when no appreciable change occured in the 

reading of the measurement monitor. Settling down reguired 

about ten minutes for most beam-columns.

During the last increment of load, the rate of 

displacement increased rapidly indicating that the ultimate 

load of the beam-column had been exceeded.

4.8. TEST RESULTS AND COMMENTS

The experimental research programme undertaken was

divided into two main groups according to slenderness 

ratios :

L/ry = 117.

Group S : Short beam-columns with slenderness ratio

L/rv = 78.

Group L : Long beam-columns with slenderness ratio
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In the first test, for Specimen SI, the riq was not 

provided with Macallov bars. Thus, the horizontal reactions 

were supplied bv the stronq floor only. Due to the bending 

moment resultinq from the lm lever arm, one of the reaction 

block was lifted about 15mm. Obviously this movement 

affected the specimen deflections, and corrections were made 

bv takinq the beam-column end deflections into account. 

Later, to prevent the riq from deflectinq exessively, 

starting from the second test, Macalloy bars were placed in 

the riq. Thus, the horizontal reaction was supplied partly 

by the stronq floor and partly bv those Macallov bars.

It was interesting to note that the mode of failure 

of the beam-columns in both qroups, S and L, were the same. 

Except for Specimens S4 and L4, all beam-columns failed out 

of the plain of the applied bendinq moment. At failure, in 

all cases, physical collapse occured with larqe minor axis 

deflection and twist. Further, local bucklinq occured at 

the compression flanqe, close to the ends where the maximum 

maior axis moment was applied. Judqinq by the presence of 

yield pattern on the whitewashed surfaces, this local 

bucklinq was inelastic in nature.

All the experimental results are presented 

graphically in Fie. 4.12-4.27. The maior and minor axis 

deflections, twistinq anqle and strain values are plotted 

for selected nodal points only. Discussion of the results 

are presented in Chapter 5, when comparing with theory, and 

Chapter 6.
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4.8.1 Specimens SI and LI

Specimen SI and LI were tested with loading type A. 

Maior axis bending moments at both ends were 4500kN-cm and 

1500kN-cm. These moments were generated by applying a small 

iack at the moment-arms. The small "jack also contributed 

60kN axial load to the beam-column. A variable axial load 

was generated by the double acting cylinder -jack. Due to 

the initial deflections and the nature of lateral-torsional 

instability, this load generated minor axis bending moments 

to the beam-column.

The paint of Specimen SI started flaking at the 

compression flange close to the large applied moment when 

the total axial load reached lOlOkN. The same happened with 

Specimen LI with the whitewash when the total axial load 

reached 960kN. The failure of the specimens was caused by a 

combination of lateral bending and twisting. Specimen SI 

collapsed when the total axial load reached 1185kN, Whereas 

Specimen LI collapsed when the total axial load reached 

lOlOkN.

4.8.2. Specimens S2 and L2

Loading type B was adopted to test Specimen S2 and 

Specimen L2. The applied maior axis bending moments for 

these tests were 3000kN-cm and -3000kN-cm. To generate 

these moments, two small lacks were applied at the moment 

-95-



arms. These jacks contributed 120kN axial load to the 

specimen.

The white-wash started flakinq when the axial load 

reached 1370kN for Specimen S2, and to 1120kN for Specimen 

L2, at the compression flanges close to the ends, and at the 

web laterally along the beam-column. The failure occured 

when the total axial load reached 1570kN for Specimen S2, 

and 1270kN for Specimen L2.

4.8.3. Specimens S3 and L3

In common with Specimens SI and LI, Specimens S3 

and L3 were tested with loading type A. In these tests, 

compared with the former, smaller bending moments were 

applied. The moments were 1500kN-cm and 500kN-cm, and the 

small jacks contributed 20kN axial load to the beam-column. 

Again, additional minor axis bending moments were taken into 

account for the lack of straightness.

Flaking of the white-wash occured first at the 

compression flange close to the ends, when the applied axial 

load reached 1020kN for >ecimen S3, and 1070kN for Specimen 

L3. Finally, the cc ipse occured when the axial load 

reached 1520kN for Specimen S3, and 1120kN for Specimen L3.
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4.8.4 Specimen S4

The loadinq type C was first adopted to test 

Specimen S4. The constant forces to generate major and 

minor axes bendinq moments at both ends were 40kN and 5kN 

respectively. Thus the applied major bendinq moments at the 

two ends were 3000kN-cm and lOOOkN-cm, whereas the minor 

axis bendinq moments at the two ends were 300 kN-cm each. 

The forces which were applied at the moment arms contributed 

a total of 45kN axial force to the beam-column.

When the axial load reached 1445kN, the white-wash 

started flakinq at the compression flanqe close to both 

ends. Later, the beam-column collapsed when the applied 

axial load reached 1495kN. Unexpectedly, the specimen bent 

about the minor axis, and in the opposite direction of the 

applied moment. On dismantling, it was found that the bolt 

holes of the beam-ends were not in the correct position. 

For this reason, the axial load acted with eccentricity 3mm 

and qenerated minor axis bendinq moment in the opposite 

direction to the applied moment. Since the bendinq moment 

qenerated by the eccentric loadinq was larqer than the 

applied moment, the deflected shape was dictated by this 

moment.
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4.8.5 Specimen L4

For this test loading type C was adopted. The 

minor axis bendinq moments equal at two ends, were 

1200kN-cm. The major axis bendinq moments were 3000kN-cm 

and lOOOkN-cm. The jacks applied to qenerate end-moments 

contributed 60kN axial load to the specimen.

Flakinq of the whitewash occured firstly at the 

compression flanqe close to the end with the larqe applied 

moment when the total axial load reached 760kN. Later, 

collapse was reached at 860kN total axial load.

4.8.6. Conclusions from the Test Results

The experiments showed that all specimen failures 

occured with larqe minor axis deflection and twist. The 

slopes of minor axis deflection curves near failure were 

less than those of the major axis. The qrowth of the 

twistinq deformations was excessive and the slopes of the 

curves were nearly zero at the peak. These failures were 

characteristic lateral torsional bucklinq failures. Even 

when minor axis bendinq moments were not applied in Loadinq 

Cases 1 and 2, the same type of failure occured (Specimens 

SI, S2, S3, LI, L2 and L3). From Fiq.4.12-4.19 the dominant 

effects which caused failures could be determined. For 

Specimens S4, LI and L2, the dominant effect was minor axis 

deflection. The failure of Specimens SI, S3, L3 and L4 was
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caused by minor axis deflection and twist Both effects

were equal. Finally, twist was the dominant effect 

caused the failure of Specimen S2.

which
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5. VALIDATION OF THE PROPOSED METHOD

5.1. INTRODUCTION

The main purpose of the analytical method described 

in Chapter 2 and 3 was to simulate actual tests, so that 

exploratory calculations could be done with a computer to 

generate data needed for desiqn. Before some relevant 

desiqn data were presented which could be used with 

confidence, it was necessary to validate the proposed 

analytical method. Since the theoretical analysis was based 

on a simulated and idealized material, it was also necessary 

to validate the theory with actual experimentation. The 

experiments conducted for this purpose have been described 

in Chapter 4. Theoretical correlation with the results will 

be considered in this Chapter.

5.2. COMPARISON OF THE RESULTS WITH PREVIOUS WORKS

To verify the biaxial bendinq equations in the 

elastic ranqe, the proposed method was used to solve the 

problems on biaxially loaded elastic columns which had been 

presented by Thurlimann [14], Dabrowski [15] and 

Culver [12]. The examples chosen for comparison were 

Problem 1 and Problem 2 of the above publications. The 

cross sectional properties and the loadinq conditions of the 

examples were as follows :
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W V

8. in e X = 5. in

13.675 in e
v

= 5. in

0.528 in E = 30,000 Ksi

0.333 in • L/r = 60 and 140

For the comparison, the results are also presented 

relative to the current solutions and summarised in 

Tables 5.1-5.2.

From Tables 5.1-5.2 the averaqe values of the 

horizontal and the vertical directions were computed. The 

averaqe value obtained from Thurlimann's paper [14] was 

0.997 with a standard deviation 0.016, whereas the averaqe 

value determined from Dabrowski's paper [15] was 0.947 with 

a standard deviation 0.201. In this case, the deflection v 

at 10 kips axial loadinq of Problem 2, obtained bv Dabrowski 

seemed to have an exeptional deviation. When this result 

was excluded, the averaqe value became 0.992, and the 

standard deviation became 0.009. Further, the averaqe value 

obtained from Culver's [12] was 0.992 with a standard 

deviation 0.008.

