
              

City, University of London Institutional Repository

Citation: Busemeyer, J., Ozawa, M., Pothos, E. & Tsuchiya, N. (2025). Incorporating 

episodic memory into quantum models of judgment and decision. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/35207/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


royalsocietypublishing.org/journal/rsta

Research

Article submitted to journal

Subject Areas:

quantum cognition

Keywords:

quantum cognition, system plus

environment models, instrument

measurements

Author for correspondence:

Jerome Busemeyer

e-mail: jbusemey@iu.edu

Incorporating episodic
memory into quantum models
of judgment and decision
Jerome R. Busemeyer1, Masanao

Ozawa2−5, Emmanuel M. Pothos6, and

Naotsugu Tsuchiya7−9

1Psychological Brain Sciences, Indiana University, Bloomington In
47405 USA
2G.S.I., Nagoya University, Nagoya 464-8601 Japan
3Kinu-Soken, Ritsumeikan University, Kyoto 603-8577 Japan
4CMSAI, Chubu University, Kasugai, Aichi 487-8501 Japan
5RIKEN iTHEMS, FQSP, Wako, Saitama 351-0198 Japan
6City, University of London, Social Sciences Building, 32-38
Whiskin Street, London EC1R 0JD
7School of Psychological Sciences, Faculty of Medicine, Nursing
and Health Science, Monash University, Victoria, Australia
8Center for Information and Neural Networks (CiNet), National
Institute of Information and Communications Technology (NICT),
Osaka, Japan
9Advanced Telecommunications Research Computational
Neuroscience Laboratories, Kyoto, Japan

An important challenge for quantum theories of
cognition and decision concerns the incorporation
of memory for recently made judgments and their
effects on later judgments. First, we review a
general approach to measurement based on system
plus environment representations of states and
measurement instruments. These more general
measurement models provide ways to incorporate
effects of recent judgments on later judgments. Then
we compare two different measurement models
that are based on these more general measurement
operations to a puzzling collection of question order
effect findings.

1. Introduction
Probability theory has been fruitfully employed across
many areas of cognitive science as a way to formalize
models that allow precise and falsifiable predictions.
The relevance of probability theory is unsurprising,
since, whatever else, part of what the mind is trying to
accomplish must be trying to process and extrapolate
from statistical structure in the environment.
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The most common approach is based on Bayesian probability theory (see, e.g. [1]). More
recently, some researchers have been exploring the use of quantum probability theory in cognitive
science (see, e.g., [2,3]). Quantum models use the probability rules from quantum theory to model
human behavior, but without the physics. These models were introduced to explain what seemed
to be, from a classical perspective, reasoning fallacies and irrational decisions [4].

An important challenge for both theories concerns the incorporation of episodic memories.
How can recently experienced events be included in the models?

2. Definition of episodic memory
Episodic memory refers to the memory of recently experienced events, which differs from
semantic memory of their meaning [5]. For example, remembering what was said in the morning
news is episodic, but understanding its meaning is semantic. Here, we focus solely on episodic
memory; we briefly discuss semantic memory at the end of the paper.

Research on episodic memory has a long history in psychology, beginning as early as 1885
with Hermann Ebbinghaus studying recalling lists of non-sense syllables. Subsequently, a very
large literature of facts has accumulated on this topic, with much of the research following
Ebbinghous by studying recalling word lists, lists of numbers, or lists of pictures. This research has
produced a great body of empirical facts, including, for example, serial position effects on episodic
memory [6]. Alongside these many empirical facts, many prominent cognitive models have
been developed to account for these facts (see [5] for a review). Some initial work on quantum
models of episodic memory has begun with the development of models designed to account for a
puzzling finding called the memory over-distribution effect (see, e.g., [7,8]). However, this paper
addresses a different issue concerning the effects of episodic memory on later judgments and
decisions.

3. Incorporating episodic memory into judgments
Both Bayesian and quantum models are well suited for updating a belief state based on recently
experienced events from environmental sources providing new information. For example, upon
hearing news that the government passed some tax bill, an investor, whom we will call Anita, can
update her beliefs about what might be good investments in the future. However, theories differ
with regard to the effects of recent self-made judgments. For example, before hearing the news,
a client might ask Anita what she predicts will happen. By making a prediction, Anita gains
no new information, and so according to a Bayesian model, her belief state will remain intact
after her prediction; in any case, there is no requirement in Bayesian theory for a belief state to
change as a result of a self-measurement. However, according to a quantum cognition model, this
judgment could act as a measurement of Anita’s beliefs that produces a reduction or “collapse”
of the quantum state to a state that is consistent with the observed outcome. Hereafter, we are
mainly concerned with ways to build models of episodic memory of events, either informative or
judgmental, for quantum models.

(a) Born rule
Quantum theory represents a system S under investigation by a Hilbert space H with inner
product (ξ, η) for all ξ, η ∈H.1 We assume H to be finite dimensional. The state of the system S is
represented by a unit vector, called a state vector, in H. An observable quantity (or, observable, for
brevity) of the system S is represented by a self-adjoint operator on H.2 For any observableA and

1We follow the physics convention that the inner product (ξ, η) is linear in η and conjugate linear in ξ.
2Note that an operator A on H is called self-adjoint if A† =A, where the adjoint A† of A is defined by (ξ, A†η) = (Aξ, η)

for all ξ, η ∈H. So, A† =A implies (ψ,Aψ)∈R for all ψ ∈H, since (ψ,Aψ) = (Aψ,ψ) = (ψ,Aψ)∗. It follows that all
the eigenvalues a ofA are real numbers, since a= (ψ,Aψ) for a normalized eigenvector ψ such thatAψ = aψ.
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a real number a∈R, we define its spectral projection PA(a) as the projection onto the subspace
{ψ ∈H |Aψ= aψ} of H. Then, a∈R is an eigenvalue of A if and only if PA(a) ̸= 0.

Quantum theory has two rules for the results of a measurement of an observable, the Born rule
and the state update rule. The Born rule states that if an observable A is measured in a state ψ,
we observe the outcome A= a with probability p(A= a∥ψ) = (ψ, PA(a)ψ). From the above, we
see that any possible outcome a∈R is one of the eigenvalues of A, since p(A= a∥ψ)> 0 implies
PA(a) ̸= 0.

(b) Von Neumann–Lüders projection postulate
As a consequence of the Schrödinger equation, the state of a system S that does not interact with
any external systems changes in time as the rule of unitary evolution: There is a unitary operator
U(t, t′) for any time interval [t, t′] such that the state ψ(t) of the system S at time t changes to the
state ψ(t′) at time t′ as ψ(t′) =U(t′, t)ψ(t).

However, we need another rule, the state update rule, to describe the state change during
a measurement, since any measurement needs a non-trivial interaction with an environment.
Conventionally, the state update has been modeled in quantum theory, as well as quantum
cognition, by projecting the state of the system onto a subspace that represents the observed
outcome. Thus, the conventional state update rule requires that if an observable A of the system
S is measured in a state ψ and the outcome A= a is observed, then the state of the system S be
updated, or “collapse”, to the post-measurement state ψ{A=a} = PA(a)ψ/

√
p(A= a∥ψ).3 This

state update rule is called the von Neumann-Lüders projection postulate or the projection postulate in
short.

