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 A B S T R A C T

Few-shot image classification aims at tackling a challenging but practical classification setting, where only 
few labelled images are available for training. Metric-based methods are main-stream solutions for few-shot 
image classification, but many of them extract features that are either irrelevant to target objects in the 
query images or insufficient to describe the local shape or structural patterns within images, which can lead 
to mis-identification of the target objects, especially when the images are of multiple objects. To resolve 
this issue, we propose the structure-relation mutual learning (SRML) network, which first learns both the 
intra-image structural features and the inter-image relational features in a parallel fashion via two parallel 
branches, the structural feature extractor (SFE) and the relational feature extractor (RFE), and then harnesses 
mutual learning to enable knowledge exchange between them. In such a manner, the structural features learnt 
from the SFE branch not only contain the structural patterns within the images, but also focus more on 
the target objects, guided by the relational knowledge from the RFE branch. In return, the RFE branch can 
exploit the more-focused structural knowledge to better match the target objects in the support and query 
images. We conduct extensive experiments on four few-shot classification benchmark datasets to showcase 
the superior classification of the proposed SRML network, achieving a 3.17% improvement in classification 
accuracy over the leading competitor, RENet Kang et al. (2021). The code of this work can be found in 
https://github.com/Rilliant7/SRML.
1. Introduction

Traditional deep learning methods for image classification rely on a 
substantial amount of annotated images to train models that can be well 
generalised to images unseen in the training phase. However, the cost of 
annotating such an amount of images is usually prohibitive in practice. 
Hence, few-shot image classification methods methods have emerged 
to take up this challenge: to learn from few labelled images and make 
accurate predictions on images from classes never seen during training 
[1,2]. Few-shot image classification has broad application potential. For 
example, in hyperspectral image classification, labelling thousands of 
pixels per image is impractical [3]. Similarly, annotated medical images 
for classification are often limited [4].

Deep metric learning is popular in few-shot image classification 
methods, which aims to learn discriminative feature embeddings with 
a proper metric space for classifying test images [5]. Classical metric-
based methods include the matching networks (MatchNet) [6] and 
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the prototypical networks (ProtoNet) [7] based on the pre-defined 
cosine similarity and Euclidean distance, respectively. Metrics can also 
be learnt in more advanced ways. For example, the relation network 
(RelationNet) [8] learns the metric function from a relation module. 
The deep nearest neighbour neural network (DN4) [9] utilises a novel 
image-to-class metric based on local descriptors. The bi-similarity net-
work (BSNet) [10] adopts a dual similarity network to learn different 
types of similarities. To enhance the discriminative power of the ex-
tracted features, extensive works focus on designing novel attention 
schemes to assign higher weights to discriminative spatial features or 
channels. For instance, Lee et al. [11] propose the task discrepancy 
maximisation (TDM) module to learn task-wise channel weights to 
highlight discriminative channels. Song et al. [12] introduce a fusion 
spatial attention method to fuse discriminative information in both the 
image space and the embedded space.
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Fig. 1. An example of the features captured (upper row:) by the sequentially combined 
SCR and CCA modules in RENet [16] and (lower row:) by the parallely combined SFE 
and RFE branches in our proposed SRML network. The class of the input image is dog.

Although involving attention schemes can raise few-shot classifi-
cation accuracy, many of these methods extract features of support 
and query sets separately. This results in potential mis-identification 
of objects in the meta-test phase, especially when the test images 
contain multiple objects. Recall that in few-shot image classification, 
test images are from classes different from those of the training images. 
Thus the multi-object test images containing some objects also in the 
training images can be easily mis-classified, since the extracted features 
tend to stress the objects that have been seen in the training phase. 
To alleviate this issue, Hou et al. [13] propose the cross attention 
network (CAN) to match the semantically related objects in the support 
and query sets and assign more attention to the relevant objects. Such 
matching in CAN relies on the correlation layer to calculate the cosine 
similarities between each spatial position of support and query features 
and identify the related spatial positions. Following a similar logic, 
Doersch et al. [14] propose the CrossTransformers (CTX) that can 
spatially align support and query images, while enhancing the base 
representation via self-supervised learning.

However, barely learning the spatial relationships between support 
and query images from cross-attention modules ignores the vital shape 
patterns or structural information within images to assist object identi-
fication. The same object in different images can have different textures 
and colours, but their shapes or structures should remain similar. For 
example, the same complex action can be performed by different people 
wearing the different clothes in different backgrounds [15]. To extract 
the crucial structural patterns for object detection, Shechtman and 
Irani [15] introduce the local self-similarity descriptor via calculating 
the correlations between each pixel and its surrounding neighbour-
ing area. Utilising the idea of local self-similarity, Kang et al. [16] 
propose the relational embedding network (RENet) to extract the self-
correlational representations (SCR) to describe the structural patterns 
within images, and employ these features to match the related objects 
across support and query images through the cross-correlational atten-
tion (CCA) module. RENet demonstrates improvements on classification 
accuracy compared with CAN and CTX with only cross-attentions.

In RENet, the structural patterns captured in the SCR module usually 
describe all objects and backgrounds within one image and can contain 
misleading patterns that are irrelevant to the object to be classified. 
This could bring difficulties to the CCA module to explore the relation-
ship between related objects, because of the sequential combination 
of the SCR and CCA modules. For example, in Fig.  1(b) and (c), the 
features stressed by the SCR module in RENet not only include the 
target dog, but also pay attention to the human face and background. 
This leads to an ambiguously focused area in the CCA module that is 
not entirely on the dog.

