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ABSTRACT
Multi‐agent deep reinforcement learning (MARL) for self‐driving vehicles aims to address the complex challenge of coordi-
nating multiple autonomous agents in shared road environments. MARL creates a more stable system and improves vehicle
performance in typical traffic scenarios compared to single‐agent DRL systems. However, despite its sophisticated cooperative
training, MARL remains vulnerable to unforeseen adversarial attacks. Perturbed observation states can lead one or more ve-
hicles to make critical errors in decision‐making, triggering chain reactions that often result in severe collisions and accidents.
To ensure the safety and reliability of multi‐agent autonomous driving systems, this paper proposes a robust constrained
cooperative multi‐agent reinforcement learning (R‐CCMARL) algorithm for self‐driving vehicles, enabling robust driving policy
to handle strong and unpredictable adversarial attacks. Unlike most existing works, our R‐CCMARL framework employs a
universal policy for each agent, achieving a more practical, nontask‐oriented driving agent for real‐world applications. In this
way, it enables us to integrate shared observations with Mean‐Field theory to model interactions within the MARL system. A
risk formulation and a risk estimation network are developed to minimise the defined long‐term risks. To further enhance
robustness, this risk estimator is then used to construct a constrained optimisation objective function with a regulariser to
maximise long‐term rewards in worst‐case scenarios. Experiments conducted in the CARLA simulator in intersection scenarios
demonstrate that our method remains robust against adversarial state perturbations while maintaining high performance, both
with and without attacks.

1 | Introduction

In recent years, deep reinforcement learning has demonstrated
promising decision‐making capabilities for autonomous vehicles
in various environments [1–3]. As it brings the prospect of
greater convenience, mobility efficiency, and safety to the
automotive industry, an increasing number of self‐driving ve-
hicles will be deployed on roads in the near future. Research has
shown that, compared to single‐agent settings, cooperative sys-
tems yield higher efficiency [4–6]. When combined with deep

reinforcement learning (DRL), MARL enables better coordina-
tion, more efficient learning, and improved overall performance
in complex cooperative tasks [7, 8]. This is particularly relevant
for applications such as autonomous driving, where tasks
require multiple vehicles to work cooperatively and maintain
awareness of the overall system rather than acting indepen-
dently [9]. Although MARL has been extensively studied,
challenges still persist in designing multi‐agent systems. Exist-
ing works [10, 11] primarily train the decision‐making agents
with their local observations. Even though these agents are
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trained within a multi‐agent framework, they often lack a
comprehensive awareness of the overall system and the indi-
vidual contributions to it. To solve this, Sunehag et al. [8]
attempt to use global rewards to inform local agents about the
system performance. Additionally, QMIX [12] employs a mixing
network to enhance the accuracy of global Q‐value estimation
by incorporating global awareness of the state. However, these
approaches still neglect the individual contributions of each
agent to the global performance. These interactions in MARL
that each agent learns can be subtle, which means the famous
centralised‐training‐decentralised‐execution approaches may
resemble multiple single agents working together, rather than
achieving the full potential of multi‐agent systems. Further-
more, in many multi‐agent systems, each agent is designed to
complete a specific task based on its own learnt policy network.
In Ref. [13], agents are divided into two opposing groups for
battle scenarios, as well as into predators and prey for pursuit
tasks. In Ref. [14], the experimental setup employs the Google
Football environment, where players are assigned different po-
sitions and roles to evaluate performance under various con-
figurations. These designs mean that an agent trained for one
task often struggles to adapt to others. For example, prey agents
are not capable of pursuing predators, and vice versa. Similarly,
a football agent trained to play as a forward may struggle when
assigned the role of a goalkeeper. Although such a task‐specific
approach may be necessary for certain robotic applications, it is
less appropriate for autonomous driving. In this domain, it is
essential that every vehicle is capable of handling a wide range
of situations and tasks it may encounter, ensuring a consistent
and adaptable driving policy across all vehicles. For instance, in
an intersection negotiation scenario, an autonomous vehicle
trained specifically to make left turns would be incapable of
executing right turns or other manoeuvres, limiting its practical
deployment.

Besides the aspects above that MARL methods could benefit
from further development, they face another challenges as the
vulnerability to adversarial attacks [15]. These adversarial at-
tackers affect and mislead the decision‐making process of the
learning‐based models from designed cyberattack or environ-
ment uncertainties, especially harmful to MARL systems. Given
the high safety requirements of autonomous vehicles, it is
important to develop a robust DRL agent or MARL system to
prevent catastrophic failures due to perturbations in realistic
environments. This robustness is crucial not only for defending
against adversarial attacks but also for handling unavoidable
sensor errors and natural equipment inaccuracies, which can
impact the agents in a similar manner.

Recognising the importance of model robustness, researches
have investigated the single‐agent DRL. Several works [16, 17]
adopt adversarial training from supervised learning scheme to
improve the robustness of such learning‐based guidance
schemes. Specifically, the agent is occasionally attacked and the
adversarial trajectories are generated during the data collection.
However, these data augmentation style training with adversa-
rial samples only brings limited improvement. Moreover,
comparing to robust single‐agent algorithms, enabling robust-
ness for multi‐agent systems faces more challenges, as not only
the driving agents are influenced by the adversarial attacks, but
their behaviours after the attacks could affect other agents in the

same scenario. In this work, the cooperative multi‐agent
autonomous driving is benefited from the introduced commu-
nication under normal conditions; however, the shared infor-
mation also can be perturbed, further compromising the agents
that rely on this information. The robustness of a multi‐agent
system refers to the tolerance of the system to various un-
certainties. Besides the adversarial attacks, the highly dynamic
driving environment itself introduces uncertainties. One
approach to achieve this is by designing models that quantify
risk during the task, which can help monitor the level of
cautiousness in the system. In DRL, to enhance the system's
tolerance to uncertainty, risk is often incorporated into the
reward function [18]. However, due to the differing natures of
risk and reward, effectively estimating and balancing them
together presents a significant challenge.

This paper introduces a novel algorithm to address these key
aspects of MARL: developing a more efficient MARL system and
increasing its robustness. Specifically, the goal is to enable
robust, cooperative, multi‐agent reinforcement learning‐based
self‐driving, for handling intersection‐passing scenarios in the
presence of adversarial observation attacks. Our key contribu-
tions are summarised as follows:

i. We establish a cooperative and communicated MARL
framework with a universal policy network. The
communication and the universal policy network allow us
to take into account the interactions among agents based
on Mean‐Field theory in the training, thereby enhancing
the MARL performance. Additionally, the universal pol-
icy indicates that each agent is not limited to a specific
task. It ensures that one policy can manage all tasks after
training.

ii. We define a risk assessment formulation to model both
the system and individual risk levels at current state.
Similar to long‐term rewards and the value network, the
risks is minimised with a dedicated risk network at the
same time. Moreover, the gap between system risks and
individual risks is formulated as a credit assigning
method, allowing the policy to be updated by accounting
for contributions of each agent to the MARL system.

iii. We propose a robust constrained objective function to
obtain a robust policy for intersection negotiation under
bounded optimal observation perturbations and a safety
criteria.

Experiments are carried out to evaluate the performance of our
proposed algorithm for intersection‐passing tasks in the realistic
unreal‐engine powered simulator CARLA [19]. The results
show the improvement of performance and robustness of our
proposed adversarial defence method for MARL system.

2 | Related Work

2.1 | MARL for Autonomous Driving

Multi‐agent deep reinforcement learning (MARL) aims to
maximise team rewards, and several effective approaches have
been developed. MADDPG [7] extends DDPG to multi‐agent
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settings, where each agent has its own actor and critic networks,
using global information to learn coordinated policies. MAAC
(Multi‐Agent Actor‐Critic) [20] improves coordination by using
attention mechanisms to prioritise relevant information from
other agents, making it more efficient in complex environments.
G2ANet [21] further enhances communication by incorporating
graph attention networks to capture agent interactions dynam-
ically. On the value‐based side, QMIX uses a mixing network to
combine individual Q‐values into a global Q‐value, ensuring a
more accurate global Q‐value estimation. QPD [22] decomposes
the global Q‐function into individual components for better
scalability, while QPLEX [23] uses duplex duelling networks to
model the interplay between agents. Mean‐filed actor‐critic
method (MFAC) [24] applies the mean‐field theory to MARL
and thus successfully improves the scalability of MARL with a
large number of agents.

