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Abstract: A vital area of AI is the ability of a model to recognise the limits of its knowl-
edge and flag when presented with something unclassifiable instead of making incorrect
predictions. It has often been claimed that probabilistic networks, particularly Bayesian
neural networks, are unsuited to this problem due to unknown data, meaning that the
denominator in Bayes’ equation would be incalculable. This study challenges this view, ap-
proaching the task as a blended problem, by considering unknowns to be highly corrupted
data, and creating adequate working spaces and generalizations. The core of this method
lies in structuring the network in such a manner as to target the high and low confidence
levels of the predictions. Instead of simply adjusting for low confidence, developing a
consistent gap in the confidence in class predictions between known image types and
unseen, unclassifiable data new datapoints can be accurately identified and unknown
inputs flagged accordingly through averaged thresholding. In this way, the model is also
self-reflecting, using the uncertainties for all data rather than just the unknown subsections
in order to determine the limits of its knowledge. The results show that these models are
capable of strong performance on a variety of image datasets, with levels of accuracy, recall,
and prediction gap consistency across a range of openness levels similar to those achieved
using traditional methods.

Keywords: Bayesian neural networks; open set recognition; computer vision; classification-
with-rejection; probabilistic models

1. Introduction
It is essential for an AI system to be able to return outputs, suggesting that it has

reached the limits of its classification abilities rather than returning incorrect or closely
related predictions. While significant research continues to be performed into related
problems under a variety of interlinking areas, including Open Set Recognition [1], Out-
Of-Distribution (OOD) [2], and anomaly detection [3], these do not always address the
idea of an AI system recognising what its classification limitations are, nor do they all
provide models that offer both useful classification for known data while also flagging new
unknowns consistently [1,4]. There are several methods that have been used previously to
approach the problem with varying levels of success and usability, but most networks have
been trialled on corrupted known data or solely to investigate the varying probabilities in
these predictions rather than using the uncertainties to map out the model’s approach and
limitations [5–7]. This means that the models were working in a differently defined space
than what is proposed here. There is a significant body of work on this problem area, but
there are so many approaches, training methods, and specific goals that wider-ranging and
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adaptable solutions are not necessarily at the forefront. Here, a model capable of such a
task is coined as an agnostophilic network that can thrive with unknowns, as opposed to
those mired in difficulties processing the unclassifiable.

Models with the mixed abilities described above would have multiple applications
across many industries, especially those where both incorrect predictions and unknown
data are frequent and damaging; medicine and cyber security, for example, are constantly
pushing these challenges. Successful and useful models here would result in less need for
human intervention and checks, leading to more efficient systems without increasing risk.
Building on previous work using probabilistic techniques could expand the capabilities
of what has been proven and develop more utility while also providing a path to further
investigate the underlying nature of probabilistic classifiers, how they evaluate data and
consider the options before them when applying predictions for insight into the improving
intelligence of AI. The distributions delivered by Bayesian Neural Networks (BNNs) offered
a promising avenue of exploration with regard to the inner working of a model as it is
presented with such a problem.

Neural Network classifiers are notoriously overconfident, frequently offering 90%
probabilities on incorrect predictions [8]; it is therefore vital to temper this characteristic.
A traditional or deterministic neural network functions through the use of weights, out-
putting a probability of its prediction through the final SoftMax layer [9]. Because one of
the SoftMax outputs is the probability that a datapoint belongs to a particular class, an
obvious strategy would appear to be to assign a cut-off point at which this probability is
too low, and the model is uncertain, as, at first, it seems that a high probability would tend
towards an accurate prediction. However, the unearned overconfidence prohibits this. A
Probabilistic Neural Network (PNN), which replaces the SoftMax layer with a probabilistic
one, demonstrates less confident predictions over the label options. For this type of model,
the loss function—or the difference between the target values and the model output—is the
negative log-likelihood of each target sample given the predicted distribution. The network
output is therefore a distribution rather than a determination. BNNs use distributions for
the network weights, which are learned through Bayesian inference. This accounts for the
epistemic uncertainty, or the systematic lack of knowledge of the model and process and
provides insightful distributions in the output through which the model’s consideration of
individual datapoints can be observed. Due to the assumption that Bayesian methods can-
not work properly with unknown data, the concept of using BNNs for this type of problem
has been under-explored. In this work, we demonstrate that the approach offers significant
advantages to the field, particularly when it comes to maintaining model performance
across varying levels of dataset openness and the potential for use outside of computer
vision and image identification. The ability to explore distributions of predictions in a
user-friendly manner through probability plots also enhances both wider understanding of
the model and network tuning capabilities in a way that non-Bayesian models do not.