To resolve this problem, we propose the structure-relation mutual 
learning (SRML) network to encourage interactions between the struc-
tural patterns learnt within images and the relational features to match 
2 
target objects across images. To this end, rather than sequentially 
combining the self- and cross-correlational modules, we structure two 
parallel branches to learn the within-image and cross-image informa-
tion, while allowing knowledge exchange between them via mutual 
learning [17]. Specifically, we employ the bidirectional knowledge ex-
change (BKE) learning to facilitate the interactions between the features 
extracted by the structural feature extractor (SFE) and relational feature 
extractor (RFE) branches. To illustrate the effectiveness of our proposed 
framework, we adopt the readily available SCR and CCA modules in 
RENet as feature extractors for the two branches, respectively. The two 
parallel branches are supervised by their own classification losses to 
learn the corresponding discriminative features separately. Moreover, 
the BKE learning strategy forces the outputs of the two branches 
gradually approach each other by minimising the Kullback–Leibler 
(KL) divergence. This makes the within-image structural information 
focuses more on the target objects, which can further help the RFE 
branches to identify the correct objects. As illustrated in Fig.  1(e) and 
(f), the SFE branch mainly extracts the structural features of the dog 
and the RFE branch further limits the focusing area for correct clas-
sification. Extensive experiments and ablation studies on four publicly 
available datasets showcase the superior classification performance of 
our method.

To sum up, the contributions of our work are three-fold:

• We propose the novel SRML network for few-shot image classi-
fication, by leveraging the complementary information between 
the structural patterns within images and the relational features 
between the matched objects across images. The parallel inte-
gration of the SFE and the RFE with knowledge exchange can 
generate discriminative features with precise identification of 
vital spatial regions for classification.

• To encourage the interactions between the two modules, we 
propose to utilise the BKE learning that can help calibrate biases 
introduced by individual branches.

• We conduct extensive experiments to validate the effectiveness of 
SRML. The results demonstrate that the parallel integration of the 
SFE and RFE branches with BKE learning leads to improved classi-
fication performance compared with the state-of-the-art methods 
for few-shot image classification.

The rest of the paper is organised as follows. In Section 2, we discuss 
the existing methods that are closely related to our work. In Section 3, 
we present the technical details of the proposed SRML network. We 
then show the extensive experimental results and ablation studies in 
Section 4. Lastly, we draw conclusions in Section 5.

2. Related work

In this section, we first present the state-of-the-art metric-based 
methods for few-shot image classification. We then discuss literature 
utilising self-correlational attentions and cross-correlational attentions. 
Finally, we introduce mutual learning for knowledge exchange.

2.1. Metric-based few-shot image classification

Metric-based methods calculate the distance between the query 
image and the support set based on a given metric, and assign the query 
image to the nearest class [18]. For instance, the matching networks 
(MatchNet) [6] utilise the external memory to enhance the neural 
network and compute the cosine between support samples and query 
samples for classification. The prototypical networks (ProtoNet) [7] 
compute the mean of support images for each class as the class proto-
types and classify the query image based on its Euclidean distances to 
the class prototypes. These models are based on the pre-defined metrics; 
however, the pre-defined metrics are usually not suitable for real-world 
tasks.
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To address this issue, Sung et al. [8] propose the relation network 
(RelationNet) based on a convolutional module to find the metric 
function. Li et al. [10] argue that a single metric may not be sufficient 
to learn discriminative features, thus they propose the bi-similarity net-
work (BSNet), which combines two different distance metric modules to 
generate a more compact and discriminative feature space. Cross-view 
deep nearest neighbour neural network (CDN4) [18] designs four cross-
view metric pairs to make features more discriminative. Dong et al. [2] 
propose to use cross-image semantic alignment to reduce intra-class 
variation.

Besides learning the metric adaptively from data, more works aim 
to incorporate attention mechanisms to improve the classification per-
formance. For example, Lee et al. [11] proposed the task discrepancy 
maximisation (TDM) module for fine-grained few-shot classification, 
which highlights channels that encode class-specific information to 
locate the discriminative regions. Lai et al. [19] notice that the CNN 
structure produces inaccurate attention maps based on local features, 
and thus they develop a novel SpatialFormer structure that generates 
more accurate attention regions based on global features.

To make the extracted features more discriminative, the relationship 
between samples is exploited in a plug-and-play module, enhancing 
transfer learning and meta-learning based few-shot classification frame-
works [20]. A feature re-abstraction embedding (FRaE) module is also 
developed to effectively amplify the difference between the feature 
information of different categories [1].

2.2. Cross-attentions and self-attentions

Cross attentions usually aim to exploit the spatial similarities be-
tween support and query images that can help to match the target 
objects. Hou et al. [13] introduce the cross attention network (CAN) 
to identify the target objects in the unseen classes. It generates cross-
attention maps to match support features and query features, making 
the extracted features more discriminative. Doersch et al. [14] propose 
a transformers-based neural network named CrossTransformers to find 
the coarse spatial correspondences between the query and support fea-
tures, and perform classification by computing the distances between 
the corresponding features.

However, only considering cross-correlational attentions ignores the 
structural patterns within images and can lead to mis-identification. 
To solve this problem, self-correlational attentions are involved, which 
measure the similarity between a local region in an image and the other 
parts of the same image in terms of structure or shape. Some works 
only utilise the self-correlational attentions. For example, Afrasiyabi 
et al. [21] improve the traditional encoder architectures by embedding 
the self-attention mechanisms to extract a set of feature vectors for 
images, enabling better representation of images. Recently, Huang and 
Choi [22] use the self-attention module to obtain more representative 
class prototypes than ProtoNet.

Furthermore, there are other works combining the two types of 
attentions to improve the few-shot classification performance. For in-
stance, RENet [16] combines the two types of attentions in a sequential 
manner and utilises the structural patterns to obtain the cross-attention 
maps. Moreover, Huang et al. [23] utilise the self-correlational at-
tention to extract prototype features for each class from the support 
set. They then combine the self-attention of support images and the 
mutual attention between prototypes and query images to jointly attend 
to features of different samples with the same class, expanding class 
prototypes for more stable feature representations.