Two values of twistinq anqle at the midlenqth, 

obtained with the proposed method, were quite different in 

comparinq with those of the previous work. It was obtained 

when the applied load was low. This inaccuracy could be 

related with the different allowable error used in the 

computer proqram. Since the inaccuracy onlv occured at low
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loadinq, and the proposed method was speciallv developed to

determine the ultimate load, the results obtained with

10 kips axial load were excluded for comparison . Thus, the

averaqe value for the anqle of twist obtained from

Thurlimann's was 1.013 with a standard deviation 0.034. 

From Dabrowski's, the averaqe value was 1.043 with a 

standard deviation 0.032. Computation from Culver's qave 

the averaqe value 1.033 with a standard deviation 0.039.

It has been shown that the current results are in 

close aqreement with those of Culver, Thurlimann and 

Dabrowski. Sliqht differences are attributable to the 

differences in numerical approach.

Birnstiel [29] has conducted experiments to observe 

the behaviour of isolated steel H-columns loaded 

eccentricallv with respect to both principal axes of the end 

cross sections. The results were then examined and compared 

bv Harstead, Birnstiel and Leu [28], Sharma and 

Gavlord [35], Sval and Sharma [57], and Chen and 

Atsuta [58]. The aqreement between those results appeard to 

be satisfactorv• For this reason, it is advantaqeous to 

examine the proposed method with these works. The details 

of the section properties, the vield stresses and the 

loadinq conditions are summarised in Tables 5.3 - 5.4. The 

material is assumed to behave in an elastic—perfectlv 

plastic manner. Comparison of the results is presented in
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Table 5.5 which shows the nominal values of the ultimate

loads, and in Table 5.6, which shows the relative values to

the current results The average ratio of ultimate loads

obtained from Birnstiel [29] was 1.004 with a standard

deviation 0.034 The corresponding correlation with

Harstead [28] was 1.015 with a standard deviation 0.034

Comparison with Sharma and Gaylord [35] gave the average

value 0.960 with a standard deviation 0.051. Further

comparison, with Syal and Sharma [57] showed the average

ultimate load ratio as 1.006 with a standard deviation

0.038. Finally, Chen and Atsuta's results[58] yielded the

average value 0.983 with a standard deviation 0.100.

Further comparison of the current theoretical 

results was made with those of Virdi's and Sen's [59]. The 

method developed by Virdi [39,40] ignored torsional effects 

altogether, as it was developed primarily for torsionally 

stiff sections. The method developed bv Sen [41] on the 

other hand included the effects of twisting and warping. 

Eight cases were analyzed, with three different lengths. 

The three length of 90in, 123in and 153in corresponded to 

weak axis slenderness ratio of 43, 59 and 74 respectively 

representing stocky, medium, and slender columns. Six of 

the columns analyzed were pin-ended while two of the longer 

columns had minor axis flexure restraint. One 

a flexural end restraint stiffness 

and the other (L150H), of 20,000 tonf-

column (L150W) had

12,000 tonf-in/rad,
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in/rad. The details of the columns analyzed are shown in

Tables 5.7-5.8. The section properties were

b = 8.117 in 0.683 in

d = 8.500 in 0.405 in

Comparison of the results is given in Table 5.9

t w

In the case without considering torsional effects, in

comparison with Virdi's, the average value of the ultimate

load is 0.988 with a standard deviation 0.031 If the

results of the restrained beam-column are excluded, the

average value becomes 1.004 with a standard deviation 0.014

Thus, agreement of the numerical results of Virdi and the 

proposed method is satisfactory. • On the other hand, Sen's 

results are guite different with those of the proposed 

method. In this case, the average value obtained is 0.920 

with a standard deviation 0.071. There might be some 

different consideration in the analysis.

The validity of the proposed method for

applications with lateral loadings was checked with

Ho's T46j formula which almost exactly fitted the

theoretical results given by Chen [421. The problem chosen

was Case (6) , beam-columns of W 8x31 were ;analyzed under

uniformly distributed load and the action of a single major 

axis end moment (Fig.5.1). Residual stresses was considered 

with a =0.3<r and following the AISC pattern (Fig . 2.1) .
rc y
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The material was assumed to have elastic-perfectly plastic 

stress-strain curve. Solutions were obtained for a beam-

column with maior axis slenderness ratio of 60, and loadinq 

factors q were chosen as 0 and 2.5. The section properties, 

yield stress and elastic modulus were :

Table 5.10. The averaqe ultimate load ratio of the current 

results was 0.972 with a standard deviation 0.037.

b = 203.2 mm hf 11.1 mm

d = 203.2 mm t = w 7.3 mm

E = 207,000 MPa a = V 248.4 MPa

Comparison of the results is presented in

It is thus clear that the present computer proqram 

for the determination of failure loads in biaxial bendinq 

qives close aqreement with existinq biaxial computer 

proqrams discussed in this sections with exeption of Sen's. 

It remains to be shown that the prediction of ultimate loads 

for the case of biaxial bendinq by the present computer 

proqram is valid. This is achieved by comparinq, in the 

next section, the theoretical results with the experimental 

results reported in Chapter 4.
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5.3. COMPARISON OF THE THEORETICAL AND EXPERIMENTAL

RESULTS

There are several uncertainties involved in actual

experiments. Some of these are :

(a) Variation of imperfections alonq the beam-column 

length.

(b) Simulating theoretical support conditions and 

loading.

(c) Variation in stress-strain relations in different 

parts of the beam-column.

It was realized that there were too many possible 

combinations of those effects. Therefore, to avoid the 

exhaustive investigation of all the various parameters

involved, the main effort was directed towards using the

computer program to obtain corelation between experiment and

theory, focussing on the effect of of variation of

imperfections only. There are two types of imperfections

commonly occuring in beam-columns, namely the residual

stresses locked in the steel sections and the lack of

straightness. The effects of these imperfections were

studied in various combinations. A residual stress pattern 

of AISC type (Fie.2.1) was adopted with = 0.3 a

Since the initial deflections were not measured in the 

experiment, the deflected shape was assumed to be a sine 

wave and the magnitude of the mid—length deflection was 
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taken as L/1000, where L was the length of the beam-column. 

This is now a standard practice.

Computer results were obtained for the following 

combinations of beam-column imperfections, and are presented 

in Table 5.11.

Case A : Results without anv imperfections

Case B : Results with residual stresses only.

Case C : Results with an initial mid-length deflection 

of L/1000.

Case D : Results with combination of Case B and Case C 

imperfections.

Results for Case A show good agreement with the 

test results. The average value of ptest/pxv f°r this case 

was 1.075 with a standard deviation of 0.107. The maximum 

error obtained was 31.5% for Specimen S4, but this was an 

exeptional deviation. -If the results for Specimen S4 were 

taken from the Case C, where initial deflection was 

considered on the same side as the eccentricity, the moment 

generated bv the eccentricity was resisted bv that of the 

initial deflection. Then the ultimate load obtained 

theoretically increased, P^ ./? r was reduced to 1.053 with test xv

a standard deviation of 0.057, and the maximum error became 

12% .
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Accordinq to the results described above, 

imperfections did not seem to affect very much to beam-

columns strenqth. But it will be shown later, in the 

exploratory calcultaions, in Chapter 6, where the 

imperfection effects to collapse load are studied, that 

imperfection effects can reduce a larqe portion of beam-

column strenqth. Since there are no beams perfectly 

straiqht in practice, and desiqn must qive solution on the 

safe side, imperfections must be considered in calculations.

It is interestinq to compare the experimental load-

deflection curve of the eiqht beam-columns with the 

theoretical calculated values. In Fiq. 4.12 - 4.19 the 

deflection in horizontal and vertical directions and the 

anqle of twist have been plotted. The theoretical results 

shown in the qraphs were chosen from Cases A and C. As 

described previously, in Case A the specimens were 

considered to be perfectly straiqht. Therefore, when the 

Loadinq Type 1 or 2 was applied, theoretically no twist nor 

deflection in the X axis. Whereas practically, in the 

experiment the specimens were not perfectly straiqht, then 

twist and deflection were found accordinqly. In Case C the 

specimens were considered to have an initial deflection of 

L/1000 at midlenqth, which was a standard practice. A 

standard is supposed to qive solutions on the safe side. 

The initial deflections used are likely to be a bit biqqer 

than the actual ones. Therefore, the ultimate loads 
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obtained theoretically were lower than those obtained 

experimentally. The specimens were obviously imperfectly 

straight, but the initial deflections were not as larqe as 

L/1000. Therefore, load-deflection relations obtained 

experimentally should be in the range between those obtained 

theoretically, with Cases A and C. These are shown in 

Fig.4.12-4.19, thus corelation between the experimental and 

theoretical result could be achived.

Strains recorded through the computer data logger 

were compared with those obtained theoretically using the 

method on Case A, where imperfections were not considered. 

