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RESEARCH ARTICLE

Control of Movement

Spatiomotor dynamics of hand movements during the drawing of
memory-guided trajectories without visual feedback

Christopher W. Tyler,1,2 Kristyo N. Mineff,1 Michael Liang,1 and Lora T. Likova1
1Smith-Kettlewell Eye Research Institute, San Francisco, California, United States and 2Department of Optometry and Visual
Sciences, City St George’s, University of London, London, United Kingdom

Abstract

Although the underlying principles of the spatiomotor dynamics during human movement execution are now broadly understood
to conform to a minimum jerk principle, the question addressed in the present analysis is whether different principles operate
during human drawing movements without visual input, deriving from studies of the Likova Cognitive-Kinesthetic Memory-
Drawing Training. For two groups of participants, completely blind, and sighted but temporarily blindfolded, this analysis shows
that the consensus model of arm-motion kinematics as a simple one-third power relationship of drawing speed to the local cur-
vature of the line being drawn is not a sufficient characterization of their coupling. Instead, the drawing dynamics without visual
feedback conform to a hyperbolic power relationship, with a coupling power of approximately 1.0 for regions of the highest cur-
vature, asymptoting to curvature-independence for regions of shallow curvature, for both blind and blindfolded groups. Thus, the
asymptotic power was much higher than the one-third power predicted by the minimum jerk principle. In detail, the maximum-
velocity asymptote for both groups averaged about 6 cm/s for drawing from memory, increasing to more than twice as fast for
mindless scribbling. We conclude that the more elaborate operating principle of a hyperbolic saturation function, with a power
asymptote of about 1.0, may be interpreted as an adaptive implementation approximating the Minimum Jerk Principle of the sim-
ple one-third power law relating velocity and curvature.

NEW & NOTEWORTHY This study reevaluates the one-third power law proposed to govern arm-motion kinematics relating
drawing speed to the local curvature of the line being drawn. For complex drawings guided by memory without visual feedback,
we find that the relationship is better characterized as a steeper power function that asymptotes to a constant speed for shallow
curvatures, empirically approximating the predictions of the minimum jerk principle.

hand movements; manual dexterity; minimum jerk principle; power law; spatiomotor dynamics

INTRODUCTION

The underlying principles of the spatiomotor dynamics dur-
ing humanmovement execution, in general, are now broadly
understood (1–7). Themovement tasks involved in such analy-
ses are typically to reach a defined goal under time and/or
accuracy constraints, without specifying what the trajectory of
the movement should be. Under these task demands, the tra-
jectory is free to be determined by the agent according to the
endpoint criteria (location and time) that combine to define its
efficiency. The question addressed in the present analysis, on
the other hand, is whether the same principles operate during
human nonvisual drawingmovements, in which the goal is to

match the entire trajectory of an internal memory image to be
drawn, as opposed to the unconstrained trajectory in typical
goal-oriented movement tasks. An intermediate case is a tra-
jectory constrained by a series of intervening target locations
(8, 9). Where the trajectory is constrained, the question is how
the agent manages the speed of the trajectory in relation to its
form (as defined by its intrinsic curvature), and whether it fol-
lows the same or different operational principles as for the exe-
cution of unconstrained trajectories.

The study grew out of the Likova Cognitive-Kinesthetic
Memory-Drawing training method (10–13), which, for the
first time, enabled blind and blindfolded individuals to
create complex nonvisual drawings—such as faces and
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objects—for recording and analysis (see Fig. 1 for examples).
Remarkably, participants were even able to produce these
drawings within the confined space of an MRI scanner. The
focus on the manual dynamics of producing such drawings,
guided solely by memory images, inspired the present analy-
sis of nonvisual drawings in comparison to published studies
on the dynamics of visually guided drawing.

A key principle underlying unconstrained human move-
ment trajectories is the maximization of motion smoothness,
achieved by minimizing higher-order motion derivatives,
such as jerk (3, 8, 14). This principle has been shown to
approximate a one-third power law, relating the speed of
motion to the curvature of the trajectory1. This relationship
has also been shown to apply to drawing movements for a
continuously defined trajectory (2, 15), and to correspond to
moving at a constant equi-affine speed (1, 16–18). It imple-
ments the optimization of either kinematic (3, 8, 14) or
dynamic (19) criteria of the motion trajectory, corresponding
to theminimization of the variance of themovement (20–22).
These kinematic constraints were shown to hold both with
respect tomovement production (15) and perception (23, 24).

