

City Research Online

City, University of London Institutional Repository

Citation: Deshmukh, R. (1981). Hierarchal computer control using multi-microprocessor systems. (Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35358/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

HIERARCHICAL COMPUTER CONTROL USING MULTI-MICROPROCESSOR SYSTEMS

BY

HEMANT ANANT DESHMUKH

--00000--

THESIS SUBMITTED FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY

--00000--

DEPARTMENT OF SYSTEMS SCIENCE THE CITY UNIVERSITY LONDON

OCTOBER 1981

TO MY LATE FATHER

CONTENTS

<u>I</u>	PAGE
<u>TABLES</u>	7
ILLUSTRATIONS	8
ACKNOWLEDGEMENTS	13
DECLARATION	14
<u>ABSTRACT</u>	15
CHAPTER 1 - INTRODUCTION	18
CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL	24
2.1 <u>INTRODUCTION</u>	24
2.2 THE PROCESS CONTROL PROBLEM	25
2.3 COMPUTER CONTROL SYSTEM	27
2.3.1 Data loggers	30
2.3.2 Supervisory control	32
2.3.3 Direct digital control	33
2.4 DISTRIBUTED CONTROL SYSTEM	35
2.4.1 The microprocessor role	36
2.4.2 The process control requirements	39
2.4.3 Advantages of distributed control systems	41
2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN	
A PROCESS CONTROL ENVIRONMENT	43
2.6 <u>CONCLUSIONS</u>	46
CHAPTER 3 - SYSTEM DESIGN	48
3.1 <u>INTRODUCTION</u>	48
3.2 GENERAL ASPECTS OF SYSTEM DESIGN	49
3.2.1 Designing with microprocessors	51
3.2.1.1 <u>Software</u>	52
3.2.1.2 Hardware	55

	3.2.1.3 Software/hardware integration	56
3.3	THE IMPACT OF MICROPROCESSORS ON USERS	57
3.4	MULTIPLE PROCESSOR SYSTEM	59
3.4.2	Review of multiple processor system	59
3.4.2	Problems of designing with multi-microcomputer	
	system	68
	3.4.2.1 System architecture	69
	3.4.2.2 Communication and control	69
	3.4.2.3 Distributed processing	72
	3.4.2.4 Distributed data base	74
	3.4.2.5 System reliability, availability and	
	survivability	75
	3.4.2.6 System development and testing	76
3.5	<u>CONCLUSIONS</u>	77
CHAP.	ER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED	
COMPL	TING SYSTEM	79
4.1	INTRODUCTION	79
4.2	REAL TIME DISTRIBUTED COMPUTING SYSTEM	80
4.3		
	MODEL OF A PROCESSING ELEMENT	82
4.4	MODEL OF A PROCESSING ELEMENT	82 87
4.4		
	INFORMATION AND TASK HIERARCHY	87
4.5 4.6	INFORMATION AND TASK HIERARCHY	87 89
4.5 4.6 4.7	INFORMATION AND TASK HIERARCHY	87 89 92
4.5 4.6 4.7 4.8	INFORMATION AND TASK HIERARCHY CONTROL SYSTEM PHILOSOPHY DUAL PORT MEMORY UTILISATION APPLICATIONS	87 89 92 95
4.5 4.6 4.7 4.8 <u>CHAP</u>	INFORMATION AND TASK HIERARCHY CONTROL SYSTEM PHILOSOPHY DUAL PORT MEMORY UTILISATION APPLICATIONS CONCLUSIONS	87 89 92 95
 4.5 4.6 4.7 4.8 CHAP' PROCI 	INFORMATION AND TASK HIERARCHY CONTROL SYSTEM PHILOSOPHY DUAL PORT MEMORY UTILISATION APPLICATIONS CONCLUSIONS ER 5 - A HIERARCHICALLY STRUCTURED MULTI-MICRO-	87 89 92 95 97

CONTENTS continued

5.3 <u>INFORMATION FLOW</u>	101
5.4 STRUCTURE OF THE ISMI	104
5.5 <u>COMMON MEMORY</u>	106
5.6 <u>HMSU ARCHITECTURE</u>	110
5.7 <u>HMSU STRUCTURES</u>	112
5.8 <u>CONCLUSIONS</u>	113
CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE	117
6.1 <u>INTRODUCTION</u>	117
6.2 <u>FURNACE DESCRIPTION</u>	118
6.3 <u>PID CONTROL SCHEME</u>	120
6.3.1 Control requirements for the HMSU	125
6.4 ELECTRONIC INTERFACE REQUIREMENTS	129
6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE	131
6.6 <u>CONCLUSIONS</u>	137
CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM	138
7.1 <u>INTRODUCTION</u>	138
7.2 SOFTWARE DEVELOPMENT AID	139
7.3 ASSUMPTIONS AND DEFINITIONS	141
7.4 PROGRAM DESCRIPTION	146
7.4.1 Interrupt structure	149
7.4.2 Initialisation	152
7.4.3 The main program	154
7.5 <u>CONCLUSIONS</u>	156
CHAPTER 8 - SOFTWARE DEVELOPMENT FOR THE PDP-11/10	
MINICOMPUTER	171
8.1 <u>INTRODUCTION</u>	171
8.2 SOFTWARE DEVELOPMENT AID	172
8.3 PROGRAM STRUCTURE	174

CONTENTS continued

8.3.1 Command structure	177
8.4 <u>CONCLUSIONS</u>	181
CHAPTER 9 - DISCUSSION	190
9.1 <u>INTRODUCTION</u>	190
9.2 <u>SIMULATION OF MICROSWITCH INTERRUPTS</u>	190
9.3 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACE	198
9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES	202
9.5 ADVANCED TEST FOR THE HMSU	209
9.6 ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-11/10	
MINICOMPUTER	214
9.6.1 Program IR and the NUMB macro subroutine	214
9.6.2 Program TRIAL and the SUB2 macro subroutine	215
9.7 SIMULATION OF DISPLAY OF PROCESS VARIABLES ON GT42	
DISPLAY PROCESSOR	218
9.8 <u>CONCLUSIONS</u>	221
CHAPTER 10 - CONCLUSIONS	226
REFERENCES	230
APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR .	235
APPENDIX B - THE F8 PROGRAMMING FEATURES	240
B.1 THE F8 EVALUATION KIT	240
B.2 IMPORTANT PROGRAMMING FEATURES	241
B.3 THE F8 INSTRUCTION SET	244
APPENDIX C - THE HMSU PROGRAM LISTING	248
APPENDIX D - THE DCHMSU PROGRAM LISTING	272

TABLES

			1	PAGE
CHAPTER	2			
TABLE 2.	. 1	-	PROCESS CONTROL TECHNIQUES AND SCHEMES	29
CHAPTER	3			
TABLE 3.	. 1	-	IMPACT OF MICROPROCESSORS ON USER	
			ENVIRONMENT	58
CHAPTER	4			
TABLE 4.	. 1	-	ANALOGY OF INFORMATION HIERARCHY TO A	
			PROCESSING ELEMENT	90
TABLE 4.	. 2	-	INFORMATION PROTOCOL PRIMITIVES	94
CHAPTER	5			
TABLE 5.	. 1	-	COMMUNICATION PROTOCOL FOR PROCESSORS OF	
			FIGURE 5.2	105
CHAPTER	6			
TABLE 6.	. 1	-	CONTROL MODES	128
CHAPTER	7			
TABLE 7.	. 1	-	PORT ASSIGNMENT	145
CHAPTER	8			

TABLE 8.1 - SUBROUTINE MODULES FOR THE DCHMSU PROGRAM , 178

ILLUSTRATIONS

CHAP'	TER 2	
2.1	- GENERAL REPRESENTATION OF PROCESS VARIABLES	26
2.2	- BASIC CONVENTIONAL FEEDBACK CONTROL LOOP	26
2.3	- DATA LOGGER	31
2.4	- SUPERVISORY CONTROL SYSTEM	31
2.5	- DIRECT DIGITAL CONTROL	34
2.6	- DISTRIBUTED CONTROL SYSTEM'S CHARACTERISTIC	
	FEATURES	37
2.7	- FUNCTIONAL LAYERS OF HIERARCHY	40
CHAP'	TER 3	
3.1	- THE BASIC DESIGN TASK IN A MICROPROCESSOR-BASED	
	SYSTEM	53
3.2	- A GENERAL PROGRAM DEVELOPMENT PROCEDURE	54
3.3	- TOTAL SYSTEM COSTS	58
3.4	- FEATURES OF MULTIPLE PROCESSOR SYSTEMS	61
3.5	- SISD PROCESSOR	65
3.6	- MISD PROCESSOR	65
3.7	- SIMD PROCESSOR	66
3.8	- MIMD PROCESSOR	66
3.9	- MEMORY FORMATIONS	67
3.10	- INTERCONNECTION NETWORKS	71
CHAP	TER 4	
4.1	- DESCRIPTION OF A DISTRIBUTED COMPUTING SYSTEM	81
4.2	- A MODEL OF A PROCESSING ELEMENT OF A DISTRIBUTED	
	COMPUTING SYSTEM	84
4.3	- PHYSICAL IMPLEMENTATION OF THE INFORMATION	
	DISTRIBUTION NODE	86

4.4 - PHYSICAL IMPLEMENTATION OF THE INFORMATION	
ACCUMULATOR NODE	86
4.5 - AN EXAMPLE OF TWO CROSS-COUPLED TASK PROCESSORS	
P1 AND P2	88
4.6 - SIMULTANEOUS SERVICING OF INTERRUPTS	96
CHAPTER 5	
5.1 - INFORMATION FLOW	102
5.2 - BIDIRECTION COMMUNICATION BETWEEN PROCESSORS VIA	
A PAIR OF ISMIS	103
5.3 - 256 X 8 BIT INTER MEDIATE SCRATCHPAD AND MEMORY	
INTERFACE	107
5.4 - MASTER SLAVE CONFIGURATION FOR COMMON MEMORY	109
5.5 - HIERARCHICAL MICROPROCESSOR SYSTEM UNIT (HMSU) .	111
5.6 - HIERARCHICAL STRUCTURE	114
5.7 - STAR STRUCTURE	115
5.8 - RING STRUCTURE	115
CHAPTER 6	
6.1 - THE TLF INTERFACED WITH THE HMSU AND THE PDP-11/	
10 MINICOMPUTER	119
6.2 - A TYPICAL TEMPERATURE CONTROL LOOP OF A PROCESS	
PLANT	122
6.3 - HEATING SECTIONS OF THE TLF	126
6.4 - INPUT/OUTPUT INTERFACE	130
6.5 - EXISTING COMPUTER/FURNACE INTERFACE	133
6.6 - ANALOGUE MULTIPLEXER INTERFACE	135
6.7 - MODIFICATION TO DAC CHANNELS	136
CHAPTER 7	

PAGE

7.1 - THE F8 CROSS-ASSEMBLER (MK-3) STRUCTURE 140

7.2	-	MEMORY MAP OF THE MASTER PROCESSOR AND COMMON	
		MEMORY	143
7.3	-	SCRATCHPAD MEMORY MAP	144
7.4	-	ISMI MEMORY MAP - INPUT CHANNEL OF THE HMSU	147
7.5	-	ISMI MEMORY MAP - OUTPUT CHANNEL OF THE HMSU	148
7.6	-	INTERRUPT STRUCTURE WITH PRIORITY	150
7.7	-	EXAMPLE OF TWO LEVEL PRIORITY INTERRUPT	
		STRUCTURE	153
7.8	-	MAIN PROGRAM OF THE MASTER PROCESSOR	160
7.9	-	PID ROUTINE	161
7.10	-	INPU SUBROUTINE TO READ IN TEMPERATURE OF A LOAD	162
7.11	-	OUTPU SUBROUTINE TO OUTPUT POWER TO A ZONE	162
7.12	-	ISMI ROUTINE	163
7.13	-	ISMI ROUTINE (CONTINUED)	164
7.14	-	SUBROUTINE TO COPY ISMI DATA INTO PM AND CM	165
7.15	-	TRMIT ROUTINE FOR DATA TRANSFER FROM THE MASTER	
		TO O/P ISMI CHANNEL	166
7.16	-	TIMER INTERRUPT ROUTINE	167
7.17	-	EXTERNAL INTERRUPT ROUTINE FOR LOAD ADDRESS	
		UPDATE	168
7.18	-	COMMON MEMORY ROUTINE	169
7.19	-	CALL AND RETN ROUTINE	170
CHAP'	FEI	28	
8.1	-	SOFTWARE DEVELOPMENT ENVIRONMENT FOR THE PDP-11/	
		10 MINICOMPUTER	173
8.2	-	A GENERAL FORTRAN SOURCE PROGRAM DEVELOPMENT	
		PROCEDURE	175
8.3	-	SESSION RUN OF THE DCHMSU PROGRAM (INPUT/OUTPUT	
		APPEARING ON THE CONSOLE)	182

. 204

8.4	-	SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) 183
8.5	-	SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) 184
8.6	-	SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) 185
8.7	-	PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU
		<i>PROGRAM</i> 186
8.8	-	PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU
		PROGRAM (CONTINUED) 187
8.9	-	PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU
		PROGRAM (CONTINUED) 188
8.10	-	PRINT-OUT DURING THE SESSION RUN OF THE DCHMSU
		PROGRAM (CONTINUED) 189
CHAPT	EE	2 9
9.1	-	SIMULATION SET-UP FOR MICROSWITCH INTERRUPTS
		USING TWO IDENTICAL F8 EVALUATION KIT PROCESSORS 192
9.2	-	PROGRAM 1 FOR THE F8 EVALUATION KIT PROCESSOR 1
		<i>OF FIGURE 9.1</i> 193
9.3	-	PROGRAM 2 FOR THE F8 EVALUATION KIT PROCESSOR 2
		<i>OF FIGURE 9.1</i> 195
9.4	-	SIMULATION OUTPUT FOR THE SET-UP SHOWN IN
		FIGURE 9.1 196
9.5	-	ARRANGEMENT FOR TESTING ISMI USING TWO F8
		EVALUATION KITS 199
9.6	-	'TRANSMITTER' PROGRAM FOR PROCESSOR 1 OF
		FIGURE 9.5 200
9.7	-	'RECEIVER' PROGRAM FOR PROCESSOR 2 OF FIGURE 9.5 201
9.8	-	PROGRAM TO CLEAR 64 LOCATIONS OF RAM OF
		PROCESSOR 2 OF FIGURE 9.5 201
9.9	-	SET-UP USING A PART OF THE HMSU FOR TESTING PM

AND CM MEMORY MODULES

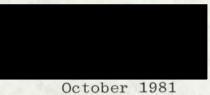
9.10	-	CHIP SELECT LOGIC DIAGRAM FOR THE EPROM, PM AND	
		CM MEMORY MODULES	205
9.11	-	HAND-ASSEMBLED PROGRAM FOR THE PROM SIMULATOR OF	
		FIGURE 9.9	206
9.12	-	SLAVE PROCESSOR'S OUTPUT FOR THE TEST SET-UP OF	
		FIGURE 9.9	207
9.13	-	ADVANCED TEST SET-UP FOR THE HMSU	211
9.14	-	MACRO ASSEMBLY OF THE NUMB SUBROUTINE	216
9.15	-	FORMAT OF ARGUMENT LIST USED BY REGISTER 5 (R5)	
		DURING FORTRAN SUBROUTINE LINKAGE	216
9.16	-	FORTRAN IV PROGRAM IR WHICH CALLS THE NUMB SUB-	
		<i>ROUTINE</i>	217
9.17	-	OUTPUT RESULT OF IR PROGRAM OF FIGURE 9.16	217
9.18	-	CONNECTION ARRANGEMENT BETWEEN DR11-C INTERFACE	
		AND ISMI MODULES	219
9.19	-	PROGRAM TRIAL, MACRO SUBROUTINE SUB2 AND OUTPUT	
		RESULT OF TRIAL PROGRAM	220
9.20	-	DISPLY PROGRAM	222
9.21	-	SIMULATION OUTPUT OF DISPLY PROGRAM ON GT42	
		DISPLAY PROCESSOR	224
9.22	-	DATA FILE SHOWING PROCESS VARIABLES	224

ACKNOWLEDGEMENTS

n for their helpful suggestions.

and a computer Unit for their helpful suggestions and valuable assistance in the Microprocessor Laboratory.

Finally, I would like to thank my wife for her enduring patience and constant support. Thanks are also due to


. e n for her proficient typing.

The work was supported by the Science Research Council in the form of a grant.

DECLARATION

The work described in this thesis was carried out in the Department of Systems Science, The City University, London, under the supervision of Professor P. D. Roberts. No part of this work has been submitted for any other degree. All sources of information have been duly referenced.

I grant powers of discretion to the University Librarian to allow this thesis to be copied in whole or in part without further reference to me. This permission covers only single copies made for study purposes, subject to normal conditions of acknowledgement.

PUBLICATIONS

Part of this work was used as a basis of the following papers:

1. A hierarchically structured multi-microprocessor system, presented at the Fifth EUROMICRO Symposium on Microprocessing and Microprogramming, held on August 28-30 1979 at Göteborg.

2. Model of a processor within a distributed computing system, presented at the Seventh EUROMICRO Symposium on Microprocessing and Microprogramming, held on September 8-10 1981 at Paris.

ABSTRACT

The recent advances in integrated circuits technology and the consequent emergence of microprocessors have increased interest in developing multi-microprocessor Microprocessors and microcomputers are being systems. coupled together in increasingly large numbers in a tightly or loosely coupled manner as distributed computing structures which include complex interconnection mechanisms and interfaces to link these to an application. Superimposed on this hardware structure, software is written to provide the communication protocols, synchronisation between sequential processes and application programs and so on. A microprocessor or a microcomputer, as a processing element, is a major programmable component in these distributed computing systems which share the primary advantages over conventional large computer systems of low cost, reliability and possibly speed of operation. The main task of implementing a distributed computing system interfaced to a real-time large-scale complex system is the partitioning of the main control problem into smaller subproblems and identifying the interactions between them, so that the subproblems and interactions can be programmed into the processing elements.

This thesis is aimed at the study of hierarchical computer control using multi-microprocessor systems. In particular, it is concerned with the design and practical application of microprocessors and a PDP-11/10 minicomputer

to on-line distributed and hierarchical control of a laboratory-based pilot scale Travelling Load Furnace (TLF). The basic processing module from which the system is configured is known as a Hierarchical Microprocessor System Unit and consists of a number of Fairchild/Mostek F8 microprocessor system chips, a common block of semiconductor memory and a bidirectional scratchpad memory interface. The configuration is designed so that a single. HMSU can be used either independently or as a building block in an expandable hierarchical environment. The hierarchical control scheme involves the use of three processing units of the HMSU to implement three term control action on the eight zones of the TLF. The eight zones of the TLF are divided into 2, 3 and 3 heating zones designated as the preheat, heat and soak sections respectively. Any one section can be assigned to any one of the processing units (e.g. a Master processor or either of the two slave processors) of the HMSU. Operator communication and overall co-ordination of the system is performed by a host PDP-11/10 minicomputer.

The main outcome of the research reveals that it is feasible to implement multi-microprocessor systems such as the HMSU for real-time, on-line hierarchical computer control of industrial processes such as the TLF. However, in order to justify the cost-effectiveness of such systems, the need for proper development tools such as Microprocessor Development Systems (MDS) with in-circuitemulation capabilities, testing and debugging tools such as

Logic Analysers etc. is paramount. The experience gained as a result of practical implementation of the HMSU for the control of the TLF has been invaluable so far as the insight into the problems of developing hardware, software and that of partitioning of a control problem into smaller subproblems and their interactions is concerned. The work reported in this thesis will provide a useful foundation for evaluating and extending further possibilities of developing multi-microprocessor systems.

CHAPTER 1 - INTRODUCTION

The impact of recent advances in Large Scale Integrated (LSI) circuit technology towards low-cost processors and memory modules has caused increased experimentation with multiple processors, multi-microprocessors and multi-microcomputer organisations. A variety of multi-processor and multi-microprocessor systems have been described which use similar hardware but which differ in the way in which the components are interconnected. The spectrum of these Distributed Computing Systems range from networks of conventional computers, systems containing sets of microprocessors and novel forms of highly parallel computer architectures with greater integration of processing and storage. The motivations and importance of research into these distributed computing systems are many and varied (SRC 1980). These include:

1. Performance: eventually it will be impossible to increase the speed of a single processor and retain commercial viability. Several processors, co-operating on a single task, will be the only way to greatly enhance performance.

2. Reliability: a fully distributed system should be able to tolerate faults caused by either software or hardware. Hardware faults might be tolerated by having more than one of each critical element. Software faults might be reduced by running different algorithms in parallel and checking the validity of results.

3. Clarity: many problems are naturally parallel. Some problems are inherently simpler if expressed as a set of interconnected and communicating processes. If a problem's solution is expressed in this way, it might be easier to verify the correctness for the whole solution by partitioning it into subproblem solutions of individual processes and their interactions. This approach inherently gives a better insight into a large-scale complex problem.

4. Distribution: in areas such as real-time control, it is often important that processor power is available where it is required in order to minimise the bandwidth requirements of data paths.

5. Cost: the low cost of microprocessors and memory systems will allow certain tasks to be performed more economically on sets of microprocessors than on a single mainframe processor.

In the Department of Systems Science at The City University, a research program in computer control of Travelling Load Furnaces (TLFs) and their application is being carried out, with the object of finding improved and more efficient control schemes to be applied in industry. To this end, the design and modelling of an experimental Travelling Load Furnace for computer control was undertaken by R. Caffin in 1972 and subsequently, further experimentation was performed by H. H. Sheena using a digital Ferranti ARGUS 500 computer in 1977. Based on this

research, a project entitled "Microprocessor control of a Travelling Load Oven" was successfully completed by the author in 1977 using the Fairchild F8 microprocessor evaluation kit. This work and the influence of the above motivations has directed this research with the following objectives:

1. To study parallel processing aspect of on-line computer control.

2. To design a multi-microprocessor system to the online distributed and hierarchical control of the laboratorybased pilot scale Travelling Load Furnace in the department.

The options available for designing a distributed computing system are enormous. A decision about the distribution of hardware and software to go along with it depends mainly on the application for which this distribsought in the first place. The distribution of ution is hardware for information processing where it is needed may be limited by cost considerations whereas the distribution of software to perform the desired processing may be limited by storage capacity and software development costs. The optimum choice for both the hardware and software suggests a modular design approach for the distributed computing system. In this approach, a processor is made responsible for a particular task which is some fraction of the overall distribution of the main problem task. When a number of such processors, with their assigned tasks, are interconnected as required by the co-ordination of

individual tasks, the overall system then accounts for the distributed solution of the main problem task. Thus the main task of design and implementation of a distributed computing system is the partitioning of the main control problem into smaller subproblems and identifying the interactions between them, so that the subproblems and interactions can be programmed into the individual processors of the distributed computing system.

The modular design approach is used for the development of a multi-microprocessor system for on-line distributed and hierarchical control of the TLF. The basic processing module from which the system is configured is known as a "Hierarchical Microprocessor System Unit" (HMSU). The hardware configuration of the HMSU required to control the TLF consists of three F8 microprocessor systems, a common memory block, analogue input and digital-inputoutput interfaces and a bidirectional scratchpad memory interface. Each processor has its own private memory but the bulk of the memory is common to all processors. It is the task of one particular processor designated the Master processor to control access by any other processor (called a slave processor) to the common memory. Apart from this function, each individual processor acts independently, performing a dedicated control function (i.e. three term control action on different sections of the TLF) via its own Input/Output channels. The three processors operate asynchronously, all interprocessor communication being conducted through the common memory under control of the

Master processor. The Unit as a whole communicates with the outside environment, which may be another HMSU, a large host computer, or any other processing equipment. In this case, the HMSU unit is controlled by a PDP-11/10 minicomputer. The master-slave relationship of processors within the HMSU and on-line supervision of the HMSU by the PDP-11/10 minicomputer accounts for the hierarchical structure developed.

In the thesis, other structures using the HMSU as a building block are discussed in Chapter 5. Since the application undertaken is related to the control of industrial processes, Chapter 2 discusses a role of microprocessors in process control and its related instrumentation. A set of design guidelines for the use of microprocessors in process control environment are also given in this chapter. The applications which are based on a single microprocessor based system are enormous and it is impossible to enlist them. However, the applications covered by the use of multiple microprocessors in distributed computing systems are relatively few but the number of these applications have been increasing rapidly. The Science Research Council of the UK have co-ordinated a research programme in distributed computing system and its annual report outlines on current state of research on the subject. Chapter 3 reports on the study of multiple processor system, problems of designing with multi-microcomputer system and general aspects of system design with respect to distributed computing system.

In real-time large-scale complex system environment, the use of distributed computing system is highlighted by its interfacing issues. A new model of a processing element of a distributed computing system suitable for such interfacing is proposed in Chapter 4. The application of the model in two hypothetical applications is also considered. Chapter 6 describes the Travelling Load Furnace, the PID control algorithm and modifications required for the existing interfaces to the department's TLF. Chapters 7 and 8 describe the software development for the HMSU and the PDP-11/10 minicomputer and Chapter 9 discusses methods used for testing the HMSU hardware and its related software.

The full implementation of the complete HMSU system for on-line distributed and hierarchical control of the TLF was set back by the lack of proper development and debugging tools. Despite this fact, however, the research undertaken demonstrates practical problems of implementing a multi-microprocessor system such as the HMSU. As such, this thesis will provide a useful basis for evaluating and extending further research on multi-microprocessor systems and their applications.

CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL

2.1 INTRODUCTION

The technology of applying digital computers to process control has developed rapidly since the late 1950s. A typical computer control system then comprised a centralised minicomputer with backing stores (disks) and about 8 k or 16 k of 16 bit words. Such a system would interface with the plant via 'backup' controllers which were essential safeguards against computer failures. These safeguards were needed because computer hardware was comparatively unreliable and catastrophic effects of the failures of a computer which controlled perhaps 100 to 200 loops were intolerable.

In the 1970s, this centralised configuration has given way to smaller computing units. These smaller units individually control small sections of the process and collectively form a plant-wide control system which is interconnected by a digital communication system (Brown, 1979). This modern configuration, termed as a distributed control system, has resulted directly due to the rise of microprocessors.

In this chapter, a review of the process control problem and control techniques such as supervisory control and direct digital control is made. The role of microprocessors in a distributed control system is investigated and some useful design guidelines as to the use of microprocessor-based control systems in a process control environment are also given.

2.2 THE PROCESS CONTROL PROBLEM

Many industrial processes have been reported to have used successful computer control systems. These include petroleum and petrochemical plants, blast furnaces, paper machines, textile mills and glass industries (Smith, 1972). Each has its unique problems but the common feature is that the energy is utilised to move and to convert raw materials into final products. Control over the final output product is achieved by computers which handle information aspects regarding the process. In all of these processes, process information is obtained or derived from process variables which are divided into four categories as illustrated in Figure 2.1.

1. Manipulated variables: These are variables such as input raw material flow rate, steam pressure in a vessel etc. whose values can be adjusted by the control system by either analogue (conventional) or digital methods.

2. Controlled variables: The measure of the performance of the plant is determined from these variables whose values are kept at some predetermined target values (set points) by the control system. Examples include production rate, product quality etc.

3. Disturbances: These are variables whose values affect the operation of the process but which are not subject to adjustment by the control system. Examples include composition of raw material, change in ambient temperature etc. Some disturbances can be measured while others cannot.

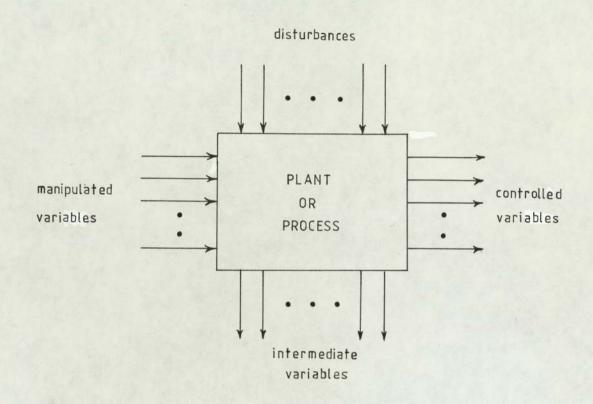


FIGURE 2.1 : General representation of process variables.