Fig.4.20-4.27 show, in general good agreement between 

experiment and theory could be achieved, except for 

Specimen S2, which was the first to be tested using 

whitewash as yielding indicator. There was no experience in 

mixing the material with water, so that the whitewash was 

very thin and the water infiltrated to the strain—gauges. 

This caused the strain-gauges did not work properly.
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6. APPLICATIONS AND DISCUSSION

6.1. INTRODUCTION

It may be stated that a computer proqram is now 

available which can be adopted for the stability analysis of 

beam-columns taking account the effects of torsion and the 

lateral deflection of the beam-column. Also included in the 

analysis are the effect of residual stresses and out-of- 

straiqhtness. The method is not, however suitable for use 

as a direct desiqn tool, since the procedure demands 

substantial computer time for each beam-column to be 

desiqned. The procedure can be used for verifyinq existing 

desiqn method, or for developing new ones through parametric 

study. The data qenerated may be used to prepare 

dimensionless tables or charts for various shape of beam-

column cross-sections and slenderness ratios.

In this chapter, the procedure is adopted to study 

the failure loads of bare steel beam-columns subjected to 

axial compression and transverse loads with varying values 

for the parameters such as slenderness ratio and lateral 

loadinq.

The solutions of several problems are examined with 

BS 5400:Part3 [60]. The effects of residual stresses and 

torsion to failure load are also assessed. Finally, 

discussion and conclusions drawn from the experimental and 

theoretical results are outlined.
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6.2. APPLICATIONS

Beam-columns subjected to axial compression and 

transverse load are now investigated. From consideration of 

cross sectional properties only, the profile WF 8x31 section 

represents closely the most commonly used wide-flange 

section in America. Furthermore, curves corresponding to 

the WF 8x31 section represent a good approximation for any 

other wide-flange section and are conservative for the 

sections in the ratio of their shape factor 1.10 [43]. 

Therefore, the cross sectional properties of UC 203x203x46 

which are similar to the WF 8x31 section are adopted for the 

investigation.

A multilinear stress-strain curve, as mentioned in

Chapter 2, can give accurate results. Unfortunately, the

curve is usualv very specific and does not represent a pood 

approximation for other materials. For this reason a 

bilinear stress-strain curve which represents the elastic- 

Perfectly plastic behaviour is employed in generating design 

data. in addition, an elastic-perfectly plastic assumption 

will give results on the safe side. Following 

Bs 5400 : Part 3-6.6, the elastic modulus used in the 

analysis is 205,000 MPa, whereas the yield stress chosen is

355 MPa.

The effect of initial lack of straightness is 

always to reduce the beam-column strength. In this study 

the initial deflection is assumed to be a sinusoidal curve.
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The initial mid-length deflection is determined following 

the Perry-Robertson formula, with v=0.003L/r as was used in 

BS153 [61], the predecessor to BS5400:Part3. Thus, the 

magnitude may be obtained from :

u = 0.003 (---)o h r ....... (6.1)

where : u q = initial deflection at midlength of the beam-

column

r = radius of gyration

h = distance from centroid of the section to the

extreme fibre on the concave side

L = lenqth of the beam-column

The efffect of residual stresses on failure load, 

when major axist moments do not exist, is always to reduce 

the calculated value. But, when major axis moments are 

applied, the effect becomes inconsistent, failure loads are 

increased when the applied axial loads are low, while they 

are reduced when the applied axial loads are hiqh. This 

will be shown later with the results obtained. Since the 

data qenerated are intended to be used in desiqn, then the 

failure loads are computed with and without considering 

residual stresses. The lower results may be adopted for 

design requirements.
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6.2.1 Loading Cases

In the examples with Loading Case 1, the beam-

columns are investigated under axial compression load only 

(Fig. 6.1). Due to the initial deflection, the axial load 

also generates minor axis bending moment with the maximum 

magnitude at midlength of the beam-columns.

The Loading Case 2 deals with axial and 

concentrated transverse loads. The concentrated load is 

located at the midlength of the beam-columns. As for 

Loading Case 1, minor axis bending moment is generated by 

the axial load due to the initial deflection, together with 

major axis bending moment which is generated by the 

transverse load.

More examples are given with Loading Case 3, where 

a uniformly distributed load is applied. It is followed by 

Loading Case 4, where a linearly distributed load with the 

maximum magnitude at the midlength is applied. Finally, 

further examples are given with Loading Case 5. Again a 

combination between a linearly distributed load and an axial 

one is applied, but the maximum maginitude of the 

distributed load is located at one of the beam-column ends.
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6.2.2. Comparison of the Results

The results obtained from the examples are compared 

with BS 5400. Further, comparison is also made between the 

results obtained with and without considerinq torsional 

effect. To avoid an exhaustive study, comparison of the 

results is made for beam-columns with slenderness ratios of 

GO and 100 only. These slenderness ratios are expected to 

represent the intermediate and the slender beam-columns 

which are commonly used in practice.

Accordinq to BS 5400 : Part 3-10.6.1, a member 

subjected to axial compression should be such that the axial 

load does not exceed the resistance PD which can be obtained 

with the followinq equations :

P-. =
e c

...... (6.2)D 7m 7f3

a =c 0.5 [ {1+(1+’J) - 5700
X2

}

-’ZOO.-12 - -- x — ] . . (6.3) 
Xz

X _5»_ </
r T 355 ...........(6.4)

For the section applied (UC203x203x46),

and a = 0.0045( X -15) when X > 15

a = 0 when X <15
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section,

1•2 and

section

Additionally, A is the effective area e

V and yfor the section m f 3

1.1 respectively. Since the

is 0.5, then the value of

may be taken as 0.0045

of the

adopted may be

value of r/y

a

Accordinq to BS 5400 : Part

subjected to coexistent compression

taken as

of

in the Equation

the

6.3

3-10.6.2, a member

and bendinq should be

such that all cross sections within the middle third of the

lenqth of the member satisfy the followinq criterion :

Pmax-----
Mx max

Dxc
+

M v

Dye

max
£ 1.0 . . (6.5)

where : Pmax Mx max Mv are themax maximum axial load,

bendinq moment about the X-X and Y-Y axes,

moments

respectively

PD

Dxc

is as defined in Equations

M are the corresponding 
Dvc

member, with respect

6.2-6.4

resistance of the

to the extreme

copression fibres determined

with 9.9.1 of the standard

In the Loadinq Cases 2-5, the minor

in accordance

axis bendinq

exist due to the initial deflections only. Since

the initial deflection has been considered in determininq

prj' the value of M
u y max

for Equation 6.5 is taken as nil.

Accordinqlv, comparison of the results to BS 5400 can be

niade with :

-115-



pmax +
Mx max
M 1.0
Dxc

The results are presented in Tables 6.1-6.25 and

Fiq. 6.2-6.10. It can be seen, comparison of the results of 

Loadinq Case 1 with BS 5400 shows a good aqreement. The 

averaqe ultimate load without considerinq residual stresses 

is 1.064 with a standard deviation 0.020. If the residual 

stresses are considered, the ultimate loads are reduced and 

the averaqe value becomes 1.040 with a standard deviation 

0.012.

Application of the method in solvinq the problems 

with Loadinq Cases 2-5 shows the effect of residual stresses 

is not consistent. The failure loads are increased when the 

abolied axial loads are hiqh, while they are reduced when 

applied loads are hiqh. Further, the effect of residual 

stresses on slender beam—columns is less than that on stocky 

team-columns.

The effect of torsion on failure loads is always to 

reduce the calculated value. The maqnitude of the effect is 

influenced bv the slenderness ratio and the applied axial 

ic*ad . The more slender the beam—columns, the qreater is the 

reduction in failure loads. Further, when the applied axial 

ioad is hiqh, the reduction in calculated ultimate loads is 

C°rrespondinqly hiqh.
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6.3. DISCUSSION

Comparison of the experimental and theoretical 

results shows that a good agreement can be achieved when 

Case A, where imperfections are not considered, is applied. 

Since there are no perfectly straight beam-column in 

Practice, it can be stated that the specimens are almost 

straight. Therefore the applied axial loads have generated 

small minor axis bending moment. The occurance of this 

moment was confirmed by the fact that all specimens with 

Loading Type 1 or 2 were bent about the minor axis at 

failure. Realizing that the failure of beam-columns is 

likely to be influenced by the lack of straightness, a 

further study was undertaken later. The method was employed 

to investigate the effect of initial deflection to ultimate 

loads. The failure loads of Specimens SI and L3 were 

determined at maximum initial bow of L/1000, L/5000, L/10000 

and L/20000. Comparison of the results are presented in 

Table 6.26, which shows that different value of computed 

loads obtained with and without initial deflections is 

considerable. Further investigation was undertaken to 

compare the results of Loading Case 1, obtained using 

■’■nitial deflections in accordance with BS5400 and BS153. 