In this paper, we propose a novel structure that involves the two 
types of attentions in a parallel manner and allows interactions between 
them to obtain more discriminative features. Compared with CAN 
and CTX, our method incorporates structural patterns through self-
correlation attention. Unlike RENet, we adopt a parallel structure to 
improve the classification of multi-object images.
3 
2.3. Mutual learning for knowledge exchange

Knowledge distillation is a model compression technique that aims 
to train a small student model under the guidance of a large teacher 
model, allowing the small student model to achieve comparable per-
formance with low computational costs and storage requirements. Ra-
jasegaran et al. [24] propose the self-supervised knowledge distillation 
approach to learn representative feature embeddings that can encode 
inter-class relationships for few-shot image classification. Instead of 
transferring knowledge from the teacher model to the student model, 
Zhang et al. [17] propose to let students learn collaboratively and teach 
each other throughout the training process.

Inspired by this idea, in this paper, we propose to utilise bidirec-
tional knowledge distillation to facilitate mutual knowledge transfer 
between the SFE and RFE branches, allowing them to learn useful 
knowledge from each other while learning their own specific knowl-
edge.

3. Methodology

In this section, we first formulate the few-shot image classification 
problem in Section 3.1. We then describe the technical details of the 
proposed SRML network, including the overall structure in Section 3.2, 
the SFE in Section 3.3, the RFE in Section 3.4 and the bidirectional 
knowledge exchange (BKE) learning in Section 3.5.

3.1. Problem formulation

This paper follows the 𝑁-way 𝐾-shot setting for few-shot image 
classification, where we train the model by a series of classification 
tasks with 𝑁 classes and each with 𝐾 images. Specifically, we denote 
the dataset as  = {

(

𝐱𝑖, 𝑦𝑖
)𝑁𝑇
𝑖=1 , 𝑦𝑖 ∈ }, where 𝑥𝑖 denotes the 𝑖th image, 

𝑦𝑖 is its corresponding label, 𝑁𝑇  represents the total number of classes 
and  represents the set of all possible class labels. We randomly divide 
it to a training set train, a validation set val and a test set test. The 
label sets of the three subsets do not intersect with each other. To form 
a task, we randomly divide the training set to a support set  with 𝑁
classes of 𝐾 images and a query set  with 𝑁 classes of 𝑞 images. Note 
that  and  share the same label sets. The same procedure follows for 
the validation set to choose the best performed model and for the test 
set to evaluate the classification performance of the chosen model on 
the unseen classes.

3.2. The overall structure of the SRML network

We illustrate the overall structure of the SRML network in Fig.  2. 
The support and query images are input to a shared embedding module 
to extract the base representations 𝐙𝑆 and 𝐙𝑄, respectively. Hereafter, 
we adopt the subscripts 𝑆 and 𝑄 to denote the quantities related to 
the support and query images, respectively. 𝐙𝑆 and 𝐙𝑄 are then fed to 
two parallel branches: the SFE branch to extract the structural patterns 
within images and the RFE branch to exploit the relationship between 
the matched objects across images. Note that in this paper, the SFE and 
RFE branches follow the same structures of the SCR and CCA modules 
in RENet [16], respectively.

In SFE, we utilise the local self-correlation calculation to obtain 
the similarities between each pixel and its surrounding area for each 
image separately, and extract the self-correlation features, 𝐅intra𝑆  and 
𝐅intra𝑄 , through a convolutional block. In RFE, we identify the correlated 
spatial regions across the support and query images through a cross 
attention operation and obtain 𝐟 inter𝑆  and 𝐟 inter𝑄 . Note that 𝐟 inter𝑆  and 𝐟 inter𝑄
are paired; that is, for each pair of support and query images, we have 
a specific pair of features.

To encourage knowledge exchange between the two branches, we 
involve the BKE learning strategy to connect them. The two branches 
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Fig. 2. The overall structure of the SRML network. The support and query images pass through a shared embedding block to generate the base representations 𝐙𝑆 and 𝐙𝑄, 
respectively. These base representations are then fed to the RFE branch and the SFE branch separately. The RFE branch captures the relational features 𝐟 inter𝑆  and 𝐟 inter𝑄  to assist 
identify target objects, while the SFE branch learns the structural features 𝐅inter𝑆  and 𝐅intra𝑄  to better describe the images. The two branches are supervised by their own classification 
losses, 𝐿inter and 𝐿intra, respectively. To encourage BKE between the two branches, we calculate the cosine similarities between the query feature and the class prototypes for both 
branches, and require their distributions to approach each other via minimising the mimicry loss 𝐿𝐵𝐾𝐸 based on the KL divergence.
Fig. 3. The structures of the (a) SFE and (b) RFE branches.
are trained by two different classification losses, 𝐿intra and 𝐿inter, 
respectively, and the BKE learning is guided by 𝐿BKE.

In the end, we adopt the cosine similarity as the metric to compare 
the query feature and the class prototypes. In the meta-test phase, the 
support and query images of the unseen classes are fed to the trained 
model. The cosine similarities between the query image and the class 
prototypes of the two branches, 𝐬intra and 𝐬inter, are calculated. The sum 
of 𝐬intra and 𝐬inter is adopted as the final score, i.e. the query image is 
assigned to the class with the highest sum of similarities.

3.3. The SFE branch

The SFE branch aims to learn feature representations within the 
images, with a focus on capturing the internal structural patterns. In 
this section, we omit the subscripts 𝑆 and 𝑄, as the operations are the 
same for support and query images.

For a given base representation 𝐙 ∈ R𝐻×𝑊 ×𝐶 , where 𝐻 and 𝑊
represent the height and width of the feature map, respectively, and 
𝐶 represents the number of channels, we process its spatial positions 
as follows. First, we calculate the cosine similarities between each 
4 
position and its neighbouring window of size 𝑀 × 𝐷 to capture the 
local correlations, where 𝑀 and 𝐷 are the height and width of the 
neighbouring window, respectively. To handle positions on the edges 
of the feature map, zero-padding is applied.

