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 11 

Abstract 12 

Traditional isolation design for continuous girder bridges often focuses on single-parameter tuning, 13 

overlooking the complex interactions among yield strength, pre-yield stiffness, and post-yield stiffness. 14 

This paper proposes a multi-parameter optimization method to systematically investigate the nonlinear 15 

influence of each parameter on the seismic performance of bridges. First, using a conventional particle 16 

swarm optimization (PSO) algorithm, the individual and combined effects of each parameter on key 17 

response indicators are identified. On this basis, an adaptive particle swarm optimization (APSO) 18 

algorithm with dynamic inertia weights and learning factors is introduced to broaden the search space, 19 

expedite convergence, and reduce the likelihood of becoming trapped in local optima. Numerical studies 20 

indicate that, compared with the standard PSO method, APSO can reduce the total number of iterations 21 

by up to 40% while maintaining solution accuracy. The underlying mechanism is that APSO preserves 22 

particle diversity and dynamically adjusts the balance between global and local searches, thereby rapidly 23 

identifying the optimal bearing configuration. Compared with single-parameter or orthogonal design 24 

methods, the APSO-based multi-parameter optimization strategy significantly enhances structural 25 

ductility, as reflected by notable reductions in pier-top displacement and pier-bottom shear force. These 26 

findings underscore the robustness and efficiency of APSO in designing isolation bearings for high-27 

dimensional problem spaces. 28 

 29 

1 Introduction 30 

Major earthquakes, such as the 1995 Hanshin-Awaji Earthquake in Japan and the 2008 Wenchuan 31 

Earthquake in China, have repeatedly underscored the significant vulnerability of bridges during large-32 

scale seismic events1. For bridge structures located in areas of intense seismic activity, the failure of any 33 

component can lead to immense economic losses and severely disrupt post-disaster rescue and 34 

reconstruction efforts. In response, seismic isolation technology has gained increasing prominence in 35 

bridge engineering, as it effectively decouples the superstructure from seismic motions and thus mitigates 36 

structural damage. Among these technologies, isolation bearings play a pivotal role in dissipating seismic 37 

energy; their performance is crucial for ensuring bridge safety and functionality under strong earthquakes2. 38 

In areas prone to high-intensity seismic activity, the careful selection of optimal bearing parameters can 39 

markedly improve the reliability and serviceability of continuous girder bridges, thereby securing lifeline 40 

transportation networks and facilitating rapid emergency response operations. 41 



Although existing research has made notable strides in elucidating the nonlinear behavior of isolation 42 

bearings, most work has focused on individual parameters, such as bearing yield strength or stiffness3. 43 

Amiri et al.4 studied the seismic response of triple friction pendulum isolators under near-fault ground 44 

motions, identifying through detailed sensitivity analysis the optimal bearing parameters that significantly 45 

improve overall damping efficiency. Peng et al.5 proposed a reliability-based optimization framework for 46 

adaptive sliding isolation systems, incorporating sensitivity analysis and magnetically sliding bearings to 47 

enhance seismic performance. Zhong et al.6 developed a risk-driven sensitivity analysis and optimization 48 

procedure based on Gaussian process surrogate models, effectively lowering seismic risk through refined 49 

bearing parameter selection. Concurrently, Gur et al.7 focused on the stochastic optimization of shape 50 

memory alloy rubber bearings, showing that such bearings can markedly boost isolation capacity under 51 

random seismic scenarios. While these single-parameter approaches deepen our understanding of 52 

isolation performance, they often prove inadequate for practical engineering applications, especially when 53 

multiple parameters interact to shape the overall seismic response. For continuous girder bridges with 54 

significant variations in pier heights, curvature effects, or other complex factors, relying solely on single-55 

parameter analyses risks overlooking critical coupling effects among bearing design variables. 56 

Consequently, examining bearing design from a multi-parameter perspective not only aligns better with 57 

real-world conditions but also offers a more comprehensive strategy for enhancing seismic safety. 58 

To address the challenges inherent in multi-parameter design, researchers have increasingly adopted 59 

computational intelligence methods––particularly PSO––to systematically identify optimal isolation 60 

bearing parameters. For instance, Pang et al.8 formulated a risk-based design and optimization framework 61 

for shape memory alloy-restrained sliding bearings in highway bridges subjected to near-fault seismic 62 

loading, employing PSO to reduce seismic risk. Xia et al.9 introduced an improved PSO technique for 63 

structural model updating in high-dimensional bridge systems, achieving higher accuracy and efficiency 64 

using ambient vibration data. Tran-Ngoc et al.10 devised a hybrid model updating approach for multi-span 65 

railway bridges, combining orthogonal diagonalization with an enhanced PSO algorithm to lower 66 

computational complexity. Chen et al.11 proposed an improved PSO-based analysis method for the 67 

construction stages of suspension bridges, integrating the standard PSO with genetic algorithms to obtain 68 

a more precise system configuration. Li et al.12 adopted a novel PSO algorithm to develop an optimal 69 

sensor placement strategy for long-span cable-stayed bridges, reducing costs while enhancing 70 

measurement efficiency. Quaranta et al.13 employed differential evolution and PSO to identify key 71 

parameters of isolation devices, confirming the feasibility of nontraditional techniques in isolator 72 

characterization. Zhang et al.14 used PSO for simultaneous inversion of pre-stack seismic data, improving 73 

elastic parameter models and bolstering both the precision and reliability of geophysical interpretations. 74 

Similarly, recent machine learning approaches, such as Wei et al.15, employed extensive datasets to predict 75 

seismic responses and fragility of high-speed railway bridges, showcasing strengths in predictive 76 

efficiency but reliance on data availability. Additionally, Wei et al.16 introduced novel ductile piers with 77 

improved deformation capabilities under seismic loads, potentially influencing the performance 78 

requirements and optimization of isolation bearings. While various state-of-the-art optimization 79 

algorithms such as Differential Evolution (DE), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), 80 

and Ant Colony Optimization (ACO) have demonstrated success in structural optimization tasks, PSO 81 

remains particularly well-suited for multi-parameter problems characterized by continuous search spaces, 82 

nonlinearity, and complex constraint interactions. PSO has demonstrated consistent robustness and 83 

efficiency specifically in engineering design optimization problems characterized by nonlinear, multi-84 

modal, and high-dimensional search spaces, typical of seismic isolation bearing optimization scenarios. 85 

Compared to DE and GA, PSO typically requires fewer control parameters and exhibits faster 86 

convergence in scenarios involving moderate noise or multimodal objective functions. Moreover, hybrid 87 



PSO variants have been shown to outperform other algorithms in computational efficiency and robustness 88 

when applied to civil engineering optimization tasks. Given the high-dimensional, nonlinear, and 89 

computationally intensive nature of seismic isolation bearing design, PSO––especially in its enhanced, 90 

adaptive forms––presents a compelling choice. The present study builds on this foundation by integrating 91 

adaptive strategies into the PSO framework, specifically tailored to the physical constraints and seismic 92 

demands of continuous girder bridges. Despite these advances, conventional PSO still faces challenges in 93 

balancing convergence speed and robustness in design spaces with higher dimensionality and multiple 94 

constraints. To tackle this issue, the present study introduces an improved particle swarm optimization 95 

(APSO) that adaptively adjusts inertia weights and learning factors, thereby enhancing both optimization 96 

efficiency and convergence speed. This improvement is especially advantageous for large-scale, nonlinear 97 

isolation design problems, where computational efficiency is of paramount importance. 98 

