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ABSTRACT 
The dynamic stiffness method for free vibration of beams 

and frameworks is developed using a higher order shear 

deformation theory. Starting with the displacement field, the 

potential and kinetic energies of the beam in flexural vibration, 

are first formulated. Then, Hamilton’s principle is applied to 

derive the governing differential equations and associated 

natural boundary conditions. Next, the differential equations are 

solved to obtain the expressions for flexural displacement, 

bending rotation and the first derivative of the flexural 

displacement. The expressions for the shear force, bending 

moment and the higher-order moment are obtained from the 

natural boundary conditions resulting from the Hamiltonian 

formulation. Finally, the force vector comprising the amplitudes 

of the shear force, bending moment and the higher-order moment 

is related to the amplitudes of the displacement vector 

comprising the flexural displacement, bending rotation and the 

first derivative of the flexural displacement through the 

frequency-dependent dynamic stiffness matrix. The dynamic 

stiffness matrix for axial motion which is uncoupled from the 

flexural motion is now implemented to the dynamic stiffness 

matrix in flexural motion to analyse individual beams and 

frameworks for their free vibration characteristics by applying 

the Wittrick-Willaims algorithm. Illustrative examples are given, 

and significant conclusions are drawn.  

 

Keywords: dynamic stiffness method, higher order shear 

deformation theory, beams, frames, Wittrick-Williams algorithm  

 

1. INTRODUCTION 
 

 The earliest beam theory that we know of, was developed in 

the eighteenth century by Euler and Bernoulli [1, 2]. The theory 

endured the test of time remarkably well, and is still being used 

satisfactorily, even to this day. The theory, known as the 

Bernoulli-Euler or Euler-Bernoulli beam theory, was further 

improved about a century later by Lord Rayleigh [3] who 

included the effect of the rotatory inertia of the beam cross-

section which improved the accuracy of results, and this was 

demonstrated by Searle [4]. This relatively unknown Rayleigh-

beam theory was overshadowed by the theory developed by 

Timoshenko and Ehrenfest in the earlier part of the twentieth 

century [5, 6] when they considered both the effects of rotatory 

inertia and shear deformation and advanced the Bernoulli-Euler 

beam theory significantly. The rest is essentially an impactful 

history which is a continuing account of the applications and 

developments of the Timoshenko-Ehrenfest beam theory. It is no 

exaggeration that the Timoshenko-Ehrenfest beam theory has 

featured in literally thousands of papers in the literature. 

However, it is well-known that one of the critical assumptions 

associated with the Timoshenko-Ehrenfest beam theory is that 

the theory relies on uniform shear stress distribution through the 

thickness of the beam cross-section, which does not satisfy the 

zero shear stress condition on the outer surface of the beam, but 

nevertheless, the theory takes some partial account of the non-

uniform shear stress distribution on an ad-doc basis, by 

introducing a shear correction factor (also called shape factor). 

Based on this idea of using the Timoshenko-Ehrenfest beam 

theory using a rather fictitious shear correction factor [7], 

numerous publications on the free vibration behaviour of 

Timoshenko-Ehrenfest beams can be found in the literature. A 

small sample of the literature, showing significant applications 

of Timoshenko-Ehrenfest beam theory, can be found in [8-26] in 

chronological order. A literature survey also shows that there are 

many investigators who have been seemingly uncomfortable 

with the Timoshenko-Ehrenfest beam theory because of the 

assumption of unform shear stress distribution through the cross-

section and the subsequent introduction of a somewhat arbitrary 

shear correction factor on an ad hoc, and perhaps on an 

improvised basis to rectify the anomaly of non-zero shear stress 

condition on the outer surface of the beam. Therefore, the search 

for refined beam theories which dispense with the so-called shear 

correction or shape factor, continued relentlessly since the 

emergence of Timoshenko-Ehrenfest beam theory. Notable 
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contributors in this endeavour include Levinson [27], Heyliger 

and Reddy [28], Kosmatka [29], Huang et al. [30], Nolde et al. 

[31], Xie et al. [32], Simsek and Kocaturk [33], amongst others, 

who have used higher order shear deformation theories based on 

the mathematical theory of elasticity. Carrera et al. [34] made an 

objective assessment of several refined beam theories including 

the first author’s own theory, called the Carrera Unified 

Formulation (CUF). The authors of [34] drew many useful 

conclusions, evaluating each theory on its intrinsic merit, and 

highlighting each theory’s suitability, advantages and 

disadvantages in different applications. However, the literature 

on the application of the dynamic stiffness method in 

conjunction with higher order shear deformation theory for free 

vibration analysis of beam is scarce with only a couple of 

research papers appears to have been published in the open 

literature [35, 36]. The purpose of this paper is to redress this 

imbalance by developing a new dynamic stiffness theory for 

beams by using higher order shear deformation theory and 

extending the earlier research significantly. Some of the errors in 

the published literature are also rectified. One of the main 

contributions made in this paper is the application of higher order 

shear deformation theory for beams to free vibration analysis of 

frameworks. This is against the background that earlier research 

was predominantly confined to individual beams rather than 

frameworks. It should be noted that in recent years, the 

developments of advanced beam theories have taken numerous 

turns, particularly when dealing with composite, functionally 

graded, cracked, micro and nano beams [37-45]. 

As stated by many of the above investigators, one of the great 

advantages of using a higher order shear deformation theory in 

free vibration analysis of beams or frameworks is that it 

dispenses with the so-called shear correction factor generally 

adopted in the Timoshenko-Ehrenfest beam formulation to 

account for the non-uniform shear stress distribution through the 

thickness of the beam cross-section. A higher order shear 

deformation theory overcomes this limitation. With this pretext, 

it should be noted that when carrying out the free vibration 

analysis of structures, the dynamic stiffness method (DSM) 

which is called an “exact” method is a powerful alternative to the 

conventional finite element method (FEM) and other methods. 

