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ABSTRACT

This thesis describes the development of an
inelastic stability analysis for restrained pin-ended steel
beam-columns having an axial load, biaxial end moments and
lateral loads in X and Y directions along the length. The
lateral loads may be a combination of several distributed
and concentrated loads. The beam-column cross-sections are

uniform along the length, and may be doubly or singly

symmetric. Ultimate loads <can be obtained by increasing
some or all components of the loads. The analysis can be
made with or without <considering residual stresses and
torsion effects. The analysis essentially consists of
obtaining eguilibrium shape corresponding to increasing
values of the principal variables up to the peak of the
applied 1load versus deflection curves. The Newton-Raphson
method is employed for the iteration in the analysis.
Solutions of the integration of stress resultants are

obtained with the Gaussian guadrature formulae.

Experiments of eight full-scale steel beam-columns
loaded uniaxially and biaxially are reported and used to
check the wvalidity of the analytical method. The
slenderness ratios of the beam-columns tested were 78 and
117. These values were chosen to cover the intermediate and
the slender beam-columns. The discrepancy between the
observed and calculated strength remains an average of 93%

with a standard deviation of 8%.
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The theoretical model was applied to generate
interaction curves for pin-ended steel beam-columns with
concentrated and linearly distributed loads. The results
were compared with BS 5400:Part3. Further, the theory was
also used to study the effects of residual stresses and
torsion on the calculated collapse loads. It was found that
residual stresses could reduce the beam-column strength by
up to 15%, whereas reduction as much as 35% was found due to

the torsional effects on beam-columns with slenderness ratio

0.

_14_



NOTATION
The following notations have been used in the text.
Any deviation or addition has been defined locally.

A = area of cross-section

distance of an elemental area from the centre of

twist

a5 = distance of the centre of the compression flange
to the centre of twist

at = distance of the centre of the tension flange to
the centre of twist

b = flange width

Cfc = stiffness of the compression flange

Cft = stiffness of the tension flange

D = distance between centre line of flanges

d = depth of section

dl = distance of any point , v.) to the neutral axis

d, = distance of the centroid to the neutral axis

E = elastic modulus

G = elastic shear modulus

H = weighting coefficient of the Gaussian quadrature

I = moment of inertia

IP = polar moment of inertia

L = warping riqgidity

Iy = moment of inertia about X axis

Iy = moment of inertia about Y axis

-15



Ivc

XYt

X1

X0
501

Kyo

moment of inertia of the compression flange about
Y axis
moment of inertia of the tension flange about

Y axis

moment of inertia about { axis

moment of inertia about y axis

Wagner effect = 7 "a"dA

stifness of manor axis restraining beam at L

stiffness of manor axis restraining beam at 0
stiffness of minor axis restraining beam at L
stiffness of minor axis restraining beam at 0
St. Venant torsion constant

length of beam-column

moment

moment resistance

major axis moment resistance of the member, with
respect to the extreme fibre

minor axis moment resistance of the member, with
respect to the extreme fibre

minor axis moment of the compression flange

minor axis moment of the tension flange

plastic moment

ultimate moment with residual stresses considered
major axis restraining moment at I,

major axis restraining moment at 0

minor axis restraining moment at L

_16_



Mryo = minor axis restraining moment at 0

= ultimate moment with torsion effect neglected

Mioi = total major axis moment at L
M oo = total manor axis moment at 0
Mtyi = total minor axis moment at L
Mtyo = total minor axis moment at 0
Mu = ultimate moment

My = major axis moment

Moy = major axis moment at L

MXO = major axis moment at 0

MV = minor axis moment

Mv = yield moment

le = minor axis moment at L

MVO = minor axis moment at 0

M, = torsional moment

moment about axis

Moy = external moment about ; axis
Mey g = internal moment about axis
M” = moment about V axis

Moy external moment about y axis
M”in -~ internal moment about y axis
Mf = moment about t axis

Mt = external moment about , axis
Mikn = internal moment about r axis

- axial force, normal force
nP = number of point loads

-17-



nl = pnumber of point loads in the left side of the

section
p = axial force
PD = axial force resistance
Py = point load at the X direction
PV point load at the Y direction
oy = yield axial force
RxO = minor axis reaction force at 0
RVO = major axis reaction force at 0

radius of gyration

S = elastic section modulus
SV - yield stress
S = length of typical element

flange thickness

tW — web thickness

minor axis displacement

c = minor axis displacement of the centroid

Uck = minor axis displacement of the compression flange
caused by the twist

Ufc = minor axis displacement of the compression flange

uft = minor axis displacement of the tension flange

utt = minor axis displacement of the tension flange
caused by the twist

Vfc . shear of the compression flange

W .

ft : shear of the tension flange
\%

major axis displacement

-18-



rc

°rt

X0

*Y1

manor axis displacement of the centroid
displacement component

stiffness of the section about { axis
X coordinate of shear centre

stiffness of the section about V axis
Y coordinate of shear centre

elastic section modulus

error magnitude

plastic section modulus

distance of station 'i' from end O
distance of point load 'i' from end O
inclination of neutral axis with respect to
£ axis

end moment ratio

strain

strain of elemental area 'i'

strain of the centroid

warping straint of an elemental area 'i'
angle of twist

stress

compressive residual stress

tension residual stress

rotation about X axis at L

rotation about X axis at 0

rotation about Y axis at L

rotation about Y axis at 0

-19-
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¢t

distance of elemental area a’ from the

centroid

curvature

curvature about V axis of the compression flange

curvature about V axis of the tension flange

flange curvature about v axis caused by warping

total curvature
curvature about

curvature about

k axis

v axils

a if a>0, and 0 if a<0

-20-



1. INTRODUCTION

1.1. GENERAL

Whether the structure be man-made or created by

nature, the column is a key element in resisting collapse
under gravity loading, in buildings, bridges, plants and
trees. When the axial compression load is combined with

bending, then the members can be specified as beam-columns.
The bending may result from lateral loading, applied end
moments, or eccentric application of axial 1load. Since
compression members in actual structures such as trusses and
frames have unavoidable bending moments along the members
due to the eccentricity of axial force, initial deflection
or restraint from adjacent members, no column with purely
axial load actually exists. Thus, all compression members

could be treated and designed as beam-columns.

1.2. OUTLINE OF PREVIOUS WORK ON BEAM-COLUMNS

A review of literature on axially loaded column 1is
available in several textbooks, and is not repeated here.

The present review relates primarily to beam-columns.

Von Karman [1] was the first to recognize the fact
that the deflected axis of any column could be represented
by a portion of the deflection curve of an axially loaded

column. Based on this concept he gave a general and exact

-21-



theory for the determination of the in-plane buckling loads
of rectangular steel columns with small and egual

eccentricities of loading at each end.

Westergaard and Osgood [2], 1in 1928, simplified Von
Karman's solution of eccentrically loaded compression
members by assuming the deflected centreline of the column
to Dbe a sinusoidal curve. Based on this simplification and
an actual stress-strain relationship, they discussed
analytically the Dbehaviour of eccentrically loaded columns
and initially curved columns. It was found from their
computations that this simplification on the deflected shape
of a column resulted only in a slight deviation from the
more accurate solution and the simplified approach gave
values which lie on the safe side. However, the analytical
expressions obtained by Westergaard and Osgood are still so

complex that numerical results can be evaluated only through

a graphical procedure.

Realizing that the complexity of Westergaard and
Osgood's [2] solution was caused by the nonlinearity of the
actual stress-strain relationship, Jezek [3] ©proposed his
theory by idealizing the material as elastic-perfectly
plastic. Further, jezek established the eguilibrium only at
midheight of the beam-column. The solution based upon these
assumptions leads to analytical expressions for the ultimate

load-carying capacity of eccentrically loaded in-plane beam-

-22-



columns or rectangular cross-sections. It was found by
Jezek that, in general, the values of the maximum strength
computed from his approximate equations were higher than the
values determined from the exact solution using the real
stress-strain curve. But, for all ©practical ©purposes,

Jezek's approximate equations give satisfactory results.

All the work discussed above was done without
considering torsion. Wagner [4] was the first to
investigate torsional buckling of open thin walled sections.
But Wagner based his theory upon the arbitrary assumption
that the centre of rotation during buckling coincides with
the centre of shear, which, in general, was not found in

practice. The results of Wagner's analysis are therefore

not exact.

Goodier [5,6,7] extended the governing differential
equations to include beam-column under biaxial bending with
identical loading conditions at each end. Goodier's
equations were simplified by the assumption that the
twisting and displacements of any cross section of the beam-
column were small compared to the eccentricities of the
loading  Discussions of the theory were given by Bleich

[8], and Timoshenko and Gere [9].

-23-



Neal [107, following Goodier's work, in 1950

studied the phenomenon of lateral buckling in deep mild

steel beams of rectangular

cross-section. The study was

carried out from both a theoretical and an experimental

point of view. Neal obtained numerical solutions for a beam

simply supported at the ends, carrying a central load

passing through the centroid of the c¢ross-section, and a

cantilever carrying a single concentrated 1load. The

solutions were obtained by using finite difference

approximations for the first and second derivatives of the

angle of twist. Later, Wittrick [11] extended the method to

include strain hardening.

Goodier's simplified equations have Dbeen solved

exactly by Culver [12,13] and approximately by Thurlimann

[14], Dabrowski [15] and Prawel and Lee [1l6]. The numerical

results of Thurlimann and Dabrowski are all within 1% of the

exact values given by Culver. The result of prawel and Lee,

however, differ

significantly, in certain cases, from the
exact values. Errors as large as 25% for the deflections
and 7% for the total stress have been obtained. Dabrowski

considered the problem of biaxial bending from an energy

standpoint and utilized the Rayleigh-Ritz method to obtain a

solution. Thurlimann, on the other hand, dealt directly

with the equations of Dbiaxial bending and obtained a

solution using results from the problem of in-plane bending.

Considering the <close agreement between the result of the

_24_



approximate solutions of Thurlimann and Dabrowski and the

exact solution, for the pupose of design calculations, the

approximate solutions seem to be more advantageous than the

exact solution. The approximate solutions may be performed

on a desk calculator whereas the exact solution requires a

digital computer to obtain numerical results in a reasonable

amount of time. However, until the accuracy of the

approximate solutions is established for a wide range of

problems, use of the exact solution seems warranted.

Chwalla was the first to work on the restrained

elastic-plastic column. The work has been reported by

Bleich E8J. Chwalla ©presented a procedure to calculate

equilibrium configurations for columns under eccentric axial

loads. The method was applied to a three-bay column, the

centre bay acted on by external moments applied at the ends

of this bay. Numerical results were given for special cases

and could be adopted as a check on any future simplified

method for investigation of the same or related problem.

More research was undertaken by Biilaard,

Fishermann and Winter E171. They developed a solution to

the problem of elastically restrained columns by limiting

the study to members that did not fail by local or lateral-

torsional instability. Experimental work was carried out on

eighteen columns, half on square bars and the others on

I-sections

To investigate the influence of residual

-25-



stresses, "half of the specimens were annealed. The columns

were tested with fixed degrees of elastic restraint and with

various eccentricities. Ultimate loads were determined as

well as loads which caused first local yielding. Two
computational methods for restrained column of any cross-

sectional shape, bent in symmetrical single curvature were

presented. The first one was an exact method and the other

was based on certain

assumptions. Agreement between

experiment and theory was satisfactory. Later the extension

0of the methods to deal with unsymmetrical Dbending was

developed by Bijlaard [18]. Cases with unequal end

eccentricities and unequal end restraints could be solved

with the methods.

Further and rather more extensive work was carried

out in the University of Cambridge by Baker and his

associates [19] who worked for the Steel Structures Research

Committee to investigate the plastic behaviour of structures

for the design method development. In the experiment,

symmetrical single and double curvature cases were

investigated. The influence of various end conditions were

examined. Firstly the plastic theory applied to columns of

rectanqular cross-section was discussed. Even a rectangular

section had little direct practical use, the discussion was

really important to serve as an introduction to the more

difficult problems involving I sections.

Agreement between

the experimental and theoretical results was very good, the

-26-



average error on the collapse loads was less than 5%. A

great difference between observed and theoretical results

occured 1in a case where a column had been bent in double

curvature. The collapse load obtained when the effects of

unloading were ignored was 12.3% too low. When the effects

of unloading were included, the collapse load was 7.9% too

high. The most 1likely explanation of the excessive value

obtained when unloading was allowed for was the presence of

imperfections, which would lead to asymmetric form of

failure in the actual column. Further, some approximate

methods of calculating collapse loads were also given.

Horne L20j was the first to derive for the

curvature of an initially straight prismatic member of

rectangular cross-section subjected to any combination of

axial load and bending moment about a principal axis. The

material was assumed to show elastic-perfectly plastic

behaviour, with a finite drop of stress at yield. Using

these results, expressions for the shape of elastic-plastic

compression members at all stages of plasticty were derived.

It was shown how solutions for the collapse loads of

eccentrically loaded struts and of members with ends

restrained in certain directions could be obtained without

resorting to numerical procedures.



Horne [21,22] has also provided some design data.
In 1964, theoretical solutions based on modification to an
elastic analysis for beam-columns subjected to any ends
moment ratio with Dboth ends free to warp and simply
supported about the strong and weak axis was published. The
stability criteria were that plastic hinges may form at
either end of the beam-column length. Governing eguations
for bending and torsion involving minor axis imperfections
were reduced to a set of six non-linear equations. These
were solved iteratively to give the maximum safe axial load
in terms of major and minor axis slenderness ratios, the
torsional parameter and the end moment ratio for which the
above mentioned stability criteria were satisfied. The
theory was based on equivalent moment approach which assumed
that the behaviour of a beam-column under an axial load and
two different end moment ratios about the strong axis was
the same as a beam-column subjected to the same axial load

and a uniform strong axis moment MX where M, was a function

of the end moment ratio. The presence of residual stresses
was not considered. Extensive sets of design charts were

produced based on this approach.

In 1959 Galambos [23] provided solutions for the
inelastic lateral torsional Dbuckling of wide flange beam-
columns under uniaxial uniform bending. Lateral torsional
buckling of H-columns is complicated by the occurence of

twisting and warping of the column cross-section

_28_



Analytical solutions for inelastic lateral torsional
buckling of columns are also difficult to obtain owing to
the non-linearity of the governing differential equations

In Galambos' s work the effect of «residual stresses was
considered In the inelastic range, due to primary
deflections in the presence of axial load, the Dbending and
torsional stiffnesses of a beam-column vary along the
length. To simplify the solution, the stiffness of the
beam-column was assumed to be uniform along the length and
egual to the magnitude at the beam-column end An upper
bound solution was thus achieved It would have been
possible to obtain a lower bound solution by evaluating the
moment along the length of the column. However to evaluate
these, recourse would have had to be taken to some form of
numerical technique to establish the equilibrium shape of
the beam column under a given loading. This equilibrium
shape of the Dbeam-column in the inelastic range may be
determined by a number of iterative methods. In the United
State the Column Deflection Curve [24] has been used to find

equilibrium shapes in the plane of bending as would have

been necessary in this case.

A further extension along the same lines was made
by 0Ojalvo [24] who described how convenient nomographs could
be developed for the design of columns with one end hinged
and also for columns with equal applied end moments and

equal rotational restraints. The type of column failure

-29



considered was that of bending about one principal axis of

the cross section. The plane of bending was also the plane

of thrust, applied moments,

and the restraining moments.

Graphical methods of performing calculations with non-linear

rotational restraints and

unegual end eccentricities were
also given.

More accurate solutions for 1inelastic lateral

torsional buckling of beam-columns under major axis bending

were then developed by Galambos and Fukumoto ([25j. In this

work they reported the solution for the one end moment case.

The solution of the problem which consisted of two

separate
steps was one of trial and error.

The first step consisted
of calculating the coefficients appearing 1in the finite
difference eguations of lateral-torsional buckling for the

yielded beam-column at evenly spaced points along the length

of the member. The operations that were involved consisted

of the solution of involved

analytical expressions. The

results of the first computational step were used to set up

the simultaneous equations that furnished the Dbuckling

determinant. This determinant was solved in the second step

by a larger and faster computer.

Further, they [257 showed

graphically the fact that lateral-torsional buckling could

reduce the strengths of beam-column

considerably. It was

also shown that the loading case with one end moment only

was less severe than the case with two equal end moments.
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Another paper was presented by Johnston [26] in

1971. He analyzed the inelastic behaviour of concentrically
loaded rectangular column with the aid of a digital
computer. in the procedure adopted, small increments of

strain caused by axial shortening and bending curvature were
successively superimposed after Dbending began at tangent
modulus load. The superimposition of each incremental
strain distribution resulted from a corresponding deflection
°f the column. The incremental stress distribution should

be such that eguilibrium exists between the internal and the

external bending moments and thrust.

Birnstiel and Michalos [27], following the related
work of Johnston [26], presented a general procedure for
determining the ultimate carrying capacity of columns loaded
eccentrically with respect to their principal axes. The
method was restricted to columns of wide flange sections
made of elastic-perfectly plastic material without residual
thermal strains. Warping strains due to nonuniform twist
were considered. However, their procedure reguires

successive trials and corrections and needs considerable

computational effort for a solution.

A few years later, Harstead, Birnstiel and Leu [28]
improved the ©procedure mentioned above Dby introducing a

systematic correction procedure. Since then, the laborious

trial and correction could Dbe reduced to a few cycles by
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solving a system of linear equation for the corrections at

each station along the columns. Birnstiel and his
associates [29] also conducted experiments on isolated
H-columns subjected to biaxial loading. The result of these

tests and the effects of warping restraint at column ends on
the ultimate load-carrying capacity of the column, and the
effect of residual thermal strains on the behaviour of the
column were examined and compared. The agreement between
the numerical and experimental results appeared to be
satisfactory. Harstead, Birnstiel and Leu [28] stated that
Goodier's equations are not applicable at large loads to
elastic problems such as those selected by Culver [12,13].
This is due to the fact that, as the value of rotation of
the beam-column cross-section become large, the error in

Goodier's approximation becomes considerable.

It has not been possible to obtain analytical
solutions to the differential equations of bending of
elasto-plastic compression members composed of the common
structural sections. In part, this difficulty is caused by
the inability to express curvature explicitly in terms of
moment and thrust. Hauck and Lee [30] solved the problem by
evaluating a series of elliptic integrals, i.e. the
integration of the nonlinear differential equation was
performed analytically. The process of analytical
integration has Dbeen extended for H-section members bent

about their major axes. This has been solved by idealizing

_32_



the member cross-section as being composed of a series of

thin--walled elements.