(c) Measurement models for quantum cognition
In quantum cognition, question-answer process is modeled as a measurement of an observable A
with 2 different eigenvalues 0 and 1, where the answers “yes” and “no” are encoded to 1 and 0,
respectively; such an observable is always a projection, which satisfiesA=A† =A2, and we have
PA(1) =A and PA(0) = I −A, where I is the identity operator on H.

For example, consider a simple 2-dimensional space used to represent Anita’s state ψA
with respect to a pair of basis vectors : ψA = c1 |relaxed⟩+ c2 |not relaxed⟩. If her friend asks
her how she is feeling, and she decides that she is feeling relaxed, then Anita’s state is
projected on the basis vector |relaxed⟩ and normalized. Here, we encode the state |relaxed⟩
and |not relaxed⟩ to the eigenstates of the observable A with PA(1) = |relaxed⟩⟨relaxed| and
PA(0) = |not relaxed⟩⟨not relaxed|.

This kind of projection onto a single basis vector was originally proposed by von Neumann [9]
to represent the impact of measurement on a quantum state, and it has often been employed in
simple 2-dimensional quantum cognition models (see, e.g., [10]). More precisely, von Neumann
[9] introduced the repeatability hypothesis, which states:“ If a physical quantity is measured twice
in succession in a system, then we get the same value each time”[9, p. 335]. This hypothesis was
formulated as a general principle extracted from the Compton–Simons experiment.

Equivalent formulations were also given by Dirac [11, p. 36] and Schödinger [12, §8]. This
requires to update the state of the system to be an arbitrary eigenstate corresponding to the
outcome of the measurement. So, the repeatability hypothesis is more general than the projection
postulate. However, if the eigensubspace is one-dimensional, then the eigenstate is unique (up
to a phase factor), so that in this case the measurement projects the state onto the subspace
corresponding to the outcome.

Anita’s state may not be limited to only 2 dimensions and she may be able to experience many
more than just 2 states of relaxation. For example, she could feel only a little bit relaxed or she
could feel very relaxed. Suppose she can experience a finer grain scale of relaxation with 101
ordered states ranging along a lattice from very much not relaxed to undecided to very much
3Note that

√
p(A= a∥ψ) is the normalization factor, since

√
p(A= a∥ψ) = ∥PA(a)ψ∥.
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relaxed. She may report relaxed whenever her state is greater than undecided. In that case, her
state would initially be in a superposition lying in a N = 101 dimensional space, and her answer
“relax” would project her state onto a 50 dimensional subspace spanned by all the states greater
than undecided, again with normalization. This kind of projection onto a multi-dimensional
subspace was later proposed by Lüders [13] (so it is sometimes called the Lüders rule) and it
has also been frequently employed in quantum cognition (see, e.g., [14]).

Now suppose Anita is asked another question about her mood and she answers that she is
in a good mood. Define Prelax as the projection for the “relaxed” answer, and define Pmood as
the projection for the “good mood” answer. Suppose these projections do not commute so that
PrelaxPmood ̸= PmoodPrelax. Noncommutativity of projections provides a basis for explaining
question order effects. Then, according to the uncertainty principle, collapsing to the answer
for the question about mood will interfere with memory about the previous answer to the
question about relaxation. Additional incompatible questions could continue to interfere with
earlier memory about the relaxation answer. In general, if (and only if) two questions corresponds
to commuting projections, those question does not destroy the episodic memory about the
previous report in the sense that all the reports are logically consistent [15]. In short, even the
von Neumann–Lüders projection rule fails to provide an adequate account of episodic memory
compatible with question order effects. To overcome this limitation, the next two sections provide
modern quantum measurement models that can retain full information and memory for the
outcomes of previous measurements.

(d) Density operators
The description of the state of a system by a state vector leads to two different types of
combinations of states, superposition and mixture. A state ψ is called a superposition of states
ψ1, . . . , ψn if there are complex numbers α1, . . . , αn such that ψ=

∑n
j=1 αjψj . The superposition

of states remains described by a state vector.
On the other hand, mixture requires a new mathematical representation. We say that the

system S is in the mixture of states ψ1, . . . , ψn with probabilities p1, . . . , pn (or, in the mixture
(ψj , pi), for brevity), if the system S is in the state ψj with probability pj . To represent the
mixture as a linear combination of states, let |ψ⟩⟨ψ| be the the projection onto the one-dimensional
subspace spanned by ψ.4 Then, we have p(A= a∥ψ) =Tr[PA(a)|ψ⟩⟨ψ|]. Now, we introduce
the operator ρ=

∑
j pj |ψj⟩⟨ψj | called the density operator of the mixture (ψj , pj). Then, the

density operator ρ naturally extends the Born rule to mixtures as p(A= a∥(ψj , pj)) =
∑
j pjp(A=

a∥ψj) =Tr[PA(a)ρ] for any observable A.
The operator ρ is a positive operator with unit trace, i.e., (ψ, ρψ)≥ 0 for all ψ ∈H and Tr[ρ] = 1.

We generally call any positive operator with unit trace as a density operator. Any density operator
arises from at least one mixture (ψj , pj), since the spectral decomposition ρ=

∑
j pj |ψj⟩⟨ψj |

provides a mixture (ψj , pj) corresponding to ρ. Extending the the notion of state, we postulate
that the state of the system S is represented by a density operator ρ with the new Born rule
p(A= a∥ρ) =Tr[PA(a)ρ]. To distinguish the original notion, if ρ= |ψ⟩⟨ψ| we say that the system
is in the pure stateψ. We say that the system is in the mixture of states ρ1, . . . , ρn with probabilities
p1, . . . , pn if ρ=

∑
j pjρj . The mixture of states remains described by a density operator.

The rule of unitary evolution is extended as the relation ρ(t′) =U(t′, t)ρ(t)U(t′, t)† if the
system S is in the state ρ(t) at time t and ρ(t′) at time t′.5 The von Neumaann-Lüders
projection postulate is extended to mixtures: If an observable A is measured in a state ρ and
the outcomeA= a is observed, then the state of the system S is updated to the post-measurement
state ρ{A=a} = PA(a)ρPA(a)/p(A= a∥ρ); this extends the original formulation, since ρ{A=a} =

|ψ{A=a}⟩⟨ψ{A=a}| if ρ= |ψ⟩⟨ψ|. 6

4In general, the operator |ξ⟩ ⟨η| is defined as |ξ⟩ ⟨η|ψ = (η, ψ)ξ, where ξ, η, ψ ∈H.
5The relation follows from |ψ(t′)⟩⟨ψ(t′)|=U(t′, t)|ψ(t)⟩⟨ψ(t)|U(t′, t)† and ρ(t′) =

∑
j pj |ψ(t

′)⟩⟨ψ(t′)| if ρ(t) =∑
j pj |ψ(t)⟩⟨ψ(t)|.