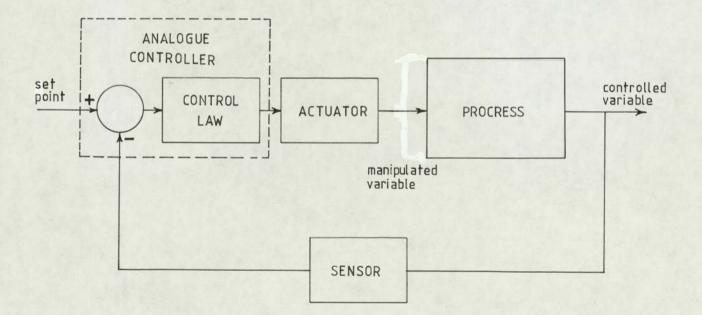


FIGURE 2.2 : Basic conventional feedback control loop

4. Intermediate variables: These appear at some intermediate point in the process. The control system can use these advantageously in determining appropriate control action. Examples include temperature of the mix, mix compositions etc.

The general control problem is to adjust the manipulated variables so as to maintain the controlled variables at their target set values in face of disturbances. The control of a typical process plant which has several variables in the above categories is no simple task. This task is further complicated if a mathematical model is required of the process characteristics. The process characteristics depend firstly on the level of plant operation (the plant is usually highly nonlinear) and, secondly, even at a constant operating level, a plant's characteristics often change with time (the plant is nonstationary).

Supplementary to the above process control problem, the most common question of primary concern is "How to use a computer to generate larger economic returns from the process?" The ability of the digital computer to acquire large quantities of data from the process, analyse it and make logical decisions based upon the results makes it most attractive for such an application.

2.3 COMPUTER CONTROL SYSTEM

The computer control of a process plant can be achieved in numerous ways. The various ways of control

depend upon the computer and the process plant configuration, control techniques and control schemes. These are summarised in Table 2.1.

In general, the control schemes are of a more theoretical nature, whereas control techniques are more practically oriented. However, the choice of control scheme depends upon the process to be controlled and this, in turn, determines the control technique to be adopted.

Before looking into digital control systems, the appreciation of the conventional approach to a process control problem is a helpful background. The basic control loop in a conventional (analog) system is the simple feedback loop illustrated in Figure 2.2. The control law generates a change in manipulated variable so as to drive the error between the set point and measured control variable to zero. This controller output is imposed upon the process by an actuator, which is an automatic positioning valve in many process control cases. The control law commonly used is the proportional-integral-derivative (PID) relationship or some simplification thereof.

In a typical plant, there may be anywhere from a few of these controllers to upwards of a hundred or more. Until the late 1950s, these controller devices were invariably pneumatic. Most of these controllers and later their counterparts, initially vacuum-tube and then solid state electronic controllers, basically suffered from inflexibility. This inflexibility imposed several burdens upon the control system designer:

COMPUTER AND PROCESS PLANT CONFIGURATIONS	CONTROL TECHNIQUES	CONTROL SCHEMES
1. Off line - manual data collection - automatic data collection	1. Data logging	 Sequence control Regulatory control
 In line (real time) On line (real time) 	2. Supervisory control	- Feedback control - Feedforward control
- open loop mode - closed loop mode	3. Direct digital control	- Ratio control - Cascade control
4. Time sharing	4. Distributed control	 Multivariable control Optimising control

TABLE 2.1 - PROCESS CONTROL

TECHNIQUES AND SCHEMES

1. The control strategy must be such that it can be implemented with analog hardware.

2. Any subsequent modification to control strategy requires modifications of the analog hardware.

In the mid-1950s, the digital computers began to play a significant role in process control. This was due to the fact that any control strategy is programmable and most modifications in the strategy require simply program changes and not hardware changes.

It is not the subject matter of this Chapter to discuss the control schemes outlined in Table 2.1, because these are well documented elsewhere in textbooks (e.g. Lowe and Hidden, 1971; Smith, 1972; Savas, 1965). The following sections review some of the important features of control techniques currently practised in process control industries.

2.3.1 Data loggers

To record a large amount of process data manually is slow, tedious and inaccurate, and may involve considerable manpower expenditure. This suggests the value of automatic on-line data collection and computer control. However, as illustrated in Figure 2.3, the data logger is not directly active in the control or regulation of the process. It simply records the values of important process variables at regular intervals of time. During process modelling, carefully devised process tests generate a lot of necessary data for which a data logger is vital; however, data

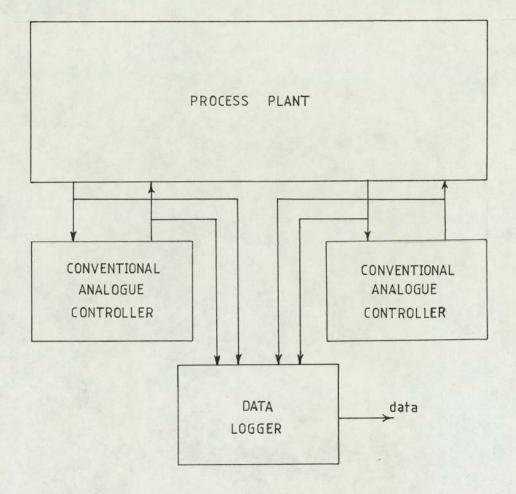


FIGURE 2.3 : Data logger

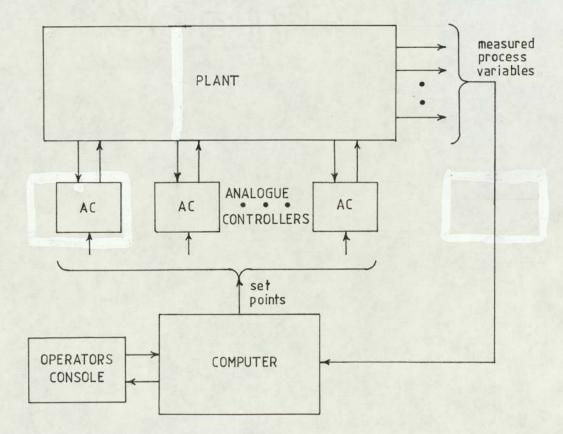


FIGURE 2.4 : Supervisory control system

logging in itself is not adequate. In a few exceptions, such as nuclear power plants, where the records must be maintained, and laboratory automation systems, data logging is of primary importance.

2.3.2 Supervisory control

Supervisory control systems are usually based on process models where the basic objective is to optimise the financial returns on investment. Typical input information needed for a process model might include:

- 1. Cost of raw materials and utilities
- 2. Value of products
- 3. Composition of raw materials and products
- 4. Current values of process variables
- 5. Constraints on the process operation (e.g. safety limitations, preventive maintenance etc.)
- 6. Specifications on products
- 7. Demands and market fluctuations for the products.

The operating strategies based upon these inputs and the process models which are generated by the computer are usually too complex to be handled by operating personnel. Thus, in many cases, the control computer simply provides the set points for the analog controllers, as illustrated in Figure 2.4. In this configuration, a single centralised computer is used which does not replace analog hardware. The backup problem is not as critical, for in case of computer failure the set points simply remain at their last setting or can be manually adjusted.

The problems of supervisory control fall mainly into a software category, and the main obstacle to the installation of supervisory system is that mathematical models of plants are seldom available beforehand. Thus, the economics of supervisory systems are based on the prospect of the system producing sufficient improvements in process operation to justify the financial investment in the computer control system.

2.3.3 Direct Digital Control (DDC)

The most basic form of Direct Digital Control (DDC) involves the replacement of individual hardware elements (analog controllers) wherever possible with the time shared components of a digital control computer. In the DDC technique the computer calculates the values of the manipulated variables directly from the values of the setpoints, measured controlled variables and the control algorithm (e.g. discrete equivalent of conventional PID relationship). The decisions of the computer are applied directly to the process and hence the name DDC. The control arrangement is shown in Figure 2.5.

Direct digital control has been a fundamental and major step towards easy and economical application of modern control technology. It introduces the flexibility of a choice of specifying any control strategy that can be programmed in a control computer system. Addition of control loops to the existing ones, feedforward and combination systems can be used more widely when the only components which must be added to the system are transducers

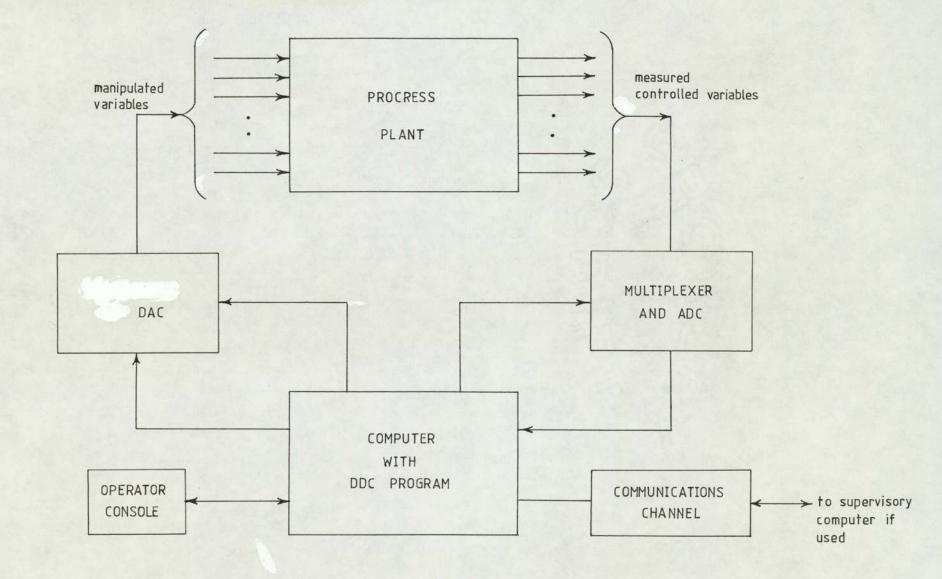
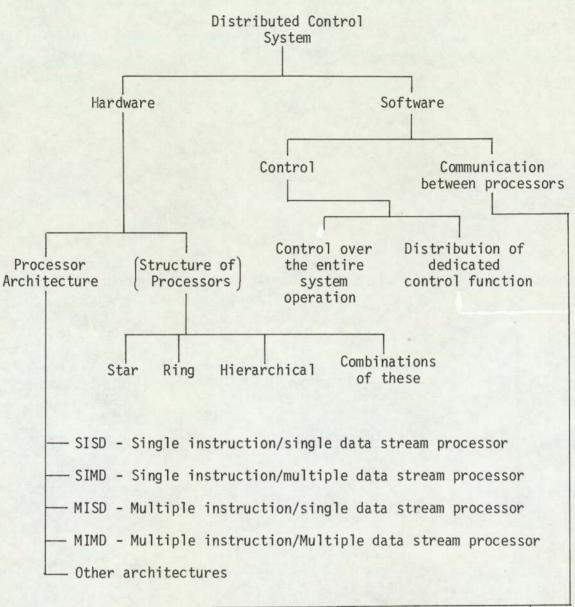


FIGURE 2.5 : Direct Digital Control

and mathematical expressions. The design of a complex process control system employing DDC allows the possibility for redesign and "customisation" after installation.

The economic justification of a process control system employing DDC technique depends upon efficient computer utilisation, computer down-time costs and the ingenuity of operating personnel to make desired program changes. In addition, if a supervisory computer is also used, then the problems associated with it would be encountered as much as with a DDC technique.

2.4 DISTRIBUTED CONTROL SYSTEM


A distributed control system is mainly a decentralised control system where the individual subsystem control units are distributed among the physical subsystems of the overall process. These systems have been developed, not specifically for process control application, but also for more commercial applications, such as banking, intercompany, data-base centralisation, airline reservation systems, military systems etc. In industrial computer process control, the digital process control function is distributed among the individual physical units, using microprocessors for example, which permit control tasks and physical location to be distributed in the plant; such a system has benefits of improved control, reliability, flexibility and reduced cabling costs (Roberts, 1979).

The distributed approach to control system designs can be developed to exploit modularity in both the process

control units and the structure of the communication network. These concepts can be pursued in both hardware and software, and are key features in the production of reliable and manageable systems (Holding and King, 1979). The flexibility of the resultant control system actually increases overall systems integrity. Equally important, it provides a system which can be easily implemented, adapted, extended, or replaced, either in part or as a whole. The characteristic features of such a distributed control system can be given in a tree diagram, shown in Figure 2.6. Although some of the features are categorised under software in the diagram, they do have a close relationship with some of the features of hardware. For example, the communication between the processors is very much dependent upon how the processors are structured.

2.4.1 The microprocessor role

Although not impossible, it may not be useful to develop a system that has all the features mentioned above. This is because the flexibility and low cost of the microprocessor allow it to be used in so many applications that it is difficult to put any bounds on the areas of application. Recent surveys of application to control illustrate the wide range (e.g. Aspinall, 1978; Spencer, 1976; Barker, 1978). In no way is a particular software or a hardware solution appropriate to all applications. That is why it is essential to see the role of a microprocessor with some distinctions in the type of application.

One to One to one at many at		Many to one (through	Many to many	
time	a time	suitable priority)	marty	

FIGURE 2.6: Distributed control system's characteristic features

The market for microprocessors in process control will be in applications with standard programs with a limited variation in functional response (Wilkie, 1979). In this type, firstly, there will be replacement for existing units, frequently with additional features. Some examples are:

- 1. Low-cost replacement for analog controllers
- 2. Intelligent alarm and acquisition systems
- 3. Intelligent instruments with communication capabilities.

These applications are essentially at a component level. The second type of more novel applications might be regarded at component level because they depend on the flexibility which surrounds the basic equipment, for example:

- Sophisticated control strategies, such as selftuning controllers
- 2. High reliability systems.

These applications are important to the process control designer and allow a variety of new features to be included in the system (e.g. displays). The third type of application, where microprocessors are of significant importance, is an area previously covered by minicomputers, although not always economically. These applications include:

- 1. Distributed control on a unit process basis
- 2. Sequence control
- 3. Mixed sequence and continuous control.

For pure sequence control, the existing dedicated PLCs (Programmable Logic Controllers) provide an economic

solution especially for very high-speed work. However, the inclusion of data logging, VDU display features or of continuous control may prove that a microprocessor-based system solution is more appropriate.

2.4.2 The process control requirements

Having considered the role of a microprocessor, it is worth looking into the operational requirements of process control within the background of distributed control systems. A "top down" design approach of a distributed system for overall plant control and optimisation can be considered to meet these requirements, which can be divided into a number of hierarchical levels. This is shown in Figure 2.7. The lowest level is usually concerned with the detailed control of process plant. The next level is associated with the co-ordination of plant controllers to produce a unified overall system. The highest level serves to provide plant optimisation and management information. This hierarchical operational organisation has to be implemented within the physical structure of the actual distributed system during the design process.

Very often, in process control, time critical realtime operations extend throughout all levels and their execution is essential to correct plant operation. The majority of real-time tasks, which are fundamental to the design of a distributed control system, are associated with detailed plant control. This may involve sequence or continuous control operations with auxiliary monitoring and alarm functions. The requirements are serviced in a secure

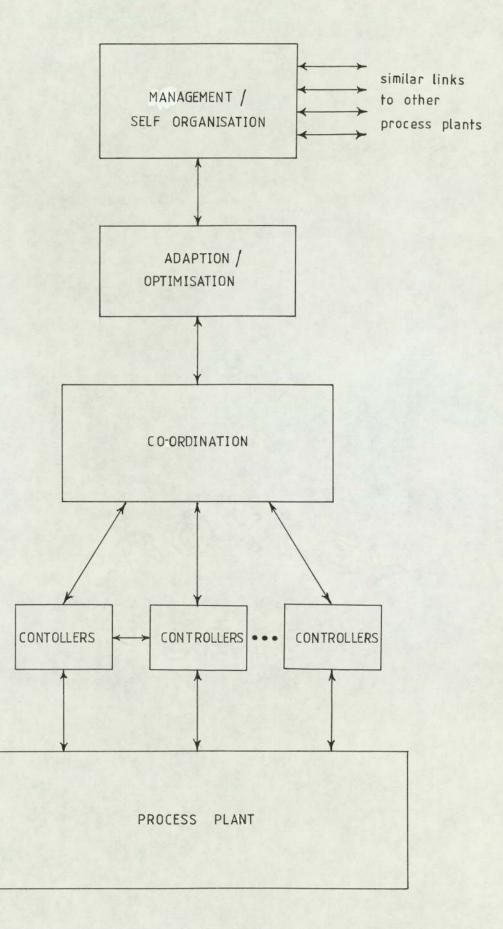


FIGURE 2.7 : Functional layers of Hierarchy

and reliable way. The co-ordination of first-line controllers also needs to be carried out in real-time and this imposes stringent requirements on communication handlers, network and the various protocols of communication. It should also be noted that the supervisory and management system may also be involved in real-time scheduling, logging and display functions, apart from their normal decision-making.

2.4.3 Advantages of distributed control systems

A distributed control system as described above is very similar to that of the team approach taken by co-operating humans to solve a problem too large for one individual (Bibbero, 1977). The advantages of such a distributed control system are many and summarised as follows:

1. It is more economical because of the low cost of microprocessors. This makes the first-line controllers relatively cheap so that it is economical to consider spare controllers for use in the event of failure. Should a failure occur, its effect will be limited to only a small part of the process and in many cases this part can be operated manually until the replacement controller is put into service. Equally, a failure of a higher level computer would not prevent plant operation but would merely reduce efficiency until the failure was corrected.

2. The distributed control system in its functional levels of hierarchical structure, which is very suitable

for process control application, has several advantages over the use of a large central computer. The process control can be built step by step and experiments in control in various parts of the process can be made at reasonable cost (Edgington, 1979). The advantages of stepby-step approach to building up the control hierarchy are:

A. Sophisticated control: Computer-based control leading to improved efficiency.

B. The implementation rate can be arranged to suit subprocess requirements.

C. Technological: A greater flexibility in developing technical ability of process operators because the system is implemented gradually.

D. Low risk: The effect of failure is localised to a small area.

E. Future: The system can be expanded and changed to meet changing requirements or increased understanding of the process to be controlled.

3. The distributed control system also provides a communications medium and processing facility which can be used to provide non-critical information processing, datalogging or display, using various peripherals distributed about the system. In particular, it can support facilities for the on-line editing of control programs for the various units in the system.

4. With the recent advances in the theory of hierarchical control on the one hand and multi-processor technology on the other, the optimal or near-optimal regulation of large processes in engineering, socioeconomics etc. is rapidly becoming a real possibility (Billingsley and Singh, 1975). This is an enormous advantage, taking into consideration the characteristics that the distributed control system exhibits.

2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN A PROCESS CONTROL ENVIRONMENT

Microprocessors are relatively new devices; their potential needs to be well understood before being applied to any desired application. A variety of questions should be answered in the design process of a microprocessor-based system. For a process control application, the following set of design guidelines have been given for microprocessor based systems (Weissberger, 1975).

1. The nature of application: It may be

- (A) A programmable controller
- (B) A dedicated processor
- (C) An element in a distributed control system.

2. (A) What is the number of

(a) functional tasks involved?

- (b) input/output points?
- (c) points to be controlled?
- (d) loops to be controlled?

- (B) What is the processing load?
- (C) Is real-time response required?

3. A decision as to the functional task subdivision and input/output signals assignments for processing elements is needed. The data load and throughput rate for processing element also needs to be determined.

4. Microprocessor selection: This can be very critical and depends on several factors. These are:

- (a) Availability
- (b) Supplier reputation
- (c) Software support
- (d) Instruction set, word length
- (e) Speed of operation
- (f) Architecture interrupt capability, registers etc.
- (g) Second source
- (h) Memory capability
- (i) Package count
- (j) Number of power rails
- (k) Power consumption
- (1) Development system.

Also, in the selection processes the software design needs careful attention; for example, programming flexibility, word size (data/instruction), address capacity, addressing modes (indexed, indirect, relative, direct etc.), instruction set (repertoire and speed), register compliment (arithmetic, index, status, accumulators, general purpose) 'etc.

- 5. Environmental considerations: These include
 - (a) Industrial noise, temperature, electrical noise
 - (b) Distance between process variables
 - (c) Power dissipation, consumption and cooling
 - (d) Input/output interfacing
 - (e) Future expansion, space etc.

6. Interfacing: This is a very important stage in the design process and this includes:

- (a) Transducers
- (b) Amplifiers
- (c) A/D converters
- (d) Multiplexers, demultiplexers
- (e) D/A converters
- (f) External event counters for real-time application
- (g) DMA facilities
- (h) Line drivers, line receivers, moderns, UARTs
- (i) Cabling, twisted pairs, coaxials, ribbon, optic fibres etc.
- (j) Displays
- (k) Consoles, telephone links etc.
- (1) Earth loops.

7. Distributing: As described earlier, distributing can produce a cost-effective solution. This may include:

- (a) Distribution of microprocessor/controllers along the peripherals of the plant floor with a centralised minicomputer
- (b) Distribution of individual power supply.
- (c) Distribution of functional task by partitioning and software modularity.

A lot of cost savings can be made if the above guidelines are followed in the development of microprocessorbased systems for process control application.

2.6 CONCLUSIONS

In process control, the computer has become one of the primary instruments for control. The advent of large-scale integrated circuits and microprocessors has radically changed the capability and applicability of distributed computer control systems. These systems can be applied to a wide range of applications and trial installations have been established in a number of industries (IEE Conference publication, 1977). The modularity and flexibility of these systems make them more reliable and manageable than centralised systems. In many situations, they present a more attractive and economic solution to the control problem.

The review of the control techniques presented in this chapter suggests how the changes have taken place over the

last two decades. A lot of further research, however, is needed and the scope is enormous in areas such as distributed processing, architecture, operational attributes, resource management etc. (SRC Annual Report, 1977). It has been the experience of several years that the theory is always ahead of its practical implementation. This is also true in process control and the distributed control systems attempt to bridge such a gap.

Another area which is of interest is that of communication between processors and the issues of the development of a standard for communication between the intelligent subsystems of a process control system (Lee, 1976). The development of higher-level languages for distributed control systems and the development of different architectures for multiprocessors have been at the open end of the research activities in the universities and industrial research centres. The concept of a transputer (Aspinall, 1978), for example, falls into the category of such architectural developments. In general, the pressures for change in computer system architecture are: (1) language and programming based, (2) applications and systems based, (3) reliability and technology based, or combinations of these drives for change (Elliott, 1978).

CHAPTER 3 - SYSTEM DESIGN

3.1 INTRODUCTION

The process of system design is essentially a process of translating the problem specification in a high-level natural language into the problem solution in a lower-level language notation. The human brain is unable to deal completely with more than a certain amount of information at any one time (Miller, 1956). Therefore, the only natural way in which a large-scale task may be comprehended and solved is by splitting it up into a set of smaller, comprehensive subtasks in a logical manner. The translation of the problem specification, of a large-scale task into the problem solution is usually too complex to be performed in one stage (Dowsing, 1978). As such, it is normally broken down into a number of smaller translation steps, each step lowering the level of the language used for the specification and the complexity of the system needed to understand it.

It is true, in general, that design is an art and the object of art is no simple truth but complex beauty and so any design usually involves making personal choices and trade-offs depending upon cost constraints and time limitations. So far as designing with computers or microcomputers is concerned, the lower-level language notation typically ranges in complexity between a high-level programming language and a hardware logic design language which can readily be used by software and hardware

implementation systems respectively. Furthermore, the advent of microprocessors has opened up a new design era of multi-microprocessors or multi-microcomputers in which the designer can think in terms of parallelism or concurrent performing of smaller subtasks. A design solution resulting from the use of multi-microprocessors/microcomputers may perhaps surpass the human brain capability of dealing with <u>only</u> a limited amount of information at any one time!

In this chapter, the different phases of the system design process are examined and the problems of designing with microprocessors are outlined. An attempt to classify a multiple processor system is made and a review of such a system is also given. Finally, the design issues relevant to a multi-microcomputer or distributed system are discussed.

3.2 GENERAL ASPECTS OF SYSTEM DESIGN

The process of design in general starts with an effort to answer a simple question: "What is it that we want to achieve?" The answer usually attempts to establish the goals or objectives about a system to be designed. A defined set of goals or objectives results from a feasibility study of the intended system. When such a system is envisaged to be feasible under given cost constraints and time limitations, the process of system design continues with the following subtasks:

1. Problem specification: This first important step involves an unambiguous, rigorous and detailed specific-

ation of the problem. The specification must be detailed enough for a correct solution to be produced but not overspecified with irrelevant information.

2. Logical design of the problem solution: The next task is to decide on the method, the algorithm and alternatives for solving the problem. A designer has to harness his skills to discover which is the "best" solution for the particular problem in hand. The next logical task is to produce a formal definition of the chosen problem solution which may be implemented with the available implementation tools, either hardware or software or a mixture of the two. This task involves a decomposition of the high-level problem description into a lower-level description containing details which are more implementation dependent. This forms a basis for the implementation subtask.

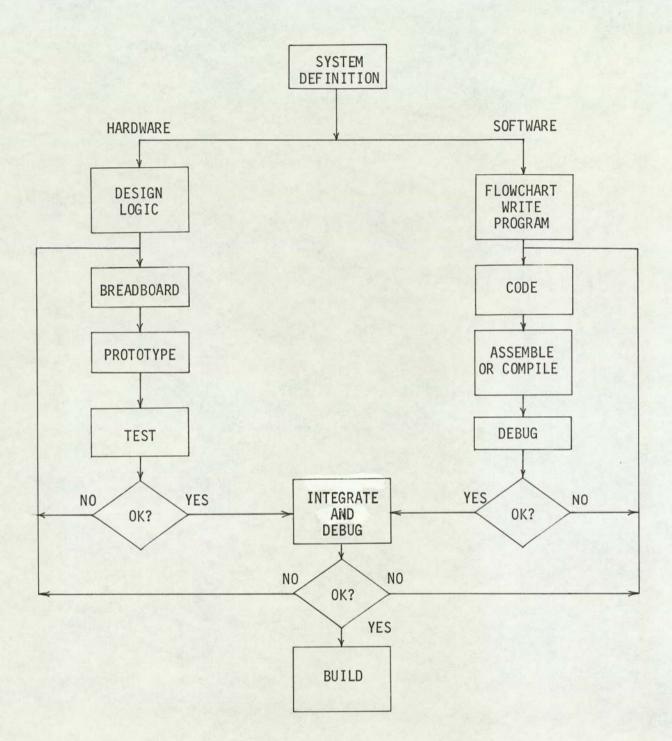
3. Implementation: A task of the implementation phase is to map the logical design onto the implementation system. This phase is typically constrained heavily by costs, time and available resources. An experienced designer may not have to pay any penalty for the constraints heavily imposed on the implementation phase if these are well anticipated and estimated in the feasibility study of the system design.

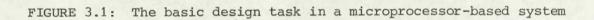
4. Testing: The output of the implementation stage takes the shape of the intended system but the behaviour of such a system needs to be tested in this phase. This phase requires testing tools and skills. Any errors, which have

occurred in the previous phases of design are revealed in such a testing stage. Generally, it is best to mingle implementation and testing in order to detect these errors, because sooner the error is detected the easier it is to correct and less effort is extended.

5. Optimisation: Optimisation stage is not strictly a part of the design phase but is an important technique for modifying the design so that the resource requirements of the problem solution may be met. This phase also avoids the necessity for complete redesign of the system using a different approach or algorithm.

The design process is an iterative procedure based around the subtasks outlined above with the specification, testing and, if necessary, optimisation taking place at each stage of the problem solution. The complexity and likelihood of errors is reduced if the designer ensures to take smaller steps at any stage of the system design. Another important aspect of any system design is the quality of its documentation (Fitzgerald and Fitzgerald, 1973). A full documentation of a system design should provide the solution to the problem, the reasons why the particular design decisions were taken, the underlying strategies and their consequences on the rest of the design.


3.2.1 Designing with microprocessors


Although applicable for any systems, the above general aspects of system design can be followed for systems

incorporating microprocessors as well. However, there are some important issues, described here, which make designing with microprocessors a special case.

Microprocessors are a new technology and this technology is revolutionising the way in which new electronics based products are designed. It is creating a whole new set of problems for designers. Part of this new design philosophy results from the fact that in a microprocessor, system functions are stored in memory instead of wired into discrete logic devices, and the system designer has the possibility of making modifications simply by changing the program stored in memory instead of redesigning the hardware. Hence the software now becomes as important a part of the design process as the hardware. The basic design task in a microprocessor-based system can be broken down into three areas: software, hardware and software/ hardware integration. This is shown in Figure 3.1.