In this paper, we explore this solution through creating a BNN capable of a clear and
consistent difference between the probability levels in predictions for previously seen and
previously unseen data such that it then flags data that the model did not recognise as any
familiar class. The difference between the model’s confidence in control data predictions
and in unseen data predictions is a vital goal for a useful model. For example, a known
data confidence of 0.85 and an unseen confidence of 0.65 gives a difference of 0.2, which
is significant enough to determine where the model’s knowledge fails; this is henceforth
referred to as the confidence delta. By tuning a BNN to have strong recall and certainty
levels on known or control data, as well as low confidence in predictions for unknowns, the
confidence delta could be further widened and then used as a benchmark for determining
whether or not data was recognized and classifiable by the model, or whether the data
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was too anomalous within what had been learned previously. This approach holds several
challenges, as custom metrics would be required, and the accuracy for control data at the
point that the network still functions as a useful classifier. Even when the overconfidence is
regulated, many neural networks struggle with generalization. Adjusting hyperparameters
with the goal of increasing model confidence for knowns and decreasing it for unknowns
is a new area, so numerous experiments and manual network architectures would be
necessary. In order to achieve this, mixed image datasets were built with certain select
numbers chosen as the control classes. Initial networks were trained and tested on these
to achieve a baseline model before being tested on previously unseen images. The use of
BNNs allowed for the examination of probability distributions, which could then be used
to aid custom tuning. Experiments focused on network architecture, different image sets,
volumes of data, and model parameters until an optimal configuration was found. It was
discovered that, with the correct structuring and training, clear and consistent differences
between the confidence levels for control and unknown data could be returned, allowing
for the accurate classification of “knowns” and the identification of anomalous or unknown
datapoints. A usable model capable of recognizing both classifiable data and the limits of
its own knowledge can be built for image data and can likely be expanded significantly for
use in other areas.

The rest of this paper is organized as follows: Section 2 describes the relevant current
literature and gives a brief background into Bayesian Neural Networks. Section 3 describes
the creation of the datasets and the experiments performed in building and testing the
initial networks. The experimental results are shown in Section 4, with explanations as
to the problems that arose during the work and the methodological approaches that lead
to their solutions. The best performing model is detailed in Section 4.3, and its results
are presented and explained. Finally, Section 5 concludes the paper and discusses further
potential work in this area.

2. Background and Previous Literature
There is a wealth of previous work in the combined elements that make up this work:

image classification, anomaly detection, probabilistic modelling, and Open Set Recognition
have been increasingly explored in recent years, with the identification of an unclassifiable
datapoint a particularly varied area of study in terms of ideas and methods [10,11]. With
growing sophistication in modelling types and the availability and accessibility of large
data, models can be built that excel in the classification or prediction problem that they
are specifically designed for but may still struggle with unexpected inputs. This leads
to trade-off considerations between using an otherwise successful model or developing
further to account for a handful of errors depending on how significantly they could
affect wider outcomes. There is no obvious and immediate path to solutions and no
guarantee that one approach will work for all data types and industry environments.
Within the wide area of anomalous data identification, it is worth considering two types
of problem: classification with rejection (CWR), and Open Set Recognition (OSR) [1]. The
former concentrates strictly on training and testing with known classes and, during testing,
rejecting those that it is uncertain about based on confidence levels or some other criteria.
It does not work to highlight the unknown specifically, nor is it applicable to complete
unknowns, working under a closed-set assumption. While the title of OSR continues to be
used for a number of similar tasks, it is generally considered to consist of classifying known
or control classes while rejecting unknown and previously unseen ones. The distinction is
important as it limits the methods and algorithms that can be used, particularly in terms of
probability models.
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The CWR concept is decades old with many methods such as SVMs successfully
tested [12,13], but trials using Deep Neural Networks are more recent, with early explo-
rations detailed in “Selective Classification for Deep Neural Networks” [14]. The study has a
strong focus on risk control and the trade-off between this and the cost of errors. It uses
the SoftMax response method, applying a pre-selected threshold on the maximal neuronal
response of the layer. While not unsuccessful, the overconfidence inherent to NNs [8] is a
clear limitation of this approach, with the model still confidently giving incorrect results.
Another approach to this problem is probabilistic modelling, which can better analyze
network confidence problems. With increases in this type of study and more off-the-shelf
methods available, BNNs can now be built using TensorFlow packages when custom
functions are built for the posterior weight distributions. This type of exploration has
become popular on the corrupted MNIST set, a version of the classic MNIST (Modified
National Institute of Standards and Technology database) set of handwritten figures with
intentional noise over the images to confuse a model [5,15]. While they have a place in
OSR research, corrupted or unknown data are also a potential question of data quality;
a model may be unintentionally misled by an input that is of low quality, particularly in
the computer vision field. When considering the manner in which most AI approaches
break down the classification problem and the way the assumed quality of imagery has
increased substantially, it may not be the case that significant noise is expected in modern
test data. However, images are often compressed or otherwise processed in ways leading
to a decrease in quality that could be considered to verge on corruption. Different types of
quality-distorted images were presented to transformer classification networks in order to
examine the effect on performance [16]. While compressed images did not cause great issue,
those with various Gaussian noise applied caused decreases in accuracy, with the study
suggesting that model robustness should be enhanced in the training phase by considering
noise augmentation techniques. A significant and detailed example demonstrating the
differences between the aleatoric and epistemic uncertainties was produced by research
engineer Chanseok Kang in 2021 [17], and this work informs the early parts of our study.
The network provides low confidence predictions when presented with an image unrecog-
nizable due to the image being partially covered or otherwise manipulated. Work using
BNNs to highlight the “I don’t know” possibilities of the method on image sets stops
when the probability distributions for corrupt data are achieved, and there is little progress
towards a clear and useful gap in confidence levels.