As an extension to the case of elastically

restrained beam-columns, Milner [31] appears to be the first

to report the theoretical and experimental study of
restrained and Dbiaxially loaded H-section beam-columns. A
computational procedure was developed to enable a

theoretical study of restrained elastic—plastic columns.
The governing differential eguations of eguilibrium -were

first expressed in terms of finite differences and a

numerical integration procedure was adopted for the
solution. His main purpose was to determine the significant
parameters affecting the Dbehaviour of the elastically
restrained H-section beam-columns subjected to Dbiaxial

loading. Milner's results indicated that the effect of

unloading after vyielding occured in biaxially loaded beam-

columns, was to raise the collapse load by a small
increment. The effect of the order of load application upon
the failure load was observed to be significant. Also, the

effects of residual stresses were less when the loading was
eccentric and decreased as the eccentricity increased so

that this effect could be small for restrained beam-columns.

More development and solutions of elastically
Restrained beam-columns under Dbiaxial bending and torsion

using finite difference methods for numerical solutions were
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reported by Vinnakota and his associates [32,33,34] in 1975.
The method could be employed to solve the problem on columns
loaded by equal or unequal end moments with symmetrical or
unsymmetrical rotational restraints at ends. The influences
of material yielding, residual strain as well as warping
strains that resulted from the twisting of the cross-section
°f  column, were included in the analysis. The equilibrium
equations were formulated with respect to an arbitrary
coordinate system and no reference was made to the shear
centre, centroid, or principal axis. This way the shift in
fhe shear centre and the shift and rotation of principal
exes of the elastic core, as yielding of the cross-section
Progress was taken <care of automatically. Further, the
Predicted ultimate loads and load deformation responses

showed satisfactory agreement with the available test and

enalytical results.

Sharma and Gaylord [35] applied Jezek's concept to

biaxially 1loaded beam-columns and assumed, as well, an
elastic-perfectly plastic idealization for the material and
sinusoidal wvariations for the lateral displacements and
r°tation of the cross-section of the deflected axis of the
beam-column. The solution of the equations of equilibrium
Was simplified by only considering equilibrium at midheight
of the beam-column between the applied force at the ends of

beam-column and the internal resistance of the midheight

°f the beam-column.
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Employing a similar technique adopted by Fukumoto
and Galambos [23], Lim and Lu [36] studied the occurence of
inelastic lateral torsional buckling of laterally
unsupported beam-columns restrained against weak axis
lending and warping at the column ends. Both the tangent
modulus and the reduced modulus solution were provided. The
same technique was extended to cover the case o0of inelastic
lateral torsional Dbuckling problems in continuous beam-
columns with warping and weak axis bending restraints at the

joints.

A more approximate method of analysis for biaxially

loaded restrained columns has been described by

Santathadaporn and Chen [37]. The problems to be solved are
limited to the case of symmetrical loading. The deflected
shape of the column was assumed to be a sine function. The
unalytical ©procedure required calculation of the internal
forces including torsional moments of the elastic-plastic
Cr®ss-section. For this the column cross-section was
divided into finite elements. The strain and stress at each
element were computed as the average values at its centroid.

Numerical integration was performed by summing up the effect

all the elements. The equations were expressed in a

different form and were derived for the rate of change of
forces as variables denoting infinitesimal increment.
Similarly the rate of change of external forces at mid-span

°f the column were developed. Yielding and instability
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effect were incorporated in the stiffness matrix [38] which
can be interpreted as the tangent of the load deformation
curve. The actual solution ©process was 1iterative and

equilibrium was only satisfied at mid-height of the column.

The Newton-Raphson iterative approach was extended
fo solve the general case of asymmetrical biaxial bending of
Pin ended columns by Virdi [39,40]. The theory was
developed in connection with studies on composite concrete
columns. in the analysis, all twisting effects are ignored
because of the large twisting rigidity of the solid cross-
section. Thus the method is quite simplified and applicable
to many biaxially loaded beam-columns of solid sections such
as reinforced concrete or steel concrete composite sections
as well as torsionally stiff bare steel beam-columns. In
order to calculate the internal forces of a section, the
section was divided into finite elements as was adopted by
Harstead, Birnstiel and Leu [28]. Moment-thrust-curvature
relationships were computed by summing up the effect of all
"be small elements and using an interpolation technique. In
computing these relationships the exact nature of the
stress-strain curve was accounted for by idealizing it as
rnultilinear curve. Residual stresses could also be

lricorporated. A finite difference scheme was employed to
determine the stable deflected shape. A set of trial

deflections was assumed along the length and curvatures

computed. Moment-thrust-curvature relations were then
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computed for given axial load. To follow, external moments
were calculated and compared with the internal moments. The
solution ©process was iterative and the Newton-Raphson

correction ©procedure was set up at this stage for obtaining

the new deflected shape. Subsequent deflected shapes were
obtained for increasing axial loads applied eccentrically.

a later development, Virdi improved the integration of

stress resultants using Gaussian quadrature formuale [40].

In a more recent work Sen [41] presented an
analytical method to solve the problem of determining the
failure load of steel beam-columns. The problem
investigated was that often encountered in practice of major
axis asymmetrical bending with minor imperfections. The
tests covered  peam-columns of short to intermediate
slenderness (45-74) on which high axial 1loads could be
sustained and in effect explored the plastic hinge rotation
capacity in this load range. The theoretical work covered
torsional effects and asymmetric bending. A  numerical
solution based on central finite differences was adopted in
t'tie study and the method employed was Successive Over
Relaxation. The method developed covered initial curvature,
residual stress and a non linear stress-strain curve.
However, the solution was for double symmetric I-section

only.
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A detailed description of available design methods
has been published by Chen and Atsuta [42,43]. They
Presented ©precisely the Dbasic theoretical principles,
methods of analysis in obtaining the solutions of beam-
columns, and the recent developments of theories of
hiaxially loaded beam-columns. It was shown how those
theories could be used in the solution of practical design
problems. Residual stress imperfections, and elastic-
Plastic behaviour were included in their methods. After
Presenting the basic theory systematically, from the most
elementary to the most advanced stage of development, they
Proceeded directly to the solutions of particular problems.
The various methods of solutions were ©presented. In most
cases, numerical results were given 1in terms of tables,
charts, and diagrams which furnished wvalues of critical

loads for various beam-column problems.

Later, more recent developments in design methods
were presented Dby Lui and Chen [447. A deterministic
aProach was used to assess the strength of centrally loaded

H-columns, taking into consideration the effects of residual

stresses, initial out-of-straightness, and small end
Restraints. The column types wused in the study included
ltlot~rolled wide-flange shapes and flame-cut H-shapes. The

deterministic column strength data were generated with the
"Bid of a computer. These data were analysed and

Categorised, resulting in the development of a set of
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restrained-end multiple column curves. These curves were
then compared with the current column design curves to show

the effect of small restraint on the maximum strength of

columns. in addition, the new column curves were compared
Wlth the basic column curves [457, and effective length
factors, expressed as a function of the magnitude of end

restraint, were proposed.

Interaction between elastic Dbuckling and plastic
collapse has been studied by Ho [46]. Investigation was

carried out on the failure of Dbeam-columns subjected to

“xial compression, transverse loading, and unequal end
foments. a formula was proposed to predict the failure load
°f such Dbeam-columns. Derivation of the formula was based

°n the concept of interaction between the two modes of
failure, i.e. elastic buckling and plastic collapse of the
beam-column, The effects of initial deformation, residual
stresses and the spread of plasticity in the beam-column
were considered. Subsequent application of the formula to
other more (general cases showed that good agreement with
results obtained either theoretically or experimentally

could be achieved
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1«3. SUMMARY OF RESEARCH AND FORMULATION OF THE PROBLEM

The behaviour of beam-columns has been the subject
of research for many years. A substantial amount of work,
both experimental and theoretical, has Dbeen done on the
problem of bare steel beam-columns. Usually, the deflected
shape of the beam-column is assumed to be a sine function
and the stability of the structure is checked at the
midlength only. in the traditional approach, the
development of the methods are based on the elastic limit of
the structures. The recent development of the limit state
approach to design has focused attention on simplifying
design procedures and accuracy of the results obtained. It
is possible to make an accurate analysis of the behaviour of
steel beam-columns which includes the effect of torsion,
residual stress and imperfections. However, the more
accurate are the results expected, the more factors are

needed to be considered and the more complicated problems to

be solved. Thus, it seems to be impossible to get
simplicity and accuracy at the same time. Since approximate
solutions are more advantageous than the exact one, design

rules are usually based on an appoximate analysis and
certain effects may be covered by means of a safety factor.
Obviously, accurate information about these effects is
needed for this purpose. Although torsion effects have been
considered in many design methods, relatively 1little
information is available about its magnitude for design

Purposes
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In this study, a rigorous method of the ultimate
load analysis of steel beam-columns has been developed. The
solution may be obtained with or without <considering the
effects of torsion, residual stresses and imperfections on
the beam strength. The effect of torsion on the steel beam-
column ultimate load 1is explored by means of a parametric
study. Before the relevant design data can be used with
confidence, it 1s necessary to prove the validity of the
theory through carefully selected experiments. The validity
°f the computer program is also proved by comparing the
results with the available experimental and theoretical
data. Design data and graphs are presented for future
developments. The analytical ©procedure, in general is
similar to the ©previous method wused by Virdi [39,40] to
study composite concrete columns with the notable difference
being the inclusion of +torsional effects in the present
study. Thus, the actual deflected shapes of the beam-
columns are determined Dby iteration and stability is

examined at each nodal point.

SCOPE AND LAYOUT OF THE THESIS

The general objective of this thesis was to obtain
analytical method which could be employed to simulate
Actual tests for determination of the collapse load of Dbare

steel beam-columns under biaxial bending.
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In Chapter 2 the theory adopted to develop the
proposed analytical method 1is outlined. The assumptions

taken are described and the equations are derived.

Chapter 3 describes the computer program BECOL
written to determine the ultimate load of monosymmetric I
steel Dbeam-columns, including the residual strain and
torsional effects. In this chapter, the computation

procedure is outlined.

Chapter 4 introduces the experimental work. In
this part, details of the test programme, material tests,
load paths followed during the tests, instrumentation,

loading rig test procedures and test results are described.

Chapter 5 deals with the wvalidity of the computer
program. For this purpose, the validity is examined in the
light of comparisons with the existing solutions of biaxial
bending for beam-columns. Comparison between the
theoretical and the experimental results is also presented

in this chapter.

Application of the method 1is demonstrated to
generate design data in Chapter 6. It 1is followed by
discussion of the results obtained. Finally, conclusions

drawn from the theoretical and experimental results are

outlined in Chapter 7.
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2. FAILURE LOAD THEORY

2.1. INTRODUCTION

The general approach in obtaining the failure load
of a beam-column is to calculate the deflected shape under a
small fraction of the design load. For equilibrium, the
external forces and moments are balanced by the internal
stress-resultants. Moment-thrust-curvature relations can be
adopted to compute the internal stress-resultants. This
requires information about steel stress-strain relations and

any residual stresses in the cross-section.

Iteration for calculating the deflected shape which
satisfies the equilibrium conditions may be done using
Newton-Raphson method [47,48,49]. After the equilibrium
conditions have Dbeen obtained, the computation may proceed
with further loading increments. These steps are repeated
until a deflected shape in equilibrium with the applied
loading can no longer be obtained. The final load
combination which satisfies the equilibrium condition may be

specified as the ultimate load of the beam-column.

For a given cross-section under a constant thrust,
the wvariation of moment with curvature is linear in the
elastic range. In the inelastic range the relation becomes
non-linear and is also affected by the presence of residual

sStresses.
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The numerical integration method adopted here is
similar to the one suqggested by Virdi [47,48,49]. The
cross-section 1is divided into a few rectanqular blocks for
computing the internal forces. Gauss quadrature formulae
are used to obtain the integration involved. Residual

stress can be easily accounted for.

2.2. ASSUMPTIONS

The major assumptions are as follows

(a) Deflections are small, so that curvature can be
represented by the second derivative of the
deflections

(b) The lateral loads act through the original centroidal
axis of the beam-column.

(c) The cross sections are uniform over the length of the
beam-column.

(d) The effect of shear stresses on the vyielding of the
section is neqgligible. Further, the shear stresses
have no effect on deflections or 1in producing a
combined stress yield condition.

(¢) The shear modulus G is assumed to retain 1its full
elastic value after yield has taken place.

(f) Local Dbuckling of individual rectangular elements

comprising the section, 1is ignored.
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2.3 STEEL STRESS-STRAIN RELATIONS

Most previous studies reported in literature, Thave
adopted an elastic-perfectly plastic bilinear curve. The

effect of strain hardening has usually been ignored

The theory developed here is Dbased on a multi-
linear stress-strain characteristic. Any experimental

stress—-strain curve can be idealised as a multi-linear curve

with a desired degree of accuracy. This also enables the
analysis for bilinear elastic perfectly plastic
characteristics

2.4. RESIDUAL STRESSES

The residual stresses are defined as those stresses
that remain in structural member after the rolling or
fabrication processes. To satisfy the conditions of
equilibrium, the axial force and moments obtained by
inteqrating the residual stresses acting on any cCcross-
section must be zero. It is now recogqnised that in order to
obtain a better understanding of 1inelastic beam-column

behaviour it is necessary to consider residual stresses.

Residual stresses are introduced into a member due
to cooling of different parts of the section after the hot
rolling process. The portion of a member that cools most

slowly develops residual tension that 1is Dbalanced by
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residual compression in other portions of the member. in
the fabrication of metal structures, flat plates and
straight beams are often formed or straightened at room
temperatures into desired shapes. These cold-forming
operations obviously cause inelastic deformations and
residual stresses, since the steel retains its formed shape.
The magnitude and distribution of residual stresses across
the section are highly variable, depending on the shape and

size of the section and manufacturing process.

The typical hot-rolled H shape has residual
compression in its flange tips, and residual tension in the
vicinity of the flange-web junction, which cools slowly.
According to Brockenbrough and Johnston E50] residual
stresses from cooling are approximately constant along the
length of a column, whereas cold-straightening stresses
frequently occur only at particular locations where the
member has been straightened For most columns, the maximum
compressive stresses caused by cold straightening are of
about the same magnitude as those caused by cooling, but
Brockenbrough and Johnston have shown that residual stresses

which result from cooling are more important from the stand

point of column strength.

Two residual stress patterns are frequently
considered in studying inelastic beam-column behaviour. The
first pattern is shown in Fig. 2.1 and assumes linear
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variation between points of extreme stress. The second
pattern is shown in Fig. 2.2. The wvariation 1is parabolic
with compressive stresses in the web. In using these
patterns in moment-thrust-curvature relations, the residual
stresses are first converted to residual strains. The
strains due to the applied loads are superimposed on the
residual strains. The net stresses in the section can now
be determined using the net strain so obtained and the

material stress-strain characteristic.

In the results presented in this thesis, the first
residual stress ©pattern has been adopted. Based on the

condition that residual stresses are self-equilibrating, the

tensile residual stress a in the web can be obtained
using
b.t_
art ~ frc b7t ~+"t .2d - 2t’y -(2.1)
f w f

where Db = flange width

tf = flange thickness

d = depth of the section

width of the web

o+
Il

re compressive residual stress

tensile residual stress

%)
Il
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2.5. INTERNAL STRESS-RESULTANTS
2.5.1. Internal Stress-Resultant Equations

Fig. 2.3. shows a Dbeam-column with its applied
loading. The loading consits of an axial force N, lateral
forces and p , and end-moments about the X and Y axes.
The right hand screw rule has been adopted for positive
moments. Fig. 2.4 shows the general displacements of a
cross-section. Equilibrium has to Dbe satisfied in the

deflected state of the beam-column.

The cross-section is initially in position 1
Under the action of external forces, the cross-section moves

to position 2, giving the u and v displacements shown

Displacements u, v, the twist and the coordinates of §,
viz. X and y, are all positive as shown. The quantities u,
v and 0 are small so that the geometry of small

displacements applies

The cross-section undergoes twisting during
deformation. Thus, the member principal axes X and Y rotate
through an angle (0, taking the orientation of axes { and v
The displacement components u, and v, of a point S at

(Xo/Vo|] relative to the centroid, become

u = u + O.yo ....... (2.2)
v o=v - 6.X il .. (2.3)
c o)
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Another geometric change which occurs during the
beam-column displacement is the inclination of the f axis
to the original 7 axis caused by the slope du/dz and dv/dz.
Thus twisting the beam-column together with u and v
displacements means that forces computed in the X-Y-Z
coordinate system differ from those computed for the
5 - n-f system

Curvature of any such section may be determined
with the finite difference methods, a technique for the
reduction of continuum to a system with a finite number of
deqrees of freedom. The basis of the method is that the
derivatives of functions at a point can be approximated by
an algebraic expression consisting of the wvalue of the
function at that point and several nearby points. Detail of

finite difference methods are available in several textbooks

(see, for example, Collatz [51] and Vinnakota [52]). In
this method, central differences will give more accurate
results than backward or forward differences. For this

reason, central differences will be adopted for the proposed
analytical method. The first and the second derivatives of

a function (Fig. 2.5) may be approximated with the following

equations

N
|
N

+u ) L. (2.4)

i-1
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Internal stress-resultant equations of elastic

members have been discussed extensively in many
textbooks [9]. By virtue of the assumption regarding plane

sections, the elongation ¢ 1s proportional to the distance

from the neutral axis. In the elastic case, the stress at
any fibre 1s proportional to the strain The moments
and are approximated by the following equations
dzv
EI”® (2.5)
dz
d2u
EI, —— 2 -+ (2.0)
dzz
where: E = elastic modulus
I* = moment of inertia about { axis
17 = moment of inertia about y axis
The twisting moment including pure torsion,

Wagner-effect and warping is written in the form

<30 d 0 2.7
daz T K & (2.7)
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where G shear modulus

t = thickness of typical element

s = length of typical element

a = stress in a small element

a = distance of the element from the centre of
twist

I = warping rigidity

0 = angle of rotation of the section

In studying failure load, inelastic Dbehaviour of
the material has to be considered. Since the assumption
regarding plane sections 1is applied, then the elongation e
is proportional to the distance from the neutral axis. But
it should be noted, the stress is not proportional to the
strain in the inelastic range.

