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Denoising Reuse: Exploiting Inter-frame Motion
Consistency for Efficient Video Generation

Chenyu Wang∗, Shuo Yan∗, Yixuan Chen∗, Xianwei Wang, Yujiang Wang, Mingzhi Dong,
Xiaochen Yang, Dongsheng Li, Member, IEEE, Rui Zhu, David A. Clifton, Robert P. Dick, Senior Member, IEEE,

Qin Lv, Fan Yang, Tun Lu, Member, IEEE, Ning Gu, Member, IEEE, and Li Shang†, Member, IEEE,

Abstract—Denoising-based diffusion models have attained im-
pressive image synthesis; however, their applications on videos
can lead to unaffordable computational costs due to the per-frame
denoising operations. In pursuit of efficient video generation, we
present a Diffusion Reuse MOtion (Dr. Mo) network to accelerate
the video-based denoising process. Our crucial observation is that
the latent representations in early denoising steps between adja-
cent video frames exhibit high consistencies with motion clues.
Inspired by the discovery, we propose to accelerate the video
denoising process by incorporating lightweight, learnable motion
features. Specifically, Dr. Mo will only compute all denoising steps
for base frames. For a non-based frame, Dr. Mo will propagate
the pre-computed based latents of a particular step with inter-
frame motions to obtain a fast estimation of its coarse-grained
latent representation, from which the denoising will continue to
obtain more sensitive and fine-grained representations. On top
of this, Dr. Mo employs a meta-network named Denoising Step
Selector (DSS) to dynamically determine the step to perform
motion-based propagations for each frame, ensuring the correct
transformation of multi-granularity visual features. Extensive
evaluations on video generation and editing tasks indicate that
Dr. Mo delivers widely applicable acceleration for diffusion-based
video generations while effectively retaining the visual quality and
style. Video generation and visualization results can be found at
https://drmo-denoising-reuse.github.io.

Index Terms—Video Generation, Diffusion Models, Computa-
tional Efficiency
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D IFFUSION models such as Denoising Diffusion Proba-
bilistic Models (DDPMs) [1] and Video Diffusion Mod-

els (VDMs) [2] have demonstrated impressive capabilities to
generate high-fidelity videos. However, the superior visual
qualities come at the cost of computation burdens primarily
associated with the denoising operation of numerous steps
[3, 4]. This is cost-prohibitive for videos; applying diffusion
models on a per-frame basis imposes computational demands
that increase linearly with frames, undermining the generation
of long-duration videos [2] and hindering the deployment of
video generation models in practical applications.

This work presents a novel framework to dramatically
accelerate diffusion-based video generation via employing
motion dynamics in the latent space of the denoising process.
We embark on a comprehensive investigation of the video
generation process to illustrate our insights. As shown in
Figure 1 (left), the diffusion model applies incremental noise
reduction to gradually recover visual features from gaussian
white noise. Due to the nature of visual features, which exhibit
higher low-frequency energy and lower high-frequency energy
in the frequency domain, the model follows a coarse-to-fine
pattern during the denoising process. Compared to the later
denoising steps, the visual features obtained in the earlier steps
are coarser, more semantic, and exhibit stronger inter-frame
consistency. This opens up the possibility of using a faster
estimation method, such as motion cues in the video, to acquire
the latent representations.

We further inspect the trend of inter-frame motion dynam-
ics, computed by the normalized mutual information (NMI)
between learned motion matrices detailed in Section III-B,
across the denoising steps, as portrayed in Figure 1 (right). In-
tuitively, higher NMI values typically indicate more consistent
inter-frame motion dynamics in the denoising step. We can see
from the curve that the motion consistencies are generally high
across numerous denoising steps, especially those operating on
coarse-grained features, which unveil the consistent nature of
motion information across denoising steps. Those observations
inspire an approach to accelerate the video-based denoising
process. The early-stage denoising latent representations of
a video frame can be reused with easy-to-compute motion
features to efficiently obtain the latent representations in sub-
sequent frames, since those coarse-grained representations can
be more tolerant to the inaccurateness from fast estimations,
and the high-frequency noise generated by feature distortion

0000–0000/00$00.00 © 2021 IEEE
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Fig. 1. Left: The spectrum illustrates an increase in high-frequency signals during the denoising process, from steps 900 to 100. Right: Statistics of NMI
curves between neighboring frames of 1000 different videos sampled in webvid, which show that NMI scores are generally higher in the middle of the
denoising process, indicating that the motion dynamics maintains a high degree of consistency in the middle of the denoising process.

can also be eliminated in the subsequent denoising process.

Latent representations in late denoising steps harbour more
fine-grained feature crucial to the generated images’ quality.
Therefore, preserving the precision of those representations
can be essential to attaining visual quality, and thus, denoising
operations are indispensable. Although the denoising process
in diffusion models is stochastic, leading to no clear boundary
between coarse-grained and fine-grained features, they can still
be distinguished based on their probability distributions. To
handle these two types of features separately, it is necessary
to identify an appropriate transition step. Those denoising
steps before it could be skipped to save computations as its
latent representation can be directly and rapidly estimated by
reusing the pre-computed one with motion features. After the
transition step, representations will still go through denoising
operations to retain the desirable visual quality. The choice
of the transition step depends on the magnitude of motion
features in the video. A transition step that is too early or too
late will affect the visual quality of the generated result.

In pursuit of efficient video generation, we devise a new
Diffusion Reuse MOtion (Dr. Mo) network that significantly
accelerates the video-base denoising by incorporating inter-
frame motion clues. Dr. Mo consists of three major modules,
a denoising-based diffusion backbone network such as the
stable diffusion [5], a motion network to yield inter-frame
motion dynamics, and a meta-network dubbed the Denoising
Step Selector (DSS) to determine a proper transition step. Dr.
Mo starts by applying the backbone diffusion network to a
base video frame to obtain its latent representations at each
denoising step, referred to as the base latents. For a non-base
frame, DSS will be involved in selecting a proper transition
step, and the motion network will be utilised to obtain motion
features. The latent representation on the transition step will
be obtained by warping the pre-computed base noises of
the same step with motion features, which could save the
computations of those earlier denoising steps. The estimated
latent representation will be fed into the backbone diffusion
network to complete the resting denoising steps and obtain the

final frame prediction. Moreover, we have developed several
objective functions to train Dr. Mo, including the motion and
DSS networks.