Following the major breakthroughs of MARL in recent years,
recent advancements in multi‐agent deep reinforcement learning
(MARL) have expanded the scope of autonomous driving systems
by addressing complex interactions among multiple vehicles and
agents. Unlike single‐agent DRL, which focuses on optimising
the performance of an individual vehicle, MARL considers the
collaborative and competitive dynamics in a shared driving
environment [25, 26]. This approach is particularly useful for
scenarios involving multiple autonomous vehicles that must
navigate and negotiate their movements in real‐time. MARL
techniques can significantly enhance the coordination and
cooperation among vehicles, improving overall traffic flow,
safety, and efficiency. These methods allow vehicles to learn not
only from their own experiences but also from the interactions
with other agents, leading to more robust decision‐making and
adaptive behaviours [2, 27, 28]. For instance, D. Li et al. [29]
introduce a cooperative control framework where autonomous
vehicles use MARL to synchronise their movements and optimise
lane merging and intersection crossing, resulting in smoother
traffic management and reduced congestion. Furthermore,
MARL can address the challenge of nonstationary environments
where the behaviour of other agents is dynamic and uncertain. By
leveraging multi‐agent techniques, vehicles can develop strate-
gies to anticipate and respond to the actions of neighbouring
vehicles more effectively [30]. H. Lin et al. [31] propose an
enhanced state representation for MARL‐based platoon‐
following models by integrating inter‐vehicle dynamics and
global traffic information, achieving improved stability over
standard MARL baselines. Z. Huang et al. [32] present a method
that integrates MARL with communication protocols, allowing
vehicles to share information about their intentions and local
environment, thereby improving coordination and reducing the
likelihood of accidents.

However, MARL systems face notable challenges, particularly
regarding their vulnerability to adversarial attacks. The collab-
orative nature of MARL can make it more susceptible to dis-
ruptions caused by malicious agents or unexpected behaviours
from other vehicles. Unlike single‐agent systems, where
robustness can be achieved through isolated adjustments,
maintaining robustness in a multi‐agent setting is more complex
due to the interdependence among agents.

2.2 | Adversarial Attacks on DRL

Though deep learning models recently achieve significant
improvement, research shows that these well‐trained models
are still very vulnerable to adversarial attacks. Adversarial at-
tacks on camera sensor often lead to visually similar images to
the normal images from a human perspective, yet they can
deceive deep learning models into generating inaccurate pre-
dictions. Generally there are two types of adversarial attack
methods, white‐box attacks and black‐box attacks, depending on
if the attacker has full access to the models' parameters or not.

In Ref. [33], a Bayes optimisation‐based approach was proposed
to generate the painting of black lines on the road to counterfeit
lane lines and make the vehicle deviate from the original
orientation. Experiments were conducted in CARLA simulator,
and results showed that end‐to‐end driving models were
attacked and deviated to the orientation chosen by attackers. He
et al. [34] combined Bayesian optimisation and Jensen‐Shannon
(JS) divergence to measure average variation distance of the
policies attacked by the observation perturbations for optimal
black‐box attacks. Behzadan and Munir [35] studied black‐box
attacks on DQNs with discrete actions via transferability of
adversarial examples. Pattanaik et al. [36] further enhanced
adversarial attacks to DRL with multi‐step gradient descent and
better engineered loss function. They required a critic or Q
function to perform attacks. Typically, the critic network learnt
during agent training. For white‐box approaches, S. Huang et al.
[37] evaluated the robustness of deep reinforcement learning
policies through an FGSM based attack on Atari games with
discrete actions. Kos and Song [38] proposed to use the value
function to guide adversarial perturbation search. Y. C. Lin et al.
[39] considered a more complicated case where the adversary is
allowed to attack only a subset of time steps, and used a
generative model to generate attack plans luring the agent to a
designated target state. In our work, we introduce a FGSM
based method to generate optimal adversary examples by
maximising the pre‐defined collision risk. Results show that
with a small strength parameter ε and minimal visual difference,
our method can efficiently misguide the well‐trained agent.

2.3 | Mitigation Against Adversarial Attacks

Defence methods against adversarial attacks have been explored
recently. Zhang, Chen, Xiao et al. [40] proposed a novel Markov
decision process (SA‐MDP) that considers state‐adversarial
perturbations and provides a theoretical foundation for robust
single‐agent reinforcement learning. They developed the prin-
ciple of policy regularisation that can possibly be applied to
many DRL algorithms. Based on SA‐MDP, Zhang, Chen, Boning
et al. [41] proposed an alternative training framework with
learnt adversaries and developed a robust Markov game to
address environmental uncertainty by introducing uncertainty
into the reward function. Oikarinen et al. [42] proposed the
robust ADversarIAl loss (RADIALRL) method, which can
improve the robustness of DRL within the ℓp norm boundary
against attacks with lower computational complexity. Kumar
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et al. [43] proposed certified robustness by adding smoothing
noise to the state. However, these methods are designed for
single‐agent RL systems and overlook the specific challenges of
MARL, making them difficult to apply effectively. MARL sys-
tems are often more vulnerable to adversarial attacks, even
when only a single agent is targeted [44]. To counter state‐based
attacks, Zhou et al. [13] proposed robust policies by minimising
the cross‐entropy loss between the actions of agents in non-
perturbed and perturbed states. Compared to previous methods,
our work focuses on mitigating perturbations in both local agent
states and global shared states, addressing a more challenging
problem than prior approaches.

3 | Methodology

3.1 | Framework Overview

The system overview is shown in Figure 1. Generally, the
cooperative MARL system includes N agents with an informa-
tion sharing module and an adversarial attacker. During infer-
ence, the environment generates a tuple of local camera
observations ( s1

t , s2
t ,…, sNt ). The adversarial attacks are then

applied to the clean states, resulting in a new perturbed tuple
( s1
A,t, s2

A,t,…, sNA,t). Through the information sharing scheme for
the connected multi‐agent system, the observations will be
processed from the perturbed local observation sNA,t and the
neighbour observations s−N

A,t to high‐level features HsNA,t and
Hs−N

A,t for each individual agent. All agents share a nontask‐
oriented, universal policy network with the exact same param-
eters. Based on the local observation and the shared observation
(which could be perturbed or not), each agent outputs the action
and executes it in the environment. As previously discussed,
developing a robust multi‐agent system poses significant chal-
lenges, particularly due to the uncertainty regarding the number
of agents that may be compromised by adversarial attacks.
Additionally, while information sharing here enhances
decision‐making in nonperturbed contexts by incorporating
diverse perspectives from neighbouring agents, it can have a
backward impact when the shared observations themselves are
exposed to attacks, leading to more erroneous decision‐making.
In this section, we address the existing problems and propose a
robust cooperative deep adversarial reinforcement learning
approach for autonomous driving agents against strong obser-
vation perturbations.