The primary novelty of this work lies in integrating multi-parameter isolation design with an enhanced 99 

particle swarm algorithm specifically tailored for continuous girder bridges, thus forming a systematic 100 

approach. By comprehensively considering critical nonlinear bearing characteristics under bidirectional 101 

seismic excitation––namely yield strength, pre-yield stiffness, and post-yield stiffness––our study 102 

transcends the limitations of single-parameter optimization. Moreover, we demonstrate that APSO not 103 

only accelerates convergence but also improves the optimal isolation performance, making it more 104 

effective than conventional PSO or other common optimization strategies under the complex conditions 105 

typical of continuous girder bridges. In Section 2, we derive the particle swarm formulation for the multi-106 

parameter optimization of damping-isolation bearings, while in Section 3 we enhance the traditional PSO, 107 

proposing an adaptive particle swarm algorithm. In Section 4, comparative experiments against 108 

conventional optimization methods illustrate APSO’s superior performance in multi-parameter isolation 109 

bearing design, offering theoretical insights and practical guidance for seismic bridge design. 110 

 111 

2 Optimization of damping-isolation bearings using particle 112 

swarm optimization 113 

In the design of continuous girder bridges located in high-intensity seismic zones, isolation bearing 114 

parameters play a pivotal role in determining the overall seismic performance of the structure. 115 

Conventional optimization approaches often concentrate on a single parameter (e.g., yield strength or 116 

stiffness) to reduce design complexity; however, such simplifications tend to overlook the interactions 117 

among multiple bearing parameters under realistic seismic demands. Conversely, multi-parameter 118 

optimization provides a holistic understanding of bearing responses under severe seismic excitations, 119 

thereby markedly enhancing the resilience of critical transportation infrastructure17. 120 

This section introduces the PSO algorithm and discusses its application in multi-parameter bearing 121 

optimization. Compared with conventional methods, PSO offers strong global search capabilities and high 122 

computational efficiency, making it particularly suitable for large-scale structural problems involving 123 

nonlinear material behavior and multi-degree-of-freedom systems. 124 

PSO is a classic intelligent optimization method. It typically uses a random strategy to initialize 125 

multiple candidate solutions (particles) and then iteratively updates these solutions according to a 126 

prescribed procedure until an optimal solution is found based on a certain fitness criterion. At each 127 

iteration, particles are adjusted according to two “extreme” values within the swarm: the first is the 128 

historical best solution found by the particle itself, denoted as pBest ; the second is the historical best 129 



solution found by the entire population, denoted as gBest 18,19. 130 

The iterative process through which each particle seeks the optimal solution can be described 131 

mathematically by Equations (1) and (2)20. In an n-dimensional target search space, the position and 132 

velocity of the d -th particle can be expressed as: 133 

  1 2, , , 1,2, ,i i i inX x x x i n=  =   (1) 134 

  1 2, , , 1,2, ,i i i inV v v v i n=  =   (2) 135 

During iterative optimization, the pBest  and gBest  of the i -th particle at the current time, as well as 136 

their corresponding particle position vectors, can be represented by: 137 

  1 2, , , 1,2, ,i i i inpBest pBest pBest pBest i n=  =   (3) 138 

  1 2, , , 1,2, ,i i i ingBest gBest gBest gBest i n=  =   (4) 139 

  1 2, , , 1,2, ,i i i inP p p p i n=  =   (5) 140 

  1 2, , , 1,2, ,i i i inG g g g i n=  =   (6) 141 

Throughout the iterative procedure, all particles in the swarm strictly search within a prescribed region, 142 

denoted by ( ) max max

1 2
| , , , , , 1, 2, ,

d d d d
R D D e e e X e X d D= =   −   =    . The maximum search range and 143 

maximum search speed for each particle are represented by  max max max max

1 2
, , ,

i
X x x x=     and 144 

 max max max max

1 2, , , iV v v v=   , respectively. When max max,i i i ix X v V   , set max max,i i i ix X v V= =  ; and when 145 

max max,i i i ix X v V −  − , set max max,i i i ix X v V= − = − . 146 

Particle positions are updated by 1 1t t t

id id id
x x v

+ +
= + , following the iterative procedure outlined below: 147 

(1) Initialize particle positions and velocities, setting initial solutions as each particle’s individual 148 

best (
ipBest ) positions and selecting the overall best as the global best ( igBest ). 149 

(2) Calculate each particle’s objective function (fitness). 150 

(3) Update each 
ipBest   if its current fitness is superior; similarly, update the igBest   if a new 151 

global optimum is identified. 152 

(4) Update the d th-dimensional position and velocity for each particle i . 153 

(5) Check whether the current solution satisfies the termination condition; if it does, output gBest  154 

and terminate. Otherwise, return to step (2) and continue iterating until the termination condition is met. 155 

In PSO, one of the most critical factors is the velocity update scheme, which plays a decisive role in both 156 

optimization performance and convergence speed. Typically, three commonly used formulas are adopted 157 

for velocity updating, as given in Equations (7), (9), and (11), with the corresponding position-update 158 



formulas provided in Equations (8), (10), and (12). 159 

 ( ) ( )1

1 1 2 2

t t t t t t

id id id id id idv v c r pBest x c r gBest x+ = + − + −  (7) 160 

 1 1t t t

id id idx x v+ += +  (8) 161 

where 1,2, ,i n=   represents the individual particles, and n  is the total number of particles; 1t

idv +  is 162 

the d-dimensional velocity of the i -th particle at iteration 1t + ; t

idv  is the d-dimensional velocity of 163 

the i -th particle at iteration t ; 
1 2,c c  are the learning factors for the pBest  and gBest , also known as 164 

acceleration constants, typically set to 
1 2 2c c= = ; 

1 2,r r  are uniform random numbers within the range 165 

(0, 1), which adjust the pBest  and gBest  to enhance the diversity of the swarm; 1t

idx +  is the position 166 

of the particle after 1t +  iterations; and t

idx  is the position of the particle after t  iterations. 167 

 ( ) ( )1

1 1 2 2

t t t t t t

id id id id id idv v c r pBest x c r gBest x+ = + − + −  (9) 168 

 1 1t t t

id id idx x v+ += +  (10) 169 

where   is the constraint factor, which is a constant coefficient in front of the velocity when the position 170 

is updated. 171 

 ( ) ( )1

1 1 2 2

t t t t t t

id id id id id idv v c r pBest x c r gBest x+ = + − + −  (11) 172 

 1 1t t t

id id idx x v+ += +  (12) 173 

where   is referred to as the inertia factor, and its value is non-negative. In typical iterative optimization 174 

processes,   is usually a dynamic value. It is generally more effective for optimization compared to a 175 

fixed value. The value of   typically changes linearly, with the most commonly used strategy being the 176 

linear decreasing weight (LDW) strategy: 
( ) ( )( ) /
t

ini end k k endG g G   = − − +  , where 
kG   represents 177 

the maximum number of iterations, ini  is the initial inertia weight, and end  is the inertia weight at the 178 

maximum iteration. A typical choice for inertia weights is 0.9ini =  and 0.4end = . When the inertia 179 

weight is large, the global optimization ability is stronger, but the local optimization ability is weaker. 180 

When the inertia weight is small, the global optimization ability is weaker, but the local optimization 181 

ability is stronger. 182 

The polynomial formula consists of three terms: 183 

(1) Inertia term: Retains particle velocity from the previous iteration, acting as a momentum to explore 184 

solution space. 185 

(2) Self-cognitive term: Guides particles based on their own best-known position, reflecting 186 

individual experience and promoting local search efficiency. 187 

(3) Social-cognitive term: Directs particles toward the global best-known solution, leveraging 188 

collective swarm experience to enhance convergence toward the global optimum. 189 



These components collectively influence both convergence speed and optimization performance, and 190 

standard velocity updating equations referenced in the manuscript are employed. 191 