Our evaluations on the UCF-101 [6] and MSR-VTT [7]
datasets have demonstrated Dr. Mo’s superior video qual-
ity and semantic alignment over state-of-the-art baselines.
Notably, Dr. Mo effectively accelerates the generation of
16-frame 256×256 videos 5.4 times faster compared with
Latent-Shift [8] while maintaining 96% of the Inception Score
(IS) [9] and achieving improved Fréchet Video Distance
(FVD) [10]. Compared with SimDA [11] on generating 16-
frame 512×512 videos, Dr. Mo works 2.2 times faster. As an
easy-to-implement and flexible module, Dr. Mo can also be
effortlessly integrated into the framework of various diffusion-
based video generation approaches, providing a more than
2x acceleration in video generation with comparable visual
quality and stylistic coherence.

In summary, our work makes the following contributions:
1) We intuitively reveal that inter-frame motion dynamics

are highly consistent across the denoising steps, a crit-
ical insight for accelerating diffusion with inter-frame
motions.

2) We present Dr. Mo, an effective method to accelerate
the video-based denoising process, which could speed
up video generation by around 2x with matching or
improved visual qualities. Dr. Mo also generalises well
to various diffusion models.

3) We develop approaches to learning a lightweight motion
network to generate proper motion features and a meta-
network to dynamically determine the transition steps
for correctly processing multi-granularity features.

II. RELATED WORK

A. Diffusion-based Image Generation

Diffusion models have achieved state-of-the-art results in
text-to-image generation [12, 13, 14], garnering significant
attention from both the academic community and industry.
GLIDE [15] introduced text conditioning, demonstrating that
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classifier guidance can yield more satisfying results. DALL-
E2 [16] improved text-image alignment by leveraging the
CLIP [17] joint feature space, which allows users to provide
a text prompt and generate images of unprecedented quality.
Imagen [12] combined large language models with a cascade
architecture to produce realistic outcomes. The latent diffusion
model [5], also known as Stable Diffusion (SD), shifts the
diffusion process into the latent space of an autoencoder,
significantly enhancing efficiency and becoming the most
widely used diffusion backbone model to date. Most of the
video generation models we present are developed based on
SD.

The latent space of diffusion models has also been ex-
tensively studied. For instance, EmerDiff [18] utilized the
latent space of pre-trained diffusion models on generative tasks
to achieve zero-shot segmentation. BE-Cycle [19] enabled
fine-grained semantic editing of images by manipulating the
diffusion model’s latent space. In the SCFM [20] framework,
diffusion models are equipped with latent and noise-guided
modules to control precise positioning and pose in human
photo generation. Que et al [21]. demonstrated sketch-to-photo
synthesis using pre-trained diffusion models. Moreover, Dual-
Cycle Diffusion [22] and RDVR+ [23] leveraged diffusion
models for semantic-level video compression, enabling the
reconstruction of original footage and detecting anomalies
within the latent space. These works collectively suggest that
diffusion models possess a semantic-level latent space, which
allows for efficient motion modeling and precise frame control
during video generation.

B. Diffusion-based Video Generation

Recent advances in diffusion-based models [2, 24, 25,
26] have integrated spatiotemporal operations into traditional
image-based frameworks, producing high-quality videos and
breaking the dominance of GANs in the field of video genera-
tion [27, 28, 29]. However, their reliance on iterative denoising
processes makes them computationally expensive and unnec-
essarily slow. To simplify video generation, recent research has
turned to latent space-based models [11, 30, 31, 32], particu-
larly latent diffusion models [1, 4]. For instance,SimDA [11]
maintains the parameter of text-to-image diffusion model fixed
and utilizes lightweight spatial adapter and temporal adapter
for learning visual information and temporal relationships in
videos. For motion information learning, AnimateDiff [31]
adds a novel motion module to base diffusion model to learn
motion dynamics. LVDM [33] and LaVie [34] generate sparse
video patterns and interpolate intermediate latents, but do
not explicitly model motion information. Latent-Shift [8] uses
feature maps from adjacent frames to facilitate motion learning
without extra parameters, while Text2Video-Zero [35] employs
predefined direction vectors to introduce motion dynamics, yet
struggles with temporal consistency. VideoLCM [36] employs
a teacher-student framework to distill consistency to minimize
steps. However, it requires fine-tuning the complete diffusion
process for each frame, taking 10s to generate 16×256×256
frames. In contrast, our approach takes only 4.35s with 50
steps using DDIM [4]. VidRD [37] also reuses latent features

from previously generated clips does not adapt the number of
reuse steps across frames, limiting its efficiency.

To the best of our knowledge, we are the first to apply
the sparse representation brought by inter-frame consistency in
video generation, and improve generation efficiency through
efficient feature reuse. Furthermore, we have conducted an
in-depth analysis of the representational characteristics within
diffusion models, explaining the theory behind motion repre-
sentation extraction and the use of compressed representations
in diffusion, offering new insights and perspectives.

C. Motion Estimation
The core of motion estimation is to find the motion of

pixels or feature points between images or video frames.
Existing methods typically include Block Matching Algorithm
(BMA) [38], Optical Flow [39, 40, 41, 42, 43, 44], and Feature
Tracking [45, 46, 47, 48, 49, 50].

BMA is a traditional, non-deep learning method. The core
idea is to divide an image into multiple small blocks and
find the corresponding position in the next frame for each
block [38]. It is computationally simple and efficient, and is
widely used in video compression, object tracking, and motion
detection, among other fields. Although BMA is a relatively
simple traditional algorithm, its core idea has been widely
applied in video coding and compression fields, inspiring
higher-performance works in various scenarios [51, 52, 53].

Optical flow estimates pixel motion across consecutive
frames based on local intensity changes. Traditional methods
rely on handcrafted features and are computationally expen-
sive. Recently, deep learning-based methods, offering better
accuracy and efficiency, have become dominant. FlowNet [39]
introduced two key architectures: FlowNet-S, which stacks
images on the channel level, and FlowNet-C, which computes
correlations at the feature level. FlowNet 2.0 [40] stacked these
modules and added optical flow residual prediction, surpassing
traditional methods. PWC-Net [41] combined pyramid pro-
cessing, warping, and cost volume techniques for improved
performance. RAFT [42] introduced cyclic full-pair field trans-
formations and update operators, further enhancing accuracy.
Later works have focused on unsupervised methods [43, 54],
as well as methods using masks [44] or depth [55] estimation.

