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 A B S T R A C T

Spatio-temporal event sequences consist of activities or occurrences involving various interconnected elements 
in space and time. We show how topic modeling—typically used in text analysis—can be adapted to abstract 
and conceptualize such data. We propose an overall analytical workflow that combines computational and 
visual analytics methods to support some tasks, enabling the transformation of raw event data into meaningful 
insights. We apply our workflow to football matches as an example of important yet under-explored spatio-
temporal event data. A key step in topic modeling is determining the appropriate number of topics; to address 
this, we introduce a visual method that organizes multiple modeling runs into a similarity-based layout, helping 
analysts identify patterns that balance interpretability and granularity.

We demonstrate how our workflow, which integrates visual analytics, supports five core analysis tasks: 
identifying common behavioral patterns, tracking their distribution across individuals or groups, observing 
progression at different temporal scales, comparing behavior under varied conditions, and detecting deviations 
from typical behavior.

Using real-world football data, we illustrate how our end-to-end process enables deeper insights into both 
tactical details and broader trends — from single match analyses to season wide perspectives. While our case 
study focuses on football, the proposed workflow is domain-agnostic and can be readily applied to other spatio-
temporal event datasets, offering a flexible foundation for extracting and interpreting complex behavioral 
patterns.
1. Introduction

Spatio-temporal event sequences are chains of activities or occur-
rences that take place in different locations and at different times, 
with each event influencing or connecting to others. Because they span 
both space and time, these sequences can be especially complex to 
analyze and challenging to extract meaningful insights. Gaining insight 
into these types of data can help in controlling patterns or forecasting 
future trends based on historical data. However, spatio-temporal event 
sequences often contain a wealth of detailed, short-term patterns that 
may not be representative of the overall dataset. Extracting meaningful 
patterns that capture the essence of these sequences requires advanced 
analytical techniques.

Analyzing spatio-temporal events has extensive applications across 
various fields [1,2]. For example, in environmental conservation and 
management, this research can unveil patterns of environmental
change, such as deforestation, urban expansion, or shifts in land use [3]. 
In transportation and urban planning [4], spatio-temporal analysis can 
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help understand traffic flows, optimize public transport routes, and 
plan urban infrastructure more effectively. It is also important in the 
domain of public health for tracking and analyzing epidemiological 
trends, helping to predict disease spread and manage health crises 
such as epidemics and pandemics. These diverse applications show the 
importance of research on spatio-temporal event sequences [3,5].

Research into spatio-temporal data has grown significantly with 
the increased availability of geo-referenced and temporal datasets [6]. 
Many research studies have prominently used visual analytics to ex-
plore spatio-temporal data. Visual analytics leverages the collaboration 
between human intuition and creativity and the data-processing capa-
bilities of computers [3,7]. This field is notably vibrant in the study of 
spatio-temporal events, combining sophisticated analytical techniques 
with interactive visualizations to enhance the understanding of pat-
terns, trends, and anomalies across both space and time. For example, 
Andrienko and Andrienko [8], as well as Andrienko et al. [9], provide 
systematic approaches to the exploratory analysis of spatial and tem-
poral data, offering methodologies that include visual analytics to help 
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uncover hidden patterns. In addition, Krüger et al. [10] introduce a 
technique designed to filter and explore long-term trajectory data using 
visual analytics, highlighting the potential for interactive exploration of 
spatio-temporal datasets.

Topic modeling [11] is an unsupervised learning method, orig-
inally developed for text mining, that facilitates moving from the 
granular level of individual words and documents to a more abstract 
understanding of the themes underlying large collections of text. This 
is achieved by transforming complex textual data into manageable 
numerical representations. The process begins with the creation of a 
document-term matrix, where each document is represented by word 
frequencies, disregarding word order. The model then analyzes patterns 
of word co-occurrence across the corpus to identify clusters of terms 
that frequently appear together, distilling the data into a set of topics.

These topics are essentially groups of related terms that provide 
a simplified, numerical summary of the text’s content. Abstraction 
becomes meaningful when these groups are interpreted as themes or 
ideas that encapsulate the essence of the documents. By examining the 
most representative words within each topic, one can label and define 
the topics in a way that reflects the underlying themes in the corpus. 
In this way, topic modeling bridges the gap between raw textual data 
and higher-level insights, offering a structured approach to uncovering 
meaningful patterns and ideas.

While topic modeling techniques were originally developed in text 
mining to uncover hidden semantics within textual data, their underly-
ing principles are generalizable and can be applied to other domains. 
This adaptability has enabled their use in various applications, includ-
ing image data [12] and bioinformatics [13]. More recently, there have 
been efforts to leverage topic modeling for analyzing event sequences 
and spatio-temporal data. For instance, Chen et al. [14] examined 
sequences of user actions during sessions to understand behaviors in 
security management systems. They also applied their methodology 
to spatio-temporal visiting events in an amusement park, providing 
insights into participants’ visiting behaviors. Andrienko et al. [4] ex-
plored road traffic movement data to reveal common patterns of space 
utilization.

Despite these promising applications, the use of topic modeling for 
spatio-temporal event sequences remains a relatively unexplored and 
evolving research area. Topic modeling is a process with many design 
choices, such as defining terms and documents, selecting the number 
of topics, and interpreting the obtained topics in the context of the 
data. These choices can significantly affect the outcome. Incorporat-
ing visual analytics techniques with topic modeling process enhances 
these design decisions. Specifically, visual analytics can be utilized not 
only in the interpretation of the topics but also during the earlier 
stages of model selection and data pre-processing, offering a more 
comprehensive understanding of the data.

In this paper, we propose an end-to-end workflow that combines 
computational methods (including topic modeling) with visual ana-
lytics to extract meaningful insights from raw spatio-temporal event 
sequences. We demonstrate the workflow using spatially-referenced 
event data from football matches [15]. This dataset is rich with various 
complex behaviors exhibited by teams and players, along with their 
potential influence on match outcomes - which may be possible to 
capture and model as topics.

Specifically, our analytical workflow consists of three main compo-
nents:

1. Data transformations, which convert raw spatio-temporal
events into structured segments (e.g., episodes of ball possession; 
Section 3) that serve as ‘‘documents’’ for topic modeling.

2. Computational methods, primarily topic modeling supported 
by dimensionality reduction to select the optimal number of 
topics (Sections 3, 4, and 5).

3. Visual analytics, which employs static and interactive visualiza-
tions to support exploration, interpretation, and comparison of 
the extracted patterns (Sections 5.1, 7.1, 8.1, 8.2, 8.3, and 8.4).
2 
This end-to-end workflow is modular and domain-independent, 
serving as a set of building blocks that transform raw data into insight. 
Each block can be independently fine-tuned to match the characteristics 
of a particular dataset, enabling both generalizability and adaptability.

Using the proposed workflow, we aim to support the following 
generic analysis tasks:

• T1: Identify common behavioral patterns using the representative 
units of behavior (e.g., zones most frequently activated within 
topics, as shown in Section 5.1).

• T2: Track how the occurrences of behavioral patterns are dis-
tributed across agents or groups (e.g., different teams, leagues, 
or over time).

• T3: Observe the progression of behavioral patterns at different 
temporal scales (e.g., shifts across halves, mid-season transitions, 
or coaching changes).

• T4: Compare how contextual conditions (e.g., playing at home 
vs. away, match outcomes) influence the occurrence of behavioral 
patterns.

• T5: Detect and quantify deviations from a typical behavior, help-
ing to identify anomalies or shifts in behavior.

Throughout the paper, we demonstrate how the proposed workflow 
supports each of these tasks using real-world football data, providing 
both detailed and overall insight. Our approach uses topics to represent 
behavioral patterns.