3.2 | Mean‐Field Communicated Multi‐Agent
Structure

A multi‐agent deep reinforcement learning task can be consid-
ered as a continuous decision‐making problem, which follows
the Stochastic Games (SG) [45]. SG is defined as a tuple
(S,A

1,…,AN ,R1,…,RN , P, γ). N is the number of the agents, Aj

is the action space of agent j,Rj is the step reward of agent j. The
agents interact with the environment of successive joint state
(S : s1 × ⋯ × sn) with a joint action, getting the step rewards
( r1 ∈R1,…, rN ∈RN) and the transition probability p ∈ P to the
next joint state under the current joint state and the current joint
action. γ indicates the discount factor. Considering the state
perturbation, we introduce the worst case perturbed joint state
and the perturbed action responded to it (SA,Aj

A) to the original
SG tuple. The goal of the robust MARL is to find a series of
optimal policies that return the maximum accumulative dis-
counted team returns under the worst adversarial attacked states:

Qi
π∗ = max

π
min
SA

[E(∑

T

t
γtrit( s

i
t/s

i
A,t, a

i
t/a

i
A,t))] (1)

The attacked state sA is a shifted state, which models the worst
case perturbation due to attacks on the sensor leading to aA sub‐
optimal than a∗. A well‐trained guidance policy network may be
able to cope with a weak and quick perturbation, turning back
to the optimal actions and the desired trajectory after the state
observations get back to normal. However under strong and
continuous adversarial attacks in the context of multi‐agent, the
guidance policy networks can easily fail.

One problem for multi‐agent reinforcement learning is the dif-
ficulty to model the interactions among the agents. Mean‐field
actor‐critic reinforcement learning (MFAC) uses the mean‐
field theory to transform the interactions of multiple agents
into the interactions between two agents, which enables
possible large‐scale multi‐agent reinforcement learning. In
MFAC, the long‐term expected Q value for agent i at state s with
the joint action a, Qi(s, a) is decomposed to the sum of Qs when
interacting with each agents:

Qi(s, a) =
1

N − 1
∑

k⊆N−1
Qi( s, ai, ak) (2)

FIGURE 1 | The framework overview. One robust agent is displayed as the primary example to demonstrate the information flow and main
opponents of the system. Red arrows indicate training only while black arrows indicate training and inference.
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where the ak counts as the local interaction between agent i
with the neighbour agent k. In our case, we use a universal
policy network for every agent in the MARL, to enable a uni-
versal driving agent that works in every task in the intersection
scenario. Therefore, the decomposition becomes:

Qi(s, a) =
1

N − 1
∑

k⊆N−1
Qi( si, ai, sk) (3)

As we use a universal policy, the actions ak generated by
different agents only depend on their observations sk. The action
of one neighbour can be replaced by the state of the neighbour.
It is proved by MFRL [24].

Qi(s, a) ≈ Qi( si, ai, sk) (4)

where s− k is the mean state or fusion state of all neighbour
agents. The local agent i makes decision based on the local
observation and the information shared by other agents, which
is processed through two FC layers and an attention module.

3.3 | Gradient‐Based Attacker

In this section, the inner minimisation part of Equation (1) is
solved by modelling the optimal adversarial attacks on obser-
vations based on a white‐box technique. We require an adver-
sarial attack generation method that prioritises ease of
implementation and computational efficiency. The Fast
Gradient Sign Method (FGSM), introduced by Goodfellow et al.
[46], fulfils these criteria. Additionally, FGSM offers flexibility,
allowing for the application of techniques like Basic Iterative
Method (BIM) [47] to introduce iterations and enhance the
adversarial attack instead of increasing the perturbation
parameter ε.

FGSM works by using the gradients of the neural network to
create an adversarial example. For deep reinforcement learning,
the method uses the gradient ▽sL(π, s, a) of the loss with
respect to the input observation to create a new observation that
maximises this loss. The π refers to the policy network param-
eters, while the a is the output action. The new masked obser-
vation is obtained by the following equation:

sA = s + ε × sign(▽sL(π, s, a)) (5)

This new observation sA is called the adversarial state. The ε
parameter controls the strength of the attack, and it varies from
0 to 1. The closer the value to 1, the stronger effect on the tar-
geted policy network, but this also makes sA more visually
distinguishable. On the contrary, if the ε is small, its impact is
weaker, and it becomes harder for human eyes to detect dif-
ferences from the normal state. As discussed in the beginning of
the section, to solve the inner minimisation, the generated
perturbations should lead the policy to worst case situations. In
our cooperative MARL system, we find an unintended‐action‐
leading loss function instead of directly minimising the long‐
term rewards. Within the realm of autonomous driving,
certain throttle and steering actions in certain scenarios may
pose potential danger. Based on this idea, we introduce the

gradient‐based perturbations into the control system by max-
imising the throttle and reversing the steering, thereby delib-
erately maximising the risk of collisions. After introducing our
augmented FGSM, the agent will be encouraged to accelerate
and make wrong steering to make the collision.

The problem of using FGSM is the effective sensitivity to ε. In
practice, we need a larger ε to make the perturbation effective
on the deep guidance model decision. However during training,
this will make perturbations predictable and tolerated by the
model [17]. We employ the BIM to intentionally escalate the
attack effeteness associated with autonomous driving. The BIM
iterates the process of a single FGSM, which means a previous
generated adversarial state will be the input of the next adver-
sary generation. By iterating FGSM, the influence of the attacks
can be increased without affecting the sensory image as much as
by increasing the ε by a comparable amount. Finally, with the
risk encouragement and BIM, the optimal adversary is obtained
as follows:

siA = sin + ε × sign(▽sin (L
i
n))

sin = sin−1 + ε × sign(▽sin−1
(Lin−1))

…

(6)

where

Lin = −2 × ( steeri|sin) + 1 − ( throttlei|sin) (7)

siA indicates the optimal adversary and n is the iteration number.
steeri and throttlei are the outputs of the actor network with
observation sin. Note that the attacker applies perturbations only
on the targeted agent's observation, which is more realistic for
the attacker to aim on the camera of that agent. The shared
information could be perturbed through the cameras of neigh-
bour agents, interfering with the decision‐making on the
receiving end. These attacks will lead the model to the worst
actions in most of the cases.

3.4 | Risk Assessment Formulation

To enhance the robustness of the MARL algorithm, a safety
criteria is also introduced. We quantify the risks in the multi‐
agent framework as the collision probability of any two agents
in the whole system. Reinforcement autonomous driving agents
need to not only maximise the rewards and finish the tasks, but
also be aware and reduce the risks during the navigation, which
is particularly crucial for multi‐agent self‐driving. To simplify
the risk analysis and disregarding the varying dimensions and
shapes of individual vehicles, we represent each vehicle as a
circle with a diameter equal to its diagonal. As shown in
Figure 2, considering two agents running towards each other
with current speeds v1, v2 and rotation to the world coordinate
θ1, θ2, at world locations (x1, y1), (x2, y2). Assume if the two
agents maintain their current speeds and rotations, they will
meet at the intersection of their trajectories. If we slide the two
circles representing the two vehicles along their respective tra-
jectories (the dotted lines), the first point of collision is identi-
fied when agent 1 is at P1 and Agent 2 is at P2, and the last point
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of contact when agent 1 is at P3 and Agent 2 is at P4. This
implies that between the moments when Agent 2 passes P4 and
leaves P2, while agent 1 remains between P1 and P3, there is a
highly chance of collision between the two agents. Given the
orientations, diagonals, and locations of the two agents, we can
determine the coordinates of the four points P1,P2,P3 and P4.
Based on the agents' current speeds, the times associated with
these positions are as follows: t0 represents current time, t1 is the
time when agent 1 reaches P1, t3 is the time when agent 1 leaves
P3, t4 is the time when Agent 2 reaches P4, t2 is the time when
Agent 2 leaves P2. The risk probability is then defined as follows:

Prisk =
[t1, t3] ∩ [t4, t2]
[t1, t3] ∪ [t4, t2]

(8)

Prisk ⊆ [0, 1] indicates the ratio of the overlap in the time in-
tervals when both agents are within the collision zone to the
total time interval between the moment the first agent entering
the zone and the last agent leaving the zone. To calculate the
overall risk in a MARL system, where Prisk describes the risk
between two agents:

Ptot = 1 − ∏
N−1

i=1
(1 − Prisk,i) (9)

where N is the number of agents and Ptot ⊆ [0, 1].