Feature tracking estimates object motion by detecting
and tracking feature points across frames. Traditional image
matching involves feature detection, description, matching,
and geometric transformation [56]. Deep learning methods
focus on improving these stages and are divided into Detector-
based and Detector-free approaches. Detector-based methods
detect and describe key points, with traditional techniques like
SIFT [45] and ORB [57] relying on handcrafted designs. Data-
driven methods, such as LIFT [58], have emerged, with four
main strategies: Detect-then-Describe [45, 58], Joint Detection
and Description [46, 59], Describe-then-Detect [60, 61], and
Graph-Based [48, 62], improving robustness to viewpoint and
lighting changes. Detector-free methods eliminate key point
detection and description, leveraging rich contextual informa-
tion to identify repeatable points. Early CNN-based methods,
like NCNet [47], evolved into Transformer-based [63, 64] and
patch-based methods [49, 65].
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In recent years, diffusion models have gradually become
mainstream as generative visual models. Diffusion models nat-
urally possess multi-scale and multi-resolution visual features,
and the semantic information they contain supports semantic
segmentation and feature matching. These properties make
diffusion models potentially useful for motion estimation, al-
though the exploration of motion estimation based on diffusion
is still underdeveloped in existing research.

III. MOTION DYNAMICS IN DIFFUSION MODEL

This section analyzes motion dynamics throughout the
coarse- to fine-grained visual feature generation process. We
find that motion dynamics are consistent in the majority of
denoising steps and the optimal number of reuse steps is frame
dependent. These phenomena motivate us to adaptively reuse
denoising steps across frames for efficient video generation.

A. Motion Dynamics

In this study, we employ the Stable Diffusion (SD) model
as the backbone model for generating videos if not specifically
emphasized. Consider a video comprising F frames, denoted
by I = [I1, . . . , IF ]. Initially, each frame Ii is encoded into a
latent space representation zi. We employ the DDPM approach
with T = 1000 denoising steps to recover the original frames.
The denoising process recovers each frame from step T to 1.
zit represents the latent state of frame i at timestep t, where
t indicates the denoising timestep and i indicates the frame
number within the video sequence.

To analyze the inter-frame motion dynamics for generating
coherent videos using a diffusion model, we introduce the
concept of latent residual to represent the change in latent
features between two steps, denoted as:

δzit := zit−1 − zit. (1)

This difference can be regarded as the feature revealed (or
noise removed) due to the denoising process. Consequently,
the latent representation at denoising step t for frame i can
be reconstructed by summing the following residuals: zit =
ziT +

∑T
k=t+1 δz

i
k, where ziT denotes the initial noisy image

at the start of the reverse denoising process.
Next, we introduce the concept of a transformation opera-

tion between frames (denoted as g) to characterize inter-frame
motion dynamics in latent residuals corresponding to the same
denoising step. Considering frames i and j, gtϕ transforms δzit
to match δzjt governed by minimizing the transformation error,
as expressed by

min
ϕ

∥δzjt − gtϕ(δz
i
t)∥1, where i < j. (2)

Drawing inspiration from optical flow techniques [66], we
propose to represent motion dynamics between frames using
function C(·, ·) to compute motion matrix Mi,j

δzt
. This motion

matrix describes the temporal relations between the residual
δzit and δzjt at the same denoising steps t, defined as:

gtϕ(δz
i
t) = Mi,j

δzt
× δzit,

where Mi,j
δzt

= C(δzit, δz
j
t ) =

δzit × (δzjt )
⊤

∥δzit∥∥δz
j
t∥

.
(3)

Here, C(·, ·) denotes a motion modeling function based on the
cosine-similarity computation [67, 68], Mi,j

δzt
can be regarded

as a heatmap, indicating the moving transition relations be-
tween latent features. Details are provided in Section IV-B.

B. Temporal Consistency of Latent Motion Dynamics

This subsection defines and quantifies the temporal consis-
tency of latent motion dynamics.

Definition 1 (Step-wise Temporal Consistency of Motion
Dynamics) Given motion matrices Mi,j

δzt
and Mi,j

δzt+1
between

frames i and j at denoising timestep t and t+1, the temporal
consistency of motion dynamics is defined as the degree of
similarity between the two matrices.

To quantify this consistency, we use Normalized Mutual
Information (NMI), defined as:

NMI(Mi,j
δzt

,Mi,j
δzt+1

) =
I(Mi,j

δzt
;Mi,j

δzt+1
)√

H(Mi,j
δzt

)
√
H(Mi,j

δzt+1
)
, (4)

where Mi,j
δzt

and Mi,j
δzt+1

are motion matrices between frames
i and j at denoising timestep t and t + 1, respectively. I
represents mutual information and H denotes entropy. By
measuring the mutual information between motion matrices at
different timesteps, NMI quantifies the predictive information
about Mi,j

δzt+1
from Mi,j

δzt
. High NMI values indicate a strong

consistency of motion dynamics. To provide a more intuitive
understanding, we have paired NMI values with visualizations
of the motion matrices in Figure 3.

As illustrated in Figure 2, motion consistency exists
throughout most steps of the diffusion process. Specifically,
from the timestep 800 to 200, i.e., 60% of the denoising
process, the data exhibits high NMI values and a decline
in transformation errors, indicating consistent and reliable
motion predictions. This consistency primarily stems from the
presence of coarse-grained, semantically rich latent features
that enhance the modeling of motion dynamics. In contrast, in
the late denoising steps, from 200 to 1, the resulting bound-
aries and fine-grained features become relatively complex and
semantically less meaningful. This leads to decreased pre-
dictability and a lower NMI score. These findings demonstrate
the potential for reusing denoising steps across frames and
reducing feature generation redundancy, which significantly
enhances computational efficiency and accelerates video gen-
eration. Moreover, it allows simple control over the tradeoffs
between efficiency and quality.

IV. DR. MO: DENOISING REUSE FOR EFFICIENT VIDEO
GENERATION

This section presents Dr. Mo, a diffusion reuse motion
network that captures and uses inter-frame motion features
to accelerate video latent generation in diffusion models.

A. Overview

The overall model flow of Dr. Mo is illustrated in Fig-
ure 4. Dr. Mo consists of two main components: the Motion
Transformation Network (MTN) and Denoising Step Selector
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Fig. 2. Motion visualization at step 200 accurately captures the movement trends of patch features. At this step, the motion dynamics show consistency with
low transformation errors, indicating the potential for reusing steps between step 1000 and 200.