Publications relating to the application of the dynamic stiffness 

method to solve the beam vibration problem very accurately, 

using HSDT are indeed scarce. Furthermore, most of the 

published literature deals with the free vibration behaviour of 

individual beams using higher order shear deformation theory, 

but an extension of the theory for applications to frameworks is 

an open area of research, apparently not undertaken by 

investigators earlier. This paper is intended to fill this gap in the 

literature by developing the dynamic stiffness matrix of a beam 

using a higher order shear deformation theory and then applying 

it to individual beams as well as frameworks. Advantages of the 

DSM and its superior modelling capability over FEM and other 

methods when carrying out free vibration analysis of structures 

are well known, and there are some survey papers on the subject 

[46-49].  The DSM is essentially based on the exact solution of 

the governing differential equation of a structural element when 

it is undergoing free natural vibration. There are, however, many 

similarities between FEM and DSM. Both methods are based on 

the concept of shape functions and nodes of a structure. Notably, 

DSM uses the frequency-dependent exact shape functions 

obtained from the solution of the governing differential equation 

as opposed to the frequency-independent assumed shape 

functions used in FEM. The procedure to assemble properties of 

individual structural elements to form the overall matrix is 

essentially the same. However, there are some significant 

differences between FEM and DSM. For instance, when solving 

free vibration problems, the mass and stiffness matrices of 

individual elements are assembled separately in FEM to form the 

overall mass and stiffness matrices of the final structure. By 

contrast, in DSM, there is only one frequency-dependent matrix 

called the dynamic stiffness matrix containing both the mass and 

stiffness properties of the element, which is assembled to form 

the overall dynamic stiffness matrix of the final structure. The 

other striking feature which distinguishes the two methods is the 

solution technique for the eigenvalue problem yielding the 

natural frequencies of a structure. FEM generally leads to a linear 

eigenvalue problem whereas the DSM leads to a non-linear 

eigenvalue problem generally solved using the Wittrick-

Williams algorithm [50]. As all the assumptions made in DSM 

are within the limits of the governing differential equations, the 

results from DSM are usually designated as exact and they are 

independent of the number of elements used in the analysis. 

Thus, unlike FEM, further discretization of a structure in DSM 

is not needed unless there is a change in the geometry or material 

properties. For instance, a single structural element can be used 

in DSM to compute any number of natural frequencies of a beam 

or a plate to any desired accuracy, which of course, is impossible 

in FEM. Basically, DSM accounts for an infinite number of 

degrees of freedom of a freely vibrating structure whereas FEM 

being restricted to a selected number of degrees of freedom at 

the nodes, does not. For standard structures like beams and 

plates, DSM gives the same results as the classical theories based 

on governing differential equations. A secondary purpose of this 

paper is to assess the accuracy and reliability of existing methods 

in free vibration analysis of beams and frameworks, essentially 

by comparison with DSM. 

The paper is organised as follows. Following this section on 

Introduction. Section 2 provides the underlying theory of the 

paper with subsection 2.1 focusing on the derivation of the 

governing differential equation of the beam using higher order 

shear deformation theory. Starting from the choice of the 

displacement field, the potential and kinetic energies of the beam 

are formulated, and Hamilton’s principle is applied to derive the 

governing differential equations and associated natural boundary 

conditions, when the beam is undergoing free vibration. 

Following this, in subsection 2.2, the differential equations are 

solved in an exact sense to obtain the expressions for axial 

displacement, flexural displacement, bending rotation and the 

first derivative of the flexural displacement. The expressions for 

shear force, bending moment and the higher-order moment are 

obtained from the natural boundary conditions resulting from the 

Hamiltonian formulation. Then in subsection 2.3, the dynamic 
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stiffness matrix is developed by relating the force vector 

comprising shear force, bending moment and the higher-order 

moment to the displacement vector comprising flexural 

displacement, bending rotation and the first derivative of the 

flexural displacement. In Section 3, the application aspects of the 

dynamic stiffness matrix are briefly covered, explaining how the 

dynamic stiffness matrix in axial motion can be incorporated into 

the derived dynamic stiffness matrix in flexural motion. The use 

of the transformation matrix is outlined to enable free vibration 

analysis of frameworks to be made. Also, the solution technique 

for the free vibration analysis is briefly mentioned by referring 

to the Wittrick-Williams algorithm. Section 4 deals with 

numerical results and discussion and finally, conclusions are 

drawn in Section 5.  

 

2. THEORY 
 

In a Cartesian coordinate system, Fig. 1 shows a rectangular 

cross-section beam of length L, width b and height or depth h, 

respectively, as shown, so that the area A and the second moment 

of area I of the beam cross-section are respectively, bh and 

bh3/12, respectively. The flexural displacement is assumed to 

take place in the YZ plane with the Y-axis coinciding with the 

centroidal axis of the beam. If the Young’s modulus and the 

density of the beam material are E and , respectively, the 

flexural rigidity and the mass per unit length of the beam are EI 

and A, respectively. Based on these beam parameters, and using 

linear small deflection assumption, the governing differential 

equations of motion of the beam in free vibration using higher 

order shear deformation theory are derived as follows. 
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Fig. 1 Beam coordinate system and notation. 

2.1 Derivation of the governing differential equations 

 

Referring to Fig. 1, the displacement field for the higher order 

shear deformation theory for the beam can be written as [27, 28, 

35] 

𝑣 = 𝑧 [𝜃 −
4

3
(

𝑧

ℎ
)

2
(𝜃 + 𝑤′)]              (1) 

 

where v and w are the displacement of the beam centreline (or 

the neutral axis) in the Y and Z-directions, at a distance y from 

the origin,  is the bending rotation, i.e., rotation of a normal to 

the axis of the beam, and a prime represents partial 

differentiation with respect to y.  