After the careful design of the risk evaluation, it is then
embedded to our robust MARL.

3.5 | Robust Constrained Cooperative MARL

In this section, we introduce a robust multi‐agent constrained
optimisation with risk assessment integrated to solve the outer
maximisation in Equation (1). We extend Proximal Policy
Optimisation (PPO) to the cooperative multi‐agent context,
where each agent learns a policy while coordinating with other
agents, leveraging a centralised training with decentralised
execution structure:

Liclip(π) = Êt[∑
N

i=1
min(pit(π), clip(p

i
t(π), 1 − ε, 1 + ε))Âi

t] (10)

where π is the policy parameter of the deep guidance agents and
N is the number of Agent. In our case, π is the universal policy
parameters. Êt denotes the estimated expectation over t of the
collected trajectories. pt is the ratio of the probability under the
new and old policy, while ε stands for the constant clip term that
limits the policy update by constraining the ratio within a
specified range, preventing excessively large updates. Âi

t is the
estimated advantage value for agent i, obtained by the difference
between the observed reward for taking an action ai at local
state si with shared state s− k and the expected value predicted
by the critic network at the same local and shared states:

Âi
t = Qi

t( s
i, ai, s−k) − Vi

t( s
i, s−k) (11)

3.5.1 | Long‐Term Risk Minimisation

Equation (10) aims to maximise the long‐term expected returns.
Similar to the expected returns, we can also design a risk
objective to minimise the long‐term expected risks based on the
risk assessment, for the agent safety in the MARL. At every step,
the risk of the MARL system is evaluated, and at the end of the
episode, the overall risks are computed as the discounted cu-
mulative risks. In order to fit in the same maximisation form as
the returns, we use (1 − risk) ∈ [0, 1] as the safety term, and the
safety‐to‐go at t is defined as follows:

Sit =∑
T−t

j=0
(γλ)j( (1 − Ptot( sit, s

−k
t )) + γSθ( sit+1, s

−k
t+1)) (12)

where λ is the Generalised Advantage Estimation (GAE) [48]
parameter used to control the bias‐variance trade‐off. Max-
imising the St is equivalent to minimising the risks. Similar to
the critic network, the risk network Sθ will be iteratively
updated to achieve accurate long‐term expected safety predic-
tion by the mean square error (MSE):

Lirisk =
1
T
∑
T

t=0
(Siθ( s

i
t, s

−k
t ) − Sit( s

i
t, s

−k
t ))

2
(13)

For policy optimisation, in addition to the advantage value ob-
tained from Equation (11), a risk advantage function plus the
single agent contribution is considered:

Âi
f i,t = Âi

t + (Sit − Siθ) + Credicti (14)

We define Credicti as the weighted risk advantage value, which
reflects the importance of agent i within the MARL system or the
contribution of agent i to the system's overall performance. Credit
assigning is crucial in cooperative MARL training, as it ensures
individual actions are rewarded or penalised appropriately for the
overall performance. Instead of only assigning the team reward
uniformly to every agent, we introduce a risk‐value‐based
method enabling nonlinearity in credit assigning. The credit is

FIGURE 2 | The illustration of the area that could lead to collision
between two agents.

6 of 17 IET Radar, Sonar & Navigation, 2025

 17518792, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.70033 by C

ity U
niversity O

f L
ondon, W

iley O
nline L

ibrary on [29/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



defined as the difference between the total risk of the MARL
system when agent Beta distribution is included and excluded:

Credicti = ∏
N−1

j=1,j≠i
(1 − Prisk,j) − ∏

N−1

j=1
(1 − Prisk,j) (15)

By replacing Âi
t with Âi

f i,t in Equation (10), the long‐term ex-
pected risk is minimised efficiently in the MARL context.

3.5.2 | Adversarial Regulariser

The proposed stochastic universal policy network outputs
probability distributions of the predicted actions. We employ a
multivariate Beta distribution as the policy output, since a
bounded action space is required for steering and throttle within
the interval [0,1]. The actions are randomly sampled from this
distribution to increase exploration in training phase, and the
mean value is chosen for inference phase. A robust MARL
system should behave similarly or close enough under per-
turbed observations and normal observations, which means the
predicted action distributions with minimal divergence. We
extend the theorem in Ref. [49] to our cooperative MARL
scheme with universal policy. Given a policy π and its value
function Vπ( si, s− k) and considering the worst perturbation sit-
uation where all agents are attacked with optimal perturbation
siA, for all si, s− k ∈ S and the corresponding siA, s− k

A ∈ SA, we
obtain the following:

maxV ( ( si, s−k), ( siA, s
−k
A )) ≤ maxD( ( si, s−k), ( siA, s

−k
A )) (16)

where

V ( ( si, s−k), ( siA, s
−k
A )) = Vπ( si, s−k) − Vπ( siA, s

−k
A ) (17)

D( ( si, s−k), ( siA, s
−k
A )) = DTV (π( si, s−k),π( siA, s

−k
A )) (18)

DTV (π( si, s− k),π( siA, s− k
A )) is the total variation distance between

the predicted action distributions when all the agents are
attacked and attack‐free. This is the largest possible difference
between the probabilities that the two probability distributions
can assign to the same action. According to Pinsker's inequality
[50], DTV can be linked to another distance Kullback–Leibler
(KL) divergence [51]:

DTV (π( si, s−k),π( siA, s
−k
A ))≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
DKL(π(si, s−k),π( siA, s−k

A ))

√ (19)

In practice, computing KL divergence is more efficient
compared to the summing operation in DTV and easier to realise
in continuous space. The differentiable aspect of KL divergence
also benefit the gradient based optimisation in the DRL algo-
rithms. Therefore, we further amend Equation (16) with the KL
divergence to:

maxVπ( ( si, s−k), ( siA, s
−k
A )) ≤

max
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
DKL(π(si, s−k),π( siA, s−k

A ))

√ (20)

Which means the minimisation on KL divergence of the action
probabilities under nonperturbed and attacked states guarantees
the minimisation on the total variation distance DTV , therefore
the performance gap could be minimised too. The regulariser
will be added to the final objective function to update the policy
network as follows:

Lireg,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
DKL(π( sit, s−k

t ),π( siA,t, s−k
A,t))

√

(21)

3.5.3 | Constrained Objective Function

Consider a well‐trained cooperative MARL system. For every
state S in all possible trajectories, there exists a subset actions
Ai

robust ∈A under bounded worst‐case state perturbations that
leads to Sisafe ∈ S avoiding high‐risk states for agent i. Therefore,
it is possible to guarantee a robust policy by constraining the
policy to output safe trajectories and the worst case perturba-
tions. Intuitively, there are two constraints in the objective
function to design: one for a bounded adversarial perturbations
and one for safe states.

Control barrier function (CBF) is widely deployed in autono-
mous driving applications for ensuring safety by providing
mathematical guarantees that the vehicle will avoid unsafe sit-
uations, such as collisions, while respecting constraints such as
speed limits and obstacle avoidance. CBF enables real‐time
adaptability and seamless integration with existing control sys-
tems, ensuring safe and reliable navigation in dynamic envi-
ronments. We define the CBF of our cooperative MARL as the
risk value network h( si, s− k) = Sθ( si, s− k). The calculation of
the proposed CBF is based on the nonperturbed states only, as
we need the actual states of the agents for the actual risk esti-
mations. The safety set of states is then defined as follows:

C = {si ∈ S : h( si, s−k) ≥ ε} (22)

e is the safety criteria, and the system dynamics is defined as
follows:

ṡi = f ( si) (23)

As a model‐free method, the agent learns a policy directly
through the environment interactions without knowing or
modelling the environment's dynamics. This presents a signifi-
cant challenge when it comes to predicting how an action will
transition the system from one state to the next. Based on Ref.
[52], the continuous states of a well‐trained model are Lipschitz‐
continuous. Therefore, the system dynamics could be approxi-
mated as the state difference over the time step:

ṡi =
sit+Δt − sit

Δt
(24)

To ensure the states stay in the safety set, we need to make sure
the Lie derivative condition [53]:
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d
dt
h( si, s−k) + ω (h( si, s−k) − e) ≥ 0

⇒∇si h ⋅
sit+Δt − sit

Δt
+ ω (h( si, s−k) − e) ≥ 0

(25)

We use a linear ω > 0 to make sure h( si, s− k) can be updated to
satisfy the criteria. For the bounded worst‐case perturbations,
let g be the attacker, we have the L2 norm of ( g( si,π) − si)
bounded by μ.