Equations (7) and (9) are generally regarded as the standard forms of PSO. 192 

In summary, the basic principles of the particle swarm algorithm can be represented by the flowchart 193 

shown in Figure 1. 194 

 195 

Figure 1. Basic flow chart of PSO. 196 

The PSO algorithm has opened new research and practical pathways in the field of seismic design for 197 

bridges. In the face of complex engineering challenges such as large-span bridges, traditional design 198 

methods often struggle to provide comprehensive and convenient solutions, especially when dealing with 199 

parameter optimization. Known for its flexibility and efficiency, the PSO algorithm is particularly suitable 200 

for solving multi-parameter optimization problems. By simulating the search behavior of particles within 201 

the parameter space, the PSO algorithm can explore a wide design space and comprehensively optimize 202 

the three nonlinear characteristic parameters of the bearings (yield strength, pre-yield stiffness, and post-203 

yield stiffness). Considering the structural characteristics of seismic isolation continuous girder bridges, 204 

the application of PSO in parameter optimization focuses on reducing seismic impact and enhancing the 205 

adaptability of the structure, aiming to find the optimal combination of parameters that improve the 206 

performance of the bridge under seismic loading21,22. 207 

The flowchart for solving the multi-parameter optimization problem of damping isolation bearings using 208 

the PSO algorithm is shown in Figure 2. 209 



 210 
Figure 2. PSO Algorithm for Solving Bearing Optimal Parameter Combinations Flowchart. 211 

While the classic PSO algorithm demonstrates considerable strength in multi-parameter bearing 212 

optimization, nonlinear and large-scale practical scenarios often require faster convergence and more 213 

adaptive search strategies. To overcome these challenges, this study proposes an improved APSO 214 

algorithm that dynamically adjusts key parameters to enhance both the optimization rate and iteration 215 

speed. These enhancements broaden the scope of swarm intelligence in seismic isolation bearing design, 216 

enabling safer and more cost-effective solutions in the complex engineering environments of earthquake-217 

prone regions. 218 

 219 

3 Adaptive particle swarm optimization algorithm for seismic 220 

isolation bearings in bridges 221 

Although the multi-objective PSO algorithm has gained increasing popularity in the fields of structural 222 

and seismic engineering due to its relatively simple algorithmic principles and fewer control parameters23, 223 

it still has certain limitations. Classic PSO often faces the issue of premature convergence when the search 224 

space is large and complex. The particle swarm may converge to a local optimum early in the iteration 225 

process, resulting in stagnation. If the distribution of particles in certain parameter dimensions (such as 226 

yield strength, pre-yield stiffness, or post-yield stiffness) is too narrow or uneven, the swarm may become 227 

stuck, hindering global optimization and slowing convergence. 228 

These shortcomings highlight a core requirement in practical engineering applications: when optimizing 229 

bearing parameters, an algorithm is needed that not only converges quickly but also possesses strong 230 

global search capabilities. For bridges located in seismic zones, safety indices are crucial. Therefore, the 231 

ability to effectively avoid local optima and find better solutions within a limited computational time 232 

frame is particularly important. 233 

To address this need, this paper proposes the Adaptive Particle Swarm Optimization (APSO) algorithm, 234 

which systematically adapts the key parameters of the particle swarm (such as inertia factor, learning 235 

factors, velocity and position update rules, and iteration termination conditions) to address these 236 

challenges. During the optimization process, APSO dynamically adjusts various parameters to provide a 237 

broader search space in the early stages (enhancing global exploration) and accelerate convergence in 238 

later stages. These improvements make APSO more suitable for practical engineering projects, allowing 239 

it to optimize faster and more robustly when dealing with multi-dimensional seismic isolation bearing 240 



parameters. 241 

The following sections will detail the specific improvements of APSO and explain how it effectively 242 

addresses the shortcomings of classic PSO, achieving better results in multi-parameter seismic bearing 243 

optimization. 244 

(1) Improvement of Inertia Factor 245 

It is generally believed that the inertia factor has the greatest impact on the iteration speed. The value of 246 

the inertia factor plays a crucial role in both the global search ability and the search speed of the algorithm. 247 

Since Shi introduced the linear inertia factor in 1998, many scholars have proposed different methods for 248 

assigning inertia factor values based on different problems. However, most of these methods perform well 249 

only for specific problems and lack strong general applicability24. 250 

In this paper, a new adaptive inertia factor is introduced for the multi-parameter optimization of damping 251 

isolation bearings. This adaptive inertia factor allows the iteration process to decrease slowly in the early 252 

stages to expand the search range of particles, decrease more rapidly in the middle stages to improve 253 

iteration speed and efficiency, and decrease slowly in the later stages to allow particles to fine-tune their 254 

search near the optimal solution, enhancing accuracy. The use of the exponential term ensures that the 255 

adjustment of the inertia factor is smooth and continuous, facilitating better balance between exploration 256 

and exploitation throughout the optimization process. The value assignment method for this adaptive 257 

inertia factor is given by Equation (13). 258 

 ( )
( )

tk

d end ini end e


   
 
 = + −   (13) 259 

where 
( )t   is the fitness value dispersion coefficient during the iteration process; k   and    are 260 

experimental constants determined by the initial fitness value. Typically, the optimal values are selected 261 

by conducting multiple simulations and observing the resulting search efficiency and convergence 262 

behavior of the optimization algorithm. 263 

The fitness value dispersion coefficient is the ratio of the standard deviation to the mean value of the data 264 

set, expressed as a percentage. The common calculation formula for this is shown in Equation (14). 265 

 
( ) 100%
t

C

X
 =   (14) 266 

where C  represents the data standard deviation; X  represents the data mean value. 267 

(2) Improvement of Learning Factors 268 

The inertia factor primarily determines the speed of the iterating particles, while the learning factor 269 

governs the learning of the individual best position and the global best position. In the standard PSO 270 

algorithm, the learning factor is usually fixed as a constant. Such a constant learning factor lacks 271 

variability and flexibility, thus having little positive impact on the algorithm. Therefore, to enhance the 272 

learning factor's positive effect, the general constant learning factor is replaced with a linear learning 273 

factor: In the early stages, to expand the search range, the emphasis should be on the influence of the 274 

individual best position; in the later stages, to more quickly and accurately find the optimal solution, the 275 

focus should shift to the influence of the global best position. Unlike the inertia factor, exponential decay 276 

usually reduces the learning factor quickly in the early stages of the optimization process, which may 277 

cause particles to be too concentrated near the global optimal solution too early, reducing the diversity of 278 

exploration. This may cause the algorithm to fall into a local optimal solution without enough 279 

opportunities to explore the entire search space. The value assignment method for this learning factor is 280 

shown in Equation (15). 281 



 

( )( )

( )( )

1 1

1 1

2 2

2 2

ini end

kt ini

k

ini end

kt ini

k

G g c c
c c

G
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c c
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 − −
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− −
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 （15） 282 

where 
1 2,t tc c  represent the values of the learning factors during the iteration process; 

1 1

ini endc c,  are the 283 

starting and final values of the 
1c  learning factor; 

2 2

ini endc c,  are the starting and final values of the 
2c  284 

learning factor; 
kG  represents the maximum number of iterations; g  represents the individual particles. 285 

(3) Improvement of Position Update Method 286 

The direction and position of a particle during iteration are primarily controlled by the individual best and 287 

global best positions. This often leads to the particles becoming trapped in local optima and overlooking 288 

better positions within the particle's neighborhood. To reduce this occurrence, a certain range of 289 

neighborhood intervals, (1 (0,1)), (1 (0,1))t t

i ipBest r pBest r − +    and (1 (0,1)), (1 (0,1))t t

i igBest r gBest r − +   , 290 

is added around the individual best and global best positions, allowing the particles to perform a 291 

neighborhood random search within these specific regions. 292 

(4) Improvement of Iteration Termination Conditions 293 

To ensure the accuracy and feasibility of the iteration results, the condition that the difference between 294 

the maximum and minimum fitness values should not exceed 5% is combined with an additional condition: 295 

the discrete coefficient of the fitness values for all particles after each iteration must not exceed 5%. This 296 

adjustment helps optimize the final results of the iteration. 297 

Finally, the updated particle velocity update formula is given in Equation (16). 298 

