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Study on multi-parameter 
optimization of seismic isolation 
bearings for continuous girder 
bridges considering interactions 
among key parameters
Zhaolan Wei1,2, Bowen Yang1, Qixuan You1, Konstantinos Daniel Tsavdaridis2 & 
Shaomin Jia1

Traditional isolation design for continuous girder bridges often focuses on single-parameter tuning, 
overlooking the complex interactions among yield strength, pre-yield stiffness, and post-yield 
stiffness. This paper proposes a multi-parameter optimization method to systematically investigate 
the nonlinear influence of each parameter on the seismic performance of bridges. First, using a 
conventional particle swarm optimization (PSO) algorithm, the individual and combined effects of 
each parameter on key response indicators are identified. On this basis, an adaptive particle swarm 
optimization (APSO) algorithm with dynamic inertia weights and learning factors is introduced to 
broaden the search space, expedite convergence, and reduce the likelihood of becoming trapped in 
local optima. Numerical studies indicate that, compared with the standard PSO method, APSO can 
reduce the total number of iterations by up to 40% while maintaining solution accuracy. The underlying 
mechanism is that APSO preserves particle diversity and dynamically adjusts the balance between 
global and local searches, thereby rapidly identifying the optimal bearing configuration. Compared 
with single-parameter or orthogonal design methods, the APSO-based multi-parameter optimization 
strategy significantly enhances structural ductility, as reflected by notable reductions in pier-top 
displacement and pier-bottom shear force. These findings underscore the robustness and efficiency of 
APSO in designing isolation bearings for high-dimensional problem spaces.

Major earthquakes, such as the 1995 Hanshin-Awaji Earthquake in Japan and the 2008 Wenchuan Earthquake 
in China, have repeatedly underscored the significant vulnerability of bridges during large-scale seismic 
events1. For bridge structures located in areas of intense seismic activity, the failure of any component can lead 
to immense economic losses and severely disrupt post-disaster rescue and reconstruction efforts. In response, 
seismic isolation technology has gained increasing prominence in bridge engineering, as it effectively decouples 
the superstructure from seismic motions and thus mitigates structural damage. Among these technologies, 
isolation bearings play a pivotal role in dissipating seismic energy; their performance is crucial for ensuring 
bridge safety and functionality under strong earthquakes2. In areas prone to high-intensity seismic activity, 
the careful selection of optimal bearing parameters can markedly improve the reliability and serviceability of 
continuous girder bridges, thereby securing lifeline transportation networks and facilitating rapid emergency 
response operations.

Although existing research has made notable strides in elucidating the nonlinear behavior of isolation 
bearings, most work has focused on individual parameters, such as bearing yield strength or stiffness3. Amiri et al.4 
studied the seismic response of triple friction pendulum isolators under near-fault ground motions, identifying 
through detailed sensitivity analysis the optimal bearing parameters that significantly improve overall damping 
efficiency. Peng et al.5 proposed a reliability-based optimization framework for adaptive sliding isolation systems, 
incorporating sensitivity analysis and magnetically sliding bearings to enhance seismic performance. Zhong et 
al.6 developed a risk-driven sensitivity analysis and optimization procedure based on Gaussian process surrogate 
models, effectively lowering seismic risk through refined bearing parameter selection. Concurrently, Gur et al.7 
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focused on the stochastic optimization of shape memory alloy rubber bearings, showing that such bearings can 
markedly boost isolation capacity under random seismic scenarios. While these single-parameter approaches 
deepen our understanding of isolation performance, they often prove inadequate for practical engineering 
applications, especially when multiple parameters interact to shape the overall seismic response. For continuous 
girder bridges with significant variations in pier heights, curvature effects, or other complex factors, relying 
solely on single-parameter analyses risks overlooking critical coupling effects among bearing design variables. 
Consequently, examining bearing design from a multi-parameter perspective not only aligns better with real-
world conditions but also offers a more comprehensive strategy for enhancing seismic safety.

To address the challenges inherent in multi-parameter design, researchers have increasingly adopted 
computational intelligence methods––particularly PSO––to systematically identify optimal isolation bearing 
parameters. For instance, Pang et al.8 formulated a risk-based design and optimization framework for shape 
memory alloy-restrained sliding bearings in highway bridges subjected to near-fault seismic loading, employing 
PSO to reduce seismic risk. Xia et al.9 introduced an improved PSO technique for structural model updating in 
high-dimensional bridge systems, achieving higher accuracy and efficiency using ambient vibration data. Tran-
Ngoc et al.10 devised a hybrid model updating approach for multi-span railway bridges, combining orthogonal 
diagonalization with an enhanced PSO algorithm to lower computational complexity. Chen et al.11 proposed 
an improved PSO-based analysis method for the construction stages of suspension bridges, integrating the 
standard PSO with genetic algorithms to obtain a more precise system configuration. Li et al.12 adopted a novel 
PSO algorithm to develop an optimal sensor placement strategy for long-span cable-stayed bridges, reducing 
costs while enhancing measurement efficiency. Quaranta et al.13 employed differential evolution and PSO to 
identify key parameters of isolation devices, confirming the feasibility of nontraditional techniques in isolator 
characterization. Zhang et al.14 used PSO for simultaneous inversion of pre-stack seismic data, improving 
elastic parameter models and bolstering both the precision and reliability of geophysical interpretations. 
Similarly, recent machine learning approaches, such as Wei et al.15, employed extensive datasets to predict 
seismic responses and fragility of high-speed railway bridges, showcasing strengths in predictive efficiency but 
reliance on data availability. Additionally, Wei et al.16 introduced novel ductile piers with improved deformation 
capabilities under seismic loads, potentially influencing the performance requirements and optimization 
of isolation bearings. While various state-of-the-art optimization algorithms such as Differential Evolution 
(DE), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Ant Colony Optimization (ACO) have 
demonstrated success in structural optimization tasks, PSO remains particularly well-suited for multi-parameter 
problems characterized by continuous search spaces, nonlinearity, and complex constraint interactions. PSO 
has demonstrated consistent robustness and efficiency specifically in engineering design optimization problems 
characterized by nonlinear, multi-modal, and high-dimensional search spaces, typical of seismic isolation bearing 
optimization scenarios. Compared to DE and GA, PSO typically requires fewer control parameters and exhibits 
faster convergence in scenarios involving moderate noise or multimodal objective functions. Moreover, hybrid 
PSO variants have been shown to outperform other algorithms in computational efficiency and robustness when 
applied to civil engineering optimization tasks. Given the high-dimensional, nonlinear, and computationally 
intensive nature of seismic isolation bearing design, PSO––especially in its enhanced, adaptive forms––presents 
a compelling choice. The present study builds on this foundation by integrating adaptive strategies into the 
PSO framework, specifically tailored to the physical constraints and seismic demands of continuous girder 
bridges. Despite these advances, conventional PSO still faces challenges in balancing convergence speed and 
robustness in design spaces with higher dimensionality and multiple constraints. To tackle this issue, the present 
study introduces an improved particle swarm optimization (APSO) that adaptively adjusts inertia weights and 
learning factors, thereby enhancing both optimization efficiency and convergence speed. This improvement is 
especially advantageous for large-scale, nonlinear isolation design problems, where computational efficiency is 
of paramount importance.