Then the objective function of our proposed robust cooperative
MARL is developed. Combining maximising the long‐term ex-
pected rewards, minimising the regulariser, subjecting to the
constraints, we tend to solve the following optimisation
problem:

min
π
{

1
T

1
N

∑
T

t=0
∑
N

i=0
(Lif i(π) + L

i
reg,t)}

subject to μ − L2( f ( sit,π), s
i
t) ≥ 0

∇sih ⋅
sit+Δt − sit

Δt
+ ω(h( sit, s

−k
t ) − e) ≥ 0

(26)

where t and γ denote the time step and discount factor
respectively. And Lif i(π) is the improved objective function for
the multi‐agent system:

Lif i(π) = min(pit(π), clip(p
i
t(π), 1 − ε, 1 + ε))Âi

f i,t (27)

Based on the Lagrange multiplier technique, we have the
generalised Lagrange function of the objective:

L(π,α, β) =
1
T

1
N

∑
T

t=0
∑
N

i=0
(Lif i(π) − Lireg,t − αC1 − βC2) (28)

where α ≥ 0, β ≥ 0 are the Lagrange multipliers, and C1,C2 are
the first and the second constraints respectively. Now we define
a function θP(α, β) with respect to α, β:

θP(α, β) = max
α≥0,β≥0

L(π,α, β) (29)

If π satisfies the constrained conditions in Equation (26), we
obtain the following:

θP(α, β) =
1
T

1
N

∑
T

t=0
∑
N

i=0
(Lif i(π) + L

i
reg,t) (30)

otherwise θP(α, β) = ∞. Equation (30) denotes that minimising
the new defined function min

π
θP(α, β) is equivalent to the primal

problem in Equation (26). The primal optimisation problem is
able to be transferred as follows:

min
π
θP(π) =min

π
max
α≥0,β≥0

L(π, α, β) (31)

Furthermore, based on the Lagrange duality, the dual problem
of Equation (31) will always have smaller value than the primal
problem, which leads to smaller loss and better performance.
With the generalised Lagrange function, ∀π,α, β:

min
π
L(π,α, β) ≤ L(π,α, β) ≤ max

α≥0,β≥0
L(π,α, β)

⇒min
π
L(π,α, β) ≤ max

α≥0,β≥0
L(π,α, β)

⇒ max
α≥0,β≥0

min
π
L(π, α, β) ≤ min

π
max
α≥0,β≥0

L(π,α, β)
(32)

Therefore, it is easier to optimise on the dual problem than the
primal problem. This optimisation is detailed by the two
following steps iteratively:

1. min
π
L(π, α, β)

2. max
α≥0,β≥0

L(π,α, β) (33)

First, we freeze the Lagrange multipliers α, β and update the
policy π based on step 1, which is represented as minimising
the L(π,α, β):

min
π
{

1
T

1
N

∑
T

t=0
∑
N

i=0
(Lif i(π) + L

i
reg,t − αC1 − βC2)} (34)

Then similarly, the updated policy π are fixed to update the
Lagrange multiplier α and β based on step 2:

max
α≥0,β≥0

{
1
T

1
N

∑
T

t=0
∑
N

i=0
(− α(μ − L2( f ( sit,π), s

i
t))

− β(∇sih ⋅
sit+Δt − sit

Δt
+ ω(h( sit, s

−k
t ) − e)))}

(35)

Finally, the original constrained minimisation problem becomes
a maxmin problem without constraints. We use gradient
descent to find the optimal robust universal policy π and the
optimal Lagrange multipliers α, β repeatedly through Equa-
tions (34) and (35) in each batch update. The objective function
is a jointly optimisation problem, where the policy network
balances the performance under normal observation and the
adversarial defence capability. In the experiments, we find the
policy will learn to satisfy the constraints in Equation (26) and
resulting two constrained functions to decrease during the
gradient descent process, and α, β in step 2 will gradually
approach zero, to an optimal or near optimal solution. Conse-
quently, step 1 will find the minimum after α and β becomes
stable. The method R‐CCMARL is detailed in Algorithm 1.

ALGORITHM 1 | R-CCMARL.

1: Initialise the universal policy network parameter θ0, the
state-value critic network parameter ϕ0, the state-risk network
parameter ψ0, the replay buffer D;
2: Initialise the Lagrange multiplier α;
3: for j = 0, 1, 2,… do
4: for t = 0, 1, 2,… do
5: For each agent, share its nonperturbed observation and
receive nonperturbed observations from all the neighbours.
6: Sample action ait ∼ π(θj)(ait|sit, s− k

t ) based on the policy
π(θj) and state ( sit, s− k

t )

7: Generate optimal adversary siA,t through Equation (6).
8: Obtain transitions {sit+ 1, rit,P

i
tot,t} by executing ait.

9: Store the transitions {sit, ait, rit, P
i
tot,t , sit+ 1, siA,t} in Dj.
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10: end for
11: Calculate the reward-to-go R̂i

t.

12: Calculate the safety-to-go Ŝit.

13: Calculate estimated advantage Âi
f i,t through

Equation (14).
14: Calculate the regulariser Lireg,t.
15: Update the universal policy θ by Equation (34).
16: Update the Lagrange multiplier α and β by Equation (35).
17: Update the state-value critic network parameter ϕ.
18: Update the state-risk network parameter ψ by
Equation (13).
19: end for

The proposed robust cooperative communicated MARL
network structure is illustrated in Figure 3. At each time step,
agent i takes a monocular RGB image as input, which is passed
through an encoder to extract essential visual features. These
features are then concatenated with five additional numeric
features that represent other important state information,
including throttle, velocity, steer, distance to the road centre,
angle between the vehicle vector and the waypoint vector. This
concatenation of data results in a high‐level features i. Simul-
taneously, each neighbouring agent extracts high‐level features
using the same encoder with identical parameters. The high‐
level features of all neighbours are concatenated and passed
through two fully‐connected layers, producing features − k of
the same shape as high‐level features i.

Next, the local features of agent i and the shared features of its
neighbours are fused by two attention modules to create a more
comprehensive representation of the environment. Specifically,
the customised attention module 1 takes the fused observation
− k as input, and outputs the learnable parameter weighted
attention map γ ⋅ A− k. This module removes the element‐wise
summation between − k and A− k. Next, local high‐level fea-
tures i is concatenated with γ ⋅ A− k and passed to attention

module 2, where the summation operation between input fea-
tures and weighted attention map is retained. Finally, after
processing through the two attention modules, the final
enhanced feature map is generated, which is then passed to the
three separate sub‐networks. The attention structure ensures
that the MARL model relies less on shared information for
decision‐making during the early stages of training, as the
learnable parameters are initialised to zero. Nevertheless, as
training progresses, the additional information can increasingly
contribute to the decision‐making process. These sub‐networks
are responsible for predicting three key outputs for agent i: the
long‐term expected returns, the long‐term expected safety
values, and the optimal actions. These outputs guide the agent
in making safe and effective decisions within the multi‐agent
environment, ensuring robustness against state perturbations.