OSR attempts to classify known or control classes and reject or group unknowns into a
new class or classes via decision boundaries [1]. This allows for the unknown classes to be
set aside rather than incorrectly classified into a useful group. The concept of the openness
of the data is the subject of many discussions in the area [18], defined as follows:

Openness = 1 −
√

2CT/(CR + CE) (1)

where
CT = Number of classes in the training set.
CE = Number of all existing classes.
CR = Number of targeted classes.
OSR is often seen as an extension of classification, and, as Neural Networks (NNs)

have proven to be particularly strong classifiers, there have been many attempts at using
them for this task. As mentioned, however, NNs, including Deep Neural Networks (DNNs)
tend to be overconfident and therefore easily fooled by new or corrupted data [11]. This is
due to the SoftMax cross-entropy classification loss, which also serves to give NNs a closed-
set nature. A frequently used method of combating this is altering the final layer type.
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Using an OpenMax layer instead and using a mean activation technique was successful in
recognizing unknowns but failed to work well enough on adversarial images more closely
related to training samples [19].

Another end-layer method used a competitive overcomplete output layer (COOL),
which assigned more than one output per class in order for the outputs to compete to
achieve the accurate result [20]. Still using the 0.5 threshold value, this gave the model
options to consider and reject unknowns more thoroughly; fake samples generated to fool
the model had to be much more complex to result in an incorrect classification than those
generated for testing a normal COVNET architecture using the MNIST dataset. Single-class
experiments reached accuracy/correct rejection rates of 0.8, with multiclass on the CIFAR
dataset reaching 0.75. As both datasets were also used in this study, it makes for a useful
comparison regarding OSR as a computer vision problem. The model in this study was able
to approach 0.85 accuracy with the CIFAR set as a multiclass task. The paper suggests that
NN fooling is more a problem of datasets rather than the models used for the task, as each
will have unique inter-and intra-spacing. This is a convincing idea, both in terms of the
spatial theory behind it and the variability of results when applying previously successful
model approaches to different data types.

Another recent approach attempting to build a deep learning network for OSSR with
focus on strongly handling unknown unknowns mathematically modelled the distance
metric between class spaces in terms of Wasserstein distance as opposed to the Euclidean
distance typically employed in these scenarios [21]. This is of particular note as explorations
of the effect and methods of class-space distance continue to drive work in this field as the
measurements are used to correlate similarities in the data [22]. The algorithm is made up
of three sub-modules, with the other two consisting of class-space compression and a vision
transformer-based signal representation. When applied to electromagnetic time-series data,
improvement was demonstrated compared to methods such as OpenMax, particularly
with mobile phone signal data.

A different approach noted the strength of neural networks as classifiers and the
potential issues extending them for OSR, offering instead a weightless neural network
(WiSARD) as a solution [18]. The model used complex distance-type methods with the
rejection thresholds defined during the training period. Where normal NNs have weights
attached to the edges connecting nodes, the connections here have no weights at all, making
the nodes the source of learning. The network discriminators store knowledge on classes
and on the multiple-threshold rejection technique, rating the observations according to the
qualifying features rather than using prior data distributions. The concept of the “openness”
and the closely related “coverage” of training and testing data is thoroughly explored,
with multiple class experiments taking place using the UCI-HAR dataset, a multivariate
timeseries of simple human activities. Mainly using an “odd-one-out” approach of training
on five of the activities and testing with all six, the model achieved reasonable F1-macro
scores, particularly when compared to other algorithms such as SVMs. While this represents
a different datatype than the image data used in this study, the highest performance in
the results falls short of that achieved with the BNN method, even with custom manual
thresholding. Further experiments focused on increasing openness, and, here, the model
struggled with recall, reaching under 0.7. This was true of the compared methods tried
for the same task, which included Gaussian Naïve Bayes, a more basic NN, and an SVM.
As the weightless network and the SVM, both methods that only use the training data,
performed the best, the study suggested that information regarding additional classes may
simply serve to mislead models and decrease OSR performance.