6Note that p(A= a∥ρ) is the normalization factor, since p(A= a∥ψ) = Tr[PA(a)ρPA(a)].
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One of the main reasons for using a density operator is that it allows for an additional kind of
uncertainty. A superposition ψ=

∑
j αjψj allows an individual to be indefinite about outcomes

E = 1 or E = 0, where E = |ψj⟩⟨ψj |, with respect to some basis {ψj}. However, a pure state
assumes that the theorist has maximal knowledge of the system state [12]. Usually the theorist
does not have maximal knowledge and instead there may be some uncertainty in the state. In
this case, the system could be in L possible states ψj with j = 1, . . . , L, and each possible state
has a probability pj . If we are modeling a group of people, then pj represents the probability
of including a person in state ψj . If we are modeling an individual, then pj may represent the
probability that the individual is prepared in state ψj . The density operator provides a general
way to allow for this additional uncertainty about the exact state.

A projection has the properties PA(a) = PA(a)
† = PA(a)

2 so that the probability of repeatedly
observing the outcome A= a immediately after observing the outcome A= a is 1, i.e., p(A=

a∥ρ{A=a}) =Tr[PA(a)PA(a)ρPA(a)]/Tr[PA(a)ρ] = 1. Thus, the projection postulate implies the
repeatability hypothesis.

(e) Quantum instruments
As we have seen in the preceding subsections, the results of an measurement of an observable
A are represented by the Born rule, p(A= a∥ρ) =Tr[PA(a)ρ], and the von Neumann-Lüders
projection postulate ρ→ ρ{A=a} = PA(a)ρPA(a)/Tr[PA(a)ρ]. However, Davies and Lewis [16]
proposed to abandon the von Neumann-Lüders projection postulate (or more generally, the
repeatability hypothesis) to provide a more flexible measurement theory.7 For this purpose,
Davies and Lewis [16] introduced the mathematical notion of “instrument” as follows. Let
I = {I(x)}x∈R be a family of linear transformations I(x) on the space L(H) of operators on H.
We shall write I(S) =

∑
x∈S I(x) for any subset S ⊆R, hereafter. Then, I is called an instrument

if (i) I(x) is positive for all x∈R, i.e., I(x)ρ≥ 0 if ρ≥ 0, and (ii) I(R) is trace-preserving, i.e,
Tr[I(R)ρ] = Tr[ρ] for all ρ∈L(H).8

Consider a measuring apparatus A(x) with the classical output variable x. The statistical
properties of the apparatus A(x) are specified by (i) the probability p(x= x∥ρ) of the outcome x=

x in any pre-measurement state ρ, and (ii) the state update ρ→ ρ{x=x}, where ρ{x=x} is the post-
measurement state to the pre-measurement state ρ for the outcome x= x. Then, Davies and Lewis
introduced the following postulate (Davies-Lewis postulate): For every apparatus A(x) there exist a
unique instrument I satisfying (i) p(x= x∥ρ) =Tr[I(x)ρ], and (ii) ρ→ ρ{x=x} = I(x)ρ/Tr[I(x)ρ].
In what follows, we shall identify the apparatus A(x) with its associate instrument I. Note that
conditions (i) and (ii) above are equivalent to the single relation

I(x)ρ= p(x= x∥ρ)ρ{x=x}. (3.1)

A family Π = {Π(x)}x∈R of positive operators Π(x) is called a POVM (probability operator-
valued measure) if

∑
x∈RΠ(x) = I , where I ∈L(H) is the identity operator on H. For any

superoperator T on L(H), its dual T ∗ is a superoperator on L(H) satisfying Tr[A(Tρ)] =

Tr[(T ∗A)ρ] for all A, ρ∈L(H). For any instrument I, the family of operators Π(x) defined by
Π(x) = I(x)∗I is a POVM and called the POVM associated with I, which satisfies p(x= x∥ρ) =
Tr[Π(x)ρ] for any ρ∈L(H).9 The probability of the outcome x= x of the instrument I in a state
ρ satisfies p(x= x∥ρ) =Tr[Π(x)ρ].

7“One of the crucial notions is that of repeatability which we show is implicitly assumed in most of the axiomatic treatments
of quantum mechanics, but whose abandonment leads to a much more flexible approach to measurement theory.” [16, p. 239].
8A linear transformation T on the space L(H) of operators is called a superoperator. A superoperator is said to be positive
if it transforms a positive operator to a positive operator, where an operator ρ∈L(H) is positive if (ψ,Aψ)≥ 0 for any
ψ ∈H. A positive superoperator is called an operation if it does not increase the trace of density operators, i.e., Tr[Tρ]≤ 1

for every density operator ρ, so that an instrument I is a family of operations I(x) such that I(R) is trace-preserving.
9Here, I ∈L(H) denoted the identity operator on H. Note that Π(x)ρ denotes the product of two operators Π(x) and ρ,
whereas I(x)ρ denotes the operator obtained by applying the superoperator I(x) to the operator ρ. So, the dual I(x)∗ of
I(x) satisfies p(x= x∥ρ) = Tr[I(x)ρ] = Tr[I(I(x)ρ)] = Tr[(I(x)∗I)ρ] = Tr[Π(x)ρ].



6

royalsocietypublishing.org/journal/rsta
P

hil.
Trans.

R
.S

oc.
A

0000000
..........................................................................

We say that an instrument I measures an observable A if p(x= x∥ρ) =Tr[PA(x)ρ]. Then,
we have Tr[I(x)ρ] = Tr[PA(x)ρ] for any pre-measurement state ρ and the POVM Π associated
with I satisfies Π = PA. An instrument I is called a projective instrument for an observable
A if I(x)ρ= PA(x)ρPA(x). The von Neumann-Lüders projection postulate requires that the
statistical properties of any apparatus be described by a projective instrument, whereas the
Davies-Lewis postulate abandon this restriction to allow any instrument to describe the statistical
properties of possible measurements.

Let A(x) and A(y) be two measuring apparatuses with instruments Ix and Iy, respectively.
Consider the sequential measurements by A(x) and A(y) in this order in the pre-measurement
state ρ.10 Then, the sequential probability distribution p(x= x,y= y∥ρ) of x and y is given by

p(x= x,y= y∥ρ) = p(y= y∥ρ{x=x})p(x= x∥ρ) =Tr[Iy(y)Ix(x)ρ]. (3.2)

By induction, if we make sequential measurements using the apparatuses A(x1), . . . ,A(xn) in
this order with instruments I1, . . . , In, we have

p(x1 = x1, . . . ,xn = xn∥ρ) =Tr[In(xn) · · · I1(x1)ρ]. (3.3)

From Eq. (3.2) the above sequential probability distribution has the following property (Mixing
law for sequential outcome probability): For any sequential measurements carried out by apparatuses
A(x) and A(y) in this order, the sequential probability distribution p(x= x,y= y∥ρ) of outcomes
x and y is an affine function in ρ, i.e., p(x= x,y= y∥ρ) = p1p(x= x,y= y∥ρ1) + p2p(x= x,y=

y∥ρ2), if ρ= p1ρ1 + p2ρ2.
It was shown that this natural property of the sequential outcome probability for sequential

measurements is indeed logically equivalent to the Davies-Lewis postulate [17, Theorem 2] (see
also [18, Theorem 2.3], [19, §2.3]). So the Davies-Lewis postulate is considered as a necessary
condition to describe all the physically realizable measuring apparatuses.