The aim of this study was to determine whether the same
principles apply to generating movement trajectories without
visual feedback, specifically in the context of complex drawings
guided by spatial memory. Unlike previous research, our study
focused on assessing purely feedforward drawing dynam-
ics by testing blind participants and sighted controls wear-
ing blindfolds to eliminate visual feedback. The main issue
addressed by blind drawing is to determinewhether adherence
to the one-third power law is a function of closed-loop motor
control with visual feedback, or is applicable to the open-loop
condition of drawing frommemory with no feedback as to the
adherence of the trajectory to a visual template. Of course, the

memory-drawing case is still guided by kinesthetic feedback as
to whether the output motor commands are providing the
intended movement, but it is open-loop with respect to any
external criterion of the trajectory to be followed.

A second issue is to which law the motions are expected to
conform. The original proposal was the isogony principle of
Viviani and Terzuolo (25), that the drawing speed would con-
form to a constant angular velocity for any circular arc,
meaning that the angular velocity should be directly propor-
tional to the local radius of curvature of any arbitrary curve.
It is somewhat curious that Lacquaniti et al. (2) elaborated
this principle to the concept of a nonunitary power function
of the radius of curvature, which translates to a roughly one-
third power function prediction of the radius of curvature.
Thus, this prediction is a long way from the linear propor-
tionality of the isogony principle but conforms approxi-
mately to the one-third power predicted from the minimum
jerk principle described above. Moreover, the minimum jerk
principle does not predict a constant velocity along circular
arcs of different lengths, as would the isogony principle.
Instead, it predicts a smooth acceleration to the center of the
arc and deceleration from it according to the principle of
minimizing the second derivative of velocity, or jerk (15), as
in the operation of smooth elevator trajectories in the engi-
neering domain.

However, the empirical power fits in most studies vary
around the one-third value, both across the average speed of
the drawn trajectory (2) and with the complexity of the draw-
ing (5, 26). There is a possibility that this variation in power
exponents is related to the presence of visual feedback of the
accuracy of adherence to the designated trajectory, which
can be tested by performing the drawing under visually
open-loop conditions (i.e., with eyes closed). The present

Figure 1. Examples of tactile raised-line stimuli (left
columns) haptically explored by blind people, and
how they were remembered and drawn-from mem-
ory without any visual feedback (right columns) after
the Cognitive-Kinesthetic Training [after Likova (13)].

1This law is also often expressed as a two-thirds power law of angular speed x to curvature κ, where the angular speed is a function of the radius of
curvature. We have preferred to express it in terms of Lagrangian (local) speed along the curved trajectory, when it becomes a one-third power law
of the radius of curvature.
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study thus provides this test, both in unpracticed sighted
individuals when the visual feedback loop is opened by clos-
ing the eyes, and in the well-practiced condition of blind
individuals with many years’ experience of operating with-
out visual feedback.

Hypotheses

1) The primary hypothesis for the speed/curvature rela-
tionship is that it should conform to the one-third power
law propounded by Lacquiniti et al. (2), Flash andHogan
(3), and Polyakov et al. (4, 27), when expressed in terms
of radius of curvature.

2) The secondary hypothesis for this function is that it may
be an intermediate segment of a hyperbolic saturation
function in which the power-law exponent asymptotes
to 1 at small radii of curvature and to zero for large radii
of curvature.

3) The tertiary hypothesis is that the hyperbolic power
should conform to the version of theminimum jerk prin-
ciple developed by Huh and Sejnowski (26), according to
which the exponent decreases with the angular fre-
quency of the drawing oscillations, from a value of about
two-thirds for angular frequencies < 1, asymptoting
toward zero for high ones.

MATERIALS AND METHODS

Participants

The participants in the study were 12 blind and 4 nor-
mally sighted individuals, as tabulated in Table 1. The
study was approved by the Smith–Kettlewell Institutional
Review Board and is in conformity with the Helsinki
Declaration.

Procedures

The data for this analysis come from a unique study in
which through the Cognitive–Kinesthetic Drawing Training

method, developed by Likova (see Refs. 10–13, 28, 29), blind
individuals and blindfolded sighted controls are trained to
draw frommemory, learning in the process and encoding in
memory the configurations of different complex spatial
structures, such as faces and objects, as in the examples
shown in Fig. 1.

As described in these studies, the Cognitive-Kinesthetic
training itself is an implicit form of active learning. It
involves a complex interactive process practiced with vari-
ous images of both objects and faces. Participants received
instruction on how to “see” the configuration of a raised-line
drawing using one hand, as opposed to the habitual two-
handed approach typical in blind shape acquisition. They
also learned how to hold a drawing stylus and replicate the
drawing from spatial memory with the other hand. The sepa-
rate-hand transfer method was specifically designed to
enhance spatial memory representation of the image to be
drawn, rather than reinforcing “muscle” memory of tactile
exploration movements. This distinction is particularly rele-
vant, as using the same hand for both perception/memoriza-
tion and memory-guided drawing might otherwise lead to a
reliance on muscle memory rather than true spatial encod-
ing. Informal feedback from participants validated the
empowerment they received through this approach. Many
remarked that this Cognitive-Kinesthetic drawing training
significantly enhanced their sense of spatial layout and
everyday functioning, and even had a positive impact on
their spatial navigation skills.