Using Eq. (1), the normal strain , and the shearing strain , at 

a point (y, z) on the cross-section are given by 

𝜀 =
𝜕𝑣

𝜕𝑦
= 𝑧 {𝜃′ −

4

3
(

𝑧

ℎ
)

2
(𝜃′ + 𝑤′′)}             (2) 

𝛾 =
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
= (𝜃 + 𝑤′) (1 −

4𝑧2

ℎ2 )             (3) 

The potential or strain energy U of the beam can then be 

written as 

 

𝑈 =
1

2
∭ 𝜎𝜀𝑑𝑥𝑑𝑦𝑑𝑧 +

1

2
∭ 𝜏𝛾𝑑𝑥𝑑𝑦𝑑𝑧

⬚

𝑉

⬚

𝑉
            (4) 

 

Noting that  = E and  =G, the variation 𝛿𝑈 of the 

potential energy U of Eq. (4) becomes 

 

𝛿𝑈 = ∭ 𝐸𝜀𝛿𝜀𝑑𝑥𝑑𝑦𝑑𝑧 + ∭ 𝐺𝛾𝛿𝛾𝑑𝑥𝑑𝑦𝑑𝑧
⬚

𝑉

⬚

𝑉
                   (5) 

 

With the help of Eqs. (2) and (3), 𝛿𝜀 and 𝛿𝛾 can be written 

as  

𝛿𝜀 = 𝑧 {𝛿𝜃′ −
4𝑧2

3ℎ2
(𝛿𝜃′ + 𝛿𝑤′′)}             (6) 

𝛿𝛾 = (𝛿𝜃 + 𝛿𝑤′) (1 −
4𝑧2

ℎ2 )              (7) 

 

Substituting Eqs. (6) and (7) into Eq. (5) and noting that the 

triple integral reduces to a single integral along the length 

coordinate when integrated over the uniform rectangular area of 

cross-section of the beam, we obtain 

 

𝛿𝑈 = 𝐸𝐼 ∫ [𝜃′𝛿𝜃′ −
1

5
{(𝜃′ + 𝑤′′)𝛿𝜃′ + 𝜃′(𝛿𝜃′ + 𝛿𝑤′′)} +

𝐿

0
1

21
(𝜃′ + 𝑤′′)(𝛿𝜃′ + 𝛿𝑤′′)] 𝑑𝑦 +

8

15
𝐺𝐴 ∫ (𝜃 + 𝑤′)

𝐿

0
(𝛿𝜃 +

𝛿𝑤′)𝑑𝑦                 (8) 

 

The kinetic energy T of the beam shown in Fig. 1 is given 

by [28] 

 

𝑇 =
1

2
∭ (�̇�2 + �̇�2)

⬚

𝑉
𝑑𝑥𝑑𝑦𝑑𝑧              (9) 

 

where an over dot denotes partial differentiation with 

respect to time t. 

From Eq. 1, the partial time derivative of v, i.e., the �̇� term 

of equation (9) is given by 

 

�̇� = 𝑧 {�̇� −
4𝑧2

3ℎ2 (�̇� + �̇�′)}            (10) 

 

Substituting Eq. (10) into Eq. (9) and noting that its triple 

integral reduces to a single integral along the length coordinate 

for a uniform beam such as the one shown in Fig. 1of rectangular 

cross-section with area A, we obtain  
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𝑇 =
1

2
𝜌𝐴∫ �̇�2𝑑𝑦 +

1

2

𝐿

0
𝜌𝐼 ∫

68

105

𝐿

0
�̇�2𝑑𝑦 −

1

2
𝜌𝐼 ∫

32

105

𝐿

0
�̇��̇�′𝑑𝑦 +

1

2
𝜌𝐼 ∫

1

21

𝐿

0
�̇�′2𝑑𝑦           (11) 

 

The variation of the kinetic energy 𝛿𝑇 is thus given by 

𝛿𝑇 = 𝜌𝐴∫ �̇�𝛿�̇�
𝐿

0
𝑑𝑦 +

𝜌𝐼 ∫
68

105
�̇�

𝐿

0
𝛿�̇�𝑑𝑦 − 𝜌𝐼 ∫

16

105

𝐿

0

̇
�̇�𝛿�̇�′𝑑𝑦 − 𝜌𝐼 ∫

16

105
�̇�′𝛿�̇�

𝐿

0
𝑑𝑦 +

𝜌𝐼 ∫
1

21

𝐿

0
�̇�′𝛿�̇�′𝑑𝑦              (12) 

 

Hamilton’s principle states 

 

 𝛿 ∫ (𝑇 − 𝑉)
𝑡2
𝑡1

𝑑𝑡 = 0              (13) 

or, 

∫ 𝛿𝑇𝑑𝑡 − ∫ 𝛿𝑉𝑑𝑡 = 0
𝑡2
𝑡1

𝑡2
𝑡1

            (14) 

 

where t1 and t2 are the time interval of the dynamic 

trajectory, and  is the usual variational operator.  

The governing differential equations of motion of the beam 

in free vibration are now derived by substituting T and V from 

Eqs. (12) and (8) into Eq. (14), and then using the  operator and 

next integrating by parts, and finally collecting terms. In an 

earlier publication, the entire procedure to generate the 

governing differential equations of motion and natural boundary 

conditions for bar or beam type structures using Hamilton’s 

principle, was automated by Banerjee et al. [51] through the 

application of symbolic computation. In this way, the governing 

differential equations of the beam and the natural boundary 

conditions giving expressions for the shear force (S), bending 

moment (M) and higher order moment (�̅�), using higher order 

shear deformation theory are obtained as follows. 

 

Governing Differential Equations: 

 

−𝜌𝐴�̈� +
1

21
𝜌𝐼�̈�′′ −

16

105
𝜌𝐼�̈�′ −

1

21
𝐸𝐼𝑤′′′′ +

16

105
𝐸𝐼𝜃′′′ +

8

15
𝐺𝐴𝑤′′ +

8

15
𝐺𝐴𝜃′ = 0             (15) 

 

−
68

105
𝜌𝐼�̈� +

16

105
𝜌𝐼�̈�′ +

68

105
𝐸𝐼𝜃′′ −

16

105
𝐸𝐼𝑤′′′ −

8

15
𝐺𝐴𝜃 −

8

15
𝐺𝐴𝑤′ = 0              (16) 

 

Natural Boundary Conditions: 

 

Shear Force: 𝑆 =
1

21
𝐸𝐼𝑤′′′ −

16

105
𝐸𝐼𝜃′′ −

8

15
𝐺𝐴𝑤′ −

8

15
𝐺𝐴𝜃 +

16

105
𝜌𝐼�̈� −

1

21
𝜌𝐼�̈�′            (17) 

 