Quantum instruments were introduced in quantum theory quite a while ago to generalize
the concept of quantum measurement (see [16,20,21]). Recently, they have been used in quantum
cognition (see, [22], for a recent review on this measurement theory). Like a collapse, quantum
instruments change the state in a non-unitary manner that loses information when an event
is observed. Unlike a collapse, they do not necessarily reduce the state by a projection onto a
subspace, as done with the Lüders rule. Instruments allow “weak” or noisy measurements so
that there is only some probability of repeating a response immediately after the application of
the instrument. Also instruments can produce modifications of the state of the system in a way
that provides some imperfect and possibly noisy episodic memory for the observed event.

(f) Measuring processes
Von Neumann [9, Chapter VI] showed that a projective instrument can be described by the
interaction between the system and an environment, and the subsequent observation of the meter
in the environment to determine the outcome of the measurement. Generalizing von Neumann’s
model to arbitrary physically realizable measurements, a general model of measuring process is
introduced in [20]: A measuring process (or, indirect measurement model) for the system S described
by a Hilbert space H is defined as a quadruple M= (K, ξ, U,M) consisting of a Hilbert space
K, a state vector ξ in K, a unitary operator U on the tensor produce Hilbert space H⊗K, and a
self-adjoint operator M on K.

The measuring process M models the following process of a measurement with an apparatus
A(x). The measurement is carried out by the interaction between the measured system S

described by a Hilbert space H and an environment E described by a Hilbert space K. The
environment is in a fixed pure state ξ just before the measurement, whereas the measured system
S is in an arbitrary state ρ. We assume that the system S and the environment E interact only

10In sequential measurements, we assume that the time just before the next measurement equals the time just after the
preceding measurement, or there is no external intervention between two consecutive measurements.
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in the time interval during the measurement [17, §VIII];11 in particular, they are statistically
independent just before the measurement. So, the composite system S+E is initially in the state
ρ⊗ |ξ⟩⟨ξ|. According to the rule of unitary evolution, the time evolution of the composite system
S+E during the measuring interaction is represented by a unitary operator U . So, the composite
system S+E is in the state U(ρ⊗ |ξ⟩⟨ξ|)U† just after the measurement. Then, the outcome x= x

is obtained by measuring the observable M , called the meter observable, in the environment E.
To determine the instrument I of this measuring process, suppose that an observable B of the
system S is observed just after the measurement. Then, from Eq. (3.1) we obtain

Tr
[
PB(b) [I(x)ρ]

]
= p(x= x,B = b∥ρ)

=Tr
[(
PB(b)⊗ PM (x)

)
U(ψ ⊗ |ξ⟩⟨ξ|)U†

]
=Tr

[
PB(b)TrK

[(
I ⊗ PM (x)

)
U(ψ ⊗ |ξ⟩⟨ξ|)U†

]]
, (3.4)

where TrK stands for the partial trace on the Hilbert space K. SinceB was arbitrary, we determine
the instrument I of the measuring process M= (K, ξ, U,M) as

I(x)ρ=TrK
[(

1⊗ PM (x)
)
U(ρ⊗ |ξ⟩⟨ξ|)U†

]
. (3.5)

In fact, Eq. (3.5) determines a family of positive superoperators {I(x)}x∈R such that I(R) is
trace-preserving.12 See [20] for the detailed derivation.13 Thus, the statistical properties of the
measuring process M are given by

p(x= x∥ρ) = Tr
[(

1⊗ PM (x)
)
U(ρ⊗ |ξ⟩⟨ξ|)U†

]
,

ρ{x=x} =
TrK

[(
1⊗ PM (x)

)
U(ρ⊗ |ξ⟩⟨ξ|)U†

]
Tr

[(
1⊗ PM (x)

)
U(ρ⊗ |ξ⟩⟨ξ|)U†] .

In quantum cognition, the system refers to a representation of the belief or values of the
individual under investigation (e.g., Anita’s opinions). The measurement could either be an
event that is observed to occur in the environment (e.g., Anita hearing the news) or answers
to questions that the person is being asked (e.g., Anita’s prediction). In the case where if the
system S is in a pure state ψ, the system plus environment state is a vector contained in an
N ×M dimensional Hilbert space formed by the tensor product of an N dimensional system
space and an M dimensional environment space. Initially, before the measurement occurs, or
before any questions are asked, the state is formed by a tensor product, Ψ =ψ ⊗ ξ of an initial
system stateψ and an initial environment state ξ. Initially, the system state is uncorrelated with the
environment state. The measurement is now represented by a unitary operator, U , that entangles
and correlates the system and environment parts of the state to produce a final measured state,
U(ψ ⊗ ξ). In quantum cognition, the probability of answering a question with the response x= 1

(yes) or x= 0 (no) is obtained from observing the meter observable represented by the projection
PE = I ⊗ PM (1) in the state just after the measurement, as we have the relationM = PM (1) ifM
has only two eigenvalues 1 and 0. Note that the projection M = PM (1) represents a property of
the environment that indicates the outcome of the measurement. Instead of the single projection
M = PM (1) , a family of mutually orthogonal projections PM (x), where x varies over a scale
S = {−n, . . . , 0, . . . , n}, often represents a family of possible outcomes from the measurement,
and called the pointer position of the measurement.

11This requirement is necessary for the partial trace over the environment determines the system state.
12The last condition follows from Tr[I(R)ρ] = Tr

[(
1 ⊗ PM (R)

)
U(ρ⊗ |ξ⟩⟨ξ|)U†

]
=Tr[U(ρ⊗ |ξ⟩⟨ξ|)U†] = Tr[ρ⊗

|ξ⟩⟨ξ|] = Tr[ρ]Tr[|ξ⟩⟨ξ|] = Tr[ρ].
13Note that, in contrast to a wide-spread popular view, we never appeal to the projection postulate for the measurement of
the meter observableM in deriving the state update rule (3.5). In fact, Eq. (3.5) holds even in the case where the measurement
of the meter observableM is not a projective measurement; for a detailed discussion on this point see [17,20,21,23–25].
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(g) Complete positivity
Given an instrument I for the system with a Hilbert space H, a measuring process M=

(K, ξ, U,M) satisfying Eq. (3.5) is called a realization of the instrument I. An instrument I is
called realizable if there exists its realization. Is every instrument realizable, or what instruments
are realizable? To solve this problem we introduce the following definition. A superoperator T on
L(H) is called completely positive if it satisfies

n∑
i,j=1

BiT (AiA
†
j)B

†
j ≥ 0 (3.6)

for any finite sequences A1, . . . , An, B1, . . . , Bn ∈L(H).14 An instrument for H is called a
completely positive (CP) instrument if I(x) is completely positive for every x∈R. It can be seen from
Eq. (3.5) that every realizable instrument is completely positive, and moreover it is known that
an instrument is realizable if and only if it is completely positive [20]. Thus, completely positive
instruments mathematically characterize all the possible quantum measurements consistent with
quantum theory (see [18] for more detailed discussions).

The transpose map on L(H) relative to an orthonormal basis {ϕj} of H is a superoperator
defined by T (|ϕj⟩ ⟨ϕk|) = |ϕk⟩ ⟨ϕj | for all j, k is a trace-preserving positive superoperator but
not completely positive [26]. For any observable A, we can define an instrument I by IA(x)ρ=
T (PA(x)ρPA(x)) for any ρ∈L(H). Then, IA measures A but is not completely positive. So, for
any observable A, there is an A-measuring instrument that is not realizable [19–21].