The primary novelty of this work lies in integrating multi-parameter isolation design with an enhanced particle 
swarm algorithm specifically tailored for continuous girder bridges, thus forming a systematic approach. By 
comprehensively considering critical nonlinear bearing characteristics under bidirectional seismic excitation––
namely yield strength, pre-yield stiffness, and post-yield stiffness––our study transcends the limitations of 
single-parameter optimization. Moreover, we demonstrate that APSO not only accelerates convergence but 
also improves the optimal isolation performance, making it more effective than conventional PSO or other 
common optimization strategies under the complex conditions typical of continuous girder bridges. In Sect. 2, 
we derive the particle swarm formulation for the multi-parameter optimization of damping-isolation bearings, 
while in Sect. 3 we enhance the traditional PSO, proposing an adaptive particle swarm algorithm. In Sect. 4, 
comparative experiments against conventional optimization methods illustrate APSO’s superior performance in 
multi-parameter isolation bearing design, offering theoretical insights and practical guidance for seismic bridge 
design.

Optimization of damping-isolation bearings using particle swarm optimization
In the design of continuous girder bridges located in high-intensity seismic zones, isolation bearing parameters 
play a pivotal role in determining the overall seismic performance of the structure. Conventional optimization 
approaches often concentrate on a single parameter (e.g., yield strength or stiffness) to reduce design complexity; 
however, such simplifications tend to overlook the interactions among multiple bearing parameters under 
realistic seismic demands. Conversely, multi-parameter optimization provides a holistic understanding 
of bearing responses under severe seismic excitations, thereby markedly enhancing the resilience of critical 
transportation infrastructure17.

This section introduces the PSO algorithm and discusses its application in multi-parameter bearing 
optimization. Compared with conventional methods, PSO offers strong global search capabilities and high 
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computational efficiency, making it particularly suitable for large-scale structural problems involving nonlinear 
material behavior and multi-degree-of-freedom systems.

PSO is a classic intelligent optimization method. It typically uses a random strategy to initialize multiple 
candidate solutions (particles) and then iteratively updates these solutions according to a prescribed procedure 
until an optimal solution is found based on a certain fitness criterion. At each iteration, particles are adjusted 
according to two “extreme” values within the swarm: the first is the historical best solution found by the particle 
itself, denoted as pBest; the second is the historical best solution found by the entire population, denoted as 
.gBest18,19.

The iterative process through which each particle seeks the optimal solution can be described mathematically 
by Eqs. (1) and (2)20. In an n-dimensional target search space, the position and velocity of the d-th particle can 
be expressed as:

 Xi = {xi1, xi2 · ··, xin} , i = 1, 2, · · ·, n (1)

 Vi = {vi1, vi2 · ··, vin} , i = 1, 2, · · ·, n (2)

During iterative optimization, the pBest and gBest of the i-th particle at the current time, as well as their 
corresponding particle position vectors, can be represented by:

 pBesti = {pBesti1, pBesti2 · ··, pBestin} , i = 1, 2, · · ·, n (3)

 gBesti = {gBesti1, gBesti2 · ··, gBestin} , i = 1, 2, · · ·, n (4)

 P⃗i = {pi1, pi2 · ··, pin} , i = 1, 2, · · ·, n (5)

 G⃗i = {gi1, gi2 · ··, gin} , i = 1, 2, · · ·, n (6)

Throughout the iterative procedure, all particles in the swarm strictly search within a prescribed region, denoted 
by 

{
R = D|D = (e1, e2, · · ·, ed) , −Xmax

d ⩽ ed ⩽ Xmax
d , d = 1, 2, · · ·, D

}
. The maximum search range 

and maximum search speed for each particle are represented by Xmax =
{

xmax
1 , xmax

2 , · · ·, xmax
i

}
 

and V max =
{

vmax
1 , vmax

2 , · · ·, vmax
i

}
, respectively. When xi > Xmax

i , vi > V max
i , set 

xi = Xmax
i , vi = V max

i ; and when xi < −Xmax
i , vi < −V max

i , set xi = −Xmax
i , vi = −V max

i .
Particle positions are updated by xt+1

id = xt
id + vt+1

id , following the iterative procedure outlined below:

 (1) Initialize particle positions and velocities, setting initial solutions as each particle’s individual best     (pBesti

) positions and selecting the overall best as the global best (gBesti).
 (2) Calculate each particle’s objective function (fitness).
 (3) Update each pBesti if its current fitness is superior; similarly, update the gBesti if a new global optimum 

is identified.
 (4) Update the dth-dimensional position and velocity for each particle i.
 (5) Check whether the current solution satisfies the termination condition; if it does, output gBest and termi-

nate. Otherwise, return to step (2) and continue iterating until the termination condition is met.

In PSO, one of the most critical factors is the velocity update scheme, which plays a decisive role in both 
optimization performance and convergence speed. Typically, three commonly used formulas are adopted for 
velocity updating, as given in Eqs. (7), (9), and (11), with the corresponding position-update formulas provided 
in Eqs. (8), (10), and (12).

 vt+1
id = vt

id + c1r1
(
pBestt

id − xt
id

)
+ c2r2

(
gBestt

id − xt
id

)
 (7)

 xt+1
id = xt

id + vt+1
id  (8)

where i = 1, 2, · · ·, n represents the individual particles, and n is the total number of particles; vt+1
id  is the d-

dimensional velocity of the i-th particle at iteration t + 1; vt
id is the d-dimensional velocity of the i-th particle at 

iteration t + 1; c1, c2 are the learning factors for the pBest and gBest, also known as acceleration constants, 
typically set to c1 = c2 = 2; r1, r2 are uniform random numbers within the range (0, 1), which adjust the pBest 
and gBest to enhance the diversity of the swarm; xt+1

id  is the position of the particle after t + 1 iterations; and 
xt

id is the position of the particle after t iterations.

 vt+1
id = θvt

id + c1r1
(
pBestt

id − xt
id

)
+ c2r2

(
gBestt

id − xt
id

)
 (9)

 xt+1
id = xt

id + vt+1
id  (10)

where θ is the constraint factor, which is a constant coefficient in front of the velocity when the position is 
updated.

 vt+1
id = ωvt

id + c1r1
(
pBestt

id − xt
id

)
+ c2r2

(
gBestt

id − xt
id

)
 (11)
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 xt+1
id = xt

id + vt+1
id  (12)

where ω is referred to as the inertia factor, and its value is non-negative. In typical iterative optimization 
processes, ω is usually a dynamic value. It is generally more effective for optimization compared to a fixed value. 
The value of ω typically changes linearly, with the most commonly used strategy being the linear decreasing 
weight (LDW) strategy: ω(t) = (ωini − ωend) (Gk − g) /Gk + ωend, where Gk  represents the maximum 
number of iterations, ωini is the initial inertia weight, and ωend is the inertia weight at the maximum iteration. 
A typical choice for inertia weights is ωini = 0.9 and ωend = 0.4. When the inertia weight is large, the global 
optimization ability is stronger, but the local optimization ability is weaker. When the inertia weight is small, the 
global optimization ability is weaker, but the local optimization ability is stronger.

The polynomial formula consists of three terms:

 (1) Inertia term: Retains particle velocity from the previous iteration, acting as a momentum to explore solu-
tion space.