One of the main challenges in topic modeling is determining the 
optimal number of topics to extract, as too few topics can oversimplify 
the data, while too many can fragment coherent themes. To address 
this, we propose a visual analytics technique (Section 5) that iteratively 
applies topic modeling across a range of topic numbers and visualizes 
the results. By arranging topics in a hierarchical graph based on their 
similarities and representing them with spatial heatmaps, our approach 
enables the identification of stable and significant topics, which aids in 
selecting a compact and representative set.

While our proposed visual analytics technique can work for any 
spatial event data (as long as we can represent individual topics by 
interpretable compact images such as spatial heatmaps or glyphs), we 
demonstrate our approach by applying this technique to a football 
dataset [15]. We begin with selecting a representative set of topics 
(Section 5) and then use the selected topics to summarize game dy-
namics and provide insights into individual games or series of games 
(Section 6).

This paper extends our earlier conference paper [16] by adding a 
suite of visualizations featuring five distinct visualization strategies that 
follow the same design principles and rely on topics derived from our 
modeling to analyze football games at varying levels of granularity. The 
first offers a detailed exploration of a single match, while the other 
four provide concise match summaries and reveal deviations from the 
‘‘average’’ behaviors, facilitating comparisons across multiple games 
and teams.

In summary, our contributions are (A) an overall analytical work-
flow to progress from raw event data to meaningful analytical insights; 
(B) a visual analytics technique for selecting the number of topics with 
the most suitable result from multiple runs of topic modeling on spatial 
event sequences; (C) a demonstration of how our technique can be used 
to discover spatially consistent and easily distinguishable topics from a 
football dataset; (D) a demonstration of how the obtained topics can be 
used to summarize a football game dynamics and reveal insights into 
the games; (E) methods for using the topics to summarize and compare 
various matches and teams’ playing styles; and (F) an exploration of 
how different teams deviate from their typical play style in different 
conditions.

High-resolution versions of all figures presented in this paper, along 
with additional examples, are available on the accompanying web-
page: https://lalehmoussavi.github.io/topic-modeling-for-behavioral-p
atterns/.
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2. Related work

Topic Modeling.
Topic modeling is a powerful technique used to identify hidden 

themes from a collection of documents [11]. It is a tool commonly em-
ployed in text mining to discover the concealed semantics within text 
data. Topic modeling aims to discover combinations of co-occurring 
words that represent topics, allowing for the categorization of docu-
ments based on these topics. For example, in a collection of academic 
papers spanning subjects such as history, biology, and mathematics, 
topic modeling can identify distinct sets of terms commonly associated 
with each subject area, such as ‘‘empire’’, ‘‘medieval’’, and ‘‘revolu-
tion’’ for history; ‘‘DNA’’, ‘‘evolution’’, and ‘‘species’’ for biology; and 
‘‘equation’’, ‘‘calculus’’, and ‘‘theorem’’ for mathematics.

Two popular methods used in topic modeling are Latent Dirichlet 
Allocation (LDA) [17] and Non-negative Matrix Factorization (NMF) 
[18]. They have their distinct mathematical foundations but share the 
same goal, use the same inputs, and produce similar outputs.

El-Assady et al. [19] proposed a visual analytics framework for 
performing and optimizing topic modeling on text data. It enhances the 
traditional topic modeling process by incorporating user interactivity 
and speculative execution, allowing for a more flexible and inter-
pretable approach to text data analysis. In contrast to their approach 
which focuses on text data, our visual analytics approach is designed 
for spatio-temporal event sequences.

While topic modeling techniques were originally developed for text 
data, the underlying principles can be adapted to other domains. This 
adaptability has allowed topic modeling to be embraced for a broad 
spectrum of applications such as image data [12] and bioinformat-
ics [13]. Topic modeling on spatio-temporal event sequences involves 
applying algorithms to uncover hidden topics within a dataset, which 
helps to understand how these topics/behaviors change across space 
and time. By analyzing the frequency of topics and their co-occurrence 
with other situations in various locations and over time, topic model-
ing can reveal insights into how certain activities or occurrences are 
distributed and evolve over space and time and in different situations.

Extensions and adaptations of topic modeling for spatial, temporal, 
or spatio-temporal data have been proposed in various studies. Chen 
et al. [14] applied a topic modeling approach to analyze non-spatial 
event sequences. They defined behavior as a sequence of actions an 
agent performs over time and aimed to uncover latent topics that 
represent distinct categories of behaviors using LDA. Their approach 
was demonstrated through two case studies: one analyzing operational 
behaviors in a real-world security management system, and the other 
examining visitor behaviors in an amusement park using a data set of 
IEEE VAST Challenge 2015 [20]. To address LDA’s sensitivity to the 
number of topics, the authors introduced the concept of LDA ensembles, 
which involve running multiple LDA models with varying topic counts 
and projecting them to a 2D space.

Their model is performed on non-spatial event sequences, while 
we perform topic modeling on spatio-temporal terms and documents 
and visualize the results both spatially and through time. Additionally, 
one of their datasets, derived from the VAST Challenge, is synthetic, 
which may not fully capture real-world behaviors. In contrast, we 
have worked with the football dataset from Pappalardo et al. [21], 
which is based on real-world data. Although working with real-world 
data introduces additional complexity, it will offer more meaningful 
insights. While they used a 2D projection visualization to determine 
the number of topics, our current approach employs a different method 
based on 1D projection. We show that 1D projections make it easier to 
compare and analyze across different number of topics (Section 5).

Andrienko et al. [4] employed topic modeling to analyze road traffic 
trajectories, representing movement as sequences of place visits and 
transitions between them. Their work focused on uncovering patterns 
of space utilization and movement behavior but did not delve into 
interpreting the semantic meaning of the extracted topics. Our research 
3 
differs significantly in data, objectives, and methodology. While their 
study analyzed continuous vehicle trajectories, we focus on discrete 
football events within matches, as detailed in Section 3. Crucially, our 
work emphasizes topic interpretation through visualization, which was 
not explored in their approach. Additionally, we introduce a novel 
1D trapezium-like visualization for determining the optimal number of 
topics, in contrast to their 2D approach.

Overall, our study extends the prior work by addressing a different 
type of spatio-temporal data and incorporating methods that enhance 
both interpretability and topic selection.

Topic Modeling on Football Data.
The following works have used topic models on football data. 

Wang et al. [22] proposed the Team Tactic Topic Model (T3M) to 
analyze football data. T3M employs a generative process that considers 
players’ positions and passing relationships to identify team strategies 
(topics). The model assumes that players’ positions follow a Gaussian 
distribution within each identified topic. These Gaussian distributions 
ideally cover all different parts of the pitch. We note that this could be 
sometimes a wrong assumption since a forward like Messi might not be 
involved in any pass for a defending pattern.

Our work addresses multiple issues in [22] concerning data usage 
(considered events), episode definition, and methodology. First, while 
they only focus on passes and their receivers’ positions, we include all 
event types (e.g., shots, fouls, tackles) and consider both the sender’s 
and receiver’s positions (Section 3). Second, their approach defines 
episodes based on stoppages (when the game is paused) and turnovers 
(when the other team gets the ball), whereas we define them more 
continuously tolerating short interruptions (Section 3).

Third, our approach is more scalable and allows a compact repre-
sentation of the resulting topics. Fourth, while they did not employ a 
specific method for selecting the number of topics, as a core part of our 
work on Football data, we propose a visual analytics methodology to 
determine the optimal number of topics (Section 5). Finally, our main 
focus is not on the development of a topic model as a final product, 
but on using visual analytics at different stages of the topic modeling 
process to enhance the overall analysis process.

Andrienko et al. [23] introduced an approach for analyzing mul-
tivariate temporal data using topic modeling techniques. They repre-
sented variations in each attribute’s value within an episode as ‘words’, 
combining these variations to create ‘texts’ for each episode and then 
applying topic modeling to these texts to uncover patterns and recur-
ring themes. The authors demonstrated their methodology by analyzing 
two football matches from the German Bundesliga, and a mobility 
dataset for different countries.