The Cognitive-Kinesthetic Drawing Training was keyed to
an fMRI protocol in which each drawing had to be completed
within a 20 s time period with no visual feedback. After the
training, all participants were thus relatively proficient in
rapidly drawing images from memory even in the scanner.
Those blind participants with residual vision were blind-
folded to ensure that no visual information was accessible
during the drawing procedures. For this study, the drawing
movements were tracked both spatially and temporally with
an MR-compatible tablet, allowing various aspects of the

Table 1. Participant demographics

Condition

Age,

yr Gender

Current

Visual Status

Age of

Onset

Visual Status

at Birth Diagnosis

Braille

Fluency

Age-

Onset, yr

Years of

Full Vision

Trained with serious
visual impairment

68 0 NLP 15 LP Retinopathy of prematurity 4 53 15
66 1 LP <1 LP Retinopathy of prematurity 4 66 0
57 1 LP 30 Tunnel vision Retinitis pigmentosa 4 27 30
76 0 LP 16 Full vision Optic neuropathy 3 60 16
31 1 NLP 28 LP Optic nerve hypoplasia 4 3 0
66 1 NLP 16 Full vision Glaucoma 3 21 16
37 1 HM <1 HM Congenital optic neuropathy 4 37 0
56 0 LP 47 Full vision Glaucoma 0 9 47
37 0 LV 30 Full vision Optic nerve damage 1 7 30
75 1 LV 64 Full vision Cataract/Macular degeneration 0 11 64
27 1 NLP <1 LP Retinopathy of prematurity 4 27 0
47 0 LP 8 LP Brain tumor to optic nerve 4 39 8

Average 53.58 5M/7F 28.22 2.92 30 18.83
SD 17.33 17.75 1.62 21.35 20.56
Blindfolded 60 0 N 0 Full vision None 0 60 60

59 1 N 0 Full vision None 0 59 59
31 1 N 0 Full vision None 0 31 31
26 0 N 0 Full vision None 0 26 26

Average 44 2M/2F 0 44 44
SD 18.02 18.02 18.02

F, female; HM, high myopia; LP, light perception only; LV, low vision; M, male; NLP, no light perception; SD, standard deviation.
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drawing dynamics to be analyzed quantitatively. The draw-
ing analyses are shown in Fig. 2, as follows:

1) Spatiotemporal drawing trajectory, plotting x, y position
throughout the trajectory with instantaneous speed (i.e.,
coordinate-free, or Lagrangian, velocity) indicated by
the color as coded in the color bar. Each trajectory had a
duration of 20 s and was sampled at a spatial resolution
of 0.25 cm, providing of the order of 200–600 samples
per trajectory.

2) Plot of the instantaneous speed as a function of local
radius of curvature at each point along the trajectory.
The two curves are fits of a model derived from a
hyperbolic power-law analysis of this relationship,
where the fit for small radii of curvature is controlled
by a power function leveling off to a constant velocity
for large radii of curvature. The data are fit separately
for the first and second halves of the trajectory. In this
case, the asymptotic power, q, for small radii or curva-
ture was �1 and the asymptotic maximum velocity,
vMax, was �6 cm/s.

3) Plot of the absolute instantaneous speed as a function of
length along the trajectory, with the same color coding
as forA. Velocities ranged from about 1–50 cm/s.

4) Log plot of the local radius of curvature as a function of
length along the trajectory. Radii of curvature ranged
from about 0.5–40 cm.

Method for Processing and Cleaning the Drawing
Dynamic Analyses

Since the drawing tasks were completed while inside the
MRI scanner with an fMRI-compatible drawing lectern over
the abdomen, participants may have experienced some
unnatural restriction in movement due to the limited space
of the bore aperture adjacent to the drawing surface. Such
spurious contacts would register as an extremely high-veloc-
ity drawing segment, which we refer to as a “glitch” that
meets the criteria to be removed from the drawing. To clean
and process such glitches in the drawings, a “glitchThresh”
function was implemented in the speed curvature model
analyses to remove the segments in the drawing where the
spurious segments occurred. The glitchThresh function
removed any change in distance larger than this input value
in the (x, y) coordinate system of the tablet from the first
point of contact (the stylus) to the second point of contact
(some part of the drawing hand).