Fig. 3. Visualization of motion matrix with different Normalized Mutual
Information (NMI).

(DSS). The MTN first extracts motion matrices at different
timesteps from two base frames and provides the motion
sequence to DSS. As shown in the right part of Figure
reffig:model, DSS decides the transition step at which to
switch from motion-based propagation to denoising, ensuring
that features at different granularities are properly handled.
Once the transition step is determined, as shown in the left part
of Figure 4, MTN will predict future motion matrices based
on the extracted motion matrices at that timestep, and perform
feature transformation between frames to quickly estimate the
coarse-grained visual features. Subsequently, as the denoising
step progresses from t∗ to 1, each frame goes through the
original denoising process of the diffusion backbone, aiming
to supplement fine-grained visual features and optimize visual
quality, ultimately generating the video.

B. Motion Transformation Network

Motion Matrix Construction. In diffusion models, the de-
noising process of the latent space is typically performed
by a U-Net module. The outputs of U-Net represent the

predicted noise to be removed from zt to recover zt−1. Thus,
the intermediate feature of U-Net provides estimates of the
residuals between these steps. Furthermore, recent studies have
demonstrated that intermediate diffusion features extracted
from U-Net can capture coarse- and fine-grained semantic
information [18, 69, 70, 71]. Therefore, we use the latent
representations from the U-Net to construct the motion matrix.

Given two video frames i and j, we extract features from
multiple blocks [b1, . . . , bk] of the U-Net at denoising timestep
t. Here, b· represents the block index within the U-Net
architecture. The features, denoted as δzit[bk] and δzjt [bk].

Considering that the motion matrices extracted from dif-
ferent modules are at different spatial levels, we process
these motion matrices accordingly. For layers with larger
downsampling factors, the features contain richer information,
thus reducing the likelihood of erroneous matching. These
motion trends are typically highly confident, but due to
the downsampling, spatial precision is lost, and the motion
features may lack fine detail. For these layers, we merge
them with higher-resolution visual features by adding position
embedding and use multi-layer CNNs and self-attention for
encoding, followed by cross-attention to fuse and upsample
the features. This helps refine the boundaries of motion
representations by leveraging visual features. For layers with
smaller downsampling factors in the U-Net, which contain
more detailed motion features but often fail to cover the entire
object and are more focused on the edges, we stack them with
visual features of the same resolution. These features are then
processed through CNN and self-attention to propagate the
motion information, ultimately leading to object-level motion
representations.

These motion matrices are then aggregated by a multi-layer
perceptron (MLP) to construct a multi-scale motion matrix:

Mi,j
δzt

= gϕ2
([Mi,j

δzt
[b1], . . . ,M

i,j
δzt

[bk]]),

where Mi,j
δzt

[bk] = C(gϕ1(δz
i
t[bk]), gϕ1(δz

j
t [bk])).

(5)

where ϕ1 and ϕ2 denote the parameters of the convolutional
network and the MLP. Although the MLP is a relatively simple
network, it effectively combines both linear weighting and
nonlinear selection, making it well-suited to capture nonlinear
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Fig. 4. Dr. Mo consists of two main components: the Motion Transformation Network (MTN) and Denoising Step Selector (DSS). MTN learns motion
matrices from semantic latents extracted from U-Net and predicts motion matrices for future frames to generate coarse-grained latent representations. The
DSS is a meta-network that determines the appropriate transition step (denoted as t∗) for switching from motion-based propagations to denoising, based on
the motion characteristics of the video. After the transition step, those coarse-grained latent representations is processed by the rest of the diffusion model for
video generation.

Fig. 5. The Motion Transformation Network (MTN) extracts motion matrices
at different scales from the latent variables inside the U-Net during the
diffusion denoising process, and aggregates them to obtain motion features
that can transform the latent variables across frames.

relationships and handle diverse scenarios in motion feature
aggregation.
Motion Learning Objectives. The first learning objective is
to minimize the transformation loss between latent variables
δzit and δzjt at each denoising step:

Lvisual
δz =

∑
i,j,t

||Mi,j
δzt

× δzit − δzjt ||1. (6)

This computation of motion matrices with respect to the
residual latents aids in modeling motion consistency. The
motion sequence {Mi,j

δzt
}Tt=1 is an input to DSS that facilitates

the analysis of optimal transformation timesteps for frame i
and j. Additionally, this sequence aids in approximating the
surrogate matrix which we will use to transform inter-frame
latents.

Given the intermediate denoising step (t∗ ∈ [T ]) switching
from motion-based propagations to denoising (further details

are provided in the subsequent section), the next task of MTN
is to approximate the surrogate matrix Mi,j

z∗
t

, by aggregating
the motion dynamics captured within the denoising process
from step T to t∗. Given the consistency observed in motion
dynamics throughout most diffusion steps, Mi,j

z∗
t

can be ap-
proximated by aggregating motion dynamics from step T to
step t∗. Using an MLP, gϕ3 , this process is mathematically
represented as:

Mi,j
z∗
t
= gϕ3

(Mi,j
δzt∗

,Mi,j
δzt∗+1

, . . . ,Mi,j
δzT

). (7)

The second learning objective is to ensure accurate inter-
frame transformations using the surrogate matrix, formulated
as:

Lvisual
z =

∑
i,j

||
T∑

k=t∗

(Mi,j
δzk

× δzik)−
T∑

k=t∗

δzjk||1

≈
∑
i,j

||Mi,j
z∗
t
×

T∑
k=t∗

δzik −
T∑

k=t∗

δzjk||1

=
∑
i,j

||Mi,j
zt∗

× zit∗ − zjt∗ ||1.

(8)

Equation 8 defines a learning objective function, aimed at
ensuring the accuracy of the surrogate matrix M when used
to transform inter-frame latent features.