3.2.1.1 <u>Software</u>: The first step is to design the program, a task which requires knowledge of the design objectives and the microprocessor characteristics. The design guidelines mentioned in Chapter 2 are very useful for this purpose. For many practical programs, the use of an assembler is necessary; this means coding the flowchart into a source program and from this assembling into the object code which will run on the actual microprocessor. There are a number of ways of achieving an object code from a source program. These are outlined in Figure 3.2.

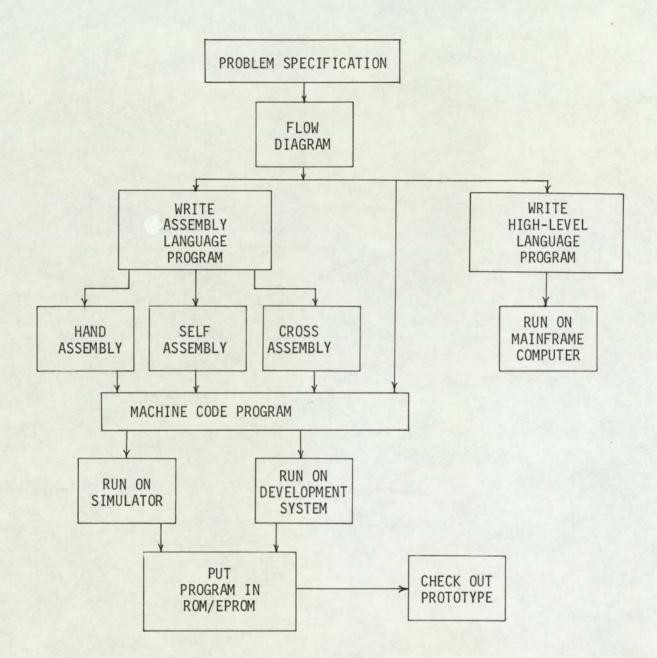


FIGURE 3.2: A general program development procedure

Coding a source program requires the use of a text editor with the ability to enter text, modify, insert and delete - plus a set of utilities for creating, loading and manipulating text files and outputting to a printer or terminal. For assembling into object code, the assembler needs to be speedy and it must produce relocatable code so that programs can be written in modules which are linked together after assembly. A high-level language can be used instead of an assembler, and the choice is very much dependent on the application. However, with many microprocessor systems, high-level language solution is not fully available. In general, the high-level language approach is best for quick design completion, low-volume products and where data manipulation is important. The assembler is better for high-volume products or real-time control applications where speed is important.

Debugging of software consists of removing all program errors. A certain amount of debugging can be done on an emulator, but since the final operation is dependent on the actual hardware, most debugging has to be done during the critical software/hardware integration phase.

3.2.1.2 <u>Hardware</u>: The first step is logic design which, like program design, can be done using information on devices (data sheets) and a knowledge of the design objectives. Breadboarding of the circuit modules is carried out to obtain a prototype. This is a very typical procedure followed by most electronic design engineers and the tools involved are typically an oscilloscope, digital

voltmeter and, more frequently nowadays, a logic analyser. Using such instruments, major hardware faults can be detected but thorough debugging and testing is possible only during software/hardware integration.

Another important point of consideration, while designing hardware, is that of deciding the level at which to start designing with microprocessors. There are three basic levels of supply of microprocessor hardware:

1. Chip level: Starting from chip level can be useful if large production is anticipated, where the design costs are spread over many units. However, it does require a large outlay in time and money to get started.

2. Board level: Standard functions available on ready-made boards is a very convenient way of implementing a system quickly and at reasonable cost, provided the restrictions and limitations of the particular board are understood and allowed for.

3. System level: Standard systems can be bought from a number of suppliers. These are self-contained units or microcomputers.

The choice of the level of hardware depends on the application and such factors as flexibility, expandability and maintainability.

3.2.1.3 <u>Software/Hardware Integration</u>: This is the critical stage in completing any successful working design. It is impossible to tell whether the software is working

correctly without using the hardware or vice versa. Therefore, the task of debugging the original design becomes a dynamic, interactive process; for example, one may overcome a hardware problem by modifying the software or vice versa. Tools such as in-circuit-emulators, logic analysers are very useful at this design phase.

3.3 THE IMPACT OF MICROPROCESSORS ON USERS

Having seen some of the implications of designing with microprocessors, it is worth noticeing the impact of microprocessors on users. Microprocessors, as with main-frame computers, have same attributes of association with peripheral devices, the development environment and the user's environment. Mainframe computers have been the case of bedrock investments for a long time and still will be for some time to come but now, it is the user of microprocessors who has to make such huge investments in his own environment. Furthermore, the user is allured by everincreasing cheapness of available microprocessors and new announcements of more and more powerful microprocessor architectures and their potential. The peripheral devices for use with microprocessors and microcomputers are becoming a medium-life phenomenon whereas the development environment for microprocessors themselves is becoming a long-life one. This is all depicted in Table 3.1.

Carter (1978) has well reported a number of problems of using microprocessors in areas such as technical, manpower, commercial and sales and marketing. Although these are documented from the viewpoint of a company producing

USER'S ENVIRONMENT	}	TRANSIENT	{	PROCESSORS MICROPROCESSORS
DEVELOPMENT ENVIRONMENT	}	MEDIUM LIFE	{	PERIPHERALS
PERIPHERALS		LONG LIFE	{	DEVELOPMENT ENVIRONMENT
PROCESSORS MAINFRAME COMPUTERS	}	BEDROCK INVESTMENT		USER'S ENVIRONMENT

TABLE 3.1: Impact of microprocessors on user environment

its first microprocessor-based product, the technical and manpower areas of problems are similar for any microprocessor development project. Another problem area of important consideration is that of the cost and the benefits of a microprocessor-based project. Microprocessor technology is changing rapidly and costs are also changing quickly. It is important to repeat cost/benefit analyses at regular intervals, especially if the project is a longterm one. In the total costs of a microprocessor project, the basic cost of the microprocessor chip is indeed the tip of an iceberg as shown in Figure 3.3.

	MICROPROCESSOR
BASIC HARDWARE	
TEST AIDS	
SOFTWARE	

FIGURE 3.3: Total system costs

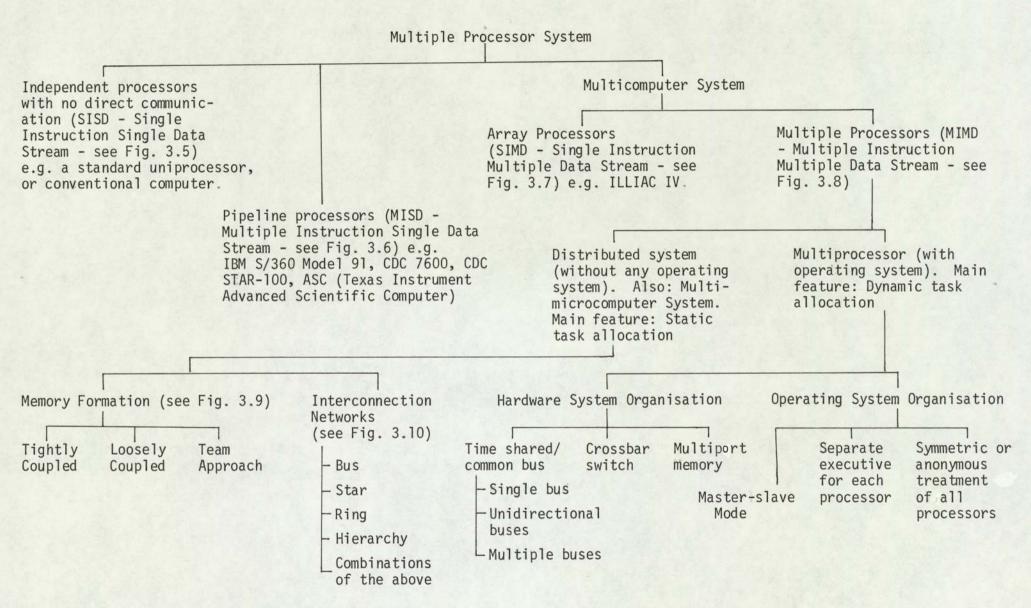
Working with microprocessors is initially expensive, although these costs are not repeated for successive projects unless the choice of processor is changed.

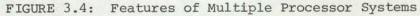
Different considerations outlined in this section are relevant to system design and should be considered as a part of the design process while designing with microprocessors.

3.4. MULTIPLE PROCESSOR SYSTEM

The concept of a multiple processor system is not new and has been used in very large EDP (Electronic Data Processing) systems for several years. But the use of microprocessors in such systems is rather recent. There are two basic reasons why a multiple processor system should be envisaged using microprocessors. Firstly, the microprocessors are very cheap and secondly, since they are constrained in computing power by the physical limitations of the chip capability, an extension of this power through the use of a multiple processor system makes it viable to produce large as well as small EDP systems.

3.4.1 Review of multiple processor system


A review of the literature (e.g. Searle and Freberg, 1975; Weissberger, 1977; Anderson and Jenson, 1975; Flynn, 1972; Thurber and Wald, 1975) reveals a considerable confusion in the classification of multiple processor (computer) system. The same name is given to different computer organisations and different names are assigned to -


the same computer organisations. For example, Joseph (1976) has reported some twenty-four different ways of referring to distributed processing which emphasises a particular architectural difference. He also further admits considerable confusion that exists as to the meaning of the term "distributed processing". However, Flynn (1972) has suggested a basic classification scheme which describes the method of operation based on the number of instruction streams and data streams in the system. A brief mention of this was included in the characteristic features of distributed control system (Fig. 2.6, Chapter 2), but a more elaborate tree diagram, shown in Figure 3.4, outlines some other features associated with a multiple processor system.

Since different system terms are used today, it is important to give some definitions. A good review can be found in Searle and Ferberg (1975).

<u>A multiple processor system</u> contains more than one processor. Each processor may be a microprocessor or a microcomputer executing a specific task. <u>A microcomputer</u> is a microprocessor system with its own memory and peripherals. Software considerations allow one to discern two kinds of multiple processor system:

1. <u>A distributed system</u>, also called a multi-microcomputer system or distributed intelligence microcomputer system (DIMS) (Russo, 1977), in which each microcomputer performs a dedicated function as part of a single partitioned system. This static allocation of tasks allows

the partition of software and is an attractive solution for microprocessors. In such a multi-microcomputer system, there is no integrated operating system as such, but there exists some kind of communication protocol, either implemented in software or hardware or the combination of the two, in order to facilitate communication between a number of processors. In a distributed system, individual microcomputers may be locally distributed or there can be geographical distribution of microcomputers depending upon application.

2. <u>A multiprocessor system</u> implies a single integrated operating system which is capable of dynamic allocation of system tasks. Software is much more complex for such a system than for a distributed system, but allows balanced processing loads in real time and fail-soft capability.

The Figure 3.4 shows that a distributed system and a multiprocessor system are in the same group of multicomputer systems which are characterised by multiple instruction stream operating on multiple streams of data (e.g. see Fig. 3.8). Apart from this, two more categories of multiple processor system need defining. These are as follows:

1. <u>An array processor</u> is one in which multiple streams of data are treated simultaneously by processing elements in response to signals from a control unit, decoding a single instruction stream. The only

qualification that distinguishes an array processor from a multiprocessor is that the control of the number of processing elements is always associated with one control unit (e.g. see Fig. 3.7).

One example of an array processor is the ILLIAC IV system (Feierbach and Stevenson, 1979). The ILLIAC IV has a single control unit (CU) to direct the activities of 64 processing elements; these processing elements execute the same instruction in parallel but on different data fetched from their local memories. Information is exchanged among the processors through a routing network; processes are logically arranged in a ring but the implementation allows routes of a distance of eight processors to take the same time as routes of a distance of one processor. All processors are required for array operation; programs are written and compiled for execution on 64 processors. When a processor fails, the entire machine is unavailable until it is fixed. There is no runtime error detection; failures are detected by periodic confidence tests.

The ILLIAC IV architecture is also partially reconfigurable via software so that each 64-bit processing element could be partitioned into either two 32-bit or eight 8-bit processors. The major application areas for this type of array processors are the many large-scale scientific problems in mathematics, numerical analysis and engineering in which the nature of data to be processed is in matrix form.

2. <u>A pipeline processor</u> can be regarded as a form of functional partitioning of CPU microfunctions i.e. a multiple instruction stream operating on a single data stream fetched from memory (e.g. see Fig. 3.6).

The CDC STAR-100 system (named from the STring/ARray data it is designed to process) is one of the best known pipelined systems (Spencer, 1976). The CDC STAR has a computer network consisting of nine computers which execute the operating system, handle the files and deal with the input/output equipment, and the very large central computer which handles the processing on the string and array data.

Multiprocessor systems, array processor systems and pipeline processor systems have been well discussed in the literature (e.g. Searle and Ferberg, 1975; Thurber and Wald, 1975; Feierbach and Stevenson, 1979). Most of these systems have a clearly established modular nature in their architecture. A computer architecture based on LSI modules allows for a simple software controlled reconfiguration of interconnections among modules. For example, processor modules may be switched among several main memory modules, I/O modules etc. This concept of reconfiguration of architecture by software is not new; the LSI technology, however, has enhanced it. The ILLIAC IV (Feierbach and Stevenson, 1979), C.mmp (Wulf and Bell, 1972), Cm* (Swan, Fuller and Siewiorek, 1977) are some of the examples of multicomputer system with capabilities of reconfiguration of architecture.

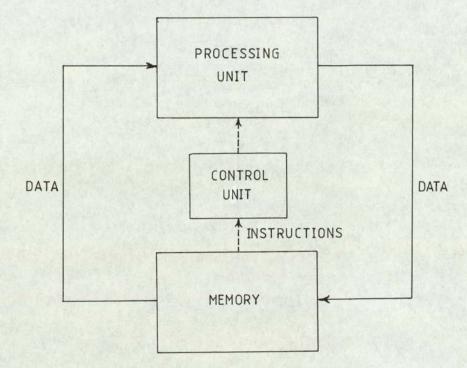
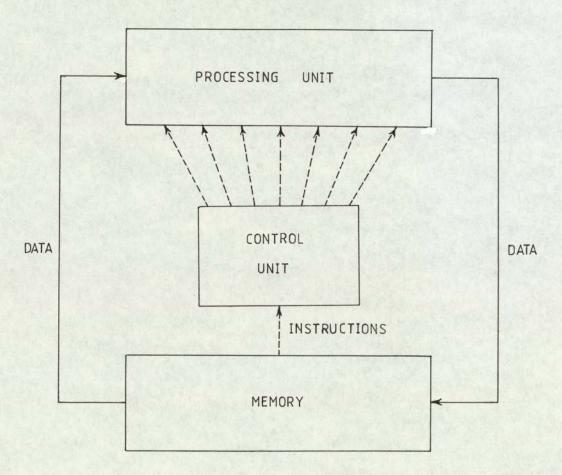



FIGURE 3.5 : SISD PROCESSOR

FIGURE 3.6 : MISD PROCESSOR

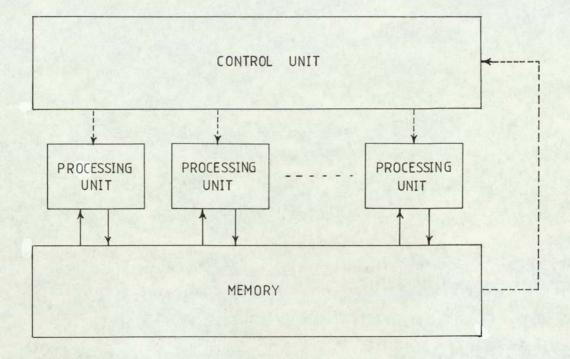


FIGURE 3.7 : SIMD PROCESSOR

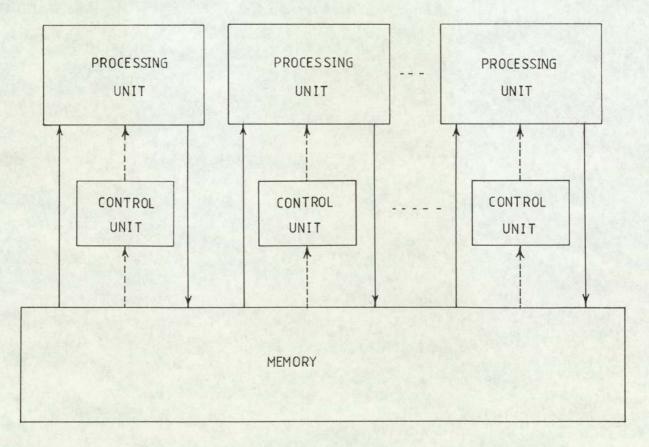
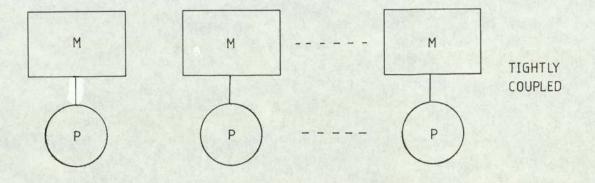
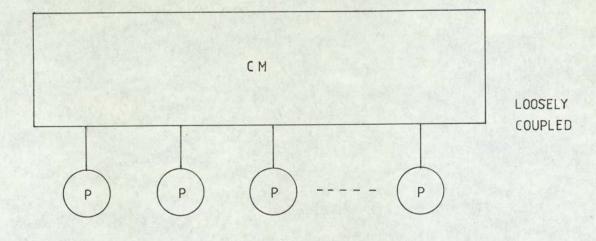
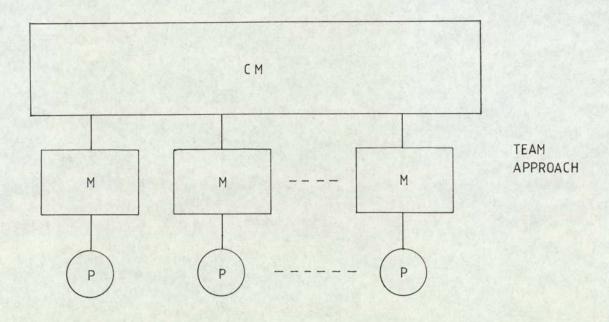





FIGURE 3.8 : MIMD PROCESSOR

NOTE:- CM=COMMON MEMORY, M=MOMERY, P=PROCESSOR.

FIGURE 3.9 : MEMORY FORMATIONS

A class of new multicomputer system which cannot be placed under the classification of Figure 3.4 has been envisaged by Kartashev and Kartashev (1978). This is a new LSI multicomputer system with dynamic architecture which allows one to reconfigure via software and in microseconds all available hardware resources (widths of processors, memories and I/O units), each time forming in the system new computers with different sizes. Based upon given cost criteria, this system with dynamic architecture has been comparatively evaluated for synchronous, asynchronous and modular control organisations.

It is not the object of this chapter to discuss the details of multiprocessor systems and their complex operating systems because these research subjects are well treated elsewhere in the literature (e.g. White, 1976) and basically there are many software problems associated with operating system design and high-level programming language design for such systems. As such, the following section concentrates on the design issues of multi-microprocessor/ microcomputer systems or distributed systems.

3.4.2 Problems of designing with multi-microcomputer system

As outlined in Figure 3.4, one of the main features of a multi-microcomputer system is a lack of an operating system and the static nature of allocation of tasks among a number of processors. This means that a system designer has to use low-cost microprocessors to design a multi-microprocessor system which is oriented towards an application such that the application problem is carefully subdivided

for parallel processing or concurrent execution. The main advantage of such a subdivided application problem is modular software development. However, the design of such a distributed system poses several interesting problems and these are discussed subsequently.

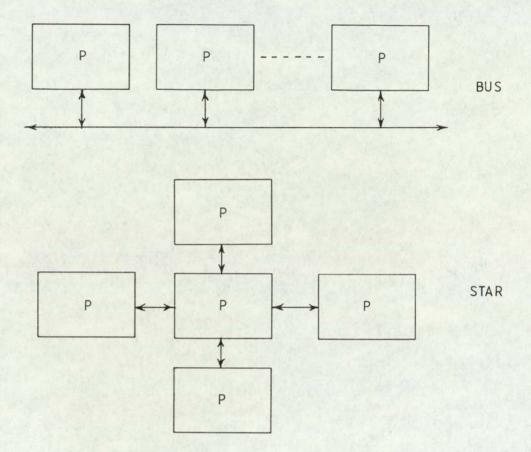
3.4.2.1 <u>System architecture</u>: The system architecture differs from a processor architecture and is usually influenced by application requirements. The following factors govern the system architecture:

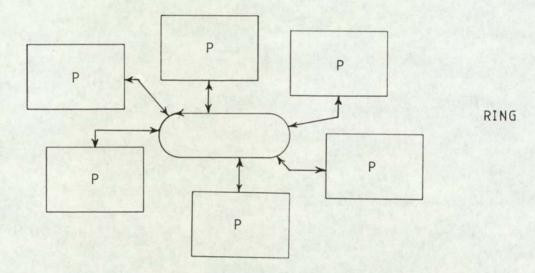
1. Control and management of resources: The resources, whether hardware or software, which are distributed among various processing elements, should be efficiently used. If a resource is made common or is shared, then due consideration must be given to resolve conflicts for its use.

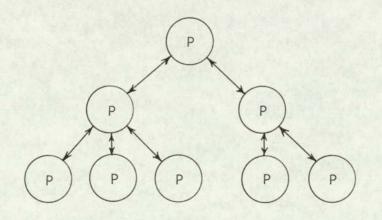
2. Load balancing and reliability: The nature of the application determines as to how the processing could be balanced among various processing elements. This requirement may arise due to failure of any processing element. The reliability specification determines whether the system component failure is tolerable and, if so, how it degrades the overall system performance.

3.4.2.2 <u>Communication and control</u>: This is an essential feature of a distributed system and the quality of performance of the entire system depends on communication and control of information and the complexity of protocol used for it. The factors to be considered are:

1. Interconnection of processing elements (e.g. see Fig. 3.10). The choice of interconnection depends upon the nature of application, flexibility, reliability, cost and complexity of control. A combination of various networks in Figure 3.10 is also possible.


2. Inter-process communication: The flow of control and data information between various processes processed in processing elements can be achieved by numerous communication protocols. These may be based on the following:


- A. Serial communication using UARTs, Modems etc.
- B. Parallel communication:
 - (a) port to port transfer using polling techniques
 - (b) port to port transfer using interrupt techniques
 - (c) DMA transfer
 - (d) transfer using buffer memory.
- C. Synchronous/asynchronous communication.


3. Information transfer rates/capacity: The transfer rate and capacity of a channel determines the number of busses required and their bandwidths.

4. Message handling: If the communication is based on messages between various modules, then the following considerations are important:

> A. Message format should include information about source, destination, priority and error checking information.

HIERARCHY

NOTE:-P=PROCESSOR

FIGURE 3.10 : INTERCONNECTION NETWORKS

- B. Length of message: It could be short or long or of a fixed length.
- C. Frequency of messages.
- D. Error probability.
- E. Acknowledgement delays.
- F. Channel transmission rate.

5. System response time requirements: Normally several modules use the same data channel and hence sufficient data transfer rates should be maintained while meeting timing and bus utilisation constraints, and reduced queue lengths. Whenever the source generation rate is low, techniques of buffering and multiplexing may be used.

3.4.2.3 <u>Distributed processing</u>: Along with the static distribution of an application task implemented into various processors as individual subtasks, there exists interactions between them. Efficient handling of such interactions between modules depends on the design of the system architecture and the communication and control aspects of distributed processing. In addition, although the distribution of subtasks into processors is static, the actual processing and utilisation of these subtasks may be of a dynamic nature. For these reasons, the following elements of distributed processing need attention:

1. Task allocation: This consists of specifying explicitly the disjoint tasks and their interactions associated with a given problem. This may be possible only

for well-defined application areas where the requirements are known in advance. Another method is to determine the sets of individual tasks and allocate them in the local memories of the individual processors.

2. Fail-safe capability: One of the motivations for a distributed system is to provide a fail-safe system. Therefore, distributed processing needs to incorporate a detection mechanism for failures in the system and to isolate them so that the errors will not be propagated throughout the entire system. This feature is very useful for maintaining the system.

3. Data association and synchronisation: In many real-time, time-critical applications, the data to be processed in various processors needs to keep track of its source, when it was generated and how far and in which processor it has been processed so as to make further decisions for processing it or discarding it. This is clearly a data association problem which depends on synchronisation at various stages of distributed processing.

4. Resource allocation: Just as task allocation, software control of hardware resource (e.g. memory, data bus etc.) allocation and deallocation is another important task. Since there is no central scheduler in a distributed system, sufficient intelligence should be provided at various processors so that they can self-schedule and handle resource allocation. This is achieved by providing

updated strategic information about the system status, thereby allowing a particular processor to decide upon the allocation of a resource for a given request at any given time.

3.4.2.4 <u>Distributed data base</u>: It is a very common requirement for a distributed system to have data distributed among various processing units as well as a common data base which bears a functional relationship between various processes residing at various mouldes of the distributed system. This requirement is more prominent if the system as a whole is working on a single overall application problem. However, the structure of a data base, whether distributed or common, depends on the application at hand and the following points are important in this respect:

 Memory partitioning: The size of memory for data and program should be determined carefully for each processing module, allowing for expansion if necessary.
 This basically depends on the application and the access time requirements.

2. Nature of data: The data base may be static or dynamic in nature. A static condition refers to data segments or files that are not modified, while data which gets modified and utilised either externally or internally during discrete processing steps can be considered as dynamic.

3. Data access time and throughput: For certain real time applications, the data access time may be very critical and hence a careful memory system design is needed to satisfy the system throughput requirements. Holland (1980) has described three ways of improving the system throughput by separating the data in, data out and memory address busses of the memory system. These are (a) address anticipation, (b) pipelining, and (c) cache memory.

4. Access conflicts and deadlocks: When a data base is shared between various processing elements, there may exist conflicts in accessing certain data items and simultaneous access may not be permitted. Such conflicts should be considered in conjunction with the allowable delays, priorities for access and the cost associated with the duplication of memory system hardware. Unresolved access conflicts and/or the unavailability of critical data items or control information can lead to a deadlock situation. Hence deadlock prevention is important and provision must be made to detect and backup in the case of a possible deadlock.

3.4.2.5 <u>System reliability, availability and surviv-</u> <u>ability</u>: It is very difficult to discuss quantitatively concept of reliability, availability and survivability of distributed systems because basically these systems are application-oriented and faults leading to system breakdown are, in general, intermittent in nature. However, these issues are very important if reliable system performance is required, which is generally the case. For this

reason, it is desirable to implement error detection and recovery techniques within the system. If a detected error fails to recover, then the system survival depends on the operation of the critical processing modules and isolation of the failed module. In such cases, it is necessary to provide sufficient redundant information about the system to be able to recover even after the total failure of some subsystem. If the cost constraints allow, extra redundant hardware may also be used to backup the system to improve reliability.

3.4.2.6 System development and testing: When a distributed system has been carefully designed, based upon the considerations outlined above, the development and testing of such a system can be a major problem. The design issues mentioned earlier in Section 3.2.1, as applied to the development of a system incorporating a single microprocessor, are multiplied by the complexity of the number of such systems, their interrelationship and interconnections which make up a single multi-microprocessor/ microcomputer system. The ease of development and testing of such a system depends upon the fine description of the details of the lowest level of language notation for system architecture, hardware and software, and their integration.

The development of a single processing element or a module which forms a subsystem of a distributed system can be performed partially using design techniques outlined in Section 3.2.1. However, the functional contribution of such a subsystem towards the entire system is very difficult to

test because it can only be tested if the rest of the system is present. That is why the integration of various subsystem modules, developed and partially tested individually needs carefully programmed test procedures. This need also arises due to the absence of a general purpose system which can simulate a multi-microprocessor system environment for real-time applications. The only way around this problem is to develop and build a desired multi-microprocessor system by a step-by-step approach. In this approach, partially tested developed subsystem modules are integrated one by one and testing is carried out with modular test programs or built-in test procedures together with externally generated signals which simulate the realtime application environment. When such a distributed system is developed and tested successfully, then the simulated environment can be replaced by the actual realtime application.

3.5 CONCLUSIONS

This chapter demonstrates that a trend towards systematic design of multiple processor systems is developing. The classification issues for such systems are vague because of their multi-dimensional attributes and complexity and lack of acceptable common terminology. However, an attempt to classify these systems, based upon easily identifiable characteristics, have been made.

The problems of designing with microprocessor and multi-microprocessor systems suggest that numerous design

issues need utmost attention even prior to undertaking a microprocessor-based project. In particular, integrating various modules of distributed systems can be a major problem. The distinction between a distributed system and a multiprocessor system, based upon the operating system, is very weak because it is perfectly feasible to intermix some powerful features of an operating system with the flexibility and variety of characteristics offered by distributed systems. For example, it may be possible to build modular systems which include such features as dynamic task allocation (i.e. reconfigurability) to suit a variety of applications. However, this in itself is a research area.

CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED COMPUTING SYSTEM

4.1 INTRODUCTION

Distributed computing systems are still at the forefront of their evolutionary process. This evolution is taking place at architectural design level, interprocess communication design level, intercomputer communication design level and application level. Consequently, there are many and varied definitions and taxonomies of distributed computing systems (Jensen, Thurber and Schneider, 1979). However, these systems in general refer to the use of multiple, quasi-independent processing modules whose actions are co-ordinated to accomplish a large task or to implement a large system. In general, a designer of these systems is concerned with the following agenda:

1. Distribution of computing power both in hardware and software.

2. Distribution of information processing in the form of top-down distribution of tasks and bottom-up co-ordination of tasks.

3. Distribution of data. This has two categories:(a) data generated as an output from a distributed task, and(b) data required as an input to a distributed task.

A meaningful implementation of the above is usually associated with a specific application that characterises a distributed computing system.

The emphasis of this chapter is on issues, regarding the interfacing of a distributed computing system to a large-scale real-time complex system. A dual port memory utilisation is reviewed on this background, and a realisation of a hypothetical application is considered.

4.2 REAL-TIME DISTRIBUTED COMPUTING SYSTEM

Figure 4.1 shows our description of a distributed computing system. The system is employed to serve the needs of a large-scale complex real-time system for its information processing. It is assumed that the large-scale system already exists. This assumption is reasonable with most practical systems. For example, one can think of a large chemical processing plant, the throughput and performance of which needs improvement. A distributed computing system can be a cost-effective solution for such a problem.

In the Figure, P1, P2, P3 etc. are microcomputers with normal attributes of a conventional computer system. This facilitates a desired task-oriented program development environment for any processor to be accomplished independently under Phase I. The processors' interconnection interface and their physical interconnection system bears a close relationship which is exclusive to the processors only. This relationship can be made adaptable for a variety of microcomputer networks and communication protocols that link the processors for the co-ordination of their individual functional tasks. A functional task may involve numerous interactions of a processor with the large-scale real-time system or it can be a task of micro-co-ordination

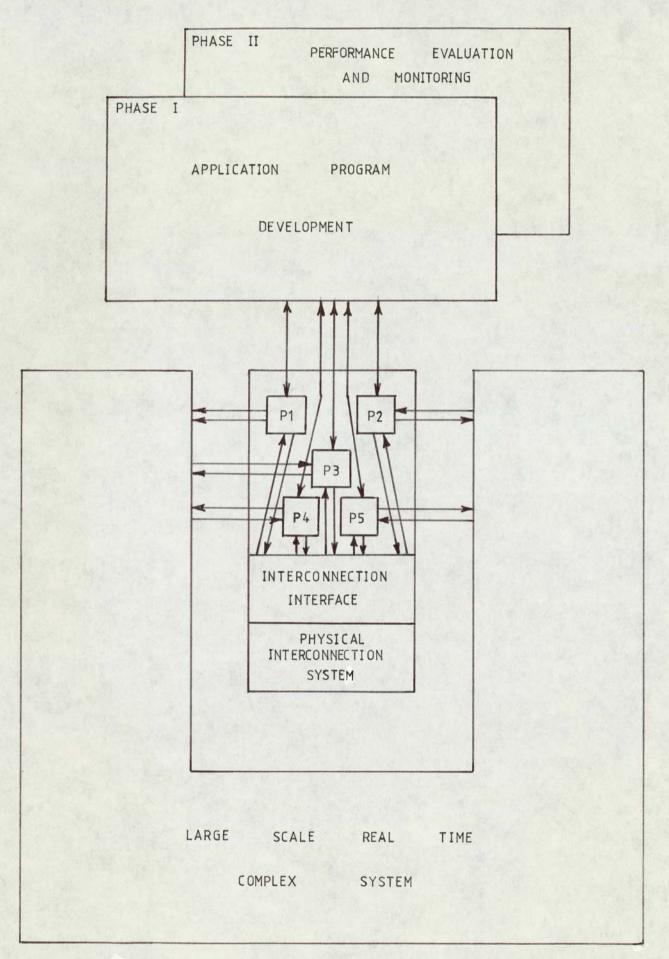


FIGURE 4.1: Description of a Distributed Computing System

of other neighbouring tasks. An overall collective co-ordination of tasks executed by the processors is thus dispersed amongst the processors, each one being a contributor to it to some extent.

A separation of Phase II and I is quite arbitrary in the system shown. The performance evaluation and monitoring of the processors' behaviour and the large-scale systems' behaviour in Phase II occurs as a result of successive developments in Phase I. A gradual hand-over from a then existing control scheme of the large-scale real-time system to a new implementation of a distributed computing system is thus possible with the following major advantages:

1. A modular development of the system, both at software and hardware level.

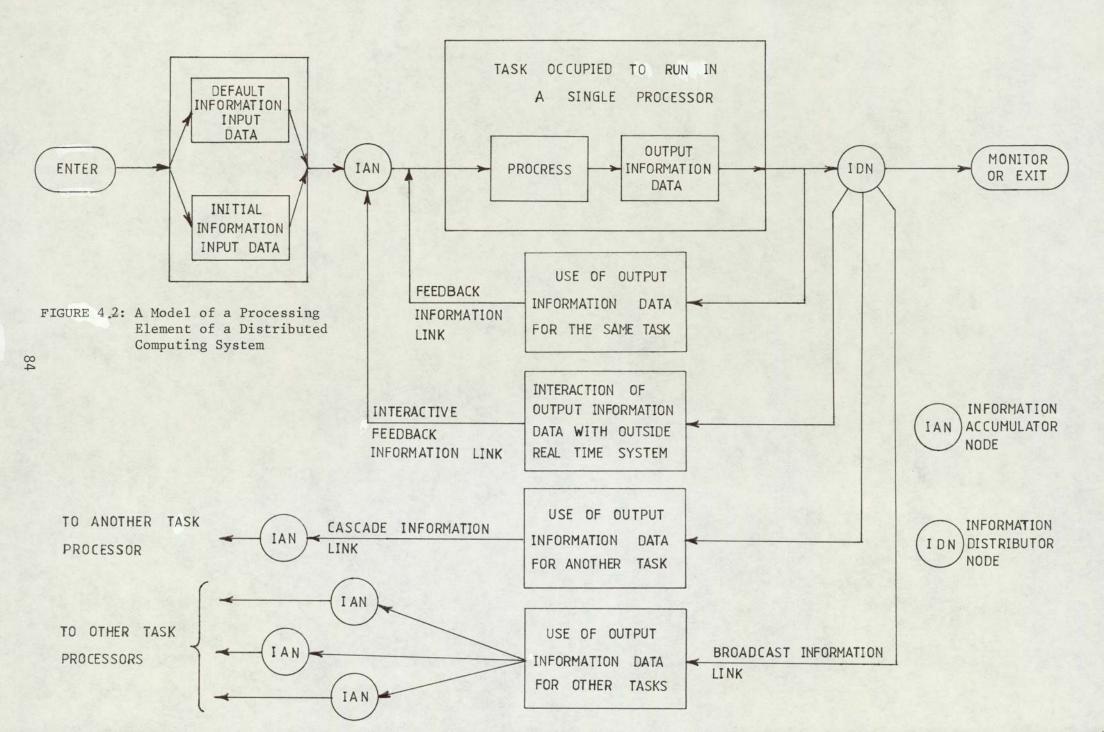
2. A better insight into the system down to a smallest subtask level.

3. A reduction in down time of the large-scale system.

4. Improved maintainability due to improved failure detection.

5. Improved performance, throughput and reliability.

4.3 MODEL OF A PROCESSING ELEMENT


A major element of a distributed computing system is a processor. A task programmed into the memory of this processor accounts for its information processing capabilities. A processing task is performed on the input

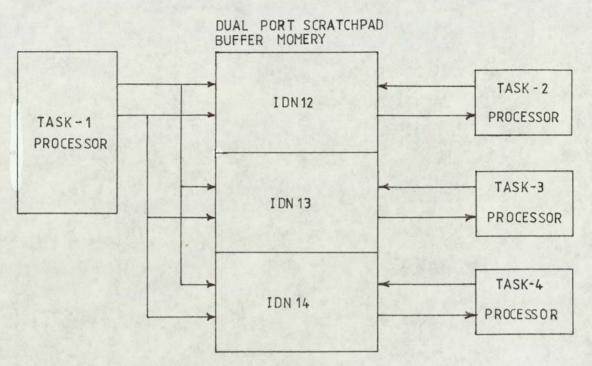
information to produce the resultant output information. A detailed description of a model of a processing element for a distributed computing system is shown in Figure 4.2.

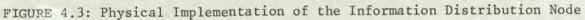
One of the main features of this model is that a processor is assigned a task which is composed of a "process" and "output information data". The process may contain several subtasks. The task of a processor is activated by one or a number of sets of input information data which is contained in the "Information Accumulator Node" (IAN). The output information data from the processor is deposited in the "Information Distributer Node" (IDN). The characteristics of IAN and IDN are such that a processor avoids direct interference with another processor's task and vice versa. This facilitates the identification of a processor's communication requirements with another processor or processors.

Another interesting feature of the model is that a processor receives its input information data without any forced interruption of its task execution. Similarly, a processor generates its output information data which is made available to another processor to read it whenever it is free to do so. Thus input information data received by a processor is transformed into output information data by a task. The output information data generated in this way can flow through four different kinds of information links. These are:

1. Feedback Information Link: As the name suggests, the output data is fed back as input to the same task. For

(TWN) VCCDNDTALCO (11 ft) 110 - 61B/1.05 HOLVAND DECONATION MATE INCESSOS DALEWITH UNLINE ONDAL THENKING ALL DIA BUT FRAM ALAS SULLARS HE ATAL INTERPORT THEORY (STON) DATE: 101 21 H-B - 1731 -FOR MUTHER INTE LT TERMINI THR ALTIANN ANT HEALEAD 14 C 14 Thur . TUNIT IN ATTENI TO ADDINEL TACK TO CHER TAILS


example, recursive type algorithms run in a monoprocessor fall under this category.


2. Interactive Feedback Information Link: In this type of link, the output data interacts with its outside world which it is controlling, and the processor reacts to the data presented to it by its controlling environment. Direct Digital Control (DDC) of a process is a good example to illustrate this.

3. Cascade Information Link: Using this link, it may be possible to cascade a number of task processors. This situation may arise if a single processor fails to accommodate a single large task or, for example, it may be that a processor after completing its task wishes to trigger another task processor in cascade with it.

4. Broadcast Information Link: This link is basically an extension of the cascade link in which output information data is made available simultaneously to a number of other task processors. This link is very useful if a number of task processors execute identical tasks. This link may also be useful in synchronising different task processors.

A physical implementation of IDN and IAN is shown in Figure 4.3 and Figure 4.4 respectively. Each module of IDN or IAN is made from dual port scratchpad buffer memory. The roles of IDN and IAN are identical. In both of them, information data is stored from one end and it is made available at the other end. However, the way in which the modules are grouped and connected makes them either IAN or

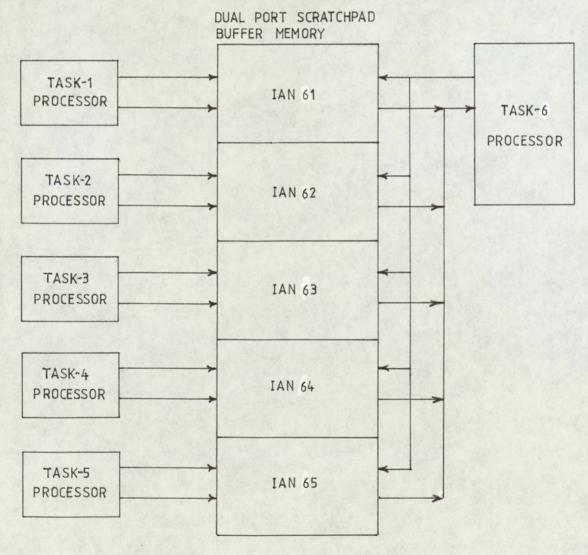


FIGURE 4.4: Physical Implementation of the Information Accumulator Node

IDN. For example, in Figure 4.3 IDN13 represents that the Task 1 processor distributes its output information data to the Task 3 processor. Similarly, in Figure 4.4 IAN74 represents that the Task 7 processor accumulates its input information data from the Task 4 processor and so on. Figure 4.5 shows an example of two cross-coupled processors P1 and P2.

4.4 INFORMATION AND TASK HIERARCHY

A task processor may contain one or more information links. The feedback and interactive feedback information links are mainly associated with a monoprocessor, while cascade and broadcast information links account strongly for a distributed computing system. However, the smaller the number of information links, then the more simple the task becomes.

In order to derive some criteria for quantifying a complex task, one can look at the information hierarchy used in information theory. This includes:

1. Symbolic Information: At this level, messages are transmitted (and data is stored) as a collection of symbols; these symbols form basic building blocks from which all higher forms of information hierarchy are developed.

2. Syntatic Information: This is contained in the rules limiting the way in which various symbols can be combined.

3. Semantic Information: This is contained in the meaning which the recipient can perceive in a message.

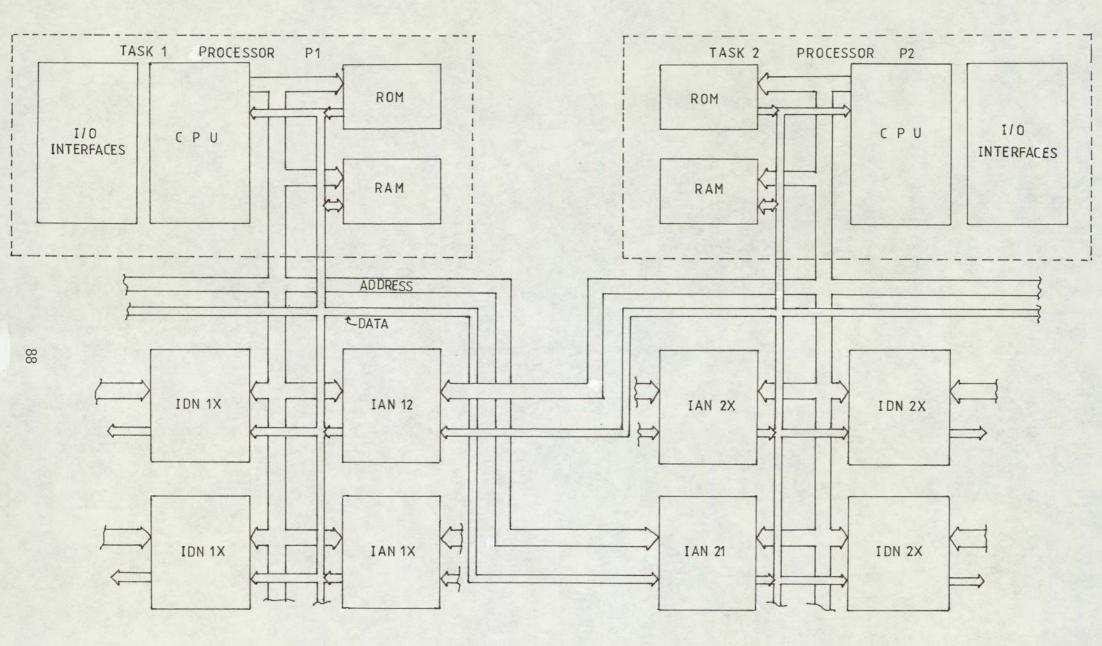


FIGURE 4.5: An Example of two cross coupled Task Processors P1 and P2

4. Pragmatic Information: This is concerned with the practical use to which the recipient may make of a message.

5. Aesthetic Information: This describes the ability of the message to affect the senses and decisions of the recipient.

A processing element of a distributed computing system bears an analogous relationship to the above information hierarchy. This is shown in Table 4.1. In a distributed computing environment, we are mainly concerned with the aesthetic level of task hierarchy where a task performed by one processing element affects the decision of another or several other processing elements. In other words, this is concerned with the micro-co-ordination function amongst the processing elements. This micro-co-ordination function is responsible for minor decision-making based upon the outcome from different neighbouring task processors and information filtering. Information filtering relates to the form in which a distributed computing system presents the net quantified information about its controlling environment to a human operator to perceive the performance of the controlled environment. This task of presenting information by a distributed computing system to human perception represents the highest level in the information hierarchy.

4.5 CONTROL SYSTEM PHILOSOPHY

The form in which a model of a processing element of a distributed computing system is presented also reminds us

INFORMATION HIERARCHY	A PROCESSING ELEMENT		
	SOFTWARE	HARDWARE	
1. Symbolic	"O" and "1" Symbols	Logic gates, registers, counters flipflops, decoders etc.	
2. Syntactic	Hexadecimal, octal numbers	CPU, ROM, RAM etc.	
3. Semantic	Instruction set as implied to be perceived by a computer	Computer architecture	
4. Pragmatic	Programming of a task or an algorithm	Interfacing a computer to a real outside world	
		ntegrated System	
5. Aesthetic	Ability of one integrated system to interact with another integrated system		

TABLE 4.1: Analogy of information hierarchy to a processing element

of "signal flow diagrams" and "block diagrams" from classical control system theory. The terms "feedback" and "cascade" have been chosen deliberately to bring about a philosophical analogy of a distributed computing system to classical control systems theory.

In a distributed computing system we are concerned with "information flow diagrams" similar to "signal flow diagrams" in a classical control system. A time constant, for example, of a processor to run its task relates to a delay in time after which output information data appears when input information data is applied. This delay may not be of a fixed duration; usually this will have maximum and minimum limits on it depending on the volume, rate and nature of input information data. This naturally leads to stability consideration for task processors to be determined. For example, a stack overflow in task processor will be clearly an unstable situation. A deadlock situation between two task processors is another unstable condition and so on.

In order to identify such unstable conditions, information flow in a distributed computing system should be "observable" and consequently "controllable". This feature relates to the fact that each task processor should be examinable for its task-handling and information-handling attributes. Another possible outcome of this examination is the identification of a "critical path" along which critical tasks are processed. This is analogous to a PERT analysis in system design. This critical path can be very important with regard to the "micro-co-ordination" or "decision-making"ability of a task processor.

4.6 DUAL PORT MEMORY UTILISATION

A dual port scratchpad memory allows a data item to be stored (written) into a location from one port and allows it to be retrieved (read) from the location at another port. These read and write operations can be performed simultaneously. This type of memory acts as a buffer storage medium for the communicating task processors and serves to isolate the internal data, control and address bus systems of these processors. Input/output information data flow occurs through this medium denoted by IAN and IDN in the model.

There are two ways in which the dual port scratchpad memory may be connected to a task processor. If the volume of information data flow is small, the processor's parallel input/output ports may be used. However, this means that there will be a smaller number of I/O ports available for connecting other peripherals or interfacing circuits. Another way is to connect the processor's internal address and data bus to either the read or write end of the dual port memory. This allows data storage and retrieval operations to be the same as RAM. This type of connection is suitable for a large volume of data transfer.

The size of the dual port scratchpad buffer memory used in IAN and IDN is a function of the information transfer needed between task processors. There are three kinds of devices available to build IAN or IDN modules. These are:

1. SN74LS670 MSI 16 bit TTL register files. These files are organised as four words by four bit with on chip address decoding for separate write and read functions, thus permitting simultaneous reading from one location and writing to another. The device is 16 pin DIN packaged. It requires a combination of two such devices to implement only four word bytes of storage locations (Deshmukh, 1979).

2. AM29705 is a 16 words by 4 bit 2 port RAM. This device has two output ports each with separate output control and separate four-bit latches on each output port. The device is 28 pin DIN packaged (AMD Data Sheet).

3. MC10806 is a dual access stack with 32 x 9 memory, two address ports, two 9-bit data input/output ports, two 9-bit output registers, flipflops in a single MECL bipolar LSI circuit. The device is 48 pin QUIL packaged (Motorola, 1979).

The first two devices are simpler to interface with most microprocessors while the third has rather special characteristics. For the purpose of designing systems with these devices, data sheets are available and so no further discussion is given here.

The hardware utilisation of a dual-port scratchpad memory module such as IAN or IDN requires additional software protocols for the purpose of information flow between task processors. An outline of simple protocol primitives that may be used is shown in Table 4.2. This set of primitives is derived for two cross-coupled task processors P1 and P2, as shown in Figure 4.5. Table 4.2 shows what

NO	PROTOCOL PRIMITIVE FOR IDN12 = IAN21 (TASK PROCESSOR 1)	PROTOCOL PRIMITIVE FOR IDN21 = IAN12 (TASK PROCESSOR 2)
1	Stop Read/Start Write	Stop Write/Start Read
2	Number of bytes of information	
3	Block program Loading/Finish (a) Starting address (2 bytes) (b) Block number)) Block Read)
4	Task number (a) Task trigger/End (b) Repetition number)) Task Status
5	Read time information	
6	Data constants	Salar - Jacob
7	Information set number	Set accept information

TABLE 4.2: Information Protocol Primitives

information data Task Processor 1 intends to distribute to Task Processor 2. This information storage is done in IDN12 = IAN21. The Task Processor 2 on the other hand may acknowledge its input information data via IDN21 = IAN12. This coupling of the two processors for their information exchange is entirely programmable and task-oriented.

4.7 APPLICATIONS

The applications mentioned in this section are hypothetical and intended to show potential areas where our model of a distributed computing element can be employed. Two applications are considered:

Mathematical Modelling: Modern control philo-1. sophy suggests that a real-time large-scale complex system may be analysed and controlled by utilising its mathematical model which resides within a computer system. Any interactions between the subsystems of such a large-scale real-time system can be accounted for by implementing these subsystems within our model of a processing element of the distributed computing system. The mathematical model performance and the actual system's performance can then be compared at a subsystem level. Additionally, actual subsystem's parameters can be estimated and consequently its model parameters can be updated for that particular subsystem. Furthermore, different mathematical models can be analysed and tested.

2. Simultaneous Serviceing of Interrupts: In some situations with a real-time system, it may be difficult to

FIGURE 4.6: Simultaneous Servicing of Interrupts

determine the priority structure of a number of external as well as software interrupts. In these circumstances, different interrupt service routines can be implemented in a processing element of a distributed computing system and the overall co-ordination of these interrupt service processors can be performed by another processor whose task will be to run the main program and take care of any static and dynamic data movements to and from the interrupt service processors via IDNs and IANs. This is shown in Figure 4.6. In the Figure, routines 1 and 3 depend on static data from the main task processor whereas routines 2 and 4 depend on dynamic data. Hence, these two routines interact with each other as well as with the main program. The structure of the interrupt processors depends upon the actual application and how it relates to the main program in the co-ordinating processor.

4.8 CONCLUSIONS

A new model of a processing element within a distributed computing system is presented. The cost-effectiveness of this model needs to be evaluated. The model provides means by which new possibilities of communication protocols may be implemented which are task-oriented. The model also facilitates a clear partitioning of subtasks and a definition of their interactions.

<u>CHAPTER 5 – A HIERARCHICALLY STRUCTURED</u> MULTI-MICROPROCESSOR SYSTEM

5.1 INTRODUCTION

As computers and processors have become smaller, cheaper and more reliable, it is becoming more common to design systems with more than one actual processor. A large variety of computer interconnection structures has been proposed covering the range from tightly to loosely coupled networks and multiprocessors to array processors (Anderson and Jensen, 1975; Enslow, 1974). The concept of distributed processing had its origins in the data processing field before the start of the microprocessor revolution. Enslow (1978), in attempting to clarify the concept of distributed data processing, claims that at least four physical components of a system might be distributed: processing logic, data, the processing itself and the control of the operation (e.g. the operating system). Research in this area is continuing.

The advent of microprocessors has helped to enlarge the concept of distributed processing beyond the confines of data processing applications. Many types of system have been described, ranging from a series of unconnected computers each performing separate tasks through to a single computer system within which a number of computing elements are connected. Enslow (1976) has discussed systems classified as multiprocessors which contain two or more central processors of comparable capability. These processors

share access to a common memory, common input/output channels and common control devices; the entire system is controlled by a single integrated operating system.

Microprocessor technology, however, is often best employed in systems which are constructed of processing units each of which is independent in itself but which communicates with some or all of a number of other processing units in the overall system. Each processing unit may have a number of dedicated tasks in normal operation; there is, however, no integrated operating system, and the control of the system may be distributed among the individual units.

This chapter describes such a system in which the units are connected in a hierarchical structure. The basic processing module from which the system is configured is known as a "Hierarchical Microprocessor System Unit" (HMSU). The system is designed for the control of a pilot-scale 8-zone travelling-load furnace, but is sufficiently flexible to have a wide variety of process control applications.

The HMSU structure consists of a number of Fairchild/ Mostek F8 family chips, a common block of semiconductor memory and a pair of Intermediate Scratchpad Memory Interface. The configuration is designed so that a single HMSU can be used either independently or as a building-block in an expandable hierarchical environment. In either case, it will normally run dedicated programs which will be held in ROMs.

Similar uses of microcomputers have been described by other workers. Harris and Smith (1977) have analysed a

number of multiprocessor architectures and have discussed a multi-microprocessor architecture having a hierarchical structure. Steinhoff (1976) concludes that the computational potential of minicomputers and a set of bipolar microprocessors can be harnessed for solving some large scientific problems that cannot otherwise be solved within normal economic and practical constraints. It is not necessary for all the processors within one system to be of the same type; for example, Pathak (1977) describes a configuration of one Intel 8080 and three SC/MP processors. Hughes (1976) incorporates TI 9900 series microprocessors and 990 computers for multiprocessor navigation systems. Tanaka (1976) introduces a new type of hierarchical multimicroprocessor system that includes nine microprocessors operating in a system under the overall control of a host ECLIPSE S/200 computer.

The objective in developing the HMSU is to make use of the numerous advantages offered by distributed processing in establishing a hardware basis for the implementation of optimal control schemes for large-scale system problems.

5.2 HMSU PHILOSOPHY

The hardware configuration of the HMSU is designed on the following basis. The unit consists essentially of a number of individual processors and memory blocks. Each processor has its own private memory, but the bulk of the memory is common to all processors. It is the task of one particular processor, designated the Master Processor, to

control access by any other processor to the common memory. Apart from this function, each individual processor acts independently, performing designated control functions via its own I/O channels. The processors operate asynchronously, all inter-processor communication being via the common memory under control of the Master Processor.

The unit as a whole communicates with the outside environment via a special buffer known as the Intermediate Scratchpad Memory Interface (ISMI). The outside environment may be either another HMSU or a larger host computer, or indeed any other processing equipment as required by a particular application.

5.3 INFORMATION FLOW

In designing multi-microprocessor systems such as HMSU, it is important to consider the basic principles of information flow. Microprocessors are intelligent devices capable of acting as a source or as a sink of information. Figure 5.1 shows an example of three units acting as sources and sinks of information and the arrows indicate all the possible ways of information flow that may occur. If these three units are to communicate sensibly with each other, then at any one time one unit must be transmitting information and the other two receiving it. It will greatly help the synchronisation problem if the data is transmitted by the source to a temporary intermediate store, from which it may be received by the sink or sinks when they are ready to This avoids the difficulty that can occur with do so. "handshake" systems when two processors may each be waiting for the other.