A further publication of note is “Reducing Network Agnostophobia” [23], which explored
the question of identifying unknown unknowns, detailing drawbacks of previous methods
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including the SoftMax threshold and the background class approach. It noted that a novel
loss function improved performance in terms of identifying new unknowns, comparing
a more probabilistic approach to that of specific background training classes. The special
metrics used, however, are not comparable to this work. There is a dearth of probabilistic
models attempting to solve the OSR problem, and this is largely due to the assumption that
the underlying law of total probability cannot properly translate to the issue of previously
unseen data [20,24]. Probabilistic models also tend to use the maximum a posteriori proba-
bility (MAP) estimate, which requires the full posterior distribution; this is not accessible
with unknown unknowns, and the known classes have been so far considered insufficient
for the task. Instead, some experiments have used a Compact Abating Probability (CAP)
method, in which the probability of class falls during the move from known data to open
space. Replacing the need for unknowns to be modelled, this SVM technique was trialled
on several datasets with varying degrees of openness. While successful in recognizing
unknowns, the results demonstrate a similar issue with increasing openness as the pre-
viously mentioned DNN studies, that is, a decrease in F1 scores. The more “open” the
sets, the lower performance tends to be, whatever the algorithm. The high F1 scores of
the best model at lower openness fall significantly to 0.86 as openness approaches 14%
when experiments used the LETTER dataset. While scores between 0 and 12% openness
stay above 0.9, they fare better in the results from MNIST experiments where they remain
over 0.9 at the highest level (13%). The experiments performed in the SVM study focus
on these grayscale image sets, comparing them against dropped out images within the
set. The study described in this paper uses the MNIST and FMNIST sets for grayscale
image experiments, both on their own and mixed together, as well as mixes of colour image
CIFAR sets. This allows for both wider and narrow similarities in the training and testing
data, as well as more varied coverage; openness beyond 14% was frequently trialled, with
scores remaining 0.85+. The method used may be less susceptible to the openness problem
than the SVM probability or the weightless neural network approaches.

The uncertainty of predictions was a key feature of an OSR method for malware
traffic recognition, aiming to create a network capable of identifying unknown and unseen
attacks [7]. The Deep Evidence Malware Traffic Recognition (DEMTR) achieved high F1
scores for known and unknown test data. However, these decline quickly with increasing
dataset openness, an issue that remains a significant challenge in this field. While there is
some comparison with the use of Bayesian probability distribution methods in classification,
the underlying issues of the incalculable denominator are not addressed as the comparison
investigates the method of reaching the certainty estimate rather than the performance
regarding unknown inputs. The study does indicate that there is room for considering
probabilistic approaches to the OSR problem.

A recent OSR technique with Gated Recurrent Unit and Convolution Auto-Encoder
(GRU-CAE) deep learning networks uses a template matching method to determine a
threshold: focused on classifying ocean vessel types from sound wave data, the study
establishes a template for each known data type, and then the Euclidean distances in the
test data are measured [25]. The template is then not a sample but an optimal vector. The
results show a particularly promising approach, which, like this study, is built around novel
thresholding techniques. A somewhat similar approach was used to develop a model for
nuclear power plant fault diagnosis; following feature extraction through Convolutional
Prototype Learning (CPL), an SVM and Prototype Matching by Distance (PMD) method
determines the open space fault diagnoses [26]. Due to the nature of power plant operations,
the data here is particularly complex, with multiple variables to be considered that challenge
the feature extraction process. With the CPL compressing the intra-classes and separating
the inter-classes, the way is paved for known faults to be identified and unknowns rejected.
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High accuracy was achieved for known faults, with predictably lower scores for unknowns
yet still in the ~0.9 range for the best experiments.

Another technique, this time applied to image data for classifying wild fish, uses a
fusion activation pattern of SoftMax and OpenMax functions for the thresholding. The
former performs a preliminary screen with the latter working to perform corrections in the
activation vector [27]. The WildFishNet trained on thousands of images split into hundreds
of classes, with more kept back for testing as unknown data for openness levels of up to
20%. The method achieved strong results with 0.8+ accuracies across the final experiments.
The dataset used, however, contains many images that are extremely similar, leading to the
type of image confusion common to this type of problem. Ultimately, significant work in
the OSR field is focused on the determination of a threshold from a sampled or generated
ideal, often comparing new data through mathematical distances. The BNN method of
extracting unknowns has so far been overlooked.

This paper challenges the notion that probabilistic, specifically Bayesian approaches,
are always unsuited for the task at hand without complex adjustments. Bayesian networks
have been used as powerful tools both alone and as combination models for a variety of
problems as their transparency and architecture allows for the consideration of multiple
factors and continuously updated knowledge in training and later application. An example
of this is a hybrid model for mental health diagnosis, which combines the aforementioned
strengths with Large Language Models to simulate the back-and-forth approach used in
pinpointing these specific medial issues [28]. A Bayesian Neural Network differs signifi-
cantly from a normal deterministic one, using distributions as weights. This special weights
configuration gives BNNs the ability to better generalize as they can avoid the unnecessary
extrapolation of the training data through estimation of the posterior distribution. This is
achieved through Bayesian inference, using Bayes’ Rule where distribution judgements are
altered in light of new data; the posterior parameter distribution is found by Equation (2):

P(w|D) =
P(w)·P(w)

P(D)
(2)

where P(w) is the data likelihood or the probability of a particular set of data being observed
under particular parameters. P(w) is the prior distribution, or the assumed distribution
before further information is acquired. P(D) is the new evidence data, or new observations
used to update the probability distribution. The predictions then follow as an expectation
of the output over the optimized posterior distribution. In this case, the integral in Bayes’
Theorem is intractable and must be estimated through variational inference, a method by
which a complex distribution is approximated from a family of densities best representing
the output. This results in the model assigning a certainty value along with a standard
deviation level of confidence to the predictions [29]. The uncertainty can be observed for
the model as a whole or for single observations, allowing for particularly useful insights
into the model’s workings and the conclusions it comes to. A further focus of this research
is the levels of uncertainty for known and unknown data and the potential uses these
outputs can lead to.