To achieve the transformation from frame i to frame j, for
each denoising timestep t from T to t∗ of frame i’s latent
residual (δzit), we apply a motion matrix Mi,j

δzk
. Mi,j

δzk
learns

the temporal relations between latent residual of frame i and
j. To closely align the transformation result with the ground
truth latent residual of frame j, we utilize the L1 norm loss
function. This learning objective function represents an ideal
scenario for the correct transformation of inter-frame latent
features.
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The first approximately equal sign represents that approx-
imation of the motion matrices sequence {Mt}Tt=t∗ and the
surrogate matrix M. We use gϕ3 to aggregate the motion
matrices sequence {Mt}Tt=t∗ and we approximate these to
derive the surrogate matrix M. Thus M captures the motion
transformation of the cumulative latent residuals throughout
the denoising process from T to t∗. We justify this ap-
proximation based on the observed consistency of motion
dynamics throughout most of the diffusion process, as detailed
in Section III.

The second equal symbol comes from the concept of latent
residual introduced in our Equation 1. During the denoising
process, the sum of the latent residual from T to t∗ can be
expressed as the latent feature at time t∗.

The third learning objective involves ensuring temporal con-
sistency and predicting future motion matrices. Specifically,
the prediction process is formulated as using the sequence of
observed motion matrices up to the last observed R-th frame
to predict future motion matrices autoregressively:

M̂R,R+1
z∗
t

= gϕ4(M
1,2
z∗
t
,M2,3

z∗
t
, . . . ,MR−1,R

z∗
t

), (9)

where ϕ4 represents the parameters of the motion prediction
module, here we use ConvLSTM [72] to implement the motion
prediction module. The prediction objective is the discrepancy
between the predicted motion matrix and the ground truth
surrogate motion matrix:

Lmotion
z =

∑
j,t

||M̂R,R+1
z∗
t

−MR,R+1
z∗
t

||1. (10)

The prediction process helps maintain temporal consistency in
the motion information and plays a vital role in enabling the
generation of subsequent video frames with only a few base
frames.

Despite the potential for error accumulation in autoregres-
sive generation, particularly when dealing with the complexi-
ties of motion matrices, we recognize that motion information
serves as a more compact representation compared to visual
features. For instance, while a moving car exhibits high visual
complexity, its motion can be effectively represented by a
simple directional vector. We leverage this principle in our
motion transformation matrix, condensing motion into a more
learnable and concise sequence. This capability enables us to
learn and model long-term motion transformations with greater
accuracy.

Based on the preceding discussion, the motion learning
objective integrates the above three loss terms as follows:

LTrans = αLvisual
δz + βLvisual

z + γLmotion
z . (11)

Here α, β and γ are the weights for the respective loss
components. Through extensive experiment, we determined
the optimal weight combination for the loss function and set
the hyperparameters as α = 0.9, β = 1, and γ = 0.05. For
more on how these weights impact performance, please see
the details in Section V-D.

Fig. 6. The DSS module consists of a bidirectional RNN network and an
MLP, designed to predict the optimal denoising timestep t̂ for transformation
based on the input motion matrices at different timesteps. The model is trained
using cross-entropy loss between t̂ and the ground truth timestep t∗.

C. Denoising Step Selector

DSS is a meta-network designed to predict t∗, the proper in-
termediate step for switching from motion-based propagations
to denoising. The model structure and computation process
are illustrated in Figure 6. Specifically, the transition step t∗

is determined to be the timestep which leads to the minimal
weighted transformation error log(β · t)Lvisual

zt
, that is:

t∗ = argmint∈{1,...,T} log(β · t) · Lvisual
zt

, (12)

where Lvisual
z represents the transformation loss at timestep t,

and β is a hyperparameter balancing computational efficiency
and transformation quality. Higher values of β prioritize earlier
denoising steps to enhance computation efficiency, whereas
lower values focus on quality-preserving. However, it is im-
portant to note that, given the hierarchical stochastic process
in diffusion which generates multi-scale features, this trade-
off between efficiency and quality is only effective within a
certain range of timesteps. If the timestep is too large or too
small, it will lead to incorrect transformations of the features,
thereby affecting the generation quality.

To learn t∗, DSS takes motion matrices {Mi,j
δzt

}Tt=1 as input,
including corresponding timestep indices. It then implements
a bi-directional recurrent neural network [73] and outputs t̂,
the estimated most suitable transition step. DSS is updated
according to the cross-entropy loss between the predicted
transition step t̂ and the ground truth t∗.

During the training process, to compute the ground truth t∗

efficiently, we first assume that the motion magnitude between
adjacent frames of the same video remains relatively constant,
allowing us to calculate t∗ only once per video. Furthermore,
the relationship between t∗ and the transformation loss Lvisual

zt

approximates a quadratic function, as illustrated in Figure 2
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TABLE I
RESOURCE USAGE AND PROCESSING TIME FOR DIFFERENT VIDEO

PROCESSING SCENARIOS.

1 timestep 1 video Filted WebVid
(1M video)

GPU 1 A100 1 A100 8 A100
Batch Size 1 1 64
wall-clock time 0.10s 1.13s 4.92h

(right). This relationship enables a heuristic and efficient
search for t∗, thus avoiding the need to thoroughly explore
all 1000 timesteps of the DDPM sampler. In our method, we
only require calculations at about 11.74 timesteps on average
to approximate the ground truth t∗. Table I provides a detailed
breakdown of the computation times under various conditions.

In addition, we apply a random mask to the input data
during training to simulate the case of incomplete information.
This strategy ensures that during inference, DSS does not
require evaluation of the full sequence but can effectively
optimize t∗ by analyzing only a subset of the available data,
thereby reducing computational demands and speeding up the
denoising process.

D. Inference Stage

Our method can generate videos efficiently based on base
frames. The base frames can be generated by Diffusion
backbone or specified by the user. They serve as inputs to
our model, providing initial visual features and initial motion
matrices.

During inference, we use DDPM sampler with 1000
timestep and uniformly sampling 10 timesteps. For each
sampled timestep, we extract the internal latents of base frame
I0 and I1 from the U-Net, which we called latent residuals
δz0t and δz1t . The Motion Transformation Network (MTN) is
then used to compute the motion matrix M0,1

δzt
between δz0t

and δz1t at each timestep t.
Once the sequence of motion matrices {M0,1

δzt
}Tt=1 is ob-

tained, it will be inputted into the Denoising Step Selector
(DSS) to predict the optimal transition step t∗ of the video.
Then the motion matrix sequence {M0,1

δzt
}Tt=t∗ is fed into gϕ3

to derive the surrogate matrix M0,1
zt∗

. This matrix encapsulates
the motion between the base frames.