Table 6.27 shows the maximum bows used and the results with 

residual stress consideration. It was found that the 

different initial bow between BS153 and BS5400 caused 

different results of less than 5%. It is interesting that a 
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maximum initial bow of as small as l /20,000 can reduce 16.2% 

of the ultimate load of a beam column with slenderness ratio 

117. Thus, initial lack of straightness is a very important 

factor to be considered in formulating design methods.

The effect of residual stress on failure load has 

been studied in the application of the method in 

Section 6.2. Application with Loading Case 1, where axial 

load was applied, an no transverse loads existed, showed 

that'the effect of residual stress was always to reduce the 

beam-column strength. This fact is shown in Table 6.1. The 

magnitude of reduction is around 2.5%.

When a combination of axial load and moment was 

applied, in Loadinq Cases 2-5, the effect of residual stress 

°n failure loads was not consistent. It is shown in 

Tables 6.2-6.17 that the moment resistance is increased when 

the applied axial load is low, while it is reduced when the 

applied axial load is high. The increment to the moment 

resistance when a high axial load is applied, is not very 

larqe, but a reduction of as much as 15% can be achieved 

when the axial load is high.

Another investigation which has been carried in the 

Application of the method is the effect of including torsion 

-i-P calculating the failure load. Loading Cases 2-5 were 

Applied to beam-columns with slenderness ratios of 

60 and 100. The failure loads were determined using the 
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method with and without considering torsional effect. 

Conroarison of the results is presented in Tables 6.18-6.25. 

The effect is always to reduce the ultimate load and was 

influenced bv the slenderness ratio and the magnitude of the 

axial load. A large amount of reduction will be obtained if 

the slenderness ratio or the applied axial load is high. 

Reduction of as much as 35.7% can be obtained, even on beam-

columns with slenderness ratio 60. Thus, torsional effect 

should be taken into account in formulating design aids for 

beam-columns.

It is interesting to compare the results obtained 

from Loading Case 1 with BS 5400:Part3-10.6.1. It was shown 

in Fig.6.2, that close agreement could be achieved when 

residual stresses were considered. It can be seen from the 

braph, the possible point with P/P^=l was at L/r=0. Thus, 

Bs 5400 seemed to give higher strength at slenderness ratios 

between 0 and 30. Since very stocky beam-columns are rare 

Practice, and there are safety factors to be adopted in 

design, the differences can be tolerated. Further, when the 

slenderness ratio was greater than 30, the standard gave 

solutions on the safe side without large margins. Thus, 

RS 5400 appears to be very progressive in this case.

More comparisons of results with BS 5400 were made 

Ori broblems with Loading Cases 2-5, where a combination of 

axial load and a tranverse one was adopted. The problems 

are dealt with in BS 5400:Part3:10.6.1-10.6.2. Comparison 
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of the results was made at slenderness ratios 60 and 100, 

and is summarised in Tables 6.10-6.17. Application of 

RS 5400 on Loadinq Cases 2-5 at slenderness ratio 60, qave 

values around 10% lower than the present results. The 

results are on the safe side and the marqin is not 

excessive. However, the application at slenderness ratio 

100, qave the results as shown in Tables 6.14-6.17 around 

21% lower than those obtained with the present method. 

Thus, when applvinq BS 5400 to beam-columns with Loadinq 

Cases 2-5 at hiqh slenderness ratio, conservative results 

are obtained.

Investiqation has also been taken on the effect of 

differences in loadinq cases. Comparison of the results of 

aH loadinq cases was presented with Tables 6.2-6.9. It can 

seen that the most severe loadinq was the uniformlv 

distributed load (Case 3). Therefore a uniformlv

distributed load mav be recommended to be adopted in 

developinq approximation desiqn methods.
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7. CONCLUSIONS

1 • This thesis describes an analytical method for 

calculating the ultimate loads of steel beam-columns, 

including the effects of torsion and warping, initial 

deflections, and residual stresses. A number of loading 

paths are allowed for. A computer program is now 

available which can be adopted for stability analysis of 

beam-columns. The method can be used for verifying 

existing design methods, or for developing new ones 

through parametric study.

2. Eight beam-columns have been tested under varying 

combinations of axial loading and unequal end mements. 

The beam-columns had two levels of slenderness ratio.

3. Comparison of the results for several loading cases has 

shown that the most severe loading is the uniformly 

distributed load. Therefore, a uniformly distributed 

load may be adopted in developing approximate design 

methods.

4• Comparisons were made between the experimental and 

theoretical ultimate loads as well as deflections and 

strains. The average value of P^_est/PXy was 1’053 with 

a standard deviation 0.057, and a maximum error 12%. 

These figures indicate very good correlation between 

theory and experiments.
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5. The effect of torsion on calculated failure loads is 

always to reduce the calculated value. The magnitude of 

the effect is influenced by the slenderness ratio and 

the applied axial load. The more slender the beam-

column, the greater is the reduction in failure load. 

When the applied axial load is high, the reduction in 

calculated ultimate loads is correspondingly high. 

Reduction of as much as 35% can be obtained, even on a 

beam-column with slenderness ratio 60.

6- The effect of residual stress on failure load when major 

axis bending moment does not exist (Loading Case 1), is 

always to reduce the beam-column strength. The 

magnitude of reduction is around 2-3%.

• The effect of residual stress on failure load when major 

axis bending moments are applied is not consistent. The 

failure loads are increased when the applied axial loads 

are low, while they are reduced when the applied axial 

loads are high.

8 rT’KThe difference in the ultimate loads obtained with and 

without initial deflections is considerable. A maximum 

lnitial bow of as small as L/20,000 can reduce the 

ultimate load of a beam-column, under axial and 

transverse loadings, with slenderness ratio 117, by as 

much as 16%.
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9. Comparisons were also made between theoretical results 

and results predicted by BS5400:Part3. It is found that 

BS5400 predicts failure loads fairly accurately when 

applied to beam-columns under axial loading (Loading 

Case 1). However, when transverse loadinq is present in 

the case of slender beam-columns, conservative results 

are obtained, by as much as 25%.

10. There was no appreciable difference in the computed 

failure loads obtained on the basis of different 

measures of initial imperfections, one based on BS153 

and the other on BS5400:Part3.
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FIG. 2.1. LINEAR RESIDUAL STRESS DISTRIBUTION

(AISC PATTERN)
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FIG. 2.2. PARABOLIC RESIDUAL STRESS DISTRIBUTION

(CAMBRIDGE PATTERN)
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FIG. 2.3 LOADING SIGN CONVENTION USED IN THE ANALYSIS
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FIG. 2.4. DISPLACEMENT OF GENERAL CROSS SECTION
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FIG. 2.5. PIVOTAL AND GRID POINTS

FIG 2.6. TWIST CENTRE OF MONOSYMMETRIC
SECTION
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FIG. 2.7. FLANGE STRAIN DISTRIBUTION DUE
TO WARPING

FIG. 2.8. COMPONENTS OF t1x M1D ny
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FIG. 2.9 SIGN CONVENTION USED IN THE ANALYSIS
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FIG. 2.13. TWISTING DUE TO COMPONENTS
OF nx AND My
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FIG. 2.14. TWISTING DUE TO END SHEARS

FIG. 2.15. TWISTING DUE TO LATERAL LOAD
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FIG. 2.1G. FORCES IN A RESTRAINED BEAtl-COLUMN

FIG.2 .17. GENERALIZED MOMENT-ROTATION CHARACTERISTIC

OF THE END RESTRAINT ON BEAM-COLUMN :
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FIG. 3.1. NODAL POINT NUMBERS

FIG. 3.2. GENERAL FLANGE BENDING MOMENT CURVE .
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FIG. 4.1. LOADING TYPES
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FIG. 4.5 MIRROR ARRANGEMENT TO RECORD ANGLE OF TWIST
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FIG. 4.7. GENERAL VIEW OF THE RIG
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FIG. 4.9. DETAILS OF THE REACTION BLOCK WITH THE LOAD CELL
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FIG. 4.11. TYPICAL DEFLECTED SHAPE AT FAILURE
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CASE 1

1'

CASE 2

1 J

CASE 3

FIG. G.l. LOADING CASES
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Table 4.1
DETAILS OF SPECIMEN PROPERTIES AND LOADINGS

Specimen Lencrth d b t w Loadinq

(cm) (rrm) (nm) (run) (nrn) Type

SI 400. 203.5 203.5 11.3 7.0 1
S2 400. 203.5 203.5 11.3 7.1 2
S3 400. 203.0 203.0 11.4 6.8 1
S4 400. 203.5 203.5 11.4 7.1 3 (*)

LI 600. 202.5 202.5 11.2 6.8 1
L2 600. 202.5 202.5 11.4 7.4 2
L3 600. 203.5 203.5 11.2 6.9 1
L4 600. 202.5 202.0 11.2 6.6 3

(*)  : Due to an imperfection in settinq, the axial load acted 
with -3mm eccentricity.