3.6 | Reward Function

To ensure that the MARL system accomplishes the intersection
negotiation task while maintaining efficiency, a simple yet
efficient reward function is designed as the product of three
factors plus the terminal reward:

reward = V × D × A + rdone (36)

where V is the velocity factor, defined as follows:

V =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v
vmin

, if v < vmin

1, if vmin ≤ v ≤ vmax

1 −
v − vmax

3
, if v > vmax

(37)

here v represents the current speed of the agent. The deviation
factor D is defined as follows:

FIGURE 3 | Network structure of the proposed robust cooperative communicated MARL model. A universal driving model is applied, consisted of
a feature extract encoder, an actor, critic, risk network and two fully‐connected layers and two attention modules. The grey area indicates all the
components in one agent. The three sub‐task networks are fed with the enhanced features, which involves the local information the shared
information from the neighbour agents.

9 of 17

 17518792, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.70033 by C

ity U
niversity O

f L
ondon, W

iley O
nline L

ibrary on [29/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



D = 1 −
deviation

deviationmax
(38)

where deviation is the distance to the road centre. Finally, the
angle factor A is defined as follows:

A = 1 −
angle

anglemax
(39)

where angle is the angle between the forward vectors of the
vehicle and the road. For rdone, five terminal signals are
considered: if deviationmax or anglemax is exceeded, the agent
will receive a terminal reward of −50. A collision with another
vehicle results in a reward of −100. A collision with anything
other than a vehicle incurs a reward of −50. If the goal position
is reached, the agent will receive a terminal reward of 20. This
reward function is applied to all the models in the experiments.

4 | Experiments

The training and testing of the proposed framework are
implemented in CARLA simulator. CARLA is an open‐source
platform for development, training, and validation of autono-
mous driving systems. It has a rich library of vehicle models and
realistic urban road modelling, hence being near ideal to urban
driving simulation. We set up our experiment scene in Town 2
within the CARLA map library.

4.1 | Implementation Details

In the experiment, we use three vehicles in the cooperative
MARL system to complete the intersection‐passing task in two
types of settings:

i. T‐shaped Intersection: As shown in Figure 4, the three
vehicles are spawned in different directions at a T‐shaped
intersection, starting in the designated spawning areas
(green areas). Agent 1 aims to go straight, while both
Agent 2 and Agent 3 make left turns, creating a highly
collision‐prone situation. The experiments are conducted
at two different intersections to introduce randomness.

ii. 4‐way Intersection with Traffic: As shown in Figure 5, the
vehicles are spawned in the same setting as the first sce-
nario. In addition, 7 surrounding vehicles, controlled by
autopilot, are positioned around the intersection and are
ready to pass through. The cooperative MARL system
must negotiate with the agent vehicles for intersection
passage while avoiding collisions with the dynamic sur-
rounding vehicles.

We select two state‐of‐the‐art multi‐agent methods and compare
them with our proposed algorithm R‐CCMARL and a variant of
our method, referred as the risk‐only model, in which the
constraints for robust cooperative MARL are not implemented.

Each agent takes a 160 * 80 RGB image from a monocular
camera and 5 numeric features as input: throttle, velocity, steer,

the distance between the vehicle and the road centres, and the
angle between the vehicle forward vector and the tangent to the
road as shown in the network structure in Figure 3. The policy
network, the value network and the safety network share the
parameters in feature extractor, where the high‐level informa-
tion is shared to benefit all tasks during the training. For the
constraint threshold μ and e, we selected suitable values
manually from candidate values through experimentation.
These thresholds serve to restrict the magnitude of adversarial
attacks and the safety criteria, and are sensitive to the scenario
while significantly affecting the stability and performance of the
training process. The main hyper‐parameters used are shown in
Table 1. To achieve the nontask‐oriented policy network in
multi‐agent self‐driving, all the agents share the same model
structure and hyper‐parameters. For adversarial attack genera-
tions, we use ε = 0.1 and iterations of 20. In the robust MARL
evaluation section, we compare the performance of our pro-
posed method with the variant risk‐only‐model and existing

FIGURE 4 | Experimental scenario 1 with two different intersections.

FIGURE 5 | Experimental scenario 2 with surrounding traffic.
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methods. All models are set to run at 10 fps in CARLA on a
single RTX 4090 graphic card.

4.2 | Results

In this section, we conduct experiments to evaluate the robust
cooperative MARL guidance policy. Two sets of tests are per-
formed. In Scenario 1, the proposed R‐CCMARL algorithm, the
variant risk‐only model, and the well‐known MARL algorithm
MAPPO [14] are trained and evaluated under the same hyper‐
parameter settings and environmental conditions. In Scenario
2, R‐CCMARL and ERNIE [52] are trained and evaluated under
the same hyper‐parameter settings and environmental condi-
tions as well. Note that, to adapt ERNIE to our setting, we
replace its network with ours, while still following its robust
training formulation.

4.2.1 | Robustness MARL Evaluation

To evaluate the performance of our proposed robust multi‐agent
guidance algorithm under observation perturbations, we choose
a difficult attack configuration, ε = 0.1, iteration = 20 and

multiple attack strategies. As mentioned before, one of the
challenges in robust MARL system against adversarial attacks is
the number of agents being attacked is unknown. Therefore,
four attack strategies are conducted: attack on each single agent
and attack on all agents, as well as no attack to make sure the
system works well in normal situation at the same time. For
each category all models are evaluated for 50 episodes.

We evaluate MAPPO, ERNIE, the only‐risk model where the
constraint for robust cooperative MARL is not implemented,
and the full proposed algorithm R‐CCMARL in five evaluation
metrics. The evaluation metrics are defined as follows:

1. Average Team Reward: the average accumulative reward
of the MARL system per episode.

2. Average Individual Reward: the average accumulative
reward of each agent per episode.

3. Average Individual Success Rate: current success times to
reach the goal position over current episodes.

4. Average Team Risk: the average accumulative safety of the
MARL system per episode.

5. Average Individual Risk: the average accumulative safety
of each agent per episode.

Note that despite the concerns about bias in evaluation due to
incorporating extra, nonattacked numeric data as inputs to
enhance stability and performance, our results show substantial
impacts on the MAPPO model, resulting in low success rate.

Scenario 1: Our proposed method R‐CCMARL effectively
handles strong adversarial attacks under the same conditions,
indicating that the additional inputs do not compromise eval-
uation outcomes. In Table 2, R‐CCMARL leads all the categories
in success rate, long‐term return, and long‐term risk under
every attack strategy. In terms of success rate, MAPPO delivers
ok performance when Agent 1 is attacked. Specifically, under
this setting, agent 1 reaches 80% of success, while Agent 2 and
Agent 3 remain 50% and 60%. However, in other situations,

TABLE 1 | Hyper‐parameters for the experiments.

Hyper‐parameter Value
Discount factor γ 0.99

RL network learning rate 1e− 4 ∼ 1e− 6

Lagrange multiplier learning rate 1e− 2 ∼ 1e− 4

Initial Lagrange multiplier α 0.01

Initial Lagrange multiplier β 0.01

Memory size 5000

Clipping ratio 0.2

Constraint threshold μ 0.001

Constraint threshold e 0.1

TABLE 2 | Detailed individual performance comparison in various attack conditions (Scene 1).