Base on initial M0,1
zt∗

, we use gϕ4
to autoregressively predict

the surrogate matrices {Mi,i+1
zt∗

}Li=1 for the next frames. The
surrogate matrix is then multiplied with the latent zit∗ of the
previous frame to obtain the latent zi+1

t∗ for the next frame,
thus enabling the prediction of the latent sequence {zit∗}Li=2.

Finally, the latent sequence {zit∗}Li=2 undergoes a denoising
process by diffusion backbone from t∗ to generate the video
frame {Ii}Li=2. This diffusion backbone can be either Stable
Diffusion or other Diffusion-based video generation model.

The core of our method lies in the fast estimation of
coarse-grained features for reusing denoising timesteps, and
this approach offers strong flexibility during inference. In
addition to only generating the initial base frames using
the diffusion backbone, during inference we can dynamically
alternate between using the diffusion backbone and motion

Fig. 7. Visualization of transform matrix from different U-Net blocks.

transformations. For example, after accelerating the genera-
tion of K frames with motion transformation, we can use
the backbone to generate new frames through the complete
denoising process and continue to rapidly predict and reuse
features for subsequent frames based on these newly generated
frames. This simple yet effective mechanism allows the model
to more flexibly leverage the rich visual and motion knowledge
in the diffusion backbone, enabling efficient video generation
for scenes with complex visual transformations at minimal
computational cost.

In addition to the aforementioned DDPM-based inference
method, our approach can also be effectively combined with
fast samplers, such as DDIM [4]. For instance, when using
a DDIMsampler with 50 steps, if the DSS predicts t∗ as
270, we round it to the nearest available step(either 260 or
280)to balance speed and visual quality. Specifically, rounding
to 260 may offer faster inference, while rounding to 280
could enhance visual quality. In practice, we typically opt for
260 in such cases. This integration with fast samplers further
enhances the efficiency of video generation.

V. EXPERIMENTS

This section assesses Dr. Mo’s effectiveness in video gen-
eration and video editing. Additionally, we conduct ablation
studies to investigate the effects of different denoising reuse
strategies and varying weights of the loss components, aiming
to identify the factors that contribute to the efficacy of our
method.

A. Implementation Details

We use Stable Diffusion V1.5 [5] as the backbone, and
train the proposed Dr. Mo module on a filtered subset of
the WebVid-10M dataset [79]. We perform image resizing
and center cropping to 512×512, and downsample the video
to 4 fps to avoid low frame-to-frame variance. Training is
conducted on the processed video with 20 consecutive frames
randomly selected at a time.

We train our model on 8 A100 GPUs. In the training step, in
order to improve training efficiency, we first use low resolution
for pre-training, in which we resize and center crop the image
to 256×256. To train our model on a high resolution, in which
we resize and center crop the image to 512×512.
Representations to Construct Motion Matrix By using
the output features of each block of the pre-trained Stable
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TABLE II
COMPARISON OF VIDEO GENERATION IN TERMS OF VIDEO QUALITY AND EFFICIENCY.

Model Full Model
Parameters

Fine-tuned
Parameters

Speed (s) UCF-101 MSR-VTT

256×256 512×512 FVD↓ IS↑ FID↓ CLIPSIM↑

Latent-Shift [8] 1.53B 0.880B 23.40 - 360.04 92.72 15.23 0.2773
Latent-VDM [8] 1.58B 0.920B 28.62 - 358.34 90.74 14.35 0.2756
LVDM [33] 1.16B 1.040B 21.23 - 372.00 - - 0.2930
AnimateDiff [31] 1.38B 0.322B 23.71 79.03 349.37 82.45 14.03 0.3013
SimDA [11] 1.08B 0.025B 11.20 34.20 401.25 79.81 14.76 0.2945
Lumiere [74] 6.5B 6.5B - - 332.49 37.54 - -
W.A.L.T [75] 419M 419M - - 344.5 31.7 - -
PixelDance [76] 1.5B 1.5B - - 339.08 - - -
Video LDM [77] 4.2B 2.65B - - 550.61 33.45 - 0.2929
CogVideo [78] 9.4B 9.40B 8.91 32.68 626.00 50.46 - -
Make-A-Video [24] 9.72B 9.720B - - 367.23 33.00 13.17 0.3049

Dr. Mo (Ours) 1.31B 0.266B 4.35 15.90 312.81 89.63 12.38 0.3056
Dr. Mo (Ours) w/o DSS 1.25B 0.229B 3.86 14.37 398.72 87.94 14.63 0.2905

Diffusion V1.5 model, we calculated and visualized the inter-
frame transform matrix Mi,j

δzt
[bk] from representations of

different blocks. As shown in Figure 7, the results showed that
the features from U-Net middle layer could achieve a good
transform matrix. Ultimately, we select the coarse-grained
layer decoder 6 (downsample 16) and the fine-grained layer
decoder 8 (downsample 8), which both of which show low
transformation loss.We combined the transformation matrices
of these two layers using a learnable MLP network.

B. Text-to-Video Generation

We compared Dr. Mo with several recent works, including
Latent-Shift [8] and SimDA [11], using text prompts from the
test datasets UCF-101 [6] and MSR-VTT [7] to evaluate zero-
shot performance.

For UCF-101, we created a template sentence for each
category and used that sentence as a text prompt to generate
16 frames without any fine-tuning, setting the base frames
R = 4 generated by the backbone. We report Frechet Video
Distance (FVD) [10] and Inception Score (IS) [9] [2] on
10,000 samples, ensuring that the generated samples match
the category distribution of the dataset.

For MSR-VTT, we report Frechet Inception Distance
(FID) [80] and CLIPSIM [81] (the average CLIP similarity
between video frames and text) using all 2990 captions from
the test set [24].

Additionally, considering the significant difficulty variation
among different samples in the dataset, where some videos
may contain only static backgrounds and slowly moving
objects, while others involve complex scenes and motion
changes. To better evaluate the model’s performance across
different scenarios, we used the Structural Similarity Index
(SSIM) [82] between the first and last frames of the video to
measure the complexity of content changes. We divided the
UCF-101 dataset into two subsets: easy (SSIM ≥ 0.6) and
hard (SSIM < 0.6).

For inference time, we calculated the average time for gener-
ating 16 frames per video using a 50-step DDIM [4] sampler
on single A100 GPU, generating 100 videos. For methods

with open-source implementations, including LVDM [33], An-
imateDiff [31], SimDA [11], and CogVideo [78], we followed
their official code and used consistent conditions (same DDIM
steps, generated frame count, and resolution) on the single
A100 GPU.