Table 4.2
TENSILE TEST RESULTS OF SPECIMEN 1

Point Strain Stress ( MPa )

1 0.00000 0.00000
2 0.00141 283.69380
3 0.01400 283.69380
4 0.02400 335.07140
5 0.03000 357.40950
6 0.03800 379.74760
7 0.04800 402.08570
8 0.05400 407.67020
9 0.05600 440.60460

10 0.06000 462.39850
11 0.06400 469.09990
12 0.06600 469.09990
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Table 4.3
TENSILE TEST RESULTS OF SPECIMEN 2

Point Strain Stress ( MPa )

Table 4.4
TENSILE TEST RESULTS OF SPECIMEN 3

1 0.00000 0.00000
2 0.00150 332.78110
3 0.00900 332.78110
4 0.01600 342.28910
5 0.02000 370.81320
6 0.02200 380.32120
7 0.02600 399.33730
8 0.03200 418.35340
9 0.04600 456.38550

10 0.05400 475.40150
11 0.06000 486.81130
12 0.06600 486.81130

Point Strain Stress, in MPa

0.00000 0.00000
0.00150 330.44800
0.01000 330.44800
0.01800 376.34360
0.02000 385.52270
0.02400 403.88090
0.03600 440.59730
0.05400 468.13470
0.05600 486.49300
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Table 5.1
COMPARISON OF RESULTS

WITH CULVER'S, THURLIMANN'S AND DABRCWSKTS RESULTS 
PROBLEM 1

Load
Kips

Current
Results

Thurlimann
[14]

Dabrcwski
[15]

Culver
[12]

(a) Maximum Deflection - u

(b) Maximum Deflection - v

(in) (in) (*) (in) (*) (in) (*)

10. 0.0600 0.0595 0.992 0.0600 1.000 0.0600 1.000
20. 0.1212 0.1215 1.002 0.1213 1.001 0.1212 1.000
30. 0.1838 0.1835 0.998 0.1838 1.000 0.1837 0.999
40. 0.2477 0.2470 0.997 0.2476 1.000 0.2476 1.000
50. 0.3129 0.3130 1.000 0.3129 1.000 0.3128 1.000

(*) : relative to the current results

(c) Maximum Twist-Anqle

(in) (in) (*) (in) (*) (in) (*)

10. 0.0063 0.0065 1.032 0.0063 1.000 0.0063 1.000
20. 0.0127 0.0130 1.024 0.0125 0.984 0.0125 0.984
30. 0.0191 0.0185 0.969 0.0188 0.984 0.0188 0.984
40. 0.0255 0.0250 0.980 0.0251 0.984 0.0251 0.984
50. 0.0319 0.0315 0.987 0.0315 0.987 0.0314 0.984

(rad) (rad) (*) (rad) (*) (rad) (*)

10. 0.00004 0.00005 1.250 0.00005 1.250 0.00005 1.25
20. 0.00019 0.00019 1.000 0.00020 1.053 0.00020 1.05
30. 0.00044 0.00044 1.000 0.00045 1.023 0.00045 1.02
40. 0.00079 0.00079 1.000 0.00082 1.038 0.00080 1.01
50. 0.00125 0.00126 1.008 0.00130 1.040 0.00130 1.04
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Table 5.2
COMPARISON OF RESULTS

WITH CULVER'S, THURLIMAN'S AND DABROWSKI'S RESULTS 
PROBLEM 2

Load Current Ihurlimann Dabrowski Culver
Kips Results [14] [15] [12]

(a) Maximum Deflection - u

(in) (in) (*) (in) (*) (in) (*)

10. 0.3422 0.3427 1.001 0-.0314 0.092 0.3420 0.999
20. 0.7276 0.7279 1.000 0.7259 0.998 0.7267 0.999
30. 1.1662 1.1690 1.002 1.1597 0.994 1.1642 0.998
40. 1.6717 1.6653 0.996 1.6594 0.993 1.6683 0.998
50. 2.2624 2.2704 1.004 2.2473 0.993 2.2579 0.998

(b) Maximum Deflection - v

(in) (in) (*) (in) (*) (in) (*)

10. 0.0348 0.0340 0.977 0.0342 0.983 0.0342 0.983
20. 0.0698 0.0688 0.986 0.0686 0.983 0.0686 0.983
30. 0.1049 0.1028 0.980 0.1015 0.968 0.1031 0.983
40. 0.1395 0.1388 0.995 0.1374 0.985 0.1373 0.984
50. 0.1731 0.1716 0.991 0.1739 1.005 0.1710 0.988

(c) Maximum Twist-Anqle

(rad) (rad) (*) (rad) (*) (rad) (*)

10. 0.00080 0.00075 0.938 0.00077 0.962 0.00076 0.95
20. 0.00337 0.00326 0.967 0.00335 0.994 0.00324 0.96
30. 0.00801 0.00806 1.006 0.00823 1.027 0.00818 1.02
40. 0.01514 0.01568 1.036 0.01611 1.064 0.01602 1.06
50. 0.02536 0.02750 1.084 0.02800 1.104 0.02780 1.10

(*) : relative to the current results
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Table 5.3

DETAILS OF TESTS REPORTED BY BIRNSTIEL [29]

Size of Column Specimens and Eccentricities of Loadinq

e en e enox lx oy ly

Ncminal Lenqth Yield Eccentricities of Loadinq
Specimen size of of stress of
number column column material (in)

(in) (ksi)

1 6 x 6H 96.0 33 1.61 1.61 2.78 2.78
2 5 X 5H 96.0 36 1.60 1.60 3.21 3.21
3 5 X 5H 120.0 36 0.80 0.80 2.63 2.63
4 6 X 6H 96.0 36 1.66 1.66 2.95 2.95
5 5 X 5H 96.0 36 2.36 2.36 3.17 3.17
6 5 X 5H 120.0 36 2.38 2.38 2.51 2.51
7 5 X 6WF 96.0 36 0.89 0.89 2.82 2.82
8 5 X 6WF 96.0 36 0.34 0.34 1.87 1.87

10 4 X 8WF 96.0 36 0.19 0.19 2.60 2.60
12 5 X 5H 120.0 36 0.77 0.77 2.78 2.78
13 4 X 4H 120.0 65 0.42 0.42 2.72 2.72
14 4 X 4H 120.0 65 0.83 0.83 2.35 2.35
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Table 5.4

DETAILS OF TEST REPORTED BY BIRNSTIEL [29]

Cross-Sectional Dimensions of Column Specimens

width Thickness Thickness

Average Dimensions of Cross Section 
at Midheiqht (in)

Specimen Nominal
number size Flanqe Flanqe Depth Web

1 6 x 6H 6.01 0.60 6.01 0.51
2 5 x 5H 5.10 0.42 5.13 0.29
3 5 x 5H 5.11 0.42 5.13 0.28
4 6 x 6H 6.11 0.45 6.45 0.33
5 5 x 5H 5.00 0.51 5.01 0.41
6 5 x 5H 5.02 0.51 5.02 0.41
7 5 x 6WF 5.01 0.48 6.29 0.33
8 5 x 6WF 5.01 0.47 6.28 0.35
10 4 x 8WF 4.00 0.45 8.00 0.34
12 5 x 5H 5.04 0.42 5.02 0.29
13 4 x 4H 4.01 0.35 4.12 0.30
14 4 x 4H 4.01 0.35 4.12 0.30
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Table 5.5
COMPARISON OF RESULTS WITH PREVIOUSLY PUBLISHED RESULTS

Ultimate Loads (Kips)

No.
Experiment
Bimstiel 

[291

Harstead 
et al.
C28]

Sharma
and

Gavlord
[35]

Syal 
and 

Sharma
[59]

Chen and
Atsuta 
[60]

Current
Results

1 92.80 92.80 93.40 93.10 102.70 92.50
2 54.10 52.60 49.90 50.75 49.40 51.41
3 62.70 62.80 58.30 60.84 55.30 59.84
4 86.30 83.30 83.60 84.35 84.90 82.82
5 49.60 52.70 51.40 50.20 46.20 53.01
6 47.90 49.40 49.20 47.76 39.60 49.41
7 76.60 79.30 70.40 80.16 75.70 81.72
8 109.40 110.30 98.00 110.10 110.60 112.73

10 85.00 80.50 75.70 78.70 79.50 76.22
12 51.00 55.70 51.50 56.23 53.30 56.24
13 46.10 45.00 42.70 47.24 45.60 43.59
14 38.70 41.20 37.20 40.12 44.10 38.13