Table 2 details the average glitch thresholds (± 1 standard
deviation) of the (x, y) distance in mm, and the numbers and
proportions of the drawings that needed to be cleaned in each
drawing condition from one ormore glitches occurring during
the period of each of the tasks in the study: Draw from
Memory (two repeats: DM1 and DM2) or Draw Scribble (DS1
and DS2) between the blind and blindfolded groups. The DS

Figure 2. Plots of the analysis variables for example drawing (A) and scribbling (B) trajectories. Upper left quadrant: (x, y) plots of the drawing trajectory
color coded according to instantaneous velocity (top plot) and curvature (bottom plot). Bottom half: Plots of the velocity (top plot) and curvature (bottom
plot) as a function of distance along the trajectory, color coded according to the respective parameter value. Top right quadrant: Scatterplot of log veloc-
ity vs. log radius of curvature for the first half (open circles) and the second half (filled circles) of each drawing trajectory. Pairs of solid curves are the fits
of the one-third power law (blue), variable power function (red), and hyperbolic saturation (black) models to each half of the datasets. Note that the data
fall consistently below either power law at both extremes of radii of curvature, supporting the need for the hyperbolic saturation analysis.
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tasks had the lowest proportion of drawings requiring cleaning
since subjects were instructed to keep the stylus down for the
entire task, reducing the need to adjust hand placement when
holding the stylus. Many drawing epochs had more than one
double-contact glitch. In the blind group, the proportion
of DM1 and DM2 drawings requiring cleaning with the
glitchThresh approach were 63% and 63% for the blind group,
and 83% and 61%, respectively, for the blindfolded group. DS1
and DS2 drawings needed similar or less cleaning, 63% and
44% in the blind and 38% and 38% in the blindfolded group,
respectively. Between the two groups, a total of 102 drawings
per drawing condition sequence, 79 drawings per condition in
the blind group and 23 drawings per condition in the blind-
folded group, were recorded and the proportion of drawings
that were cleaned is given in Table 2. Thus, the proportion of
drawings that required cleaning was much higher for the DM
than for the DS conditions, due to the difference in operating
instructions for the two tasks.

However, the cleaning had little effect on the mean values
reported in this paper. Its main effect was to remove outliers
from the distributions plotted in RESULTS, thus permitting a
more discriminative analysis of the model fitting parameters.
Examples of the outliers removed from the instantaneous
velocity analysis may be seen as theXs in Fig. 2A and B, mak-
ing it clear that the cleaned points form a noisy penumbra
well outside the main cloud of the true drawing points. The
result of the cleaning procedure was a total of 188 drawings by
the blind group and 52 drawings by the blindfolded group.

Theoretical Analysis

Inspection of the speed/curvature data shows that there is a
strong relationship between drawing speed and the local cur-
vature of the drawing trajectory, similar to the results of
Lacquaniti et al. (2), Flash and Hogan (3), and Polyakov et al.
(4, 27). However, it was evident thatmany datasets exhibited a
deviation from a uniform power relationship (straight line in
log-log coordinates), leveling off at a constant saturation level
for some range of the largest radii of curvature. The data were,
therefore, fit with a hyperbolic saturation function of the form:

Speed ¼ vMax=ð1 þ rHalf =r
qÞ; ð1Þ

where r is the radius of curvature, vMax is the asymptotic
limit at large radii of curvature, rHalf is the transition
between the two hyperbolic asymptotes, and q is the expo-
nent of the asymptote for small radii of curvature. A similar
function was introduced by Viviani and Stucchi (23) and
Viviani and Flash (15), based on an analysis in Viviani and
Schneider (30). Their equation was:

V ¼ v1

�
r=ð1 þ arÞ

�q

; ð2Þ

which has a softer approach to the asymptotes for high q val-
ues than our formulation. The Viviani and Stucchi (23) paper
evaluated the empirical fit of one parametrization of their
function to a large set of freehand scribbling data by the
laborious procedure of dividing each trace into segments
defined by the successive inflection points in the scribbled
trajectory and fitting the hyperbolic saturation function sep-
arately to each segment. The details are obscure, but they
report that the best-fitting exponent derived from this proce-
dure was almost exactly one-third.

The analysis proceeded according to a nestedmodel struc-
ture based on Eq. 1. The next simpler model is the two-
parameter powermodel:

Speed ¼ v1=r
q; ð3Þ

where v1 is the scaling parameter corresponding to vMax in
Eq. 1 with the exponent q free to vary when applied to the
present complex drawing motions. The one-parameter ver-
sion of this model is the fixed power function:

Speed ¼ v1=r
1=3; ð4Þ

and q is set to the typical value reported in previous studies,
which has been consistently reported to be 0.33 across a
broad range of motor tasks (see INTRODUCTION).

Thus, the first analysis is to compare the power function
fits with the fixed power of q ¼ 1/3 (Eq. 4) against the uncon-
strained power law (Eq. 3). The next level of the procedure is
then to compare that unconstrained power law with the
hyperbolic power law of Eq. 1, which captures the degree to
which the power is uniformly distributed over degrees of
curvature, as opposed to being the transition between two
asymptotes, with a steeper power limb and a constant maxi-
mum speed. For direct comparison with the previous litera-
ture, it is also of interest to compare the fixed power law with
the hyperbolic saturation power function.