On the other hand, it is known that every completely positive superoperator T on L(H) there
exists a family of operators {Mj} such that Tρ=

∑
jMjρM

†
j [27]. So, for any completely positive

instrument I there exists a family of operators {Mxj}xj in L(H) with x∈R and j = 1, 2, . . .,
called the measurement operators for I, such that I(x)ρ=

∑
jMxjρM

†
xj [22]. In this case, the

POVM Π associated with I satisfies Π(x) =
∑
jM

†
xjMxj .

4. Application to question order phenomena
An important problem concerning measurement theory in quantum cognition relates to findings
from three different experimental paradigms [28]. The first is the AA (and BB) paradigm, in which
the same question A is asked twice, back to back. It is commonly assumed that all participants
will certainly repeat the first answer on the second occasion, however, note that there is very scant
evidence that this assumption is actually empirically valid. The second is the AB vs. BA, question
order paradigm, in which questions A and B are asked in different orders. Question order effects
have frequently been empirically observed and when they do, they generally satisfy a prediction
from quantum cognition called the QQ equality [29]:

QQ= [p(A= y,B = n) + p(A= n,B = y)]− [p(B = y,A= n) + p(B = n,A= y)] = 0.

The third finding is from the so-called ABA (and BAB) paradigm, in which question A is followed
by question B, which is finally followed by asking question A again. Some participants change
their answers to question A when it is repeated, but others simply repeat the original answer to
question A [30]. The problem is how to account for all three findings. The projective measurement
model, based on non-commuting observables and the von Neumann-Lüders projection rule, can
account for the findings from first two paradigms [29,31]. The problem arises with the ABA
paradigm for participants who produce question order effects (QOE) on the AB vs. BA paradigm
[28]. The effect combining AA, BB, ABA, and BAB paradigms is called the response replicability
effect (RRE). A complete analysis of the compatibility of QOE and RRE in the projective model
was given in [15] and it was shown that if a projective model shows RRE with a state ψ, then the

14The above definition is equivalent to requiring that the superoperator T ⊗ id on L(H) ⊗ L(K) defined by T ⊗ id(X ⊗
Y ) = T (X) ⊗ Y for allX ∈L(H) andY ∈L(K) be a positive superoperator on L(H) ⊗ L(K) for every finite dimensional
Hilbert space K.



9

royalsocietypublishing.org/journal/rsta
P

hil.
Trans.

R
.S

oc.
A

0000000
..........................................................................

two projections representing the questions A and B must commute in that state, so that projective
models do not show the combination of QOE and RRE with any state. Note that a projective
model is specified by two projections corresponding to the pair of questions A and B and a state
vector ψ with which all statistics of the sequential outcomes are derived. Thus, to realize both
QOE and RRE, we need more general quantum models other than projective models.

The first work to successfully address all three finding was by Ozawa and Khrennikov
(denoted the OK account) [32] using instrument theory. A later account for all three findings
was proposed by Busemeyer (denoted the BB account) [33,34] using the system plus environment
(indirect measurement) approach. Below we briefly review the basic ideas of each theory with a
new account proposed first in the present paper (denoted the OB account), which reformulates
the BB account using instrument theory. Later we compare them.

(a) Instrument (OK) Model
The OK account starts out by assuming that the Hilbert space is composed of a tensor product
of a system plus environment space. The system space is a tensor product of a 2 dimensional
space used to represent a person’s belief or opinion about question A, and another 2 dimensional
space used to represent the person’s belief on question B, and a 3 dimensional space representing
the type of an individual (type just refers to the way of belief update in answering a question).
The system space is spanned by the set of basis vectorsΩ = {|0⟩ , |1⟩} × {|0⟩ , |1⟩} × {|0⟩ , |1⟩ , |2⟩},
whereby the first and second parts represent the binary values (e.g., false, true) for the belief of the
person on each question, with the third part representing the type of the person’s belief update.
For example, (0,1,2) indicates a person of type 2 who believes the answer to A is no and the answer
to B is yes. This forms a 12 dimensional Hilbert space.

The environment is represented by another 2 - dimensional space used to represent a person’s
response for question A and another 2 dimensional space used to represent the person’s response
to question B; both spaces are spanned by the basis vectors {|0⟩ , |1⟩} × {|0⟩ , |1⟩}. This forms
a 4 dimensional space. According to the OK model, this environmental space represents the
physically recorded responses (i.e., the answers typed into a computer), rather than mentally
recorded episodic memories of the response.

The tensor product, system plus environment, state is therefore a 48 dimensional space. For
example, one of the basis vectors is |102⟩ |00⟩ indicating a person of type 2 (third coordinate) with
an initial belief of yes to question A (first coordinate) and no to question B (second coordinate);
the final two coordinates are the initial state of the environment.

Each person’s initial mental state can be identified as exactly one of the 12 basis states in
Ω defining the system space (see section 5 in [32]).15 A mixed state is formed by assigning a
probability, denoted µα,β,γ , that the person starts in each one of the 12 basis states indexed by
α, β, γ. In other words, the model can be described as one in which every individual starts out
with a clear belief, but different individuals start with different beliefs. The initial environment
state is fixed to be equal to |00⟩.

A unitary operator, either UA or UB , is applied depending on whether the focus is on question
A, or B respectively. The behaviors of these unitary operators depend on the type of person. Type
0 people simply copy the values on the belief states directly onto the response states, without any
back action updating the system state for both unitary operators.

Type 1 people also copy the value on the belief states directly onto the response states, but
there is also a back action that updates the system state as follows. For question A, if the values
on the belief state agree, then the value on belief B is updated to disagree with A and the belief
of A is not updated; otherwise no update occurs with the system state. The unitary operator for

15The OK model allows for superposition states, but the model with superposition states eventually reduces to a model that
is identical to one assuming each person starts out in exactly one of the basis states. See appendix D in [32].
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question A applied to the subspace for a type 1 individual is defined by

UA |001⟩ |00⟩= |011⟩ |00⟩

UA |011⟩ |00⟩= |011⟩ |01⟩

UA |101⟩ |00⟩= |101⟩ |10⟩

UA |111⟩ |00⟩= |101⟩ |11⟩

Likewise for question B, if the values on the belief state agree, then the value on belief A is changed
to disagree with B and the belief of B is not updated; otherwise no update occurs with the system
state.

Type 2 people update in the opposite way. They also copy the value on the belief states directly
onto the response states, but again there is a back action that updates the system state as follows.
For question A, if the values on the belief state disagree, then the value on belief B is updated to
agree with A and the belief of A is not updated; otherwise no belief update occurs with the system
state. The unitary for question A applied to the subspace for a type 2 individual is defined by

UA |002⟩ |00⟩= |002⟩ |00⟩

UA |012⟩ |00⟩= |002⟩ |01⟩

UA |102⟩ |00⟩= |112⟩ |10⟩

UA |112⟩ |00⟩= |112⟩ |11⟩

Likewise for question B, if the values on the belief state disagree, then the value on belief A is
updated to agree with B and the belief of B is not updated; otherwise no update occurs with the
system state. In sum, these unitary operators simply exchange one basis vector for another, and
the system never becomes superposed with respect to the basis.