Next, these cosine similarities are aggregated to a tensor 𝐑intra ∈
R𝐻×𝑊 ×𝑀×𝐷×𝐶 , containing rich information about the structural pat-
terns within images. Then, the self-correlation learner 
𝑔 ∶ R𝐻×𝑊 ×𝑀×𝐷×𝐶 → R𝐻×𝑊 ×1×1×𝐶 is applied to 𝐑intra to extract the 
structural features, as illustrated in Fig.  3(a). This learner applies a 
series of convolutions along the 𝑀 ×𝐷 dimensions of 𝐑intra as follows. 
Firstly, a point-wise convolutional layer is applied to map 𝐑intra to a 
lower-dimensional space with less channels, i.e. 𝐶 ′ < 𝐶 in Fig.  3(a). 
Secondly, two two-dimensional convolutions are applied to extract the 
high-level convolved features. Finally, a point-wise convolution is used 
again to restore the channel dimension to 𝐶. By doing so, the self-
correlation learner can aggregate the local self-correlation patterns, 
resulting in 𝑔 (𝐑intra) ∈ R𝐻×𝑊 ×1×1×𝐶 . To incorporate the appearance 
details of the images, we combine the base representation 𝐙 with 
𝑔
(

𝐑intra
) to obtain the structural features: 

𝐅intra = �̂�
(

𝐑intra
)

+ 𝐙 ∈ R𝐻×𝑊 ×𝐶 , (1)
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where �̂� (𝐑intra) ∈ R𝐻×𝑊 ×𝐶 is 𝑔 (𝐑intra) after squeezing.
In the last step of SFE, we compute the cosine similarity between 

the query feature and the 𝑛th class prototype: 

𝑠intra𝑛 =
(𝐩intra𝑛 )𝑇 𝐟 intra𝑄

‖𝐩intra𝑛 ‖2‖𝐟 intra𝑄 ‖2
, 𝑛 ∈ {1, 2,… , 𝑁}, (2)

where 𝐩intra𝑛  is the flattened vector of the 𝑛th class prototype, i.e. the 
simple average of all features 𝐅intra𝑆  in the 𝑛th class of the support set, 
and 𝐟 intra𝑄  is the flattened vector of 𝐅intra𝑄 .

3.4. The RFE branch

The RFE branch aims to match the target object information across 
support and query images and facilitate subsequent classification. RFE 
computes the cross correlations for all spatial positions between support 
and query features and assign higher weights to those positions related 
to the target objects.

We illustrate the structure of the RFE branch in Fig.  3(b). First, simi-
larly to the SFE branch, we reduce the number of channels of the input 
features using a 1 × 1 convolution, resulting in �̂�𝑆 ∈ R𝐻×𝑊 ×𝐶′  and 
�̂�𝑄 ∈ R𝐻×𝑊 ×𝐶′ , where 𝐶 ′ < 𝐶. Then, we obtain the spatial correlations 
between �̂�𝑆 and �̂�𝑄 by calculating the cosine similarities between the 
𝐶 ′ dimensional vectors of each spatial position and storing them in the 
cross correlation tensor 𝐑inter ∈ R𝐻×𝑊 ×𝐻×𝑊 ×1. Next, we utilise two 
four-dimensional convolution operations to extract informative features 
from 𝐑inter: 

�̂�inter = ℎ(𝐑inter) ∈ R𝐻×𝑊 ×𝐻×𝑊 ×1. (3)

Now we are prepared to obtain the cross-correlation attention maps 
to highlight the most discriminative spatial regions to identify the 
target objects. For the 𝑙th spatial position of the query feature map, 
we take its correlations with all spatial positions in the support feature 
map from �̂�inter and denote them as a vector 𝐪𝑙 ∈ R(𝐻×𝑊 ) with 𝑙 ∈
{1, 2,… ,𝐻 ×𝑊 }. The attention of the 𝑙th spatial position of the query 
feature is then calculated as 

𝑎𝑄,𝑙 =
1

𝐻𝑊

𝐻×𝑊
∑

𝑡=1

exp
(

𝑞𝑙,𝑡∕𝛾
)

∑𝐻×𝑊
𝑙=1 exp

(

𝑞𝑙,𝑡∕𝛾
)
, (4)

where 𝑞𝑙,𝑡 is the 𝑡th value in 𝐪𝑙 and 𝑡 ∈ {1, 2,… ,𝐻 × 𝑊 } and 𝛾 is the 
parameter for the soft-max function. This operation aims to obtain the 
average probability that each position of the query feature matches to 
the overall support feature. We aggregate all 𝑎𝑄,𝑙 to form the cross-
correlation attention map, 𝐀𝑄 ∈ R𝐻×𝑊  for the query feature. Following 
a similar strategy but changing the positions of query and support 
features, we can obtain the attention map 𝐀𝑆 ∈ R𝐻×𝑊  for the support 
set as well.

The final embeddings of the RFE branch, 𝐟 inter𝑆 ∈ R𝐶 and 𝐟 inter𝑄 ∈
R𝐶 , are obtained via assigning higher weights to spatial positions 
corresponding to the target object based on the attention maps:

𝑓 inter𝑆,𝑐 =
∑

vec(𝐀𝑆 ⊙ 𝐙𝑐
𝑆 ),

𝑓 inter𝑄,𝑐 =
∑

vec(𝐀𝑄 ⊙ 𝐙𝑐
𝑄), (5)

where 𝑐 ∈ {1, 2,… , 𝐶} denotes the 𝑐th channel of the feature map, vec
is the vectorisation operation, ⊙ is the element-wise Hadamard product, 
and the sum operation is over all elements in the vector.

Lastly, similarly to the SFE branch, we obtain the similarities be-
tween the query feature and the 𝑛th class prototype: 

𝑠inter𝑛 =
(𝐩inter𝑛 )𝑇 𝐟 inter𝑄

‖𝐩inter𝑛 ‖2‖𝐟 inter𝑄 ‖2
, 𝑛 ∈ {1, 2,… , 𝑁}, (6)

where 𝐩inter𝑛  is the simple average of all features 𝐟 inter𝑆  in the 𝑛th class 
of the support set.
5 
3.5. The BKE learning

To encourage the interactions between the features obtained from 
the SFE and RFE branches, we propose to tailor the mutual learning 
strategy to enable knowledge transfer in both directions. In this way, 
the within-image structural features of the SFE branch can shift their fo-
cuses to the target objects, because of the participation of the relational 
information from the RFE branch. In return, the relational features can 
be better learnt and the target objects can be precisely matched based 
on the more focused structural features.