To implement Bayes’ Theorem in this study, the model trialled exercises spike-and-slab
regression as the custom prior, which uses a prior distribution with a point mass at zero;
this generally leads to a sparse posterior distribution. This method suits instances in which
potential predictors outnumber the observations [30]. In terms of network architecture,
this makes up the Dense Variational layer; this in turn provides control over the weight
space that the model operates in due to the need to define the standard deviations for
the distribution. As the distribution is a weighted sum of the two normal distributions, a
higher standard deviation increases the likelihood of values away from the zero point. Due
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to the nature of the experiments and variation in the testing data, a more generous space
is desirable. After the first rounds of training, Bayesian inference is performed to return
the initial posterior distributions, or the P(w|D) term. Further training then continues
drawing from these distribution samples, continuously updating and tuning over the
model performance. Bayesian inference therefore gives the probability—or certainty—the
model has regarding its predictions, and it is from here that the core of the method stems.
Strong confidence on known data and low confidence on unknown data allows for the
confidence delta to be created and used to determine the classifications.

As mentioned, previous work has raised the issue of unknown unknowns prohibiting
the use of the above equation in OSR models as conditioning cannot be performed on all
the classes, leaving the equation denominator incalculable. However, by approaching the
task as a blended CWR/OSR problem, allowing the network to assume that unknowns can
be treated as corrupted data, designing the architecture such that the working space is great
enough, and the generalization wide enough, the resulting confidence delta between control
and unknown data can achieve strong rejection levels through averaged thresholding. The
model can therefore correctly classify multiple known classes while actively finding and
rejecting data which does not fit. As almost all current OSR methods use a threshold-based
approach, its selection depends on model knowledge from the known training data [1]. This
is risky as there is obviously no supporting knowledge from the unknowns. A BNN can
move this forward as it can deal with the aleatoric uncertainty inherent in the problem [31]
and return information on specific troublesome observations.

3. Methodology and Metrics
To test the theory laid out in the previous sections, PNNs and BNNs for image clas-

sification were built in Python 3.7 using TensorFlow 2.1.0 and tuned for accuracy and
consistent probabilities with known unknowns to serve as the base level network. Results
were plotted with Matplotlib 3.5 or exported to MS Excel 2503 for clearer bar chart visuals.

The experiments required custom datasets with varying degrees of openness, complex-
ity, and image types. Several available image sets were used, including MNIST, FMNIST,
K49-MNIST, and CIFAR-10. These provided a range of images of alpha-numeric characters,
Japanese characters, and images of animals and objects in various colours. Training and
validation datasets were created with different numbers of classes. For example, in the
case of the initial CIFAR-10 dataset, seven out of the ten image classes were extracted to
create the training and validation sets. The test set was then a mix of the training and the
remaining three classes, providing seven “control” and three “unknown” classes. Due to
the use of one-hot encoding, the unknown classes were relabeled to replace those swapped
out from the training set. Different ratios were explored, and care was taken to include
and exclude images with high similarities to each other for the model to be thoroughly
challenged. To increase volume and variety, some sets were mixed prior to the control and
unknown classes being determined and extracted.

Once trained with the training sets, the model was given a test set consisting of both
known unknowns and unknown unknowns and the results analyzed. While key metrics
were strong accuracy for the control classes, high recall, and F1 scores, the main goal was
a significant difference in probability levels between the control and unknown classes to
determine a proper threshold for rejecting a datapoint. After tests were run, the average
probability of predictions per class was collected and visualized in order to review this, with
insignificant deltas indicating that the model was not yet performing successfully. Where
this was the case, the results were investigated further in terms of probability distribution
and epistemic uncertainties for specific datapoints, system entropy, and image confusion.
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This is where the BNN method uniquely lends itself to this type of interpretation and
tuning; where specific datapoints appear to be causing confusion for the model, those with
frequently predicted labels alongside high uncertainty can be retrieved and the epistemic
uncertainty distributions for the specific label viewed. This can also pull the images
themselves for additional comparison and verification from a human perspective. Once
issues have been realized, further tuning can take place with a focus on the area of confusion
as opposed to simply the overall network.