For methods without open-source implementations, we
referenced the experimental settings and results from the
original papers most similar to this work. Latent-Shift and
Latent-VDM [8]: Inference times and evaluation metrics were
obtained from the original papers, with inference executed
on an A100 GPU using DDPM sampling with 100 steps.
Lumiere [74]: We used evaluation metrics on UCF-101 from
the original paper, with zero-shot text-to-video generation
tested on single V5 TPU. W.A.L.T [75]: We compared text-to-
video generation results on UCF-101, excluding the 3B-level
model which has significantly larger parameters than Dr. Mo.
PixelDance [76]: We compared text-conditioned results on
UCF-101, excluding those where the tail frame was specified,
for a fairer comparison. Video LDM [77]: We referenced and
compared zero-shot text-to-video generation results on both
UCF-101 and MSR-VTT. Make-A-Video [24]: We referenced
and compared zero-shot text-to-video generation results on
both UCF-101 and MSR-VTT.
Quantitative Results. As shown in Table II, Dr. Mo out-
performs competing video generation models, achieving the
lowest FVD score of 312.81 on UCF-101 and the highest
CLIPSIM score of 0.3056 on MSR-VTT. These results indi-
cate that Dr. Mo produces videos that closely match real videos
in visual and temporal dynamics, and are semantically aligned
with their corresponding inputs. The feature reuse in Dr. Mo
enhances the consistency of features across frames, reducing
the distortion of features that may arise from continuous video
changes. Moreover, the video motion learned from coarse-
grained features provides more semantically meaningful mo-
tion representations, mitigating the confusion between visual
feature transformation and motion transformation, which is
commonly occurs in diffusion-based video generation and
prevents incorrect object deformations. Therefore, Dr. Mo
provides superior performance.
Qualitative Results. Figure 8 presents the qualitative results of
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Fig. 8. Videos generated by Dr. Mo at a resolution of 512×512.

Dr. Mo when generating videos with a resolution of 512×512,
demonstrating strong inter-frame consistency and physically
plausible motion modeling. Figure 9 shows the results of
video generation at a resolution of 256×256 on the UCF-
101 dataset, compared against baseline models. More video
generation results can be found at our website 1.
Efficiency Evaluation. As for the computing efficiency, Dr.
Mo uses 266M of parameters and achieves the fastest re-
ported inference rates, generating 16×512×512 frames in
15.90 seconds and generating 16×256×256 frames in 4.35
seconds. This is notable considering some current models
like Latent-Shift [8] only produce 256×256 resolution images
at similar parameter counts. These results suggest that Dr.
Mo’s design, which optimizes the use of motion information,
effectively reduces computational demands and speeds up
video generation.
Method Flexibility. Our method is designed based on the
characteristics of video data and diffusion models, offering
significant flexibility that allows for seamless integration with

1https://drmo-denoising-reuse.github.io/

TABLE III
THE PERFORMANCE EVALUATION OF DR. MO COMBINED WITH OTHER

DIFFUSION-BASED VIDEO GENERATION BACKBONES.

Speed (s) CLIPSIM↑
AnimateDiff [31] 79.03 0.3079
AnimateDiff with Dr. Mo 28.31 0.3093
SimDA [11] 34.20 0.2941
SimDA with Dr. Mo 17.57 0.3089

other diffusion-based video methods to provide acceleration.
Specifically, when combined with other diffusion-based video
generation backbones, the backbone network first generates
at least two base frames to provide initial visual features
and extract the initial motion matrices. The Denoising Step
Selector (DSS) network then determines the optimal transition
step t = t∗ for the video, and the Motion Transformation
Network (MTN) predicts future motion matrices.These motion
matrices are multiplied with the initial visual features to
obtain the latent sequence prediction at timestep t∗. Finally,
the predicted results are fed into the backbone network for
denoising from t∗ to 1 to generate the final video output.
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Fig. 9. Comparison with Latent-Shift [8] and CogVideo [78] using video
frames with 256×256 resolution on UCF-101.

Fig. 10. Comparison of Generation Results with and without Dr.Mo.

In Figure 10, we present results from combining our ap-
proach with AnimateDiff [31] and SimDA [11]. The speed
metrics are based on the generation of 16-frame videos at a
resolution of 512×512. CLIPSIM refers to the average CLIP
similarity between the video frames and the prompt. As shown
in Table III, integrating Dr. Mo reduces the video generation
time by more than half compared to the original backbone,
while preserving the original visual style and quality. Further-
more, the reuse of inter-frame features aids in maintaining

Fig. 11. Video editing Results. By separating motion features, it is possible to
apply consistent transformations to different visual features to generate new
videos.

feature consistency, mitigating feature collapse over time, and
enhancing the semantic coherence of the generated videos.
These results highlight the effectiveness and versatility of our
method across different frameworks.

C. Video Editing

We evaluate Dr. Mo’s video editing capabilities by applying
style transformations to real-world videos. Using the motion
information from a reference video clip, we extract the motion
matrix and apply it to the styled first frame to generate sub-
sequent frames. As shown in Figure 11, Dr. Mo successfully
transform real-world videos to match the visual style of the
styled base frames. This indicates that the captured motion
matrix is disentangled from the visual features and possesses
a generalization capability.

D. Ablation Study

Effect of Denoising Reuse. We conduct an ablation study
to assess the impact of denoising reuse on video generation
performance in Dr. Mo by testing various transition steps at
steps 900, 600, 400, 200, and 1. As shown in Figure 12, Dr. Mo
performs optimally with 200 denoising steps. This suggests
that using the intermediate level of the denoising process as the
transition step allows for effective handling of visual features
at different granularities in the video.

At step 900, excessive noises mask the motion and visual
features lead to ineffective transformations and compromised
video content. Conversely, at step 1, the fine-grained visual
features being incorrectly transformed lead to accurate overall
contours but incorrect appearance details, thereby reducing the
video quality.
Effect of DSS Module. Further, we quantitatively examine the
effect of DSS by removing it and manually setting different
timesteps for transformation. As shown in Table V, Our results
show that as t∗ decreases, the inference speed improves due to
more reused timesteps. However, both excessively large and
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TABLE IV
COMPARISON OF VIDEO GENERATION ON EASY AND HARD SUBSETS.