Bending Moment: 𝑀 =
16

105
𝐸𝐼𝑤′′ −

68

105
𝐸𝐼𝜃′          (18) 

 

Higher Order Moment: �̅� =
16

105
𝐸𝐼𝜃′ −

1

21
𝐸𝐼𝑤′′          (19) 

 

Note that the in the last term of Eq. (18) of [35], there is a 

typographical sign error in that 
68

105
𝐴𝐼𝜌2𝜔4 should be 

−
68

105
𝐴𝐼𝜌2𝜔4. Also, the expressions for bending moment M and 

Mh in Eqs. (22) and (23) of [35] should be interchanged. It should 

be also noted that if the nonlinear terms of [28] are dropped, the 

governing differential equations and the natural boundary 

conditions given by Eqs. (15)-(19) above, agree with those given 

in [28] except that there are some typographical errors in [28] as 

follows. In the fourth term of Eq. (5) in [28], −
16

105
𝐸𝐼 should be 

−
1

5
𝐸𝐼 and in the essential boundary conditions for w in Eq. (7), 

the term −
1

21
𝐸𝐼

𝜕2𝑤

𝜕𝑥2  should be −
1

21
𝐸𝐼

𝜕3𝑤

𝜕𝑥3  and the minus sign in 

front of I should be a plus sign. 

 

2.2 Solution of the Governing Differential Equation 

 

For harmonic oscillation with circular or angular frequency 

 rad/s, w(y, t) and (y, t) of Eqs. (15)-(19) can be expressed as 

 

𝑤(𝑦, 𝑡) = 𝑊(𝑦)𝑒𝑖𝜔𝑡;     𝜃(𝑦, 𝑡) = Θ𝑒𝑖𝜔𝑡            (20) 

 

Substituting Eq. (20) into Eqs. (15) and (16) and introducing 

the non-dimensional length parameter   where  = x/L, gives the 

following two ordinary differential equations 

 

{−
1

21
𝐸𝐼𝐷4 − (

1

21
𝜌𝐼𝜔2𝐿2 −

8

15
𝐺𝐴𝐿2)𝐷2 + 𝜌𝐴𝜔2𝐿4}𝑊 +

{
16

105
𝐸𝐼𝐿𝐷3 + (

16

105
𝜌𝐼𝜔2 +

8

15
𝐺𝐴) 𝐿3𝐷} Θ = 0          (21) 

 

{−
16

105
𝐸𝐼𝐷3 − (

16

105
𝜌𝐼𝜔2𝐿2 +

8

15
𝐺𝐴𝐿2)𝐷} 𝑊 +

{
68

105
𝐸𝐼𝐿𝐷2 + (

68

105
𝜌𝐼𝜔2 −

8

15
𝐺𝐴) 𝐿3} Θ = 0           (22) 

 

where 

 

𝐷 =
𝑑

𝑑𝜉
              (23) 

 

Eqs. (21) and (22) in which the shear modulus (or the 

modulus of rigidity) G for isotropic material can be replaced by 
𝐸

2(1+𝜈)
 ,  being the Poisson’s ratio, and then they can be 

combined into a 6th order ordinary differential equation which is 

identically satisfied by both W and Θ as follows. 

 

(𝐷6 + 𝐶1𝐷
4 + 𝐶2𝐷

2 + 𝐶3)𝐻 = 0           (24) 

 

with 

H = W or Θ               (25) 

 

where  

 

𝐶1 = 4𝑏2𝑟4(1 + 𝜈) − 70            (26) 

𝐶2 = 2𝑏2𝑟2(1 + 𝜈)(𝑏2𝑟4 − 85) − 70𝑏2𝑟2                     (27) 

𝐶3 = 70𝑏2 − 170𝑏4𝑟4(1 + 𝜈)            (28) 
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with 

 

𝑏2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
;      𝑟2 =

𝐼

𝐴𝐿2            (29) 

 

2.2 Solution of the Governing Differential Equations 

 

The solution of the differential equation (Eq. (24)) can be 

sought in the form 

 

𝑊 = 𝑒𝜆𝜉              (30) 

 

Substituting Eq. (30) into Eq. (24) yields the auxiliary (or 

characteristic) equation as 

 

𝜆6 + 𝐶1𝜆
4 + 𝐶2𝜆

2 + 𝐶3 = 0            (31) 

 

The sixth order polynomial equation above can be expressed 

as a cubic equation to give 

 

𝜇3 + 𝐶1𝜇
2 + 𝐶2𝜇 + 𝐶3 = 0            (32) 

 

where  

 

𝜇 = ±√𝜆                           (33) 

 

The three roots  (and hence the six roots ) can now be 

determined using standard root finding procedures [52]. 

Thus, the solutions for W and Θ (which are both denoted by 

H, see Eq. (25)) can be written as 

 

𝑊 = ∑ 𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉              (34) 

Θ = ∑ 𝐵𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉             (35) 

 

where 𝜆𝑗  (j= 1; 2; . . . ; 6) are the six roots of Eq. (31) and Aj and 

Bj are two different sets of six constants. 

By substituting Eqs. (34) and (35) into Eq. (21) and using 

Eq. (29), it can be shown that the constants Aj and Bj are related 

as follows. 

 

𝐵𝑗 = (𝛼𝑗/𝐿)𝐴𝑗             (36) 

 

where 

𝛼𝑗 =
5(1+𝜈)𝑟2𝜆𝑗

4+{5𝑏2𝑟4(1+𝜈)−28)}𝜆𝑗
2−105(1+𝜈)𝑏2𝑟2

16(1+𝜈)𝑟2𝜆𝑗
3+{16(1+𝜈)𝑏2𝑟4+28}𝜆𝑗

          (37) 

 

Using Eq. (34), the first derivative 𝑊′ of the flexural 

displacement is given by 

 

𝑊′ = ∑ 𝜆𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉              (38) 

 

Now, with the help of Eqs. (17)-(19), and substituting Eq. 