Specifically, we force the distributions of 𝐬intra in (2) and 𝐬inter in 
(6) to be as similar as possible based on the Kullback–Leibler (KL) 
divergence:

𝐷𝐾𝐿
(

𝐬intra ∥ 𝐬inter
)

=
𝑁
∑

𝑛=1
𝑠intra𝑛 log

𝑠intra𝑛

𝑠inter𝑛
,

𝐷𝐾𝐿
(

𝐬inter ∥ 𝐬intra
)

=
𝑁
∑

𝑛=1
𝑠inter𝑛 log

𝑠inter𝑛

𝑠intra𝑛
. (7)

By minimising the mimicry loss: 
𝐿BKE = 𝐷𝐾𝐿(𝐬intra ∥ 𝐬inter) +𝐷𝐾𝐿(𝐬inter ∥ 𝐬intra), (8)

we expect that the outputs of the SFE and RFE branches gradually 
approach each other, thereby exchange the knowledge between each 
other.

3.6. Loss function

Besides the mimicry loss to match the distributions of the simi-
larities to the class prototypes, the SFE and RFE branches are also 
supervised by their own classification losses, 𝐿intra and 𝐿inter, respec-
tively. Each classification loss consists of two parts, the metric-based 
loss and the anchor-based loss [16]: 
𝐿m = 𝜆𝐿mmetric + 𝐿maux, (9)

where 𝜆 = 1.5 and m ∈ {intra, inter}. The metric loss and the anchor 
loss are calculated as 

𝐿mmetric = −
𝑁×𝑞
∑

𝑟=1
log𝑃metric(�̂�𝑙 = 𝑦𝑙|𝐱𝑄,𝑟), (10)

and 

𝐿maux = −
𝑁×𝑞
∑

𝑟=1
log𝑃aux(�̂�𝑙 = 𝑦𝑙|𝐱𝑄,𝑟). (11)

Here 

𝑃metric(�̂� = 𝑛|𝐱𝑄) =
exp(𝑠m𝑛 ∕𝜏)

∑𝑁
𝑛′=1 exp(𝑠

m
𝑛′∕𝜏)

, (12)

and 

𝑃aux(�̂� = 𝑛|𝐱𝑄) =
exp(𝐰𝑇

𝑛 𝐟
m
𝑄 + 𝐛𝑛)

∑𝑁
𝑛′=1 exp(𝐰

𝑇
𝑛′ 𝐟

m
𝑄 + 𝐛𝑛′ )

, (13)

where 𝜏 = 0.2 and 𝐰 and 𝐛 are hyperparameters to learn.
Finally, the proposed SRML network is trained end-to-end by min-

imising the overall loss 𝐿: 
𝐿 = 𝛼𝐿intra + 𝛽𝐿inter + 𝜔𝐿BKE, (14)

where 𝛼, 𝛽, and 𝜔 are the learnable hyperparameters that control the 
relative importance of each component.

Hence, in SRML, each branch learns their own discriminative fea-
tures through the corresponding classification losses, while exploiting 
the useful information from each other through the BKE loss. The 
convergence behaviour of the loss function is visualised in Fig.  4, 
together with the corresponding training accuracy.
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Fig. 4. The training loss and training accuracy of SRML on CUB-200-2011.
Table 1
The 5-way few-shot classification accuracies on the CUB-200–2011, Stanford-Cars, Stanford-Dogs and Flowers datasets for the Conv-4 backbone.
 Methods CUB-200–2011 Stanford-Dogs Stanford-Cars Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
MatchNet [6] 60.06 ± 0.88 74.57 ± 0.73 46.10 ± 0.86 59.79 ± 0.72 44.73 ± 0.77 64.74 ± 0.72 71.89 ± 0.90 85.46 ± 0.59  
ProtoNet [7] 68.27 ± 0.52 83.89 ± 0.33 48.85 ± 0.45 66.89 ± 0.40 59.35 ± 0.47 77.82 ± 0.34 69.34 ± 0.56 83.51 ± 0.41  
RelationNet [8] 63.94 ± 0.92 77.87 ± 0.64 47.11 ± 0.90 65.56 ± 0.74 45.83 ± 0.87 68.01 ± 0.78 69.50 ± 0.96 83.91 ± 0.63  
DN4 [9] 57.45 ± 0.89 84.41 ± 0.58 39.08 ± 0.76 69.81 ± 0.69 34.12 ± 0.68 87.47 ± 0.47 71.15 ± 0.94 88.86 ± 0.56  
Baseline++ [29] 62.36 ± 0.84 79.08 ± 0.61 44.49 ± 0.70 64.48 ± 0.66 46.82 ± 0.76 68.20 ± 0.72 70.54 ± 0.84 86.63 ± 0.58  
DeepEMD [30] 64.08 ± 0.50 80.55 ± 0.71 46.71 ± 0.49 65.74 ± 0.63 61.63 ± 0.27 72.95 ± 0.38 – –  
DSN [31] 71.57 ± 0.92 83.51 ± 0.60 44.33 ± 0.81 60.04 ± 0.68 48.16 ± 0.86 60.77 ± 0.75 67.71 ± 0.92 84.58 ± 0.70  
CTX [14] 72.61 ± 0.21 86.23 ± 0.14 57.86 ± 0.21 73.59 ± 0.16 66.35 ± 0.21 82.25 ± 0.14 – –  
BSNet [10] 62.84 ± 0.95 85.39 ± 0.56 43.42 ± 0.86 71.90 ± 0.68 40.89 ± 0.77 73.47 ± 0.75 72.79 ± 0.91 84.93 ± 0.64  
FRN [32] 73.38 ± 0.21 88.23 ± 0.13 58.48 ± 0.23 76.29 ± 0.16 59.41 ± 0.22 80.60 ± 0.15 72.91 ± 0.22 88.89 ± 0.13  
TDM [11] 74.39 ± 0.21 88.89 ± 0.13 60.62 ± 0.22 77.39 ± 0.16 69.05 ± 0.22 87.79 ± 0.12 73.57 ± 0.23 88.66 ± 0.14  
LCCRN [33] 75.72 ± 0.21 88.42 ± 0.13 63.08 ± 0.22 78.38 ± 0.15 72.92 ± 0.21 89.34 ± 0.11 74.28 ± 0.22 89.39 ± 0.14 
Ours 79.84 ± 0.45 90.68 ± 0.26 65.72 ± 0.50 80.80 ± 0.34 78.73 ± 0.42 90.89 ± 0.23 75.07 ± 0.51 88.66 ± 0.31  
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. Experiments