It is straightforward to explain how this model works to produce a belief update in the answers
to A,B depending on question order. Suppose a type 1 person’s initial state is |001⟩. When this type
of person is asked questions A and then B, this person will answer no to A, and then update from
the initial no state for B to answer yes to B. The probability for this to happen is based on the
corresponding probability µ001 of the initial state. When this type of person is asked questions
B and then A, this person will answer no to B, and then update from the initial no state for A to
answer yes to A. This happens with the same probability µ001 for the initial state. Now suppose
a type 2 person’s initial state is |012⟩. When this person is asked questions A and then B, this
person will answer no to A, and then update the state for B to answer no to B. This happens with
probability µ012 for the initial state. When this person is asked questions B and then A, this person
will answer yes to B, and then update the A state to say yes to A. This happens with the same
probability µ012 for the initial state. In this way, the model produces question order effects that
satisfy the QQ equality in a parameter free manner.

Now consider answers to the second A question in the ABA paradigm. A type 1 person with
initial state |001⟩ will answer no to A, the state will update to |011⟩ to say yes to question B, and
then remain in the state |011⟩ to say no to A the second time. A type 2 person with initial state
|102⟩ will answer yes to A, the state will change to |112⟩ to say yes to question B, and then remain
in the state |112⟩ to say yes to A the second time. In sum, this model always repeats the first
answer to question A on the second repetition. It does not produce any changes in answers across
the repetition.

Formally, the model starts with an initial system state ρS =
∑
α,β,γ µα,β,γ |αβγ⟩ ⟨αβγ|, which

is combined with the initial environment state ρE = |00⟩ ⟨00| to produce the system plus
environment state ρS+E = ρS ⊗ ρE. Then, the state ρS+E is transformed during measurement
by the unitary operator and reduced by partial trace to an instrument. For example, the
instrument for the answer x= 0, 1 (1: yes, 0: no) to question A is equal to IA(x)ρS =

TrE

[[
IS ⊗ PMA(x)

]
UA (ρS ⊗ ρE)U

†
A

]
, with PMA(x) = |x⟩⟨x| ⊗ I2, where |x⟩⟨x| acts on the
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2-dimensional space of the response to question A and I2 is the identity operator on the
2-dimensional space of the response to question B.

Consider now asking question A and then B. The probability of yes to A and then no to B
is determined from the product of instruments as follows. The probability of yes to A equals
p(A= 1∥ρS) =Tr [IA(1)ρS] = Tr[PA(1)ρS] with PA(1) =A= |1⟩⟨1| ⊗ I2 ⊗ I3, where |1⟩⟨1| acts
on the belief state space for question A, the identity operator I2 acts on the belief state space
for question B, and the identity operator I3 acts on the personality state space. Given that yes
to A was observed, the belief state is updated to ρS{A=1} = IA(1)ρS/Tr [IA(1)ρS]. Then the
instrument for answering no to B after answering the question to A is defined as IB(0)ρS{A=1} =

TrE

[[
IS ⊗ PMB (0)

]
UB

(
ρS{A=1} ⊗ ρE

)
U†
B

]
with PMB (0) = I2 ⊗ |0⟩⟨0| and the probability of

no to B given yes to A equals p(B = 0|A= 1∥ρS) =Tr
[
IB(0)ρS{A=1}

]
. Therefore, the sequential

probability equals p(A= 1, B = 0∥ρS) =Tr [IB(0)IA(1)ρS]. But, using the simple explanation
described earlier, this turns out to equal to p(A= 1, B = 0) = µ100 + µ101 + µ111 [32, Eq. (89)]:
the probability of a type 0 person in state (100) that does not change the state, plus the probability
of a type 1 person in state (101) that does not change this particular state, plus the probability of a
type 1 person in state (111) that changes the state for B from yes to no.

(b) System plus environment (BB) Model
The BB alternative account also assumes that the Hilbert space is composed of a tensor product of
a system plus environment space. The system space is anN - dimensional space used to represent
a person’s beliefs and opinions. A state vector within this space can be used to evaluate opinions
about different questions depending on the basis used to evaluate the state.

The environment is represented by a tensor product of a 2 dimensional space used to represent
a person’s response for question A the first time it is asked, another 2 dimensional space used
to represent the person’s response to question B, and another 2 dimensional space used to
represent a person’s response for question A the second time it is asked. The environment space is
spanned by the 8 basis vectors {|0⟩ , |1⟩} ⊗ {|0⟩ , |1⟩} ⊗ {|0⟩ , |1⟩}. According to the BB model, the
environment space represents the mental records of the measurements (i.e., episodic memories
physically recorded in the neurons of the brain).

Define |+⟩= (1/
√
2) |0⟩+ (1/

√
2) |1⟩, which represents an initial environmental state with

equal probabilities of responding yes or no to a question. Then the initial state is equal to
the system plus environment state |ζI⟩= |ψI⟩ ⊗ (|+⟩ ⊗ |+⟩ ⊗ |+⟩). A system state |ψ⟩ can be
decomposed using orthogonal projections TA, FA = I − TA for true and false opinions about
question A: |ψ⟩= (TA + FA) |ψ⟩= TA |ψ⟩+ FA |ψ⟩. Likewise, a system state can be decomposed
using orthogonal projections TB , FB = I − TB for true and false opinions about question B:
|ψ⟩= TB |ψ⟩+ FB |ψ⟩. Four unitary operators are used to apply measurements to the questions.
Suppose the questions are asked in the ABA order.

Intuitively, UA measures question A on the first occasion: if the person’s belief state is
experienced in the false subspace for question A, then the answer no is recorded in memory
for this question; if the person’s belief is experienced in the true subspace for question A, then the
answer yes is recorded in memory for this question.

UA |ζI⟩=FA |ψI⟩ ⊗ |0⟩ ⊗ |+⟩ ⊗ |+⟩+ TA |ψI⟩ ⊗ |1⟩ ⊗ |+⟩ ⊗ |+⟩

Following the answer to question A, the system state reduces to |ψA⟩, which is the normalized
state after observing the outcome |i⟩ from question A. This state is then used to evaluate the next
question about B.

Intuitively, UB measures question B: if the person’s belief is experienced in the false subspace
for question B, then the answer no is recorded in memory for this question; if the person’s belief
is experienced in the true subspace for question B, then the answer yes is recorded in memory for
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this question.

UB |ζA⟩=FB |ψA⟩ ⊗ |i⟩ ⊗ |0⟩ ⊗ |+⟩+ TB |ψA⟩ ⊗ |i⟩ ⊗ |1⟩ ⊗ |+⟩

Following the answer to question B, the state reduces to |ψAB⟩, which is the normalized state
after observing the outcome |j⟩ from question B. This state is then used to evaluate the repeated
question about A.

The next two unitary operators correspond to the second instance of question A. It is assumed
that there are two different types of participants, a "judgment based" type of responder and a
"memory based" type of responder.16 Upon the second presentation of question A, the judgment
based responder forms a new answer to the question "what is my opinion about question A." In
contrast, the memory based responder answers the question "what did I answer the first time for
question A."