 (2) Self-cognitive term: Guides particles based on their own best-known position, reflecting individual experi-
ence and promoting local search efficiency.

 (3) Social-cognitive term: Directs particles toward the global best-known solution, leveraging collective swarm 
experience to enhance convergence toward the global optimum.

These components collectively influence both convergence speed and optimization performance, and standard 
velocity updating equations referenced in the manuscript are employed.

Equations (7) and (9) are generally regarded as the standard forms of PSO.
In summary, the basic principles of the particle swarm algorithm can be represented by the flowchart shown 

in Fig. 1.
The PSO algorithm has opened new research and practical pathways in the field of seismic design for 

bridges. In the face of complex engineering challenges such as large-span bridges, traditional design methods 
often struggle to provide comprehensive and convenient solutions, especially when dealing with parameter 
optimization. Known for its flexibility and efficiency, the PSO algorithm is particularly suitable for solving multi-
parameter optimization problems. By simulating the search behavior of particles within the parameter space, the 
PSO algorithm can explore a wide design space and comprehensively optimize the three nonlinear characteristic 
parameters of the bearings (yield strength, pre-yield stiffness, and post-yield stiffness). Considering the structural 
characteristics of seismic isolation continuous girder bridges, the application of PSO in parameter optimization 
focuses on reducing seismic impact and enhancing the adaptability of the structure, aiming to find the optimal 
combination of parameters that improve the performance of the bridge under seismic loading21,22.

The flowchart for solving the multi-parameter optimization problem of damping isolation bearings using the 
PSO algorithm is shown in Fig. 2.

While the classic PSO algorithm demonstrates considerable strength in multi-parameter bearing optimization, 
nonlinear and large-scale practical scenarios often require faster convergence and more adaptive search strategies. 
To overcome these challenges, this study proposes an improved APSO algorithm that dynamically adjusts key 
parameters to enhance both the optimization rate and iteration speed. These enhancements broaden the scope 
of swarm intelligence in seismic isolation bearing design, enabling safer and more cost-effective solutions in the 
complex engineering environments of earthquake-prone regions.

Adaptive particle swarm optimization algorithm for seismic isolation bearings in 
bridges
Although the multi-objective PSO algorithm has gained increasing popularity in the fields of structural and 
seismic engineering due to its relatively simple algorithmic principles and fewer control parameters23, it still 
has certain limitations. Classic PSO often faces the issue of premature convergence when the search space is 
large and complex. The particle swarm may converge to a local optimum early in the iteration process, resulting 
in stagnation. If the distribution of particles in certain parameter dimensions (such as yield strength, pre-
yield stiffness, or post-yield stiffness) is too narrow or uneven, the swarm may become stuck, hindering global 
optimization and slowing convergence.

These shortcomings highlight a core requirement in practical engineering applications: when optimizing 
bearing parameters, an algorithm is needed that not only converges quickly but also possesses strong global 
search capabilities. For bridges located in seismic zones, safety indices are crucial. Therefore, the ability to 
effectively avoid local optima and find better solutions within a limited computational time frame is particularly 
important.

To address this need, this paper proposes the Adaptive Particle Swarm Optimization (APSO) algorithm, 
which systematically adapts the key parameters of the particle swarm (such as inertia factor, learning factors, 
velocity and position update rules, and iteration termination conditions) to address these challenges. During 
the optimization process, APSO dynamically adjusts various parameters to provide a broader search space in 
the early stages (enhancing global exploration) and accelerate convergence in later stages. These improvements 
make APSO more suitable for practical engineering projects, allowing it to optimize faster and more robustly 
when dealing with multi-dimensional seismic isolation bearing parameters.

The following sections will detail the specific improvements of APSO and explain how it effectively addresses 
the shortcomings of classic PSO, achieving better results in multi-parameter seismic bearing optimization.
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Improvement of inertia factor
It is generally believed that the inertia factor has the greatest impact on the iteration speed. The value of the 
inertia factor plays a crucial role in both the global search ability and the search speed of the algorithm. Since 
Shi introduced the linear inertia factor in 1998, many scholars have proposed different methods for assigning 
inertia factor values based on different problems. However, most of these methods perform well only for specific 
problems and lack strong general applicability24.

Fig. 1. Basic flow chart of PSO.
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In this paper, a new adaptive inertia factor is introduced for the multi-parameter optimization of damping 
isolation bearings. This adaptive inertia factor allows the iteration process to decrease slowly in the early stages 
to expand the search range of particles, decrease more rapidly in the middle stages to improve iteration speed 
and efficiency, and decrease slowly in the later stages to allow particles to fine-tune their search near the optimal 
solution, enhancing accuracy. The use of the exponential term ensures that the adjustment of the inertia factor 
is smooth and continuous, facilitating better balance between exploration and exploitation throughout the 
optimization process. The value assignment method for this adaptive inertia factor is given by Eq. (13).

 ωd = ωend + (ωini − ωend) × e[k·σ(t)
θ] (13)

where σ(t) is the fitness value dispersion coefficient during the iteration process; k and θ are experimental 
constants determined by the initial fitness value. Typically, the optimal values are selected by conducting 
multiple simulations and observing the resulting search efficiency and convergence behavior of the optimization 
algorithm.

The fitness value dispersion coefficient is the ratio of the standard deviation to the mean value of the data set, 
expressed as a percentage. The common calculation formula for this is shown in Eq. (14).

 
σ(t) = C

X
× 100% (14)

where C represents the data standard deviation; X  represents the data mean value.

Improvement of learning factors
The inertia factor primarily determines the speed of the iterating particles, while the learning factor governs the 
learning of the individual best position and the global best position. In the standard PSO algorithm, the learning 
factor is usually fixed as a constant. Such a constant learning factor lacks variability and flexibility, thus having 
little positive impact on the algorithm. Therefore, to enhance the learning factor’s positive effect, the general 
constant learning factor is replaced with a linear learning factor: In the early stages, to expand the search range, 
the emphasis should be on the influence of the individual best position; in the later stages, to more quickly 
and accurately find the optimal solution, the focus should shift to the influence of the global best position. 
Unlike the inertia factor, exponential decay usually reduces the learning factor quickly in the early stages of the 
optimization process, which may cause particles to be too concentrated near the global optimal solution too 
early, reducing the diversity of exploration. This may cause the algorithm to fall into a local optimal solution 

Fig. 2. PSO Algorithm for Solving Bearing Optimal Parameter Combinations Flowchart.
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without enough opportunities to explore the entire search space. The value assignment method for this learning 
factor is shown in Eq. (15).

 

{
ct

1 = cini
1 + (Gk−g)(cini

1 −cend
1 )

Gk

ct
2 = cini

2 + (Gk−g)(cini
2 −cend

2 )
Gk

 (15)

where ct
1, ct

2 represent the values of the learning factors during the iteration process; cini
1 , cend

1  are the starting 
and final values of the c1 learning factor; cini

2 , cend
2  are the starting and final values of the c2 learning factor; Gk  

represents the maximum number of iterations; g represents the individual particles.