Accordingly the deteriorated stiffness about 1{ axis

may be expressed as
(2.10)
A
where dA a small area of the cross section
a stress of the small area dA
lever arm of dA to { axis

A total area of the cross section

Similarly about the 1 axis the stiffness becomes

J



The Wagner effect term K in Equation (2.7) can be

where 1 = distance from the dA to the centre of twist

If the stiffness of the compression and tension

flange are denoted by Cf and cfrr then

Ceo Z (b f ) dA (2.13)

Cft Z ( o™ £ /v | dA (2.14)

where A = areas of the tension and compression flange
The shear centre, S , of a monosymmetric I section
(Fig.2.6) can be calculated with the following

equations E 53]

4 7 ... (2.10)

ay - e (2.17)
Tyc + Tyt
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where ch and Iyt are the section minor axis second moment
of area of the compression and tension flange respectively.
The values of P thus range from 0 for a tee-beam with

flange in tension to 1 for a tee-beam with flange in

compression. For an equal flanged beam, P is 0.5

The contribution of the twist 6 to the flange

deflections can be shown with the following equations

minor axis displacement of the compression
flange caused by the twist
minor axis displacement of the tension flange

caused by the twist

Curvature which is caused by the warping
deflections at flanges generates strains in the flange-
elements. These warping strains should be considered in the
stress computation. Distribution of the strains can be seen

in Fig. 2.7.

Taking the warping deflection into account, total
displacements of the compression and tension flange, ufc an<

Uf are expressed as

A

rc

u s u + O.g ..... (2.20)
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uft = u - 9,at . (2.21)

Based on Equations (2.20) and (2.21), the

curvatures of compression and tension flanges, and

can be determined by

B dnu d2 0 .
'oac! ) | eeee e .
fc d22 dz
d2u d2 0
= —d_2~ at‘_a;r ------ (2.23)

As mentioned previously, the stiffnesses of the
compression and tension flange are C”c and respectively.

Then the flange bending mements, and M™t may be obtained

with the following equations

2 d2 0
d
Mfc = Cfc-< s + ac- 2 (2.24)
dz? dz
d2u d2 0
Mft — Cfﬁ "y ap 4 ? ) EECE (2.25)
- Z

The respective flange shear, V~c and V.7, after

neglecting the certain product of small quantities become
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The resisting warping torque about ¢(, M % is
W

expressed as

Mwf = vfc-ac - VEfat (2.28)

Combining Equations (2.5)-(2.6) with Equations

(2.10)-(2.11), resisting bending moments may be obtained

with the following equations

(2.29)
M o'.f.dA (2.30)
From Equations (2.7)-(2.9) and Equations
(2.13)-(2.30), twisting moment resistances can be computed
as follows
dM- dMft
k) F o< - At
Mr <gk t k) az .ac ar——at o . (2.31)
2.5.2 Moment-Thrust-Curvature Relations

There are nine variables involved in the moment-

thrust-curvature relations when torsional effects are
considered. The variables are : moments M |, My and )z
axial force N, primary curvature of the beam < secondary
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curvature of the flanges due to warping & , distance of the
neutral axis to the origin d , inclination of the neutral

axis a and angle of twist of the section 0.

For convenience, 1in the next derivation, moments
Mx’ My and MZ will be replaced by Y/ and M*,
respectively. With reference to Fig. 2.8., correlation

between those variables may be written as

=M+ M .0 e (2.32)
x y

=M - M .0 e (2.33)
Yy X

=M i (2.34)

There are four equations of equilibrium relating to

those nine unknowns. Thus by assigning values to any five
of the variables, the other four can Dbe determined. The
curvature » and 1inclination of the neutral axis a may be

obtained with the following equations

........ (2.35)
........ (2.306)
where : 0 = curvature about { axis
= curvature about V axis
§ = total curvature
a = inclination of neutral axis with respect to

the -axis.
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With reference to Fig. 2.9. the strain distribu-

tion across the section can be obtained from

‘o = dn L ..., (2.37)
d.
and e. = (1L - -gi- ) L. .... (2.38)
n
where : e = strain at the origin 0

= strain at any point |
ch = distance of any point to the neutral

axis

With reference to Fig. 2.7, strain due to warping

may be obtained with the following equation

where e = warping strain of an elemental area ’i’'.

Dw flange curvature about V axis caused by

warping

In order to calculate the internal stress-
resultants of a section, the value of the strains gbtained
from Equation (2.38) should be modified by taking the
residual and warping strains 1into account. By using the
stress-strain characteristic of the material, the stress a

corresponding to the strain « is determined. Thus, the

internal stress resultants are
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2.5.3. Computational Method
To obtain the actual internal stress-resultants of
a section, numerical integration ©procedure has to Dbe
applied. The section is usually devided into a grid of
small elements. The strain and the stress in each element
are determined using the procedure described above.
Accordingly, Equations (2.40) - (2.42) may be approximated
as follows
r i=n
N =/ 4 .dA = 1. Aa. al ..... (2.43)
A n=1
_f i=n
= v-V .dA = 22 Aa., . ? ... (2.44)
A 1=1 € t
r i=n
Mi = J « -dA = Aai- ffi- .. (2.45)
A i=1
where 2y is the element area, YE and ti are the respective
lever arms for £ and V axes and n is the total number of
elements.
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This method has been adopted by Gesund [54], Virdi
[39] and Sen [41]. An alternative method is to adopt the
Gauss Quadrature Formulae which have been shown by Virdi

[47,48,49] to be highly versatile and yet remarkably rapid.

According to the Gauss Quadrature Formulae, a
definite integral Dbetween the 1limits -1 and +1 can be
replaced by a weighted sum of the values of the integrand at

certain specific points. Thus

[ E(S ) od: o= 22 . (2.46)
-1 i=1
where 1b are the weighting coefficients, o= ail are

specified Gauss points and m is the number of 'Gauss points'
used in the integration. The higher the wvalue of m, the
greater 1s the accuracy achieved. It is pointed out that
the integration is exact if f(£) 1is a polynomial of degree
up to (2m-1). Values of 1lb and a” are available in tabular

form [55,50].

Similarly a double integral can be replaced by a

double summation



where and Hj are the weighting coefficients and a® and b"
are the coordinates of Gauss points where the function
£f(~,N7) 1is to be evaluated. The equation implies a square
area between the limits -1 and +1 for two axes % and | .
However, any rectangular area can be successfully
mapped onto the square area limits -1 and +1, as shown in
Fig. 2.10. The converse mapping, from the so called natural

coordinates(£,vl] to the Cartesian coordinates (x,) is

readily performed through the following equations

x=[ (1-0 (1-7) (1+0(1-7) (1-0(1+7) (1+0(1+7)] X (2.48)

YP

yq
y=[ (1-0 (1-7) (1+O0U-i) (1-0(1+7) (1+0(1+7)] r (2.49)

vs
The elemental area df£.d7? gets transformed to dx.dy

thus
(2.50)
where,
| -(1-0 A-n -(i+v) 183 Xp yp
[J] ) Xq vq (2.51)
(l-o (1+0 X yr
Xs ys
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Thus an integral in Cartesian coordinates can be

evaluated as follows

1 1
/9 (x,y) -dX-dY = £ /g(x,y) =13 1-d « «d"”
A -1 -1
i=m j=m
= E E vV \V,J1 eee (2.52)

i=1 =1 1 3  kxXi'yds

where (x",y .) are the Gauss points in Cartesian coordinates.

It will now be shown how the Gauss quadrature can
be used to evaluate the integrals in Equations (2.53) -
(2.55), representing the moment-thrust-curvature relations.

The steel section may be represented by three rectangular

blocks as shown in Fig. 2.11.

Then the integrals in each rectangle can be

replaced with the following equations

i=m j=m
N = = L (2.53)
i=1 i=1
i=m j=m
= B B L (2.54)
i=l 3=1
i=m j=m
M, = B E i (2.55)
i=1 1=1
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Values of the axial force N and the neutral axis
inclination a are assumed and the curvature ® 1is varied
between specified limits. To obtain the values of and M!
in every combination of N, a and ¢ the iteration of the

neutral axis position can be done with the Newton-Raphson

method.

Firstly dn is assumed, with Equation (2.38) the
strain in every Gauss point is computed. Secondly with
Equation (2.39), the strains due to warping at the Gauss
points of the flanges can be obtained. Then, stresses can

be computed using those strains obtained previously and
considering residual strains. Further, the internal axial
force may be obtained from Equations (2.47) - (2.52).
These steps are repeated with a small increment Ad” to dn,
and the wvalue of the internal axial force obtained is '

The correction of d* can be computed with the following

equation
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Convergence 1is normally achieved within two or
three cycles. However, success of this iterative procedure
depends on how close the chosen initial values are to the
final wvalues. If the assumed values are very far, the

process may fail to converge even if there is a solution.

Once the cross-sectional stresses are obtained
using Eguations (2.37)-(2.38), the inelastic resistances of
the section can be computed easily from

Equations (2.53)-(2.55).

Comparison between the result of the computer
program and moment-thrust-curvature curves given by
Chen [40] for WF8x31 section can be seen in Fig. 2.12. The

differences between two curves are small.

2.6. EXTERNAL FORCE EQUATIONS

To calculate the equilibrium configuration of a
beam-column subject to an axial load N, lateral loads Px and
Py and moments about X and Y axes, it 1s necessary to
compute external forces at a general displaced section.

Several methods for calculation are available in literature

(see, for example, Chen and Atsuta [43]). The external
forces at a typical cross—-section for an assumed
configuration are shown in Fig. 2.3. The right hand screw

rule will be adopted for positive moment in the following
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external force equations. The forces acting in the Z-X and
the Z-Y plane are shown in Fig. 2.3. The applied moments at

a distance z from the left end of the beam-column are

i=nl
= - - - . .<z-2, vee ee..(2.57
MX Mxo Ryo z N.VC v Pyl <z zi> (2.57)
i=nl
My = Myo +R z+N.u _ + i@i PXT'<Z_21> (2.58)
i=np
R = (-M_ _+M , - P . (L-z .))/L (2.59)
X0 vo vl 4=1 xa
i=np
Ryo = M M,y -V Pyi..(L—ZI))/L
where Mxo = applied major axis bending moment at 0
= applied major axis bending moment at L
Myo = applied minor axis bending moment at 0
M = applied minor axis bending moment at L
N = applied axial force
P~ = applied point load in the X direction
Py = applied point load in the Y direction
Rxo = minor axis reaction force at 0
R = magor axis reaction force at 0
e
np = number of point loads
nl = number of point loads to the left side of the

section
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Moments M and M are affected by the angle of
twist of the section (. For convenience, in the next

derivation moments Mx and My will be transformed to the axes

£ and 7 using the following equations
= My O.My ....... (2.61)
= My -0 MX _______ (2.62)
In addition to components of and Mg along the ¢
and 1 axes, they also have components along the axis which

is perpendicular to the cross-section and is inclined from
the 7 axis. These components result in a twisting moment,

as shown in Fig. 2.13.

= Mx.du/dz + My.dv/dz ....... (2.063)
where sin (du/dz) = du/dz and
sin (dv/dz) = dv/dz
A second contribution to Mi 1s due to the end

shears, as shown in Fig. 2.14.
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A third contribution to W- arises due to components
N du/dz and N dv/dz acting through the centroid. Therefore
the third contribution of torque about the centre of twist

is

The fourth contribution arises due to the

transversal loads as shown in Fig 2.15 may be expressed

i=nl i=nl
P ¢ (u-u.) Z pxi(v-vi) (2.606)
i=1  yi 1 i=1 X1

The fifth contribution arises due to the reaction

at the both ends as shown in Fig. 2.16 1is

i=np L - z i=np L
M<5 — .Epxi-v e-E-) + Y p -u < L
i=i yi

The total twisting moment is the sum of all

components which have been mentioned above, thus

M<1 + + Mf3 + Mf4 + MfF5 (2.68)
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Combining Equations (2.56) - (2.68)/ the external

moments become

i=np
M£ = Mxo + L <6 +MXl + Vv le (L—zl)} - N V.
1i=nl
- pyi<z_zi>+ OE Myo + —i—ﬁ—Myo+ M vl
i=1
i=np i=nl
- Pxi(L-z1)} + N-Uc + 22 Pxi'<z-zi> | eeee(2.69)
i=1 i=1
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z i=nP
Mr = [Mxo + "I “{"Mxo +Mxl + .s Pyi -(L-2i”

- N-Ve- JT Pyi <»-«!> * Nyo | -g

vA i=np
S i L T {\!% Pyt B2

i=nl

+ N.uc + v ?x] <z—z"> + N.xo | dv

dz

The Equations (2.57)=-(2.71) do not include the
effect of initial imperfections and end restraints. The

necessary modifications are discussed below.
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The forces m the X-Z plane of a restrained beam-
column with imperfections, ug are shown in Fig. 2.16.
Similar imperfections, v are present in the Y-Z plane, and
total deflections, u and v will Dbe used 1n the next

derivation as follows

where uo and u are 1initial and total deflections in X axis,

and vO and v are initial and total deflections in Y axis.

Referring to Fig. 2.17 the Dboundary conditions

become
...... 2.74
Mtxo Mxo+ ero ( )
M 1 = - M . e 2.75
10— Mt Mk (2. 73)
M + M e e (2.76)
tvo yO ryo
=M 4+ M . i (2.77)
Mtyl yi Mryl
where : oM, = total major and minor moments at 0
txo tyo
respectively
M = total major and minor moments at L
txl tyi
respectively
M M = major and minor restraint moments at
X0 ryo
0 respectively
M M = major and minor restraint moments at
rxi | ryl

L respectively

-69-



When the restraint is in the elastic range,
restraint moments may be expressed as the Equations (2.78 -
2.81). To determine the restraint effect in the elastic and
inelastic range, virdi [40] has shown it is convenient to
use the moment-end rotation characteristic of the end

restraints (Fig. 2.18).

Moo Ky oo, (20) (2.78)
wexl S _qy (271 (2.79)
du g (2.80)

Mryo SO dz

du
M8 Kyl ds  (z7L) (2.81)
where : K__. Gj stiffnesses of major axis end
X0

restraints at 0 and L, respectively
So' S1 stiffnesses of minor axis end

restraints at 0 and L, respectively

M M major axis restraining moments at O
rxo' “rxl
and L, respectively
minor axis restraining moments at 0
ryo' ryl

and L, respectively

Finally, the external bending moments may now be

written as
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Pvi (L-Zi) ) -
+
} dz f Myo
— M - -
yO ryo
i=nl
+ vV P <z-z
- Myi - Mryi +
| Mxo * ero
(L-z1)
\
(v=-V=Z L
i=np
i?1 Pyi (L-zi]

N.vc - pyi <~i>
1=1
POt g UMy
i=nl
xi (L_Zl) |
\%
A
i=np
)/ Pxi (L_Zl) J
i=1
Mep — Mexa
(u-ut
i=np
. (L-z%)
p
i=1 ~
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Equations 2.82-2.84 can be applied to beam-columns
with axial and concentrated transverse loads. Solution to
the problem on beam-columns with distributed 1load <can be
made with approximation, the load is divided into several
divisions and each division is represented by a concentrated

load as shown in Fig. 2.18.
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3. SOLUTION FOR DEFLECTED SHAPE

3.1. THEORY

The method 1is Dbased on satisfying equilibrium
between internal stress resultants and external forces using
equations developed previously. Two basic algorithms are
required for calculating the deflected shape of the beam-
column. The first one relates to the stress resultants
within the section for an assumed strain distribution over
the cross-section. Moment-thrust-curvature relations
described in Chapter 2 are adopted for this purpose. The
second algorithm deals with convergence to the values of the
asumed deflections, so that the internal stress resultants
balance the external forces.

For the reduction of continuum to a system with a
finite number of degrees of freedom, finite difference
methods are employed in computing derivatives of functions.
Let the beam-column length be divided into n equal segments
as shown in Fig. 3.1. End 0 is identified as nodal point 1
and end L as nodal point (n+l). Further, to simplify the
derivation, deflections U Y- and 0l will be replaced by
W3i 2' W3i-1 an” W3i resPect:ivel-V

If "in' and 'ex! are used as subscripts for
internal resistances and external forces respectively, then

(3.1)
(3.2)

(3-3)
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As described in Chapter 2, Equations (3.1) - (3.3)
are functions of deflections. When the deflections do not
satisfy the equilibrium conditions, there will Dbe some
differece Dbetween the internal stress resultansts and the
external forces. These errors will be written as Z. Thus,
there are three equations of 7 that can be obtained for
every nodal point. In general, the equation of 7 may be

expressed as

where : m 3(n+1)

To get the correct deflection values, the Newton-
Raphson method is employed for the iteration According to

this method, the correction wvalue 6wi may be obtained

from
. _ I
azi azl azl dZ{
d bw Zn
wi W2 HS5-r e e e e Wm 1
322 dz?2 dz?2 dz,
d 2 " Ve d 2 Z2
il w <Hw 3 Yo
az3 az3 dz3 dz3 3
dw dw? . W W 3
m
Vo Szmo 3Em o B g :
dw, _ aw? dw3 dw_ m m
........ [ 3.5)
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The next trial value of w® can be computed with

witl = w +  5Wi 0 L........ (3.6)

where k 1s the number of iteration.

The Jacobian matrix elements in Equation (3.5) are
derivatives of Z. Equations (3.1) - (3.4) show that 7 is a
function of internal stress resultants and external forces.
In computing internal stress resultants, strains and
stresses within a section are affected by the curvature
which is the second derivative of deflections. With the
help of finite difference methods, derivatives of functions

at a point are approximated by an algebraic expression

consisting of the wvalue of the function at that point and
several nearby points. in this thesis, only three points
are considered in the moment-thrust-curvature computation.
This approximation makes a number of matrix element values

become zero and the problem becomes simplified.