RESULTS
The analysis provides average results of the drawing

dynamics analysis for both the blind and blindfolded sighted
participants for the speed/curvature fits of the hyperbolic
saturation function (3 parameters) and its nested subcases,
the power-law fit (2 parameters) and the one-third power fit
(1 parameter). The results were initially tabulated separately
for each repeat of the drawing sequence (DM1 and DM2; DS1
and DS2), but none of the parameters were not significantly
different for the repeat conditions, so the two repeats for
each type of drawing were combined for the averaged analy-
sis of Tables 3, 4 and 5.

Table 3 compares the accuracy of the fits of the three
nested models to the speed/curvature data averaged for the
DM and DS conditions, separately for the whole and the first

Table 2. Statistics of glitch threshold values used to clean images across each drawing condition

Blind Blindfolded

DM1 DM2 DS1 DS2 DM1 DM2 DS1 DS2

Average glitchThresh ± SD, mm 11.1 ± 19.9 8.5 ± 14 21.3 ± 16.1 32.1 ± 5.2 6.2 ± 10.5 4.1 ± 2.2 8.8 ± 7.8 11.1 ± 16.5
Number drawings cleaned 51 50 51 36 20 14 9 9
Total drawings 81 79 81 81 24 23 24 24
Proportions cleaned 63% 63% 63% 44% 83% 61% 38% 38%

DM, drawing from memory; DS, draw scribble; SD, standard deviation.
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and second halves of each 20 s drawing epoch (the parameter
values of the fits are provided in the subsequent tables,
Tables 4 and 5). The fits are assessed in terms of the “average
residual variance” for each of the three models fitted to the
individual data for the blind group. Each fit uses over 200
speed/curvature points for the full condition, or over
100 points for each half condition. (Note that the variance
accounted can go below zero if the model parameters are
such that the deviations of the points from the fitted function
are greater than their deviation from the null hypothesis of
their ownmean value, making the residual variance> 1. This
behavior can occur for models with fixed parameters, such as
the one-third power law.) The significance levels are chosen
to correct for 100 applications of the statistical tests by the
Bonferroni criterion, with the three significance codes corre-
sponding to corrected levels of P < 0.05, 0.01, and 0.001,
respectively, after accounting for the one and two extra free
parameters in the variable power and hyperbolic saturation
models. The significance levels, shown by the 1-, 2-, and 3-
asterisk code in the righthand columns of Table 3, are taken
as t(160) >3.6 (P < 0.05), >4.0 (P < 0.01), and >4.6 (P <
0.001), respectively, for the three significance levels for the
blind group, and t(47) >3.7 (P < 0.05), >4.2 (P < 0.01), and
>4.8 (P< 0.001), respectively, for the blindfolded group.

The results in Table 3 show quite similar model-fit varian-
ces throughout the first and second half-periods. For both
the blind groups the hyperbolic saturation function fitted
significantly better than the fixed one-third power law for
both DM and DS, though not significantly better than the
variable-exponent fit. In turn, the variable-exponent power
law fitted significantly better than the fixed one-third power
law fit for the blind, though only at the uncorrected level for
DS. For the blindfolded, both the hyperbolic saturation func-
tion and the variable-exponent functions fitted significantly
better than the fixed one-third power law for DS, though not
for DM. The overall picture is therefore that the hyperbolic
saturationmodel provides a much better fit to both datasets
than the simple one-third power law, with partially signifi-
cant differences in favor of the variable-exponent over the
fixed one-third power lawmodel.

Table 4 shows the average parameter values of the drawing
dynamics analysis for the blind participants for the individual

speed/curvature fits of the hyperbolic saturation function
(3 parameters) and their nested subcases, the power-law
regression (2 parameters), and the one-third powerfit (1 param-
eter). As was the case for the residual variances, many of the
parameters of the fits were not significantly different for the
repeat conditions (DM1 and DM2; DS1 and DS2), so they were
combined for the averaged analysis of parameter values in
Tables 4 and 5. These average parameter values were signifi-
cantly different between the blind and blindfolded groups,
and also between the two types of drawing motion, DM and
DS, at high significance for the blind group conditions, Table 4
(though not for this comparison in the smaller blindfolded
group, Table 5). The significant parameter-value comparisons
will therefore be detailed in the following paragraphs.

The parameters of the model fit are provided for the blind
group in Table 4. The parameters are the asymptotic maxi-
mum velocity for the hyperbolic model, or velocity at a
radius of 1 cm for the power lawmodels (vMax or v1 in deg/s),
the radius of curvature at the half-maximum velocity (rHalf

in cm), and the dimensionless exponent (q) of the power
functionmodels or its asymptote for small radii of curvature
for the hyperbolic saturationmodel.