Improvement of position update method
The direction and position of a particle during iteration are primarily controlled by the individual best and 
global best positions. This often leads to the particles becoming trapped in local optima and overlooking better 
positions within the particle’s neighborhood. To reduce this occurrence, a certain range of neighborhood 
intervals, 

[
pBestt

i(1 − r(0, 1)), pBestt
i(1 + r(0, 1))

]
 and 

[
gBestt

i(1 − r(0, 1)), gBestt
i(1 + r(0, 1))

]
, is 

added around the individual best and global best positions, allowing the particles to perform a neighborhood 
random search within these specific regions.

Improvement of iteration termination conditions
To ensure the accuracy and feasibility of the iteration results, the condition that the difference between the 
maximum and minimum fitness values should not exceed 5% is combined with an additional condition: the 
discrete coefficient of the fitness values for all particles after each iteration must not exceed 5%. This adjustment 
helps optimize the final results of the iteration.

Finally, the updated particle velocity update formula is given in Eq. (16).

 vt+1
id = ωdvt

id + ct
1r1

(
pBestt

id(1 ± r(0, 1)) − xt
id

)
+ ct

2r2
(
gBestt

id(1 ± r(0, 1)) − xt
id

)
 (16)

The flowchart for solving the multi-parameter optimization problem of damping isolation bearings using the 
improved APSO algorithm is shown in Fig. 3.

Engineering example
Finite element model and seismic input
Engineering background
This study focuses on a four-span seismic isolation continuous girder bridge with a span of 4 × 36  m. The 
superstructure of the bridge consists of a prestressed concrete box girder with a uniform cross-section, where 
the height of the girder is 1.8 m, and the bridge deck width is 25.7 m. The cross-section is of a single box with 
multiple chambers, and C50 concrete is used. The substructure consists of rectangular dual piers, each with a 
height of 9 m and dimensions of 1.8 m×2 m, constructed with C40 concrete. The pile foundation uses a group 
of piles, with a pile diameter of 1 m and a height of 40 m, made from C30 concrete. Each pier is equipped with 
one bearing, except for the two end abutments, which use Y4Q520 × 135G0.8 type circular lead-core rubber 
bearings (LRB). The abutments are equipped with LNR(H)-d445 × 136 type sliding horizontal force dispersing 
rubber bearings (LNR). To differentiate the piers at various locations, the bridge is numbered sequentially along 
the bridge direction as Pier 1#, Pier 2#, and Pier 3#. The longitudinal profile and plan layout of the bridge are 
shown in Figs. 4 and 5.

Support bilinear model
In the Midas software, the simulation of LRB bearings can directly use the linear characteristics of lead-core 
rubber bearings from the general connection characteristic values provided by the software. The simulation of the 
LNR bearings can be directly modeled using elastic connections. The equivalent linearization model represents 
the lead core rubber bearing as an approximate linear model, consisting of two linear mechanical parameters: 
equivalent stiffness and equivalent damping ratio. Such models are typically used for response spectrum analysis 
within the elastic range of structures25. When subjected to external cyclic loading, the deformation of the lead 
core rubber bearing remains within the elastic-plastic range, and thus, the restoring force of the bearing is often 
modeled as bilinear26. A common bilinear model for lead core rubber bearings is shown in Fig. 6. The calculation 
formulas for the equivalent stiffness and equivalent damping ratio are given in Eqs. (17) and (18), respectively.

 
Keff = Fd

Dd
= Qd

Dd
+ K2 (17)

 
ξeff = 2Qd(Dd − ∆y)

πD2
dKeff

 (18)

where Dd represents the horizontal displacement of the seismic isolation bearing. According to the provisions 
of “Lead Core Seismic Isolation Rubber Bearings for Highway Bridges”, the Dd value is taken as 50 mm; ∆y  is 
the yield displacement of the seismic isolation bearing; Qd is the characteristic strength of the seismic isolation 
bearing, defined as the value where the hysteresis curve intersects the shear force axis in the forward direction; 
Keff  denotes the equivalent stiffness of the seismic isolation bearing; K1 is the pre-yield stiffness of the seismic 
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isolation bearing; K2 is the post-yield stiffness of the seismic isolation bearing; ξeff  represents the equivalent 
damping ratio of the seismic isolation bearing.

As shown in Fig. 6, the behavior of the lead core rubber bearing can be characterized by four parameters in 
the restoring force model: yield strength, equivalent stiffness, elastic stiffness, and yield stiffness.

The restoring force in the bilinear model is calculated in two stages, with the formulas given in Eqs. (19) and 
(20).

Pre-yield stage:

 Fb = (K1 − K2) (Dd − ∆y) + K2Dd (19)

3600 3600 3600 3600

9
0
0

1# 2# 3#

14400

Fig. 4. Bridge longitudinal section layout (unit: cm).

 

Fig. 3. APSO algorithm for solving bearing optimal parameter combinations flowchart.
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Post-yield stage:

 Fb = (K1 − K2) (Dd − ∆y) + K2Dd (20)

where Fb represents the bearing’s restoring force.
In the Midas simulation, when using the response spectrum method for bearing simulation analysis, the 

software calls its linear characteristic values, including equivalent stiffness (Keff ) and vertical stiffness (Kv). 
Detailed parameter inputs for the bearing’s linear characteristics can be referenced from the Midas Civil help 
file. The implementation of the bearing bilinear model and the finite element analysis model schematic in Midas 
are shown in Fig. 7.

In addition, it is important to acknowledge that the simulation accuracy of seismic isolation bearings 
significantly influences the reliability and precision of the structural analysis results. Figure  7 presents the 
finite element model of bearings, adopting a bilinear constitutive model in the Midas software. However, the 
simplifications inherent in these simulations––particularly the potential neglect of certain complex behaviors 
such as the “jumping-off ” effect in friction pendulum bearings––could impact the predicted performance 
and optimization outcomes. Recent research has highlighted that neglecting this phenomenon may lead to 
deviations in evaluating bearing responses under seismic excitation. For instance, the study by Wei et al.27, 
emphasizes that accurate modeling of the jumping-off effect significantly improves the precision of response 
predictions and contributes to more robust parameter optimization. Although the current approach provides 
acceptable accuracy within the linear and bilinear modeling assumptions, incorporating refined nonlinear 
behaviors could further validate the optimization results and extend the applicability of findings to practical 
engineering scenarios. Thus, while the current simulations in Fig. 7 meet the immediate objectives, recognizing 
and addressing these complex bearing behaviors could substantially enhance the comprehensiveness and 
reliability of seismic isolation performance analyses.

Fig. 6. Finite element analysis model.
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Fig. 5. Bridge plan layout (unit: cm).
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Earthquake input
This study uses the “Seismic Design Code for Highway Bridges” (JTG/T2231-01-2020) to plot the design response 
spectrum, which serves as the target spectrum, as shown in Fig. 8. The seismic isolation continuous beam bridge 
selected in this paper is located at a site with a basic earthquake intensity of 8 degrees and a site category of 
Class III. According to the regulations, the vertical earthquake effect is not considered. According to the code, 
the acceleration time history should consist of no fewer than three sets. Therefore, three earthquake waves—
James, Imperial Valley-01, and Parkfield—were selected from the PEER strong-motion database. Among the 
earthquake responses caused by these three waves, the James earthquake wave induces the maximum seismic 
response in the bridge. Consequently, this study analyzes the parameter optimization of the pre-yield stiffness of 
the bearings under the effect of this seismic wave. The evaluation criteria for the optimization include the pier 
top displacement, pier bottom shear force, and their weighted sum. The time history of the acceleration at the 
pier top is shown in Fig. 8.