(29), the expression for the shear force S, bending moment M, 

and higher order moment �̅� are now given by 

 

𝑆 = ∑ 𝑓𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉              (39) 

𝑀 = ∑ 𝑔𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉             (40) 

�̅� = ∑ −ℎ𝑗𝐴𝑗
6
𝑗=1 𝑒𝜆𝑗𝜉              (41) 

where  

𝑓𝑗 =
𝐸𝐼

105𝐿3 [5𝜆𝑗
3 − 𝜆𝑗 {

56

2(1+𝜈)𝑟2 − 5𝑏2𝑟2} − 16𝛼𝑗𝜆𝑗
2 −

{
56

2(1+𝜈)𝑟2 + 16𝑏2𝑟2} 𝛼𝑗]             (42) 

 

𝑔𝑗 =
𝐸𝐼

105𝐿2 (16𝜆𝑗
2 − 68𝛼𝑗𝜆𝑗)            (43) 

 

ℎ𝑗 =
𝐸𝐼

105𝐿2 (5𝜆𝑗
2 − 16𝛼𝑗𝜆𝑗)            (44) 

 

2.3 Dynamic Stiffness Matrix Formulation 

 

By relating the amplitudes of forces and moments given by 

Eqs. (39)-(41) to the amplitudes of displacements and rotations 

given by Eqs. (34), (35) and (38), the dynamic stiffness matrix is 

now formulated. This is achieved by applying the boundary or 

end conditions of the beam. 

Referring to Fig. 2, the boundary or end conditions for 

displacements and rotations are 

 

At end 1, y=0 (=0): W=W1, =1 and 𝑊′ = 𝑊1
′          (45) 

At end 2, y=L (=1): W=W2, =2 and 𝑊′ = 𝑊2
′          (46) 

 

 

                                                               

 

 

 

𝑊2
′  𝑊1

′  

W1 W2 

1 
2 

 = 0  = 1 

 
Fig. 2. Boundary or end conditions for displacements 

 

Substituting Eqs. (45) and (46) into Eqs. (34), (35) and (38) 

gives the following matrix relationship 

 

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1
𝛼1

𝐿
𝜆1

𝐿

𝑒𝜆1

𝛼1𝑒𝜆1

𝐿

𝜆1𝑒𝜆1

𝐿
  

1
𝛼2

𝐿
𝜆2

𝐿

𝑒𝜆2

𝛼2𝑒𝜆2

𝐿

𝜆2𝑒𝜆2

𝐿
  

1
𝛼3

𝐿
𝜆3

𝐿

𝑒𝜆3

𝛼3𝑒𝜆3

𝐿

𝜆3𝑒𝜆3

𝐿
  

1
𝛼4

𝐿
𝜆4

𝐿

𝑒𝜆4

𝛼4𝑒𝜆4

𝐿

𝜆4𝑒𝜆4

𝐿
  

1
𝛼5

𝐿
𝜆5

𝐿

𝑒𝜆5

𝛼5𝑒𝜆5

𝐿

𝜆5𝑒𝜆5

𝐿
  

1
𝛼6

𝐿
𝜆6

𝐿

𝑒𝜆6

𝛼6𝑒𝜆6

𝐿

𝜆6𝑒𝜆6

𝐿
  ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

        (47) 

or, 

 

𝛅 = 𝐐𝐀              (48) 
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where  is the displacement vector, A is the constant vector and 

Q is the square 6x6 matrix in Eq. (47). 

Now, referring to Fig. 3, the boundary or end conditions for 

shear forces, and moments are 

 

At end 1, y=0 (=0): S=S1, M=M1 and �̅� = �̅�1          (49) 

At end 2, y=L (=1): S=-S2, M=-M2 and �̅� = −�̅�2          (50) 

 

        S1                                                   S2 

   1                                                                   2 

         1                                                      M2 

 

 

�̅�2 �̅�1 

 = 0  = 1 

 
Fig. 3. Boundary or end conditions for forces and moments  

Substituting Eqs. (49) and (50) into Eqs. (39)-(41) gives the 

following matrix relationship 

 

[
 
 
 
 
 
𝑆1

M1

�̅�1

𝑆2

M2

�̅�2]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑓1
𝑔1

−ℎ1

−𝑓1𝑒
𝜆1

−𝑔1𝑒
𝜆1

ℎ1𝑒
𝜆1

𝑓2
𝑔2

−ℎ2

−𝑓2𝑒
𝜆2

−𝑔2𝑒
𝜆2

 ℎ2𝑒
𝜆2

𝑓3
𝑔3

−ℎ3

−𝑓3𝑒
𝜆3

−𝑔3𝑒
𝜆3

 ℎ3𝑒
𝜆3

𝑓4
𝑔4

−ℎ4

−𝑓4𝑒
𝜆4

−𝑔4𝑒
𝜆4

 ℎ4𝑒
𝜆4

𝑓5
𝑔5

−ℎ5

−𝑓5𝑒
𝜆5

−𝑔𝑒𝜆5

 ℎ5𝑒
𝜆5

𝑓6
𝑔6

−ℎ6

−𝑓6𝑒
𝜆6

−𝑔6𝑒
𝜆6

 ℎ6𝑒
𝜆6 ]

 
 
 
 
 
 

[
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6]
 
 
 
 
 

       (51) 

 

or, 

 

𝐟 = 𝐑𝐀               (52) 

 

The constant vector, A can now be eliminated from Eqs. 

(48) and (52) to give 

 

𝐟 = 𝐑𝐐−1𝛅 = 𝐊𝛅             (53) 

 

where  

 

𝐊 = 𝐑𝐐−1              (54) 

 

is the required dynamic stiffness matrix. 

Thus, the force-displacement relationship at the nodes of a 

beam using higher order shear deformation theory is given by 

 

[
 
 
 
 
 
𝑆1

𝑀1

�̅�1

𝑆2

𝑀2

�̅�2]
 
 
 
 
 

=

[
 
 
 
 
 
𝑘11

𝑘12

𝑘13

𝑘14

𝑘15

𝑘16

𝑘12

𝑘22

𝑘23

𝑘24

𝑘25

𝑘26

𝑘13

𝑘23

𝑘33

𝑘34

𝑘35

𝑘36

𝑘14

𝑘24

𝑘34

𝑘44

𝑘45

𝑘46

𝑘15

𝑘25

𝑘35

𝑘45

𝑘55

𝑘56

𝑘16

𝑘26

𝑘36

𝑘46

𝑘56

𝑘66]
 
 
 
 
 

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

= [
𝐤𝟏𝟏 𝐤𝟏𝟐

𝐤𝟐𝟏 𝐤𝟐𝟐
]

[
 
 
 
 
 
𝑊1

Θ1

𝑊1
′

𝑊2

Θ2

𝑊2
′]
 
 
 
 
 

      (55) 

 

where k11, k12, k21 and k22 are 3×3 submatrices and k21 is the 

transpose of k12. 