The best-fitting parameter values for the three model fits
for the Blind group are shown in the left section of Table 4,
with the means ± its standard error (SEM) below them. The
significance coding in Table 4 is shown in the columns to
the right of the parameter values for the DM versus DS com-
parisons, and below and to the right for the comparisons
between the three nested model types. The significance lev-
els, shown by the asterisk code in the upper righthand col-
umns, are taken as t(160) >3.6 (P < 0.05), >4.1 (P < 0.01),
and >4.7 (P < 0.001) for the three significance levels for the
blind group, and t(47) >4.5 (P < 0.05), >4.8 (P < 0.01), and
>5.3 (P < 0.001) for the blindfolded group, with Bonferroni
correction for 100 applications of the statistical tests.

The key question targeted in this paper is the model struc-
ture that best describes the nonvisual drawing behavior,
which is addressed in the lower right sections of Tables 4
and 5. Of particular interest is the value of q for the present
paradigm, which is the key parameter in common between
the three models. If the Lacquaniti et al. (2) model is applied
to the present drawing data for the blind group, qwould take

Table 3. Average variance accounted for and comparative significance of nested models

Blind n 5 160 n 5 162 Blindfolded n 5 47 n 5 48

Condition DM DS Significance Condition DM DS Significance

Model type Hyp vs. Var Model Type Hyp vs. Var
Hyperbolic full 0.31 0.41 ns ns Hyperbolic Full 0.34 0.37 ns ns
1st half 0.28 0.44 ns ns 1st half 0.33 0.39 ns ns
2nd half 0.33 0.41 ns ns 2nd half 0.39 0.38 ns ns

Hyp vs. 1/3 power Hyp vs. 1/3 power
Variable exponent 0.00 0.31 ��� ��� Variable Exponent 0.22 0.23 ns ���
1st half 0.21 0.32 ��� ��� 1st half 0.22 0.24 ns ���
2nd half 0.22 0.30 ��� ��� 2nd half 0.24 0.23 � ���

Var vs. 1/3 power Var vs. 1/3 power
1/3 Power law �0.13 0.08 �� � 1/3 Power Law 0.00 �0.41 ns ��
1st half �0.29 0.09 ��� � 1st half �0.10 �0.48 ns ��
2nd half �0.22 0.03 ��� �� 2nd half 0.01 �0.39 ns ���
Average proportions of residual variance of the speed/curvature relationships accounted for by each of the three nested models in the

MemoryDraw (DM) and Scribble (DS) conditions, with their comparative statistical significances, for the blind and blindfolded groups.
DM, drawing from memory; DS, draw scribble; n, number of drawings. Significance code: �< 0.05; ��< 0.01; ���< 0.001 (Bonferroni cor-
rected for 100 test applications).
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the value of 0.33 and rHalf would be larger than the largest
value in the range of the data analysis, which was 40 cm,
resulting in a pure one-third power function. For the blind
group (Table 4), the average values of exponent q for the
hyperbolic and the variable-exponent models fitted to the
DM data, at q ¼ 0.88 and 0.16, respectively, are both highly
significantly different from the theoretical value of 0.33 (and
from each other). The ratios are similar for DS, at q ¼ 0.95
and 0.18, respectively, again all different from each other to
high significance. Similar relationships were obtained for
the drawing parameters of blindfolded group (Table 5), with
q ratios 1.15 and 0.17, respectively, for DM and 1.06 and 0.14,
respectively, for DS. These values are again all mutually dif-
ferent at the high significance level for DM and at marginal
to high levels for DS. In particular, these comparisons make
clear that the exponent in the regions of small radius of cur-
vature is much higher, with a value of�1.0 than the theoreti-
cal prediction of 0.33.

The steeper q for the hyperbolic saturation model fits is
consistent with the shallower q for the variable-exponent
model fits because the zero slope of the maximum velocity
saturation asymptote, vMax makes the overall function

shallower than the one-third slope over most of the fitted
range. It is only for the range of small radii of curvature that
the steeper slope is expressed. The hyperbolic fits showed a
highly significant difference between themaximum velocity,
vMax for the DM task, at 6.76 ± 0.38 cm/s, and the DS tasks, at
nearly triple the velocity of 19.48 ± 1.31 cm/s (upper right-
hand panel of Table 4). Corresponding significant differen-
ces are seen for the equivalent v1 parameter for the variable-
and fixed-exponent models.

The final comparison is of the fitted parameter values for
the blind and blindfolded groups. None of the differences
between groups are significant at the corrected criterion
level. Thus, the differences between DM and DS for the three
sets of model parameters described in Tables 4 and 5 are
generally similar for the two groups.