Single-parameter sensitivity-based optimization of seismic isolation bearing parameters
To investigate the impact of various bearing parameters on the seismic performance of continuous girder bridges, 
this section uses a single-parameter sensitivity analysis under the James earthquake excitation. Specifically, one 
parameter (yield strength, pre-yield stiffness, or post-yield stiffness) is adjusted at a time while keeping the 
other parameters constant. The impact of these changes on the bridge’s seismic performance is then evaluated. 
Although practical bridge design requires the evaluation of multiple earthquake waves, to visually demonstrate 
the impact of a single parameter on isolation effectiveness, this study selects the James earthquake wave as the 
focus of the analysis and optimizes each parameter individually.
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Fig. 7. Finite element analysis model.
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Design principles and parameter settings
Before analyzing the impact of individual parameters, some design principles and parameter ranges need to be 
established. The finite element model used in this section is the same as the one in Sect. 4.1, which includes the 
bridge’s geometric dimensions, material properties, and boundary conditions. The seismic input is based on the 
James earthquake record, adjusted according to relevant seismic design standards to represent a high-intensity 
seismic scenario28.

In the nonlinear behavior of lead-core rubber bearings (LRB), three key parameters are crucial:

 (1) Yield Strength (Qy): This determines the energy dissipation capacity of the bearing, with a value range of 
61 kN  to 381.4 kN , with a step size of 35.6 kN .

 (2) Pre-Yield Stiffness (K1): This affects the elastic response of the bearing and the structural natural frequency, 
with a range of 4.5 kN/mm to 18.5 kN/mm, with a step size of 1.4 kN/mm.

 (3) Post-Yield Stiffness (K2): This reflects the bearing’s mechanical performance in the post-yield stage, with a 
value range of 0.7 kN/mm to 2.95 kN/mm, with a step size of 0.25 kN/mm.

For ease of comparison, this section extracts absolute values closely related to seismic performance (such as pier 
top displacement, bearing displacement, and pier bottom shear force) from the time history analysis results. 
These values are normalized when necessary to highlight the relative impact of parameter changes.

Bridge seismic response and bearing parameter optimization under different yield strengths
In this section’s single-parameter sensitivity analysis, the yield strength Qy  is varied over ten different values 
while holding other bearing parameters constant. Time history analysis is performed using the James earthquake 
record. As shown in Fig. 9, as Qy  increases, the pier top displacement decreases within a certain range. However, 
once the yield strength exceeds a certain threshold, it starts to increase again, indicating that moderate yield 
strength is beneficial for energy dissipation, while excessively high stiffness redirects more seismic force to the 
superstructure. Meanwhile, bearing displacement generally decreases as Qy  increases and remains within the 
allowable shear deformation range. This trend is also reflected in the distribution of pier bottom shear forces, 
where larger Qy  values reduce the force difference between the high pier (Pier #2) and the low pier (Pier #1), 
leading to a more balanced seismic force distribution across the bridge piers.

Based on these results, this study minimizes the pier top displacement, minimizes the pier bottom shear 
force, and uses a weighted combination of both as objectives for the single-parameter optimization under the 
James earthquake. Table  1 lists the optimal values for each objective and the corresponding improvements 
relative to the original design of Y4Q520 × 135G0.8. When Qy ≈ 274.6kN , the pier top displacement decreases 
by approximately 21.17%, while Qy ≈ 167.8kN  results in an 18.27% reduction in pier bottom shear force. The 
weighted combination of displacement and shear force results in reductions of 14.36% and 18.27%, respectively. 

Optimization objective
Optimal yield strength 
(kN)

Resulting displacement 
(mm)

Resulting shear force 
(kN) Displacement reduction (%)

Shear 
force 
reduction 
(%)

Minimize pier top displacement 274.6 293.26 - 21.17% -

Minimize bearing displacement 167.8 - 1450.4 18.27%

Balanced shear-displacement 167.8 318.58 1450.4 14.36% 18.27%

Table 1. Optimization effects on seismic response at optimal yield strengths. At this point, the bearing’s pre-
yield stiffness is 9.3 kN/mm, and post-yield stiffness is 1.4 kN/mm.
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Fig. 9. Bridge seismic response under different bearing yield strengths. (a) pier top displacement. (b) bearing 
displacement. (c) pier bottom shear force.
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These results demonstrate that moderate yield strength achieves a balance between energy dissipation and pier 
bottom force, providing a more uniform force distribution and improved seismic performance for the continuous 
girder bridge under strong seismic excitation.

Bridge seismic response and bearing parameter optimization under pre-yield stiffness
When analyzing the pre-yield stiffness (K1), ten different values for K1 were set while holding other bearing 
parameters constant, and time history analysis was conducted using the James earthquake record. As shown in 
Fig. 10, with increasing K1, the pier top displacement shows a linear decreasing trend, and bearing displacement 
slightly decreases, remaining within the allowable deformation range. This indicates that larger K1 effectively 
enhances the initial stiffness of the bearing while avoiding excessive deformation. Regarding pier bottom shear 
force, Pier #1 is less affected by K1, while Pier #2 shows a significant reduction in shear force as K1 increases. 
This suggests that for relatively taller piers, greater initial stiffness better resists lateral seismic forces.

Since the James earthquake induces the strongest excitation among the selected waveforms, the 
single-parameter optimization aimed to minimize pier top displacement, minimize pier bottom shear 
force, and minimize the weighted combination of both. The final results are shown in Table  2. When 
K1 ≈ 18.5kN/mm, the pier top displacement decreases by about 4.46% compared to the original design 
of Y4Q520 × 135G0.8. K1 ≈ 17.3kN/mm is more favorable for reducing pier bottom shear force (1.36%) 
and provides a balanced control over both displacement and force in the weighted objective. Although the 
improvements are not significant, they highlight the fine-tuning effect of pre-yield stiffness on the bridge’s initial 
seismic response and suggest that even small adjustments to K1 may lead to a more reasonable seismic force 
distribution between tall and short piers.

Bridge seismic response and bearing parameter optimization under pre-yield stiffness
In this section, the impact of post-yield stiffness K2 on the seismic performance of the continuous girder bridge 
under the James earthquake is examined. As shown in Fig. 11, the pier top displacement increases almost linearly 
with K2, while bearing displacement initially decreases with increasing K2, reaching a turning point near 
K2 ≈ 2.2kN/mm, and then increases again. At the same time, pier bottom shear force continues to increase 
with K2. Although these response curves do not show clear minima or maxima within the test range, bearing 
displacement remains below its ultimate shear capacity, indicating that stiffness variations within this range will 
not cause the bearings to exceed the safe deformation limits.