When computing the dynamic stiffness matrix K of (54), it 

should be noted that the roots  and  of Eqs. (31) and (32) can 

be complex and therefore, the elements of matrices Q and R of 

Eqs. (48) and (52) can also be complex. Therefore, the matrix 

inversion and multiplication steps of Eq. (54) must be carried out 

using complex arithmetic. The resulting dynamic stiffness 

matrix K will, of course, be symmetric and real, with imaginary 

parts of each element being zero. Now the dynamic stiffness 

matrix in axial or longitudinal motion which is readily available 

in the literature [53, 54, 55] and is uncoupled from flexural 

motion, can be incorporated into the dynamic stiffness matrix K 

in flexural motion derived above so that the free vibration 

analysis of frames can be made. The force-displacement 

relationship using the dynamic stiffness matrix of a beam 

element in axial or longitudinal vibration with the amplitudes of 

axial forces and displacements at nodes 1 and 2, being F1, F2 and 

V1, V2, respectively is given by [53, 54, 55] 

 

[
𝐹1

𝐹2
] =

𝐸𝐴

𝐿
[
𝑎1 𝑎2

𝑎2 𝑎1
] [

𝑉1

𝑉2
]             (56) 

 

where  

 

𝑎1 =
𝐸𝐴

𝐿
�̅� cot 𝜇;̅  𝑎2 = −�̅� cosec �̅�             (57) 

 

with  

�̅� = 𝜔𝐿√
𝜌𝐴

𝐸𝐴
              (58) 

 

The dynamic stiffness matrix in axial motion given by Eq. 

(56) when incorporated into the dynamic stiffness matrix in 

flexural motion given by Eq. (55), leads to 

 

[
 
 
 
 
 
 
 
 
𝐹1

𝑆1

𝑀1

�̅�1

𝐹2

𝑆2

𝑀2

�̅�2]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝑎1

0
0
0
𝑒1

0
0
0

0
 𝑘11

𝑘12

𝑘13

0
𝑘14

𝑘15

 𝑘16

0
𝑘12

𝑘22

𝑘23

0
𝑘24

𝑘25

𝑘26

0
𝑘13

𝑘23

𝑘33

0
𝑘34

𝑘35

𝑘36

𝑒1

0
0
0
𝑎1

0
0
0

0
𝑘14

𝑘24

𝑘34

0
𝑘44

𝑘45

𝑘46

0
𝑘15

𝑘25

𝑘35

0
𝑘45

𝑘55

𝑘56

0
𝑘16

𝑘26

𝑘36

0
𝑘46

𝑘56

𝑘66]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑉1

𝑊1

Θ1

𝑊1
′

𝑉2

𝑊2

Θ2

𝑊2
1]
 
 
 
 
 
 
 
 

= [
𝐊11 𝐊12

𝐊21 𝐊22
]

[
 
 
 
 
 
 
 
 
𝑉1

𝑊1

Θ1

𝑊1
′

𝑉2

𝑊2

Θ2

𝑊2
1]
 
 
 
 
 
 
 
 

      (59) 

 

where 

 

𝐊11 = [

𝑎1

0
0
0

0
𝑘11

𝑘12

𝑘13

0
𝑘12

𝑘22

𝑘23

0
𝑘13

𝑘23

𝑘33

] ; 𝐊12 = [

𝑒1

0
0
0

0
𝑘14

𝑘15

𝑘34

0
𝑘15

𝑘25

𝑘35

0
𝑘16

𝑘26

𝑘36

] ; 𝐊22 = [

𝑎1

0
0
0

0
𝑘44

𝑘45

𝑘46

0
𝑘45

𝑘55

𝑘56

0
𝑘46

𝑘56

𝑘66

]  (60) 

 

and K21 can be obtained by taking the transpose of K12. 
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3. APPLICATION OF THE THEORY 

The dynamic stiffness matrix developed above, can now be used 

to compute the natural frequencies and mode shapes of either a 

single beam or an assembly of beams, e.g., a framework. 

However, to apply the theory to a framework, the dynamic 

stiffness matrix of Eqs. (59) and (60), developed for an 

individual beam element in its local coordinates must be 

transformed into global (or datum) coordinates. 

Figure 4 shows the local (YZ) and global (�̅��̅�) coordinate 

systems of a beam element with the local Y-axis making an angle 

𝜙 with the global �̅�-axis (measured positive anticlockwise). The 

transformation matrix T to transform the submatrices K11, K12, 

K21 and K22 of Eqs. (59) and (60) from local coordinates to 

global (or datum coordinates) is given by [54, 55] 

 

𝐓 = [

   cos 𝜙  
− sin𝜙

0
0

  sin𝜙  
  cos𝜙

0
0

  

0
0
1
0

     0
     0

     
0
1

]            (61) 

 

The transformed stiffness matrices �̅�11, �̅�12 and �̅�22, in 

global coordinates are given by [54, 55] 

 

�̅�11 = 𝐓T𝐊11𝐓; �̅�12 = 𝐓T𝐊12𝐓; �̅�22 = 𝐓T𝐊22𝐓           (62) 

 

where the upper suffix of T denotes a transpose and �̅�21 is �̅�12
T . 

 

 

 

 

 

 

 

 

Fig. 4. Local and Global Coordinate System of a Beam 

Element 

 

 The transformed stiffness matrices �̅�11, �̅�12 �̅�21 and �̅�22 can 

now be used to form the overall dynamic stiffness matrix of a 

frame in a global or datum coordinate system. 