 ( ) ( )1

1 1 2 2(1 (0,1)) (1 (0,1))t t t t t t t t

id d id id id id idv v c r pBest r x c r gBest r x+ = +  − +  −  （16） 299 

The flowchart for solving the multi-parameter optimization problem of damping isolation bearings using 300 

the improved APSO algorithm is shown in Figure 3. 301 

 302 

Figure 3. APSO algorithm for solving bearing optimal parameter combinations flowchart. 303 

 304 



4 Engineering example 305 

4.1 Finite element model and seismic input 306 

4.1.1 Engineering Background 307 

This study focuses on a four-span seismic isolation continuous girder bridge with a span of 4×36m. The 308 

superstructure of the bridge consists of a prestressed concrete box girder with a uniform cross-section, 309 

where the height of the girder is 1.8m, and the bridge deck width is 25.7m. The cross-section is of a single 310 

box with multiple chambers, and C50 concrete is used. The substructure consists of rectangular dual piers, 311 

each with a height of 9m and dimensions of 1.8m×2m, constructed with C40 concrete. The pile foundation 312 

uses a group of piles, with a pile diameter of 1m and a height of 40m, made from C30 concrete. Each pier 313 

is equipped with one bearing, except for the two end abutments, which use Y4Q520×135G0.8 type 314 

circular lead-core rubber bearings (LRB). The abutments are equipped with LNR(H)-d445×136 type 315 

sliding horizontal force dispersing rubber bearings (LNR). To differentiate the piers at various locations, 316 

the bridge is numbered sequentially along the bridge direction as Pier 1#, Pier 2#, and Pier 3#. The 317 

longitudinal profile and plan layout of the bridge are shown in Figures 4 and 5. 318 

 319 
Figure 4. Bridge longitudinal section layout (unit: cm). 320 

 321 

Figure 5. Bridge plan layout (unit: cm). 322 

4.1.2 Support Bilinear Model 323 

In the Midas software, the simulation of LRB bearings can directly use the linear characteristics of lead-324 

core rubber bearings from the general connection characteristic values provided by the software. The 325 

simulation of the LNR bearings can be directly modeled using elastic connections. The equivalent 326 

linearization model represents the lead core rubber bearing as an approximate linear model, consisting of 327 

two linear mechanical parameters: equivalent stiffness and equivalent damping ratio. Such models are 328 

typically used for response spectrum analysis within the elastic range of structures25. When subjected to 329 

external cyclic loading, the deformation of the lead core rubber bearing remains within the elastic-plastic 330 

range, and thus, the restoring force of the bearing is often modeled as bilinear26. A common bilinear model 331 

for lead core rubber bearings is shown in Figure 6. The calculation formulas for the equivalent stiffness 332 
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and equivalent damping ratio are given in Equations (17) and (18), respectively. 333 

 
2

d d
eff

d d

F Q
K K

D D
= = +  （17） 334 

 
2

2 ( )d d y

eff

d eff

Q D

D K




−
=  （18） 335 

where 
dD   represents the horizontal displacement of the seismic isolation bearing. According to the 336 

provisions of "Lead Core Seismic Isolation Rubber Bearings for Highway Bridges", the 
dD  value is 337 

taken as 50mm; 
y  is the yield displacement of the seismic isolation bearing; 

dQ  is the characteristic 338 

strength of the seismic isolation bearing, defined as the value where the hysteresis curve intersects the 339 

shear force axis in the forward direction; 
effK  denotes the equivalent stiffness of the seismic isolation 340 

bearing; 
1K  is the pre-yield stiffness of the seismic isolation bearing; 

2K  is the post-yield stiffness of 341 

the seismic isolation bearing; 
eff   represents the equivalent damping ratio of the seismic isolation 342 

bearing. 343 

As shown in Figure 6, the behavior of the lead core rubber bearing can be characterized by four parameters 344 

in the restoring force model: yield strength, equivalent stiffness, elastic stiffness, and yield stiffness. 345 

The restoring force in the bilinear model is calculated in two stages, with the formulas given in equations 346 

(19) and (20). 347 

Pre-yield stage: 348 

 ( )( )1 2 2b d y dF K K D K D= − − +  （19） 349 

Post-yield stage: 350 

 ( )( )1 2 2b d y dF K K D K D= − − +  （20） 351 

where 
bF  represents the bearing's restoring force. 352 

 353 

Figure 6. Finite element analysis model. 354 

In the Midas simulation, when using the response spectrum method for bearing simulation analysis, the 355 



software calls its linear characteristic values, including equivalent stiffness (
effK ) and vertical stiffness 356 

(
vK ). Detailed parameter inputs for the bearing’s linear characteristics can be referenced from the Midas 357 

Civil help file. The implementation of the bearing bilinear model and the finite element analysis model 358 

schematic in Midas are shown in Figure 7. 359 

In addition, it is important to acknowledge that the simulation accuracy of seismic isolation bearings 360 

significantly influences the reliability and precision of the structural analysis results. Figure 7 presents the 361 

finite element model of bearings, adopting a bilinear constitutive model in the Midas software. However, 362 

the simplifications inherent in these simulations––particularly the potential neglect of certain complex 363 

behaviors such as the "jumping-off" effect in friction pendulum bearings––could impact the predicted 364 

performance and optimization outcomes. Recent research has highlighted that neglecting this 365 

phenomenon may lead to deviations in evaluating bearing responses under seismic excitation. For instance, 366 

the study by Wei et al.27, emphasizes that accurate modeling of the jumping-off effect significantly 367 

improves the precision of response predictions and contributes to more robust parameter optimization. 368 

Although the current approach provides acceptable accuracy within the linear and bilinear modeling 369 

assumptions, incorporating refined nonlinear behaviors could further validate the optimization results and 370 

extend the applicability of findings to practical engineering scenarios. Thus, while the current simulations 371 

in Figure 7 meet the immediate objectives, recognizing and addressing these complex bearing behaviors 372 

could substantially enhance the comprehensiveness and reliability of seismic isolation performance 373 

analyses. 374 

 375 
Figure 7. Finite element analysis model. 376 

4.1.3 Earthquake input 377 

This study uses the "Seismic Design Code for Highway Bridges" (JTG/T2231-01-2020) to plot the design 378 

response spectrum, which serves as the target spectrum, as shown in Figure 8. The seismic isolation 379 

continuous beam bridge selected in this paper is located at a site with a basic earthquake intensity of 8 380 

degrees and a site category of Class III. According to the regulations, the vertical earthquake effect is not 381 

considered. According to the code, the acceleration time history should consist of no fewer than three sets. 382 

Therefore, three earthquake waves—James, Imperial Valley-01, and Parkfield—were selected from the 383 



PEER strong-motion database. Among the earthquake responses caused by these three waves, the James 384 

earthquake wave induces the maximum seismic response in the bridge. Consequently, this study analyzes 385 

the parameter optimization of the pre-yield stiffness of the bearings under the effect of this seismic wave. 386 

The evaluation criteria for the optimization include the pier top displacement, pier bottom shear force, 387 

and their weighted sum. The time history of the acceleration at the pier top is shown in Figure 8. 388 

 389 

(a)                                 (b)  390 

Figure 8. James’s earthquake wave. (a) target response spectrum. (b) earthquake time history excitation. 391 