Table 3 shows that when K2 ≈ 0.7kN/mm, the displacement and shear force improve by approximately 
9.96% and 13.68%, respectively, compared to the original design of Y4Q520 × 135G0.8. Although these 
improvements are not substantial, they emphasize the critical role of post-yield stiffness in seismic force 

Optimization objective
Optimal yield strength 
(kN)

Resulting displacement 
(mm)

Resulting shear force 
(kN) Displacement reduction (%)

Shear 
force 
reduction 
(%)

Minimize pier top displacement 18.5 355.4 - 4.46% -

Minimize bearing displacement 17.3 - 1750.6 1.36%

Balanced shear-displacement 17.3 357.88 1750.6 3.8% 1.36%

Table 2. Optimization effects on seismic response at pre-yield stiffness. At this point, the bearing yield 
strengths is 96 kN/mm, and post-yield stiffness is 1.4 kN/mm.
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Fig. 10. Bridge seismic response under different pre-yield stiffness of bearings. (a) pier top displacement. (b) 
bearing displacement. (c) pier bottom shear force.
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distribution. If K2 is too high, it increases the displacement demand on the bridge piers, while moderately lower 
K2 is more advantageous in achieving a balanced control between deformation and reduced force.

Multi-parameter optimization of seismic isolation bearings based on orthogonal experiment
Principles of orthogonal experiment
The orthogonal experimental method provides a systematic framework for exploring the optimal combination 
of multiple parameters. In seismic isolation bearing design, three critical parameters—yield strength, pre-
yield stiffness, and post-yield stiffness—often interact with one another. By selecting representative levels for 
the parameters and arranging them in an orthogonal table, it is possible to significantly reduce the number of 
simulations required while maintaining the robustness of the optimization results. The orthogonal experiment 
primarily revolves around the use of orthogonal tables, which combine different values of bearing parameters 
through orthogonal combinations. This ensures that each non-linear characteristic parameter appears evenly 
across all possible combinations, allowing each parameter to independently influence the optimization results 
and enabling the identification of the optimal parameter combination. Orthogonal tables are typically denoted 
as Ln(bc), where L represents the orthogonal table, n represents the total number of experiments, c represents 
the number of factors under consideration, and b represents the number of levels of each factor. Factors refer 
to the specific parameters that influence the experimental results—in this case, the non-linear characteristic 
parameters of the bearings; levels refer to the specific values of these factors—here, the specific values of the 
bearing’s non-linear characteristics. In this study, range analysis is primarily used to evaluate the impact of each 
factor on the experimental results.

Parameter settings
The numerical model and the range of values for the bearing’s non-linear characteristic parameters are the same 
as those in Sect. 4.2. The factors and their levels used in this orthogonal experiment are shown in Table 4.

Factors

Values at different levels

Level 1 Level 2 Level 3

Yield strength (kN) 140 220 300

Pre-yield stiffness (kN/mm) 8 11.5 15

Post-yield stiffness (kN/mm) 1.26 1.83 2.4

Table 4. Orthogonal test factor levels.

 

Optimization objective
Optimal yield strength 
(kN)

Resulting displacement 
(mm)

Resulting shear force 
(kN) Displacement reduction (%)

Shear 
force 
reduction 
(%)

Minimize pier top displacement 0.7 334.96 - 9.96% -

Minimize bearing displacement 0.7 - 1532 13.68%

Balanced shear-displacement 0.7 334.96 1532 9.96% 13.68%

Table 3. Optimization effects on seismic response at post-yield stiffness. At this point, the bearing yield 
strengths is 96 kN/mm, and per-yield stiffness is 9.3 kN/mm.
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Fig. 11. Bridge seismic response under different post-yield strengths of bearings. (a) pier top displacement. (b) 
bearing displacement. (c) pier bottom shear force.
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Based on these values, a 3-factor, 3-level orthogonal table. L9
(
33)

 is employed for the experiment, with the 
specific orthogonal design shown in Table 5. According to the orthogonal table, only 9 simulations are required 
for the three-factor, three-level simulation experiments, significantly reducing the workload.

Multi-parameter optimization of seismic isolation bearings for continuous girder bridges
For the seismic design optimization based on the seismic responses induced by three earthquake waves, the 
James earthquake wave, which induces the largest seismic response among the three, is selected for this section. 
The time history analysis method is used to optimize the bearing parameters, with the evaluation criteria being 
the pier top displacement, pier bottom shear force, and the weighted sum of both. The results of the orthogonal 
experiment analysis and calculations for the seismic isolation linear continuous girder bridge are shown in 
Table 6.

Range analysis is performed for different evaluation criteria and calculation results. The analysis results are 
as follows:

 (1) The range calculation results for the pier top displacement as the evaluation criterion are shown in Table 7.

Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness)

Kivalue

1 1038.39 1019.65 903.15

2 951.3 984.82 993.77

3 978.94 964.16 1071.72

Kivalue

1 346.13 339.88 301.05

2 317.1 328.27 331.26

3 326.31 321.39 357.24

Optimal level 1 2 3

R value 135.01 29.03 18.5

Table 7. The results of range analysis with pier top displacement as the evaluation index.

 

Test number

Evaluation indicators

Pier top displacement (mm) Pier bottom shear force (kN) Weighted sum of both

1 332.29 1699.3 0.73

2 364.81 2061.28 1.81

3 341.3 1814.1 1.06

4 356.74 2155.6 1.91

5 321.86 1934.58 1.09

6 272.7 1659.1 0

7 330.62 2075.72 1.47

8 298.16 1775.24 0.51

9 350.17 2128.74 1.79

Table 6. The evaluation index and calculation result are analyzed by orthogonal experiment.

 

Test number

Factors

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm)

1 140 8 1.26

2 140 11.5 2.4

3 140 15 1.83

4 220 8 2.4

5 220 11.5 1.83

6 220 15 1.26

7 300 8 1.83

8 300 11.5 1.26

9 300 15 2.4

Table 5. Orthogonal table for bearing nonlinear characteristic parameters.

 

Scientific Reports |        (2025) 15:18448 14| https://doi.org/10.1038/s41598-025-02155-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The optimal parameter combinations for the bearings under the orthogonal experiment, based on the pier top 
displacement, and the optimization rate relative to the original engineering bearing Y4Q520 × 135G0.8 are 
shown in Table 8.

 (2) The range calculation results for the pier bottom shear force as the evaluation criterion are shown in Table 9.

The optimal parameter combinations for the bearings under the orthogonal experiment, based on pier bottom 
shear force, and the optimization rate relative to the original engineering bearing Y4Q520 × 135G0.8 are shown 
in Table 10.

 (3) The range calculation results for the weighted sum of shear force and displacement as the evaluation crite-
rion are shown in Table 11.

The optimal parameter combinations for the bearings under the orthogonal experiment, based on the weighted 
sum of shear force and displacement, and the optimization rate relative to the original engineering bearing 
Y4Q520 × 135G0.8 are shown in Table 12.

In summary, the seismic response of the seismic isolation linear girder bridge with the optimal parameter 
combinations obtained through the orthogonal experiment shows a significant reduction. Compared to the 
original engineering bearing Y4Q520 × 135G0.8, the pier top displacement decreases by 26.69% when using 
displacement as the evaluation criterion; the shear force decreases by 10.15% when using pier bottom shear 
force as the evaluation criterion; and the weighted sum of displacement and shear force shows a reduction 
of 10.15% in displacement and 6.52% in shear force. The optimization effect is clear. Compared to parameter 

Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness)

Kivalue

1 3.6 4.11 1.24

2 3 3.41 3.61

3 3.77 2.84 5.51

Kivalue

1 1.2 1.37 0.41

2 1 1.14 1.2

3 1.26 0.95 1.84

Optimal level 2 3 1

R value 0.25 0.42 1.42

Table 11. Results of parameter optimization with shear force-displacement weighted sum as the target 
function.