In computing the elements of Jacobian matrix, the
end restraint effects, when present, should be considered.
Without considering these, iteration of deflections may
oscilate and not converge. Rotation of an end restraint
generates moments which can influence the external forces at
all nodal ©points. Neglecting the third order derivative,
rotations about t axis at both ends of the beam-column can

be approximated with finite difference methods as follows



<o 2 Az | 3w2 * 4WS - wg ) (3.7)

x1 9Kz~ | 3y g Vg I (3.8)

Taking zero values for deflections at Dboth ends

into account, Equations (3.7) (3.8) vyield
X0 Y 27°Az [ 3wd w8 > (3.9)
*X1 FrP2PAZY (" 4wm-4 + Wm-T7 Y ... .. (3.10)
Similarly
Ko =~2~Sz~ (4wd B W7 > (3.11)
\pyl :_ﬁ_ﬂz L= 4wm—5 * wm—8) (3.12)
The restraint moment Equations (2.88) - (2.91) can

be reformed

X0
" v .. 3.13
ero 2 Az 3w ws ( )
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ryo

Mryi

From Equations

and M, mag be written as follows
ryil

d eri

dwb

dM_ .
rxi

dWg

K
LS e B
it
= —Y1— | 4w - w, 0
2 Az 5 8
(3.13) - (3.18)
(n+1l-1) 4Kxo
n 2 Az
(n+1-1i) Kxo
n 2 Az
(i-1) 4Kx1
n 2 Az
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3.2.

dMrxi (i-1) Kxl
S5wm-"7 n 2 DAz e (3.22)
eryi _ “n+l-i)
" d wi n 9 Az e (3.23)
Mryi (n+l-1i) Kyo
d W7 n A, e (3.24)
dM . .
- Y o ' (3.25)
dwm_5 n 2 AZ ------
am_ .
ryi
dw n 2 Ay e (3.26)
m-8

COMPUTATIONAL PROCEDURE

Based on the theory described above, a step by step

procedure for obtaining failure loads is now outlined.

Step 1

Step 2

Read in beam length, cross-sectional data, stress-

strain characteristics of the beam material,

residual-stress and imperfection data, number of

used nodal and Gauss points, restraint data,

loading conditions and loading increments

Compute geometric properties, section-area, Gauss-

point coordinates, Jacobian matrix determinant,

torsion constant and shear centre of the section.
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Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Compute residual-strain.

Assume the imperfection and trial values for Dbeam

deflections.

Compute rotation of the beam ends and derivative

values needed for the next steps.

For every nodal point, compute the external-moments

due to the working load.

For every nodal point, compute the moment-thrust-

curvature relations for given curvature and axial-

force. Linear interpolation method is adopted to
get the neutral-axis position. Strain due to
warping is considered. The internal-moments are

computed after the neutral-axis position has been

obtained

Compute the difference values between the external
and 1internal moments. The differences so obtained
are used to determine the correction of deflections
in the Step 14. If the iteration is in the first
cycle, then the next step will Dbe Step 9.

Otherwise, it will be Step 14.

Change the wvalue of u at nodal point (1), Then,
compute the internal-moments at nodal points (i—1) ,

(1) and (i+1) . Compute the wvalues of
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' Ju” ! ! ail

dMTf (1) aM (14D ~(1i+D dMr (1+1)
d ui dtn dth du.

Step 10 Similarly for change of value of v, compute

aM£(1) aM” (1)

avt ' dvi ! avi <« dvi
Step 11 Change the value of 0 at node (1) Compute the
internal-moments at node (i-1), (1) and (i+1).

Then, compute the wvalues of

5M? (i-1)  dM”(i-1)  aMf(i-1)  dM«(i)  dM”|
' dt>t det
5Mf (i)  aM?(i+i)  'OM” (i+i) AMF (i+1)
do+ do+ doi ddj_

Step 12 Compute the element matrix values as the effect

restraint moments.
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Step 13

Step 14

Step 15

After the Steps 9-12 have been done at all the
nodal points along the beam, the matrix
equation (3.5) may now be formed. Steps 9-13 have

to be done once only, at the first cycle.

Compute the correction values of the beam-
deflections with the help of the matrix obtained
from Steps 9-12. If all the correction values are
less than the specified minimum correction wvalues,
then it may be assumed that the stable deflected
shape has been obtained and Step 15 may now follow.
Otherwise, correction to deflections should be
made, and computation may be continued to Step 5.
If the correction of deflections have Dbeen done
several times, and stability cannot be obtained,
then the loads should be reduced to the previous
level at which convergence had been obtained.
Reductions are also made to the loading increments.
After the reduction to the loading increment has
been done several times as specified, and the
convergence still <cannot be obtained, then the
final load for which convergence has been obtained,

may be specified as the collapse load.

Increase the loads by the specified increment, and

repeat Steps b5-14.
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In determining flange shear (Eg. 2.38-2.39) in
Step 11, it is found that, in elastic range, Equation (2.4)
will give =zero value to dM*/dz, because the incremental

value of 6 at nodal point n affects the same to the flange

moments, and ,  moments at nodal points (n-1) and
(n+1) . To make the iteration converge, Equation (2.4) for
the first derivative should be modified. With reference to
Fig. 3.2, the first derivative Equation (2.4) may Dbe

expressed as

C . (3.27)

o
™|

where

are correction terms.
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Assuming wvalues of ¢ at two nodal points nearby are

equal ¢, may be determined as follows

Cn = - |nz\\ no1i Mn - MIH-}L + Ml’l+21 . . (3.28)
or,
= - l m -
¢ T R hop COM o+ ML .. (3.29)

The particular equations used depend on the location of the

point n.

3.3. COMPUTER PROGRAM "BECOL

The program BECOL has been written for the
inelastic stability of restrained pin-ended beam-columns
having an axial load, biaxial end moments and some lateral
loads in X and Y directions along the length. The beam-
column cross-sections are uniform along the length, and may
be double or single symmetric ones. The cross-section
consists of three parts, the web and the two flanges. Every
part may have different stress-strain characteristics.
Different Gauss point numbers can be used for the flanges
and the web, in the directions X and Y. The applied end
moments in the two bending planes may all be different. The

restraints at Dboth ends are applied in the form of moment-
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rotation characteristics which can be nonlinear. Lateral
loads on the beam-column act through the original centroidal
axis. Ultimate loads can be obtained by increasing some or

all components of the loads.

As described in Chapter 2, the analysis essentially
consists of obtaining equilibrium shapes corresponding to
increasing values up to the peak of the applied load versus
deflection curve. The Newton Raphson method is employed for

the iteration in the analysis.
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4, EXPERIMENTAL WORK

4.1. INTRODUCTION

A total of eight full scale tests were carried out
on eccentrically loaded steel beam-columns. The test
programme was originally proposed to explore the steel beam-
column behaviour in the inelastic range. It was intended to
study the effect of torsion on steel Dbeam-column ultimate

load.

4.2. DETAIL OF TEST PROGRAMME

Full scale tests were conducted on pin-ended steel
beam-columns of 203mm - 203mm @ 46kg/m Universal Beam
section. The tests reported here were divided into two
grouos of length, namely S and L. All beam-columns in the
group S were 4m long, and the others were o6m. These length
were chosen to represent the intermediate and the slender
beam-columns respectively. Three loading types as shown in
Fig 4.1 were adopted. Loading Type A was a combination of
an axial load and a manor axis bending moment at both ends
of the beam-column. The major axis end moment ratio was
1/3. Loading Type B was a combination of an axial load and
a major axis bending moment at each end of the beam-column.
The major axis end moment ratio was -1. Loading Type C was

a combination of an axial load and biaxial bending moment at
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both ends of the beam-column. The major and minor axes end
moment ratios were 1/3 and 1 respectively. In all tests,
bending moments at both ends were held constant, whereas the
axial load was varied from zero up to the collapse load.
Details of the cross section properties and the types of

loading used are shown in Table 4.1.

4.3. MATERTIAL TESTS

The tensile test specimens, as shown in Fig. 4.2,
were taken from the cross-section of the rolled beam-column
in accordance with BS 18. One was cut from the flange and
the other two were cut from the web. During the tensile
tests, two strain gauges were scanned through a computerised
data logger. A plotter was attached to the computer to
print the strain-stress curves. The test results are shown
in Fig. 4.3 and Tables 4.2 - 4.4. In the theoretical work
reported later, these stress-strain curves have Dbeen used

for the computations.

4.4. INSTRUMENTATION

Strains were measured at three pre-selected
sections in every specimen by means of electrical resistance
strain gauges. There were thirty gauges in every section.
The gauges were applied back-to-back on the flanges and the

web of specimens according to the pattern shown in Fig. 4.4.
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These gauges were intended to measure the strain
distribution at the section, so that the yield zone could be
detected. The length of each gauge was 6mm with an average

gauge factor of 2.14 (supplied by the manufacturer).

Before mounting the strain gauge element on the
surface of the specimens, the surface was smoothed and
cleared of all dirt, so that the gauges could be mounted
properly. In order to make the strain gauges work
satisfactorily, it was necessary to prevent them from coming
into contact with moisture. Absorption of moisture by the
gauge matrix could result in an apparent reduction of the
gauge factor and in extreme cases passage of current through
a damp gauge could result in failure of wire due to
corrosion. Ingress of moisture was prevented by coating the
gauge with polythylene sheet obtained from CN Adhesives.
Better measuring results could be expected by using smaller
cuantities of CN Adhesive spread as thinly as possible.
After mounting and wiring up, a protective covering was
placed over the gauges and the strain gauge circuit was

tested.

During the beam-column testing period, strain
gauges were scanned through a computerised data logger,
SPECTRA-ms Measurement System. A SPECTRALAB software was

used to scan, process, store and print the data collected.
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Deflection of specimens under loading was measured

using dial gauges. These gauges were supported on a rig
isolated from the loading rig. Deflections were measured at
five sections. These were located at guarter 1length,

midlength, three-guarters length and one section close to

each of the ends. Normally, there were three gauges in
every Ssection, one gauge was regquired for horizontal
direction and the other two for vertical direction. With

the two gauges in the wvertical direction, it was intended to
measure the twisting angle as well. The gauges had an
accuracy of 0.0lmm and could travel  25mm. Measurement of
lateral displacement was also done at both ends of the beam-
column, because, as a beam-column specimen was loaded the
load <cell and bearing rotated about axes parallel to the X
and Y axes. These rotations resulted in displacements of
the Dbeam-column ends. Owing to friction at the moving
surfaces, there was a tendency for dial gauges to stick,
particularly if the spring return was relied upon to make
the gauge follow the movement of the test specimen. To
prevent this the gauges were tapped lightly before taking a

reading.

To record rotational displacement at midlength of
the beam-column, a mirror was set up at the web. The mirror
reflected the readings from a stationary scale placed at an
appropriate distance to give reasonable magnification of
movements viewed through a telescope after each increment of

load. The arrangement is shown in Fig. 4.5.
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4.5 LOADING RIG

A rig to test beam-columns of length from 4m to 9m
was available in the departmental laboratories. It was
designed to test columns in the horizontal ©position, to
enable easy monitoring of various gauges, and to keep the
entire column length under observation throughout the
duration of the test. A general arrangement of the riqg
toaether with some equipment used during the tests, 1is shown

in Fig 4.6-4.8.

The rig consists mainly of a substantial steel
reaction Dblock, designed and constructed to support a
maximum horizontal load of 5000kN at a height of Im. This
force was transferred to the strong reinforced concrete
floor. Detail of the reaction block at the ends are shown

in Fig. 4.9.

In the first test, it was found that one of the
reaction Dblocks 1lifted up under load. To prevent the rig
from deflecting exessively, two sets of Macalloy bars were
then placed 1in the riqg. The rig already had provision for
these bars but due to somewhat low ultimate load expected,
it was initially considered unnecessary to install these
bars. Thus the horizontal reaction was obtained partly from
these Macallov bars and partly from the strong concrete

floor.
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The horizontal testing position of the beam-columns

provided convenient with regard to instrumentation,
recording and overall observation. To test the beam-column
horizontallv, the dead weight of the specimen obviously

generated additional bending moment, but this effect was

assumed to be small and could be neglected.

The pin ended condition of the test was achieved by
applving the 1load through a Glacier Dbridge bearing of
rotational, non-translational type at the jack end. At the
load cell end, freedom of rotation was provided bv a tilting
plate with a concave surface, and the load cell itself had a

matching close fitting convex head, coated with PTFE.

The axial loading was applied by a double-acting
hydraulic cylinder iack with a capacity of 5000kN maximum.
This axial load was measured bv a digital voltmeter
connected to the load cell, and also by a meter in the pump
circuit which activated the iack. The end moments were
applied through moment-arms and a separate small hydraulic
-jack with capacity 300kN. The force generated bv this small

-iack was measured by a meter in the pump circuit only.

To indicate the extent of yield =zones, the first
specimen was white-painted and the second one was white-
washed. It was found that the white-wash could give better
indication of the yield =zone than the paint used.

Accordinglv the rest of the specimens were white-washed.
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4.6 LOAD PATH FOLLOWED DURING THE TESTS

At the beginning of each test, full end moments
were applied first, followed by a small axial load. The
axial load was incremented by small amounts, up to failure.
When the applied axial load reached about 80% of the
predicted collapse load value, the loading increment was

then reduced to 25kN. This amount was dictated by the

accuracy of the scale used.

4.7. TEST PROCEDURE

For each specimen, a preliminary test was conducted
to ensure the proper functioning of the instruments. This
was applied to every specimen before the actual test. In
the preliminary test, full bending moments at both ends and
only axial loads up to a quarter of the predicted collapse
load were applied. During this period, all the instruments

were checked, and reset when necessary.

All initial gauge readings were recorded before the
start of the actual test. The full bending moment at both
ends were then applied. Another set of readings were
recorded at this stage, which included all strain gauge
readings, the major and minor axis dial gauge readings and
the mirror reading for twist at the midlength. The bending
moment at both ends were held constant by monitoring the

meter of the pump circuit. Axial loads were then applied in
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small increments. After each increment a complete set of
readings was also recorded. During the test, travel
capacity of the dial gauges was checked. Resetting of dial

gauaes was effected before they could not travel further.

In the inelastic range it was necessary to wait
until the specimen settled down before taking strain and
displacement readings. A specimen was considered to be in
eguilibrium when no appreciable change occured 1in the
reading of the measurement monitor. Settling down reguired

about ten minutes for most beam-columns.

During the last increment of load, the rate of
displacement increased rapidly indicating that the ultimate

load of the beam-column had been exceeded.

4.8. TEST RESULTS AND COMMENTS

The experimental research programme undertaken was

divided into two main groups according to slenderness

ratios

Group S : Short beam-columns with slenderness ratio
L/rv = 78.

Group L : Long beam-columns with slenderness ratio
L/ry = 117.
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In the first test, for Specimen SI, the rig was not
provided with Macallov bars. Thus, the horizontal reactions
were supplied bv the strong floor only. Due to the Dbending
moment resulting from the 1lm lever arm, one of the reaction
block was 1lifted about 15mm. Obviously this movement
affected the specimen deflections, and corrections were made
bv taking the beam-column end deflections into account.
Later, to prevent the «rigq from deflecting exessively,
starting from the second test, Macalloy bars were placed 1in
the riqg. Thus, the horizontal reaction was supplied partly
by the strong floor and partly bv those Macallov bars.

It was interesting to note that the mode of failure
of the beam-columns in both groups, S and L, were the same.
Except for Specimens S4 and L4, all beam-columns failed out
of the plain of the applied bending moment. At failure, in
all cases, physical collapse occured with large minor axis
deflection and twist. Further, 1local buckling occured at
the compression flange, close to the ends where the maximum
maior axis moment was applied. Judging by the presence of
yield pattern on the whitewashed surfaces, this 1local
buckling was inelastic in nature.

All the experimental results are presented
graphically in Fie. 4.12-4.27. The maior and minor axis
deflections, twisting angle and strain values are plotted
for selected nodal points only. Discussion of the results
are presented in Chapter 5, when comparing with theory, and

Chapter 6.
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4.8.1 Specimens SI and LI

Specimen SI and LI were tested with loading type A.
Maior axis Dbending moments at both ends were 4500kN-cm and

1500kN-cm. These moments were generated by applying a small

iack at the moment-arms. The small "jack also contributed
60kN axial load to the beam-column. A variable axial load
was generated Dby the double acting cylinder -jack. Due to

the initial deflections and the nature of lateral-torsional
instability, this load generated minor axis bending moments

to the beam-column.

The paint of Specimen SI started flaking at the
compression flange close to the large applied moment when
the total axial load reached 1010kN. The same happened with
Specimen LI with the whitewash when the total axial load
reached 960kN. The failure of the specimens was caused by a
combination of lateral bending and twisting. Specimen SI
collapsed when the total axial load reached 1185kN, Whereas

Specimen LI collapsed when the total axial load reached

1010kN.
4.8.2. Specimens S2 and L2

Loading type B was adopted to test Specimen S2 and
Specimen L2, The applied maior axis bending moments for
these tests were 3000kN-cm and -3000kN-cm. To generate

these moments, two small lacks were applied at the moment
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arms. These Jjacks contributed 120kN axial load to the

specimen

The white-wash started flaking when the axial 1load
reached 1370kN for Specimen S2, and to 1120kN for Specimen
L2, at the compression flanges close to the ends, and at the
web laterally along the beam-column. The failure occured
when the total axial load reached 1570kN for Specimen S2,

and 1270kN for Specimen L2,

4.8.3. Specimens S3 and L3

In common with Specimens SI and LT, Specimens S3
and L3 were tested with loading type A. In these tests,
compared with the former, smaller Dbending moments were
applied. The moments were 1500kN-cm and 500kN-cm, and the
small Jjacks contributed 20kN axial load to the beam-column.
Again, additional minor axis bending moments were taken into

account for the lack of straightness.

Flaking of the white-wash occured first at the
compression flange close to the ends, when the applied axial
load reached 1020kN for >ecimen S3, and 1070kN for Specimen
L3. Finally, the «cc ipse occured when the axial load

reached 1520kN for Specimen S3, and 1120kN for Specimen L3.
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4.8.4 Specimen 5S4

The loading type C was first adopted to test
Specimen  S4. The constant forces to generate major and
minor axes bending moments at both ends were 40kN and 5kN
respectively. Thus the applied major bending moments at the
two ends were 3000kN-cm and 1000kN-cm, whereas the minor
axis bending moments at the two ends were 300 kN-cm each.
The forces which were applied at the moment arms contributed

a total of 45kN axial force to the beam-column.