The judgment based type of participant takes the time and effort to re-evaluate her opinion
about question A when encountering it a second time and so makes a new judgment about
question A, after evaluating B:

UJ |ζAB⟩=FA |ψAB⟩ ⊗ |i⟩ ⊗ |j⟩ ⊗ |0⟩+ TA |ψAB⟩ ⊗ |i⟩ ⊗ |j⟩ ⊗ |1⟩

The memory based participant simply copies the first answer from question A to the second:

UM |ζAB⟩=UM |ψAB⟩ ⊗ |i⟩ ⊗ |j⟩ ⊗ |+⟩

= |ψAB⟩ ⊗ |i⟩ ⊗ |j⟩ ⊗ |i⟩ .

The probability that a participant chooses a response, such as yes, to a question is equal to the
probability that the person observes that value in the episodic memory state corresponding to
that question. The measurement projections for computing probabilities of no versus yes to the
first A question are respectively

AF = IN ⊗ |0⟩ ⟨0| ⊗ I2 ⊗ I2

AT = IN ⊗ |1⟩ ⟨1| ⊗ I2 ⊗ I2.

Likewise the measurement projections for no versus yes to the second B question are respectively

BF = IN ⊗ I2 ⊗ |0⟩ ⟨0| ⊗ I2

BT = IN ⊗ I2 ⊗ |1⟩ ⟨1| ⊗ I2.

Finally, the measurement projections for no versus yes to the third question are respectively

A′
F = IN ⊗ I2 ⊗ I2 ⊗ |0⟩ ⟨0|

A′
T = IN ⊗ I2 ⊗ I2 ⊗ |1⟩ ⟨1| .

If we measure question A and then B, we have to apply UA and then UB to the initial state
and compute the probability of the relevant measurement outcomes. For example, consider the
probability of answering yes to A first and then no to B second,

q(A= y,B = n) = ∥BFATUBUA |ζ⟩∥2

= ∥(FBTA |ψ⟩)⊗ |1⟩ ⊗ |0⟩ ⊗ |+⟩∥2

= ∥FBTA |ψ⟩∥2

16In [34] we referred to the two types as conscientious and lazy. However these terms are overly narrow and restrictive. The
so called lazy participants may be participants who thoughtfully answer questions A and B the first time they are presented,
but then they copy their answer from the first time to the second time A is presented in order to save time and effort or to
appear consistent in their responses.
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In the opposite order, we obtain

q(B = n,A= y) = ∥ATBFUAUB |ζ⟩∥2

= ∥(TAFB |ψ⟩)⊗ |1⟩ ⊗ |0⟩ ⊗ |+⟩∥2

= ∥TAFB |ψ⟩∥2 .

Thus, for the first two A,B questions, the system plus environment model produces exactly
the same sequential probabilities as the original question order model [29] from which the QQ
equality was originally derived in a parameter free manner. It reproduces the repetition response
for the AA type paradigm for both types of responders – for the judgment-based responder, this
follows from the properties of projection operators; for the memory-based responder, this follows
from simple recall of memory. The BB model also reproduces the QQ equality for the AB,BA
type paradigm. This follows from the fact that there are no repeated questions in this paradigm,
and so both type of responders must rely on judgments using the projection operators. For the
third question, the repetition of question A, the judgment-based responder (using UJ to record a
response to the repetition to A) can produce a different answer compared to what they originally
responded to A (because they re-evaluate the question). However, a memory- based responder
(using UM to record a response to the repetition to A) will simply repeat their previous answer.

(c) New (OB) model
During discussions of the previous two models, the authors developed a third model (OB model)
that shares properties of the first two. It shares the measurement properties of the OK model and
the repeat answer property of the BB model.

The mental state, or the system state to be measured, consists of a belief state in a 2 dimensional
Hilbert space Hb, and a memory state in a 3 · 3 dimensional Hilbert space Hm, so that the state
space HS of the system S to be measured is their tensor product HS =Hb ⊗Hm. The state space
of the environment E recording the responses to a single instrument is a 3 · 2 dimensional Hilbert
space HE. Altogether the model uses a 2 · 9 · 6 dimensional space HS ⊗HE =Hb ⊗Hm ⊗HE

describing the measuring process of a single instrument.17

The belief states in Hb use two different bases: a basis {|OA⟩ , |1A⟩} for question A,
and a basis {|OB⟩ , |1B⟩} for question B. The memory state in Hm has 9 basis vectors
{|xy⟩ , x= 0, 1, 2; y= 0, 1, 2} with x representing the mental state for question A and y

representing the mental state for question B; the index 0 represents memory for a previous
no/false answer to the question, 1 represents a memory for a previous yes/true answer to the
question, and the index 2 represents no previous answer to the question. The response state in HE

has six basis vectors {|uv⟩ , u= 0, 1, 2; v= 0, 1}, where v= 0 indicates a response of no/false, and
v= 1 indicates a response of yes/true, and the index u= 0, 1, 2 is used to represent the memory
state for the question being asked.

Then the unitary operator UA is defined as

|aA⟩ |xy⟩ |00⟩→ |aA⟩ |f(x)y⟩ |xf(x)⟩ ,

with a taking on values 0 or 1 and f(0) = 0, f(1) = 1, and f(2) = a. Similarly, the unitary operator
UB is defined as

|bB⟩ |xy⟩ |00⟩→ |bB⟩ |xg(y)⟩ |yg(y)⟩ ,

with b taking on values of 0 or 1 and g(0) = 0, g(1) = 1, g(2) = b.

17For a sequence I1, · · · , In of instruments measuring the same system S, the measuring process of the whole sequential
measurements is described on the tensor product space HS ⊗ HE1

⊗ · · · ⊗ HEn , where HEj
represents the environment

Ej of the instruments Ij . However, once the instruments Ij is determined by the system-environment description on HS ⊗
HEj

, the sequential probability of their outcomes with the initial system state ρ is given by p(x1 = x1, . . . ,xn = xn∥ρ) =
Tr[In(xn) · · · In(x1)ρ].
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The initial state, before any questions have been asked, is defined as

|ψ(0)⟩= |γ⟩ |22⟩ |00⟩ ,

where |γ⟩ is a vector in Hb representing the person’s beliefs. The initial density matrix is then
equal to ρ0 = |ψ0⟩ ⟨ψ0|.

Note that in both cases, if there is a previous memory state, then it is repeated in the response.
If there is no previous memory for the question, the response is set equal to the current belief
state. In the latter case, the change in basis used to represent the beliefs to each question produces
question order effects.

The probability that the participant chooses a response is determined by the second component
of the response state in HE. Define the projection for detecting a yes/true probe response asMy =

I3 ⊗ |1⟩ ⟨1|, where I3 is a 3× 3 identity matrix. Likewise, the projection for a no/false response is
defined by Mn = I3 ⊗ |0⟩ ⟨0|.

The instrument for a true/yes/1 response to question A is given by the partial trace of the
projection on yes over the environment states after the unitary evolution UA

IA(1)ρS =TrE

[
(I2 ⊗ I9 ⊗My)UA(ρS ⊗ ρE)U

†
A

]
,

where In is a n× n identity matrix, and ρE is the initial environment state set as ρE = |00⟩ ⟨00|,
and similarly question B

IB(1)ρS =TrE

[
(I2 ⊗ I9 ⊗My)UB(ρS ⊗ ρE)U

†
B

]
,

Then the probability of a sequence, for example answer x to A then y to B then z to A can be
computed from

p(A= x,B = y,A= z∥ρS) =Tr [IA(z)IB(y)IA(x)ρS] .