4.2 Single-parameter sensitivity-based optimization of seismic isolation bearing 392 

parameters 393 

To investigate the impact of various bearing parameters on the seismic performance of continuous girder 394 

bridges, this section uses a single-parameter sensitivity analysis under the James earthquake excitation. 395 

Specifically, one parameter (yield strength, pre-yield stiffness, or post-yield stiffness) is adjusted at a time 396 

while keeping the other parameters constant. The impact of these changes on the bridge's seismic 397 

performance is then evaluated. Although practical bridge design requires the evaluation of multiple 398 

earthquake waves, to visually demonstrate the impact of a single parameter on isolation effectiveness, this 399 

study selects the James earthquake wave as the focus of the analysis and optimizes each parameter 400 

individually. 401 

4.2.1 Design principles and parameter settings 402 

Before analyzing the impact of individual parameters, some design principles and parameter ranges need 403 

to be established. The finite element model used in this section is the same as the one in Section 4.1, which 404 

includes the bridge’s geometric dimensions, material properties, and boundary conditions. The seismic 405 

input is based on the James earthquake record, adjusted according to relevant seismic design standards to 406 

represent a high-intensity seismic scenario28. 407 

In the nonlinear behavior of lead-core rubber bearings (LRB), three key parameters are crucial: 408 

(1) Yield Strength (
yQ ): This determines the energy dissipation capacity of the bearing, with a value 409 

range of 61 kN  to 381.4 kN , with a step size of 35.6 kN . 410 

(2) Pre-Yield Stiffness ( 1K ): This affects the elastic response of the bearing and the structural natural 411 

frequency, with a range of 4.5 /kN mm  to 18.5 /kN mm , with a step size of 1.4 /kN mm . 412 

(3) Post-Yield Stiffness (
2K ): This reflects the bearing’s mechanical performance in the post-yield 413 
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stage, with a value range of 0.7 /kN mm  to 2.95 /kN mm , with a step size of 0.25 /kN mm . 414 

For ease of comparison, this section extracts absolute values closely related to seismic performance (such 415 

as pier top displacement, bearing displacement, and pier bottom shear force) from the time history analysis 416 

results. These values are normalized when necessary to highlight the relative impact of parameter changes. 417 

4.2.2 Bridge seismic response and bearing parameter optimization under different yield strengths 418 

In this section’s single-parameter sensitivity analysis, the yield strength 
yQ  is varied over ten different 419 

values while holding other bearing parameters constant. Time history analysis is performed using the 420 

James earthquake record. As shown in Figure 9, as 
yQ  increases, the pier top displacement decreases 421 

within a certain range. However, once the yield strength exceeds a certain threshold, it starts to increase 422 

again, indicating that moderate yield strength is beneficial for energy dissipation, while excessively high 423 

stiffness redirects more seismic force to the superstructure. Meanwhile, bearing displacement generally 424 

decreases as 
yQ  increases and remains within the allowable shear deformation range. This trend is also 425 

reflected in the distribution of pier bottom shear forces, where larger 
yQ   values reduce the force 426 

difference between the high pier (Pier #2) and the low pier (Pier #1), leading to a more balanced seismic 427 

force distribution across the bridge piers. 428 

  429 

(a)         (b)        (c)  430 

Figure 9. Bridge seismic response under different bearing yield strengths. (a) pier top displacement. (b) bearing displacement. (c) 431 

pier bottom shear force 432 

Based on these results, this study minimizes the pier top displacement, minimizes the pier bottom shear 433 

force, and uses a weighted combination of both as objectives for the single-parameter optimization under 434 

the James earthquake. Table 1 lists the optimal values for each objective and the corresponding 435 

improvements relative to the original design of Y4Q520×135G0.8. When 274.6y NQ k , the pier top 436 

displacement decreases by approximately 21.17%, while 167.8y NQ k  results in an 18.27% reduction in 437 

pier bottom shear force. The weighted combination of displacement and shear force results in reductions 438 

of 14.36% and 18.27%, respectively. These results demonstrate that moderate yield strength achieves a 439 

balance between energy dissipation and pier bottom force, providing a more uniform force distribution 440 

and improved seismic performance for the continuous girder bridge under strong seismic excitation. 441 

Table 1. Optimization effects on seismic response at optimal yield strengths. 442 

Optimization Optimal yield Resulting Resulting shear Displacement Shear force 
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objective strength (kN) displacement 

(mm) 

force (kN) reduction (%) reduction (%) 

Minimize pier top 

displacement 
274.6 293.26 - 21.17% - 

Minimize bearing 

displacement 
167.8 - 1450.4  18.27% 

Balanced shear-

displacement 
167.8 318.58 1450.4 14.36% 18.27% 

Note: At this point, the bearing's pre-yield stiffness is 9.3 kN/mm, and post-yield stiffness is 1.4 kN/mm. 443 

4.2.3 Bridge seismic response and bearing parameter optimization under pre-yield stiffness 444 

When analyzing the pre-yield stiffness (
1K ), ten different values for 

1K  were set while holding other 445 

bearing parameters constant, and time history analysis was conducted using the James earthquake record. 446 

As shown in Figure 10, with increasing 
1K , the pier top displacement shows a linear decreasing trend, 447 

and bearing displacement slightly decreases, remaining within the allowable deformation range. This 448 

indicates that larger 
1K  effectively enhances the initial stiffness of the bearing while avoiding excessive 449 

deformation. Regarding pier bottom shear force, Pier #1 is less affected by 
1K , while Pier #2 shows a 450 

significant reduction in shear force as 
1K  increases. This suggests that for relatively taller piers, greater 451 

initial stiffness better resists lateral seismic forces. 452 

  453 

(a)         (b)        (c)  454 

Figure 10. Bridge seismic response under different pre-yield stiffness of bearings. (a) pier top displacement. (b) bearing 455 

displacement. (c) pier bottom shear force 456 

Since the James earthquake induces the strongest excitation among the selected waveforms, the single-457 

parameter optimization aimed to minimize pier top displacement, minimize pier bottom shear force, and 458 

minimize the weighted combination of both. The final results are shown in Table 2. When 459 

1 18.5 / mK kN m , the pier top displacement decreases by about 4.46% compared to the original design 460 

of Y4Q520×135G0.8. 
1 17.3 / mK kN m  is more favorable for reducing pier bottom shear force (1.36%) 461 

and provides a balanced control over both displacement and force in the weighted objective. Although the 462 

improvements are not significant, they highlight the fine-tuning effect of pre-yield stiffness on the bridge's 463 
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initial seismic response and suggest that even small adjustments to 
1K  may lead to a more reasonable 464 

seismic force distribution between tall and short piers. 465 

Table 2. Optimization effects on seismic response at pre-yield stiffness. 466 

Optimization 

objective 

Optimal yield 

strength (kN) 

Resulting 

displacement 

(mm) 

Resulting shear 

force (kN) 

Displacement 

reduction (%) 

Shear force 

reduction (%) 

Minimize pier top 

displacement 
18.5 355.4 - 4.46% - 

Minimize bearing 

displacement 
17.3 - 1750.6  1.36% 

Balanced shear-

displacement 
17.3 357.88 1750.6 3.8% 1.36% 

Note: At this point, the bearing yield strengths is 96 kN/mm, and post-yield stiffness is 1.4 kN/mm. 467 

4.2.4 Bridge seismic response and bearing parameter optimization under pre-yield stiffness 468 

In this section, the impact of post-yield stiffness 
2K  on the seismic performance of the continuous girder 469 

bridge under the James earthquake is examined. As shown in Figure 11, the pier top displacement 470 

increases almost linearly with 
2K , while bearing displacement initially decreases with increasing 

2K , 471 

reaching a turning point near 
2 2.2 / mK kN m , and then increases again. At the same time, pier bottom 472 

shear force continues to increase with 
2K . Although these response curves do not show clear minima or 473 

maxima within the test range, bearing displacement remains below its ultimate shear capacity, indicating 474 

that stiffness variations within this range will not cause the bearings to exceed the safe deformation limits. 475 