These characteristics are illustrated in the further exam-
ples of Fig. 3, showing the pronounced saturation of the
drawing velocity at large radii of curvature and the pro-
nounced steepening of the exponent to values much greater
than one-third at the smallest radii of curvature. Note also
that the distance functions of the speed, jvj, and radius of
curvature, jrj, plotted in the lower halves of the figures make

Table 4. Parameter values and their significances for the model fits for the blind group

Blind Group Significances

Condition DM DS t(DM 2 DS)

Model type vMax/v1 q rHalf vMax/v1 q rHalf vMax/v1 q rHalf

Hyperbolic full 6.763 0.876 0.536 19.480 0.949 0.765 ��� ns ns
Variable exponent 3.859 0.157 10.519 0.175 ��� ns
1/3 Power law 3.403 0.333 8.653 0.333 ���

DM DS
Means ± SEM Hyperbolic vs. variable q
Hyperbolic full 0.384 0.065 0.069 1.307 0.037 0.075 ��� ���
Variable exponent 0.173 0.011 0.511 0.009 Hyperbolic q vs. 1/3
1/3 Power law 0.147 0.333 0.417 0.333 ��� ���

Variable q vs. 1/3
��� ���

Average parameter values of the speed/curvature relationships accounted for by each of the three nested models in the DM and DS
conditions, with their comparative statistical significances, for the blind group. The first column for each condition is for vMax in cm /s
for the full hyperbolic model followed by the v intercepts at 1 cm/s for the other two models and the intersection radius of the two hyper-
bolic asymptotes in centimeters. DM, drawing from memory; DS, draw scribble. Significance code: �< 0.05; ��< 0.01; ���< 0.001
(Bonferroni corrected for 100 test applications).

Table 5. Parameter values and their significances for the model fits for the blindfolded group

Blindfolded group Significances

Condition DM DS t(DM 2 DS)

Model type vMax/v1 q rHalf vMax/v1 q rHalf vMax/v1 q rHalf

Hyperbolic full 6.049 1.148 0.392 13.693 1.062 0.560 � ns ns
Variable exponent 3.762 0.173 8.577 0.144 � ns
1/3 Power law 3.359 0.333 7.524 0.333 ��

DM DS
Means ± SEM Hyperbolic vs. variable q
Hyperbolic Full 0.542 0.135 0.087 1.928 0.208 0.114 ��� ��
Variable Exponent 0.270 0.023 1.261 0.017 Hyperbolic q vs. 1/3
1/3 Power Law 0.234 0.333 1.004 0.333 ��� �

Variable q vs. 1/3
��� ���

Average parameter values of the speed/curvature relationships accounted for by each of the three nested models in the DM and DS
conditions for the blindfolded group. The first column for each condition is for vMax in cm/s for the full hyperbolic model followed by
the v intercepts at 1 cm/s for the other two models and the intersection radius of the two hyperbolic asymptotes in centimeters. DM,
drawing from memory; DS, draw scribble. Significance code: �< 0.05; ��< 0.01; ���< 0.001 (Bonferroni corrected for 100 test
applications).
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the result that, although some minima of the two distance
functions do coincide, many do not, making it difficult to
perform the piece-wise analysis of Edelman and Flash (31)
and Polyakov (4, 27), for the functions between correspond-
ing pairs of minima, on the present data. The same issue was
addressed by Richardson and Flash (9).

DISCUSSION
The main goal of the paper was to evaluate the kinematic

processes of drawing complex line-images frommemory and
to do so in relation to the general kinematic principles of
armmovement control developed by Viviani, Hogan, Flash,
and colleagues (1, 3, 5, 14, 15, 17, 18, 24, 25, 32), among many
others. The consistent principle found in these studies
approximated a one-third power law for the relationship
between the speed of the trajectory and its curvature. A sub-
set of such studies have assessed the application of this prin-
ciple to controlled drawing movements, and have done so
have used relatively simple drawings with little demand on
memory (2, 5, 9, 15, 23, 26, 33, 34). Thus, it remained an open
question how this principle would apply to the kinematics of
complex drawings with high memory demand. Our study of
such performance also differed from the others in assessing
drawing without visual feedback, by testing blind partici-
pants and sighted controls with blindfolds to eliminate the
visual feedback of typical studies of visually guided arm
movements.