Table 5.6
COMPARISON OF RESULTS WITH PREVIOUSLY PUBLISHED RESULTS 

Ultimate Loads (Relative to the Current Results)

No.
Experiment
Birnstiel 

[29]

Harstead 
et al. 
[28]

Sharma 
and

Gavlord 
[35]

Syal 
and 

Sharma
[59]

Chen and
Atsuta 
[60]

Current
Results

1 1.003 1.003 1.010 1.006 1.110 1.000
2 1.052 1.023 0.971 0.987 0.961 1.000
3 1.048 1.049 0.974 1.017 0.924 1.000
4 1.042 1.006 1.009 1.018 1.025 1.000
5 0.936 0.994 0.970 0.947 0.872 1.000
6 0.969 1.000 0.996 0.967 0.801 1.000
7 0.937 0.970 0.861 0.981 0.926 1.000
8 0.970 0.978 0.869 0.977 0.981 1.000

10 1.115 1.056 0.993 1.033 1.043 1.000
12 0.907 0.990 0.916 1.000 0.948 1.000
13 1.058 1.032 0.980 1.084 1.046 1.000
14 1.015 1.081 0.976 1.052 1.157 1.000
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Table 5.7

STRESS-STRAIN CURVE ADOPTED BY VIRDI AND SEN [591

Curve 1
Point strain stress

(Ksi)

Curve 2
strain stress

(Ksi)

1 0.00000 0.00 0.00000 0.00
2 0.00130 18.00 0.00140 18.34
3 0.00160 20.50 0.00160 19.97
4 0.00181 21.75 0.00193 21.60
5 0.00197 22.40 0.00308 24.86
6 0.00230 23.70 0.00415 26.91
7 0.00258 24.60 0.00960 28.78
8 0.00415 27.75 0.01785 31.30
9 0.00725 30.00 0.02385 32.61
10 0.25000 33.80 0.25000 33.80

Curve 3 Curve 4

1 0.00000 0.00 0.00000 0.00
2 0.00212 29.27 0.00212 28.10
3 0.50000 29.27 0.50000 28.10
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Table 5.8

DETAILS OF LOADING ADOPTED BY VIRDI AND SEN [59]

Stress-Strain
Column L P u o V o M

V
curve

label (in) (tonf) (in) (in) (tonf-in) Flanqe Web

S250 90 250 0.023 0.045 4.0
M230 123 230 0.020 0.030 4.0
M200 123 200 0.015 0.070 4.0
L200 153 200 0.000 0.077 4.0
L170 153 170 0.000 0.077 4.0
L140 153 140 0.000 0.077 4.0
L150H 153 153 0.015 0.110 0.0
L150W 153 153 0.015 0.110 0.0

Note : L150H and L150W had flexural end restraints of stiffness
20,000 tonf-in./rad and 12,000 tonf-in./rad respectively.
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Table 5.9

COMPARISON OF RESULTS WITH VIRDI'S AND SEN'S [59]

ULTIMATE LOADS ULTIMATE LOADS
(tonf) (tonf)

COLUMN TORSION NEGLECTED TORSION CONSIDERED
VIRDI CURRENT SEN CURRENT
[61] RESULTS (3)/(2) [61] RESULTS (6)/(5)

(1) (2) (3) (4) (5) (6) (7)

S250 556.91 553.12 0.993 500. 518.43 1.037
M230 635.06 633.51 0.998 600. 495.23 0.825
M200 706.01 702.33 0.995 686. 579.69 0.845
L200 525.57 541.31 1.030 400. 366.02 0.915
L170 829.02 830.78 1.007 632. 570.00 0.902
L140 1022.83 1024.06 1.001 850. 755.94 0.889
L150H 1046.81 985.31 0.941 982. 960.00 0.978
L15CW 1046.80 985.31 0.941 982. 950.00 0.967

Average : 1.004 0.920
Standard deviation : 0.014 0.071

*) L150H and L150W have minor axis flexural end restraints 
of stiffness 20,000 tonf-in/rad and 12,000 tonf-in/rad respec-
tively.
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Table 5.10

COMPARISON OF RESULTS WITH HO'S [46]

P/PV

M o

i

r-
& 

§1—
1

111

Current
Results

(3)

MV (2)

(1) (2) (3) (4)

q = 2.5

0.0 0.40 0.40 1.000
0.1 0.38 0.38 1.000
0.2 0.35 0.36 1.029
0.3 0.34 0.33 0.971
0.4 0.31 0.30 0.968
0.5 0.29 0.27 0.931
0.6 0.26 0.25 0.962
0.7 0.24 0.22 0.917

q = 0.

0.0 0.92 0.90 0.978
0.1 0.85 0.87 1.024
0.2 0.78 0.76 0.974
0.3 0.69 0.69 1.000
0.4 0.62 0.61 0.984
0.5 0.55 0.54 0.982
0.6 0.49 0.45 0.918
0.7 0.42 0.38 0.905

Averaqe value : 0.972
Standard deviation : 0.037
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Table 5.11

COMPARISON OF THE EXPERIMENTAL AND THEORETICAL RESULTS

FAILURE LOADS (KN)

SPECIMEN CASE A CASE B CASE C CASE D TEST (6)/(2)

(1) (2) (3) (4) (5) (6) (7)

SI 1166.2 1156.9 991.6 989.7 1185. 1.016
S2 1447.5 1435.6 1259.8 1209.2 1570. 1.085
S3 1501.3 1463.8 1204.4 1185.6 1520. 1.012
S4 1137.2 1134.1 1313.8 1307.5 1495. 1.315

LI 935.0 860.0 592.8 581.9 1010. 1.080
L2 1320.0 1120.0 746.2 725.1 1270. 0.962
L3 1020.0 1045.0 714.9 705.5 1120. 1.098
L4 832.7 817.8 745.9 728.0 860. 1.033

Average value : 1.075
Standard deviation : 0.107
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Table 6.1

RESULTS OF CASE 1

L 

r

P P r (3) (4)

(2)
BS5400

P
V

PV (2)

(1) (2) (3) (4) (5) (6)

30 .927 .958 .934 1.033 1.008
40 .870 .925 .894 1.063 1.028
50 .804 .867 .838 1.078 1.042
60 .727 .792 .763 1.089 1.050
70 .644 .707 .674 1.098 1.047
80 .560 .615 .588 1.098 1.050
90 .482 .527 .508 1.093 1.054
100 .415 .451 .437 1.087 1.053
110 .359 .386 .377 1.075 1.050
120 .311 .333 .326 1.071 1.048
130 .272 .289 .284 1.063 1.044
140 .239 .253 .249 1.059 1.042
150 .212 .223 .220 1.052 1.038
160 .189 .198 .195 1.048 1.032
170 .169 .177 .175 1.047 1.036
180 .152 .159 .157 1.046 1.033
190 .138 .144 .142 1.044 1.029
200 .125 .130 .129 1.040 1.032

Average value : 1.0639 1.0398
Standard deviation : 0.0204 0.0116
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Table 6.2
RESULTS OF CASES 2-5

Ultmate Manent (M /M )
L/r = 60 U P

Residual Stresses Iqnored

P
CASE 2 CASE 3 CASE 4 CASE 5

P
V

0.000 0.951 . 0.911 0.919 0.934
0.073 0.895 0.834 0.844 0.860
0.146 0.817 0.755 0.764 0.770
0.219 0.734 0.676 0.685 0.698
0.292 0.650 0.598 0.605 0.616
0.365 0.567 0.518 0.526 0.535
0.438 0.482 0.439 0.445 0.453
0.510 0.397 0.359 0.364 0.371
0.584 0.313 0.279 0.283 0.288
0.656 0.226 0.198 0.202 0.205
0.729 0.134 0.117 0.119 0.121
0.763 0.000 0.000 0.000 0.000
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Table 6.3
RESULTS OF CASES 2-5

Ultmate Manent (M /M )
L/r = 60 U P

Residual Stresses Considered

p

p 
V

CASE 2 CASE 3 CASE 4 CASE 5

0.000 0.955 0.920 0.927 0.943
0.073 0.897 0.843 0.851 0.867
0.146 0.819 0.762 0.770 0.784
0.219 0.734 0.681 0.689 0.702
0.292 0.647 0.600 0.608 0.618
0.365 0.561 0.518 0.525 0.533
0.438 0.475 0.436 0.442 0.459
0.510 0.389 0.354 0.359 0.365
0.584 0.303 0.273 0.277 0.281
0.656 0.215 0.191 0.194 0.198
0.729 0.116 0.103 0.104 0.106
0.763 0.000 0.000 0.000 0.000
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Table 6.4
RESULTS OF CASES 2-5