.1. Datasets

In the experiments, we evaluate the effectiveness of our method 
n four fine-grained datasets, CUB-200-2011 [25], Stanford-Dogs [26], 
tanford-Cars [27] and Flowers [28].
The CUB-200-2011 dataset consists of images of 200 bird species, 

ith a total of 11,788 images. We randomly divide it to a training set 
ith 100 classes, a validation set with 50 classes and a test set with 50 
lasses.
The Stanford-Dogs dataset includes images of 120 different dog 

reeds from around the world, with a total of 20,580 images. We 
andomly divide it to a training set with 60 classes, a validation set 
ith 30 classes and a test set with 30 classes.
The Stanford-Cars dataset consists of images of 196 different car 

ategories, including various years, brands, and models, with a total of 
6,185 images. We randomly split it to a training set with 130 classes, 
 validation set with 17 classes and a test set with 49 classes.
The Flowers dataset contains 8189 images of 102 different flower 

ategories. We randomly split it to a training set with 51 classes, a 
alidation set with 26 classes and a test set with 25 classes.

.2. Implementation details

In all experiments, the input images are resized to 84 × 84. Random 
esized cropping and random horizontal flipping are applied during 
raining. In line with previous works on few-shot classification [6–8], 
e employ ResNet-12 and Conv-4 as the backbones. We train the model 
ased on the PyTorch deep learning framework using NVIDIA RTX 
090. We conduct experiments using 5-way 1-shot (𝑁 = 5, 𝐾 = 1) and 
-way 5-shot (𝑁 = 5, 𝐾 = 5) settings, with 𝑞 = 15 query images per 
lass. During training, the loss is minimised using an SGD optimiser 
ith a momentum of 0.9 and a weight decay of 5𝑒−4. The initial 
c

6 
earning rate is set to 0.1. Following RENet, we train the network 
or 80 epochs in 1-shot settings and 60 epochs in 5-shot settings. In 
he testing phase, we perform few-shot classification tasks on 2000 
andomly sampled episodes and report the average classification accu-
acies within the corresponding 95% confidence intervals. Our model 
s trained end-to-end without pretraining and required no fine-tuning 
uring testing.

.3. Comparison with the state-of-the-art methods

We compare the proposed SRML network with the following state-
f-the-art (SOTA) methods: MatchNet [6], ProtoNet [7], Relation-
et [8], DN4 [9], Baseline++ [29], DeepEMD [30], DSN [31], CAN
13], CTX [14], RENet [16], BSNet [10], FRN [32], TDM [11], FEAT
34], MixtFSL [35], VFD [36], AGPF [37] and LCCRN [33]. The classifi-
ation accuracies and the corresponding 95% confidence intervals [38] 
re reported in Tables  1 and 2 for the fine-grained datasets under the 
onv-4 and ResNet-12 backbones, respectively.
It is obvious that our proposed SRML dominates other state-of-

he-art methods for all scenarios, except for 1-shot classification of 
tanford-Dogs and 5-shot classification of Flowers. Specifically, we 
ave the following observations. First, methods matching target objects 
n support and query sets, such as RENet and SRML, usually perform 
etter than those without this relational information, such as MatchNet, 
rotoNet and RelationNet, which demonstrates the importance of in-
olving the relational information in classification. Second, SRML tends 
o outperform methods that only learn the relational information about 
he target objects, such as CTX and CAN, which suggests that utilis-
ng the structural information within images is equally important for 
lassification. Lastly, SRML can achieve higher classification accuracies 
han RENet, which demonstrates that it is crucial to encourage mutual 
earning between the two types of information.
To formally verify the statistically significance of our results, we 

onduct one-sided paired 𝑡 test with 𝐻 ∶ 𝜇 ≤ 𝜇  and 𝐻 ∶
0 Ours SOTA 1
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Table 2
The 5-way few-shot classification accuracies on the CUB-200–2011, Stanford-Cars, Stanford-Dogs and Flowers datasets for the ResNet-12 backbone. 
 Methods CUB-200–2011 Stanford-Dogs Stanford-Cars Flowers