Our work differs from [23] on used data, the ways to define terms, 
and overall methodology. First, the data used in the two studies are 
different types of movement data: continuous ball and player trajecto-
ries in [23], whereas we focus on discrete events during a match. Ball 
and player trajectory data are rarely accessible for scientific research, 
as they are expensive to obtain, hold significant commercial value, 
and is often considered proprietary. However, match event data, which 
describe on-ball actions during a football match, can be collected 
from broadcast footage through manual processing [24]. Consequently, 
event data are becoming available for an increasing number of compe-
titions. Second, our dataset is significantly larger, encompassing 1941 
games from 7 different leagues and tournaments. This allows us to iden-
tify common or universal patterns across a wider range of teams and 
playing styles. Third, we define terms using an alphabet of grid cells on 
the pitch, while they used specific attributes, such as ‘‘Pressure on the 
ball’’ and ‘‘Pressure on attackers’’, to represent match situations, which 
were then discretized into bins. While their visual representations are 
limited to analyzing the temporal evolution of topics, our approach 
incorporates both spatial (visualizing the resulting topics, as discussed 
in Section 5.1) and temporal (tracking topic progression over time, 
detailed in Section 6) dimensions. Fourth, we extend their approach by 
introducing a visual analytics technique (Section 5) to determine the 
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most suitable number of topics as a core part of our approach. Finally, 
in contrast to their proposed workflow for employing topic modeling, 
our aim is to provide a general framework for utilizing visual analytics 
at various stages of the topic modeling process.

Selecting the Number of Topics for Topic Modeling on Spatio-
Temporal Event Sequences.

Chen et al. [14] and Andrienko et al. [4] employed 2D embeddings 
to determine the optimal number of topics by visually identifying 
clusters of similar topics across multiple modeling runs. In contrast, 
our approach uses 1D embeddings, which provide several advantages. 
A 1D representation simplifies interpretation by mapping each data 
point to a single axis, making it easier to match and compare topics 
across multiple runs. Additionally, this method enables more detailed 
and focused visualizations of topics’ footprints (Fig.  2).

3. Extracting episodes from football dataset

This section addresses the first step of our analytical workflow (data 
transformations) by detailing how raw event logs are converted into 
episodes of ball movement.

The football dataset used in our paper [21] contains events from 
the 2017/2018 season of five top-tier European football leagues (Spain, 
Italy, England, Germany, and France), and two major international 
tournaments, namely the 2018 World Cup and the 2016 European 
Championship. Overall, this collection has information on seven promi-
nent football competitions.

The dataset covers details on events, teams, matches, players, ref-
erees, and coaches [21], including 142 teams, 1941 matches with a 
total of 3,719,995 recorded events (1917 events per game on average). 
The events in the dataset include the following actions or happenings:
duel, foul, free kick, goalkeeper leaving line, interruption, others on the 
ball, pass, save attempt, shot, and offside. These events are detailed 
with information about their sub-type (for example a pass could be a
hand pass, a cross, etc.), timestamps, the involved player(s), and the 
positions on the field from where an event is made (and received). 
Previously, this dataset underwent statistical analysis to assess players’ 
performance metrics [25].

We apply topic modeling to episodes of ball movement that contain 
sequences of events. Using episodes rather than single events makes 
it possible to extract meaningful information from the interaction be-
tween multiple players on different parts of the football pitch and 
during a period. We pre-process the dataset to extract episodes in a 
way similar to previous works [23,26]. We define each episode as 
the duration during which a team possesses the ball until it loses 
possession. We ignore brief interruptions when the opposing team 
briefly gains possession for less than 10 s. For instance, if team 𝐴 is 
moving the ball through a series of events and team 𝐵 momentarily 
disrupts possession with a touch, team A’s episode will still continue 
to incorporate subsequent events if the interruption lasts no more than 
10 s. An episode for team 𝐵 will be recorded from the moment of their 
interruption only if they manage to keep the possession for at least 
10 s. With this pre-processing, the average number of episodes for each 
match is 316 (158 per team), and the average number of events per 
episode is 6.07.

Table  1 presents an example episode extracted from football data, 
showcasing a sequence of events involving players from Barcelona and 
Real Madrid match. The episode consists of six events, including actions 
by Barcelona players and also by Real Madrid players.

4. Topic modeling on all matches of the football dataset

In this section and the next (Section 5), we discuss the second step 
of our workflow, i.e., the computational methods applied to the football 
dataset.

Topic modeling employs matrices to represent the relationships 
between documents, terms, and topics. The input to topic modeling is 
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a document-term matrix 𝑋 storing the distribution of terms (columns) 
across documents (rows). When applying NMF to the document-term 
matrix, it decomposes the matrix into two lower-dimensional matrices, 
𝑊  (document-topic matrix) and 𝐻 (topic-term Matrix). Each element 
in the 𝑊  matrix represents the weight of a topic within a document, 
while each element in the 𝐻 matrix represents the weight of a term 
within a topic. The weights quantify the relevance of the topics and 
terms, respectively. Vayansky and Kumar [11] suggest that NMF is 
more suitable for short texts such as social media messages. Similar 
findings were reported by Andrienko et al. [23] when applying NMF 
to game episodes characterized by multivariate time series. These 
observations motivated us to utilize NMF in our study.

Next, we describe how we applied topic modeling to the matches in 
Pappalardo et al.’s football dataset [21]. In our approach, we define 
our documents as the episodes of ball possessions by teams during 
matches (Section 3). For each team, we consider a pitch to be oriented 
upwards in the direction of the team attack. We divide the pitch into 
grid cells with 15 rows and 12 columns, consisting of 180 grid cells 
in total. These grid cells will be treated as terms. For each team in a 
match, we generate a matrix 𝑋𝑀×𝑁  that represents the ball positions 
when controlled by that team, where 𝑀 is the number of episodes 
(documents), 𝑁 is the number of grid cells (terms), and each element 
𝑋𝑖𝑗 equals the number of times that in episode 𝑖 the ball-related event 
was recorded within grid cell 𝑗.

Our objective is to identify common patterns across all teams and 
matches, enabling us to compare different teams’ behaviors during a 
match or an entire season. Applying topic modeling separately to each 
team would produce disparate sets of discovered patterns for different 
teams, making it challenging to compare the behaviors of the teams. 
Therefore, we create an integrated matrix including all episodes from 
all matches.

We apply NMF to this combined matrix and thus, our approach finds 
a document-topic matrix 𝐖𝐌×𝐾 and a topic-term matrix 𝐇𝐾×𝑁 , where 
𝐗 ≈ 𝐖 × 𝐇. These matrices are supposed to reflect common tactical 
patterns across all teams in all leagues.

5. Visual analytics technique for selecting the number of topics

In this section, we introduce a visual analytics technique designed 
to identify the number of topics with the most suitable result from mul-
tiple runs of topic modeling on spatial event sequences. The objective is 
to determine the smallest set of topics that effectively captures all sig-
nificant information, ensuring that the topics are clearly interpretable, 
distinct, and free of redundancy. Consistent topics across different runs 
are prioritized, while overlapping patterns should be consolidated into 
single topics for clarity. Our approach is adaptable to any dataset where 
topics can be represented as compact, interpretable images or glyphs. 
For demonstration purposes, we apply this technique to a football 
dataset.

We iteratively apply Non-negative Matrix Factorization (NMF) to 
the data, varying the number of topics 𝐾 over the range {𝐾min,… ,
𝐾max}. For each iteration with a given 𝐾, the process yields a topic-
term matrix 𝐇𝐾

𝑁×𝐾 , where each row contains the term weights for one 
topic.