  476 

(a)         (b)        (c)  477 

Figure 11. Bridge seismic response under different post-yield strengths of bearings. (a) pier top displacement. (b) bearing 478 

displacement. (c) pier bottom shear force 479 

Table 3 shows that when 
2 0.7 / mK kN m , the displacement and shear force improve by approximately 480 

9.96% and 13.68%, respectively, compared to the original design of Y4Q520×135G0.8. Although these 481 

improvements are not substantial, they emphasize the critical role of post-yield stiffness in seismic force 482 

distribution. If 
2K   is too high, it increases the displacement demand on the bridge piers, while 483 
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moderately lower 
2K  is more advantageous in achieving a balanced control between deformation and 484 

reduced force. 485 

Table 3. Optimization effects on seismic response at post-yield stiffness. 486 

Optimization 

objective 

Optimal yield 

strength (kN) 

Resulting 

displacement 

(mm) 

Resulting shear 

force (kN) 

Displacement 

reduction (%) 

Shear force 

reduction (%) 

Minimize pier top 

displacement 
0.7 334.96 - 9.96% - 

Minimize bearing 

displacement 
0.7 - 1532  13.68% 

Balanced shear-

displacement 
0.7 334.96 1532 9.96% 13.68% 

Note: At this point, the bearing yield strengths is 96 kN/mm, and per-yield stiffness is 9.3 kN/mm. 487 

4.3 Multi-parameter optimization of seismic isolation bearings based on orthogonal 488 

experiment 489 

4.3.1 Principles of orthogonal experiment 490 

The orthogonal experimental method provides a systematic framework for exploring the optimal 491 

combination of multiple parameters. In seismic isolation bearing design, three critical parameters—yield 492 

strength, pre-yield stiffness, and post-yield stiffness—often interact with one another. By selecting 493 

representative levels for the parameters and arranging them in an orthogonal table, it is possible to 494 

significantly reduce the number of simulations required while maintaining the robustness of the 495 

optimization results. The orthogonal experiment primarily revolves around the use of orthogonal tables, 496 

which combine different values of bearing parameters through orthogonal combinations. This ensures that 497 

each non-linear characteristic parameter appears evenly across all possible combinations, allowing each 498 

parameter to independently influence the optimization results and enabling the identification of the 499 

optimal parameter combination. Orthogonal tables are typically denoted as ( )c

nL b , where L  represents 500 

the orthogonal table, n  represents the total number of experiments, c  represents the number of factors 501 

under consideration, and b  represents the number of levels of each factor. Factors refer to the specific 502 

parameters that influence the experimental results—in this case, the non-linear characteristic parameters 503 

of the bearings; levels refer to the specific values of these factors—here, the specific values of the 504 

bearing's non-linear characteristics. In this study, range analysis is primarily used to evaluate the impact 505 

of each factor on the experimental results. 506 

4.3.2 Parameter settings 507 

The numerical model and the range of values for the bearing's non-linear characteristic parameters are the 508 

same as those in Section 4.2. The factors and their levels used in this orthogonal experiment are shown in 509 

Table 4. 510 

Table 4. Orthogonal test factor levels. 511 

Factors 
Values at different levels 

Level 1 Level 2 Level 3 

Yield strength (kN) 140 220 300 

Pre-yield stiffness (kN/mm) 8 11.5 15 



Post-yield stiffness (kN/mm) 1.26 1.83 2.4 

Based on these values, a 3-factor, 3-level orthogonal table ( )39 3L  is employed for the experiment, with 512 

the specific orthogonal design shown in Table 5. According to the orthogonal table, only 9 simulations 513 

are required for the three-factor, three-level simulation experiments, significantly reducing the workload. 514 

Table 5. Orthogonal table for bearing nonlinear characteristic parameters. 515 

Test number 
Factors 

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm) 

1 140 8 1.26 

2 140 11.5 2.4 

3 140 15 1.83 

4 220 8 2.4 

5 220 11.5 1.83 

6 220 15 1.26 

7 300 8 1.83 

8 300 11.5 1.26 

9 300 15 2.4 

4.3.3 Multi-parameter optimization of seismic isolation bearings for continuous girder bridges 516 

For the seismic design optimization based on the seismic responses induced by three earthquake waves, 517 

the James earthquake wave, which induces the largest seismic response among the three, is selected for 518 

this section. The time history analysis method is used to optimize the bearing parameters, with the 519 

evaluation criteria being the pier top displacement, pier bottom shear force, and the weighted sum of both. 520 

The results of the orthogonal experiment analysis and calculations for the seismic isolation linear 521 

continuous girder bridge are shown in Table 6. 522 

Table 6. The evaluation index and calculation result are analyzed by orthogonal experiment. 523 

Test number 
Evaluation indicators 

Pier top displacement (mm) Pier bottom shear force (kN) Weighted sum of both 

1 332.29 1699.3 0.73 

2 364.81 2061.28 1.81 

3 341.3 1814.1 1.06 

4 356.74 2155.6 1.91 

5 321.86 1934.58 1.09 

6 272.7 1659.1 0 

7 330.62 2075.72 1.47 

8 298.16 1775.24 0.51 

9 350.17 2128.74 1.79 

Range analysis is performed for different evaluation criteria and calculation results. The analysis results 524 

are as follows: 525 

(1) The range calculation results for the pier top displacement as the evaluation criterion are shown 526 

in Table 7. 527 

Table 7. The results of range analysis with pier top displacement as the evaluation index. 528 
 Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness) 

iK
1 1038.39 1019.65 903.15 

2 951.3 984.82 993.77 



value 3 978.94 964.16 1071.72 

iK

value 

1 346.13 339.88 301.05 

2 317.1 328.27 331.26 

3 326.31 321.39 357.24 

Optimal level 1 2 3 

R  value 135.01 29.03 18.5 

The optimal parameter combinations for the bearings under the orthogonal experiment, based on the pier 529 

top displacement, and the optimization rate relative to the original engineering bearing Y4Q520×135G0.8 530 

are shown in Table 8. 531 

Table 8. Optimal parameter combinations and optimization rates for bearings. 532 

Yield 

strength (kN) 

Pre-yield stiffness 

(kN/mm) 

Post-yield stiffness 

(kN/mm) 

Resulting 

displacement (mm) 

Optimizati

on rate 

220 15 1.26 272.7 26.69% 

(2) The range calculation results for the pier bottom shear force as the evaluation criterion are shown 533 

in Table 9. 534 

Table 9. Range analysis results for pier bottom shear force as the evaluation indicator. 535 
 Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness) 

iK

value 

1 5574.68 5930.62 5133.64 

2 5749.28 5771.1 5824.4 

3 5979.7 5601.94 6345.62 

iK

value 

1 1858.23 1976.87 1711.21 

2 1916.43 1923.7 1941.47 

3 1993.23 1867.31 2115.21 

Optimal level 1 3 1 

R  value 135.01 109.56 403.99 

The optimal parameter combinations for the bearings under the orthogonal experiment, based on pier 536 

bottom shear force, and the optimization rate relative to the original engineering bearing 537 

Y4Q520×135G0.8 are shown in Table 10. 538 

Table 10. The combination of the optimal parameters of the support and the optimization rate. 539 

Yield 

strength (kN) 

Pre-yield stiffness 

(kN/mm) 

Post-yield stiffness 

(kN/mm) 

Resulting 

displacement (mm) 