Ultmate Mcment (M /M )
L/r = 80 U P

Residual Stresses Iqnored

CASE 2 CASE 3 CASE 4 CASE 5

0.000 0.901 0.829 0.832 0.861
0.056 0.837 0.764 0.770 0.792
0.112 0.769 0.699 0.703 0.725
0.168 0.701 0.633 0.637 0.656
0.224 0.631 0.566 0.571 0.588
0.280 0.560 0.500 0.504 0.519
0.336 0.487 0.431 0.436 0.447
0.391 0.411 0.361 0.365 0.375
0.447 0.330 0.286 0.289 0.297
0.503 0.241 0.208 0.209 0.214
0.559 0.141 0.120 0.117 0.120
0.615 0.000 0.000 0.000 0.000
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p

p
CASE 2 CASE 3 CASE 4 CASE 5

V

0.000 0.909 0.842 0.845 0.875
0.056 0.845 0.777 0.778 0.808
0.112 0.776 0.709 0.713 0.734
0.168 0.704 0.641 0.645 0.664
0.224 0.632 0.569 0.575 0.592
0.280 0.558 0.502 0.506 0.521
0.336 0.482 0.431 0.436 0.447
0.391 0.403 0.357 0.362 0.371
0.447 0.322 0.281 0.285 0.291
0.503 0.233 0.201 0.202 0.207
0.559 0.128 0.110 0.107 0.108
0.588 0.000 0.000 0.000 0.000
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Table 6.6
RESULTS OF CASES 2-5

Ultmate Moment (M /M )
L/r = 100u p

Residual Stresses Iqnored

p

p
V

CASE 2 CASE 3 CASE 4 CASE 5

0.000 0.844 0.767 0.779 0.826
0.049 0.781 0.706 0.717 0.759
0.097 0.716 0.644 0.654 0.691
0.146 0.649 0.579 0.589 0.621
0.195 0.579 0.513 0.522 0.550
0.243 0.505 0.444 0.452 0.476
0.292 0.425 0.371 0.379 0.399
0.340 0.336 0.291 0.298 0.313
0.389 0.232 0.198 0.203 0.214
0.451 0.000 0.000 0.000 0.000
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Table 6.7
RESULTS OF CASES 2-5

Ultmate Moment (M /M )
L/r = 100U P

Residual Stresses Considered

1

1 1 V
1

CASE 2 CASE 3 CASE 4 CASE 5

0.000 0.855 0.780 0.791 0.840
0.049 0.790 0.717 0.728 0.771
0.097 0.723 0.651 0.662 0.700
0.146 0.652 0.584 0.594 0.627
0.195 0.579 0.514 0.523 0.552
0.243 0.502 0.442 0.450 0.475
0.292 0.419 0.366 0.373 0.394
0.340 0.326 0.283 0.289 0.305
0.389 0.218 0.186 0.191 0.202
0.437 0.000 0.000 0.000 0.000
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Table 6.8
RESULTS OF CASES 2-5

Ultmate Moment (M /M )/ u pL/r = 120 P
Residual Stresses Iqnored

p
CASE 2 CASE 3 CASE 4 CASE 5

pV

0.000 0.767 0.683 0.688 0.748
0.031 0.722 0.641 0.647 0.702
0.062 0.678 0.598 0.603 0.655
0.093 0.631 0.554 0.560 0.606
0.124 0.580 0.507 0.513 0.554
0.156 0.527 0.458 0.464 0.501
0.187 0.470 0.407 0.411 0.443
0.218 0.408 0.351 0.354 0.383
0.249 0.340 0.289 0.291 0.314
0.280 0.258 0.217 0.216 0.233
0.311 0.149 0.126 0.120 0.128
0.333 0.000 0.000 0.000 0.000
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Table 6.9
RESULTS OF CASES 2-5

Ultmate Mcment (M /M )
L/r = 120u p

Residual Stresses Considered

p
CASE 2 CASE 3 CASE 4 CASE 5

pV

0.000 0.779 0.691 0.697 0.759
0.031 0.732 0.648 0.653 0.711
0.062 0.683 0.603 0.608 0.660
0.093 0.632 0.555 0.561 0.609
0.124 0.578 0.501 0.512 0.555
0.156 0.523 0.455 0.460 0.499
0.187 0.464 0.401 0.405 0.438
0.218 0.399 0.342 0.345 0.374
0.249 0.327 0.278 0.279 0.302
0.280 0.243 0.203 0.202 0.219
0.311 0.130 0.110 0.104 0.111
0.326 0.000 0.000 0.000 0.000
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Table 6.10

CHECKING OF RESULTS OF CASE 2

L/r = 60

p M P M M P Mr - + r

PD flD PD “D “o PD %

0.000 1.053 1.053 1.057 1.057
0.100 0.990 1.090 0.992 1.092
0.200 0.905 1.105 0.906 1.106
0.300 0.812 1.112 0.812 1.112
0.400 0.720 1.120 0.716 1.116
0.500 0.628 1.128 0.621 1.121
0.600 0.534 1.134 0.526 1.126
0.700 0.440 1.140 0.431 1.131
0.800 0.347 1.147 0.336 1.136
0.900 0.250 1.150 0.238 1.138
1.000 0.148 1.148 0.128 1.128

Average value : 1.120 1.115
Standard deviation : 0.030 0.023

-206-



Table 6.11

CHECKING OF RESULTS OF CASE 3

L/r = 60

p M p M M p M
__ , - , . _1_ ______ r ,,, _L__— —

PD “d
PD “d «D PD "d

0.000 1.018 1.018 1.028 1.028
0.100 0.932 1.032 0.942 1.042
0.200 0.843 1.043 0.852 1.052
0.300 0.755 1.055 0.761 1.061
0.400 0.668 1.068 0.670 1.070
0.500 0.579 1.079 0.579 1.079
0.600 0.490 1.090 0.487 1.087
0.700 0.401 1.101 0.396 1.096
0.800 0.311 1.111 0.305 1.105
0.900 0.221 1.121 0.213 1.113
1.000 0.131 1.131 0.115 1.115

Average value : 1.077 1.077
Standard deviation : 0.037 0.029
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Table 6.12

CHECKING OF RESULTS OF CASE 4

L/r = 60

p M P M M P Mr 1 r

PD % PD ”D «D PD ”d

0.000 1.028 1.028 1.036 1.036
0.100 0.943 1.043 0.951 1.051
0.200 0.853 1.053 0.861 1.061
0.300 0.766 1.066 0.770 1.070
0.400 0.677 1.077 0.679 1.079
0.500 0.587 1.087 0.587 1.087
0.600 0.498 1.098 0.494 1.094
0.700 0.407 1.107 0.402 1.102
0.800 0.317 1.117 0.310 1.110
0.900 0.225 1.125 0.217 1.117
1.000 0.133 1.133 0.117 1.117

Averaqe value : 1.085 1.076
Standard deviation : 0.035 0.035
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Table 6.13

CHECKING OF RESULTS OF CASE 5

L/r = 60

p M p M M p M- - ■ _1_ ■■ r ___ +

PD % PD “d % PD «D

0.000 1.044 1.044 1.053 1.053
0.100 0.961 1.061 0.969 1.069
0.200 0.871 1.071 0.876 1.076
0.300 0.780 1.080 0.784 1.084
0.400 0.689 1.089 0.690 1.090
0.500 0.600 1.100 0.596 1.096
0.600 0.506 1.106 0.502 1.102
0.700 0.414 1.114 0.408 1.108
0.800 0.322 1.122 0.314 1.114
0.900 0.229 1.129 0.221 1.121
1.000 0.135 1.135 0.119 1.119

Average value : 1.096 1.094
Standard deviation : 0.029 0.022
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Table 6.14

CHECKING OF RESULTS OF CASE 2

L/r = 100

p M P M M r P M
___ + _E_

PD «d PD “d «D PD ”D

0.000 1.116 1.116 1.130 1.130
0.117 1.033 1.150 1.044 1.161
0.234 0.947 1.181 0.955 1.190
0.352 0.857 1.209 0.862 1.213
0.469 0.766 1.235 0.765 1.234
0.586 0.668 1.254 0.664 1.250
0.703 0.562 1.265 0.553 1.256
0.820 0.444 1.264 0.431 1.251
0.937 0.307 1.244 0.288 1.225

averaqe value : 1.213 1.212
standard deviation : 0.053 0.044
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Table 6.15

CHECKING OF RESULTS OF CASE 3

L/r = 100

p

PD

1

3 i 
3 

1 1 P M

I

, I, d2
1 1 1

P M
— +

PD «DPD «D

0.000 1.094 1.094 1.111 1.111
0.117 1.007 1.124 1.022 1.139
0.234 0.918 1.152 0.928 1.163
0.352 0.826 1.278 0.833 1.184
0.469 0.732 1.200 0.733 1.202
0.586 0.633 1.219 0.630 1.216
0.703 0.529 1.232 0.521 1.224
0.820 0.415 1.236 0.403 1.223
0.937 0.283 1.220 0.266 1.203