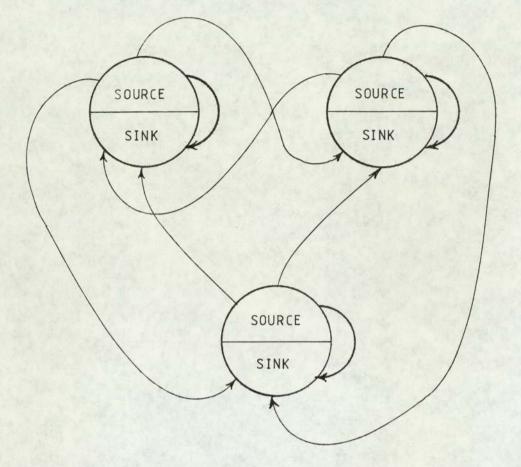


FIGURE 5.1 : Information Flow

The Intermediate Scratchpad Memory Interface (ISMI) that forms such a temporary store for the HMSU allows two processors to use it to deposit or retrieve data or control information. Asynchronous reading or writing of data can be performed by the two processors simultaneously. In the case of dedicated applications, the form of interprocessor information flow is completely known and some simple synchronisation schemes may be adequate. In our case, where a pair of ISMIs is employed as intermediate information storage media, simple software controlled synchronisation primitives for block data transfer can be utilised. For example, in Figure 5.2 two processors, P1 and P2, are

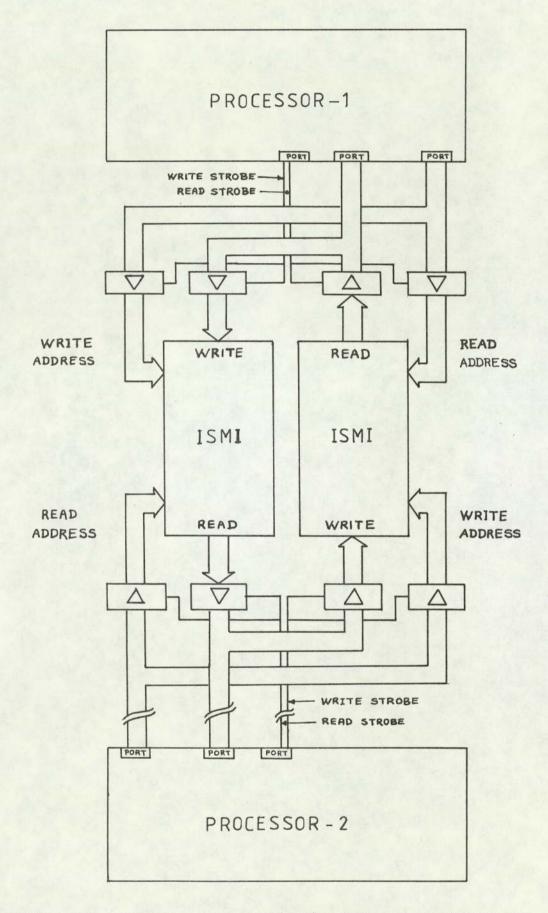


FIGURE 5.2 : Bidirectional Communication between processors via a pair of ISMIs

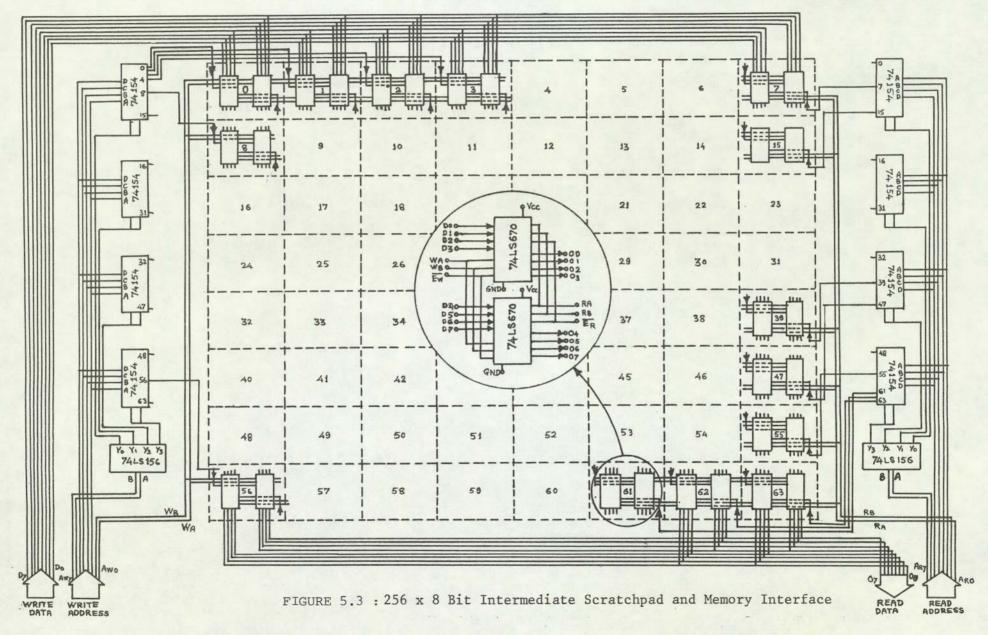
linked by a pair of ISMIs. A and A_1 are the locations in this pair which are periodically monitored by processors P2 and P1 respectively. These locations can be used as flags or codes for various sets of block data. The following Table 5.1 shows how A and A_1 are used as flags for a block data transfer between the two processors P1 and P2. The only constraint on the software programmer is in the assignment of individual ISMI locations to particular items of data. If the functioning of a task residing with P2 depends upon the data generated by P1, deadlock can occur. However, in a dedicated system such as a HMSU, where applications can be either homogeneous or heterogeneous (Siewiorek, 1975), deadlock problems are certainly anticipated by the very nature of hierarchy. The frequency of deadlocks in a multi-microprocessor structure is an important question open to experimentation.

The volume of data flow in the two directions need not, of course, be the same. This is a necessary feature for use in a hierarchical structure, where one processor at high level may be receiving a great deal of data from a lower-level processor but sending to it only a few command signals at frequent intervals.

5.4 STRUCTURE OF THE ISMI

The Intermediate Scratchpad Memory Interface is built from SN74LS670 MSI 16-bit TTL register files. These files are organised as four 4-bit words: on-chip address decoding is provided separately for reading and writing, thus permitting simultaneous reading from one location and

A MONITORED BY P2	A ¹ MONITORED BY P1	COMMENTS
0	x	P1 starts writing for P2 . P2 should not read
1 .	x	P1 completes writing . P2 can read
1	0	P2 starts reading . P1 should not write
1	1	P2 completes reading. P1 can write
х	0	P2 starts writing for P1. P1 should not read
х	1	P2 completes writing. P1 can read
0	1	P1 starts reading . P2 should not write
1	1	P1 completes reading . P2 can write


TABLE 5.1 : Communication protocol for processors of FIGURE 5.2

writing to another. The SN74LS670 components can be organised into a memory of up to 512 words of any number of multiples of 4 bits. The fast access time (typically 20 ns) and tri-state output makes this type of component ideal for use in intermediate memories. The organisation of an ISMI of 256 x 8-bit words is shown in Figure 5.3. The scratchpad of this size requires 128 chips of SN74LS670, ten multiplexers and four driver chips. For communication in both directions between two processors, a pair of ISMIs is required.

Several reasons can be numerated for the choice of an ISMI to couple two processors. Although the use of DMA channels can be envisaged for communication between two processors, we find that DMA transfer requires extra complex interface circuitry with synchronisation logic. Compared to this, the use of ISMI avoids the need for such a complex interface and also has the advantage of asynchronous communication. The use of ISMI also frees the DMA channels of the processors to be connected to peripheral devices, for which they are more suitable. The use of ISMI gives much more flexibility especially when designing multimicroprocessor systems.

5.5 COMMON MEMORY

A Common Memory (CM) providing a data store which is accessible by several processors at the same hierarchical level is an important feature of the HMSU. Because the processors are operating asynchronously, it is necessary to ensure that only one processor attempts to access the

memory at a time. This is achieved by a master-slave organisation, the master processor having the task of allocating access to the CM to slave processors as required. This type of organisation is quite common; see, for example, Russo (1976) and Witten and Jenkins (1978), although other possible structures have been described (Enslow, 1976). The master-slave structure has been chosen for the HMSU because of the simplicity of both hardware and software required, and because of its applicability to asymmetric systems in which the workloads of master and slave processors are appreciably different.

Figure 5.4 illustrates a master-slave configuration in which eight processors are used. In this particular design, the processors are Fairchild/Mostek F8 chips, chosen largely because of locally available software. The configuration allows the master processor always to have access to the CM by setting up its own address code on its address port. When the master processor decides to grant access to any of the slave processors, it will output the address code for the particular slave processor on the address port. This address code will link the CPU READ and $\overline{\mathbb{R}/\mathbb{W}}$ lines of the slave to the CM via a multiplexer. At the same time, the demultiplexer unit opens the appropriate buffers to link the internal address and data buses of the slave to the external address and data buses of the CM. The demultiplexer unit also sets up an external interrupt for the slave which will activate its common memory access program.

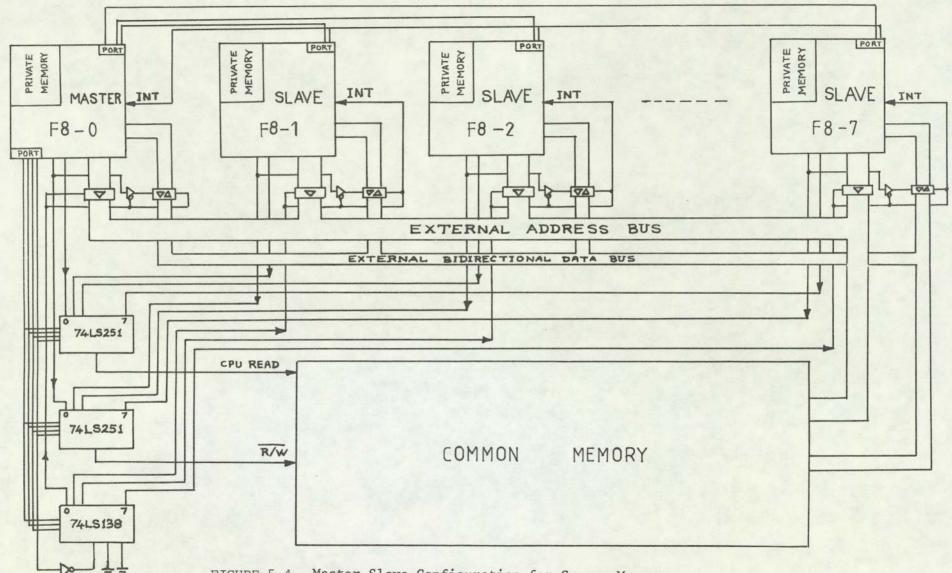
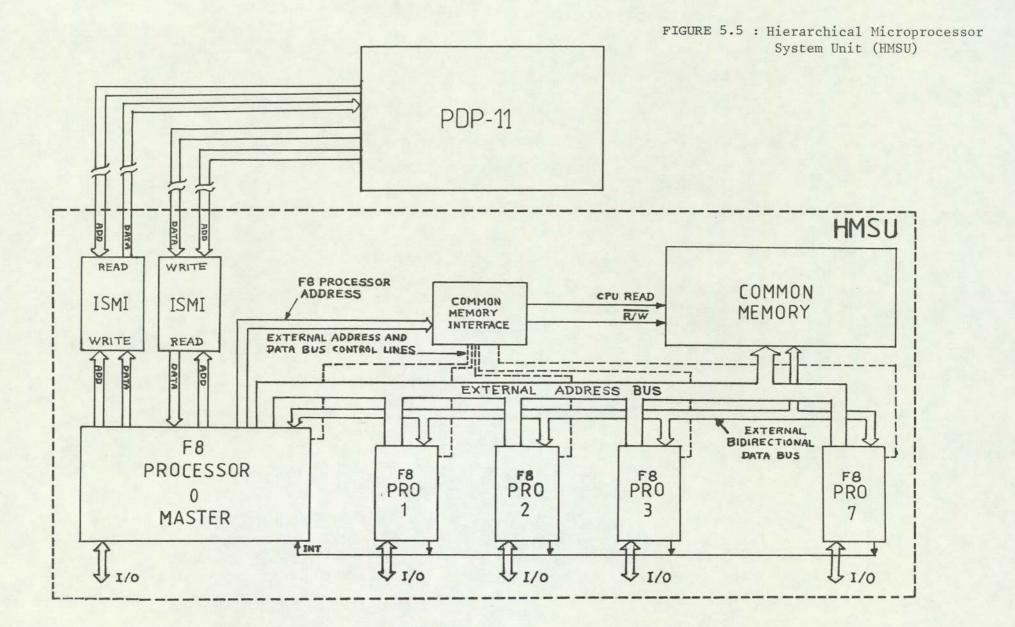


FIGURE 5.4 : Master Slave Configuration for Common Memory

At the end of the CM access routine, the slave processor will signal to the master via the master's external interrupt line. As an additional check, it is possible for the slave to send an identification code to one of the master's I/O ports. This will enable the master to recognise which slave has finished a CM data transfer, which may be useful if there is a queue of CM access requests. This additional check is not necessary to the system, however.


The HMSU architecture is arranged so that all CM access requests are generated by the master processor; the slaves do not need to generate such requests themselves. This avoids the problem of concatenation. When the master does not need to ask for any slave to transfer data to or from the CM, it can treat the CM as its own private memory, transferring data in and out at any such time.

5.6 HMSU ARCHITECTURE

The hardware of the HMSU is very simple. It consists of a master processor, a pair of ISMIs serving as a bidirectional data transfer interface, a common memory as described above, and a number of slave processors. The organisation of the HMSU is shown in Figure 5.5.

The master processor performs the following sytem functions:

1. Receiving of data from the supremal level host computer via the ISMI and transfer of that data to the Common Memory.

2. Generating CM access requests to allow the slave processors both to receive data from the CM and to transmit data gathered or generated by each slave to the CM.

3. Transmitting slave-generated data from the CM back to the supremal computer, again via the ISMI.

In addition to these system tasks, the master processor may be assigned some user tasks if the processing load allows. It is desirable, however, to share the total processing load as equally as possible between all the processors, otherwise the overall system performance may become degraded.

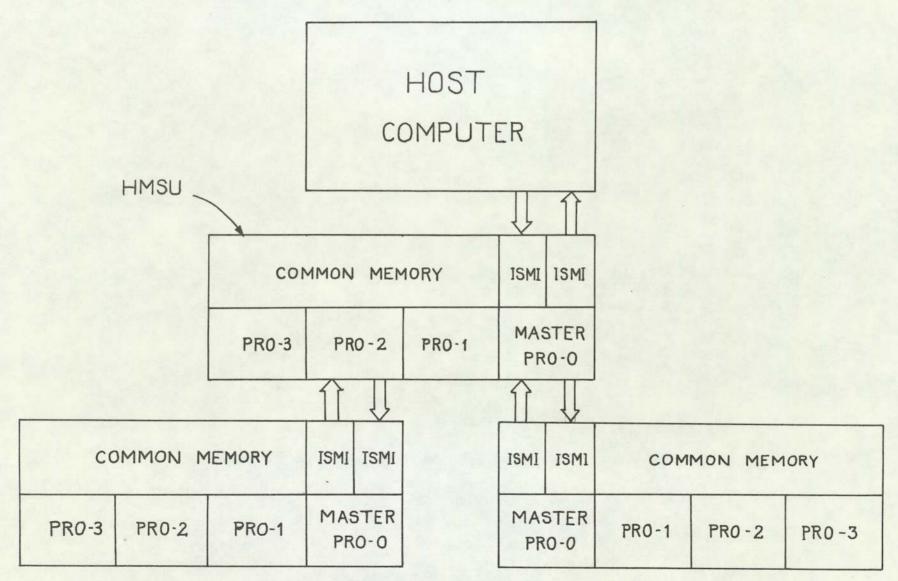
The slave processors perform individual user tasks, gathering process data and implementing control functions via their own individual interfaces and I/O ports. The proposed structure of the HMSU incorporates up to seven slave processors. However, more than seven slave processors can be used if desired, or alternatively, more than one HMSU can be employed. This distributed processing structure makes the system very flexible and easily expandable.

A further possibility offered by the HMSU architecture is that the supremal computer may be used to change the allocation of tasks amongst the slave processors in the event of a hardware failure, a facility which makes the system of very high integrity.

5.7 HMSU STRUCTURE

A variety of structures can be developed using HMSUs. Since a pair of ISMIs may be used to link any two processors operating asynchronously, we may use this interface to link two HMSUs together via their master processors, or to

link a master processor to a particular slave processor either within the same HMSU or in a different one. This gives very great flexibility in the design of multiprocessor structures.


Figures 5.6, 5.7 and 5.8 show three different systems constructed from HMSUs each of which has a master and three slave processors. Figure 5.6 shows a hierarchical structure using three HMSUs and a supremal host computer. Figure 5.7 has four HMSUs in a star formation around the host computer and Figure 5.8 shows five HMSUs and a host computer in a ring formation. There are endless permutations on these three structures: the decision as to what type of structure to use is dependent entirely on the application.

5.8 CONCLUSIONS

A hierarchical organisation of microprocessors, known as the HMSU, has been described. This sytem may be constructed at low cost from standard LSI components. The use of private memories for each processor combined with intermediate memory for interprocess communication avoids the synchronisation problems often associated with multiprocessor systems and allows great flexibility in designing large-scale systems based on a number of basic HMSU blocks.

The main disadvantage of the system at present is a rather high chip count. This would be considerably reduced if the ISMI were implemented on a single LSI or VLSI chip, which is technologically, if not economically, possible.

FIGURE 5.6 HIERARCHICAL STRUCTURE

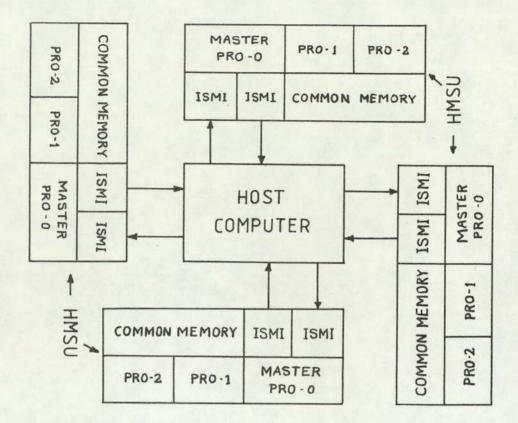


FIGURE 5.7 : STAR STRUCTURE

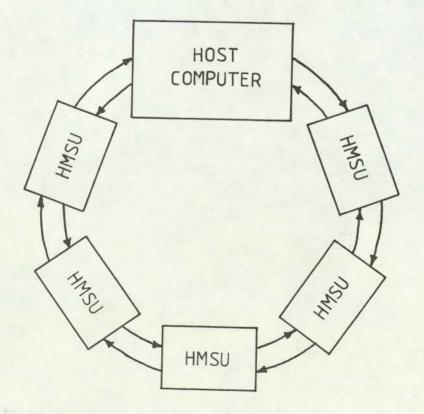


FIGURE 5.8 : RING STRUCTURE

With the present trends of new technologies, increasing reliability and falling costs, system integrity may be enhanced by the use of multiple hardware, and the HMSU is fully capable of providing a high integrity system once the necessary diagnostic software has been developed. A further advantage of the HMSU structure is that it allows modular development of software for each individual processor within the structure. The HMSU structure is specially useful for large-scale systems where a large system problem can be subdivided into smaller subsystem problems. Individual processors in the HMSU can be employed to these smaller subsystem problems and co-ordination for these problems can be achieved by a host computer. Other potential applications for HMSU can be homogeneous or heterogeneous.

There are several further research issues to be pursued such as employing a hardware arbiter for allocating common memory rather than total access control of common memory by a master processor, deadlock problems associated with the hierarchical systems and overall system performance.

CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE

6.1 INTRODUCTION

The HMSU, as discussed in Chapter 5, was designed in the first instance as part of a programme of work on the control of an 8-zone travelling load electrical billet reheating furnace. A travelling load furnace (TLF) constructed in the Department of Systems Science of The City University is basically a laboratory version of industrial TLFs designed to carry out computer control experiments (Caffin, 1972; Sheena, 1977).

Various schemes exist which may be used to control the TLF. Some are simple to implement and require minimal amounts of information about the properties of the plant, while some are sophisticated and optimal in performance but require detailed knowledge of the process and the plant, its inputs and disturbances. A simplified empirical model was developed and tested for the heating of slabs of metal in a multizone TLF (Caffin, 1972), whereas Sheena (1977) implemented and tested the PID algorithm and the on-line least square identification and control schemes.

This chapter briefly describes the TLF and discusses an incremental form of PID control scheme with reference to the control requirements needed to interface the HMSU to the TLF. The design details of the electronic interface and modifications to the existing interface needed for this purpose are also given.

6.2 FURNACE DESCRIPTION

The TLF consists of a 2.7 metre long tunnel with a number of separately controlled electrical heaters distributed along its length and a conveyor carrying blocks of metal (loads) through it. The furnace is designed to heat loads to temperatures up to 500°C. The conveyor is driven by a DC motor. Each of the eight heating zones is powered by two banks of three 1 kw electric fire elements, giving a total furnace power of 48 kw. The zone lining walls are made of aluminium reflectors which are air-cooled and the sections near the heaters (top and bottom surfaces) are water-cooled. Detailed specification of the furnace and the interface with the computer may be found in Caffin (1972).

A schematic diagram of the furnace interfaced with the HMSU and the PDP-11/10 minicomputer is shown in Figure 6.1. The hierarchical computer control strategy using HMSU and the PDP-11/10 minicomputer is explained later in the chapter. The normal operation of the furnace consists of the loads travelling through the heating zones and recycling them after suitable cooling. (A water shower is built outside the furnace if forced cooling is required.) The positions of the loads in the furnace are tracked using a set of six microswitches that are closed by appropriately placed bolts on the conveyor. The interrupt signal generated by the closure of microswitches is processed by the computer.

The electric power input to each of the heating elements in the eight zones or to the speed of the DC motor is adjustable in small discrete steps from zero power to

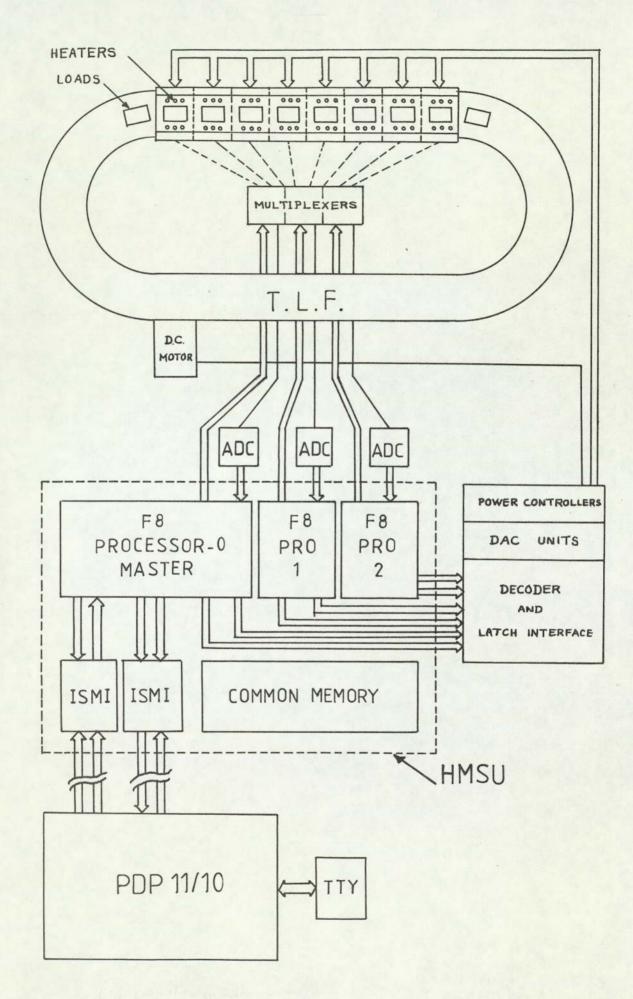


FIGURE 6.1 : The TLF interfaced with the HMSU and the PDP-11/10 minicomputer

full power or zero speed to maximum speed using silicon controlled rectifier power units. The control signals to these nine power units are generated by the computer and transmitted via DAC units.

The temperatures of the loads are measured using Chromal Alumel, stainless steel sheathed and magnesia insulated thermocouples inserted inside each individual load. However, this kind of arrangement for measuring temperatures is rather uncommon as compared with industrial practice. The analogue signals from the thermocouples are multiplexed, amplified and sent to the computer via an A to D converter.

6.3 PID CONTROL SCHEME

The most conventional form of controller used in the process industry is the three-term controller with the constituent terms: Proportional-Integral-Derivative action control (PID). Although PID is the most tried-out method of control, it was chosen for implementation within the processors of the HMSU because of its simplicity and as an experimental example.

The basic concept of PID feedback control is to use the error, the integral of the error and its rate of change between a measured variable and a set-point to generate a signal that actuates the control devices to influence the process so as to reduce this error to zero. The set-point may be truly constant or it may be a programmed profile generated by hardware or software. In the TLF, the zone

setpoints along the length of the furnace define the temperature profile required for the loads. A typical control loop for the measurement and control of temperature within a process plant (or equivalent representative of the TLF) is shown in Figure 6.2. The Figure shows that a setpoint setting, sampling of error signal, its filtering and the PID algorithm implementation is performed in a digital computer.

The discrete PID algorithm is derived from the continuous form of the three-term control algorithm. For a continuously controlled process variable, the analogue control signal is given by:

$$p(t) = K\left(e(t) + \frac{1}{Ti} \int_{0}^{t} e(t) dt + Td \frac{de(t)}{dt}\right) \qquad 6.3.1$$

where p(t) = Control signal at time t
 e(t) = Error between measured and set-point values
 Ti = Integral time constant or reset time
 Td = Derivative time constant or rate time
and K = Proportional gain.

Taking Laplace transform of the above equation becomes:

$$P(S) = K(E(S) + \frac{E(S)}{Ti S} + Td(S E(S) - e(0)))$$
 6.3.2

Assuming at t = 0, e(0) = 0, equation 6.3.2 becomes:

$$P(S) = K(1 + \frac{1}{Ti S} + Td S)E(S)$$
 6.3.3

If the error signal is filtered before the control signal is applied, the effects of noise originating from the process or instrumentation are reduced. However,

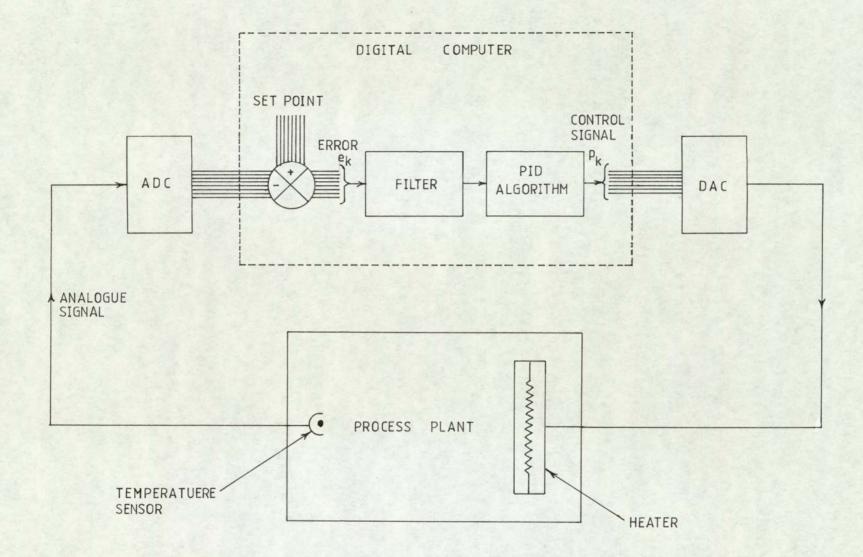


FIGURE 6.2 : A typical temperature control loop of a process plant

filtering will reduce to some extent the effectiveness of the derivative action. Using a simple first order filter with a transfer function as:

$$E(S) = \frac{E(S)}{1 + Tf S}$$
 6.3.4

where E(S) = Laplace transform of actual error signal E(S) = Laplace transform of filtered error signal and Tf = Filter time constant.

Combining equations 6.3.3 and 6.3.4, we get

$$P(S) = \frac{K}{1 + Tf S} \left(1 + \frac{1}{Ti S} + Td S \right) E(S) \qquad 6.3.5$$

i.e.

$$P(S) + TfSP(S) = K(1 + \frac{1}{Ti S} + Td S)E(S)$$
 6.3.6

The inverse Laplace transform of equation 6.3.6 gives:

$$p(t) + Tf \frac{d}{dt} p(t) = K\left(e(t) + \frac{1}{Ti} \int_{0}^{t} e(t) dt + Td \frac{d}{dt} e(t)\right) \quad 6.3.7$$

For digital implementation, a discrete form of equation 6.3.7 is:

$$Pk + Tf \frac{(Pk - P_{k-1})}{\tau} = K(e_k + \frac{\tau}{Ti} \sum_{r=0}^{K} e_r + Td \frac{(e_k - e_{k-1})}{\tau}) 6.3.8$$

where κ = Sampling instant

 e_k = Error signal at the Kth sample interval Pk = Control signal at the Kth sample interval τ = Time interval between samples.