Optimizati

on rate 

140 15 1.26 1594.64 10.15% 

(3) The range calculation results for the weighted sum of shear force and displacement as the 540 

evaluation criterion are shown in Table 11. 541 

Table 11. Results of parameter optimization with shear force-displacement weighted sum as the target function. 542 
 Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness) 

iK

value 

1 3.6 4.11 1.24 

2 3 3.41 3.61 

3 3.77 2.84 5.51 

iK

value 

1 1.2 1.37 0.41 

2 1 1.14 1.2 

3 1.26 0.95 1.84 

Optimal level 2 3 1 

R  value 0.25 0.42 1.42 



The optimal parameter combinations for the bearings under the orthogonal experiment, based on the 543 

weighted sum of shear force and displacement, and the optimization rate relative to the original 544 

engineering bearing Y4Q520×135G0.8 are shown in Table 12. 545 

Table 12. Optimal parameter combinations and optimization rates for bearings. 546 

Yield 

strength 

(kN) 

Pre-yield 

stiffness 

(kN/mm) 

Post-yield 

stiffness 

(kN/mm) 

Resulting 

displacement 

(mm) 

Resulting 

shear force 

(kN) 

Displacement 

reduction (%) 

Shear force 

reduction (%) 

220 15 1.26 272.7 1659.1 10.15% 6.52% 

In summary, the seismic response of the seismic isolation linear girder bridge with the optimal parameter 547 

combinations obtained through the orthogonal experiment shows a significant reduction. Compared to the 548 

original engineering bearing Y4Q520×135G0.8, the pier top displacement decreases by 26.69% when 549 

using displacement as the evaluation criterion; the shear force decreases by 10.15% when using pier 550 

bottom shear force as the evaluation criterion; and the weighted sum of displacement and shear force 551 

shows a reduction of 10.15% in displacement and 6.52% in shear force. The optimization effect is clear. 552 

Compared to parameter optimization using single-parameter sensitivity analysis, the multi-parameter 553 

optimization of the bearing using the orthogonal experiment yields better results and significantly reduces 554 

the workload. 555 

4.4 Multi-Parameter Optimization of Seismic Isolation Bearings Based on the APSO 556 

Algorithm 557 

4.4.1 Bearing multi-parameter optimization with pier bottom shear force as the objective function 558 

To verify the effectiveness and applicability of the APSO algorithm for multi-parameter optimization of 559 

seismic isolation bearings, this section employs time-history analysis under the James earthquake 560 

excitation. The APSO algorithm is used to iteratively optimize 15 initial bearing parameter combinations 561 

for a linear seismic isolation continuous girder bridge, with the objective function defined as the pier 562 

bottom shear force. This iterative process creates an optimization space within which the optimal 563 

parameter combination is identified to refine the bearing parameters further. To visually represent the 564 

distribution of particles in the optimization space, the projections of particles along different parameter 565 

directions are illustrated as scatter plots (see Figure 12).  566 

 567 

(a)         (b)        (c)  568 

Figure 12. The distribution of iterative particles projected in different directions in shear optimization space. (a) yield strength 569 

direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction 570 

It is observed that the projection in the yield strength direction forms a V-shape, with particles gradually 571 

concentrating around 150kN  ; the projection in the pre-yield stiffness direction converges toward the 572 

maximum value of 18.5 /kN mm ; and the projection in the post-yield stiffness direction converges toward 573 
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the minimum value of 0.7 /kN mm . This uniform distribution indicates that the particle swarm covers 574 

nearly the entire parameter range during optimization. To further demonstrate the iterative paths and 575 

results, the trajectories of selected particles (8 randomly chosen for clarity) are plotted as line graphs in 576 

Figure 13. 577 

     578 

(a)              (b)  579 

     580 

(c)                       (d)  581 

Figure 13. Iteration particle projections along parameter directions in the optimization space. (a) yield strength direction. (b) pre-582 

yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value direction 583 

Based on the APSO algorithm, Table 13 presents the optimal bearing parameter combinations—using pier 584 

bottom shear force as the objective function—and their corresponding optimization rates relative to the 585 

original engineering bearing Y4Q520×135G0.8. 586 

Table 13. The optimal parameter combination and optimization rate of the support. 587 

Yield 

strength (kN) 

Pre-yield stiffness 

(kN/mm) 

Post-yield stiffness 

(kN/mm) 

Resulting 

displacement (mm) 

Optimizati

on rate 

150 18.5 0.7 1378.4 22.2% 

From Figure 13 and Table 13, it is evident that: 588 

(1) Except for the yield strength direction, where convergence is relatively slow (particles begin 589 

converging around the 20th iteration and essentially converge by the 25th), the pre-yield and post-yield 590 

stiffness directions achieve convergence more rapidly (approximately by the 15th and 4th iterations, 591 
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respectively). This difference indicates that convergence in the yield strength direction is the slowest and 592 

plays a decisive role in the final optimization outcome. 593 

(2) The objective function stabilizes after roughly 20 iterations. Compared to the initial parameter 594 

combinations, the optimized parameters reduce the absolute value of the pier bottom shear force by 15% 595 

at minimum and up to 43% at maximum; relative to the original bearing Y4Q520×135G0.8, the reduction 596 

is about 22.2%, demonstrating a significant improvement. 597 

4.4.2 Bearing multi-parameter optimization with pier top displacement as the objective function 598 

Under the same James earthquake excitation and using time-history analysis, this section applies the 599 

APSO algorithm to iteratively optimize 15 initial bearing parameter combinations for the linear seismic 600 

isolation continuous girder bridge, with the objective function defined as the pier top displacement. An 601 

optimization space is thereby established for identifying the optimal parameter combination. To intuitively 602 

display the distribution of particles in the optimization space, scatter plots of particle projections along 603 

different parameter directions are provided (see Figure 14). 604 

 605 

(a)         (b)        (c)  606 

Figure 14. The distribution of iterative particles projected in different directions in displacement optimization space. (a) yield 607 

strength direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction 608 

The results show that: 609 

(1) The improved APSO algorithm enables particles to search a broader parameter space with a more 610 

uniform distribution, effectively avoiding local optima and accelerating the discovery of the global 611 

optimum. 612 

(2) In the yield strength direction, the particle distribution exhibits a V-shape with convergence around 613 

210kN ; in the pre-yield stiffness direction, particles concentrate at the maximum value of 18.5 /kN mm ; 614 

and in the post-yield stiffness direction, they converge toward the minimum value of 0.7 /kN mm . 615 

For clarity, the iterative trajectories of 8 randomly selected particles are depicted in Figure 15. 616 
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(a)                   (b)  618 

     619 

(c)                       (d)  620 

Figure 15. Iteration particle projections along parameter directions in the optimization space. (a) yield strength direction. (b) pre-621 

yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value direction 622 

Table 14 presents the optimal parameter combinations obtained with pier top displacement as the objective 623 

function, along with the corresponding optimization rates relative to the original bearing 624 

Y4Q520×135G0.8.  625 

Table 14. The optimal parameter combination and optimization rate of the support. 626 

Yield 

strength (kN) 

Pre-yield stiffness 

(kN/mm) 

Post-yield stiffness 

(kN/mm) 

Resulting 

displacement (mm) 

Optimizati

on rate 

210 18.5 0.7 236.96 36.6% 

Analysis of Figure 15 and Table 14 reveals that: 627 

(1) Although convergence in the yield strength direction remains slower, starting around the 10th 628 

iteration and essentially converging by the 15th iteration, the pre-yield stiffness and post-yield stiffness 629 

directions converge by approximately the 10th and 5th iterations, respectively. Overall, the total number 630 

of iterations is greatly reduced, resulting in an approximate 40% increase in convergence speed. 631 