Previous work has applied dimensionality reduction techniques to 
project the topic-term matrices into a 2D space [4]. While this is useful 
in comparing topics obtained from different values of 𝐾, we argue 
that our approach enables a deeper analysis by projecting into a more 
compact 1D space allowing a hierarchical arrangement of topics across 
multiple runs.

For all values of 𝐾, we project the topics into a shared 1D space. 
This allows us to represent each topic solution as a line with 𝐾 points 
corresponding to the positions of its 𝐾 topics in the common projection. 
These lines are then segmented vertically in ascending order of 𝐾, with 
the top line showing topics for 𝐾min and the bottom line for 𝐾max. 
Fig.  1(a) illustrates the application of 1D projection for 𝐾 ranging 
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Table 1
An example episode extracted from football data, with events from the second half (denoted as 2H) of a Barcelona and Real Madrid match. 
Rows 0, 1, 2, and 4 represent actions by Barcelona players, while rows 3 and 5 involve Real Madrid players. The columns include the Time 
(half, minutes, and seconds), Event type (including event and sub-event), Player name and Role, Team name, and the starting (X1, Y1) and 
ending (X2, Y2) coordinates of each event.
 # Time Event Player, Role Team 𝑋1 Y1 𝑋2 Y2  
 0 2H 06:45 Duel - Ground defending duel Suárez, FW Barcelona 73.50 58.48 82.95 48.96 
 1 2H 06:47 Pass - Simple pass Suárez, FW Barcelona 82.95 48.96 90.30 34.68 
 2 2H 06:50 Duel - Ground attacking duel Messi, FW Barcelona 90.30 34.68 91.35 37.40 
 3 2H 06:50 Duel - Ground defending duel Casimiro, MD Real Madrid 90.30 34.68 91.35 37.40 
 4 2H 06:51 Shot Messi, FW Barcelona 91.35 37.40 0.00 68.00 
 5 2H 06:53 Save attempt - Reflexes Navas, GK Real Madrid 0.00 68.00 91.35 37.40 
Fig. 1. 1D projections of topics obtained from topic modeling are shown for topic numbers ranging from 10 to 28. Each row represents the projection for a specific topic number. 
The dimensionality reduction techniques applied in these projections are: (a) t-SNE, (b) UMAP, and (c) MDS. Each topic is connected to its most similar topics in the projections 
above and below.
5 
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from 10 to 28, generated using the t-SNE dimensionality reduction 
technique [27].

To highlight relationships across different topic solutions, we con-
nect each topic in the 𝐾-topics solution to its most similar topics in 
𝐾−1- and 𝐾+1-topics solutions. These connections reveal how topics 
branch or split as the number of topics increases. The similarity be-
tween topics is determined by identifying nearest neighbors in the orig-
inal 𝑁-dimensional space, where 𝑁 is the number of terms, i.e., grid 
cells in our case.

Inevitably, dimensionality reduction introduces distortions, i.e., the 
distance between the points in the projection space (1D) might not al-
ways correlate with their distance in the original space (𝑁-
dimensional). In an ideal scenario, with the absence of distortions, 
comparable topics in each row should maintain their content and 
position. In this situation, each point will be connected to one of the 
closest points on both the top and bottom lines (either to its left or 
right). Without any distortions, the connecting links remain uncrossed 
forming a trapezium-like shape. We measure the distortion introduced 
by dimensionality reduction as the number of crossing links, i.e., links 
that connect a point to a point other than the closest one in the image 
space (7 crossing links in Fig.  1(a)).

Dimensionality reduction can be performed with different methods. 
We explored three prominent dimensionality reduction techniques: t-
SNE [27], UMAP [28], and MDS [29]. For each technique, we carefully 
adjusted the parameters to minimize distortion. Specifically, we se-
lected a neighborhood size of 15 for UMAP and a perplexity value of 
10 for t-SNE. All three methods produced consistent results, but t-SNE 
demonstrated the least distortion, yielding the clearest outcomes. Fig. 
1(a) presents the results for t-SNE that has the least distortion with 7 
crossing links. Fig.  1(b) shows the results for UMAP with 15 crossings 
that has more distortion than t-SNE, but less than MDS. Fig.  1(c) shows 
the results for MDS with many crossing links.

5.1. Spatial visualization supporting topics interpretation

To make an informed decision about the optimal number of topics, 
it is crucial to interpret the composition of topics within each set from 
a single run, understand their patterns, and compare results across 
different runs. To facilitate this, we created the visualization shown 
in Fig.  2(a) which addresses these criteria. This visualization adopts 
the layout presented in Fig.  1(a) but replaces the dots with small 
heatmaps showing topics’ spatial footprints. The heatmaps’ rectangle 
shape represents a football pitch with the attacking direction upward. 
The gray-scale shading reflects the weight of each grid cell (‘‘term’’) in 
the topic. In other words, these heatmaps highlight the specific areas 
of the football pitch that each topic covers. Each topic’s vector (180 
values for one heatmap) has been normalized so that the values of 
its grid cells sum to 1. The connecting links are omitted, as they are 
no longer necessary, and retaining them would only clutter the figure. 
Now, the heatmaps allow us to visually interpret the topics in each row 
and compare their content with those above and below. Using Fig.  2(a), 
we can compare topics within the same row (for instance, moving from 
left to right in the scenario with 11 topics) and their resemblance to 
topics in adjacent rows (for example, comparing scenarios with 10 and 
12 topics).

We observe gradual transitions from one topic to another in both 
vertical and horizontal directions. When looking vertically, it is inter-
esting to note that the patterns in the rows with a smaller number 
of topics appear to be combinations of the patterns from the rows 
with a larger number of topics below them. When looking horizontally, 
we must remember that some level of distortion is inevitable, so we 
need to be careful when making sense of positions along the 1D axis. 
However, despite this, we can still find consistent patterns through 
different experiments with varying numbers of topics, showing how 
topics evolve across several rows.
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This representation enables finding the most suitable set of topics 
for further analysis. In particular, we are looking for the smallest 
number of topics that satisfy two constraints: (1) its topics are spatially 
consistent across a wide range of number of topics, i.e., they appear 
consistently, with minor fluctuations, within a range of rows, and (2) its 
topics are easily distinguishable, i.e., they do not have redundant patterns 
that can be replaced by one.

To assist the analyst in finding such number of topics that satisfy the 
above constraints, we added interactivity to this visualization. Our tool 
enables the analyst to pick a group of topics for a detailed exploration, 
in which the analyst can compare each of the selected topics against 
their average. For each topic, grid cells that fall below the average 
will be colored blue, while those exceeding the average will turn red, 
making it easier to perceive and understand the differences. As such, 
the tool color codes the cells to accurately reflect the comparison of 
heatmap pairs or groups within the entire range of different number 
of topics. Fig.  2(b) is a screenshot of a selection of heatmaps from Fig. 
2(a) by our tool. It shows the dominance of cells’ red colors for topics 
in the upper rows, contrasted with the mostly blue cells in the topics of 
the branching lower rows, and illustrates how a single topic at the top 
has been divided into multiple topics below. The selection is shown by 
a brown rectangle in both 2(a) and 2(b) figures.

Considering the two constraints, we selected 16 as the most suitable 
number of topics. Fig.  3 displays the topic footprints for this selection. 
The reason for this selection is that the topics in this row show spatial 
consistency (encompassing all topics or their similar ones that consis-
tently appear in other runs) and are easily distinguishable (excluding 
topics that have redundant patterns that can be shown as one). In 
particular, the selection enclosed in a pink rectangle shows a consistent 
pattern that does not appear in the result with 15 topics but does appear 
in many other results, including the one with 16 topics. In addition, 
the brown selection shows that in the results with 17 or more topics, 
one topic is split into two topics that have high overlap. We note that 
this approach is intentionally designed to be domain-agnostic. It allows 
users to assess and choose the most suitable number of topics visually, 
without requiring prior domain knowledge.