Equation 6.3.8 for the (K-1)th sample interval is:

$$P_{K-1} + Tf \frac{P_{k-1} - P_{k-2}}{\tau} = K(e_{k-1} + \frac{\tau}{Ti} \sum_{r=0}^{K-1} e_r + Td \frac{e_{k-1} - e_{k-2}}{\tau}) 6.3.9$$

Subtracting equation 6.3.9 from equation 6.3.8 and simplifying gives:

$$\Delta Pk = \frac{KT}{Tf+\tau} \left((e_k - e_{k-1}) + \frac{T}{Ti} e_k + \frac{Td}{\tau} (e_k - 2e_{k-1} + e_{k-2}) \right) + \frac{Tf}{Tf+\tau} \Delta P_{k-1} \quad 6.3.10$$

where

$$\Delta P_k = P_k - P_{k-1} \qquad 6.3.11$$

Equation 6.3.10 may be written as:

$$\Delta P_{k} = K_{1} e_{k} + K_{2} e_{k-1} + K_{3} e_{k-2} + K_{4} \Delta P_{k-1} \qquad 6.3.12$$

where

$$K_{1} = \frac{K_{T}}{Tf+\tau} \left(1 + \frac{\tau}{Ti} + \frac{Td}{\tau} \right) \right)$$

$$K_{2} = -\frac{K_{T}}{Tf+\tau} \left(1 + \frac{2Td}{\tau} \right) \right)$$

$$K_{3} = \frac{K}{Tf+\tau} 0$$

$$K_{4} = \frac{Tf}{Tf+\tau} 0$$

$$K_{4} = \frac{Tf}{Tf+\tau} 0$$

and

Equation 6.3.12 is simpler in arithmetic form than equation 6.3.10 but a selection of the values of Ki(i = 1,2,3 and 4) which will suit the process plant for tuning of the PID algorithm is very difficult. However, since these values of Ki are determined by equations 6.3.13, the operator has a convenient choice for the values of K, τ , Ti, Td and Tf, with which he is much more familiar in terms of a feel for process control. Equations 6.3.11, 6.3.12 and 6.3.13 are used for implementation in the software. It is worth noting that all the control loops of the furnace share the same PID algorithm but each control loop has its own set of parameters, past errors and control signals.

6.3.1 Control requirements for the HMSU

One of the main objectives of implementing the HMSU to interface with the TLF is achieved by splitting up the control task into smaller tasks so as to allow parallel processing and distributed control. For this purpose, the furnace has been considered as being divided into three areas having 2, 3 and 3 heating zones respectively and referred to as the preheat, heat and soak sections. This is shown in Figure 6.3. Initially, the master processor of the HMSU is assigned to the preheat section which controls two control loops for the zones 7 and 6, whereas the slave I and slave II processors are assigned to the following heat and soak sections which control each of the three control loops for the zones 5, 4, 3 and 2, 1, 0 respectively. A temperature profile is defined by the set-point temperatures for each of the three sections.

The division of the control tasks for each of the processors in the HMSU and the PDP-11/10 minicomputer are set out as follows:

1. Equations 6.3.11 and 6.3.12 are used for implementation in each of the processors of the HMSU, so that each processor behaves as a PID controller for the TLF.

2. An individual processor of the HMSU is responsible for measuring the load temperature by sampling at regular intervals via its ADC interface channel and sending appropriate control signals to the zone heaters via its DAC interface channel.

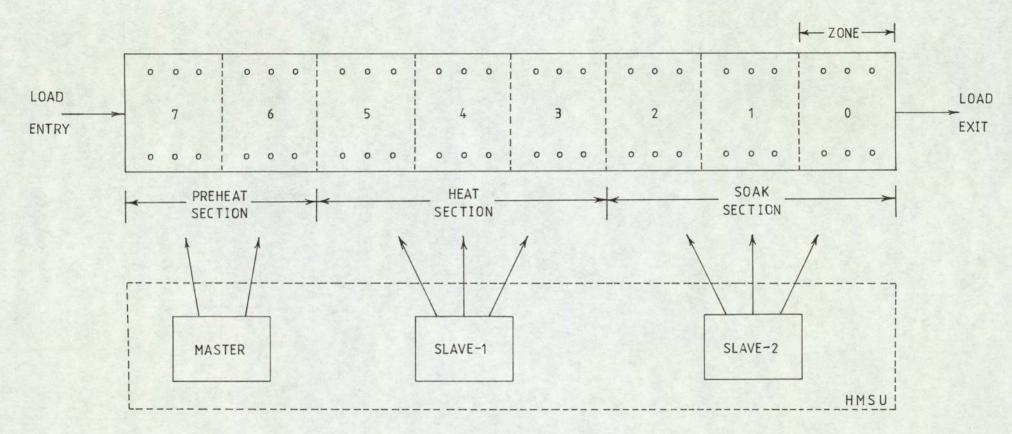


FIGURE 6.3 : Heating sections of the TLF

3. The master processor, additionally, is made responsible for data distribution to the slave processors via the common memory module, while the data collection (e.g. set-points, controller constants, sampling intervals, motor speed etc.) is performed from the PDP-11 computer via the ISMI module. The master processor also collects information data on the current measured temperatures of each billet and the power output to each zone of the furnace and returns it to the PDP-11 host computer again via the common memory and the ISMI. The master processor controls the speed of the conveyor which is maintained constant.

4. The PDP-11 computer implements equations 6.3.13 with a check on the suitability of the steady-state gain value which is derived from equation 6.3.12. Under the steady-state condition $\Delta P_k \simeq \Delta P_{k-1}$ and $e_k \simeq e_{k-1} \simeq e_{k-2}$. Therefore the equation 6.3.12 may be written as:

$$\Delta P_k = (K_1 + K_2 + K_3) e_k + K_4 \Delta P_k$$

$$K_{SG} = \frac{\Delta P_k}{e_k} = \frac{K_1 + K_2 + K_3}{1 - K_4}$$

From equations 6.3.13, it can be shown that $\kappa_{SG} = \kappa_T$. For steady-state value of the error to be zero, κ_{SG} is required to be positive. This control requirement for the value of κ_{SG} is verified by the operator before the controller constants K1, K2, K3 and K4 are passed onto the HMSU.

Another task of the PDP-11 computer is to communicate with the operator and manipulate the input information data in a suitable form and present it to the master processor of the HMSU for its distribution. The display of process generated data from the TLF is also performed by the PDP-11 computer via its GT42 display processor. More details of the PDP-11 tasks are covered in Chapter 8.

One important feature of a control requirement for 5. the HMSU is the operation of the controllers by selection of a control mode from a set of three control modes. The three control modes are outlined in Table 6.1. The operator sets up a desired control mode which allocates specific groups of zones of the TLF to be under the control of specific processors of the HMSU. For example, under a control mode (v), the master processor controls zones 2,1,0; the slave I controls zones 7,6 and the slave II controls zones 5,4,3 and so on. Thus the three groups of zones of the TLF are transparent to control action from the processors. The importance of this feature is recognised when a switching of a control mode may be necessary in the event of a failure of a processor controlling a critical group of zones (e.g. a soak zone).

CONTROL MODE	MASTER	SLAVE I	SLAVE II
	ZONES	ZONES	ZONES
	7,6	5,4,3	2,1,0
V	2,1,0	7,6	5,4,3
W	5,4,3	2,1,0	7,6

TABLE 6.1 : Control modes

6. As the loads travel through from one zone to another zone, the corresponding zone controllers need to update the load addresses. A load update signal provided by the closure of a microswitch is passed simultaneously onto each of the processors of the HMSU as an interrupt signal. A software routine implemented in each processor of the HMSU accounts for updating the load address simultaneously.

6.4 ELECTRONIC INTERFACE REQUIREMENTS

In order to interface the hardware of the HMSU to the TLF, a suitable electronic interface is required for each processor so that it can transfer data to and from the furnace. The data transfer is concerned with addressing zones, addressing thermocouples for temperature measurements and digital data representation of temperature signals. This is achieved by the input/output interface shown in Figure 6.4. It may be noted that since each processor of the HMSU behaves as a controller for the TLF, its input/output interface is identical to that shown in the Figure.

As mentioned earlier in Section 5.5 of Chapter 5, the processors of the HMSU are designed around the Fairchild/ Mostek F8 microprocessor chips set. The input/output interface in Figure 6.4 uses three eight-bit bidirectional ports (Ports 0, 1 and 8) of the F8 microprocessor. The port 0 is used to input an 8-bit equivalent of a temperature measurement, obtained via ADC82, unipolar analogue to digital converter. The same port is also used to output an 8-bit

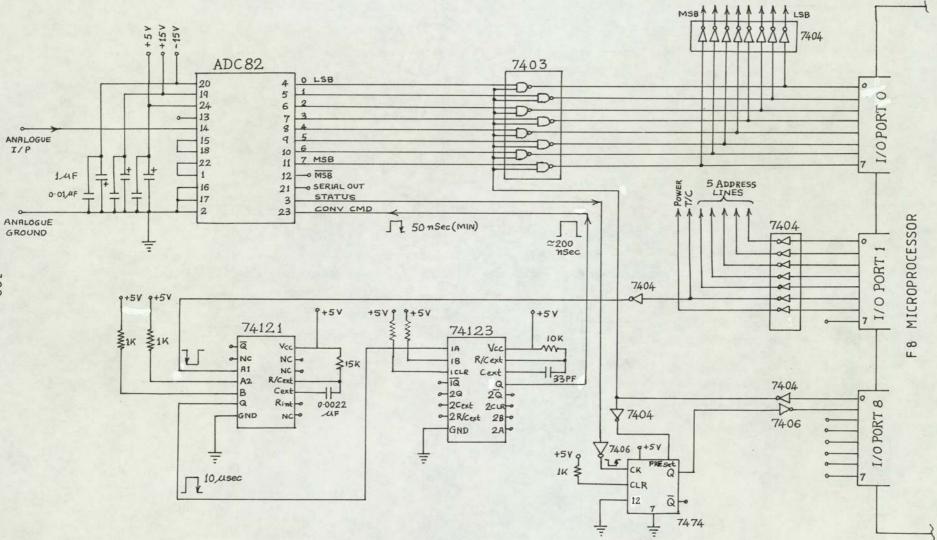


FIGURE 6.4 : Input/Output interface

equivalent of a control signal (P_k) to the TLF. A processor acquires a temperature measurement by setting up a thermocouple address at Port 1 (bits 0 to 5). This causes 74121 (monostable multivibrator with Schmitt-trigger input) and 74123 (retriggerable monostable multivibrator) circuits to generate a conversion command input for the ADC82. When the ADC82 completes the conversion of analogue signal, it generates a status signal which is input to 7474 (dual D-type positive-edge-triggered flip-flop with preset and clear inputs) via a 7406 (inverter). A change in the state at bit 1 of Port 8 caused by 7474 accounts for informing the processor to read the 8-bit equivalent of temperature via its Port 1 by opening the 7403 gates via its Port 8. A processor sends out 8-bit equivalent of a control signal (P_k) via its Port 0 prior to closing the 7403 gates and also after addressing the appropriate zone via its Port 1 (using bits 0 to 3 and bit 6).

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE

The existing electronic interface allows for a single computer connection to be made to control the TLF, irrespective of any control scheme implementation. An ARGUS-500 process control computer was used by Caffin (1972) and Sheena (1977). This interface restricts the use of a multimicroprocessor system such as the HMSU to implement a distributed control scheme. Hence there is a need for interface modification. There are two main areas where these modifications are essential.

1. Firstly, since we want all the three microprocessors of the HMSU to make simultaneous temperature measurements of the load, a single ADC channel fails to satisfy this requirement. Hence, as pointed out in Section 6.4, three independent ADC channels are needed. In all 30 thermocouples, signals are multiplexed and the output analogue signal is passed onto the ADC unit (of the input/output interface) before its necessary amplification. Thus, for the three ADC channels, three analogue signals are required from three independent multiplexer units. This requirement is quite unique for this particular TLF because of the unconventional way in which the temperatures are measured.

2. Secondly, since the three microprocessors of the HMSU compute the actual power (control signal P_k) required for the zones they are assigned to control, no two microprocessors should be allowed to control a single zone via its DAC channel. However, although the assignment of which microprocessor will control which zone is done beforehand (by an operator's choice) a flexibility of a control of any of the eight zones by any of the three microprocessors is desirable. This requirement leads to a major modification in the existing interface.

Figure 6.5 shows some relevant details of the existing computer/furnace interface. Address lines 0 to 4 are used for either thermocouple addressing or zone addressing. When measuring a temperature, a thermocouple address and strobe (on address line 5) is latched by 9308 8-bit latch and is decoded by 9311 decoder (4 line to 16 line decoder/demulti-

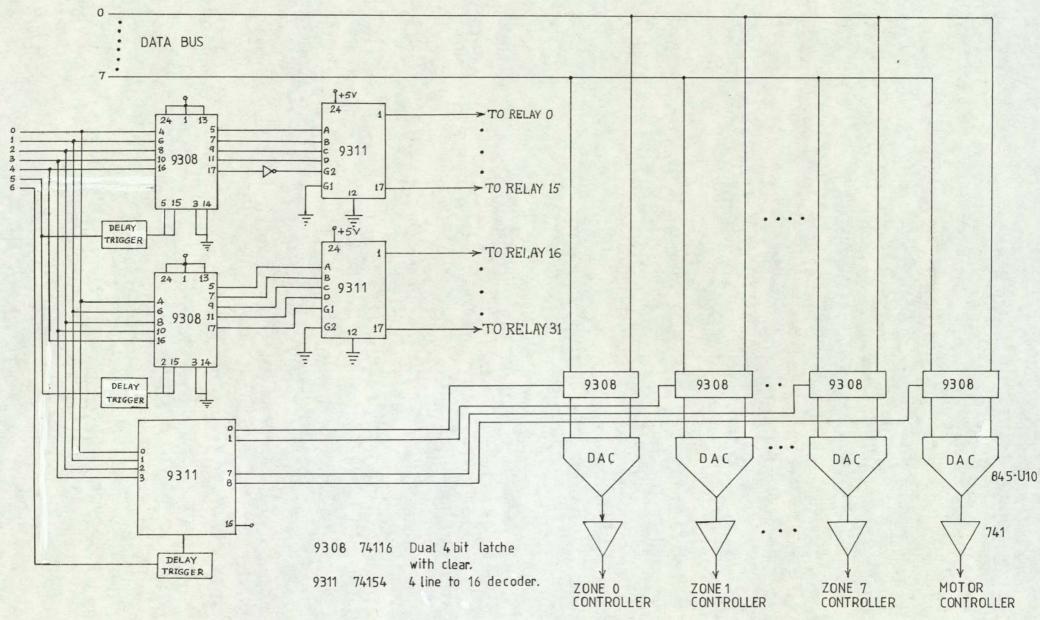


FIGURE 6.5 : Existing computer/furnace interface

plexer). The output lines of the decoder trip the appropriate reed relay for the temperature measurement. When an 8-bit equivalent of appropriate power (control signal P_k) is to be sent to a desired zone, that zone address and strobe (on address line 6) are decoded to enable the 9308 data latch of the DAC channel.

The reed relays used in the multiplexer unit are bulky devices and introduce noise in temperature measurement. The size of the multiplexer unit can be considerably reduced when a set of four, 4051 (single 8 channel) analogue multiplexers are used for multiplexing thermocouple signals. The proposed arrangement using these devices is shown in Figure 6.6. The thermocouple (T/C) address and the T/Cstrobe is latched by 74116 (Dual 4 bit) latch and is decoded further to activate the appropriate 4051 analogue multiplexer. The analogue signal is further amplified by a single stage 741 amplifier and passed onto the ADC. Three such analogue multiplexer units are needed for the three microprocessors.

Figure 6.7 shows a proposed (major) modification for the DAC channels of the zone controlling interface that would satisfy the second requirement. The Figure shows three data bus channels from the three microprocessors and the fourth data bus channel for the ARGUS 500 computer. All bus channels are buffered by 74LS241 octal tristate buffers. For every DAC channel there are four buffers, only one of which is enabled when a zone address appears on 74154 decoder (4 line to 16 line) from the corresponding processor. The output from the 7440 (NAND buffers) also enable the 9308

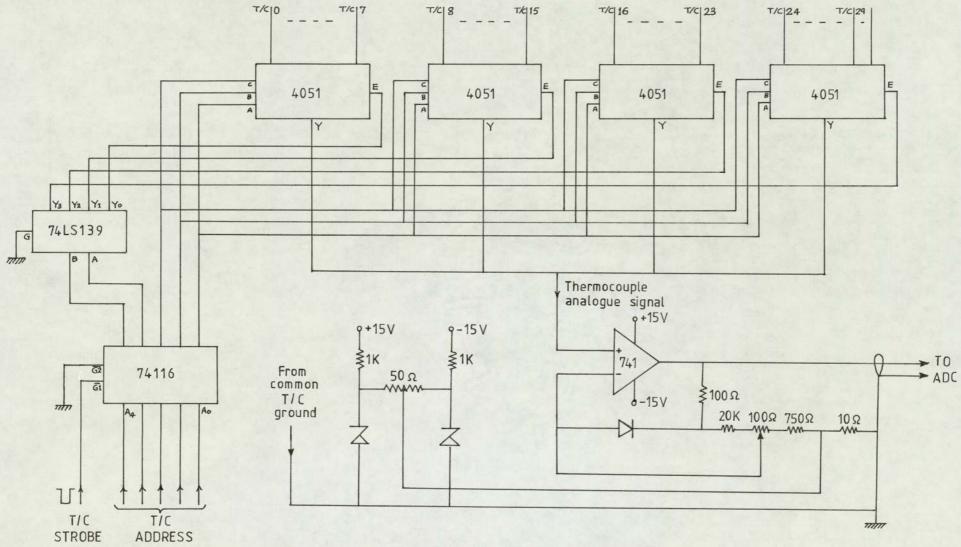


FIGURE 6.6 : Analogue multiplexer interface

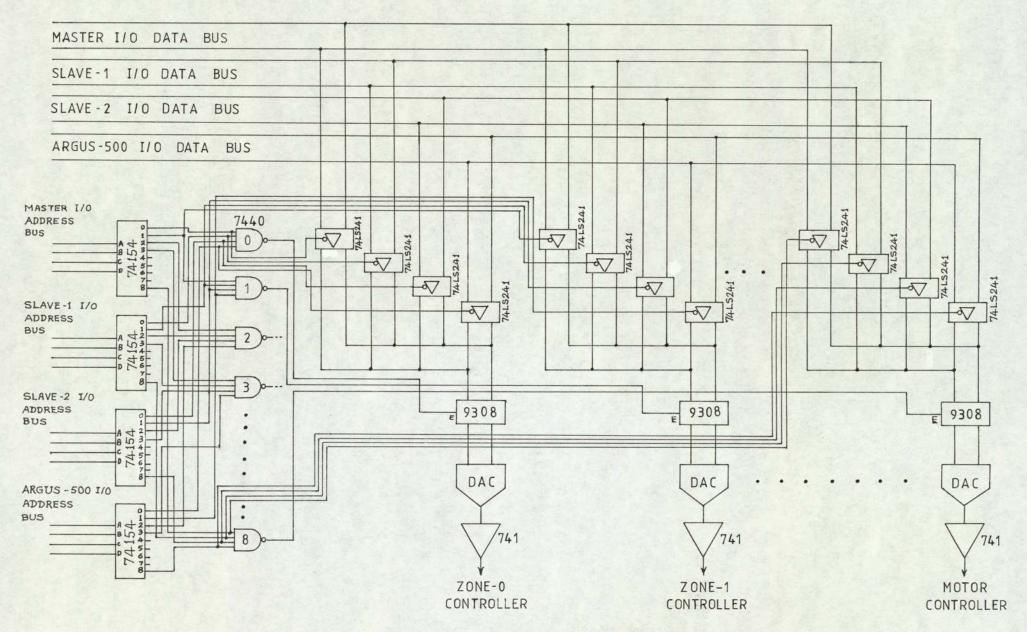


FIGURE 6.7 : Modification to DAC channels

8-bit latches at the same time so that the buffered data is latched for that particular DAC channel. Each DAC unit converts the latched digital data into analogue signal which is amplified by 741 operational amplifier and is responsible for controlling the level of heating inside the zone.

6.6 CONCLUSIONS

The TLF described in this chapter is a typical example of the kind of application selected for employing hierarchical computer control using a multi-microprocessor system such as the HMSU. The application clearly establishes the control requirements both at software level and hardware interface level. The implementation of the control requirements for the HMSU is a subject matter for Chapters 7 and 8. The overall control strategy used for the HMSU to control the TLF requires a major modification of the existing interface. This has remained in the proposal stage mainly because of the lack of suitable development and testing environment for the HMSU and hence is a topic of further investigation.

CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM

7.1 INTRODUCTION

The software for the HMSU mainly consists of independently stored programs, residing in PROMs of individual processors. For the purpose of this project, these programs are designed such that each processor within the HMSU behaves as a controller for the Travelling Load Furnace (TLF) described in the previous chapter. The processors of the HMSU execute their stored programs simultaneously. This accounts for various interactions between (1) the processors of the HMSU and the TLF, (2) the master and the slave processors and (3) the master and the host PDP-11/10 minicomputer. The software development for the HMSU to resolve these interactions is indeed a complex task. Other features of this software development task include:

1. the use of a low level programming language for the Fairchild F8 microprocessor.

2. programming for real-time operation

3. programming with due care for software dependency on hardware architecture

4. programming for a multi-level interrupt structure.

With reference to the above features, this chapter describes a program for the master processor of the HMSU. The program design is based upon the three major interactions outlined above. The entry and exit points for the flowcharts given in this chapter include, for ready reference,

the line numbers of the corresponding listing given in Appendix C. Furthermore, some details of programming features uniquetto the F8 microprocessor, and hardware details of the master processor, are covered in Appendices B and A respectively.

7.2 SOFTWARE DEVELOPMENT AID

In order to develop an object code program from a source code program, a need for a software development aid is of vital importance. A general program development procedure has been already outlined in Chapter 3. The program described in this chapter was initially developed on time-sharing, MAXI-MOP operating system for the ICL 1905E mainframe computer system. The F8 crossassembler (Mk 3 version) made available by Davies (1977) was used to produce an object code program. The crossassembler is a two-pass assembler and Figure 7.1 shows its general structure for producing TAPE and STOR subfiles from a source program subfile called PROG. The TAPE subfile may be used to produce a paper-tape version of the object code for loading into the target F8 microprocessor or for loading and testing it on a simulator. The STOR file contains the listing of the source subfile PROG and its corresponding object code.

During the course of development of software for the master processor of the HMSU system, the MAXI-MOP operating system and the ICL 1905E mainframe computer system were both withdrawn from service and, for this reason, a need arose to transfer and create new files onto another

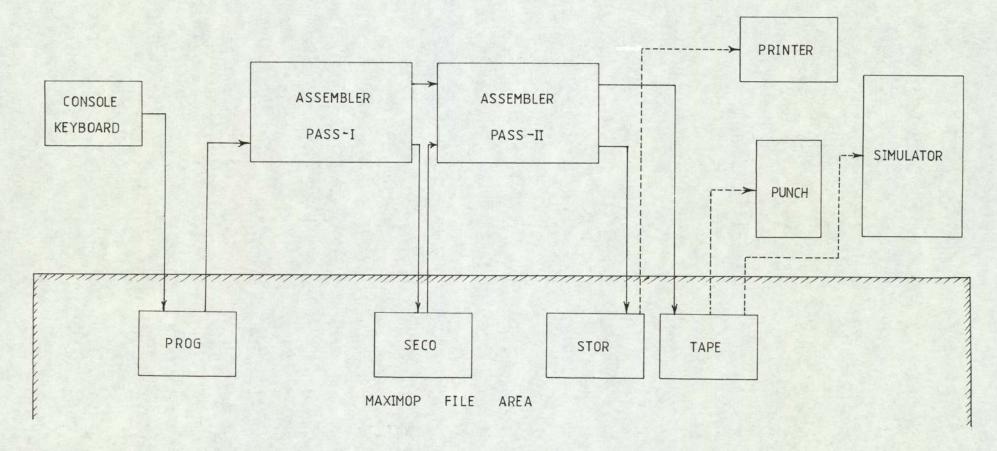


FIGURE 7.1 : The F8 cross assembler (Mk 3) structure

machine. The MOSTEK Z80 disk system (MDS Z80 system) was made available in the Electrical and Electronic Engineering Department and the F8 Assembler (F8XASM) available on this system was finally used for the program development described in this chapter. The program development was found to be more efficient than the MAXI-MOP system because the MDS Z80 system (1979) is a single-user system with facilities such as Editor, F8 assembler (F8XASM), linker etc. and a versatile operating system (OS). As the MDS Z80 system description and how to use it are given in the reference manual, no further discussion is made here. The object code of the master program called HMSU-SRC (Hierarchical Microprocessor System Unit-SouRCe) is produced in Intel format which is intended for loading into 2708 PROMs. The HMSU-LST contains the F8 assembly language source program and the corresponding object code generation, an alphabetical list of labels and their cross-references and the number of errors occurring during the assembly.

7.3 ASSUMPTIONS AND DEFINITIONS

Before continuing the discussion of the master program, it is worth mentioning various assumptions and definitions governing the program. The assumptions are as follows:

1. The hexadecimal number system is used to represent temperatures, digital control signal output, constants etc.

2. Arithmetic calculations are performed using two's complement so that H'00' to H'7F' represent the positive integers from 0 to 127 and H'FF' to H'80' represent the negative integers from -1 to -128.

3. Fixed point arithmetic is used.

4. The hexadecimal representation of temperatures is such that for every byte change, a change of 2° C in temperature is obtained. Thus, for example, H'19' represents 50° C, H'32' represents 100° C and so on.

The definitions used are as follows:

1. The PROM and RAM address ranges are defined as shown in Figure 7.2. The memory map for the slave processors is identical to that of the master while the memory map of the common memory is common to all three processors of the HMSU.

2. The 64 bytes of scratchpad registers available on the CPU (i.e. the F8 microprocessor chip), for each of the processors are defined to store transient data. The significance of this data carries specific interpretation and this is shown in Figure 7.3. For example, the control loop-1 in the Figure shows the use of eight registers (0'70' to 0'77') for storing temperature measurements, error signals, control signals etc. of the PID algorithm described in the previous chapter.

3. Each of the master and slave processors provides 14 ports, out of which six are input/output and the remainder are write only. The ports assignment is defined as shown in Table 7.1.

4. The zone addresses in term of hexadecimal numbers range from H'40' to H'47' for Zone '0' to Zone '7' respect-

0000			3 (B) (B)
03FF 0400	}1K	2K PROM	
07FF	} 1K	All the second	
0800 083F	64 BYTES	(COPY OF ISMI INPUT CHANNEL)	
0840 087F	64 BYTES	(AUXILARY DATA)	
0880 08BF	64 BYTES	(COPY OF SLAVE-1 DATA)	1K PRIVATE
0800 08FF	64 BYTES	(COPY OF SLAVE-2 DATA)	RAM
0900 OBFF	768 BYTES	(RAM STACK AREA)	

0000 64 BYTES (COPY OF ISMI) OC3F 0040 (SPARE) 64 BYTES 0C7F 0C80 lK COMMON 64 BYTES (SLAVE-1 WRITTEN DATA) RAM OCBF MEMORY 0000 (SLAVE-2 WRITTEN DATA) 64 BYTES OCFF ODOO 768 BYTES (SPARE) OFFF 1000 LK SPARE COMMON RAM MEMORY 13FF

FIGURE 7.2 : Memory map of the master processor and common memory

	0	00)	32	40	
	1	01		33	41	a same a second second
	2	02		34	42	SPARE
	3	03	GENERAL	35	43	REGISTERS
	4	04	> PURPOSE	36	44	
	5	05	REGISTERS	37	45	Sections (Dest
	6	06		38	46	
	7	07		39	47]
	8	10		40	50	$\triangle Pk - 1$
	9	11		41	51	Pk - 1
1	10	12	SPECIAL	42	52	△Pk Upper
	11	13	PURPOSE	43	53	△Pk Lower
r	12	14	REGISTERS	44	54	ek-2
,	13	15	a subscription of the	45	55	ek-1
r	14	16		46	56	ek
,	15	17/		i 47	57	Temperature
1	16	20		48	60	$\triangle Pk - 1$
	17	21	SOFTWARE	49	61	Pk - 1
	18	22	STACK	50	62	△Pk Upper
	19	23	SPACE	51	63	△Pk Lower
	20	24		52	64	ek-2
	21	25	1 North States and States and	53	65	ek-1
	22	26		54	66	ek
	23	27		55	67	Temperature
	24	30	TIMER COUNTER (253)	56	70	$\triangle Pk - 1$
	25	31	30 sec COUNTER FOR PID	57	71	Pk - 1
	26	32	10 sec COUNTER FOR ISMI	58	72	△Pk Upper
	27	33		59	73	△Pk Lower
	28	34		60	74	ek-2
	29	35		61	75	ek-1
	30	36	States and the states	62	76	ek
	31	37		63	77	Temperature

FIGURE 7.3 : Scratchpad memory map

CHIP TYPE	PORT NO	MASTER PROCESSOR	SLAVE I PROCESSOR	SLAVE II PROCESSOR
3850 CPU	0	Input from ADC and output data to the TLF (ref. Fig. 6.4)	Same as master	Same as master
	1	Zone and T/C addresses plus strobes (ref. Fig. 6.4)) -do-) -do-
3861 PIO (MK90002)	8	Bits 0 and 1 for I/O interface (ref. Fig. 6.4)	Same as master	Same as master
(IIK)00027	9	Used for setting up slave addresses	Not used	Not used
	A	Interrupt control port (write only)))Same as) master))Same as)master
	В	Timer control port (write only)))
3861 PIO (MK90003)	20	ISMI interface)))Not used)))Not used
(MK90003)	21	ISMI interface)))
	22	Interrupt control port (write only)))Same as)master))Same as)master
	23	Timer control port (write only)))
3853 SMI	С	Interrupt vector address upper byte (write only)	Same as master	Same as master
	D	Interrupt vector address lower byte (write only)	-ob-	-do-
	E	Interrupt control port (write only)	-ob-	-do-
	F	Timer control port (write only)	-do-	-do-

TABLE 7.1 : Ports assignment

ively. Similarly, the loads which travel through the TLF have address range from H'20' to H'3D' for Load 0 to Load 29. The motor which controls the speed of the conveyor has an address of H'50'.