When the axial load reached 1445kN, the white-wash
started flaking at the compression flange close to both
ends. Later, the beam-column collapsed when the applied
axial load reached 1495kN. Unexpectedly, the specimen bent
about the minor axis, and in the opposite direction of the
applied moment. On dismantling, it was found that the bolt
holes of the beam-ends were not in the correct position.
For this reason, the axial load acted with eccentricity 3mm
and generated minor axis bending moment in the opposite
direction to the applied moment. Since the bending moment
generated by the eccentric loading was larger than the

applied moment, the deflected shape was dictated by this

moment.,
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4.8.5 Specimen L4

For this test loading type C was adopted. The
minor axis bending moments equal at two ends, were
1200kN-cm. The major axis bending moments were 3000kN-cm
and 1000kN-cm. The Jjacks applied to generate end-moments

contributed 60kN axial load to the specimen.

Flaking of the whitewash occured firstly at the
compression flange close to the end with the large applied
moment when the total axial load reached 760kN. Later,

collapse was reached at 860kN total axial load.

4.8.6. Conclusions from the Test Results

The experiments showed that all specimen failures
occured with large minor axis deflection and twist. The
slopes of minor axis deflection curves near failure were
less than those o0of the major axis. The growth of the
twisting deformations was excessive and the slopes of the
curves were nearly zero at the peak. These failures were
characteristic lateral torsional buckling failures. Even

when minor axis bending moments were not applied in Loading

Cases 1 and 2, the same type of failure occured (Specimens
SI, $S2, S3, LI, L2 and L3). From Fig.4.12-4.19 the dominant
effects which caused failures could be determined. For

Specimens S4, LI and L2, the dominant effect was minor axis

deflection. The failure of Specimens SI, S3, L3 and L4 was
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caused by minor axis deflection and twist Both effects
were equal. Finally, twist was the dominant effect which

caused the failure of Specimen S2.
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5. VALIDATION OF THE PROPOSED METHOD

5.1. INTRODUCTION

The main purpose of the analytical method described
in Chapter 2 and 3 was to simulate actual tests, so that
exploratory calculations could be done with a computer to
generate data needed for design. Before some relevant
design data were ©presented which could Dbe used with
confidence, it was necessary to validate the proposed
analytical method. Since the theoretical analysis was based
on a simulated and idealized material, it was also necessary
to validate the theory with actual experimentation. The
experiments conducted for this purpose have been described
in Chapter 4. Theoretical correlation with the results will

be considered in this Chapter.

5.2. COMPARISON OF THE RESULTS WITH PREVIOUS WORKS

To verify the biaxial Dbending equations in the
elastic range, the proposed method was used to solve the

problems on biaxially loaded elastic columns which had been

presented by Thurlimann [14], Dabrowski [15] and
Culver [12]. The examples chosen for comparison were
Problem 1 and Problem 2 of the above publications. The

cross sectional properties and the loading conditions of the

examples were as follows
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8. in e = 5. in

X
13.675 1in e = 5, in
v
0.528 1in E = 30,000 Ksi
0.333 in « L/r = 60 and 140

For the comparison, the results are also presented
relative to the current solutions and summarised 1in

Tables 5.1-5.2.

From Tables 5.1-5.2 the average values o0of the
horizontal and the vertical directions were computed. The
average value obtained from Thurlimann's paper [14] was
0.997 with a standard deviation 0.016, whereas the average
value determined from Dabrowski's paper [15] was 0.947 with
a standard deviation 0.201. In this case, the deflection v

at 10 kips axial loading of Problem 2, obtained bv Dabrowski

seemed to have an exeptional deviation. When this result
was excluded, the average value Dbecame 0.992, and the
standard deviation became 0.009. Further, the averaqe value
obtained from Culver's [12] was 0.992 with a standard

deviation 0.008.

Two values of twisting angle at the midlength,
obtained with the proposed method, were quite different in
comparing with those of the previous work. It was obtained
when the applied load was low. This inaccuracy could be
related with the different allowable error used 1in the

computer program. Since the inaccuracy onlv occured at low
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loading, and the proposed method was speciallv developed to
determine the ultimate load, the results obtained with
10 kips axial load were excluded for comparison, Thus, the
average value for the angle of twist obtained from
Thurlimann's was 1.013 with a standard deviation 0.034.
From Dabrowski's, the average value was 1.043 with a
standard deviation 0.032. Computation from Culver's gave

the averaqe value 1.033 with a standard deviation 0.039.

It has been shown that the current results are 1in
close agreement with those of Culver, Thurlimann and
Dabrowski. Slight differences are attributable to the

differences in numerical approach.

Birnstiel [29] has conducted experiments to observe
the behaviour of isolated steel H-columns loaded
eccentricallv with respect to both principal axes of the end
cross sections. The results were then examined and compared
bv Harstead, Birnstiel and Leu (28], Sharma and
Gavlord [35], Sval and Sharma [57], and Chen and
Atsuta [58]. The agreement between those results appeard to
be satisfactorwv For this reason, it is advantageous to
examine the proposed method with these works. The details
of the section properties, the wvield stresses and the
loading conditions are summarised in Tables 5.3 - 5.4. The
material is assumed to behave in an elastic—perfectlv

plastic manner. Comparison of the results 1is presented in
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Table 5.5 which shows the nominal wvalues of the ultimate
loads, and in Table 5.6, which shows the relative wvalues to
the current results The average ratio of ultimate loads
obtained from Birnstiel [29] was 1.004 with a standard
deviation 0.034 The corresponding correlation with
Harstead [28] was 1.015 with a standard deviation 0.034

Comparison with Sharma and Gaylord [35] gave the average
value 0.960 with a standard deviation 0.051. Further
comparison, with Syal and Sharma [57] showed the average
ultimate load ratio as 1.006 with a standard deviation
0.038. Finally, Chen and Atsuta's results[58] yielded the

average value 0.983 with a standard deviation 0.100.

Further comparison of the current theoretical
results was made with those of Virdi's and Sen's [59]. The
method developed by Virdi [39,40] ignored torsional effects
altogether, as it was developed primarily for torsionally
stiff sections. The method developed bv Sen [41] on the
other hand included the effects of twisting and warping.
Eight cases were analyzed, with three different lengths.
The three length of 90in, 123in and 153in corresponded to
weak axis slenderness ratio of 43, 59 and 74 <respectively
representing stocky, medium, and slender columns. Six of
the columns analyzed were pin-ended while two of the longer
columns had minor axis flexure restraint. One
column (L150W) had a flexural end restraint stiffness

12,000 tonf-in/rad, and the other (L150H), of 20,000 tonf-

-103-



in/rad. The details of the columns analyzed are shown in

Tables 5.7-5.8. The section properties were
b = 8.117 in 0.683 in
d = 8.500 1in L, 0.405 in

Comparison of the results is given in Table 5.9
In the case without <considering torsional effects, in
comparison with Virdi's, the average value of the wultimate
load is 0.988 with a standard deviation 0.031 If the
results of the restrained Dbeam-column are excluded, the
average value becomes 1.004 with a standard deviation 0.014
Thus, agreement of the numerical results of Virdi and the
proposed method is satisfactory. ' On the other hand, Sen's
results are guite different with those of +the ©proposed
method. In this case, the average value obtained is 0.920
with a standard deviation 0.071. There might be some

different consideration in the analysis.

The validity of the proposed method for
applications with lateral loadings was checked with
Ho's T46j formula which almost exactly fitted the
theoretical results given by Chen [421. The problem chosen
was Case (6) , beam-columns of W 8x31 were janalyzed wunder
uniformly distributed load and the action of a single major
axis end moment (Fig.5.1). Residual stresses was considered
with a =0.3<r and following the AISC pattern (Fig.2.1) .

rc y
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The material was assumed to have elastic-perfectly plastic
stress-strain curve. Solutions were obtained for a beam-
column with maior axis slenderness ratio of 60, and loading
factors g were chosen as 0 and 2.5. The section properties,

yield stress and elastic modulus were

b = 203.2 mm hf 11.1 mm
d = 203.2 mm tw = 7.3 mm
E = 207,000 MPa a, - 248.4 MPa
Comparison of the results is presented in
Table 5.10. The average ultimate load ratio of the current

results was 0.972 with a standard deviation 0.037.

It is thus clear that the present computer program
for the determination of failure loads in biaxial bending
gives close aqgreement with existing biaxial computer
programs discussed in this sections with exeption of Sen's.
It remains to be shown that the prediction of ultimate loads
for the —case of Dbiaxial bending by the present computer
program is valid. This is achieved by comparing, in the

next section, the theoretical results with the experimental

results reported in Chapter 4.
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5.3. COMPARISON OF THE THEORETICAL AND EXPERIMENTAL

RESULTS

There are several uncertainties involved in actual
experiments. Some of these are
(a) Variation of imperfections along the Dbeam-column
length,
(b) Simulating theoretical support conditions and
loading
(c) Variation in stress-strain relations in different

parts of the beam-column.

It was realized that there were too many possible
combinations of those effects. Therefore, to avoid the
exhaustive investigation of all the various ©parameters
involved, the main effort was directed towards using the
computer program to obtain corelation between experiment and
theory, focussing on the effect of of wvariation of
imperfections only. There are two types of imperfections
commonly occuring 1in Dbeam-columns, namely the residual

stresses locked in the steel sections and the lack of

straightness. The effects of these imperfections were
studied in various combinations. A residual stress pattern
of AISC type (Fie.2.1l) was adopted with = 0.3 a

Since the initial deflections were not measured 1in the

experiment, the deflected shape was assumed to be a sine

wave and the magnitude of the mid—length deflection was
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taken as L/1000, where L was the length of the beam-column.

This is now a standard practice.

Computer results were obtained for the following
combinations of beam-column imperfections, and are presented

in Table 5.11.

Case A : Results without anv imperfections

Case B @ Results with residual stresses only.

Case C @ Results with an initial mid-length deflection
of L/1000.

Case D : Results with combination of Case B and Case C
imperfections

Results for Case A show good agreement with the
test results. The average value of ptest/pxv f£°r this case
was 1.075 with a standard deviation of 0.107. The maximum
error obtained was 31.5% for Specimen S4, but this was an
exeptional deviation. -If the results for Specimen S4 were
taken from the Case C, where 1initial deflection was
considered on the same side as the eccentricity, the moment

generated Dbv the eccentricity was resisted bv that of the

initial deflection. Then the ultimate load obtained
theoretically increased, P% ./?_ 1 was reduced to 1.053 with
test’ "xv

a standard deviation of 0.057, and the maximum error became

12% .
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According to the results described above,
imperfections did not seem to affect very much to beam-
columns strength. But it will Dbe shown later, in the
exploratory calcultaions, in Chapter 6, where the
imperfection effects to <collapse load are studied, that
imperfection effects can reduce a large portion of beam-
column strength. Since there are no Dbeams perfectly
straight in ©practice, and design must give solution on the

safe side, imperfections must be considered in calculations.

It is interesting to compare the experimental load-
deflection curve of the eight beam-columns with the
theoretical calculated values. In Fig 4.12 - 4.19 the
deflection in horizontal and vertical directions and the
angle of twist have been plotted. The theoretical results
shown in the qgraphs were chosen from Cases A and C. As
described previously, in Case A the specimens were
considered to be perfectly straight. Therefore, when the
Loading Type 1 or 2 was applied, theoretically no twist nor
deflection in the X axis. Whereas practically, 1in the
experiment the specimens were not perfectly straight, then
twist and deflection were found accordingly. In Case C the
specimens were considered to have an initial deflection of
L/1000 at midlength, which was a standard practice. A
standard is supposed to give solutions on the safe side.
The initial deflections used are likely to be a bit bigger

than the actual ones. Therefore, the ultimate loads
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obtained theoretically were lower than those obtained
experimentally. The specimens were obviously imperfectly
straight, but the initial deflections were not as large as
L/1000. Therefore, load-deflection relations obtained
experimentally should be in the range between those obtained
theoretically, with Cases A and C. These are shown 1in
Fig.4.12-4.19, thus corelation between the experimental and

theoretical result could be achived

Strains recorded through the computer data logger
were compared with those obtained theoretically using the
method on Case A, where imperfections were not considered.
Fig.4.20-4.27 show, in general good agreement between
experiment and theory could be achieved, except for
Specimen S2, which was the first to be tested using
whitewash as yielding indicator. There was no experience in
mixing the material with water, so that the whitewash was
very thin and the water infiltrated to the strain—gauges.

This caused the strain-gauges did not work properly.
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6. APPLICATIONS AND DISCUSSION

6.1. INTRODUCTION

It may be stated that a computer program 1is now
available which can be adopted for the stability analysis of
beam-columns taking account the effects of torsion and the
lateral deflection of the beam-column. Also included in the

analysis are the effect of residual stresses and out-of-

straightness. The method is not, however suitable for use
as a direct design tool, since the procedure demands
substantial computer time for each Dbeam-column to be
designed. The procedure can be used for verifying existing

design method, or for developing new ones through parametric
study. The data generated may be used to prepare
dimensionless tables or charts for various shape of beam-

column cross—-sections and slenderness ratios.

In this chapter, the procedure is adopted to study
the failure loads of bare steel beam-columns subjected to
axial compression and transverse loads with varying values

for the parameters such as slenderness ratio and lateral

loading

The solutions of several problems are examined with
BS 5400:Part3 [60]. The effects of residual stresses and
torsion to failure load are also assessed. Finally,

discussion and conclusions drawn from the experimental and

theoretical results are outlined.
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6.2. APPLICATIONS

Beam-columns subjected to axial compression and
transverse load are now investigated. From consideration of
cross sectional properties only, the profile WF 8x31 section
represents closely the most commonly used wide-flange
section in America. Furthermore, curves corresponding to
the WF 8x31 section represent a good approximation for any
other wide-flange section and are conservative for the
sections in the ratio of their shape factor 1.10 [43].
Therefore, the cross sectional properties of UC 203x203x46
which are similar to the WF 8x31 section are adopted for the
investigation,

A multilinear stress-strain curve, as mentioned in
Chapter 2, can give accurate results. Unfortunately, the
curve 1is usualv very specific and does not represent a pood
approximation for other materials. For this reason a
bilinear stress-strain curve which represents the elastic-
Perfectly plastic behaviour is employed in generating design
data. in addition, an elastic-perfectly plastic assumption
will give results on the safe side. Following
Bs 5400 : Part 3-6.6, the elastic modulus wused 1in the
analysis 1is 205,000 MPa, whereas the yield stress chosen 1is
355 MPa.

The effect of initial lack of straightness is

always to reduce the beam-column strength. In this study

the initial deflection is assumed to be a sinusoidal curve.
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The initial mid-length deflection is determined following
the Perry-Robertson formula, with v=0.003L/r as was used 1in
BS153 [61], the predecessor to BS5400:Part3. Thus, the

magnitude may be obtained from

u, = 0.003 n e (6.1)
where ! uq = initial deflection at midlength of the beam-
column
r = radius of gyration
h = distance from centroid of the section to the
extreme fibre on the concave side
L = length of the beam-column

The efffect of residual stresses on failure 1load,
when major axist moments do not exist, is always to reduce
the calculated value. But, when major axis moments are

applied, the effect becomes inconsistent, failure loads are

increased when the applied axial loads are low, while they
are reduced when the applied axial loads are high. This
will be shown later with the results obtained. Since the

data generated are intended to be used in design, then the
failure loads are computed with and without considering
residual stresses. The lower results may be adopted for

design requirements.
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6.2.1 Loading Cases

In the examples with Loading Case 1, the beam-
columns are 1investigated under axial compression load only
(Fig. 6.1). Due to the initial deflection, the axial 1load
also generates minor axis bending moment with the maximum

magnitude at midlength of the beam-columns.

The Loading Case 2 deals with axial and
concentrated transverse loads. The concentrated load 1is
located at the midlength of the beam-columns. As for
Loading Case 1, minor axis bending moment is generated by
the axial load due to the initial deflection, together with
major axis bending moment which 1is generated by the

transverse load.

More examples are given with Loading Case 3, where
a uniformly distributed load is applied. It is followed by
Loading Case 4, where a linearly distributed load with the
maximum magnitude at the midlength is applied. Finally,
further examples are given with Loading Case 5. Again a
combination between a linearly distributed load and an axial
one 1s applied, but the maximum maginitude of the

distributed load is located at one of the beam-column ends.
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6.2.2. Comparison of the Results

The results obtained from the examples are compared

with BS 5400. Further, comparison is also made between the
results obtained with and without <considering torsional
effect. To avoid an exhaustive study, comparison of the
results is made for beam-columns with slenderness ratios of
GO and 100 only. These slenderness ratios are expected to
represent the intermediate and the slender beam-columns

which are commonly used in practice.

According to BS 5400 : Part 3-10.6.1, a member
subjected to axial compression should be such that the axial
load does not exceed the resistance PD which can be obtained

with the following equations

e C

Py = e (6.2)
a, = 0.5 {1+ (1+0) - 57}(20 :
—1200.—12 - __ . | .. (6.3)
Xz
X —5>;— <T/ ds5 e (6.4)

For the section applied (UC203x203x46),

a = 0 when X <15

and a 0.0045( X -15) when X > 15
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Additionally, Ay is the effective area of the
section, Vm and f§/7for the section adopted may be taken as
12 and 1.1 respectively. Since the value of r/y of the

section is 0.5, then the wvalue of a in the Equation 6.3

may be taken as 0.0045

According to BS 5400 : Part 3-10.6.2, a member
subjected to coexistent compression and bending should be
such that all cross sections within the middle third of the

length of the member satisfy the following criterion

P M
“max_ X max v max e 1.0 (6.5)
Dxc Dye
where Pmax MX max MV max are the maximum axial load,
bending moment about the X-X and Y-Y axes,
respectively
PD is as defined in Equations 6.2-6.4
M are the corresponding resistance of the
Dxc Dvc
member, with respect to the extreme
copression fibres determined 1in accordance
with 9.9.1 of the standard
In the Loading Cases 2-5, the minor axis bending
moments exist due to the initial deflections only. Since

the initial deflection has been considered 1in determining
pri' the wvalue of M for Equation 6.5 is taken as nil.
u y max

Accordinglv, comparison of the results to BS 5400 <can be

niade with
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max My max
+ 1.0

Dxc

The results are presented in Tables 6.1-6.25 and
Fig. 6.2-6.10. It can be seen, comparison of the results of
Loading Case 1 with BS 5400 shows a good aqgreement. The
average ultimate load without considering residual stresses
is 1.064 with a standard deviation 0.020. If the residual
stresses are considered, the ultimate loads are reduced and
the average wvalue becomes 1.040 with a standard deviation

0.012.