A well-established method for analyzing ball possession and move-
ment in a football pitch is to segment the pitch into discrete zones and 
then record actions or events according to their location. Following 
Camerino et al. [30], we segment the pitch along both horizontal 
(defensive-offensive) and vertical (left–right) axes to capture how play 
transitions from one area of the pitch to another. As shown in Fig.  3, 
we draw these dividing lines to create two sets of zones:

• Horizontal or Defensive-Offensive Bands: These bands run from the 
top/most advanced offense to the bottom/deep defense of the 
pitch, subdividing the field into the following areas: Ultra Off 
(most advanced offense), Off (offense), Cent (central midfield), 
Def (defense), Ultra Def (deepest defense)

• Vertical or Left-Right Channels: These channels split the pitch 
laterally into three sections: Left, Center, and Right.

In our application, each episode (i.e., document) is defined by a 
team’s period of ball possession. As such, we do not track the specific 
sequence of events within an episode. Consequently, the topics we 
identify primarily reflect where on the pitch the majority of actions and 
interactions occur. For example, a ‘‘deep defense’’ zone merely indicates 
that a team holds possession in a deeper area of the pitch; it does not 
necessarily mean they are actively defending. They might be controlling 
the ball in their own half, retaining possession, or waiting for an op-
portune moment to advance. Similarly, a topic reflecting interactions in 
an offensive zone confirms that the team possesses the ball in advanced 
areas; it does not necessarily mean an ongoing attack. These scenarios 
could also arise from duels or other actions in the final third. While in
most cases the zones align with typical defensive or offensive roles, they 
do not always correspond to a team’s offensive/defensive mode.
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Fig. 2. Figure (a) presents a comprehensive visualization of topic spatial footprints (spatial heatmaps), derived from topic modeling across a range of topic numbers (10 to 28, 
as labeled at each line). Each heatmap represents a football pitch, with the darkness of its grid cells proportional to the respective weights in the topic-term matrix (the attacking 
direction is from bottom to top). The final selected topic number is 16 (indicated by an arrow). The reason for this selection is that topics in this row are both spatially consistent 
and easily distinguishable. The group in the pink rectangle illustrates what spatial consistency means, while the group in the brown rectangle demonstrates redundancy. Figure (b)
provides a detailed view of the topics selected within the brown rectangle. The interactive tool is used to select the topics and color their cells red/blue when they are higher/lower 
than the average of the selection. The presence of red cells in the first three rows and a mix of red and blue cells in the last three rows suggests that the cell values have been 
distributed between two similar topics in the branches.
Fig. 3. A detailed view of the topic footprints on a football pitch, with 16 topics.
6. A suite of visualization techniques for understanding football 
games through topics

In the following two sections (Sections 7 and 8), we discuss the third 
step of our workflow, i.e., visual analytics in the context of the football 
domain.

We present five distinct visualizations that utilize topics derived 
from topic modeling to analyze and summarize football games at 
various levels of granularity. The first visualization offers an in-depth 
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exploration of an individual match, providing detailed insights into its 
dynamics (Section 7).

In contrast, the subsequent four visualizations are designed to de-
liver concise match summaries and facilitate comparisons between 
different matches and teams (Section 8). Together, these tools enable a 
comprehensive analysis of football games.

In the following two sections, we first introduce the details of our 
visual analytics techniques. We then use the visualizations to showcase 
some behaviors, either from one team in a match or a set of teams in 
all their matches. We leave more behavioral analysis to future work.
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Fig. 4. This figure shows data from the second half of the Barcelona vs. Real Madrid match (May 2018, 2–2 draws). Left side: segmented bar charts on a timeline depict active 
topics (IDs 0–15) for Barcelona (above the dashed line, green) and Real Madrid (below, orange). Each bar is labeled at the top with its dominant topic ID, along with markers 
for key match events and successful episodes. Right side: Summary columns compare aggregated topic weights (All, Successful, Unsuccessful) and include a difference plot to 
highlight contrasts between the two teams.
7. Exploring a single match

We present a visualization framework for analyzing the flow of 
topics within a single football match. Fig.  4 illustrates an example 
from the second half of the Barcelona vs. Real Madrid match (May 
2018), which ended in a 2–2 draw. The visualization is divided into 
two primary components:

• Timeline-based charts (left side): Displays each team’s episodes 
in chronological order, showing which topics were active during 
each episode. It also highlights whether an episode was successful 
or had any key events.

• Aggregated summaries (right side): Provides a summary of how 
each topic contributed across All, Successful, and Unsuccessful 
episodes. Additionally, it includes a ‘‘difference plot’’ that high-
lights the differences in topic weights between the two teams, 
enabling direct comparison.

This layout allows analysts to see both how topics evolve over time 
(left side) and how topics’ weights aggregate across various outcomes 
(right side). Further details about each side’s analytical goals and design 
are provided in the following subsections.

7.1. Timeline-based charts

7.1.1. Analytical goal
We developed a visual tool that provides an in-depth view of both 

teams’ playing behavior during a football match by tracking how topics 
evolve during each team’s ball possession, identifying the dominant 
topics in each episode, and revealing the relationship between key 
events, successful episodes, and topics emergence.

This concise yet comprehensive overview is particularly helpful for 
football data analysts seeking to quickly assess a match’s dynamics.

7.1.2. Design and justification
Fig.  4 illustrates the second half of the Barcelona vs. Real Madrid 

match (May 2018) extending a layout commonly seen in football 
reports. The 𝑥-axis represents the timeline, starting at 0 and extending 
beyond 45 min to cover the entire second half. The 𝑦-axis displays each 
team’s episodes, with Barcelona’s information above the dashed divider 
and Real Madrid’s below, forming two sub-figures.
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Each vertical bar represents one ball-possession episode, color-
coded by team (green for Barcelona, orange for Real Madrid) and 
arranged chronologically. We chose to show every episode as the same 
width to prevent episodes from covering each other. Still, with the same 
length, some short episodes would be covered by their next episode. 
In such cases, we slightly shift the second episode (and the following 
ones) to prevent masking. Each bar consists of 16 segments (IDs 0 at 
the bottom to 15 at the top), corresponding to topics defined in Fig.  3, 
and is normalized to sum to 1. The darkness of each segment reflects 
the topic’s weight, with the dominant topic (highest weight) labeled on 
top. The segments corresponding to the dominant topics are connected 
by a continuous line, making it easier to observe their changes over 
time.

Additionally, we marked the successful episodes with an ‘‘X’’ above 
the most dominant row. Successful episodes are characterized by sig-
nificant progression into the opponent’s part of the pitch. An episode 
is considered successful if its final event is a ‘‘shot’’ or ‘‘goal’’, or if 
the final event is one of the ‘‘pass’’, ‘‘duel’’, or ‘‘others on the ball’’ 
events and that event’s location is within the last 20% of the pitch. 
We also defined match key events to be Received a Goal ( ), Scored 
a Goal ( ), Own Goal ( ), Dangerous Ball Loss ( ), Red Card ( ), 
Yellow Card ( ), Second Yellow Card ( ), and Substitutions ( ) and 
presented them with representative distinct icons. We use successful 
episodes and these markers as a tool to help the analyst understand 
game development and the relationship between topics and match 
events more easily.

7.1.3. Normalization
As mentioned in Section 7.1, we normalize each episode so that its 

total weight is 1. This approach highlights which topics are most dom-
inant within a given episode (one bar chart), independent of overall 
episode weight.

Let 𝑊  be the document-topic matrix of a team in a given match. 
We normalize each row of 𝑊  so that its values sum to 1, using 

�̂�𝑖,𝑗 =
𝑊𝑖,𝑗

∑𝐾
𝑘=1𝑊𝑖,𝑘

, ∀ 𝑗 ∈ {1,2,… , 𝐾}. (1)

Here, �̂�  is the normalized version of 𝑊 , where each row’s elements 
sum to 1. This facilitates the comparison of topic distributions across 
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different episodes and helps analysts quickly identify the most domi-
nant topics. Each row of �̂�  corresponds to one of the episodes (bar 
charts) in Fig.  4.