Once the overall global dynamic stiffness matrix �̅� of a 

frame is formed, the Wittrick-Williams algorithm [46-50] can be 

used as a solution technique to compute the natural frequencies 

and subsequently recover the mode shapes of the frame.  

 

4. RESULTS AND DISCUSSION 
 

The theory developed above is now applied for free 

vibration analysis of five illustrative examples of different types. 

The first illustrative example is taken from Carrera et al [34] 

which is that of a cantilever beam with solid rectangular cross-

section. The authors of [34] have used Carrera Unified 

Formulation (CUF), Timoshenko-Ehrenfest and Bernoulli-Euler 

beam theories and a 3D finite element analysis and made 

comparative assessments of results.  The width (b) and depth or 

height (h) of the beam cross-section are 1m and 0.1m, 

respectively and the length L of the beam is 10m, as given in 

[34]. The material properties of the beam are that of aluminum 

with Young’s modulus E = 69 MPa, density  = 2700 kg/m3 and 

Poisson’s ratio  =0.33 [34]. The first four natural frequencies fi 

(i = 1, 2 , 3 and 4) in Hz of the cantilever beam were computed 

using the present theory and the results are shown in Table 1 

alongside the results reported in [34]. The results from the 

present theory are in excellent agreement with the CUF theory, 

Timoshenko-Ehrenfest theory and 3D finite element results, the 

discrepancy being less than 1.5%. Note that the results for the 

Timoshenko-Ehrenfest beam theory shown in Table 1 were 

computed using the exact frequency dependent mass and 

stiffness matrices derived by the current author in a recently 

published paper [53] as well by using the published program of 

[55]. The shear correction or shape factor used in the analysis 

was set to 5/6. Also, it should also be noted that that unlike the 

1st, 2nd and 4th natural frequencies which corresponds to in-plane 

free vibration of the beam in the YZ-plane (see Fig. 1), the 3rd 

natural frequency corresponds to an out of plane natural 

frequency for which the free vibratory motion takes place in the 

XY-plane (see Fig. 1). The mode shapes for the first four natural 

frequencies using the higher order shear deformation theory 

developed in this paper are illustrated in Fig. 5, showing flexural 

displacement W, bending rotation  and the first derivative of 

the flexural displacement 𝑊′ in each mode. From the mode 

shapes, it may be noted that the bending rotation  and the first 

derivative of the flexural displacement 𝑊′ in each of the four 

mode shapes are almost equal and opposite which leads to the 

assertion that the shearing strain in these modes is almost zero 

which is in accord with Eq. (3). This is to be expected for a beam 

[34] of this type which has a slender ratio (length over the radius 

of gyration) approaching 350, for which the shearing strain is not 

expected to have any major effect. 

 

Table 1 Natural frequencies of a cantilever beam 

 

Freq. 

No (i) 

Natural frequency fi (Hz) 

Present TEBT [53] CUF [34] 3D FEM [34]  

1 0.8165 0.8165 0.8255 0.8325 

2 5.1148 5.1151 5.1702 5.2142 

3 8.1014 8.1090 8.1443 8.0181 

4 14.310 14.3156 14.4193 14.5998 

 

Table 2 Natural frequencies of a simply-supported beam 

 

Freq. 

No (i) 
Natural frequency i (rad/s) 

Present TEBT [24, 53, 55] BEBT [24] 

1 6916.02 6838.83 (1.12%) 7368.07 (6.54%) 

2 23949.7 23190.8 (3.17%) 29472.2 (23.1%) 

3 40622.3 43443.5 (6.94%) 66312.7 (63.2%) 

4 45734.9 64939.2 (42.0%) 117889.1 (158%) 

 

 

 

𝜙 

0 

𝑌 

𝑍 

�̅� 

�̅� 
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Fig.5 Mode shapes of a cantilever beam using HSDT 

                 W;                     ;                     𝑊′ 

 

The second illustrative example is that of a Timoshenko-

Ehrenfest beam reported by Chen et al. [24] and Banerjee [53]. 

The beam material properties are Young’s modulus E = 210 GPa, 

density  = 7850 kg/m3 and Poisson’s ratio  =1/3. The shear 

modulus G was calculated by relating it to E through the 

Poisson’s ratio  to give G = 3E/8 [24]. The beam is of 

rectangular cross-section with width b = 0.02m, depth or height 

h = 0.08m and it has a length L = 0.4m. The shear correction 

factor (also known as shape factor) was set to k = 2/3 as used in 

[24, 53] when computing the results by using the Timoshenko-

Ehrenfest beam theory [53, 55]. The Bernoulli-Euler beam 

theory (BEBT) results were obtained using the published 

program of Williams and Howson [54]. This example was 

chosen because unlike the previous example in which the beam 

had a slenderness ratio of around 350, this example beam has a 

slenderness ratio of around 17. Thus, there are significant 

differences between the two examples so that the results can be 

compared and contrasted to demonstrate the correctness and 

accuracy of the theory. Table 2 shows the results for the first four 

in-plane natural frequencies of the beam with simple-supported 

(S-S) boundary conditions, using the present HSDT theory, 

Bernoulli-Euler beam theory (BEBT) [54] and the Timoshenko-

Ehrenfest beam theory (TEBT) [24, 53, 55]. The percentage 

differences in results for the first four natural frequencies using 

the Timoshenko-Ehrenfest beam theory (TEBT) and the 

Bernoulli-Euler Beam theory (BEBT) as opposed to the present 

HSDT theory are shown in the parentheses of columns 3 and 4 

of the table. For the four natural frequencies quoted, the TEBT 

results deviate by 1.12%, 3,17%, 6.94% and 42%, respectively 

whereas for the BEBT results the deviations are by 6.54%, 

23.1%, 63.2% and 158%, respectively. Clearly the differences 

are much larger compared to the previous example due mainly 

to the low slenderness of the beam.  