The new OB model produces question order effects in the same way as the original order
model [29] and it repeats the answer to question A based on memory for the first answer to A like
the BB model, but it uses instruments to compute the probabilities of any sequences of events like
the OK model.

(d) Comparison
There are several important differences between the OK, BB, and OB models that are useful to
discuss.

First, there is a difference concerning the compatibility nature of the two questions A,B. The
OK account uses a common tensor product basis to represent both questions. This assumes that a
person can simultaneously hold a firm belief on both questions – accordingly, the two questions
are assumed to be compatible. In contrast, the BB and OB accounts use a different basis to
represent the answers for each question – consequently, the two questions are assumed to be
incompatible. However, for the BB and OB models, the memories for the answers to the question
are represented in a tensor product state that assumes the person can simultaneously remember
the previous answers to the questions.

A benefit of using a tensor product belief state is that the OK model can provide an estimate
of the initial joint probability distribution of beliefs across the questions before being disturbed
by measurement. The BB and OB models assume that no joint prior distribution even exists.
Behaviorally, we can imagine that certain types of stimuli can be processed either sequentially
or simultaneously, depending on task demands. However, sequential processing seems to be an
unavoidable requirement for many cases of decision making [35]; even if a model assumes a joint
probability for prior beliefs for both questions, the model describes how the process of answering
to one questions affect the belief on the other question.

A second important difference concerns the measurement process that produces the question
order effect in the AB,BA paradigm. According to the OK model, the question order effect occurs
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because a unitary operator directly changes the beliefs about the questions after measurement. For
any pair of questions, a type I person changes an initial belief that both answers agree to a belief
that the answers disagree; the type II person changes an initial belief that the answers disagree
to a belief that the answers agree. In contrast, according to the BB and OB models, the question
order effect occurs because the projections used to evaluate the two questions do not commute.
This principle led to the a priori prediction of the QQ equality. This same principle has been used
to account for many other puzzling findings in the judgment and decision making literature [36].

Third, there is a difference concerning the assumptions about the mapping of experimental
questions to measurement operations. The OK and OB models apply one type of measurement
operation (or instrument, more precisely) for each experimentally presented question. In
particular, the same operation for question A is used regardless of whether A is presented the first
time or second time. The BB model introduces a new measurement operation for the memory-
based participants on the second repeated presentation. Thus, even though the experimenter
repeats the question "do you agree with A," the memory based participant answers a different
question "what did I answer about A the first time." Thus, the BB model does not require the
participant to evaluate the experimenter’s question. In other words, the BB model assumes that
the experimenter is not in complete control of what the participant is thinking.

For the above reason, the BB model needs to add an additional memory recall operator when
a question is repeated. On the one hand, this addition of a memory recall operator is more
complex than the simpler pair of instruments used by OK. On the other hand, as pointed out
in [28], recalling previous responses on repeated questions is an old and well known problem
in experimental psychology. Experimental psychologists generally go to great extents using filler
items in between repetitions in order to try to avoid the possibility of the participant simply
recalling previous answers (see e.g., [37]).

Another phenomena that can occur with the BB and OB models is that when answering the
sequence of questions ABA, the memory recorded from the first presentation of question A may
no longer be completely consistent with the belief state that results after answering question B.
This follows from the disturbance produced by the non-commuting projections. So, for example,
a person may remember that they initially said that they agree with a statement A, but now
experience some doubt about their opinion about statement A. This inconsistency of memory
and beliefs doesn’t arise with the OK model because the instruments used by the OK model retain
memory of the probe responses in the belief state. For example, following the measurement of A,
a type I person initially in state |111⟩ updates to |101⟩ that has an environment state |11⟩= |1⟩ |1⟩,
in which the first qubit |1⟩ shows the measurement outcome, while the second qubit |1⟩ is the
dummy to ensure the unitarity of UA. In this model, the memory of the previous outcome is kept
in the first qubit |1⟩ of the updated belief state |101⟩; in this sense, the memory and the belief are
unified in this model.

Finally, the OK and OB accounts require all participants to repeat their answers from the first
to the second presentation of question A (with question B answered in between), whereas the BB
account allows some participants to repeat while others may change their mind. Empirically the
latter has been observed (see, [30]), but these results are controversial because participants were
instructed to reconsider their answers to question A after evaluating question B. More research
is clearly required to determine the empirical findings for the ABA paradigm. The OK account
could be generalized to include additional types and thereby allow changes in answers to the
repeated question. However, this modification would need to be made in a way that is consistent
with the empirical results related to the QQ equality in a parameter free manner.

5. Conclusion
Both Bayesian and quantum models have been proposed to account for the human judgments and
reasoning under uncertainty. An important challenge for these theories is to address the effects
of episodic memories on judgments and decisions. For example, how does making a prediction
about an event affect later decisions about actions. One of the main advantages of quantum
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models over Bayesian models is their capability to account for the episodic memory effects of
recently made measurements on later judgments and decisions, such as question order effects.

This article reviews new progress on quantum models that address this issue by generalizing
the type of measurement operations used in quantum cognition. The early quantum measurement
models were based on projective “collapse” type measurement models that quickly lose
memory, as each new question is asked. In this article, we describe more modern measurement
models based on a system plus environment representation of the state, and the use of
generalized instruments to describe the measurement operations. We applied these more modern
measurement models to three empirical paradigms concerning question order effects in human
judgment research.

The first quantum question order model [29] used non-commuting projections to provide the
original basis for predicting both the response replication effect for the AA repeated question
paradigms, and the QQ equality for the AB,BA paradigm. However, as pointed out by [30], it
fails to account for those participants who repeat their answers to A on the ABA paradigm. This
theoretical problem was first resolved by [32] who proposed using instruments instead of non-
commuting projections to account for question order effects. Later, the system plus environment
model was proposed by [33] that uses non-commuting projections as in the original question
order model, but introduced a type of individual that copies answers from the first time question
A is asked to the second time to account for those participants who repeat their answers to A on
the ABA paradigm.

Note that the difference between the OK and BB models does not depend on whether or not
instruments are ultimately used. An instrument version of the BB model could be constructed
just as the OB model did by expanding the Hilbert space to include environment states. Then
control-U gates could be used to copy the values in the memory states onto the environment
states. Instruments could then be constructed by marginalizing over the environment state as in
the OK model. This would produce the same final choice probabilities as the original BB model.
Therefore, the difference between models arises from how episodic memory for the previous
responses are used to make future responses.

Despite the differences between the OK, BB, and OB models, they all assume that measurement
can change a person’s beliefs, the change depends on the order of measurement, and that
quantum models of question order effects need to include the effects of episodic memory from
past judgments.

We have only considered one kind of memory in this article, memory for experiences,
called episodic memory. Semantic memory is another kind of memory, corresponding to
meaning extracted across many experiences. In quantum cognition, there are two approaches
for representing the meaning of a concept, like dog or cat. According to the State Concept
Property system [38], concepts are represented as vectors in a Hilbert space modified by context.
Alternatively, the meaning of a concept can be represented as multi-dimensional projections that
contain basis states representing the features describing the concept [39,40]. However, this is a
complex topic that needs to be addressed in future research.
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