 

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm) Resulting displacement (mm) Optimization rate

140 15 1.26 1594.64 10.15%

Table 10. The combination of the optimal parameters of the support and the optimization rate.

 

Level Factor 1(yield strength) Factor 2(pre-yield stiffness) Factor 3(post-yield stiffness)

Kivalue

1 5574.68 5930.62 5133.64

2 5749.28 5771.1 5824.4

3 5979.7 5601.94 6345.62

Kivalue

1 1858.23 1976.87 1711.21

2 1916.43 1923.7 1941.47

3 1993.23 1867.31 2115.21

Optimal level 1 3 1

R value 135.01 109.56 403.99

Table 9. Range analysis results for pier bottom shear force as the evaluation indicator.

 

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm) Resulting displacement (mm) Optimization rate

220 15 1.26 272.7 26.69%

Table 8. Optimal parameter combinations and optimization rates for bearings.
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optimization using single-parameter sensitivity analysis, the multi-parameter optimization of the bearing using 
the orthogonal experiment yields better results and significantly reduces the workload.

Multi-parameter optimization of seismic isolation bearings based on the APSO algorithm
Bearing multi-parameter optimization with pier bottom shear force as the objective function
To verify the effectiveness and applicability of the APSO algorithm for multi-parameter optimization of seismic 
isolation bearings, this section employs time-history analysis under the James earthquake excitation. The APSO 
algorithm is used to iteratively optimize 15 initial bearing parameter combinations for a linear seismic isolation 
continuous girder bridge, with the objective function defined as the pier bottom shear force. This iterative 
process creates an optimization space within which the optimal parameter combination is identified to refine 
the bearing parameters further. To visually represent the distribution of particles in the optimization space, the 
projections of particles along different parameter directions are illustrated as scatter plots (see Fig. 12).

It is observed that the projection in the yield strength direction forms a V-shape, with particles gradually 
concentrating around 150kN ; the projection in the pre-yield stiffness direction converges toward the maximum 
value of 18.5kN/mm; and the projection in the post-yield stiffness direction converges toward the minimum 
value of 0.7kN/mm. This uniform distribution indicates that the particle swarm covers nearly the entire 
parameter range during optimization. To further demonstrate the iterative paths and results, the trajectories of 
selected particles (8 randomly chosen for clarity) are plotted as line graphs in Fig. 13.

Based on the APSO algorithm, Table 13 presents the optimal bearing parameter combinations—using pier 
bottom shear force as the objective function—and their corresponding optimization rates relative to the original 
engineering bearing Y4Q520 × 135G0.8.

From Fig. 13; Table 13, it is evident that:

 (1) Except for the yield strength direction, where convergence is relatively slow (particles begin converging 
around the 20th iteration and essentially converge by the 25th), the pre-yield and post-yield stiffness direc-
tions achieve convergence more rapidly (approximately by the 15th and 4th iterations, respectively). This 
difference indicates that convergence in the yield strength direction is the slowest and plays a decisive role 
in the final optimization outcome.

 (2) The objective function stabilizes after roughly 20 iterations. Compared to the initial parameter combina-
tions, the optimized parameters reduce the absolute value of the pier bottom shear force by 15% at mini-
mum and up to 43% at maximum; relative to the original bearing Y4Q520 × 135G0.8, the reduction is about 
22.2%, demonstrating a significant improvement.

Bearing multi-parameter optimization with pier top displacement as the objective function
Under the same James earthquake excitation and using time-history analysis, this section applies the APSO 
algorithm to iteratively optimize 15 initial bearing parameter combinations for the linear seismic isolation 
continuous girder bridge, with the objective function defined as the pier top displacement. An optimization 
space is thereby established for identifying the optimal parameter combination. To intuitively display the 
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Fig. 12. The distribution of iterative particles projected in different directions in shear optimization space. (a) 
yield strength direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction.

 

Yield strength (kN)
Pre-yield stiffness 
(kN/mm)

Post-yield stiffness 
(kN/mm)

Resulting displacement 
(mm)

Resulting shear force 
(kN)

Displacement reduction 
(%)

Shear 
force 
reduction 
(%)

220 15 1.26 272.7 1659.1 10.15% 6.52%

Table 12. Optimal parameter combinations and optimization rates for bearings.
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distribution of particles in the optimization space, scatter plots of particle projections along different parameter 
directions are provided (see Fig. 14).

The results show that:

 (1) The improved APSO algorithm enables particles to search a broader parameter space with a more uniform 
distribution, effectively avoiding local optima and accelerating the discovery of the global optimum.

 (2) In the yield strength direction, the particle distribution exhibits a V-shape with convergence around 210kN
; in the pre-yield stiffness direction, particles concentrate at the maximum value of 18.5kN/mm; and in the 
post-yield stiffness direction, they converge toward the minimum value of 0.7kN/mm.

For clarity, the iterative trajectories of 8 randomly selected particles are depicted in Fig. 15.
Table 14 presents the optimal parameter combinations obtained with pier top displacement as the objective 

function, along with the corresponding optimization rates relative to the original bearing Y4Q520 × 135G0.8.
Analysis of Fig. 15; Table 14 reveals that:

 (1) Although convergence in the yield strength direction remains slower, starting around the 10th iteration 
and essentially converging by the 15th iteration, the pre-yield stiffness and post-yield stiffness directions 

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm) Resulting displacement (mm) Optimization rate

150 18.5 0.7 1378.4 22.2%

Table 13. The optimal parameter combination and optimization rate of the support.
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Fig. 13. Iteration particle projections along parameter directions in the optimization space. (a) yield strength 
direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value 
direction.
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converge by approximately the 10th and 5th iterations, respectively. Overall, the total number of iterations 
is greatly reduced, resulting in an approximate 40% increase in convergence speed.

 (2) The objective function stabilizes after about 11 iterations, with an overall convergence speed improvement 
of approximately 45%. Compared to the initial parameter combinations, the optimized parameters reduce 
the absolute pier top displacement by 23.8% at minimum and 41.2% at maximum; relative to the original 
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Fig. 15. Iteration particle projections along parameter directions in the optimization space. (a) yield strength 
direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value 
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Fig. 14. The distribution of iterative particles projected in different directions in displacement optimization 
space. (a) yield strength direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction.
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bearing Y4Q520 × 135G0.8, the displacement is reduced by 36.6%, confirming a significant optimization 
effect.

Bearing multi-parameter optimization with a weighted sum of shear force and displacement as the objective 
function
In practical seismic design, multiple seismic responses are sometimes considered simultaneously. Therefore, 
under the James earthquake excitation and using time-history analysis, the improved APSO algorithm is 
employed with the objective function defined as the weighted sum of pier bottom shear force and pier top 
displacement to optimize the bearing parameters.

To visually display the distribution of particle parameter combinations within the optimization space, scatter 
plots of particle projections along various parameter directions are provided (see Fig. 16). It is observed that 
the yield strength direction exhibits a V-shaped distribution with convergence around 199.7kN ; the pre-yield 
stiffness direction converges at the maximum value of 18.5kN/mm; and the post-yield stiffness direction 
converges at the minimum value of 0.7kN/mm. To further illustrate the iterative paths and outcomes, the 
trajectories of 8 randomly selected particles are plotted as line graphs in Fig. 17.