Averaqe 'value : 1.184 1.185
Standard deviation : 0.051 0.040
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Table 6.16

CHECKING OF RESULTS OF CASE 4

L/r = 100

p M P M M r P M
PD+ A)

PD
PD ' «D

«D

0.000 1.112 1.112 1.130 1.130
0.117 1.025 1.142 1.039 1.157
0.234 0.935 1.169 0.945 1.180
0.352 0.842 1.193 0.848 1.200
0.469 0.746 1.215 0.748 1.216
0.586 0.646 1.232 0.643 1.229
0.703 0.541 1.244 0.533 1.236
0.820 0.426 1.246 0.413 1.233
0.937 0.291 1.228 0.273 1.210

Average value : 1.198 1.199
Standard deviation : 0.048 0.037
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Table 6.17

CHECKING OF RESULTS OF CASE 5

L/r = 100

P M PM Mr P Mr

PD % PD ”d rlD PD “D

0.000 1.117 1.117 1.198 1.198
0.117 1.082 1.199 1.100 1.217
0.234 0.985 1.220 0.999 1.233
0.352 0.886 1.238 0.895 1.246
0.469 0.784 1.253 0.788 1.256
0.586 0.679 1.265 0.677 1.263
0.703 0.568 1.271 0.561 1.264
0.820 0.447 1.267 0.435 1.255
0.937 0.306 1.243 0.288 1.225

average value : 1.237 1.240
standard deviation : 0.033 0.023
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Table 6.18
TORSIONAL EFFECT ON CASE 2

L/r = 60

VP p tn

p NL tn M M Reduction

p M M M. %

0.000 0.997 0.951 0.955 4.5
0.073 0.962 0.895 0.930 7.0
0.146 0.906 0.817 0.902 9.8
0.219 0.828 0.734 0.887 11.3
0.292 0.736 0.650 0.884 11.6
0.365 . 0.646 0.567 0.877 12.3
0.438 0.561 0.482 0.859 14.1
0.510 0.478 0.397 0.832 16.8
0.584 0.395 0.313 0.794 20.6
0.656 0.315 0.226 0.717 28.3
0.729 0.209 0.134 0.643 35.7

Table 6.19
TORSIONAL EFFECT ON CASE 3

L/r = 60

P Mtn M M Reduction

P M M %
V P P tn

0.000 0.996 0.911 0.915 8.5
0.073 0.954 0.834 0.874 12.6
0.146 0.902 0.755 0.847 15.3
0.219 0.798 0.676 0.847 15.3
0.292 0.703 0.598 0.850 14.5
0.365 0.615 0.518 0.843 15.7
0.438 0.530 0.439 0.827 17.3
0.510 0.449 0.359 0.799 20.1
0.584 0.369 0.279 0.756 24.4
0.656 0.286 0.198 0.690 31.0
0.729 0.175 0.117 0.668 33.2
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Table 6.20
TORSIONAL EFFECT ON CASE 4

L/r = 60

p M, tn M M Reduction

p M M M. %
V p P tn

0.000 0.997 0.919 0.922 7.8
0.073 0.954 0.844 0.885 11.5
0.146 0.894 0.764 0.854 14.6
0.219 0.804 0.685 0.852 14.8
0.292 0.711 0.605 0.852 14.8
0.365 0.620 0.526 0.848 15.2
0.438 0.535 0.445 0.833 16.7
0.510 0.454 0.364 0.803 19.7
0.584 0.373 0.283 0.760 24.0
0.656 0.292 0.202 0.700 30.0
0.729 0.180 0.119 0.662 33.8

Table 6.21
TORSIONAL EFFECT CN CASE 5

L/r = 60

P M tn M M Reduction

P M M M. %
V P P tn

0.000 0.999 0.934 0.935 6.5
0.073 0.953 0.860 0.902 9.8
0.146 0.861 0.780 0.906 9.4
0.219 0.803 0.698 0.870 13.0
0.292 0.707 0.616 0.872 12.8
0.365 0.619 0.535 0.865 13.5
0.438 0.534 0.453 0.848 15.2
0.510 0.452 0.371 0.820 18.0
0.584 0.372 0.288 0.774 22.6
0.656 0.291 0.205 0.705 29.5
0.729 0.178 0.121 0.677 32.3
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Table 6.22
TORSIONAL EFFECT QI CASE 2

L/r = 100

vp  p tn

p Mtn M M Reduction

p M M %

0.000 0.996 0.844 0.847 15.3
0.049 0.950 0.781 0.822 17.8
0.097 0.900 0.716 0.795 20.5
0.146 0.845 0.649 0.767 23.3
0.195 0.776 0.579 0.746 25.4
0.243 0.704 0.505 0.718 28.2
0.292 0.622 0.425 0.683 31.7
0.340 0.508 0.336 0.662 33.8
0.389 0.349 0.232 0.665 33.5

Table 6.23
TORSIONAL EFFECT CN CASE 3

L/r = 100

P M.tn M M Reduction

P M M M. %
V P P tn

0.000 0.997 0.767 0.770 23.0
0.049 0.938 0.706 0.755 24.5
0.097 0.880 0.644 0.731 26.9
0.146 0.808 0.579 0.716 28.4
0.195 0.730 0.513 0.703 29.7
0.243 0.649 0.444 0.684 31.6
0.292 0.552 0.371 0.673 32.7
0.340 0.435 0.291 0.669 33.1
0.389 0.293 0.198 0.678 32.2
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Table 6.24
TORSIONAL EFFECT ON CASE 4

L/r « 100

p Mtn M M Reduction

p M M %V P P tn

0.000 0.997 0.779 0.781 21.9
0.049 0.941 0.717 0.762 23.8
0.097 0.884 0.654 0.740 26.0
0.146 0.816 0.589 0.722 27.8
0.195 0.738 0.522 0.707 29.3
0.243 0.659 0.452 0.686 31.4
0.292 0.562 0.379 0.673 32.7
0.340 0.446 0.298 0.668 33.2
0.389 0.300 0.203 0.678 32.2

Table 6.25
TORSIONAL EFFECT CN CASE 5

L/r = 100

P RLtn M M Reduction

P M M %V P P tn

0.000 0.998 0.826 0 • 827 19.3
0.049 0.941 0.759 0.806 19.4
0.097 0.883 0.691 0.782 21.8
0.146 0.814 0.621 0.763 23.7
0.195 0.736 0.550 0.747 25.3
0.243 0.657 0.476 0.725 27.5
0.292 0.560 0.399 0.712 28.8
0.340 0.443 0.313 0.707 29.3
0.389 0.299 0.214 0.717 28.3
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Table 6.26

STRENGTH REDUCTION DUE TO LACK OF STRAIGHTNESS

( % )

Maximum
Bow

SI
L/r = 78

L3
L/r =117

L/20,000 1.6 16.2
L/10,000 2.4 17.4
L/5,000 3.9 19.5
l /i , 000 15.0 29.9
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Table 6.27
COMPARISON OF THE RESULTS

OBTAINED WITH DIFFERENT INITIAL BCW 
LOWING CASE 1, RESIDUAL STRESSES CONSIDERED

Slenderness 
ratio

uOl

(cm)

P1 
py

u02

(cm)

i i i

i ti
-<

 INJ 1 1

1

(1) (2) (3) (4) (5) (6)

30 0.235 0.934 0.176 0.944 0.989
40 0.314 0.894 0.294 0.898 0.996
50 0.392 0.838 0.412 0.833 1.006
60 0.471 0.763 0.529 0.750 1.017
70 0.549 0.674 0.647 0.655 1.029
80 0.627 0.588 0.765 0.566 1.039
90 0.706 0.508 0.882 0.487 1.043

100 0.784 0.437 1.000 0.418 1.045
110 0.863 0.377 1.118 0.360 1.047
120 0.941 0.326 1.235 0.312 1.045
130 1.020 0.284 1.353 0.273 1.040
140 1.098 0.249 1.471 0.240 1.038
150 1.177 0.220 1.588 0.212 1.038
160 1.255 0.195 1.706 0.189 1.032
170 1.333 0.175 1.824 0.169 1.036
180 1.412 0.157 1.941 0.152 1.033
190 1.490 0.142 2.059 0.137 1.036
200 1.569 0.129 2.177 0.125 1.032

Average value : 1.030
Standard deviation : 0.017

Note : u , initial bow in accordance with BS153.ol

u _ initial bow in accordance with BS5400. 
o2
p and P^ are the computed results, corresponding to u q 1

and u , respectively.
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