Attack on agent 1 Attack on agent 2 Attack on agent 3 Attack on all

Method Metrics
Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

MAPPO Success
rate

0.80 0.50 0.60 0.80 0.00 0.40 0.60 0.10 0.10 0.40 0.00 0.00

Return 26.30 42.63 37.73 25.68 34.78 37.46 28.38 47.70 37.01 26.06 29.41 34.59

Risk −10.26 −7.16 −1.12 −6.37 −4.10 −1.16 −8.26 −4.57 −5.75 −9.89 −4.94 −2.31

Risk‐only Success
rate

0.88 0.70 0.82 0.84 0.24 0.78 0.82 0.60 0.74 0.78 0.08 0.70

Return 34.65 51.26 49.75 34.37 37.11 51.10 36.09 59.05 43.83 32.77 34.21 40.62

Risk −6.10 −4.14 −0.34 −3.53 −2.61 −0.37 −6.64 −3.94 −4.54 −8.37 −3.94 −1.79

R‐CCMARL Success
rate

0.98 0.92 0.94 0.98 0.82 0.90 0.96 0.88 0.88 0.90 0.78 0.84

Return 36.37 63.84 52.13 34.98 56.81 50.05 40.53 69.74 56.07 37.59 45.21 52.77

Risk −5.61 −3.85 −0.41 −3.51 −1.70 −0.42 −5.77 −3.38 −4.39 −6.97 −4.05 −1.45
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where Agent 2 is attacked, Agent 3 is attacked and all agents are
attacked, MAPPO shows weak robustness. Agent 2 is not able to
finish the intersection passing task, leaving only 10% of success
rate at most. Agent 3 is a bit better than Agent 2 but gets 40% at
most. Lacking adversarial training and risk awareness, MAPPO
shows no defence to strong adversarial perturbations. The risk‐
only method, though is not involved in adversarial training,
shows certain improvement over MAPPO, the performance is
far from satisfaction, especially the attack is implemented on
Agent 2. In contrast, R‐CCMARL benefiting from the multi‐
agent interaction modelling (mean‐field information sharing),
long‐term risk minimisation, and the constraint adversarial
optimisation with CBF, remain resilient to the strong pertur-
bations, delivering robust performance even in the Attack on All
condition. For robust MARL algorithms, it is also important to

maintain performance in normal conditions while capable of
mitigating the strong attacks. Table 3 shows the performance
comparisons in the nonattacked environments. For success rate,
the full proposed method achieves perfect scores for Agents 1
and 3, and nearly perfect for Agent 2, while MAPPO performs
worst, particularly for Agent 2. In terms of return, R‐CCMARL
leads with higher returns, especially for Agents 2 and 3, indi-
cating better performance compared to the other models.
Additionally, R‐CCMARL consistently demonstrates lower risk
values, particularly for Agents 2 and 3, suggesting that it not
only yields high returns but does so more safely than MAPPO
and Risk‐Only, making it the most robust method overall.

Figure 6 illustrates the performance of these methods under the
five attack situations in a more comprehensive way. The thin
line is the mean value of each category and the standard devi-
ation is visualised around the mean value to show stability.
Overall as it can be seen, in terms of average accumulative re-
wards, the risk‐only model outperform MAPPO in each attack
situations, indicating the effeteness of the risk assessment
function and the additional long‐term risk minimisation. The
full algorithm R‐CCMARL further boost performance over
MAPPO and risk‐only model. Specifically, in normal condition
showed in Figure 6a, MAPPO is at 136.15 per episode. In
contrast, R‐CCMARL achieves around 203.04 accumulative
reward an episode, which represents 49.13% gain from MAPPO.
Comparing to the risk‐only model, we achieve 28.5% improve-
ment. Figure 6a states that our robust cooperative MARL im-
proves the guidance performance even without considering
adversarial conditions. Figure 6b–d show the performance when
different individual agent is under attacks. It is evident that in a
MARL system, attacking different agents has varying effects,

TABLE 3 | Detailed individual performance comparison in normal
(no attack) observation condition (Scene 1).

Method Metrics Agent 1 Agent 2 Agent 3
MAPPO Success rate 1.00 0.66 0.78

Return 27.71 57.89 47.34

Risk −3.75 −5.66 −1.79

Risk‐only Success rate 1.00 0.92 0.98

Return 38.48 61.29 57.30

Risk −1.98 −4.33 −1.12

R‐CCMARL Success rate 1.00 0.94 1.00

Return 36.34 95.02 70.53

Risk −1.91 −1.85 −0.43

FIGURE 6 | Detailed comparisons between our proposed method, the variant and MAPPO in Scenario 1. We evaluate the multi‐agent system by
attacking different agents ((a) No agents attacked, (b) Agent 1 attacked, (c) Agent 2 attacked, (d) Agent 3 attacked and (e) All agents attacked) with the
same strength ε = 0.1, iteration = 20. The curve line is the average team reward while transparent area indicates standard deviation.
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revealing the different levels of importance each agent holds in
the system. In Figure 6b, when agent 1 is attacked, the average
team reward of the three methods drop by 25.2%, 13.2% and
23.1%, resulting in rewards of 152.2, 137.1 and 104.9. When
Agent 2 is attacked, the performance further reduced. In
Figure 6c MAPPO achieve 99.2 in the long‐term reward, and the
risk‐only model achieves 122.4. R‐CCMARL leads the board at
142.3 marking 43.4% and 16.3% improvement over MAPPO and
risk‐only model. In Figure 6d, Agent 3 is attacked. R‐CCMARL
obtain 168.6 of accumulative reward while the risk‐only model
and MAPPO are at 140.1 and 116.4, showing 20.3% and 44.8% of
improvement respectively. Among the individual agent pertur-
bations, attacks on Agent 2 have the most significant impact on
the entire system, making Agent 2 the most vulnerable. We
further increase the level of attacks by applying perturbations on
every agent. In Figure 6e, R‐CCMARL maintains the reward of
136.9. The risk‐only model and MAPPO, both lacking constraint
adversarial training, are not able to handle the situations,
reaching only 106.2 and 91.7. These results demonstrate the
effectiveness of our proposed constraint objective function in
enhancing the robustness of the MARL system.

Scenario 2: As the complexity and difficulty of the environ-
ment increase, there is a decline in overall success rate. How-
ever, R‐CCMARL consistently outperforms the ERNIE method
and remains capable of handling most challenging cases. In
Table 4, under normal conditions, R‐CCMARL achieves high
success rates of 80%, 76% and 80% for Agents 1, 2 and 3,
respectively—comparable to or slightly exceeding those of
ERNIE, especially for Agent 3. It also delivers higher long‐term
returns, with Agent 3 reaching 193.67 compared to 185.53 of

ERNIE. Additionally, R‐CCMARL demonstrates lower risk
values across all agents, such as −0.17 for Agent 1 versus −7.31
under ERNIE. These results indicate that even in regular set-
tings, R‐CCMARL offers not only strong task completion but
also improved stability and risk control. In Table 5, with
adversarial attack introduced, R‐CCMARL maintains its
advantage. For example, when Agent 3 is attacked, R‐CCMARL
achieves success rates of 70%, 66% and 56% across the three
agents, while ERNIE drops to 60%, 60% and 50%. The gap be-
comes more significant in the most challenging case when all
agents are attacked, where R‐CCMARL sustains 56%, 58% and
42% success rates, while ERNIE falls sharply to 30%, 18% and
24%. R‐CCMARL also consistently achieves comparable or
higher returns in various settings than ERNIE, especially in
attack on all situation, where ERNIE starts to receive negative
reward for agent 1 and Agent 2.

In Figure 7, the rewards of the MARL systems are visualised as the
team reward. In the normal condition, shown in Figure 7a,
ERNIE achieves a team return of 323.36, while R‐CCMARL
demonstrates a 12% improvement, reaching 362.63. This perfor-
mance advantage becomes more evident under adversarial set-
tings. In Figure 7b, where Agent 1 is attacked, R‐CCMARL attains
159.90 in team reward, which is 25% higher than 127.85 of ERNIE.
In the more challenging scenario in Figure 7c, R‐CCMARL ach-
ieves 147.01, outperforming 126.12 of ERNIE by approximately
17%. In Figure 7d, R‐CCMARL reaches 163.74, showing a 32%
improvement over 123.76 by ERNIE. Most significantly in
Figure 7e where all agents are attacked, the performance of
ERNIE drops sharply to 55.93 while R‐CCMARL achieves 126.99,
an impressive 127% increase. Note that in Figure 7a,e, the sharp
initial drop in the team rewards simply indicates a failure case
occurred at an early stage of the evaluation.