The present nonvisual drawing data provide general sup-
port for the speed/curvature power law, though in a more
complex form than the simple one-third power law.
Inspection of the data suggested that speed asymptoted to a
constant value at large radii of curvature (shallow curva-
tures), so they were fit with a “hyperbolic saturation func-
tion” of a power law for small radii of curvature with an
asymptotic speed limit for large radii of curvature. This func-
tion, similar to the one that had been introduced by Viviani
and Stucchi (23, their Eq. 1), gave a significantly better fit to
our data in many cases than the simple one-third power law
(Table 3). The rising portion of the curvature range of the fits

extended only up to radii of �1 cm, with powers of about tri-
ple the one-third value in the rising portion of the function,
whereas if the simple power law prediction held, this hyper-
bolic model fit would cover the entire range up to the maxi-
mal assessed radius of 40 cm. These fits, therefore, strongly
support the concept of the hyperbolic saturation specifica-
tion of the speed/curvature relationship, and are consistent
with the idea that the initial rising portion has a power of
�1.0, as in the further examples in Fig. 3.

The range of hyperbolic power-law slopes of 0.88–1.15 in
the present study (Tables 4 and 5) may be compared with
those found by Zago et al. (5) for fits of the unconstrained
power law over the full range of radii of curvature, which
ranged from�0.7 for simple figures to�0.15 for complex fig-
ures. Unlike the hyperbolic saturation function, the uncon-
strained power law fits for the present drawing trajectories,
which would be classed as complex figures by the analysis of
Zago et al. (5), have powers of the order of 0.15 under all con-
ditions, consistent with the shallow fits to their complex fig-
ure data. However, this shallow slope is shown here to be the
result of an asymptote to zero slope for large radii of curva-
ture and a markedly steeper slope for the smaller range. It is
only when the hyperbolic saturation fits allows the separate
assessment of the low and high ranges of radius of curvature
that the high powers of�1.0 become apparent.

In relation to its theoretical roots, we note that the deriva-
tion of the power law behavior from theminimum jerk princi-
ple (3, 15, 31) was based on the artificial segmentation of the
drawing trajectory into individual arcs, and is difficult to
apply in general to the kinds of complex drawing used in the
present study (Fig. 3, bottom panels). For the scribbling task
illustrated in Fig. 2 (right panel), the minima of the velocity
function along the trajectory consistently coincide with those
the curvature function, supporting the minimum jerk princi-
ple for this primarily motor control task (23, 25). In fact, a lack
of such correspondence is far more common for the complex
drawing trajectories (Figs. 2 and 3, bottom panels), indicating
that other principles are at work. We propose that these prin-
ciples involve details of the retrieval of segments of the com-
plex drawings frommemory. However, we do not have access

Figure 3. Further examples of a freehand drawing trajectory analysis in the same format as Fig. 2. showing the pronounced flattening from the one-third
power law prediction (blue lines in the upper right panels) for large radii of curvature, and steeper rising slopes for small radii of curvature.
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to the elements of the memorial segmentation beyond what
might be suggested by the curvature function, so a formal test
of this hypothesis is not available.

An alternative view on theminimum jerk principle was pro-
vided by Huh and Sejnowski (26), whose derivation predicted
a power law decreasing with the dimensionless angular fre-
quency of the drawing motion (Hypothesis 3), from a value of
� two-thirds for the lowest angular frequencies, asymptoting
down toward zero for angular frequencies of 10 oscillations
per unit cycle (i.e., per 2p radians). This result was accurately
replicated by Zago et al. (5), thoughwith a different parametri-
zation of the exponent specification. Thus, those results could
be said to be consistent with the asymptotic saturation func-
tion (Hypothesis 2) that gives the best fit to our results.

A key question in this study was whether the task of the
feedforward drawing of complex images from memory, as
opposed to mindless scribbling movements, makes any dif-
ference to the kinematics of the drawing movements. The
answer to this question is “yes,” since themaximum velocity
for the MemoryDraw condition was about one-third of the
value for Scribble condition. Thus, in overview, scribbling
adheres to the same underlying hyperbolic saturation princi-
ple of kinematics, except for the difference in parameter val-
ues, although it is a much freer motion than drawing from
memory.

Conclusions

In summary, by capitalizing on the Likova Cognitive-
Kinesthetic Drawing Training method, we were able to pro-
duce, record, and analyze for the first time the nonvisual spa-
tiomotor dynamics of complex drawings, by both blind and
blindfolded people. This kinetic analysis sheds light on the
validity of the classic minimum jerk model of arm-motion
kinematics to the case ofmemory drawingwithout visual feed-
back. In this case, it shows that the simple one-third power
relationship of drawing speed to the local curvature of the line
being drawn is not a sufficient characterization of the cou-
pling behavior. Instead, the present analysis reveals the
operation of a hyperbolic power-law relationship, with the
power-law coupling for regions of high curvature, asymp-
toting to curvature-independence for regions of shallow
curvature. After accounting for the saturation region, the
power law relating velocity and curvature is found to
exhibit a power asymptote of �1.0, suggesting that the
empirical approximation to the minimum jerk principle is
adventitiously implemented by the velocity saturation
mechanism.
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