This was then used as feedback to tune the model further, reconfiguring its architecture
and operations to progress towards the best working network. As the main metric of the
confidence delta was custom, automated tuning was not useful in this research work, and
the majority of the network architecture was constructed through bespoke layering as op-
posed to solely off the shelf functions. Different layer types and orders were experimented
with, as well as optimizers, activation functions, training epochs, and normalization meth-
ods such as batch normalization and the inclusion of dropout layers in order to arrive at the
optimal design for the metrics described through minimizing overfitting and controlling
loss and validation accuracies. To appraise the network configurations, the total accuracy
and the recall values for both control and unknown test data were collected; it was desirable
that they were consistently high for the former and low for the latter, as there would be no
correct predicted value for the unknowns. Ultimately, there were two significant tuning
goals involved in this method once an initial baseline model focusing simply on recall for
the control data: image confusion tests and maximizing the probability delta. To achieve
these, experiments were run covering various selections of

• Single-image datasets.
• Mixed-image datasets.
• Layer numbers.
• Optimizers.
• Activation functions.
• Normalization methods.
• Training epochs.

The pathway can be seen in Scheme 1.
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4. Results
4.1. Image Confusion

As previously mentioned, the BNN method provides a unique method to investigate
and solve image confusion, which is often a key component to both control and unknown
classes having mixed probability results. This initial indication of the problem is sparked
by the type of result seen in Figure 1, which shows the probability results of an early
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model for nine classes, of which one of them (0) was an unknown. The confidence level
of the unknown (red) is low, which is desirable, but so is that of labels 6 and 7 to the
point where there is not a useful threshold to progress with. The model here has not
reached a point at which a significant confidence delta is achieved, but it provides a starting
point for distribution investigation and tuning. The issue was isolated to examine the
epistemic uncertainty.
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Figure 1. Average probabilities for known (green) and unknown (red) classes for MNIST/FMNIST
experiment.

The model struggles to differentiate between the figure “5” from the MNIST set and
the sandal images from the FMIST set. A classic CNN could be trained to separate these
fairly easily, but, when one is a complete unknown and the probability level is an essential
metric, the task is more complex. When checked visually, both have similar line shapes
and a large amount of negative space, both surrounding the shape and encircled within the
lines as can be observed in Figure 2. This set of images was taken from the samples that the
network was attempting to identify, i.e., the source of image confusion.
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Figure 2. Examples of the figure “5” and sandal images from the MNIST and FMNIST datasets.
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For the lower confidence level predictions, i.e., under 50%, the label predicted was
collected and visualized to see if there was a specific value that was being incorrectly
assigned to a certain section of the data. This indicates if there were patterns to the
inaccuracy or widely spread confusion. In the graph in Figure 3, the uncertain prediction is
overwhelmingly the label “5”, which, in this instance, was the model attempting to classify
the previously seen sandal image. This then confirmed the pattern of confusion in the
model, allowing for targeted improvements in the tuning.

Big Data Cogn. Comput. 2025, 9, x FOR PEER REVIEW  11  of  20 
 

For the lower confidence level predictions, i.e., under 50%, the label predicted was 

collected and visualized to see if there was a specific value that was being incorrectly as-

signed to a certain section of the data. This indicates if there were patterns to the inaccu-

racy or widely spread confusion. In the graph in Figure 3, the uncertain prediction is over-

whelmingly the label “5”, which, in this instance, was the model attempting to classify the 

previously seen sandal image. This then confirmed the pattern of confusion in the model, 

allowing for targeted improvements in the tuning. 

 

Figure 3. Counts of predicted labels for a low confidence prediction. 

Looking into the specifics, this way allows for closer investigation of not only partic-

ular images, often showing that there would be a mix of confidence levels, but also the 

effects of wider network alterations on predictions. For the distribution visuals, plotting 

code was adapted from a previous demonstration [17]. Figure 4 shows what the model 

estimated the labels to be for a “5” image where the sandal image had been assigned the 

label of 0. 

 

Figure 4. Distributed predicted label probabilities showing model confusion. The red and green bars 

are incorrect and correct classifications respectively. 

The epistemic uncertainties are represented by the stretch of the coloured bars, indi-

cating the  level of “consideration” given to the classification options available. The red 

bar, for instance, shows considerations between 20 and 76%. The long bars show that la-

bels 0 and 5 gave the model significant pause. Both also have high probabilities assigned 

to them, as well as low. The Bayesian network allowed for this uncertainty to be visualized 

to determine that both the accuracy and confidence levels are too easily swayed at this 

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

Ti
m
es
 P
re
d
ic
te
d

Class Predicted

Most Freqently Predicted Labels with High Uncertainty

Figure 3. Counts of predicted labels for a low confidence prediction.

Looking into the specifics, this way allows for closer investigation of not only particular
images, often showing that there would be a mix of confidence levels, but also the effects of
wider network alterations on predictions. For the distribution visuals, plotting code was
adapted from a previous demonstration [17]. Figure 4 shows what the model estimated the
labels to be for a “5” image where the sandal image had been assigned the label of 0.
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Figure 4. Distributed predicted label probabilities showing model confusion. The red and green bars
are incorrect and correct classifications respectively.