(2) The objective function stabilizes after about 11 iterations, with an overall convergence speed 632 

improvement of approximately 45%. Compared to the initial parameter combinations, the optimized 633 

parameters reduce the absolute pier top displacement by 23.8% at minimum and 41.2% at maximum; 634 
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relative to the original bearing Y4Q520×135G0.8, the displacement is reduced by 36.6%, confirming a 635 

significant optimization effect. 636 

4.4.3 Bearing multi-parameter optimization with a weighted sum of shear force and displacement 637 

as the objective function 638 

In practical seismic design, multiple seismic responses are sometimes considered simultaneously. 639 

Therefore, under the James earthquake excitation and using time-history analysis, the improved APSO 640 

algorithm is employed with the objective function defined as the weighted sum of pier bottom shear force 641 

and pier top displacement to optimize the bearing parameters.  642 

 643 

(a)         (b)        (c)  644 

Figure 16. Distribution of iteration particle projections in shear force-displacement weighted optimization space. (a) yield strength 645 

direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction 646 

To visually display the distribution of particle parameter combinations within the optimization space, 647 

scatter plots of particle projections along various parameter directions are provided (see Figure 16). It is 648 

observed that the yield strength direction exhibits a V-shaped distribution with convergence around 649 

199.7kN ; the pre-yield stiffness direction converges at the maximum value of 18.5 /kN mm ; and the post-650 

yield stiffness direction converges at the minimum value of 0.7 /kN mm . To further illustrate the iterative 651 

paths and outcomes, the trajectories of 8 randomly selected particles are plotted as line graphs in Figure 652 

17.  653 

     654 

                             (a)                  (b)  655 
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(c)                       (d)  657 

Figure 17. Iteration particle projections along parameter directions in the optimization space. (a) yield strength direction. (b) pre-658 

yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value direction 659 

Table 15 shows the optimal parameter combinations achieved using the weighted sum objective function, 660 

along with their corresponding optimization rates relative to the original bearing Y4Q520×135G0.8. 661 

Table 15. The optimal parameter combination and optimization rate of the support. 662 

Yield 

strength 

(kN) 

Pre-yield 

stiffness 

(kN/mm) 

Post-yield 

stiffness 

(kN/mm) 

Resulting 

displacement 

(mm) 

Resulting 

shear force 

(kN) 

Displacement 

reduction (%) 

Shear force 

reduction (%) 

199.7 18.5 0.7 239.73 1383.26 35.8% 20.7% 

 663 

From Figure 17 and Table 15, it can be concluded that: 664 

(1) In the yield strength direction, convergence begins around the 9th iteration and is essentially 665 

complete by the 15th iteration; in the pre-yield stiffness direction, convergence is reached around the 10th 666 

iteration; and in the post-yield stiffness direction, convergence is achieved around the 8th iteration. 667 

(2) The objective function stabilizes after approximately 10 iterations, with an estimated 50% 668 

improvement in convergence speed. When considering both shear force and displacement simultaneously, 669 

the optimized parameters reduce the weighted sum objective function value––shear force is reduced by 670 

14.3% at minimum and 43.6% at maximum, and displacement is reduced by 23.8% at minimum and 37.6% 671 

at maximum. Relative to the original bearing Y4Q520×135G0.8, shear force decreases by 20.7% and 672 

displacement by 35.8%, demonstrating a clear and effective optimization. 673 

4.4 Optimization results analysis 674 

Under the excitation of the James earthquake, the nonlinear characteristic parameters of the seismic 675 

isolation bearings for the isolation linear continuous girder bridge were optimized using different methods. 676 

The optimization results are presented in Table 16 and Figures 18–20. 677 

Table 16. Optimal bearing parameter combinations and optimization rates under different optimization methods. 678 

Optimization 

methods 

Target 

function 

Parameter combinations  

Yield 

strength 

(kN) 

Pre-yield 

stiffness 

(kN/mm) 

Post-yield 

stiffness 

(kN/mm) 

Displacement 

optimization rate 

Shear force 

optimization rate 
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Single-

parameter 

sensitivity 

pier bottom 

shear force 

167.8 9.3 1.4 - 18.27% 

96 17.3 1.4 - 1.36% 

96 9.3 0.7 - 13.68% 

pier top 

displacement 

274.6 9.3 1.4 21.17% - 

96 18.5 1.4 4.46% - 

96 9.3 0.7 9.96% - 

shear force-

displacement 

167.8 9.3 1.4 14.36% 18.27% 

96 17.3 1.4 3.80% 1.36% 

96 9.6 0.7 9.96% 13.68% 

Orthogonal 

experiment 

pier bottom 

shear force 
140 15 1.26 - 10.15% 

pier top 

displacement 
220 15 1.26 26.69% - 

shear force-

displacement 
220 15 1.26 10.15% 6.52% 

APSO 

pier bottom 

shear force 
150 18.5 0.7 - 22.20% 

pier top 

displacement 
210 18.5 0.7 36.60% - 

shear force-

displacement 
199.7 18.5 0.7 35.80% 20.70% 

 679 

Figure 18. Results of parameter optimization with pier bottom shear force as the target function. 680 

 681 
Figure 19. Results of parameter optimization with pier top displacement as the target function. 682 
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(a)       (b)  684 

Figure 20. Results of parameter optimization with shear force-displacement weighted sum as the target function. (a) pier bottom 685 

shear force. (b) pier top displacement 686 

From these results, it can be seen that although the computational burden of the APSO algorithm is greater 687 

than that of the orthogonal experiment, the improvement ultimately achieved by the APSO algorithm far 688 

exceeds the improvements achieved by the other two optimization methods. In the parametric 689 

optimization design for the bridge, the parameter combination derived from the single-parameter 690 

sensitivity analysis is highly dependent on the sensitivity of each parameter, which leads to significant 691 

variability in the optimization outcomes; although the orthogonal experiment approach requires relatively 692 

low effort, its optimization performance is comparatively insufficient. In contrast, the APSO algorithm 693 

provides an accurate and optimal parameter combination with the best optimization effect, albeit at the 694 

expense of a relatively higher computational workload. 695 

 696 

5. Conclusion 697 

This study presents an improved PSO algorithm, termed Adaptive Particle Swarm Optimization 698 

(APSO), specifically tailored for the multi-parameter optimization of seismic isolation bearings in 699 

continuous girder bridges. By adaptively adjusting inertia and learning factors, as well as refining the 700 

search strategy, APSO significantly enhances exploration of the design space. Numerical experiments 701 

demonstrate that APSO achieves three clear advancements: 702 

1. APSO reduces the required computational iterations by approximately 40% compared to the 703 

standard PSO algorithm, thus markedly shortening optimization time while maintaining or even 704 

improving solution accuracy. 705 

2. APSO efficiently handles complex interactions among multiple nonlinear characteristic 706 

parameters––including yield strength, pre-yield stiffness, and post-yield stiffness––making it 707 

particularly effective for both straight and curved continuous girder bridges. This efficiency 708 

ensures reliable convergence to the global optimum even in large-scale optimization scenarios. 709 

3. APSO demonstrates robust scalability and adaptability, providing a practical solution for 710 

overcoming computational challenges associated with extensive search domains and intricate 711 

parameter dependencies in real-world structural engineering applications. 712 

Despite these advancements, the current study has certain limitations. The proposed APSO 713 

algorithm's performance validation relies primarily on numerical simulations; experimental validations 714 

with physical models or real-world structures have not yet been conducted. Additionally, the algorithm's 715 

performance may vary under significantly different bridge configurations that were not explicitly 716 
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considered in this study. 717 

Looking ahead, extending APSO to more sophisticated bearing configurations or diverse structural 718 

components constitutes a valuable avenue for future research. Furthermore, integrating APSO with 719 

advanced modeling frameworks and real-time monitoring technologies may facilitate dynamic adaptive 720 

optimization, significantly enhancing seismic resilience and efficiency in bridge design across varying 721 

loading conditions. 722 
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