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 MatchNet [6] 71.87 ± 0.85 85.08 ± 0.57 66.48 ± 0.88 79.57 ± 0.63 73.32 ± 0.93 87.61 ± 0.55 75.70 ± 0.88 87.61 ± 0.55  
 ProtoNet [7] 77.96 ± 0.47 89.27 ± 0.27 66.23 ± 0.49 81.60 ± 0.34 82.23 ± 0.42 92.11 ± 0.22 73.91 ± 0.52 86.24 ± 0.36  
 RelationNet [8] 63.94 ± 0.92 77.87 ± 0.64 47.35 ± 0.88 66.20 ± 0.74 69.67 ± 1.01  84.29 ± 0.68 69.51 ± 1.01 86.84 ± 0.56  
 CTX [14] 80.39 ± 0.20 91.01 ± 0.11 73.22 ± 0.22 85.90 ± 0.13 85.03 ± 0.19 92.63 ± 0.11 – –  
 CAN [13] 77.42 ± 0.49 87.61 ± 0.30 49.14 ± 0.52 63.08 ± 0.43 25.64 ± 0.32 35.31 ± 0.25 61.36 ± 0.58 73.12 ± 0.49  
 FEAT [34] 73.27 ± 0.22 85.77 ± 0.14 – – – – – –  
 DeepEMD [30] 75.65 ± 0.83 88.69 ± 0.50 67.59 ± 0.30 83.13 ± 0.20 73.30 ± 0.29 88.37 ± 0.17 70.00 ± 0.35 83.63 ± 0.26  
 RENet [16] 80.50 ± 0.44 91.11 ± 0.24 71.53 ± 0.48 85.92 ± 0.30 86.04 ± 0.39 94.43 ± 0.18 77.81 ± 0.46 89.45 ± 0.30  
 MixtFSL [35] 67.86 ± 0.94 82.18 ± 0.66 67.26 ± 0.90 82.05 ± 0.56 58.15 ± 0.87 80.54 ± 0.63 72.60 ± 0.91 86.52 ± 0.65  
 VFD [36] 79.12 ± 0.83 91.48 ± 0.39 63.65 ± 0.92 78.13 ± 0.62 77.52 ± 0.85 90.76 ± 0.46 76.20 ± 0.92 89.90 ± 0.53  
 AGPF [37] 78.73 ± 0.84 89.77 ± 0.47 72.34 ± 0.86 84.02 ± 0.57 85.34 ± 0.74 94.79 ± 0.35 – –  
 Ours 83.05 ± 0.43 92.74 ± 0.23 72.97 ± 0.47 86.01 ± 0.30 87.49 ± 0.36 95.34 ± 0.16 79.82 ± 0.47 91.97 ± 0.26 
Table 3
The results of the one-sided paired 𝑡-test to compare our method with SOTA methods. 4 indicates 𝑝 < 0.05.
 Ours vs. * CUB-200–2011 Stanford-Cars Stanford-Dogs Flowers

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 
 ProtoNet [7] 4 4 4 4 4 4 4 4  
 CAN [13] 4 4 4 4 4 4 4 4  
 RENet [16] 4 4 4 4 4 4 4 4  
 VFD [36] 4 4 4 4 4 4 4 4  
Table 4
The ablation studies on the SFE and RFE branches and the BKE learning strategy.
 SFE RFE BKE CUB-200–2011 Stanford-Cars Stanford-Dogs Flowers

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 
 (a) 7 7 7 80.41 90.85 84.67 93.16 70.54 84.11 75.60 87.58  
 (b) 4 7 7 81.50 92.04 85.84 94.73 72.31 85.30 78.66 91.14  
 (c) 7 4 7 80.56 91.35 86.82 94.88 71.33 84.89 78.07 89.46  
 (d) 4 4 7 82.55 92.45 86.97 95.05 72.49 85.60 79.06 91.37  
 SRML 4 4 4 83.05 92.74 87.49 95.34 72.97 86.01 79.82 91.97 
𝜇Ours > 𝜇SOTA, where 𝜇 is the mean accuracy. We compare with the 
major competitors in Table  2. The results of these tests are reported 
in Table  3, with4indicating 𝑝 < 0.05, i.e. we reject 𝐻0 with strong 
confidence.  Clearly, our method is significantly better than ProtoNet, 
CAN, RENet and VFD for all datasets.

To sum up, SRML demonstrates superior classification performance 
for fine-grained datasets over the state-of-the-art methods.

4.4. Ablation studies

4.4.1. The impact of sfe, RFE and BKE
In this section, we conduct a series of ablation experiments to 

evaluate the impact of different components of the proposed method on 
its classification performance, and summarise the results in Table  4. It is 
clear that utilising all three components, the SFE and RFE branches and 
the BKE learning strategy, achieves the best classification accuracies 
on all four datasets. In addition, we also observe that scenario-(b) 
has higher classification accuracies than scenario-(c) in most cases, 
which indicates that simply exploiting the object relationships across 
images but ignoring the within-image structural patterns is not ideal 
for image classification. Moreover, scenario-(d) is only slightly better 
than scenario-(b), which demonstrates the value of involving the BKE 
learning for knowledge exchange between the two branches.

4.4.2. The impact of the number of epochs
To study the impact of the number of epochs, we depict the change 

of classification accuracy against the number of epochs in Fig.  5 on 
the CUB-200-2011 dataset. For both 1-shot and 5-shot settings, we can 
observe an upward trend of accuracy as the number epochs increases. 
In addition, SRML performs better than RENet for all number of epochs.
7 
Fig. 5. The impact of the number of epochs on the classification accuracy of RENet 
and SRML for the CUB-200-2011 dataset.

Fig. 6. The impact of the number of ways on the classification accuracy of RENet and 
SRML for the CUB-200-2011 dataset.
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Fig. 7. Visualisations of the discriminative features captured by ProtoNet, CAN, RENet and SRML for five classes in the CUB-200-2011 dataset.
Table 5
Classification accuracies of CUB-200–2011 with different values of 𝛼, 𝛽 and 𝜔.
 𝛼 𝛽 𝜔 1-shot 5-shot 
 (1) 0.5 0.5 0.1 82.86 92.40  
 (2) 1.5 0.5 0.1 82.87 92.36  
 (3) 1.0 0.5 0.1 83.05 92.74 
 (4) 1.0 0.1 0.1 82.78 92.48  
 (5) 1.0 1.0 0.1 82.55 92.03  
 (6) 1.0 0.5 0.0 82.55 92.45  
 (7) 1.0 0.5 0.5 82.89 92.37  

4.4.3. The impact of the number of ways
To explore the impact of the number of ways, in Fig.  6 we present 

the classification accuracy of different number of ways under the 1-
shot and 5-shot settings on the CUB dataset. Overall, our method 
demonstrates superior classification performance compared to RENet 
over all number of ways. 

4.4.4. The impact of hyperparameters in the loss function
We conduct a sensitivity analysis on three key weighting hyperpa-

rameters of the loss function: 𝛼, 𝛽 and 𝜔. Table  5 presents the test 
performance on the CUB-200-2011 dataset for various values of these 
hyperparameters. The best combination is 𝛼 = 1, 𝛽 = 0.5 and 𝜔 = 0.1. 
Notably, even the worst combination outperforms the SOTA methods 
in Table  2 in both 1-shot and 5-shot classification on CUB-200-2011.