7.2. Aggregated summaries

7.2.1. Analytical goal
On the right side of the figure, segmented vertical bars summa-

rize topic values across three categories: All Episodes, Successful 
Episodes, and Unsuccessful Episodes for both teams. This summary 
helps analysts quickly assess how each team’s active topics change 
under different circumstances during the half.

To facilitate direct comparison, we included a ‘‘difference plot’’ 
between the teams’ aggregated topics. It visualizes the differences in 
topic weights between the two teams.

This layout provides an intuitive overview of how each team relied 
on different topics overall and during specific phases of play (successful 
or unsuccessful), making it easy to compare their approaches in various 
scenarios.

7.2.2. Design and justification
Each segmented bar on the right side, located in the first and last 

rows, represents an aggregated total for one category: All Episodes,
Successful Episodes, or Unsuccessful Episodes. The All category 
sums the weights from all episodes, while Successful and Unsuccessful
focus exclusively on episodes from their respective groups. The dark-
ness of each segment reflects the topic’s weight, with darker shades 
indicating higher values. These values are normalized using a gray-scale 
mapping (see next section) to ensure consistency and comparability 
across topics and teams. This design helps analysts quickly identify 
which topics were most prominent within each category (e.g., topics 
most used in successful plays).

The ‘‘difference’’ plot, positioned in the middle, between the two 
teams’ summaries, visualizes the topics’ weight differences by sub-
tracting Team 2’s topic weights from Team 1’s topic weights. A red-
white-blue color scale is applied: shades of red indicate positive differ-
ences (Team 1 has higher weights), shades of blue indicate negative 
differences (Team 2 has higher weights), and white represents no 
difference. This design enables analysts to quickly compare the teams’ 
topic weights across various scenarios at a glance, without needing to 
toggle between the two summary plots.

Each segment is labeled with its topic ID (0–15), and its normalized 
numeric value is displayed to the right.

7.2.3. Normalization
All Episodes. For the All episodes normalization, we derive

𝚐𝚕𝚘𝚋𝚊𝚕_𝚖𝚒𝚗ℎ and 𝚐𝚕𝚘𝚋𝚊𝚕_𝚖𝚊𝚡ℎ by examining every team’s aggregated 
topic weights in a single half (ℎ) —either the first or second half— 
within a given league (e.g., Spain). This half-specific normalization 
ensures that the results are contextually accurate for the period being 
analyzed.

We then map each aggregated value 𝑣𝑖 to a gray intensity �̂�𝑖 ∈ [0,1]
using the formula: 

�̂�𝑖 =
𝑣𝑖 − 𝚐𝚕𝚘𝚋𝚊𝚕_𝚖𝚒𝚗ℎ

𝚐𝚕𝚘𝚋𝚊𝚕_𝚖𝚊𝚡ℎ − 𝚐𝚕𝚘𝚋𝚊𝚕_𝚖𝚒𝚗ℎ
. (2)

Here, �̂�𝑖 = 0 corresponds to the lightest shade (white), and �̂�𝑖 = 1
corresponds to the darkest shade (black). Having the half index (ℎ) 
shows normalization values are specific to a single half. This provides a 
more accurate representation of variations within the half rather than 
across the entire game.
Successful and Unsuccessful Episodes. The normalization for sum-
mary bars of Successful and Unsuccessful episodes follow the same proce-
dure as All Episodes, but the raw sums are restricted to only successful 
or unsuccessful episodes within a single half (ℎ), respectively.
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Color intensities in the ‘‘difference plot’’ are scaled so that the 
largest negative differences appear as the darkest blue, the largest 
positive differences as the deepest red, and intermediate differences as 
progressively lighter shades.

By applying this normalization, we ensure that color intensities are 
comparable in different columns and analysts can see at a glance which 
topics a team emphasizes most or least across the three categories 
(All, Successful, and Unsuccessful). The All Episodes column provides 
a broad overview of how each topic may relate to the final match 
outcome, while the Successful and Unsuccessful columns clarify which 
specific topics contributed to more effective or less effective episodes, 
respectively.

7.3. Observations and interpretation

Looking at Fig.  4, we note that for successful events, usually, at 
least one of the topics 1 (attack from pitch’s left side) or 10 (attack 
from pitch’s right side) are activated; however, they are not necessarily 
the most dominant topic, since those two topics are usually the final 
active topic of a successful episode. Analyzing the other active topics 
that lead to successful episodes could give insights into how a team 
performs its attacks. In addition, the dynamics of topic weights along 
the timeline show that some topics are consistently appearing with 
high weights, while others occur infrequently. We can see pairs and 
even larger groups of topics that are prominently visible together 
within multiple episodes. For example, topics 9 and 14 are activated 
together on multiple occasions for both teams. Based on the topics’ 
footprints (from Fig.  3), this means that they made passes between their 
goal/penalty area and the right side of their defensive half, or these two 
topics became active because of other co-occurring events (e.g., duals 
in both areas).

Another way to utilize this figure is by focusing on key events and 
analyzing the topics that led to them. For instance, as shown in Fig.  4, 
Barcelona scored a goal ( ) in their ninth episode. To understand how 
this happened, we analyzed the preceding episodes for both teams.

Examining Real Madrid’s episodes reveals that they Received the 
goal ( ) in their tenth episode. However, just before that, in their 
episode 9, they had a successful possession, indicating that they had ad-
vanced effectively into Barcelona’s territory. The following episodes in 
the game shifted momentum as Barcelona took possession, maintained 
control for two consecutive episodes, and ultimately scored a goal.

When analyzing the most active topics during Barcelona’s ninth 
episode (the scoring episode), we observed that topic IDs 5, 3, and 
1 were heavily activated. These topics correspond to actions on the 
left side of the pitch (from Barcelona’s perspective), spanning defense, 
midfield, and attack. This suggests that after Real Madrid’s attempt, 
Barcelona executed a swift counterattack from the left side, leveraging 
these topics to score.

A review of the game footage confirmed this sequence: Real
Madrid’s promising attempt was a shot by Marco Asensio aimed at 
Barcelona’s goal, which failed to find the net. Barcelona regained 
possession immediately and, within just two episodes, successfully 
scored against Real Madrid.

These observations illustrate how an analyst might link specific 
topic patterns to actual on-pitch strategies, fostering deeper insights 
into team performance.

8. Exploring multiple matches

While our previous visualization provided an in-depth look at a 
single match topics, we further developed the visual analytics technique 
and created a new set of visualizations that enable analysts to compare 
multiple matches across different teams or leagues. Specifically, these 
visualizations reveal:

• how a team’s topic activations change when facing stronger or 
weaker opponents 8.1,
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• how topic activations evolve over the course of a season 8.3,
• how each match’s topics deviate from the team’s norm (Sec-
tions 8.2 and 8.4), and

• how they correlate with final outcomes, particularly when playing 
at home or away.

Following the same structure as in the single-game visualization, the 
proposed visualizations represent aggregated match topics in various 
matrix orders, complemented by aggregates to provide deeper insights. 
In the following subsections, we show an at-a-glance, concise summary 
of each team’s topic weights across every match of a season. We 
use a consistent grid/matrix layout and global normalization scheme, 
making it possible to spot patterns, outliers, and potentially informative 
differences in topic activation and match outcomes.

8.1. Ordered teams based on their rankings

8.1.1. Analytical goal
Our main analytical goal is to reveal how each team’s topic weights 

change when facing stronger or weaker opponents, incorporating ad-
ditional details such as match results and home/away status. By in-
tegrating this information, the tool enables analysts to identify po-
tential patterns and correlations between match outcomes and topic 
activations.