The epistemic uncertainties are represented by the stretch of the coloured bars, indi-
cating the level of “consideration” given to the classification options available. The red bar,
for instance, shows considerations between 20 and 76%. The long bars show that labels
0 and 5 gave the model significant pause. Both also have high probabilities assigned to
them, as well as low. The Bayesian network allowed for this uncertainty to be visualized to
determine that both the accuracy and confidence levels are too easily swayed at this stage
for these datapoints; tuning while revisiting these graph types indicated the movement
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towards the metric ideals. From here, the network architecture was reworked and retested
to account for this feedback, and fixing this level of confusion resulted in improved per-
formance for dissimilar images as well. Layer configuration was found to have the most
impactful changes. This clearly demonstrates how a BNN offers significant options for
investigation and adaptation compared to other models used for open-set problems.

4.2. Maximising Probability Delta

Altering the model optimiser did not make any significant changes to any of the
results, so layer structure was investigated along with the inclusion of dropout layers.
Dropout layers prevent overfitting by randomly dropping a ratio of the units, providing
a level of regularisation. This also assisted with the creeping overfitting inherent to this
type of modelling. A notable occurrence during these trials was the effect of using such
a dropout layer compared to employing batch normalisation in the network architecture.
The dropout approach results in largely consistent confidence levels for both control and
unknown data. Batch normalisation, however, led to unpredictable confidence levels all
round and no clear pattern between control and unknowns. It is possible that the action of
the dropout layer to prevent overfitting reduces confidence in the unseen images, as the
random data exclusions give the model less to work with for the mixed unknowns. This is
an idea that could be researched further.

It can be seen in Figure 5 that the inclusion of a dropout layer had a significant effect
on the confidence delta; the addition of this to any number of layers greatly increased
the difference between the known and unknown confidence levels, sometimes by several
percentage points. When this phenomenon was further investigated down to the individual
figures, it was discovered that the dropout layer results in a very slight confidence drop for
the control data but a far more significant drop for the unknowns (1–3% and 7–8%). This
resulted in a greater overall confidence delta for networks built with dropout configurations.
The number of layers also demonstrates a gently rising trend, peaking at seven. The
base data show that the increase in the difference comes from lower probability levels
in the unseen classes, while the levels for control stay similar. The dropout approach is
therefore decreasing unearned overconfidence in the model, an effect that may be worthy
of further study. The seven-layer dropout configuration also had strong performance for
accuracy and recall and so was used throughout this study. This optimal configuration
proved true for both probabilistic and Bayesian model types, possibly due to the effects on
aleatoric uncertainty.

As the changes were made, the lower and confused probabilities, as well as some
of the individual datapoints, continued to be plotted to test the effects of the changes on
the different uncertainty types. Figure 6 shows one such investigation when the ideal
configuration had been neared; the previously unseen “5” was given to a model that had
been trained on a set that included the F-MNIST sandal image. This time, little consideration
was given to any of the labels, and there was low confidence in those selected. While the
sandal label (5) was one of the ones predicted, the epistemic uncertainty is considerably
lower with the probabilities just reaching 0.5. The small distributions and lack of wide class
considerations indicate that the network was no longer confused by the unknown data and
would assign low-level predictions rather than overconfident incorrect ones.
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Figures 7 and 8 show the developing accuracy and recall for different layer configu-
rations for control and unknown classes; while there are setups that have higher scores
than 7D, the key metric remained the confidence delta, which was at its highest with this
structure, and the levels are still strong for these secondary metrics. It can be seen that the
addition of dropout layers had a noticeable effect on the total accuracies up to a point yet
a less significant effect on the recall. For known data, the accuracy levels from six layers
onwards are reasonable, approaching 85%+ after seven layers. For unknown data, it is
desirable in this study that the accuracy is low as this does not pertain to the unknown
datasets. Any “accurate” predictions would in reality be incorrect as they would reflect
wrong or coincidental predictions or the reassigned label, and a high pattern of these
would indicate a problem within the model. High accuracy levels returned here would
therefore indicate low model performance overall. The same is true of the recall results.
Again, all are promising, with the majority over 0.8 and approaching 0.9. As with the
accuracy statistics, it is desirable that the unknown plots remain low in terms of recall for
the same reasons. By continuing to return to the individual epistemic distributions as well
as the overall probability and recall metrics, the BNN approach again delivers unique and
effective methods of appraising and restructuring the network configuration.
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4.3. Optimized Model

The most promising model across all dataset experiments was the seven-layer dropout
configuration, without other normalization techniques, training epochs below 10, and using
ReLU activation function and an RMSProp optimizer. With these parameters, the model was
able to not only correctly classify control data but also returned a clear and consistent confi-
dence delta between control and unknown classes, firmly demonstrating that it can identify
what it does not know. Figures 9 and 10 show the class probabilities for control (green) and
unknown (red) classes, the first for CIFAR-10 and K-49 experiments, respectively.
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Figure 9. Average probabilities for known (green) and unknown (red) classes, for CIFAR-10 experiment.
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Figure 10. Average probabilities for known and unknown classes for K-49.