4.5. Discussion of limited performance of SRML on coarse-grained images

We further evaluate the performance of SRML network on two 
coarse-grained datasets, tieredImageNet [39] and miniImageNet [6]. 
The tieredImageNet dataset contains 34 super-categories and 608 object 
classes in total. The training set contains 20 super-categories with 
a total of 351 object classes. The validation set is consisting of 6 
super-categories with 97 object classes. The test set consists of 8 super-
categories with 160 object classes. The miniImageNet dataset consists 
of 60,000 images with 100 object classes, and each class contains 600 
images. The training, validation and test sets have 64, 16, and 20 
classes, respectively. 

We can observe from Table  6 that, SRML tends to perform better 
than RENet for higher number of shots, while competitive or worse 
than RENet for the 1-shot scenario. For the miniImageNet dataset, the 
accuracy of SRML is only slightly worse than RENet but competitive 
for the 1-shot scenario, while for the tieredImageNet dataset, the ac-
curacy of SRML is over 1% lower than that of RENet. One potential 
explanation to this is that, tieredImageNet is a more challenging task 
with substantially larger within-class variations due to the construction 
8 
of super-categories. Therefore, when the support set only contains one 
image, our calculations of 𝐬inter and 𝐬intra are not reliable to evaluate 
the similarity between the query image and support classes. Imposing 
𝐿𝐵𝐾𝐸 based on these similarities in the training process for such dataset 
is not desirable.

4.6. Qualitative analysis via visualisations

4.6.1. Visualisation of the discriminative features
To intuitively verify the effectiveness of the proposed SRML net-

work, we generate the CAM based feature visualisations [40] for five 
classes from the CUB-200-2011 dataset in Fig.  7. Clearly, SRML can 
provide the most precise concentrations on the discriminative areas 
to distinguish birds, e.g. beaks, heads and wings. CAN and RENet can 
also provide concentrations in these areas, but without precise focuses. 
Moreover, we note that RENet mis-identifies the target bird and focuses 
on the background in the last column of class 5. The drastic differ-
ence between the visualised discriminative features between SRML and 
RENet demonstrates the effectiveness of using the BKE learning strategy 
to allow interactions between the within-image structural information 
and the cross-image relational information.

In addition, in Fig.  8, we generate visualisations of multi-object 
images in the Stanford-Dogs dataset. Clearly, when nuisance objects are 
presented, our method accurately focuses on the target object. Further-
more, when two target objects are presented, our method successfully 
identifies both. 

4.6.2. Visualisation of the attention maps
In Fig.  9, we further visualise the areas highlighted by the attention 

maps 𝐀𝑆 and 𝐀𝑄 in Eq.  (5). The attention maps with the largest weights 
are highlighted by blue for few test examples from the CUB-200-
2011, Stanford-Cars, Stanford-Dogs and Flowers datasets. Obviously, 
the semantically similar areas are identified as important across query 
and support sets, e.g. the neck of the bird, the brand logo of the car, 
the nose of the dog and the pistil of the flower.

4.7. Computational complexity

Lastly, we discuss the computational complexity of SRML. The 
model parameters (Params.) and floating-point operations (FLOPs) are 
presented in Table  7. The FLOPs of our model is 5.92G, slightly higher 
than 3.56G of RENet. However, compared to the parameter count of 
RENet, there is no change because our BKE learning strategy does not 
introduce any additional parameters. With a slightly higher FLOPs, 
SRML can provide superior classification performance, especially for 
multi-object images.
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Table 6
The 5-way few-shot classification accuracies on the miniImageNet and tieredImageNet datasets for the ResNet-12 backbone.
 Methods miniImageNet tieredImageNet

 1-shot 5-shot 7-shot 10-shot 1-shot 5-shot 7-shot 10-shot 
 ProtoNet [7] 62.99 79.32 81.23 82.93 68.23 84.03 85.05 86.34  
 CAN [13] 63.85 79.44 81.48 82.77 69.89 84.23 85.05 86.22  
 RENet [16] 67.60 82.58 84.21 86.09 71.61 85.28 85.73 86.97  
 Ours 67.37 82.86 84.28 86.36 70.40 84.92 86.31 87.58  
Fig. 8. Visualisations of the discriminative features captured by ProtoNet, CAN, RENet, and SRML for multi-object images in the Stanford-Dogs dataset.
Fig. 9. Visualisations of the attention maps 𝐀𝑆 and 𝐀𝑄 in Eq.  (5). The attention maps with the largest weights are highlighted by blue for few test examples from CUB-200-2011 
(top left), Stanford-Cars (top right), Stanford-Dogs (bottom left) and Flowers (bottom right).
Table 7
Model parameters (Param.) and FLOPs of SRML and SOTA methods.
 Methods FLOPs Params. 
 CAN [13] 1.28G 8.04M  
 RENet [16] 3.56G 12.63M 
 FRN [32] 3.52G 12.42M 
 DeepEMD [30] 3.52G 12.42M 
 Ours 5.92G 12.63M 

5. Conclusion

In this paper, we propose the SRML network for few-shot image 
classification. SRML excels in classifying a target object within a multi-
object image. This capability is highly valuable in real-world scenarios, 
such as identifying a pedestrian in a busy street for autonomous driving 
or detecting a tumor in an MRI scan with multiple anatomical struc-
tures. The network architecture includes two parallel branches: SFE 
and RFE, effectively leveraging the structural features within-images 
and the relational features across-images. Additionally, we introduce 
the BKE learning strategy to facilitate knowledge exchange between 
the two branches, allowing the SFE branch to focus more on the target 
objects while the RFE branch better matches objects across images. 
Extensive experiments on benchmark datasets demonstrate the superior 
performance of the SRML network in few-shot image classification.
9 
In the future, we aim to further enhance SRML to achieve high 
classification accuracy on challenging coarse-grained datasets when the 
number of shots is extremely limited. Furthermore, we will explore 
the potential of our method in real-world scenarios, particularly when 
noise, occlusion, or highly varied object scales are present. 
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