Table 15 shows the optimal parameter combinations achieved using the weighted sum objective function, 
along with their corresponding optimization rates relative to the original bearing Y4Q520 × 135G0.8.

From Fig. 17; Table 15, it can be concluded that:

 (1) In the yield strength direction, convergence begins around the 9th iteration and is essentially complete by 
the 15th iteration; in the pre-yield stiffness direction, convergence is reached around the 10th iteration; and 
in the post-yield stiffness direction, convergence is achieved around the 8th iteration.

 (2) The objective function stabilizes after approximately 10 iterations, with an estimated 50% improvement in 
convergence speed. When considering both shear force and displacement simultaneously, the optimized 
parameters reduce the weighted sum objective function value––shear force is reduced by 14.3% at mini-
mum and 43.6% at maximum, and displacement is reduced by 23.8% at minimum and 37.6% at maximum. 
Relative to the original bearing Y4Q520 × 135G0.8, shear force decreases by 20.7% and displacement by 
35.8%, demonstrating a clear and effective optimization.

Optimization results analysis
Under the excitation of the James earthquake, the nonlinear characteristic parameters of the seismic isolation 
bearings for the isolation linear continuous girder bridge were optimized using different methods. The 
optimization results are presented in Table 16; Figs. 18, 19 and 20.

From these results, it can be seen that although the computational burden of the APSO algorithm is greater 
than that of the orthogonal experiment, the improvement ultimately achieved by the APSO algorithm far exceeds 
the improvements achieved by the other two optimization methods. In the parametric optimization design for 
the bridge, the parameter combination derived from the single-parameter sensitivity analysis is highly dependent 
on the sensitivity of each parameter, which leads to significant variability in the optimization outcomes; although 
the orthogonal experiment approach requires relatively low effort, its optimization performance is comparatively 
insufficient. In contrast, the APSO algorithm provides an accurate and optimal parameter combination with the 
best optimization effect, albeit at the expense of a relatively higher computational workload.
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Fig. 16. Distribution of iteration particle projections in shear force-displacement weighted optimization space. 
(a) yield strength direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction.

 

Yield strength (kN) Pre-yield stiffness (kN/mm) Post-yield stiffness (kN/mm) Resulting displacement (mm) Optimization rate

210 18.5 0.7 236.96 36.6%

Table 14. The optimal parameter combination and optimization rate of the support.
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Conclusion
This study presents an improved PSO algorithm, termed Adaptive Particle Swarm Optimization (APSO), 
specifically tailored for the multi-parameter optimization of seismic isolation bearings in continuous girder 
bridges. By adaptively adjusting inertia and learning factors, as well as refining the search strategy, APSO 
significantly enhances exploration of the design space. Numerical experiments demonstrate that APSO achieves 
three clear advancements:

 1. APSO reduces the required computational iterations by approximately 40% compared to the standard PSO 
algorithm, thus markedly shortening optimization time while maintaining or even improving solution accu-
racy.

 2. APSO efficiently handles complex interactions among multiple nonlinear characteristic parameters––in-
cluding yield strength, pre-yield stiffness, and post-yield stiffness––making it particularly effective for both 
straight and curved continuous girder bridges. This efficiency ensures reliable convergence to the global 
optimum even in large-scale optimization scenarios.

Yield strength (kN)
Pre-yield stiffness 
(kN/mm)

Post-yield stiffness 
(kN/mm)

Resulting displacement 
(mm)

Resulting shear force 
(kN)

Displacement reduction 
(%)

Shear 
force 
reduction 
(%)

199.7 18.5 0.7 239.73 1383.26 35.8% 20.7%

Table 15. The optimal parameter combination and optimization rate of the support.

 

(a) (b) 

-2 0 2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

400

)
N

k(
ht

g
nerts

dlei
Y

Number of iterations

Particle 2

Particle 3

Particle 4

Particle 5

Particle 7

Particle 8

Particle 13

Particle 14

-2 0 2 4 6 8 10 12 14 16

4

6

8

10

12

14

16

18

20

)
m

m/
N

k(
sse

nffits
dlei

y-er
P

Number of iterations

Particle 2

Particle 3

Particle 4

Particle 5

Particle 7

Particle 8

Particle 13

Particle 14

(c) (d) 

-2 0 2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

2.5

3.0)
m

m/
N

k(
sse

nffits
dlei

y-ts
o

P

Number of iterations

Particle 2

Particle 3

Particle 4

Particle 5

Particle 7

Particle 8

Particle 13

Particle 14

-2 0 2 4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
us

det
h

gie
W

Number of iterations

Particle 2

Particle 3

Particle 4

Particle 5

Particle 7

Particle 8

Particle 13

Particle 14

Fig. 17. Iteration particle projections along parameter directions in the optimization space. (a) yield strength 
direction. (b) pre-yield stiffness direction. (c) post-yield stiffness direction. (d) objective function value 
direction.
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Fig. 19. Results of parameter optimization with pier top displacement as the target function.
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Fig. 18. Results of parameter optimization with pier bottom shear force as the target function.

 

Optimization methods Target function

Parameter combinations

Yield strength (kN)
Pre-yield stiffness 
(kN/mm)

Post-yield stiffness 
(kN/mm)

Displacement 
optimization rate

Shear force 
optimization 
rate

Single-parameter 
sensitivity

pier bottom shear force

167.8 9.3 1.4 - 18.27%

96 17.3 1.4 - 1.36%

96 9.3 0.7 - 13.68%

pier top displacement

274.6 9.3 1.4 21.17% -

96 18.5 1.4 4.46% -

96 9.3 0.7 9.96% -

shear force-displacement

167.8 9.3 1.4 14.36% 18.27%

96 17.3 1.4 3.80% 1.36%

96 9.6 0.7 9.96% 13.68%

Orthogonal experiment

pier bottom shear force 140 15 1.26 - 10.15%

pier top displacement 220 15 1.26 26.69% -

shear force-displacement 220 15 1.26 10.15% 6.52%

APSO

pier bottom shear force 150 18.5 0.7 - 22.20%

pier top displacement 210 18.5 0.7 36.60% -

shear force-displacement 199.7 18.5 0.7 35.80% 20.70%

Table 16. Optimal bearing parameter combinations and optimization rates under different optimization 
methods.
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 3. APSO demonstrates robust scalability and adaptability, providing a practical solution for overcoming com-
putational challenges associated with extensive search domains and intricate parameter dependencies in 
real-world structural engineering applications.

Despite these advancements, the current study has certain limitations. The proposed APSO algorithm’s 
performance validation relies primarily on numerical simulations; experimental validations with physical 
models or real-world structures have not yet been conducted. Additionally, the algorithm’s performance may 
vary under significantly different bridge configurations that were not explicitly considered in this study.

Looking ahead, extending APSO to more sophisticated bearing configurations or diverse structural 
components constitutes a valuable avenue for future research. Furthermore, integrating APSO with advanced 
modeling frameworks and real-time monitoring technologies may facilitate dynamic adaptive optimization, 
significantly enhancing seismic resilience and efficiency in bridge design across varying loading conditions.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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Fig. 20. Results of parameter optimization with shear force-displacement weighted sum as the target function. 
(a) pier bottom shear force. (b) pier top displacement.
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