8.1.2. Design and justification
Matrix Layout. The visualization (Fig.  5) employs a matrix sorted 
by league ranking, with the strongest team placed at the top-left and 
the weakest at the bottom-right. Rows and columns both follow this 
ranking, so moving along a single row from left to right shows how a 
team’s topics shift against progressively weaker opponents. Each cell 
represents a single match and displays a bar chart for aggregation of 
the corresponding topic weight matrix 𝑊 .

The match result at the top of each cell is color-coded (blue for a 
win, black for a draw, red for a loss) from the row team’s perspective, 
and the labels ‘‘Hm’’ (home) or ‘‘Aw’’ (away) indicate the match venue. 
This information helps analysts see how venue or match outcomes 
might influence topics’ patterns in matches. To accommodate Fig.  5 on 
a single page, a wavy line is used to indicate the exclusion of middle-
ranked teams, retaining only the top six and bottom six teams for 
display. The full version of this figure can be found in the provided 
link. 1

Summary Columns. Six additional columns (overall, home, away, 
win, loss, draw) appear on the right side of the matrix. They are 
computed by averaging each team’s normalized topic weights under 
the corresponding condition. Each summary column is a bar chart with 
16 segments (IDs 0–15), with the topic weight displayed on the right. 
These columns let analysts quickly gauge which topics a team relies on 
most or least overall.

This design (A) shows whether top-ranked teams display distinctly 
different topic weights compared to lower-ranked teams; (B) links topic 
activation with match results at a glance, using color-coded outcomes; 
and (C) highlights team-level patterns (overall, home, away, win, loss, 
draw) that transcend individual opponent match-ups.

8.1.3. Normalization
We employ a global normalization scheme to ensure consistent color 

intensities across all matches and summaries in the matrix.
Assume that 𝐖𝐌×𝐾 is a comprehensive document-topic matrix, 

where 𝐌 represents the total number of episodes (across all teams and 

1 High-resolution versions of all figures used in this paper are available at: 
https://lalehmoussavi.github.io/topic-modeling-for-behavioral-patterns/.
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matches of a league)2 and 𝐾 is the number of topics. The matrix 𝐖
encompasses the document-topic matrices 𝑊 1,𝑊 2,… ,𝑊 𝑇 , where 𝑇
is the total number of unique (team,match) combinations. Each sub-
matrix 𝑊 𝑡 corresponds to one particular team in a specific match. Let 
𝑀 𝑡 be the number of episodes in the 𝑡th (team,match) combination, 
and let 𝐾 be the number of topics. Formally: 

𝐖 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑊 1

𝑊 2

⋮
𝑊 𝑇

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

where each element 𝑊 𝑡
𝑖,𝑗 indicates the weight of topic 𝑗 in episode 𝑖 for 

the 𝑡th (team,match) pair and must be a non-negative real number: 

𝑊 𝑡
𝑀 𝑡×𝐾

def
= 𝑊 𝑡 ∈ R𝑀 𝑡×𝐾

≥0 , 𝑡 ∈ [1,… , 𝑇 ], (4)

Unlike Eq.  (2) in Section 7, which applies only to a single half, 
here we derive the global minimum and maximum from the full match. 
Specifically, to obtain each cell’s aggregated row vector, we sum the 
pre-normalized topic weights across all episodes in a match to produce 
�̃� 𝑡
1×𝐾 . We then determine the global minimum 𝑤min and maximum 

𝑤max across all �̃� 𝑡 vectors. We then normalize each �̃� 𝑡 vector as 
follows: 

̂̃𝑊 𝑡
1,𝑗 =

�̃� 𝑡
1,𝑗 −𝑤min

𝑤max −𝑤min
. (5)

Here, darker shades represent higher summarized topic weights 
(values closer to 1), while lighter shades indicate lower weights (values 
closer to 0).

This approach ensures standardized color intensities, allowing fair 
comparisons of topic relevance across different matches, teams, and 
outcomes.

8.1.4. Observations and interpretation
One way to use this visualization is to analyze topic activation 

under different outcomes (win, draw, loss). By comparing the summary 
columns in Fig.  5 and focusing on topic IDs 1 and 10 (attack) versus 
9 (defense), we see a common pattern: many teams show higher 
activation of attack (1 and 10) and lower activation of defense (9) 
when losing. While this may appear counterintuitive, it aligns with the 
idea that once a team gets behind, it often prioritizes attacking to score 
goals.

For instance, Barcelona’s summary columns indicate that topic 9 has 
weights of 12 when winning, 8 when losing, and 10 when drawing, 
whereas topic 1 (attack) has weights of 9 during wins, 14 during losses, 
and 11 during draws. Teams trailing in a match typically attack more 
aggressively to recover, while teams ahead adopt a more defensive 
stance. Although playing styles can vary, and not all teams follow the 
same pattern, this strategic balance is widely observed across many 
teams.

8.2. Ordered teams based on their rankings - deviation from the average

We extended our previous visualization to display not only topic 
distributions per match but also deviations from the average, providing 
deeper insights into team behaviors and strategies across different game 
situations.

Fig.  6 uses the same matrix structure as Fig.  5, but each non-
summary cell now shows the difference between each topic’s value 
and its corresponding overall average. Deviations are visualized as 
stacks of colored bars: red for positive deviations (higher than average), 
blue for negative deviations (lower than average), and white for no 

2 Unlike in Section 4 where 𝐖 contains topic weights of all matches in all 
leagues and tournaments in the dataset, in this section we use 𝐖 to describe 
the topic weights of all matches of a single league.

https://lalehmoussavi.github.io/topic-modeling-for-behavioral-patterns/
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Fig. 5. Topic weight visualizations for LaLiga 2017–2018 season, sorted by team ranking. The strongest teams are positioned at the top-left, and the weakest at the bottom-right. 
Only the top six teams (above the wavy line) and the bottom six teams (below it) are displayed because of space constraints. Each cell represents the row team’s topic weights 
in a match against its opponent (column). On the right, summary columns present average topic distributions under different conditions (e.g., home and away). See Section 8.1 
for more details.
deviation. Darker shades denote more extreme differences, with the 
darkest red and blue representing the maximum positive and negative 
deviations, respectively. The summary columns remain unchanged, 
providing consistent context for topic average distributions in different 
situations.

By visualizing these deviations, analysts can quickly identify over- 
or under-performance, spot patterns, and anomalies, and gain clear in-
sights into how teams deviate from their average, simplifying complex 
data for better interpretability. Using this figure, the pattern described 
in Section 8.1.4 — teams attacking more and defending less in losses 
— is further confirmed.

8.3. Ordered matches based on time for selected teams in a league

To analyze how topics evolve over a season for selected teams, 
we designed a visualization similar to Fig.  5, with columns arranged 
11 
chronologically (from earliest to latest in the season). Users can select 
specific teams from the league to compare their topic evolutions across 
rows.

Fig.  7(a) showcases three teams–Barcelona (top row), Real Betis 
(middle row), and Deportivo Alavés (bottom row)–representing a range 
of league rankings, though any teams can be selected.

The left columns display matches chronologically, while the right 
columns summarize team topics. Bar charts are normalized using 
league-wide topic weight ranges, consistent with earlier visualizations.

8.4. Ordered matches based on time for selected teams in a league—
deviation from the average

We extend the temporal view in Fig.  7(a) by creating a deviation-
from-average visualization. Instead of raw topic weights, analysts can 
observe how each match’s topic values differ from a team’s average. 
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Fig. 6. Deviations of teams’ topic weights from their overall average, sorted by team ranking. This visualization is similar to Fig.  5, but each cell displays the deviation of the row 
team’s topic weights from its mean values. These deviations are visualized as stacks of colored bars: red for positive, blue for negative, and white for no deviation, with darker 
shades indicating larger differences. See Section 8.2 for more information.
Matches remain arranged chronologically in the left columns, and the 
right columns remain unchanged and continue to display summary 
metrics. As in previous deviation visualizations (Section 8.2), we color-
code the difference between the raw value and the overall average 
value.