Application of the method in solving the ©problems
with Loading Cases 2-5 shows the effect of residual stresses
is not consistent. The failure loads are increased when the
abolied axial loads are high, while they are reduced when

applied loads are high. Further, the effect of residual
stresses on slender beam—columns is less than that on stocky

team—-columns

The effect of torsion on failure loads is always to
reduce the calculated value. The magqnitude of the effect is

influenced bv the slenderness ratio and the applied axial

4d . The more slender the beam—columns, the greater is the

reduction in failure loads. Further, when the applied axial

ioad is high, the reduction in calculated ultimate loads 1is

C°rrespondingly high.
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6.3. DISCUSSION

Comparison of the experimental and theoretical
results shows that a good agreement can be achieved when
Case A, where imperfections are not considered, 1is applied.
Since there are no perfectly straight Dbeam-column in
Practice, 1t can be stated that the specimens are almost
straight. Therefore the applied axial loads have generated
small minor axis bending moment. The occurance of this
moment was confirmed by the fact that all specimens with
Loading Type 1 or 2 were Dbent about the minor axis at
failure. Realizing that the failure of beam-columns is
likely to be influenced Dby the lack of straightness, a
further study was undertaken later. The method was employed
to investigate the effect of initial deflection to wultimate
loads. The failure 1loads of Specimens SI and L3 were
determined at maximum initial bow of L/1000, L/5000, L/10000
and L/20000. Comparison of the results are presented in
Table 6.26, which shows that different wvalue of computed
loads obtained with and without initial deflections is
considerable. Further investigation was undertaken to
compare the results of Loading Case 1, obtained wusing
IMnitial deflections in accordance with BS5400 and BS153.
Table 6.27 shows the maximum bows used and the results with
residual stress consideration. It was found that the
different 1initial Dbow between BS153 and BS5400 caused

different results of less than 5%. It is interesting that a
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maximum initial bow of as small as |1/20,000 can reduce 16.2%
of the ultimate load of a beam column with slenderness ratio
117. Thus, initial lack of straightness is a very important

factor to be considered in formulating design methods.

The effect of residual stress on failure load has
been studied in the application of the method in
Section 6.2. Application with Loading Case 1, where axial
load was applied, an no transverse loads existed, showed
that'the effect of residual stress was always to reduce the
beam-column strength. This fact is shown in Table 6.1. The

magnitude of reduction is around 2.5%.

When a combination of axial load and moment was
applied, in Loading Cases 2-5, the effect of residual stress
°n failure loads was not consistent. It 1is shown 1in
Tables 6.2-6.17 that the moment resistance 1s increased when

the applied axial load is low, while it is reduced when the

applied axial 1load is high. The increment to the moment
resistance when a high axial load is applied, is not very
larqge, but a reduction of as much as 15% can be achieved

when the axial load is high.

Another investigation which has been carried in the

Application of the method is the effect of including torsion

-i? calculating the failure 1load. Loading Cases 2-5 were
Applied to beam-columns with slenderness ratios of
60 and 100. The failure loads were determined wusing the
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method with and without <considering torsional effect.
Conroarison of the results is presented in Tables 6.18-6.25.
The effect 1is always to reduce the ultimate load and was
influenced bv the slenderness ratio and the magnitude of the
axial load. A large amount of reduction will be obtained if
the slenderness ratio or the applied axial 1load is high.
Reduction of as much as 35.7% can be obtained, even on beam-
columns with slenderness ratio 60. Thus, torsional effect
should Dbe taken into account in formulating design aids for
beam-columns.

It is interesting to compare the results obtained
from Loading Case 1 with BS 5400:Part3-10.6.1. It was shown
in Fig.6.2, that close agreement could be achieved when
residual stresses were considered. It can be seen from the
braph, the possible point with P/P"=1 was at L/r=0. Thus,
Bs 5400 seemed to give higher strength at slenderness ratios
between 0 and 30. Since very stocky beam-columns are rare

Practice, and there are safety factors to be adopted in
design, the differences can be tolerated. Further, when the
slenderness ratio was greater than 30, the standard gave
solutions on the safe side without large margins. Thus,
RS 5400 appears to be very progressive in this case.

More comparisons of results with BS 5400 were made
Ori broblems with Loading Cases 2-5, where a combination of

axial load and a tranverse one was adopted  The problems

are dealt with in BS 5400:Part3:10.6.1-10.6.2. Comparison

-119-



of the results was made at slenderness ratios 60 and 100,

and 1is summarised in Tables 6.10-6.17. Application of
RS 5400 on Loading Cases 2-5 at slenderness ratio 60, gave
values around 10% lower than the ©present results. The

results are on the safe side and the margin is not
excessive. However, the application at slenderness ratio
100, gave the results as shown in Tables 6.14-6.17 around
21% lower than those obtained with the present method.
Thus, when applving BS 5400 to Dbeam-columns with Loading
Cases 2-5 at high slenderness ratio, conservative results

are obtained.

Investigation has also been taken on the effect of
differences 1in loading cases. Comparison of the results of
aH loading cases was presented with Tables 6.2-6.9. It can

seen that the most severe loading was the uniformlv
distributed load (Case 3). Therefore a uniformlv
distributed load mav be recommended to be adopted in

developing approximation design methods.
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1

7. CONCLUSIONS

This thesis describes an analytical method for
calculating the wultimate 1loads of steel beam-columns,
including the effects of torsion and warping, initial
deflections, and residual stresses. A number of loading
paths are allowed for. A  computer program is now
available which can be adopted for stability analysis of
beam-columns. The method can be used for verifying
existing design methods, or for developing new ones

through parametric study.

Eight Dbeam-columns have Dbeen tested under varying
combinations of axial loading and unequal end mements.

The beam-columns had two levels of slenderness ratio.

Comparison of the results for several loading cases has
shown that the most severe loading 1is the uniformly
distributed load. Therefore, a uniformly distributed
load may be adopted 1in developing approximate design

methods.

Comparisons were made between the experimental and

theoretical ultimate loads as well as deflections and

strains. The average value of P" est/PXy was 1’053 with
a standard deviation 0.057, and a maximum error 12%.

These figures indicate very good correlation Dbetween

theory and experiments.

-121-



The effect of torsion on calculated failure loads is
always to reduce the calculated value. The magnitude of
the effect is influenced by the slenderness ratio and
the applied axial load. The more slender the beam-
column, the greater is the reduction in failure load.
When the applied axial load is high, the reduction in
calculated wultimate loads is correspondingly high.
Reduction of as much as 35% can be obtained, even on a

beam-column with slenderness ratio 60.

The effect of residual stress on failure load when major

axis bending moment does not exist (Loading Case 1), 1is

always to reduce the beam-column strength. The

o\°

magnitude of reduction is around 2-3

The effect of residual stress on failure load when major
axis bending moments are applied is not consistent. The
failure loads are increased when the applied axial loads
are low, while they are reduced when the applied axial

loads are high.

%ﬁe difference in the ultimate loads obtained with and
without initial deflections is considerable. A maximum
lnitial bow of as small as L/20,000 can reduce the
ultimate load of a Dbeam-column, under axial and

transverse loadings, with slenderness ratio 117, by as

much as 16%.
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10.

Comparisons were also made between theoretical results
and results predicted by BS5400:Part3. It is found that
BS5400 predicts failure 1loads fairly accurately when
applied to beam-columns under axial loading (Loading
Case 1). However, when transverse loading is present in
the case of slender beam-columns, conservative results

are obtained, by as much as 25%.

There was no appreciable difference in the computed
failure loads obtained on the basis of different
measures of initial imperfections, one Dbased on BS153

and the other on BS5400:Part3.

-123-



REFERENCES

L1"l - VON KARMAN, T. Untersuchungen uber Knickfestigkeit
Mitteilungen wuber Forschungsarbeiten auf dem
Gebiete des Ingenieurwesens, No. 81, Berlin,

1910.

(21  WESTERGAARD, H.M and OSGOOD, W.E. Strength of Steel

Columns Transactions, ASME, Vol. 49, 50,

AMP-50-9, p.65, 1928

r3i JEZEK, K Naherungsberechnung der Tragkraft

Exzentrisch Gedruckter Stalstabe, Der

Stahlbau, Vol 8, ©.89, 1935

C4] WAGNER, H. Torsion and Buckling of Open Sections
25th Anniversary Publication, Technische

Hochschule, Danzig, 1904—19029, pp. 329 343,
1936; translated as Technical Memorandum No.

807, U.S National Advisory Commitee for

Aeronautics

C3] GOODIER, J.N Buckling of Compressed Bars by Torsion
and Flexure. Cornell University Engineering

Experiment Station Bulletin, No. 27, Ithaca,

N.Y., December, 1941

-124-



Co6] - GOODIER, J.N. Flexural-Torsional Buckling of Bars of
Open Section Under Bending, Eccentric Thrust
or Torsional Loads. Cornell University
Engineering Experiment Station Bulletin, No.

28, 1Ithaca, N.Y., January, 1942a.

~7] - GOODIER, J.N. Torsional and Flexural Buckling of Bars
of Thin Walled Open Section Under Compressive
and Bending Loads. Journal of Applied
Mechanics, Vol. 9, No. 3, pp. A-103-A-107,

September, 1942b.

C8] - BLEICH, F. and BLEICH, H. Buckling Strength of Metal
Structures. McGraw-Hill Book Co. 1Inc., New
York, 1952.

*9] - TIMOSHENKO, S.P. and GERE, J.M. Theory of Elastic
Stability. 2nd edn., McGraw-Hill Book Co.

Inc., New York, 1961.

- NEAL, B.G. The Lateral Instability of Yielded Mild
Steel Beams of Rectangular Cross-Section.

Phil, Trans. of Royal Society, Series A,

Vol. 242, January, 1950.
~11 - WITTRICK, W.H. Lateral Instability of Rectanqgular

Beams of Strain Hardening Material Under
Uniform Bending. Aeronautical Science” Vol.

19, No. 12, p. 835, December, 1952.

-125



[121

[131

[141

[151

[161

CULVER, C.G Exact Solution of Biaxial Bending
Equations Journal of the Structural
Division, ASCE, Vol. 92, No. ST2, Proc. Paper
4772, pp. 63-83, April, 1966a

CULVER, C.G Initial Imperfections in Biaxial
Bending Equations. Journal of The Structural
Division, ASCE, Vol. 92, No. ST3, Proc. Paper
4846, pp. 119-135, June, 1966b

THURLIMANN, B Deformation of and Stresses in

Initially Twisted and Eccentriccally Loaded
Columns of Thin-Walled Open Cross-Section
Report No. 3 to the Column Research Council

and the Rhode Island Department of Public

Works, Graduate Division of Applied
Mathematics, Report Nos., E797-3, E696-3,
Brown University, Providence, Rhode Island,
June, 1953

DABROWSKI, R Dunnwandiqe Staabe Unter Zweiachsig

Prawel,

Aussermittigem Druck Der Stalbau, Wilhelm

December, 1961

S.P. and Lee, G.C Biaxial Flexure of
Columns bv Analog Computers. Journal of the
Engineering Mechanics Division, ASCE, Vol

90, No. EMI, Proc. Paper 3805, PP. 83-111,

February, 1964

-126-



[171

:V l 8 H:

[191

[201

[211

[221

- BIJLAARD, P.P., FISHER, G.P. and WINTER, G. Strength

of Columns Elastically Restrained and
Eccentrically Loaded. Proceeding, ASCE, Vol.

79, Separate No. 292, October 1953.

BIJLAARD, P.P. Buckling of Columns with Egual and

- BAKER,

- HORNE,

- HORNE,

- HORNE,

Unegual End Eccentricities and Egual and
Unequal End Restraints. Proceeding of the
Second U.S. Natl. Congress of Applied

Mechanics, 1954.

J.F., HORNE, M.R. and HEYMAN, J. The Steel
Skeleton. Vol. II, Cambridge University

Press, 1956.

M.R. The Elastic-Plastic Theory of
Compression Member. Journal of the Mechanics

and Physics of Solids, Vol. 4, p. 104, 1956.

M.R. Safe Loads on I-Section Column in
Structures Designed by Plastic Theory.
Proceedings, Institution of Civil Engineers,

Vol. 29, September, 1964.

M.R. The Plastic Design of Columns. British

Constructional Steelwork Association, London,

Publication No. 23, 1964.

-127-



[231

[241

[251

[261

[271

GALAMBOS, T.V. Inelastic Lateral Torsional Buckling
of Eccentrically Loaded Wide-Flange Columns"

Ph.D. Dissertation, Lehigh University, 1959.

OJALVO, M. Restrained Columns. Proceeding, ASCE,

Vol. 85, No. EM5, October, 1960.

FUKUMOTO, Y. and GALAMBOS, T.V. Inelastic Lateral
Torsional Buckling of Beam-Columns. Journal
of the Structural Division, ASCE, Vol. 92,

No. ST2, p.41, April, 1966.

JOHNSTON, B.G. Buckling Behaviour Above the Tangent
Modulus Loads. Journal of the Engineering
Mechanics Division, ASCE, Vol. 87, No. EM6,

Proc. Paper 3019, pp. 79-99, December, 1961.

BIRNSTIEL, C. and MICHALOS, J. Ultimate Strength of
H-Columns Under Biaxial Bending. Journal of
the Structural Division, ASCE, Vol. 89, No.
ST2, Proc. Paper 3505, pp. 161-197, April,

1963.

HARSTEAD, G.A., BIRNSTIEL, C. and Leu, K.C.
Inelastic H-Columns Under Biaxial Bending.
Journal of the Structural Division, ASCE,
Vol. 94, No. ST10, Proc. Paper 6173, pp.

2371-2398, October, 1968.

-128-



[29] - BIRNSTIEL, C. Experiments on H-Columns under Biaxial
Bending. Journal of Structural Division,
ASCE, Vol. 94, No. ST10, Proc. Paper 6186,

Oct., 1968, pp. 2429-2449.

[30] - HAUCK, G.F. and LEE, S.L. Stability of ElastO'
Plastic Wide Flange Columns. Proceeding

ASCE, Vol . 89, No. ST6, December, 1963.

[31] - MILNER, H.R. The Elastic Plastic Stability of
Stanchions Bent About Two Axes. Dissertation
presented to the College at University of
London, in partial fulfillment of the
requirements for the degree of Doctor of

Philosophy, December, 1965.

[321 - VINNAKOTA, S. and AOSHIMA, VY. Inelastic Behaviour of
Rotationally Restrained Columns Under Biaxial
Bending. The Structural Engineer, Vol. 52,
No. 7, Pp. 245-255, London, England, July,

1974.

[331 - VINNAKOTA, S. and AOSHIMA, VY. Spatial Behaviour of

Rotationally and Directionally Restrained
Beam-Columns. International Association for
Bridge and  Structural Engineering,
Publications, Vol. 34-11, PP 169-194,

Zurich, 1974.

-129-



[ 341

[351

[361

[371

VINNAKOTA, S. and AYSTO, P Inelastic Spatial

SHARMA,

LIM, L.

Stability of Restrained Beam-Columns
Journal of the Structural Division, ASCE,
Vol 100, No. ST11l, Proc. Paper 10919, pp.
2235-2254, November, 1974
S.S. and GAYLORD, E Strength of Steel
Columns with Biaxially Eccentric Load
Journal of the Structural Division, ASCE,
Vol. 95, No. ST12, Proc. Paper 6960, pp
2797-2812, December, 1969

and LU, L.W. The Strength and Behaviour of
Laterally Unsupported Columns Fritz

Engineering Laboratory Report, No 329.5,

June, 1970
SANTATHADAPORN, S. and CHEN, W.F Analysis of
Biaxiallv Loaded Steel H-Columns. Journal of

the Structural Division, ASCE, Voll. 99, No

ST3, p. 491, March, 1973

SANTATHADAPORN, S. and CHEN, W.F Tangent Stiffness

VIRDI,

Method for Biaxial Bending. Journal of the
Structural Division, ASCE, Vol. 98, No. STI,
January, 1972

K.S Inelastic Column Behaviour Its
Application to Composite Column in Biaxial
Bending and Stiffened Plates in Compression
Ph.D. Thesis, University of London, October,
1973.

-130-



F401 - VIRDI, K.S. and DOWLING, P.J. The Ultimate Strength
of Biaxially Restrained Columns. Proceeding

Instn. Civ. Engrs, pp. 41-58, Part 2, 61,

Mar., 1976.
rdii SEN, T.K. Inelastic H-Column Performance at High
Axial Loads. Ph.D. Thesis, University of

London, 1976.

[421 CHEN, W.F. and ATSUTA, T. Theory of Beam-Columns.

Vol. 1, McGraw Hill Inc., New York, 1976.

(431 CHEN, W.F. and ATSUTA, T. Theory of Beam-Columns.

Vol. 2, McGRaw Hill Inc., New York, 1976.

[44] Lui, M.L. and CHEN, W.F. Strength of H-Columns with
Small End Restraints. The Structural
Engineer, Vol. 61B, No. 1, pp. 17-2¢, March,

1983.

[451 LUI, E.M. and CHEN, W.F. End Restraint and Column
Design Using LRFD, Engineering Journal, AISC,

First Quarter, 20, No. 1, 1983.

[46] HO, D. Interaction Between Elastic Buckling and
Plastic Collapse - A Study of The Failure of
Beam-Columns. The Structural Engineer, Vol.

61B, No. 4, pp 79-87, December, 1983.

-131-



[(47]

F48]

[49]

C50]

I'"51]

E521

- VIRDTI, K.S. A New Technique for Moment-thrust-
curvature Calculations for Columns in Biaxial
Bending, Sixt Australian Conference on
Mechanics and Strength of Materials.

Canterburry, New Zealand, pp. 307-313, 1976

- VIRDI,K.S. Design of Circular and Rectanqular
Hollow Section columns. Journal of

Constructional Steel Research, September, pp.

35-45, 1981.

- VIRDI,K.S. and DOWLING,P.J. Composite Column in
Biaxial Loading, Axially Compressed
Sructures. Edited by NARAYANAN, R. , Applied

Science Publishers Ltd, Essex, 1983.

- BROCKENBROUGH,R.L. and JOHNSTON, B.G. UssS Steel
Desiqgn Manual. United States Steel

Corporation, 1983.

- COLLATZ, L. Functional Analysis and Numerical

Mathematics, Academic Press, New York, 1966.