5. The input and output channels of the HMSU which consist of ISMI memory modules account for data collection from and by the PDP-11 respectively. The 64 locations of each of the ISMI memory modules have write and read addresses. The read addresses range from H'40' to H'7F' and the write addresses range from H'80' to H'BF'. The memory locations of these modules are defined to store particular items of data. The labels of these data items and their storage locations are depicted in the matrix form shown in Figures 7.4 and 7.5. The significance of the labels used in these Figures and those used in the program, given in Appendix C, is given at the end of this chapter.

7.4 PROGRAM DESCRIPTION

The master program is only a one-third part of the overall software required for the three processors of the HMSU. However, its development is critical because the master processor behaves as a communicator with the slave processors, via common memory, and with the PDP-11/10 minicomputer, via ISMI memory modules. Thus, as far as the slave processors are concerned, their communication with the master via common memory is initiated by the master processor using external interrupts, whereas the master communicates with the PDP-11 at regular intervals using

	BF		BE	BD	BC	BB	BA) В9	B8
Cl		C2		03	LA	NS	MS	CM	IRUN
	7F		7E	7D	70	7в	74	79	78
	B7		в6	B5	B4	B3	B2	Bl	BC
ISP1		Kll		Kl2	K13	Kl4	SII	NR MA	
	77		76	75	74	73	72	71	70
	AF	1	AE	AD	AC	AB	AA	A9	AN
ISP2	S. C.	K21		K22	K23	K24	SI2		
	6F		6E	6D	60	6в	6A	69	68
	A7	a land	AG	A5	A4	A3	A2	Al	A
ISP3		K31		K32	К33	K34	SI3		
	67		66	65	64	63	62	61	60
	9F		9E	9D	90	9B	9A	99	98
	5F		5E	5D	50	5B	54	59	58
	97		96	95	94	93	92	91	90
	57		56	55	54	53	52	51	50
in the second	8F		8E	8D	80	8B	A8	89	88
	4F		4E	4D	40	4B	44	49	48
	87		86	85	84	83	82	81	8
						RCPS	RFPS	WFPC	WFPS
	47		46	45	44	43	(42	41	4

DATA ENTRY FROM THE PDP-11

DATA COLLECTION BY THE

MASTER

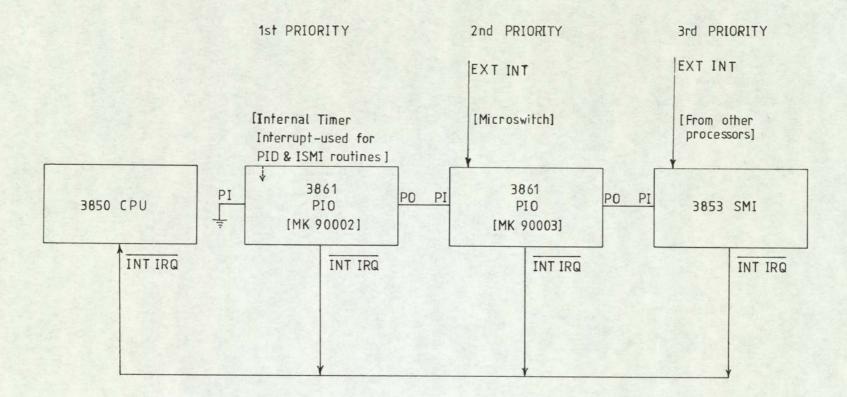
FIGURE 7.4 : ISMI memory map - input channel of the HMSU

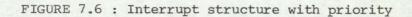
DATA COLLECTION BY THE PDP-11

40	41	42	43	44	(45)	46	47
RFMS	RFCMS	WFMS	WFCMS	++	4)) 40	71
ILF MO	III OHO	112 1210	MI 0110			and so the	
80	81	82	83	84	85	86	87
48	49	4A	4B	40	4D	4E	4F
	LAS23	POWS23	TEMPS23	ZONAS23	SNOS23	LAS22	POWS22
88	89	88	8B	8c	8D	8E	8F
50	51	52	53	54	55	56	57
remps22	ZONAS22	SNOS22	LAS21	POWS21	TEMPS21	ZONAS21	SNOS21
90	91	92	93	94	95	96	97
58	59	5A	5B	5C	5D	5E	5F
	LAS13	POWS13	TEMPS13	ZONAS13	SNOS13	LAS12	POWS12
98	99	9A	9B	90	9D	9E	9F
60	61	62	63	64	65	66	67
TEMPS12	ZONAS12	SNOS12	LAS11	POWS11	TEMPS11	ZONAS11	SNOS11
AO	Al	A2	A3	A4	A5	A6	A7
68	69	6A	6в	60	6D	6E	6F
	LAM3	POWM3	TEMPM3	ZONAM3	SNOM3	LAM2	POWM2
8A	A9	AA	AB	AC	AD	AE	AF
70	71	72	73	74	75	76	77
TEMPM2	ZONAM2	SNOM2	LAML	POWML	TEMPMI	ZONAM1	SNOM1
BO	Bl	B2	B3	B4	B5	вб	B7
78	79	7A	7 B	70	7D	7E	7 F
B8	B9	BA	BB	BC	BD	BE	BF

DATA ENTRY FROM THE MASTER

FIGURE 7.5 : ISMI memory map - output channel of the HMSU


real-time software interrupts. Thus the structure of the master program is based on the processing of various interrupts. Numerous routines are described in the following sections which handle interrupts, communication aspects of the master processor, its controller actions etc.


7.4.1 Interrupt Structure

The hardware architecture of the F8 processor provides interrupt handling capability using a serial priority network known as a "daisy-chain". The details of this are described in Appendix B. An interrupt structure with assigned priorities used in the master program is shown in Figure 7.6. The priorities are assigned as follows:

1. First priority: A timer available on the first PIO chip runs continuously and is used to count real time. The timer port of this chip is loaded with a maximum count of 253 so that this PIO chip pulls the INT REQ line low, every 3.953 milliseconds. Using this timer, a PID algorithm is entered after counting a time equal to the sampling interval, required for the measurement of temperature of the loads. The master processor also makes use of this timer to see if the PDP-11 has sent any new information for the controllers. This viewing process is performed at regular intervals, using the timer, say every 10 seconds for example.

2. Second priority: An external interrupt line available on the second PIO chip is used to inform the processor the load position within the zone which is under

control. A signal coming from a microswitch, indicating the position of the load, pulls this line low to generate the external interrupt. A microswitch interrupt routine which is then entered allows the load addresses to be updated as the loads travel through from one zone of the TLF to the next.

3. Third priority: This priority level, which also uses the external interrupt line available on the SMI chip, is used for signalling the master processor that a particular slave processor has finished with the access of the common memory. The master processor, having received this interrupt, allows the next slave processor or itself to have access to common memory.

The interrupts generated by the PIO and SMI chips with the above-mentioned priorities need to be processed one at a time by the CPU. However, a possible occurrence of a higher priority interrupt causing a lower priority program execution to be interrupted needs careful handling. This issue is further complicated by the uncertainty with which these multi-level interrupts occur. Although serviceing a large number of interrupts with one CPU having a single hardware stack is inefficient (Fairchild, F8 users' guide, 1976), this problem can be overcome by using entry and exit protocols during interrupt serviceing.

In order to handle these multi-level interrupts, two routines are implemented which use a RAM memory area. This area is used as a stack to store contents of the accumulator, ISAR (Indirect Scratchpad Address Register), status

register, and registers: DCO, DC1, KU and KL, when a current program execution is interrupted by a higher priority interrupt. This storing process is performed by a routine called CALL. When the execution of the higher priority interrupt routine is complete, the contents of the accumulator, ISAR, status register and registers: DCO, DC1, KU and KL are restored by using the RETN routine, so that the current program execution is resumed. A pointer is maintained in the scratchpad buffer area of the CPU, to point to the next empty stack area of the RAM memory. This pointer is incremented by nine locations at the end of the CALL routine and is decremented by nine locations at the end of the RETN routine. Furthermore, interrupts are enabled at the CPU after the CALL routine and disabled at the beginning of the RETN routine, and re-enabled according to the program execution which immediately follows. An example of a two-level priority interrupt structure is shown in Figure 7.7. The flow charts for the CALL and RETN routines are shown in Figure 7.19.

7.4.2 Initialisation

The master program is initialised at the beginning of the main program execution. The initialisation procedure is entered when the HMSU is switched on or by reset action. The following list shows the actions performed during the initialisation procedure:

1. Disable all interrupts

2. Clear all the input output ports

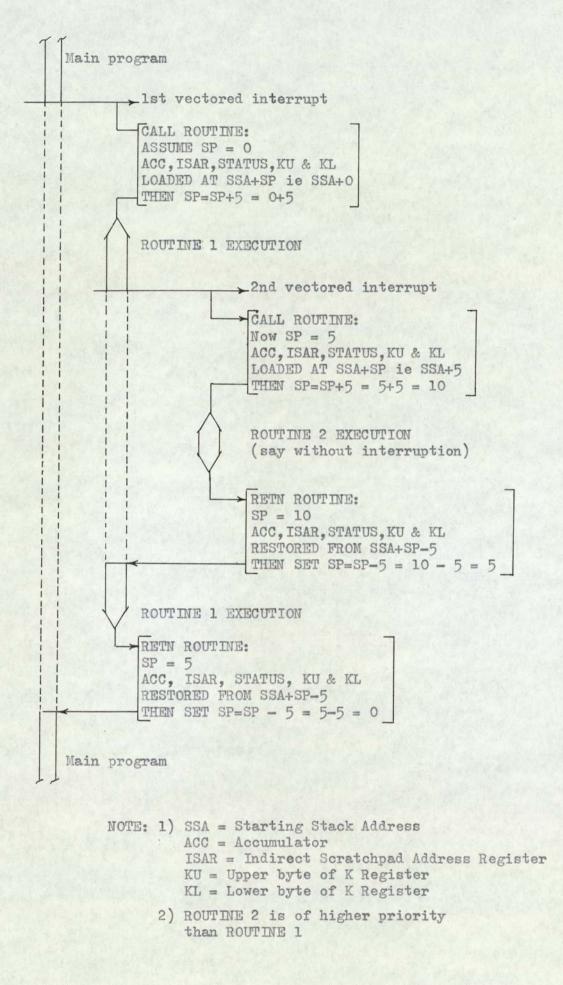


FIGURE 7.7 : Example of two-level priority interrupt structure

3. Clear the control loop buffers.

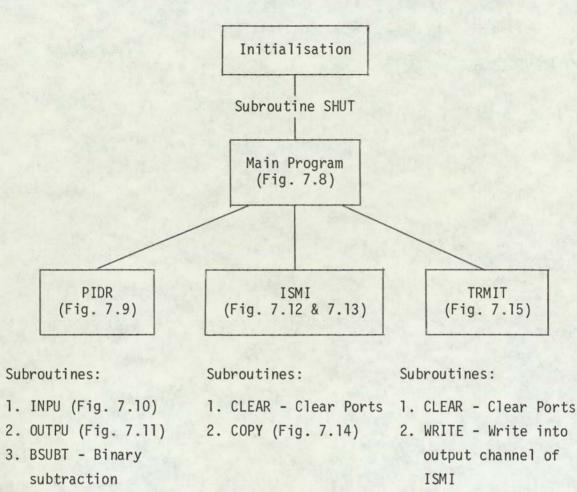
4. Switch off all the heaters of the TLF and switch off the motor of the conveyor by using the SHUT routine.

5. Clear 256 bytes of the private RAM where the input channel ISMI memory contents are to be copied.

6. Close the timer port and enable the external interrupt port of the second priority PIO chip.

7. Load port H'OB' of the first priority PIO with a 253 count and enable timer interrupts at this chip.

8. Load the SMI vector address ports H'OC' and H'OD' with H'O1' and H'FO' (i.e. vector address H'O1FO') and enable external interrupts at the SMI chip.


9. Load ISAR 30, 31 and 32 with counts 253, 30 and 10 respectively. These are the timer count, sampling interval count of 30 seconds and ISMI scan count of 10 seconds.

10. The PIDFLG (i.e. PID flag) and SNO (sample number) are cleared and ISMIFG (i.e. ISMI flag) is set.

7.4.3 The main program

The main program is basically a very short program in which the master processor loops around, checking if either the PIDFLG flag or the ISMIFG flag or the TRF flag is set. This program is executed at the lowest priority. The following tree structure shows how the main program is related to other subroutines implemented in Appendix C.

The flow charts of some specific routines such as INPU, OUTPU, COPY etc. are shown in the corresponding Figure numbers shown in brackets. In addition, the main program

- BMPY Binary multiplication
- 5. TRAN Register transfer
- BADD Binary addition
- RECORD Record control loop parameters
- STOP Stop or end of TLF run
- MODLZA Modify Loadzone addresses

is mainly interrupted by the following:

1. Timer interrupt routine (Fig. 7.16): This routine as described earlier in the priority structure is responsible for counting real time and setting PIDFLG and ISMIFG

when the corresponding sampling intervals and ISMI scanning periods are completed.

2. External interrupt caused by the microswitch (Fig. 7.17): This routine is responsible for updating each load address as the loads travel through the TLF.

3. External interrupt caused by the other slave processors (Fig. 7.18): This routine, as mentioned earlier, facilitates access to the common memory by the processors of the HMSU under the supervision of the master processor.

In support of the above three interrupt routines, the interrupt structure demands the use of CALL and RETN subroutines, the flow-charts of which are shown in Figure 7.19.

7.5 CONCLUSIONS

The program described in this chapter applies to the master processor only. Similar program development is necessary for the Slave I and II processors except for the inclusion of the ISMI routines. Although the master program described here is produced with no assembly errors, the logical testing and debugging of the program on the actual hardware could not be performed due to lack of testing and debugging facilities. The cross-software development aid, such as using cross-assembler on the MAXIMOP system, for program development has its limitations and is inefficient for program development of multi-microprocessors. The scope for further development of the program is enormous; for example, performance evaluation, self-diagnosis of

hardware, failure detection and alarm condition signalling (i.e. fault-tolerance mechanisms) etc. requires further research.

LIST OF LABELS

FIGURE 7.4

c1, c2, c3	= Status of controllers 1, 2 & 3. It may be either ON or OFF.
LA	= Load address.
NS	= Number of samples.
MS	= Motor speed of the conveyor.
СМ	= Control Mode. It may be UUU, VVV or WWW.
IRUN	= Integer run number for the TLF.
ISP1, ISP2) ISP3)	= Integer set point temperature for controllers 1, 2 & 3.
к11, к12, к	13, K14 = Four controller constants for controller no. 1.
к21, к22, к	23, K24 = Four " " " no. 2.
к31, к32, к	33, K34 = Four " " " no. 3.
SI1, SI2, S	I3 = Sampling intervals for controller no. 1, 2 & 3.
RCPS	= Read count PDP set.
RFPS	= Read flag PDP set.
WFCPS	= Write flag count PDP set.
WFPS	= Write flage PDP set.
FIGURE 7.5	
RFMS	= Read flage master set.
RFCMS	= Read flage count master set.

WFMS	=	Write	flage	master	set.	
------	---	-------	-------	--------	------	--

WFCMS = Write flage count master set.

SNOM1, SNOM2, SNOM3 = Sample number in control loop 1, 2 & 3 of the master. SNOS11, SNOS12, SNOS13 = Sample number in control loop 1, 2 & 3 of the

Slave I.

SNOS21, SNOS22, SNOS23 = Sample number in control loop 1, 2 & 3 of the
Slave II.

ZONAM1, ZONAM2, ZONAM3 = Zone address in control loop 1, 2 & 3 of the master.

ZONAS11, ZONAS12, ZONAS13 = Zone address in control loop 1, 2 & 3 of the Slave I.

ZONAS21, ZONAS22, ZONAS23 = Zone address in control loop 1, 2 & 3 of the
Slave II.
TEMPM1, TEMPM2, TEMPM3 = Temperature measurement in control loop 1, 2 & 3
for the master.
TEMPS11, TEMPS12, TEMPS13 = Temperature measurement in control loop 1, 2
& 3 for the Slave I.
TEMPS21, TEMPS22, TEMPS23 = Temperature measurement in control loop 1, 2
& 3 for the Slave II.
LAM1, LAM2, LAM3 = Load address in control loop 1, 2 & 3 for the master.
LAS11, LAS12, LAS13 = Load address in control loop 1, 2 & 3 for the
Slave I.
LAS21, LAS22, LAS23 = Load address in control loop 1, 2 & 3 for the
Slave II.

FIGURE 7.8

PIDFIG	= PID control algorithm flag.
ISMIFG	= ISMI memory (input channel) scan flag.
TRF	= Transmit flage for data transmission to output channel
	of the ISMI.
PIDR	= PID routine entry point.
ISMI	= ISMI routine entry point.
TRMITT, TRMIT	= Transmit routine entry point.

FIGURE 7.9

TSLA	= Temporary starting load address.
SLA	= Starting load address.
TSZONA	= Temporary starting zone address.
SZONA	= Starting zone address.
LZAC	= Load-zone address counter.
L1, L2, L3	= Entry points for control loop 1, 2 & 3.
CALCU	= Calculation of control signal using PID algorithm
	(entry point).
RECORD	= Record routine that records the values of control loop
	calculations and measurements.
MODLZA	= Modify load and zone addresses.

FIGURE 7.18

SPAO	= Store of port address for the master.
SPA1	= Store of port address for the Slave I.
SPA2	= Store of port address for the Slave II.
CMAR	= Entry point for the common memory access routine.
טטט	= Entry point for control mode UUU.
vvv	= Entry point for control mode VVV.
WWW	= Entry point for control mode WWW.

FIGURE 7.19

ISAR	= Indirect scratchpad address register.
CALL	= Entry point of CALL subroutine.
DCO	= 16 bit data counter register.
DC1	= 16 bit data counter stack register.
SP	= Stack pointer.
SSA	= Starting stack address in RAM memory area.
KU	= Upper byte of K register.
KL	= Lower byte of K register.

FIGURE 7.15

MTRF	= Master transmit flag.
SITRF	= Slave I transmit flag.
S2TRF	= Slave II transmit flag.
TRFC	= Transmit flage count.

FIGURE 7.17

MSCNT = Microswitch counter.

NOTE

It is important that the critical parts of the various programs (eg. Figure 7.12) are made interrupt proof. For instance, important flags should be tested before interrupts are enabled.

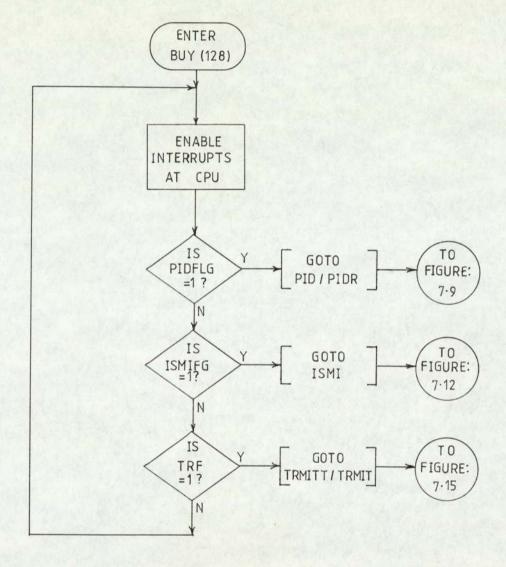


FIGURE 7.8 : Main program of the master processor

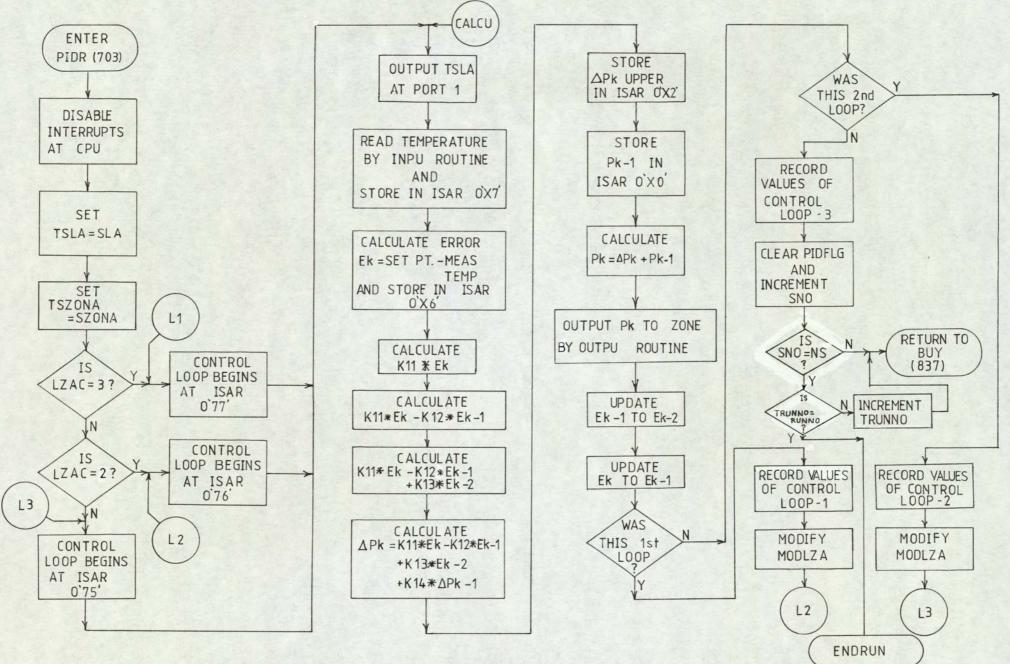


FIGURE 7.9 : PID Routine

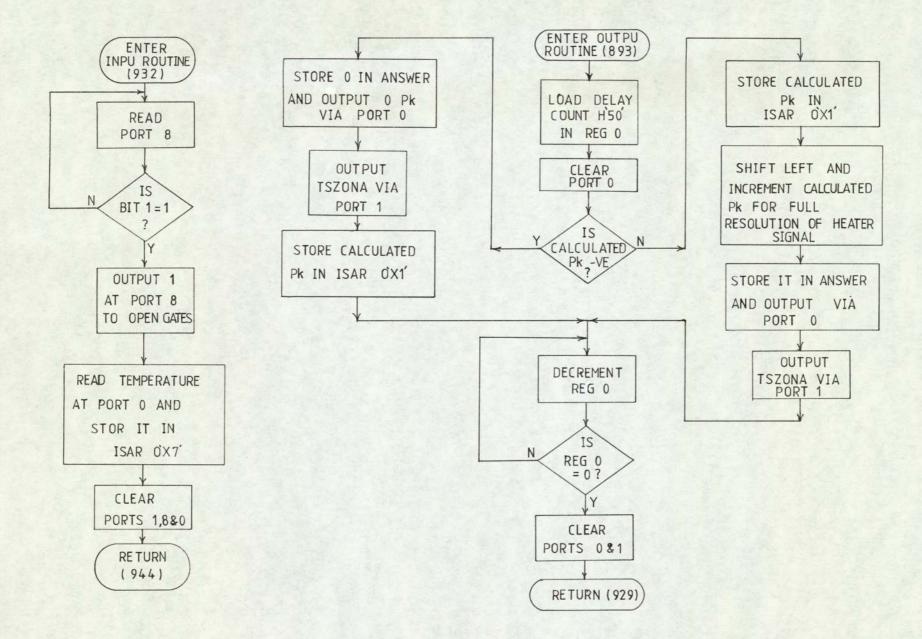


FIGURE 7.10 : INPU subroutine to read in temperature of a load

FIGURE 7.11 : OUTPU subroutine to output power to a zone

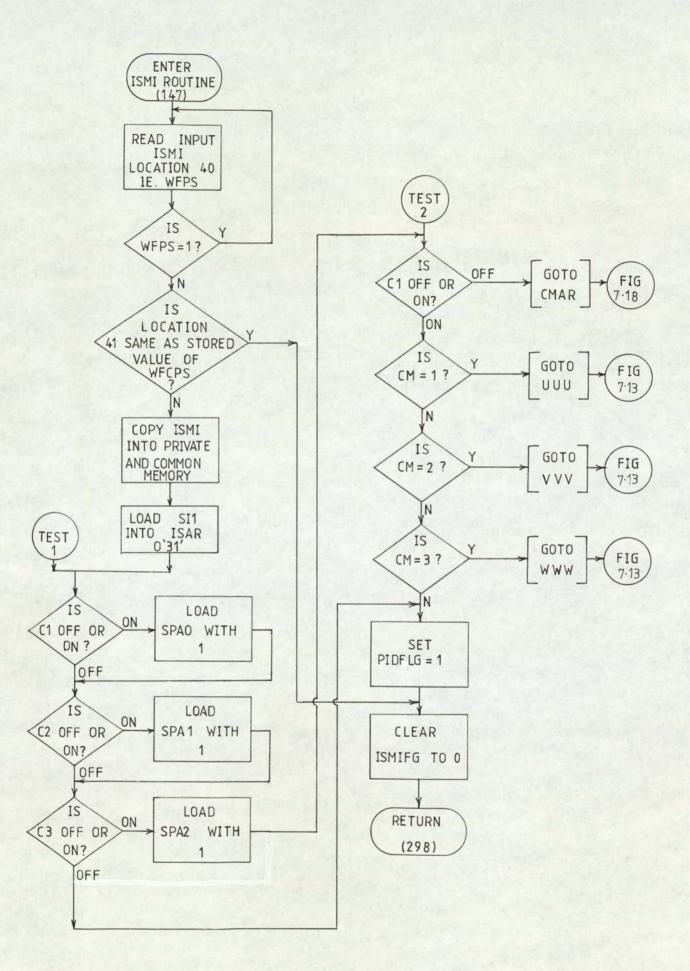
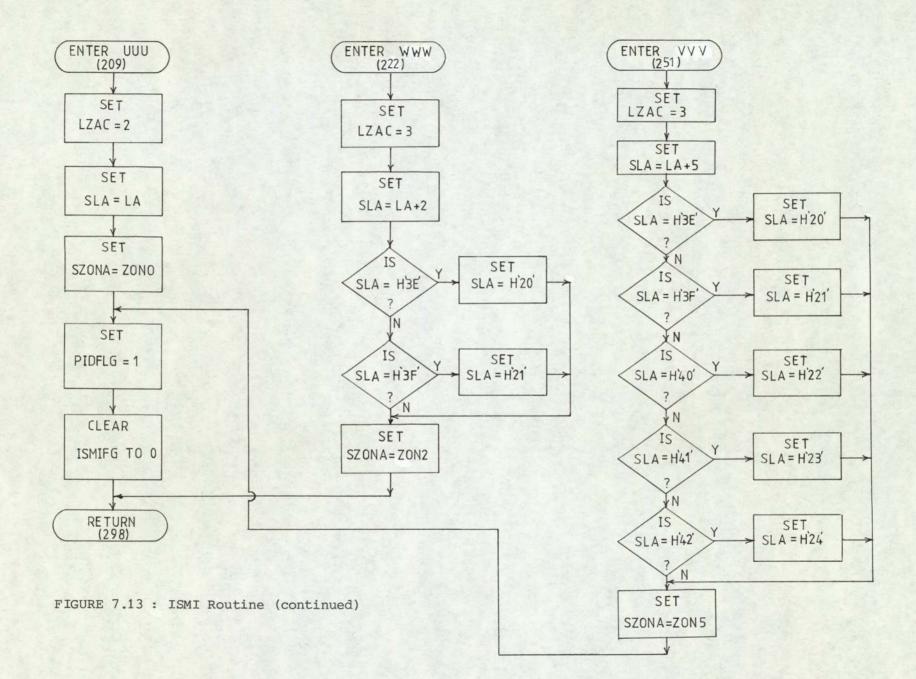