By focusing on deviations rather than raw values, this visualization 
emphasizes how each match compares to a team’s own baseline. If, 
for instance, a certain topic (e.g., attack from left) consistently appears 
in dark red for a team in a certain period of the season, it suggests 
they have relied on that tactic far more than usual in those matches. In 
contrast, topics that remain in shades of blue indicate under-utilization 
relative to the average. Taken together, the color-coded differences, 
the match context (opponent, date, home/away), and the outcome 
(win/loss/draw) reveal patterns in a team’s adaptability, strengths, and 
weaknesses over time.

Listing matches in chronological order further aids in spotting 
trends such as mid-season strategic shifts or responses to injuries, or 
coaching changes. Consequently, analysts gain a deeper understanding 
of how each team’s topic usage evolves over the course of a season, 
along with how it deviates from its average in individual matches.
12 
One practical example of using such visualization is to identify shifts 
in topic variation during the season and link them to external factors. In 
Deportivo Alavés’s case, a noticeable increase in certain attacking topics 
(specifically topic IDs 1 and 10, shown in red) appears in their matches 
after December 4, 2017. This trend neatly aligns with the appointment 
of Abelardo Fernández on December 1 as the team’s head coach, which 
sparked a mid-season tactical shift. Under Abelardo’s guidance, Alavés 
moved away from their conservative, low-block style and adopted a 
more direct, forward-focused approach.

9. Analytical tasks in the football dataset

To structure the analytical goals of our workflow more clearly, we 
define five generic analysis tasks, ranging from discovering common 
patterns to identifying deviations from norm behaviors. Table  2 outlines 
how the computational and visual components of our workflow support 
these tasks and illustrates their application in the context of football 
data. The first column specifies each task (T1–T5), the second describes 
the general approach used to address it, and the third shows how it is 
implemented in our football case study. 
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Fig. 7. A matrix-based visualization of the temporal evolution of (a) topic activations, and (b) their deviations from the overall average for three teams: Barcelona (top), Real 
Betis (middle), and Deportivo Alavés (bottom). In both figures, rows represent the teams, and matches are ordered chronologically from left to right. Each cell includes labels 
above it, indicating the match result (blue for a win, red for a loss, black for a draw, from the row team’s perspective), whether the match was at home or away, the match date, 
and the opponent’s name.
10. Conclusions and future work

In this study, we introduced an end-to-end workflow that progresses 
from raw spatio-temporal event data to meaningful insights, structured 
around three key components (data transformations, computational 
methods, and visual analytics). We demonstrated this workflow by 
exploring the dynamics of football games as an example of important 
yet under-explored spatio-temporal event data.

For the first step (data transformations), we transformed football 
game event logs into episodes of ball possession.

For the second step (computational methods), we used topic mod-
eling on these episodes to identify recurring patterns. Topic modeling 
is a relatively new and evolving research area that helps abstract 
and conceptualize spatio-temporal data. One of the key challenges in 
applying topic modeling is selecting the optimal number of topics such 
that they are spatially consistent and easily distinguishable. To address 
this, we proposed a visual analytics approach based on dimensionality 
reduction, applied to topics derived from multiple modeling runs. Our 
findings demonstrated the effectiveness of this approach in identifying 
interpretable topics for further analysis.
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Finally, for the third step (visual analytics), we used the results 
of topic modeling in a suite of visual analytics techniques to support 
tasks such as representing common patterns (T1), tracking their dis-
tribution across teams or leagues (T2), examining how these patterns 
evolve over time (T3), comparing behavior under different match 
conditions (T4), and detecting deviations from typical play (T5). More 
specifically, in the football case, the derived topics were visualized 
through spatial heatmaps and incorporated into various visualizations 
to analyze football games at multiple levels of granularity. These tools 
provided detailed insights into both teams within a match, highlighting 
key events and successful episodes. They also revealed teams’ tactical 
behaviors under varying conditions, such as competing against stronger 
or weaker opponents or playing at home versus away. Additionally, 
they enabled us to observe mid-season trends, tactical adjustments, 
and deviations from typical patterns in games played under different 
scenarios.

One promising future work is expanding the vocabulary to include 
terms that capture the order of events in the pitch and the players 
involved — such as transitions from zone 𝑧𝑖 to zone 𝑧𝑗 or from player 𝑝1
to player 𝑝2. This enriched representation could provide deeper insights 
into player interactions and ball movement patterns, uncovering critical 
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Table 2
Mapping of analysis tasks (T1–T5) to general approaches and their applications in our case study.
 Task General Approach Application in the Case Study  
 T1
 Identifying common behavioral 
patterns

Apply topic modeling to predefined episodes to 
extract recurring patterns that serve as 
representative units of behavior.

Episodes are defined as sequences of ball-possession events by a 
team (Section 3). Topic modeling is applied to these episodes 
(Section 4), and the resulting patterns are visualized via spatial 
heatmaps, showing frequently activated pitch zones 
(Section 5.1).

 

 T2
 Tracking the distribution of patterns 
across individuals or groups

Analyze how the distribution of patterns varies 
across individuals or groups within a unified 
view.

We propose a matrix layout to track topic distributions for both 
individual teams and leagues throughout the season. An example 
of this design is shown in Section 8, Fig.  5.

 

 T3
 Observing the progression of patterns 
at different temporal scales

Analyze how pattern distributions evolve over 
varying time scales, from fine-grained episode 
timelines to aggregated larger trends.

Topic progression is shown at both detailed and broader 
scales—ranging from episode-level timelines during a match 
(Section 7.1, Fig.  4) to match-level averages during a season 
(Section 8.3, Fig.  7(a)).

 

 T4
 Comparing how contextual conditions 
influence the occurrence of patterns

Contrast topic weights across different 
scenarios.

An example from our study is Fig.  4 in Section 7. On the left 
side, we incorporate key match events to examine their 
influence on the topics’ weights, while on the right side, we 
compare the aggregated topic weights when episodes have been 
successful or unsuccessful.

 

 T5
 Detecting and quantifying deviations 
from typical behavior

Measure divergence between topic weights in a 
specific situation and its baseline values.

Deviation-from-average visualizations in Section 8.2, Fig.  6, and 
Section 8.4, Fig.  7(b) highlight when teams deviate from their 
average patterns during different matches.

 

connections between players and activity in specific areas of the pitch. 
This approach would allow for the discovery of nuanced positional and 
tactical behaviors that are not captured in the current representation.

One avenue for future research is automating the analysis of the 
relationship between topics and game outcomes using machine learn-
ing models. These models could learn patterns in topic activations 
and predict their influence on match results (e.g., wins, draws, or 
losses). Automating this process would enable coaches to dynamically 
adapt their strategies based on the opponent’s tactics or specific in-
game situations. For instance, the model could recommend adjustments 
to player positioning or team tactics by identifying topic activations 
that have historically led to favorable outcomes. Such advancements 
could further enhance the practical utility of this approach, supporting 
data-driven decision-making in football.

Another direction for future work is conducting a structured user 
study with domain experts (e.g., coaches, analysts) to formally evaluate 
the usefulness and usability of our workflow and visualizations.

Additionally, a potential future research direction is to develop 
automated non-visual methods for selecting the optimal number of 
topics. This would allow us to compare non-visual results with those 
selected by users based on our visual analytics approach, helping to 
assess the robustness.

Finally, we plan to examine our workflow and techniques used in 
this paper in other spatio-temporal domains beyond football. This will 
allow us to further assess the generalizability of our approach.
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