- VINNAKOTA, S. Finite Difference Method for plastic
Beam-Columns. In: Theory of Beam-Columns,
vol. 2, edited by CHEN,W.F. and ATSUTA,T.

McGraw Hill, New York, 1977.

-132-



[53]

[541

TRAHAIR,N.S. The Behaviour and Design of Steel

Structures, Chapman and Hall, London, 1977.

GESUND, H. Stress and Moment Distributions in Three
Dimensional Frames Composed of Non Prismatic
Members Made of Nonlinear Material. In:
Space Structures, Pp. 145-153, Blackwell,

Oxford and Edinburgh, 1967.

KOPAL, Z. Numerical Analysis. Chapman and Hall,

London, 1961.

ZIENKIWICZ, 0.C. The Finite Element Method 1in
FEngineering Science, McGraw Hill, London,
1971.

SYAL, I.C., and SHARMA, S.S. Biaxially Loaded Beam-
Column Analysis. Journal of the Structural
Division, ASCE, Vol. 97, No. ST9, Proc. Paper

8384, Sept., 1971, pp. 2245-2259.

CHEN, W.F., and ATSUTA, T. Ultimate Strength of
Biaxiallv Loaded Steel H-Columns. Journal of
the Structural Division, ASCE, Vol. 99, No.

ST3, March, 1973, PP. 469-489.

VIRDI, K.S., and SEN, T.K., Torsion and Computed
Ultimate Loads of H—Columns. Journal of the
Structural Division, ASCE, Vol. 107, No. ST2,
February, 1981, pp. 413-426.

-133-



(601

[611

BRITISH

BRITISH

STANDARDS INSTITUTION, BS5400:Part3
Specification for Steel, Concrete and

Composite Bridges, London, BS1, 1982.

STADARDS INSTITUTION, BS153:Part 3B and 4,
Specification for Steel Girder Bridges,

London, 1972.

-134-



art

FIG. 2.1. LINEAR RESIDUAL STRESS DISTRIBUTION

(AISC PATTERN)

°rt

FIG. 2.2. PARABOLIC RESIDUAL STRESS DISTRIBUTION

(CAMBRIDGE PATTERN)
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FIG. 2.3 LOADING SIGN CONVENTION USED IN THE ANALYSIS

FIG. 2.4. DISPLACEMENT OF GENERAL CROSS SECTION
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FIG. 2.5. PIVOTAL AND GRID POINTS

FIG 2.6.

TWIST CENTRE OF MONOSYMMETRIC
SECTION
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FIG. 2.7. FLANGE STRAIN DISTRIBUTION DUE
TO WARPING

FIG. 2.8. COMPONENTS OF tlx MID ny

-138-



FIG. 2.9  SIGN CONVENTION USED IN THE ANALYSIS
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FIG. 2.13. TWISTING DUE TO COMPONENTS
OF nx AND My
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FIG. 2.14. TWISTING DUE TO END SHEARS

FIG. 2.15. TWISTING DUE TO LATERAL LOAD
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FIG. 2.1G. FORCES IN A RESTRAINED BEAtl-COLUMN

FIG.2 .17. GENERALIZED MOMENT-ROTATION CHARACTERISTIC

OF THE END RESTRAINT ON BEAM-COLUMN :
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FIG. 3.1. NODAL POINT NUMBERS

FIG. 3.2. GENERAL FLANGE BENDING MOMENT CURVE .
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FIG. 4.1. LOADING TYPES
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FIG. 4.5 MIRROR ARRANGEMENT TO RECORD ANGLE OF TWIST
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GENERAL VIEW OF THE RIG

FIG. 4.7.
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FIG. 4.9. DETAILS OF THE REACTION BLOCK WITH THE LOAD CELL
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FIG. 4.11. TYPICAL DEFLECTED SHAPE AT FAILURE
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Table 4.1
DETAILS OF SPECIMEN PROPERTIES AND LOADINGS

Specimen Lencrth d b t Loading
w
(cm) (rrm) (nm) (run) (nrn) Type

SI 400. 203.5 203.5 11.3 7.0 1
S2 400. 203.5 203.5 11.3 7.1 2
S3 400. 203.0 203.0 11.4 6.8 1
S4 400. 203.5 203.5 11.4 7.1 3 ¥
LI 600. 202.5 202.5 11.2 6.8 1
L2 600. 202.5 202.5 11.4 7.4 2
L3 600. 203.5 203.5 11.2 6.9 1
L4 600. 202.5 202.0 11.2 6.6 3

X : Due to an imperfection in setting, the axial load acted

with -3mm eccentricity.

Table 4.2
TENSILE TEST RESULTS OF SPECIMEN 1

Point Strain Stress ([ MPa |
1 0.00000 0.00000
2 0.00141 283.69380
3 0.01400 283.69380
4 0.02400 335.07140
5 0.03000 357.40950
6 0.03800 379.74760
7 0.04800 402.08570
8 0.05400 407.67020
9 0.05600 440.60460

10 0.06000 462.39850
11 0.06400 469.09990
12 0.06600 469.09990
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Table 4.3
TENSILE TEST RESULTS OF SPECIMEN 2

Point Strain Stress ([ MPa |
1 0.00000 0.00000
2 0.00150 332.78110
3 0.00900 332.78110
4 0.01600 342.28910
5 0.02000 370.81320
6 0.02200 380.32120
7 0.02600 399.33730
8 0.03200 418.35340
9 0.04600 456.38550

10 0.05400 475.40150

11 0.06000 486.81130

12 0.06600 486.81130
Table 4.4

TENSILE TEST RESULTS OF SPECIMEN 3

Point Strain Stress, in MPa
0.00000 0.00000
0.00150 330.44800
0.01000 330.44800
0.01800 376.34360
0.02000 385.52270
0.02400 403.88090
0.03600 440.59730
0.05400 468.13470
0.05600 486.49300
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Tab

le 5.1

COMPARISON OF RESULTS
THURLIMANN'S AND DABRCWSKTS RESULTS

WITH CULVER'S,

Load Current

Kips

10.
20.
30.
40.
50.

10.
20.
30.
40.
50.

10.
20.
30.
40.
50.

Results

(in)

0.0600
0.1212
0.1838
0.2477
0.3129

(rad)

0.00004
0.00019
0.00044
0.00079
0.00125

: relative

PROBLEM 1

Thurlimann
[14]

(a)

coocoo
=
o
w
(&

(in)

0.0065
0.0130
0.0185
0.0250
0.0315

(c)

(rad)

0.00005
0.00019
0.00044
0.00079
0.00126

Maximum Deflection - u

0.992
1.002
.998
.997
.000

_ O o

Maximum

I

.032
.024
.969
.980
.987

OO O

Dabrcwski

(in)

0.0600
0.1213
0.1838
0.2476
0.3129

Deflection - v

(in)

0.0063
0.0125
0.0188
0.0251
0.0315

[15]

I

.000
.001
.000
.000
.000

e el

f

.000
.984
. 984
. 984
.987

OO OO

Maximum Twist-Angle

f

1.250
1.000
1.000
1.000
1.008

(rad)

0.00005
0.00020
0.00045
0.00082
0.00130

to the current results
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1.250
1.053
1.023
1.038
1.040

Culver
[12]

(in)

0.0600
0.1212
0.1837
0.2476
0.3128

(in)

0.0063
0.0125
0.0188
0.0251
0.0314

(rad)

0.00005
0.00020
0.00045
0.00080
0.00130

1.000
1.000
0.999
1.000
1.000

.000
.984
.984
. 984
. 984

OO OO

.25
.05
.02
.01
.04

o e



WITH CULVER'S,

Load Current

Kips

10.
20.
30.
40.
50.

10.
20.
30.
40.
50.

10.
20.
30.
40.
50.

Results

(in)

0.3422
0.7276
1.1662
1.6717
2.2624

(in)

0.0348
0.0698
0.1049
0.1395
0.1731

(rad)

0.00080
.00337
.00801
.01514
.02536

OO OO

. relative

0
0
0
0
0

Table 5.2
COMPARISON OF RESULTS
THURLIMAN'S AND DABROWSKI'S RESULTS

PROBLEM 2

Thurlimann
[14]

(a)

(in)

0.3427
0.7279
1.1690
1.6653
2.2704

(in)

0.0340
0.0688
0.1028
0.1388
0.1716

(c)

(rad)

.00075
.00326
.00806
.01568
.02750

Maximum Deflection - u

!

1.001
1.000
1.002
0.996
1.004

Maximum Deflection - v

I

97T
.986
.980
.995
.991

OO O OO

Dabrowski

(in)

0-.0314
0.7259
1.1597
1.6594
2.2473

(in)

.0342
.0686
.1015
L1374
.1739

O OO OO

[15]

f

.092
.998
.994
.993
.993

OO O OO

f

0.983
0.983
0.968
0.985
1.005

Maximum Twist-Angle

f

0.938
0.967
1.006
1.036
1.084

(rad)

0.00077
0.00335
0.00823
0.01611
0.02800

to the current results
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.962
.994
.027
.064
.104

e = e

Culver
[12]

(in)

0.3420
0.7267
1.1642
1.6683
2.2579

.0342
.0686
.1031
L1373
L1710

OO O OO

(rad)

0.00076
0.00324
0.00818
0.01602
0.02780

.999
.999
.998
.998
0.998

O OO

(e}

0.983
0.983
0.983
0.984
0.988

.95
.96
.02
.06
.10

S N



Table 5.3
DETAILS OF TESTS REPORTED BY BIRNSTIEL [29]

Size of Column Specimens and Eccentricities of Loading

Ncminal Length Yield Eccentricities of Loading
Specimen size of of stress of
number column column material (in)
(in) (ksi)

Cox  Clx eoy eﬁy
1 6 x 6H 96.0 33 1.61 1.61 2.78 2.78
2 5 x 5H 96.0 36 1.60 1.60 3.21 3.21
3 5 x 5H 120.0 36 0.80 0.80 2.63 2.63
4 6 x 6H 96.0 36 1.66 1.66 2.95 2.95
5 5 x 5H 96.0 36 2.36 2.36 3.17 3.17
6 5 x 5H 120.0 36 2.38 2.38 2.51 2.51
7 5 x 6WF 96.0 36 0.89 0.89 2.82 2.82
8 5 X 6WF 96.0 36 0.34 0.34 1.87 1.87
10 4 x 8WF 96.0 36 0.19 0.19 2.60 2.60
12 5 x 5H 120.0 36 0.77 0.77 2.78 2.78
13 4 x 4H 120.0 65 0.42 0.42 2.72 2.72
14 4 x 4H 120.0 65 0.83 0.83 2.35 2.35
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Table 5.4
DETAILS OF TEST REPORTED BY BIRNSTIEL [29]

Cross-Sectional Dimensions of Column Specimens

Average Dimensions of Cross Section
at Midheight (in)
Specimen Nominal

number size Flange Flange Depth Web
width  Thickness Thickness
1 6 x 6H 6.01 0.60 6.01 0.51
2 5 x 5H 5.10 0.42 5.13 0.29
3 5 x 5H 5.11 0.42 5.13 0.28
4 6 x 6H 6.11 0.45 6.45 0.33
5 5 x 5H 5.00 0.51 5.01 0.41
6 5 x 5H 5.02 0.51 5.02 0.41
7 5 x 6WF 5.01 0.48 6.29 0.33
8 5 x 6WF 5.01 0.47 6.28 0.35
10 4 x BWF 4.00 0.45 8.00 0.34
12 5 x 5H 5.04 0.42 5.02 0.29
13 4 x 4H 4.01 0.35 4,12 0.30
14 4 x 4H 4.01 0.35 4,12 0.30
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Table 5.5
COMPARISON OF RESULTS WITH PREVIOUSLY PUBLISHED RESULTS
Ultimate Loads (Kips)

—J oy U B W DN

12
13
14

Experiment Harstead Sharma Syal Chen and
Bimstiel et al. and and Atsuta Current
[291 C28] Gavlord Sharma [60] Results
[35] [59]
92.80 92.80 93.40 93.10 102.70 92.50
54.10 52.60 49,90 50.75 49,40 51.41
62.70 62.80 58.30 60.84 55.30 59.84
86.30 83.30 83.60 84.35 84.90 82.82
49,60 52.70 51.40 50.20 46.20 53.01
47.90 49.40 49,20 47.76 39.60 49.41
76.60 79.30 70.40 80.16 75.70 81.72
109.40 110.30 98.00 110.10 110.60 112.73
85.00 80.50 75.70 78.70 79.50 76.22
51.00 55.70 51.50 56.23 53.30 56.24
46.10 45.00 42.70 47.24 45.60 43.59
38.70 41.20 37.20 40.12 44,10 38.13
Table 5.6

COMPARISON OF RESULTS WITH PREVIOUSLY PUBLISHED RESULTS

Ultimate Loads (Relative to the Current Results)

—J oy U1 i L DN

12
13
14

Experiment Harstead Sharma Syal Chen and

Birnstiel et al. and and Atsuta Current
[29] [28] Gavlord Sharma [60] Results

[35] [59]

1.003 1.003 1.010 1.006 1.110 1.000
1.052 1.023 0.971 0.987 0.961 1.000
1.048 1.049 0.974 1.017 0.924 1.000
1.042 1.006 1.009 1.018 1.025 1.000
0.936 0.994 0.970 0.947 0.872 1.000
0.969 1.000 0.996 0.967 0.801 1.000
0.937 0.970 0.861 0.981 0.926 1.000
0.970 0.978 0.869 0.977 0.981 1.000
1.115 1.056 0.993 1.033 1.043 1.000
0.907 0.990 0.916 1.000 0.948 1.000
1.058 1.032 0.980 1.084 1.046 1.000
1.015 1.081 0.976 1.052 1.157 1.000
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Table 5.7

STRESS-STRAIN CURVE ADOPTED BY VIRDI AND SEN [591

Curve 1 Curve 2
Point strain stress strain stress
(Ksi) (Ksi)
1 0.00000 0.00 0.00000 0.00
2 0.00130 18.00 0.00140 18.34
3 0.00160 20.50 0.00160 19.97
4 0.00181 21.75 0.00193 21.60
5 0.00197 22.40 0.00308 24.86
6 0.00230 23.70 0.00415 26.91
7 0.00258 24.60 0.00960 28.78
8 0.00415 27.75 0.01785 31.30
9 0.00725 30.00 0.02385 32.61
10 0.25000 33.80 0.25000 33.80
Curve 3 Curve 4
1 0.00000 0.00 0.00000 0.00
0.00212 29.27 0.00212 28.10
3 0.50000 29.27 0.50000 28.10
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Table 5.8

DETAILS OF LOADING ADOPTED BY VIRDI AND SEN [59]

Stress-Strain

Column L P ug VO MV curve
label (in) (tonf) (in) (in) (tonf-in) Flange Web
5250 90 250 0.023 0.045 4.0

M230 123 230 0.020 0.030 4.0

M200 123 200 0.015 0.070 4.0

1200 153 200 0.000 0.077 4.0

L170 153 170 0.000 0.077 4.0

1140 153 140 0.000 0.077 4.0

L150H 153 153 0.015 0.110 0.0

L150W 153 153 0.015 0.110 0.0

Note : L150H and L150W had flexural end restraints of stiffness
20,000 tonf-in./rad and 12,000 tonf-in./rad respectively.
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Table 5.9

COMPARISON OF RESULTS WITH VIRDI'S AND SEN'S

ULTIMATE LOADS

[59]

ULTIMATE LOADS

(tonf) (tonf)
COLUMN TORSION NEGLECTED TORSION CONSIDERED
VIRDI CURRENT SEN CURRENT
[61] RESULTS  (3)/(2)  [61] RESULTS  (6)/(5)
(1) (2) (3) (4) (5) (0) (1)
5250 556.91 553.12 0.993 500. 518.43 1.037
M230 635.06 ©33.51 0.998 600. 495,23 0.825
M200 706.01 702.33 0.995 686. 579.69 0.845
1200 525.57 541.31 1.030 400. 366.02 0.915
L1170 829.02 830.78 1.007 632. 570.00 0.902
L1140 1022.83 1024.06 1.001 850. 755.94 0.889
L150H 1046.81 985.31 0.941 982. 960.00 0.978
L15CW 1046.80 985.31 0.941 982. 950.00 0.967
Average 1.004 0.920
Standard deviation 0.014 0.071
*) L150H and L150W have minor axis flexural end restraints

of stiffness 20,000 tonf-in/rad and
tively.
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OO DD OO DODO O
oy Ul b WD O

OO O DODIDODOO O
oy Ul s LN - O

COMPARISON OF RESULTS WITH HO'S

OO OO OO O

O OO OO O

.40
.38
.35
.34
.31
.29
.26
.24

.92
.85
.78
.69
.02
.55
.49
.42

Table 5

P/P
/ \Y

.10

Current
Results

OO OO DODODOoOO

O OO OO OO

.40
.38
.36
.33
.30
27
.25
.22

.90
.87
.76
.69
.61
.54
.45
.38

Average value
Standard deviation
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[46]

OO O OO

OO OO OO

(@]

.000
.000
.029
971
.968
.931
.962
917

.978
.024
.974
.000
. 984
.982
.918
.905

972
.037



Table 5.11

COMPARISON OF THE EXPERIMENTAL AND THEORETICAL RESULTS

SPECIMEN

(1)

SI
S2
S3
S4

LI
12
L3
14

CASE A

(2)

1166.
1447.
1501.
1137.

935.
1320.
1020.

832.

DO Lo O DN

O OO

FAILURE LOADS

CASE

1150.
1435.
1463.
1134.

860.
1120.
1045.

817.

— oo oy W

o O OO

CASE

991.
1259.
1204.
1313.

592.
746.
714.
745.

Average value
Standard deviation
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0 O N oo

(KN)

CASE

989.
1209.
1185.
1307.

581.
125.
705.
728.

Oroy D

O O o

1185.
1570.
1520.
1495,

1010.
1270.
1120.

860.