The green bars show a high and uniform result, while the red bars are consistently
lower and of similar value to each other. This creates a stable and useful delta, clearly
observable in the visuals. When given a completely unknown datapoint, the model will
return a confidence output well below that of control classes, meaning that a cut-off point
for this can be easily assigned. For example, for any confidence result under 70% for
CIFAR-10 in Figure 9, the network could highlight the datapoint as anomalous, suspicious,
or generally unclassifiable. For the K49-MNIST selection in Figure 10, the confidence level
on the unknown data is higher, but so is that of the control images, being well over 90%
across the board. The model can therefore correctly classify expected data and recognize
potential anomalies.

The experiment was repeated for the other aforementioned datasets, both indepen-
dently and mixed, with a variety of image types. A useful delta was achievable in all
cases, along with a strong recall for the known images. Delving deeper into individual
datapoints, the attempted predictions for specific images can be observed, just as they
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were during model tuning. In Figure 11, the model has been presented with an image of
a ship, which it has never previously encountered. The epistemic uncertainties bars are
tall, indicating the consideration given to each potential label due to the lack of specific
knowledge in the network. The probabilities reached all remain under 0.6. The model is
extremely unsure of the classification of this image and “does not know” what the data is.
In this instance, the “correct” label at (5) is a false positive from relabelling and encoding.
This indicates that the model is performing as desired, refusing to assign any label with
significant enough confidence.
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Figure 11. Distributed label probabilities for unknown image (ship). Here, the green bar represents a
false positive from relabelling, with the red bars indicating incorrect classification.

This is further seen in Figure 12, in which the model does not require much consider-
ation to assign the correct label to a control test image of a frog. While other options are
deliberated, this is brief, and the confidence in them is very low. The model selects the
correct label (3) with high confidence, with the plot providing an insight into the inner
workings of the classification process, i.e., contemplation against known possibilities.
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Figure 12. Distributed label probabilities for control image (frog). The red and green bars represent
incorrect and correct classifications respectively.

Another goal of this study was to maintain strong metrics across a variety of mixed
sets and levels of openness. A range of levels was tested in experiments, and the results are
presented in Figure 13 along with those from a study using Support Vector Machines in a
probabilistic approach to OSR [23].
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4.4. OSR Comparisons

As indicated in Table 1, the BNN method offers strong results alongside other ap-
proaches where the works are comparable, as well as offering insight into the model’s
workings through distribution plotting and uncertainty analysis. This in turn leads to
improved custom tuning, better generalization, and progress towards overcoming the
openness problem experienced in other studies.

Table 1. Comparison of older relevant studies to BNN results.

COOL WiSARD SVM BNN

Relevant Dataset(s) CIFAR UCI-HAR LETTERS
MNIST

MNIST
FMNIST
CIFAR

Data type Colour Image Multivariate
Timeseries Grayscale Image Mixed Image

Method Alternative End
Layer Weightless NN Probabilistic Bayesian with

confidence delta

Accuracy 0.75 - - 0.865

F1 - 0.8 0.9 0.86

Recall - 0.7 - 0.88

Comment Highest openness
results

Highest openness
results

Averaged across
openness

It is worth noting that the comparison study results focused only on a single grayscale
dataset, rather than more complex custom ones, and the openness levels tested in this study
went up to 14%. The scores for the BNN represent the averages for mixed colour and mixed
grayscale sets. While the SVM results are higher for the levels tested, there is a noticeable
descent compared to a steadier line formed by the BNN results. The openness levels seem
to have less of an impact on the score for the Bayesian Neural Network approach; the SVM
loses 0.8 from the score across a difference of 12%, compared to a 0.4 drop for the BNN
across 18%. Specifics of the WildFishNet openness levels could not be determined outside
of the 20% experiment, so this is featured alone in red, with the BNN result presenting
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a slightly higher score. This approach can therefore demonstrably compete with other
methods in this regard.

The ODR accuracy of the BNN method is shown alongside recent novel approaches
in Figure 14. There is a mix of data types: sound waves for GRU-CAE [25], colour images
for WildFishNet [27], and generated nuclear industrial data for SVM-PMD [26]. All reach
promising levels of accuracy, and the BNN results demonstrate that the methods proposed
here can compete with other emerging ideas and experiments.
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5. Conclusions and Further Work
This research has demonstrated that the proposed Bayesian Neural Network technique

can be effective when used to build an agnostophilic AI system that recognizes the limits
of its knowledge, returning unseen and unknown data that it finds unclassifiable based
on probability distributions. Strong accuracy and reliability metrics are maintained, and
the method works on a variety of image data. Further work would expand on the image
data used as well as venturing into other data types for more impactful use cases. More
investigation into openness levels would also be an area of exploration, as experiments so
far suggest that the model reacts differently to this factor than do other approaches.
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