The third illustrative example is taken from a recently 

published paper [45] which deals with the free vibration analysis 

of cracked beams by applying the finite element method based 

on the Reddy beam theory [28] which in fact is the higher order 

shear deformation theory used in this paper. This example is 

chosen because the paper [45] uses the same displacement field 

as that of the present paper to describe the normal and shear 

stress and strain distributions of the beam but relies on the finite 

element method as opposed to the dynamic stiffness method of 

the present paper. Of course, both methods dispense with the so-

called shear correction factor, generally employed in the 

Timoshenko-Ehrenfest beam theory [5-16]. Although the 

authors of [45] focused their attention on cracked beams, they, 

nevertheless, presented results for the degenerate case for the 

intact beam, i.e. when the crack was absent. The results for the 

first four natural frequencies for clamped-simply supported 

boundary condition of the beam using the present theory are 

shown in Table 3 together with the results reported in [45]. To 

be consistent with the results given in [45], the non-dimensional 

frequency parameter 𝜆̅𝑖 (i =1, 2, 3, 4) is used, where 

 

𝜆̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

4
              (63) 

 

Results using the Bernoulli-Euler and Timoshenko beam 

theories were obtained using the published programs of [54] and 

[55] which are also shown in Table 3 in non-dimensional form. 

As can be seen, the results from the present theory are in close 

agreement with those of [45] which applied finite element 

method but used higher order shear deformation theory based on 

the same displacement field as the present paper. However, the 

results from the Timoshenko-Ehrenfest beam theory (TEBT) 

differed from the present theory by 1.5%, 2.7%, 3.6% and 4.2% 

in the first four natural frequencies, respectively whereas the 

corresponding differences using the Bernoulli-Euler beam 

theory (BEBT) are 7.1%, 16.2%, 26.1% and 35.8%, respectively. 

As expected, the BEBT which ignores the effects of shear 

deformation gives relatively large errors in the natural 

frequencies.  

 

Table 3 Natural frequencies of a clamped-simply supported 

beam 

 

Freq. 

No (i) Non-dimensional natural frequency 𝜆̅𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

4
 

Present Ref [45] TEBT [55] BEBT [54]  

1 3.6662 3.6710 3.6124 3.9266 

2 6.0814 6.0957 5.9185 7.0686 

3 8.0990 8.1237 7.8108 10.210 

4 9.8313 9.8662 9.4176 13.352 

 

0 0.25 0.5 0.75 1

0

0

0

0

f1 = 0.8165 Hz

f2 = 5.1148 Hz

f3 = 8.1014 Hz

f4 = 14.310 Hz
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The next example is that of a portal frame shown in Fig. 6. 

This problem was investigated earlier by Banerjee [56] and 

Doyle [57], in very different contexts. Each beam member of the 

portal frame of Fig. 6 is considered here of thin-walled circular 

cross-section with external and internal diameters 0.25m and 

0.24m, respectively so that the thickness of the tubular cross-

section is 0.01m. The length L is set to 5m. The material 

properties used are that of steel with Young’s modulus E=200 

GPa, and density  = 7500 kg/m3 so that the axial or extensional 

and flexural rigidities and the mass per unit length are worked 

out to be EA=1.5708×109 N, EI=5.7775×106 Nm2, and A= 

58.905 kg/m, respectively. The Poisson’s ratio is taken to be 1/3. 

The first six natural frequencies of the portal frame are shown in 

Table 4 using the present theory as well as the Timoshenko-

Ehrenfest [53] and Bernoulli-Euler [54] beam theories. The 

results using the present theory are close to those of the 

Timoshenko-Ehrenfest theory, but the Bernoulli-Euler theory 

caused a small difference with maximum discrepancy of around 

2% in the sixth natural frequency. This is expected because the 

slenderness ratio of each of the frame members is around 80. 

Doyle [57] quoted the fundamental frequency of the frame, 

which in current form is 2.649, close to the present theory. 
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Fig.6 A Portal Frame 

 

Table 4 Natural frequencies of portal frame of Fig. 6 

 

Freq. 

No (i) Non-dimensional natural frequency �̅�𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

⬚
 

Present TEBT [55] BEBT [56] 

1 2.6585 2.6583 2.6642 

2 6.7844 6.7839 6.8083 

3 16.839 16.838 16.948 

4 18.924 18.925 19.106 

5 25.301 25.297 25.605 

6 42.584 42.581 43.220 

 

The final example is a portal frame containing inclined 

members as shown in Fig. 7. The member properties and the 

length L are taken to be the same as those of the portal frame in 

the previous example. The first six natural frequencies of the 

portal frame computed using the present theory as well as by the 

Timoshenko-Ehrenfest and Bernoulli-Euler theories, are shown 

in Table 5. As was the case with the previous portal frame, the 

results from the present theory are in excellent agreement with 

those obtained from the Timoshenko-Ehrenfest beam theory 

(TEBT), but the Bernoulli-Euler beam theory (BEBT) yielded a 

small difference of around 3% in the sixth natural frequency. The 

small differences in the results can be attributed to the fact that 

like the previous example of the portal frame, each member of 

the portal frame of Fig. 6 has a slenderness ratio more than 80.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 A portal frame with inclined members 

 

Table 5. Natural frequencies of a portal frame of Fig. 7 

 

Freq. 

No (i) Non-dimensional natural frequency �̅�𝑖 = √
𝜔2𝜌𝐴𝐿4

𝐸𝐼

⬚
 

Present TEBT [55] BEBT [56] 

1 2.0733 2.0732 2.0766 

2 5.1462 5.1459 5.1560 

3 11.678 11.677 11.730 

4 14.704 14.703 14.803 

5 21.858 21.855 22.099 

6 22.863 22.861 23.081 

 

5. CONCLUSIONS 
 

Using higher order shear deformation theory, the dynamic  

stiffness method is developed for free vibration analysis of 

beams and frameworks. The unique feature of the dynamic 

stiffness method in which exact member theory resulting from 

the solution of the governing differential equations of motion is 

applied when developing the theory and subsequently obtaining 

the results. Comparative results for the natural frequencies using 

Timoshenko-Ehrenfest and Bernoulli-Euler theories are also 

presented. Representative mode shapes are illustrated. The 

accuracy and robustness of the theory are demonstrated by 

numerical results which showed excellent agreement with 

published results in the literature. The extension of the higher 

order shear deformation theory for free vibration analysis of 

frameworks using the dynamic stiffness method is entirely novel 

and is an important contribution to the literature.  
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