To further demonstrate the impact of adversarial attacks on the
multi‐agent systems, we evaluate the deviation in actions
generated by the models under the strongest attack condition
compared to the normal condition in scenario 2. The action
deviation is assessed in terms of steering and throttle deviations.
As shown in Figure 8, the blue, red, and green curves represent
the action deviations of Agent 1, Agent 2 and Agent 3, respec-
tively. The agents show different time steps in Figure 8, as they
complete each episode at varying steps; for instance, in a suc-
cessful scenario, Agent 1 finishes first, followed by Agent 2, and
finally, Agent 3. This ordering is the result of the autonomous

TABLE 4 | Detailed individual performance comparison in normal
(no attack) observation condition (Scene 2).

Method Metrics Agent 1 Agent 2 Agent 3
ERNIE Success rate 0.81 0.74 0.68

Return 66.50 71.33 185.53

Risk −7.31 −0.70 −9.53

R‐CCMARL Success rate 0.80 0.76 0.80

Return 87.32 81.64 193.67

Risk −0.17 −0.83 −11.83

TABLE 5 | Detailed individual performance comparison in various attack conditions (Scene 2).

Attack on agent 1 Attack on agent 2 Attack on agent 3 Attack on all

Method Metrics
Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

Agent
1

Agent
2

Agent
3

ERNIE Success
rate

0.66 0.58 0.52 0.66 0.58 0.52 0.60 0.60 0.50 0.30 0.18 0.24

Return 21.97 23.22 82.66 29.01 30.02 67.09 18.65 35.81 69.30 −1.18 −7.08 64.19

Risk −0.04 −0.28 −5.33 −0.03 −1.06 −5.28 −0.04 −0.27 −1.19 −0.01 −0.60 −14.70

R‐CCMARL Success
rate

0.66 0.68 0.70 0.58 0.64 0.70 0.70 0.66 0.56 0.56 0.58 0.42

Return 34.37 30.94 94.59 22.31 35.22 89.45 39.14 28.84 95.76 35.18 29.09 62.74

Risk −5.61 −3.85 −0.41 −0.37 −0.31 −8.7 −0.33 −0.17 −12.33 −0.38 −0.28 −10.35
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negotiation of the MARL system, rather than being predefined.
It is evident that, in both steering and throttle actions, R‐
CCMARL exhibits smaller deviations between attacked and
normal actions compared to ERNIE, particularly in steering
control. In throttle control, while R‐CCMARL shows some
higher spikes than ERNIE, its overall deviation remains at a
relatively lower level. These lower action deviations indicate
stronger resilience to adversarial attacks, contributing to
enhanced robustness in multi‐agent scenarios.

Overall, the results from both scenarios highlight the robustness
and effectiveness of the proposed R‐CCMARL across varying
levels of environmental complexity and adversarial intensity,
demonstrating its efficiency in handling challenging multi‐agent
tasks.

4.2.2 | Risk Minimisation Analysis

The long‐term risk minimisation with risk assessment and CBF
constraint optimisation together with robust MARL shows sig-
nificant robustness to perturbations in comparison with the
nonrobust MAPPO. When focussing solely on the risk metric, R‐
CCMARL and its variant risk‐only model consistently demon-
strates superior performance in mitigating risk compared to
MAPPO across all attack scenarios. As demonstrated in Table 2,
in the ‘Attack on Agent 1’ scenario, MAPPO shows the highest
risk at −10.26, while the risk‐only model reduces it to −6.10, and
the proposed R‐CCMARL achieves the lowest risk at −5.61.
Similarly, in the more challenging ‘Attack on All’ scenario, the
risk of MAPPO remains high with values like −9.89 for Agent 1,
while the risk‐only model shows improvement, reducing it to

FIGURE 7 | Detailed comparisons between our proposed method R‐CCMARL and ERNIE in Scenario 2. We evaluate the multi‐agent system by
attacking different agents ((a) No agent attacked, (b) Agent 1 attacked, (c) Agent 2 attacked, (d) Agent 3 attacked and (e) All agents attacked) with the
same strength ε = 0.1, iteration = 20. The curve line is the average team reward while transparent area indicates standard deviation.

FIGURE 8 | Action deviation comparisons under all agents attacked condition and no attack condition in Scenario 2.
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−8.37. However, our approach significantly outperforms both by
further reducing the risk to −6.97. Combining the results shown
in Tables 2 and 3, across all situations, whether under heavy
attacks or in normal conditions, R‐CCMARL consistently shows
lower risk values, indicating its greater resilience to adversarial
conditions and ability to minimise performance degradation
more effectively than the other models. This highlights the
strength of our proposed constrained objective function in
enhancing the robustness of the multi‐agent reinforcement
learning system under adversarial attacks.

Figure 9 illustrates the team risks of the multi‐agent system
under no‐attack and all‐attack conditions in scenario 1 and
scenario 2. It can be observed that while certain agents in R‐
CCMARL tend to have higher individual risks compared to
the other two models, the overall team risk of R‐CCMARL
consistently remains the smallest. This highlights the effi-
ciency of the risk minimisation mechanism. Both R‐CCMARL
and its variant risk‐only model demonstrate superior risk con-
trol capabilities compared to MAPPO. Notably, in Figure 9a–c,
R‐CCMARL shows even greater effectiveness, as the CBF
constraint introduced identifies a smaller, safer action subset
compared to simple risk minimisation. In Figure 9b, the risk‐
only model outperforms MAPPO under heavy attack condi-
tions, indicating that risk minimisation identifies an action
subset that overlaps with the adversarial toleration subset. This
reveals the relevance between our proposed risk assessment to
adversarial defence mechanism, with the CBF further
enhancing its effectiveness. It is worth noting that in Figure 9d,
R‐CCMARL and ERNIE exhibit nearly identical average long‐
term risk. This occurs because ERNIE fails in most episodes,
leading to shorter episode lengths. As the agents stop, the risk
becomes zero, which results in a similar team risk value to R‐
CCMARL.

When considering the combined performance across all three
metrics—success rate, return, and risk, it is evident that our
method R‐CCMARL offers the most robust results. The lower

risk values, paired with higher success rates and long‐term
returns, demonstrate the effectiveness of our risk assessment
approach. Notably, the risk is positively correlated with both the
success rate and long‐term return: as the risk decreases, the
success rate and returns improve. This relationship highlights
how well R‐CCMARL handles adversarial conditions, with
reduced risks translating into better overall performance.

5 | Conclusion

In this paper, we introduce a novel approach for deep rein-
forcement learning based robust cooperative multi‐agent auton-
omous driving against observation perturbations. The realm of
autonomous driving and decision‐making models based on deep
reinforcement learning is constantly challenged by safety issues
arising from inevitable sensor failures or transitions between
domains. These challenges bear a resemblance to adversarial
attacks, as they potentially disrupt or compromise the agent's
ability to make accurate decisions in critical situations. To
approximate the worst‐case perturbation, we develop a white‐box
optimal method for generating adversaries, which has full access
to the parameters of the RL agent model, enabling the creation of
training samples for robust reinforcement learning. This method
is based on fast gradient sign method (FGSM), incorporating with
our collision risk maximum formulation. To more efficiently
attack the RL agent, we use iteration on FGSM rather than simply
enlarge the attack strength parameter ε to reduce the visibility of
the adversarial examples. After obtaining the perturbed obser-
vation, we introduce a Stochastic Games with perturbation to
formulate the multi‐agent intersection passing for autonomous
driving. We develop a mean‐filed theory supported information
sharing structure to enable global state and interaction aware-
ness. An efficient risk assessment is proposed and utilised in the
long‐term risk minimisation and as the control barrier function to
tolerated bounded perturbations also provides safety rewards as
feedback to MARL and help shape the policy. Furthermore, a
divergence‐based regulariser term is applied to mimic the per-
formance gap between nonadversarial states and adversarial
states. Experiment verifies the effectiveness of our proposed
method, and the advantage of the risk minimisation module and
the constraint optimisation in solving the multi‐agent intersec-
tion problems.
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