T

O

.016
.085
.012
.315

.080
.962
.098
.033

.075
.107



30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

BS5400

.927
.870
.804
L1217
. 644
.560
.482
415
.359
311
272
.239
212
.189
.169
.152
.138
125

Table 6.1

RESULTS OF CASE 1

P P
r
PV PV
(3) (4)
.958 .934
.925 .894
.867 .838
.792 .763
.107 .674
. 015 .588
527 .508
451 L4317
.386 L3717
.333 .326
.289 .284
.253 .249
.223 .220
.198 .195
177 175
.159 .157
.144 .142
.130 129

Average value

Standard deviation
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o

.033
.063
.078
.089
.098
.098
.093
.087
.075
071
.063
.059
.052
.048
.047
.046
.044
.040

.0639
.0204

I e R e R e e N N e e W S R gy S R

O

.008
.028
.042
.050
.047
.050
.054
.053
.050
.048
.044
.042
.038
.032
.036
.033
.029
.032

.0398
.0116
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.000
.073
.146
.219
.292
.365
.438
.510
.584
.656
.7129
.763

Table 6.2
RESULTS OF CASES 2-5

Ultmate Manent (M /M |

L/r = 60U P
Residual Stresses Ignored
CASE 2 CASE 3 CASE 4
0.951 0.911 0.919
0.895 0.834 0.844
0.817 0.755 0.764
0.734 0.676 0.685
0.650 0.598 0.605
0.567 0.518 0.526
0.482 0.439 0.445
0.397 0.359 0.364
0.313 0.279 0.283
0.226 0.198 0.202
0.134 0.117 0.119
0.000 0.000 0.000
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CASE 5

OO OO DD IO IODIDODIODDODOO

.934
.860
L7710
.098
.616
.535
.453
371
.288
.205
.121
.000
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Table 6.3
RESULTS OF CASES 2-5
Ultmate Manent (M /M )
L/r = 60U P
Residual Stresses Considered

CASE 2 CASE 3 CASE 4 CASE 5
Pv
.000 0.955 0.920 0.927 0.943
.073 0.897 0.843 0.851 0.867
.146 0.819 0.762 0.770 0.784
.219 0.734 0.681 0.689 0.702
.292 0.647 0.600 0.608 0.618
.365 0.561 0.518 0.525 0.533
.438 0.475 0.436 0.442 0.459
.510 0.389 0.354 0.359 0.365
.584 0.303 0.273 0.2717 0.281
.656 0.215 0.191 0.194 0.198
.129 0.116 0.103 0.104 0.106
.763 0.000 0.000 0.000 0.000
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.000
.056
112
.168
.224
.280
.336
.391
447
.503
.559
.615

Table 6.4
RESULTS OF CASES 2-5

Ultmate Mcment (M /M

L/r = 80U P
Residual Stresses Ignored
CASE 2 CASE 3 CASE 4
0.901 0.829 0.832
0.837 0.764 0.770
0.769 0.699 0.703
0.701 0.633 0.637
0.631 0.566 0.571
0.560 0.500 0.504
0.487 0.431 0.436
0.411 0.361 0.365
0.330 0.286 0.289
0.241 0.208 0.209
0.141 0.120 0.117
0.000 0.000 0.000
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CASE 5

O OO OO IDODIDODOODIDODOOO

.861
.192
L1725
.0656
.588
.519
.447
.375
L2917
.214
.120
.000



OO OO OO IODIDODIODOO O

.000
.056
L112
.168
.224
.280
.336
.391
447
.503
.559
.588

CASE 2

O OO OO IDODIDODIDODIDODO OO

.909
.845
L1776
.704
.632
.558
.482
.403
.322
.233
.128
.000

CASE 3

.842
1T
.709
.641
.569
.502
.431
.357
.281
.201
.110
.000

OO O OO OO IODODIDODDODO OO
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CASE 4

.845
.778
L7113
.645
.575
.506
.436
.362
.285
.202
.107
.000

CASE 5

OO OO OO OO IDODIODOO

.875
.808
L7134
.064
.592
.521
L4417
.371
.291
.207
.108
.000
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.000
.049
.097
.146
.195
.243
.292
.340
.389
.451

Table 6.6
RESULTS OF CASES 2-5

Ultmate Moment (M /M |
L/r = 100u p
Residual Stresses Iqnored

CASE 2 CASE 3 CASE 4
0.844 0.767 0.779
0.781 0.706 0.717
0.716 0.644 0.654
0.649 0.579 0.589
0.579 0.513 0.522
0.505 0.444 0.452
0.425 0.371 0.379
0.336 0.291 0.298
0.232 0.198 0.203
0.000 0.000 0.000
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CASE 5

O OO OO DD OO

.826
.759
.691
.621
.550
476
.399
.313
.214
.000
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Table 6.7
RESULTS OF CASES 2-5
Ultmate Moment (M /M |
L/r = 100U P

Residual Stresses Considered

>

" CASE 2 CASE 3 CASE 4 CASE 5
.000 0.855 0.780 0.791 0.840
.049 0.790 0.717 0.728 0.771
.097 0.723 0.651 0.662 0.700
.146 0.652 0.584 0.594 0.627
.195 0.579 0.514 0.523 0.552
.243 0.502 0.442 0.450 0.475
.292 0.419 0.366 0.373 0.394
.340 0.326 0.283 0.289 0.305
.389 0.218 0.186 0.191 0.202
437 0.000 0.000 0.000 0.000
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.000
.031
.062
.093
.124
.156
.187
.218
.249
.280
311
.333

Table 6.8
RESULTS OF CASES 2-5

Ultmate Moment (M /M|

L/r = 120% B
Residual Stresses Ignored
CASE 2 CASE 3 CASE 4
0.767 0.683 0.688
0.722 0.641 0.647
0.678 0.598 0.603
0.631 0.554 0.560
0.580 0.507 0.513
0.527 0.458 0.464
0.470 0.407 0.411
0.408 0.351 0.354
0.340 0.289 0.291
0.258 0.217 0.216
0.149 0.126 0.120
0.000 0.000 0.000
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CASE 5

O O O OO O IDODIODIDODODO O

.748
.702
.655
.606
.554
.501
.443
.383
.314
.233
.128
.000
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Table 6.9
RESULTS OF CASES 2-5
Ultmate Mcment (M /M )
L/r = 120u p
Residual Stresses Considered

p

CASE 2 CASE 3 CASE 4 CASE 5
Py
.000 0.779 0.691 0.697 0.759
.031 0.732 0.648 0.653 0.711
062 0.683 0.603 0.608 0.660
.093 0.632 0.555 0.561 0.609
124 0.578 0.501 0.512 0.555
.156 0.523 0.455 0.460 0.499
.187 0.464 0.401 0.405 0.438
218 0.399 0.342 0.345 0.374
.249 0.327 0.278 0.279 0.302
.280 0.243 0.203 0.202 0.219
311 0.130 0.110 0.104 0.111
.326 0.000 0.000 0.000 0.000
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PD

.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000

Table 6

.10

CHECKING OF RESULTS OF CASE 2

OO OO IDODIODODIDODOO O

f1D

.053
.990
.905
.812
.120
.628
.534
.440
347
.250
.148

Average value

Standard deviation :

L/r =

PD

.053
.090
.105
L1112
.120
.128
.134
.140
.147
.150
.148

I e el N N S S R SRS B

1.120
0.030
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60

\\D
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.057
.992
.906
.812
.716
.621
.526
.431
.336
.238
.128

N e e

.057
.092
.106
112
.116
121
.126
131
.136
.138
.128

.115
.023
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Table 6.11

CHECKING OF RESULTS OF CASE 3

L/r = 60

M M M M
P o P ro P
PD “d PD “d «D PD Hd
.000 1.018 1.018 1.028 1.028
.100 0.932 1.032 0.942 1.042
.200 0.843 1.043 0.852 1.052
.300 0.755 1.055 0.761 1.061
.400 0.668 1.068 0.670 1.070
.500 0.579 1.079 0.579 1.079
.600 0.490 1.090 0.487 1.087
.700 0.401 1.101 0.39%06 1.096
.800 0.311 1.111 0.305 1.105
.900 0.221 1.121 0.213 1.113
.000 0.131 1.131 0.115 1.115
Average value o 1.077 1.077
Standard deviation : 0.037 0.029
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PD

.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000

Table 6.12

CHECKING OF RESULTS OF CASE 4

OO OO O IDODIODO OO

.028
.943
.853
.766
L6077
.587
.498
.407
.317
.225
.133

Average value

Standard deviation

L/r =

PD

.028
.043
.053
.066
077
.087
.098
.107
117
.125
.133

[ e e e e e

1.085
0.035
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60

IID

OO O OO OO OO

«D

.036
.951
.861
L7170
.679
.587
.494
.402
.310
217
L1117

[T T T e )

.036
.051
.06l
.070
.079
.087
.094
.102
.110
L1117
L117

.076
.035
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Table 6.13

CHECKING OF RESULTS OF CASE 5

L/r = 60

M M M M
P - - P r Py
PD % PD <y = PD «D
.000 1.044 1.044 1.053 1.053
.100 0.961 1.061 0.969 1.069
.200 0.871 1.071 0.876 1.076
.300 0.780 1.080 0.784 1.084
.400 0.689 1.089 0.690 1.090
.500 0.600 1.100 0.596 1.096
.600 0.506 1.106 0.502 1.102
.700 0.414 1.114 0.408 1.108
.800 0.322 1.122 0.314 1.114
.900 0.229 1.129 0.221 1.121
.000 0.135 1.135 0.119 1.119
Average value o 1.096 1.094
Standard deviation : 0.029 0.022
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PD

.000
L117
.234
.352
.469
.586
.703
.820
.937

Table 6

.14

CHECKING OF RESULTS OF CASE 2

OO OO DODIDODO -

«d

.116
.033
. 947
.857
.766
.668
.562
.444
.307

average value

standard deviation

L/r =

PD

.116
.150
.181
.209
.235
.254
.265
.264
.244

I ) S Gy Y

1.213
0.053
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100

“d

O OO DD DO O

«D

.130
.044
.955
.862
.765
.064
.553
.431
.288

[ S e SRS SRR

.130
.161
.190
.213
.234
.250
.256
.251
.225

212
.044
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Table 6.15

CHECKING OF RESULTS OF CASE 3

L/r
p o P
PD ™ PD

r

.000 1.094 1
117 1.007 1
.234 0.918 1
.352 0.826 1
.469 0.732 1
.586 0.633 1
.703 0.529 1
.820 0.415 1
.937 0.283 1
Average 'value o1
Standard deviation : 0.

.094
.124
.152
.2778
.200
.219
.232
.236
.220

.184

051
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100

«D

OO OO ODODO - -

111
.022
.928
.833
.133
.630
.521
.403
.266

O b e e e

«D

111
.139
.163
.184
.202
.216
.224
.223
.203

.185
.040
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Table 6.16

CHECKING OF RESULTS OF CASE 4

L/r = 100

p M P M M, P M

PD ' «D PD+ A)
PD «D
.000 1.112 1.112 1.130 1.130
L117 1.025 1.142 1.039 1.157
.234 0.935 1.169 0.945 1.180
.352 0.842 1.193 0.848 1.200
.469 0.746 1.215 0.748 1.216
.586 0.646 1.232 0.643 1.229
.703 0.541 1.244 0.533 1.236
.820 0.426 1.246 0.413 1.233
.937 0.291 1.228 0.273 1.210
Average value ¢ 1.198 1.199
Standard deviation : 0.048 0.037
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PD

.000
117
.234
.352
.469
.586
L1703
.820
.937

Table 6

.17

CHECKING OF RESULTS OF CASE 5

DO OO OO OO -

L1117
.082
.985
.886
.784
.679
.568
L4477
.306

average value

standard deviation :

L/r =

100

=1

PD

L117
.199
.220
.238
.253
.265
271
.267
.243

R = e N = S S SR

1.237
0.033
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Mr

1D

.198
.100
.999
.895
.788
677
.561
.435
.288

PD

e e e el el e

Mr

\\D

.198
217
.233
.246
.256
.263
.264
.255
.225

.240
.023
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Table 6.18
TORSIONAL EFFECT ON CASE 2

L/r = 60
P N M M Reduction
P =2 M Yen °
.000 0.997 0.951 0.955 4.5
.073 0.962 0.895 0.930 7.0
.146 0.906 0.817 0.902 9.8
.219 0.828 0.734 0.887 11.3
.292 0.736 0.650 0.884 11.6
.365 0.646 0.567 0.877 12.3
.438 0.561 0.482 0.859 14.1
.510 0.478 0.397 0.832 16.8
.584 0.395 0.313 0.794 20.6
.656 0.315 0.226 0.717 28.3
.729 0.209 0.134 0.643 35.7

Table 6.19

TORSIONAL EFFECT ON CASE 3

L/r = 60
P Mip, M M Reduction
PV MP MP tn 5
.000 0.996 0.911 0.915 8.5
.073 0.954 0.834 0.874 12.6
.146 0.902 0.755 0.847 15.3
.219 0.798 0.676 0.847 15.3
.292 0.703 0.598 0.850 14.5
.365 0.615 0.518 0.843 15.7
.438 0.530 0.439 0.827 17.3
.510 0.449 0.359 0.799 20.1
.584 0.369 0.279 0.756 24.4
.656 0.286 0.198 0.690 31.0
.729 0.175 0.117 0.668 33.2
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Table 6.20
TORSIONAL EFFECT ON CASE 4

L/r = 60
P M M M Reduction
pV Mp MP M.tn )
.000 0.997 0.919 0.922 7.8
.073 0.954 0.844 0.885 11.5
.146 0.894 0.764 0.854 14.6
.219 0.804 0.685 0.852 14.8
.292 0.711 0.605 0.852 14.8
.365 0.620 0.526 0.848 15.2
.438 0.535 0.445 0.833 16.7
.510 0.454 0.364 0.803 19.7
.584 0.373 0.283 0.760 24.0
.656 0.292 0.202 0.700 30.0
.729 0.180 0.119 0.662 33.8

Table 6.21

TORSIONAL EFFECT CN CASE 5

L/r = 60
P Mtn M M Reduction
PV MP MP M'tn g
.000 0.999 0.934 0.935 6.5
.073 0.953 0.860 0.902 9.8
L1406 0.861 0.780 0.906 9.4
.219 0.803 0.698 0.870 13.0
.292 0.707 0.616 0.872 12.8
.365 0.619 0.535 0.865 13.5
.438 0.534 0.453 0.848 15.2
.510 0.452 0.371 0.820 18.0
.584 0.372 0.288 0.774 22.6
.0656 0.291 0.205 0.705 29.5
L7129 0.178 0.121 0.677 32.3

-215-



DO OO OO IODOO

O OO DD IDODIDODDODOoOOo

Table 6.22
TORSIONAL EFFECT QI CASE 2

L/r = 100
p Mtn M M Reduction
pv — M Mp tn °
.000 0.996 0.844 0.847 15.3
.049 0.950 0.781 0.822 17.8
.097 0.900 0.716 0.795 20.5
L1406 0.845 0.649 0.767 23.3
.195 0.776 0.579 0.746 25.4
.243 0.704 0.505 0.718 28.2
.292 0.622 0.425 0.683 31.7
.340 0.508 0.336 0.662 33.8
.389 0.349 0.232 0.665 33.5

Table 6.23

TORSIONAL EFFECT CN CASE 3

L/r = 100
P M.tn M M Reduction
Pv MP Mp Mtn ¢
.000 0.997 0.767 0.770 23.0
.049 0.938 0.706 0.755 24.5
.097 0.880 0.644 0.731 26.9
.146 0.808 0.579 0.716 28.4
.195 0.730 0.513 0.703 29.7
.243 0.649 0.444 0.684 31.6
.292 0.552 0.371 0.673 32.7
.340 0.435 0.291 0.669 33.1
.389 0.293 0.198 0.678 32.2
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Table 6.24
TORSIONAL EFFECT ON CASE 4

L/r « 100
p My M M Reduction
Py Mp Mp tn ¢
.000 0.997 0.779 0.781 21.9
.049 0.941 0.717 0.762 23.8
.097 0.884 0.654 0.740 26.0
.146 0.816 0.589 0.722 27.8
.195 0.738 0.522 0.707 29.3
.243 0.659 0.452 0.686 31.4
.292 0.562 0.379 0.673 32.7
.340 0.446 0.298 0.668 33.2
.389 0.300 0.203 0.678 32.2

Table 6.25

TORSIONAL EFFECT CN CASE 5

L/r = 100

P Mt M M Reduction
n

PV MP MP tn %
.000 0.998 0.826 0827 19.3
.049 0.941 0.759 0.806 19.4
.097 0.883 0.691 0.782 21.8
.146 0.814 0.621 0.763 23.7
.195 0.736 0.550 0.747 25.3
.243 0.657 0.476 0.725 27.5
.292 0.560 0.399 0.712 28.8
.340 0.443 0.313 0.707 29.3
.389 0.299 0.214 0.717 28.3
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Table 6.26

STRENGTH REDUCTION DUE TO LACK OF STRAIGHTNESS

(%)

Maximum SI L3

Bow L/r = 78 L/r =117
L/20,000 1.6 16.2
L/10,000 2.4 17.4
L/5,000 3.9 19.5
I /i, 000 15.0 29.9
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Table 6.27
COMPARISON OF THE RESULTS
OBTAINED WITH DIFFERENT INITIAL BCW
LOWING CASE 1, RESIDUAL STRESSES CONSIDERED

Slenderness u

u
ratio 0l Pl 02 -:_2' i
(cm) 194 (cm) Y
(1) (2) (3) (4) (9) (6)
30 0.235 0.934 0.176 0.944 0.989
40 0.314 0.894 0.294 0.898 0.9906
50 0.392 0.838 0.412 0.833 1.006
60 0.471 0.763 0.529 0.750 1.017
70 0.549 0.674 0.647 0.655 1.029
80 0.627 0.588 0.765 0.5606 1.039
90 0.7006 0.508 0.882 0.487 1.043
100 0.784 0.437 1.000 0.418 1.045
110 0.863 0.377 1.118 0.360 1.047
120 0.941 0.326 1.235 0.312 1.045
130 1.020 0.284 1.353 0.273 1.040
140 1.098 0.249 1.471 0.240 1.038
150 1.177 0.220 1.588 0.212 1.038
160 1.255 0.195 1.706 0.189 1.032
170 1.333 0.175 1.824 0.169 1.036
180 1.412 0.157 1.941 0.152 1.033
190 1.490 0.142 2.059 0.137 1.036
200 1.569 0.129 2.177 0.125 1.032
Average value +1.030
Standard deviation 0.017

Note Uy initial bow in accordance with BS153.
Uos initial bow in accordance with BS5400.
p and P* are the computed results, corresponding to uqf

and u , respectively.
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