Model Setting Speed (s) Full set Easy (SSIM≥0.6) Hard (SSIM<0.6)

FVD↓ IS↑ FVD↓ IS↑ FVD↓ IS↑

CogVideo [78] - 8.91 626.00 50.46 510.46 58.24 804.11 38.46
SimDA [11] - 11.20 401.25 79.81 356.79 83.05 469.78 74.81
AnimateDiff [31] - 23.71 349.37 82.45 325.51 84.93 386.15 78.62

Dr. Mo

R = 2 3.68 393.01 87.33 323.09 88.08 500.79 86.17
R = 3 4.01 349.28 88.96 318.64 90.18 396.51 87.07
R = 4 4.35 312.81 89.63 298.56 91.02 334.77 87.48
R = 6 5.02 319.90 89.79 300.99 90.34 349.05 88.94
R = 8 5.69 310.42 89.84 294.87 91.00 334.39 88.05
R = 2 + 2Keyframe 4.58 301.08 90.08 291.44 90.36 315.93 89.65

Fig. 12. The result of motion transformation at different t∗ values. Too small
t∗ will produce incorrect appearance details, while too large t∗ will lead to
the destruction of visual features.

small choices of t∗ lead to a decrease in generation quality.
Optimal visual quality can only be achieved within a suitable
range that aligns with the motion features, further emphasizing
the importance of dynamically selecting t∗ through DSS rather
than setting it as a hyperparameter. At the same time, we
also tested the heuristic search strategy to select the optimal
t∗. This strategy approximates the relationship between the
timestep and transform error as a quadratic function, and
uses gradient-based binary search to find the optimal timestep
approximation. The results show that it has similar quality
to the DSS module, but requires an additional 25% of the
computation time.
Effect of Varying Motion Consistency. We aim to assess
the impact of varying motion consistency on video genera-
tion. Following the methodology in MMVP [68], we employ
SSIM [82] as a metric and select two data samples with
differing consistency from WebVid.

TABLE V
IMPACT OF DSS ON VIDEO GENERATION METRICS. THE FVD AND IS

WERE EVALUATED ON THE UCF-101 DATASET. THE SPEED METRICS ARE
BASED ON GENERATING 16-FRAME VIDEOS AT A RESOLUTION OF

256×256.

Model Setting FVD↓ IS↑ Speed (s)
Lumiere [74] - 332.49 37.54 -
CogVideo [78] - 626.00 50.46 8.91
AnimateDiff [31] - 349.37 82.45 23.71

Dr.Mo

t∗ = 1 485.31 76.02 2.08
t∗ = 200 398.72 87.94 3.86
t∗ = 400 331.65 85.45 5.25
t∗ = 600 570.27 69.03 6.93
t∗ = 800 692.41 57.32 8.76
t∗ = 1000
(backbone) 819.62 43.51 10.48

heuristic search 315.43 89.71 5.42
with DSS 312.81 89.63 4.35

Fig. 13. Left: Example of low motion consistency that requires a larger t∗

transformation. Right: Example of high motion consistency that requires a
smaller t∗ transformation.

Fig. 14. Qualitative comparison of different base frame strategies.

The left figure illustrates a video with low motion con-
sistency, with the DSS predicting step 381 as optimal. Our
results for steps 381 and 200 show that at step 200, there is
a noticeable loss of detail information. Conversely, the right
figure shows a video with high motion consistency; here, DSS
identifies step 237 as optimal. While the results at step 237
are satisfactory, those at step 400 are less than ideal, due to
insufficient learning of motion information. This is attributed
to a deficiency in fine-grained visual features and inadequately
learned related motion features. These observations highlight
the crucial role of motion consistency over time and also
validate the effectiveness of the DSS.
Effect of Base Frame. Base frames are crucial as they provide
important motion cues and content guidance for the video.
We quantitatively examine the impact of the number of Base
frames (denoted as R) on the video generation performance.
As shown in Table IV, our findings indicate that the model’s
performance improves as R increases, particularly in complex
scenes, due to the richer visual and motion references provided
by additional Base frames. However, when R ≥ 4, the
performance gain becomes marginal and stabilizes. Therefore,
we set R = 4 during inference to achieve better results at a
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lower cost. Additionally, we tested an approach that alternates
between generating base frames and motion transform. Under
the same number of base frames, this method achieves better
performance in complex scenes. The visualization results are
shown in Figure 14.

TABLE VI
IMPACT OF WEIGHT ADJUSTMENTS ON VIDEO QUALITY METRICS. THE

FVD AND IS WERE EVALUATED ON THE UCF-101 DATASET.

α β γ FVD↓ IS↑
0.0 1.0 0.05 344.38 86.19
2.0 1.0 0.05 325.49 88.00
0.9 0.1 0.05 370.71 81.74
0.9 2.0 0.05 315.40 87.13
0.9 1.0 0.01 332.94 85.99
0.9 1.0 0.50 398.29 79.35
0.9 1.0 0.05 312.81 89.63

Effect of Loss Components We denote the weights of Lvisual
δz ,

Lvisual
z , and Lmotion

z as α, β, and γ, respectively. Ablation
studies for different weighting configurations are presented in
Table VI, where α = 0.0 indicates that Lvisual

δz loss is not
used during training. The results demonstrate that Lvisual

δz con-
tributes to the convergence of Lvisual

z .This is because enforcing
more precise motion matrix extraction on each residual latent
improves the overall extraction of motion matrices, leading
to more efficient learning. Too high γ negatively impacts
the learning, leading to degraded results. This may occur
because an excessive emphasis on the predictability of the
matrices (Lmotion

z ) can hinder the matrices be more informative.
Ultimately, we chose the weights α = 0.9, β = 1.0 and
γ = 0.05.

VI. CONCLUSION

This paper addresses the efficiency challenges in diffusion-
based video generation methods, inspired by a key observation
that there is redundancy in inter-frame visual features and
that inter-frame motion features remain consistent through
most of the diffusion process. The proposed method, called
Dr. Mo, enables the reuse of frames across multiple denoising
steps, which significantly reduces the need to regenerate each
frame from scratch, thereby lowering the computational load
and speeding up the video generation process. Frame-specific
updates are applied only in the final stages of denoising
to maintain the video’s integrity and detail. Evaluations of
video generation and editing show that our approach provides
widely available speedups for diffusion-based video generation
models while maintaining backbone visual style and quality.
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