FIGURE 7.12 : ISMI Routine

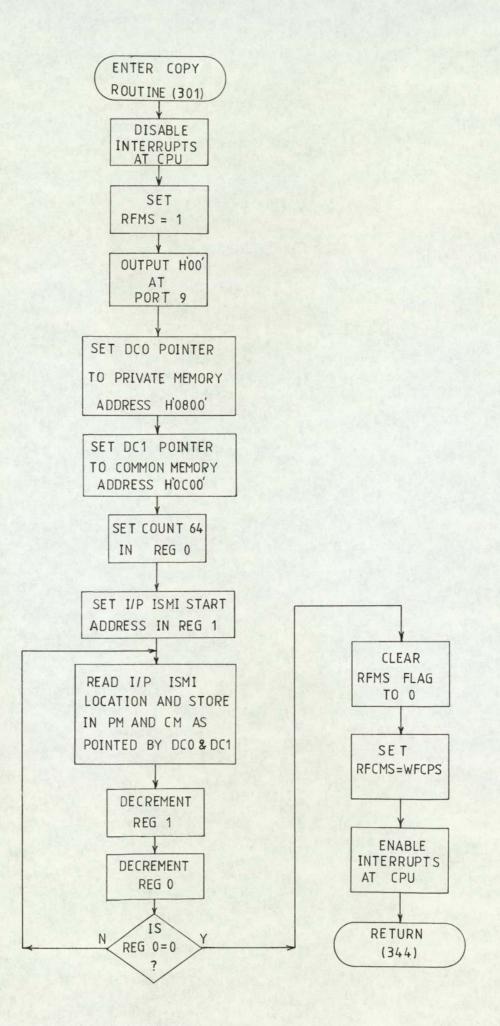


FIGURE 7.14 : Subroutine to copy ISMI data into PM and CM

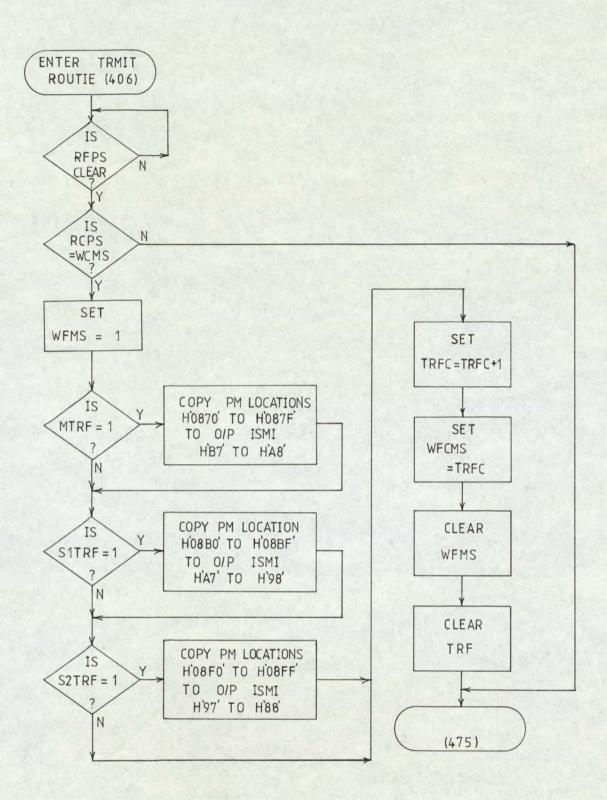


FIGURE 7.15 : TRMIT routine for data transfer from the master to o/p ISMI channel

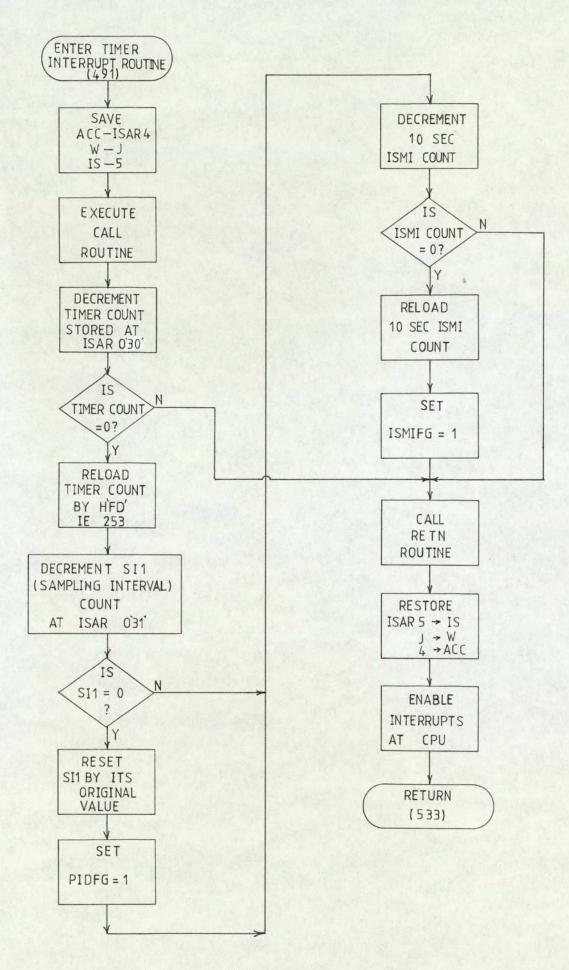


FIGURE 7.16 : TIMER Interrupt Routine

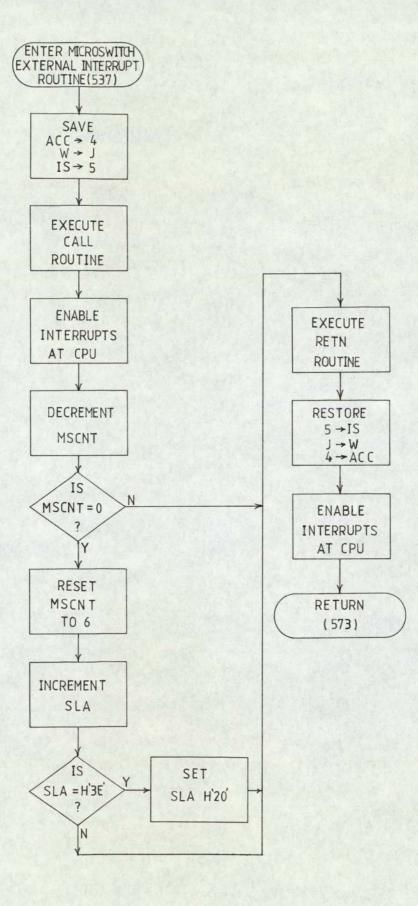


FIGURE 7.17 : External Interrupt routine for load address update

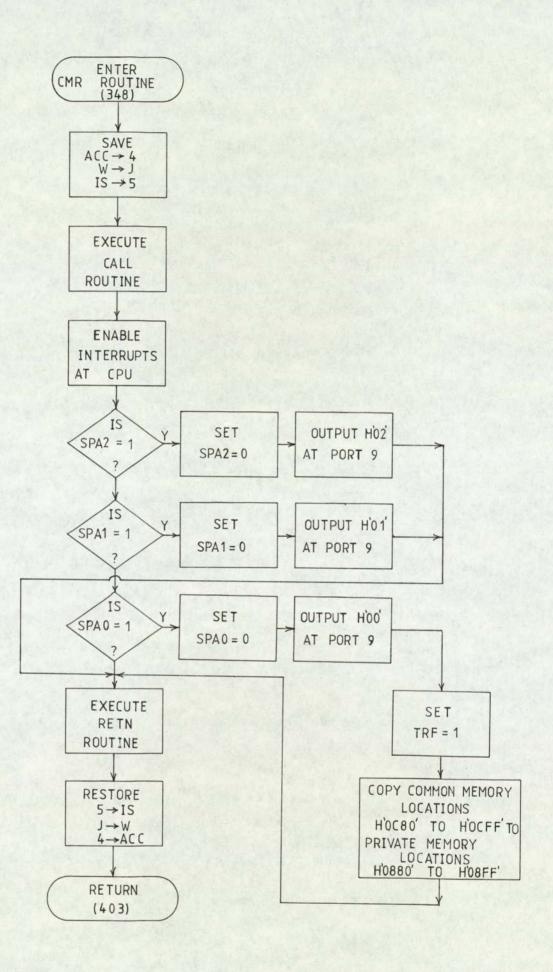


FIGURE 7.18 Common memory routine

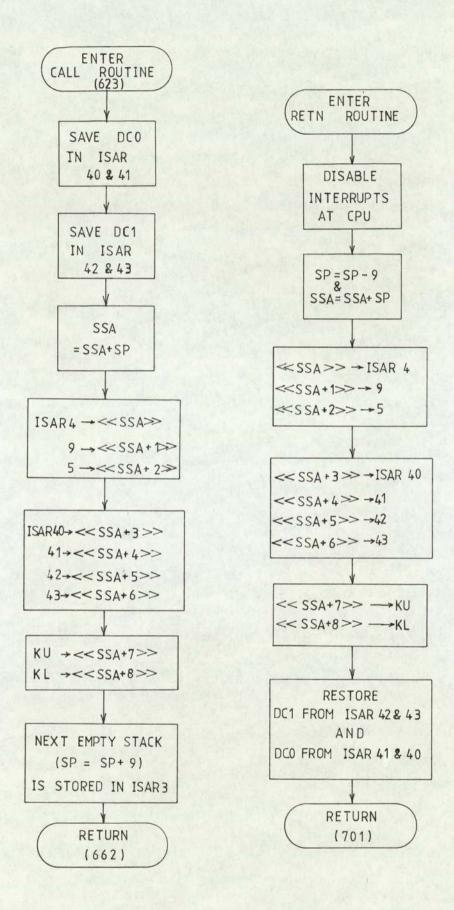


FIGURE 7.19 : CALL and RETN routine

CHAPTER 8 - SOFTWARE DEVELOPMENT FOR THE PDP-11/10 MINICOMPUTER

8.1 INTRODUCTION

This chapter covers the software development carried out on the PDP-11/10 minicomputer, which forms the supremal control level of the Hierarchical Microprocessor System Unit (HMSU), intended for controlling the Travelling Load Furnace (TLF). The processors of the HMSU are required to be activated by feeding them with the necessary input information data (e.g. controller constants, set points, control mode etc.) for controlling the TLF. This function is performed by the PDP-11/10 minicomputer in conjunction with the operator of the TLF. For this purpose, the PDP-11/10 is programmed to accomplish the following functional objectives:

1. To communicate with the operator in a suitable language with which he is familiar concerning the control process of the TLF.

2. To check on the validity of the operator set information data.

3. To allow the operator to change any data which is set either by default or by himself.

4. To display the operator set information data.

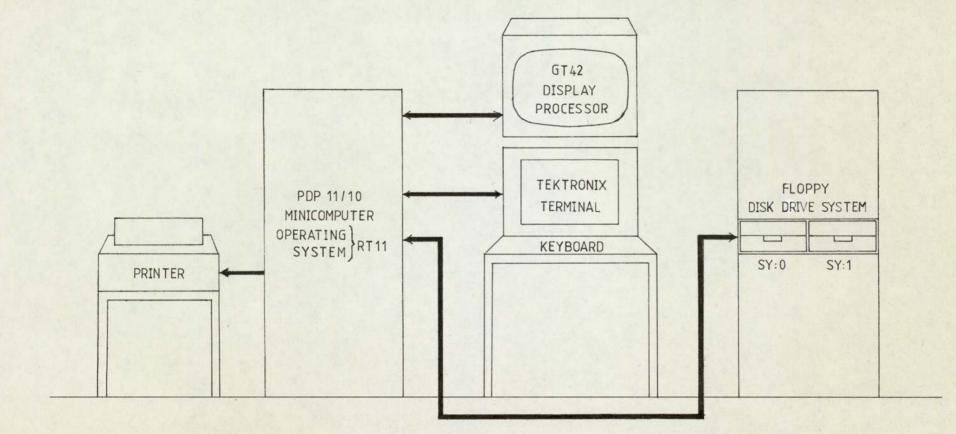
5. To convert the operator set information data in a suitable form in order to pass it onto the master processor of the HMSU.

6. To display the process variables and control signals in a graphical representation.

The implementation of the above objectives is based on the following software development features:

 Use of the RT-11 operating system for the PDP-11 /10 minicomputer system.

2. Use of the high-level programming language, FORTRAN IV.


3. Use of a DR11-C input-output interface which provides 16 output lines and 16 input lines.

4. Use of the assembly language of the PDP-11/10, to write routines which handle data-flow through the DR11-C interface.

With reference to the above implementation, this chapter describes the program called "DCHMSU". The listing of this program is given in Appendix D.

8.2 SOFTWARE DEVELOPMENT AID

The software development aid provided under the PDP-11/10 minicomputer system consists of the RT-11 singleuser programming and operating system with either singlejob operation or powerful Foreground/Background (F/B) capabilities. The system also provides basic program development aids such as Editor, Assembler, Linker, Debugger, a librarian etc. A detailed description of these is well documented in the manuals. A general layout of the software development environment is shown in Figure 8.1.

For the purpose of this project, single-job operation is chosen for simplicity. A general development procedure for generating an executable object code module from a FORTRAN source program is outlined in Figure 8.2. If a modification to the FORTRAN source program is required, it is made using the Editor and subsequent compilation and linking operations are performed on the modified version of the source program. The process of modification is repeated until the desired objectives are achieved when running the final version of the object module.

8.3 PROGRAM STRUCTURE

The structure of the "DCHMSU" program is modular. Each module is written in the form of a subroutine. These subroutines implement the functional objectives outlined in the introduction. The program execution guides the operator to set the following information as required by the processors of the HMSU:

1. The gain (k), sampling interval (τ) , integral action time (T_i), derivative action time (Td) and the filter time constant (T_F), which are the main parameters which determine the values of controller constants K1, K2, K3 and K4 as given by the equations 6.3.13 of Chapter 6. The program allows the operator to set these parameters independently for each of the three controllers of the HMSU.

2. Additionally, the program asks the operator to set the control mode (refer to Section 6.3.1), the address of a load in 'zone 0', the conveyor speed, the status of a

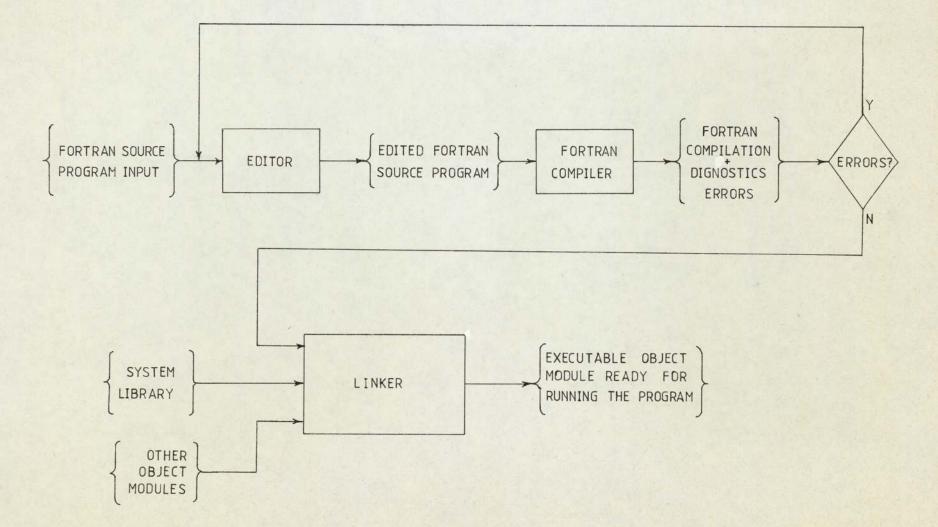


FIGURE 8.2 : A general FORTRAN source program development procedure

controller (i.e. either ON or OFF), the number of hours the TLF should run or the number of samples required to measure and control the temperature of the loads and the set point temperatures for the controllers.

Having set the above information, the program checks on the validity of the parameters. For example, it solves equations 6.3.13 and checks whether the steady state gain, computed from the values of K1, K2, K3 and K4 is positive. If it works out to be -ve, the program requests the operator to change the values of the appropriate parameters for that particular controller. The operator is also able to alter the value of any wrongly set parameter. If no information is set by the operator, the program assumes normal operating conditions for the controllers and sets the values of the various parameters by default determined at the initialisation of the DCHMSU program.

Finally, the program works out the values of the parameters in integers, each integer being one byte (8 bits) wide. This calculation is essential as these bytes, which represent the values of the parameters, are passed onto the master processors of the HMSU via the Intermediate Scratchpad Memory Interface (ISMI). Noting that the storage locations in the ISMI can only store a byte per location, the program also generates the appropriate addresses of these locations where each parameter gets stored. In other words, the program prepares the data for transmission as requred by the ISMI memory map shown in Figure 7.4 of the previous chapter.

Since the "DCHMSU" program is written in a high-level language such as FORTRAN IV, it is easier to comprehend it from its listing given in Appendix D. However, instead of presenting flowcharts for the various subroutines, the next section demonstrates a session run which describes the actions taken by an operator and their countereffects as produced by the program execution. Table 8.1 shows the description of the various subroutines developed for the program as a whole.

8.3.1 Command Structure

Communication between the operator and the PDP-11/10 minicomputer, when the DCHMSU program is executed, is performed by different types of commands that are available to the operator. In all five commands have been developed. The information about these commands is depicted to the operator at the console when the DCHMSU program is run. This is shown in Figure 8.3. When the operator selects, say a "PAR" command, more information about the parameters of the controllers is printed out. Thus the effect of the first command is shown in Figure 8.7.

When a particular input command and its action is complete, the operator is required to press a "BREAK" key on the console. This brings him to the command mode and all the input commands available to him are displayed at the console. An object code module called IBREAK.OBJ is used during the linking procedure of all the object modules required by the DCHMSU program. This IBREAK.OBJ module accounts for the action of pressing a "BREAK" key.

NAME	DESCRIPTION
PROGRAM 'DCHMSU'	Under this title the following subroutines are compiled
	- 1. System library routine: "PRINT"
	- 2. Subroutine: "Q" - A question-answer subroutine that requires passing of two parameters:
	lst parameter - A question in quotes 2nd parameter - An answer as integer
	- 3. Subroutine: "CONST" - Requires passing of five parameters:
	 (a) Gain - GKX (b) Sampling interval - TX (c) Integral action time - TIX (d) Derivative acting time - TDX (e) Filter time constant - TFX
	(where $x = either 1 \text{ or } 2 \text{ or } 3$)
	 - 4. Subroutine: "LIST" - This subroutine lists the descriptions of the parameters and requires no passing of any parameter.
SUBROUT INE OP INFO	This subroutine prints out the <u>op</u> erator set <u>inform-</u> ation. Makes use of the following common blocks:
	- 1. Block 1 - C1, C2, C3, CM
	- 2. Block 3 - GK1, GK2, GK3, T1, T2, T3, T11, T12, T13, TD1, TD2, TD3, TF1, TF2, TF3
	- 3. Block 4 - LA, NS, MS, RH, ISP1, ISP2, ISP3
	And it uses a system library routine: "CLOSE" for closing output buffer for the printer.
SUBROUT INE CHANGE	This subroutine allows the operator to change the value of any parameter described by the "LIST" sub- routine. It uses the following common blocks;
	- 1. Block 1 as described above
	- 2. Block 2 - NOC1, NOC2, NOC3
	- 3. Block 3 as described above
	- 4. Block 4 as described above
	Makes use of EQUIVALENCE statement.
SUBROUT INE CALCU	This subroutine calculates the values of controller constants given by equations 6.3.13. Requires input parameters: GK, T, TI, TD and TF and output parameters: XK1, XK2, XK3 and XK4. (Note: This subroutine is compiled along with the Program DCHMSU)
	CONTINUED/

TABLE 8.1 : Subroutine modules for the DCHMSU program.

TABLE 8.1 (continued from previous page)

NAME	DESCRIPTION							
SUBROUT IN E SUBIR	 This is a number crunching subroutine. It uses common block 5 - XK, IXK, makes use of equivalence statements. It converts fractional values of con- troller constants into binary (byte) fractions, their octal equivalents and integer equivalents and prints them out. This subroutine is exclusively used during development only. 							
	2. This subroutine calls an assembly language sub- routine called NUMB. This NUMB subroutine is mainly used for assembling the decimal equivalent of a binary fraction as '0's and '1's.							
	3. This subroutine also calls a system library routine called "CLOSE" to close the output buffer for the printer.							
SUBROUTINE SEND	This subroutine assembles various values of parameters and their corresponding addresses (required by the ISMI) into two integer arrays of 64 dimension (note: the input channel of the HMSU i.e. ISMI has 64 memory locations). The routine also prints out these integer arrays. This feature is used only during the develop- ment phase.							
Sec. Sec.	It uses the following common blocks:							
	- 1. Block 2 as described previously							
A.80	- 2. Block 3 " "							
1 19 (SE) *	- 3. Block 4 " " "							
	- 4. Block 5 " " "							
-	- 5. Block 6 - KCM, IRCPS, IRFPS, IWCPS, IWFPS							
and the second	- 6. Block 7 - ISA, ISD, IRUN							
	It also makes use of EQUIVALENCE statements.							

The second command in Figure 8.3 displays the default values of the parameters as shown by its effect in Figure 8.7. These default values may not necessarily match with actual values required at run time. For example, the load address in zone 0 may not be '0'. Hence a "SET" command is required which enables the operator to set the different parameters. The effect of the "SET" command is demonstrated in Figures 8.3 and 8.4. To check and compare the new values of the parameters with their default values, the operator makes use of "DIS" (fourth command in the run sequence) comnand. Thus, changes made in the parameter values may be compared from Figure 8.7 (i.e. effect of second command) and Figure 8.8 (i.e. effect of fourth command). Note that the status of controller no. 2 has been changed to "OFF". However, its set point and default constants are not altered.

In order to change an undesired value of a parameter, the operator can make use of "CHA" command. This command allows the operator to directly specify a particular parameter. When such a parameter is specified by its name, its current value is displayed on the console and the operator is asked to specify its new value. The operator is also asked if he wants to change any more parameters; a "Yes" answer sets him in the "CHA" command loop and a "No" answer brings him back into the general input command mode. The effect of a "CHA" command (the fifth command in the run sequence) is shown in Figure 8.5.

The sixth command used by the operator in the run sequence is again a "DIS" command, the effect of which is

shown in Figure 8.9. This may again be compared with the effects of fourth and second "DIS" commands.

Finally, the seventh command in the run sequence is a "CON" command which continues the rest of the program. This command is mainly included for development purposes, in order to display the number-crunching process described in Table 8.1. The effect of this command is to point various computed values of controller constants (i.e. K1, K2, K3 and K4), the steady state gain of the controllers etc. This effect is shown in Figures 8.9 and 8.10.

8.4 CONCLUSIONS

This chapter illustrates the state of the program developed on the PDP-11/10 minicomputer. There is plenty of scope for further developments on this program. For example, the functional objective no. 6 mentioned in the introduction needs implementation, the "CON" command needs modification so that the communication between the HMSU and the PDP-11 is established via the ISMI Interfaces and the DR11-C interface. The program development is not complete for the reasons mentioned in the conclusion sections of the previous two chapters. It may be possible to use the Foreground/Background capabilities of the PDP-11 minicomputer so that the operator's communication program is run as a foreground job and the graphic display of process variables and their control as a background job, with facilities for displaying any desired zone-temperature profile in real time operation. However, this requires further work.

```
. RUN DCHMSU
 THE FOLLOWING INPUT COMMANDS ARE AVAILABLE
 [1] "DIS"- PRINTS OUT OPERATOR SET INFORMATION
 [2] "SET"- OPERATOR CAN SET THE PARAMETERS
 [3] "CON" - PROGRAM CONTINUES
 [4] "CHA"- OPERATOR CAN CHANGE THE PARAMETERS
 [5] "PAR"- PRINTS OUT THE LIST OF PARAMETERS
 - PRESS RETURN KEY AFTER ANY INPUT COMMAND
 PAR 🗲
                                              - 1st Command
DIS 🔫
                                               - 2nd Command
                                                3rd Command
SET -
SELECT THE CONTROLLER NO - (I.E. 1 OR 2 OR 3)
                                                 A
1
DO YOU WANT CONTROLLER-1 TO BE ON ?
Y
 SPECIFY CONTROLLER-1 SET POINT
100
 SPECIFY CONTROLLER-1 CONSTANTS
GAIN
0.03
 SAMPLING INTERVAL
35.0
                                            Effect of 3rd
INTEGRAL ACTION TIME
90.0
                                              Command
DERIVATIVE ACTION TIME
30.0
FILTER TIME CONSTANT
30.0
DO YOU WANT CONTROLLER-2 TO BE ON ?
N
SELECT THE CONTROLLER NO - (I.E. 1 OR 2 OR 3)
3
DO YOU WANT CONTROLLER-3 TO BE ON ?
Y
SPECIFY CONTROLLER-3 SET POINT
200
```

FIGURE 8.3 : Session run of the DCHMSU program (Input/output appearing on the console)

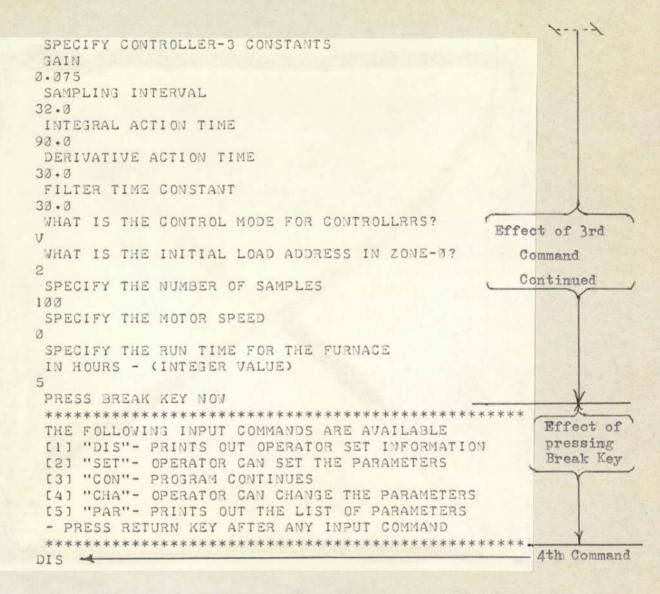


FIGURE 8.4 : Session run of the DCHMSU program (continued)

СНА -5th Command SPECIFY THE PARAMETER YOU WANT TO CHANGE RH THE CURRENT VALUE OF RH 5 SPECIFY THE NEW VALUE OF RH 4 DO YOU WANT TO CHANGE ANY MORE PARAMETERS? Y SPECIFY THE PARAMETER YOU WANT TO CHANGE C2 THE CURRENT VALUE OF C2 = 0 NSPECIFY THE NEW VALUE OF C2 OFF DO YOU WANT TO CHANGE ANY MORE PARAMETERS? Y Effect of SPECIFY THE PARAMETER YOU WANT TO CHANGE 5thr Command C2 THE CURRENT VALUE OF C2 =0FF SPECIFY THE NEW VALUE OF C2 ON DO YOU WANT TO CHANGE ANY MORE PARAMETERS? Y SPECIFY THE PARAMETER YOU WANT TO CHANGE T22+X THE CURRENT VALUE OF T22 = ON SPECIFY THE NEW VALUE OF T22 ON DO YOU WANT TO CHANGE ANY MORE PARAMETERS? Y SPECIFY THE PARAMETER YOU WANT TO CHANGE T2 THE CURRENT VALUE OF T2 = 30.000 SPECIFY THE NEW VALUE OF T2 35.00 DO YOU WANT TO CHANGE ANY MORE PARAMETERS? N PRESS BREAK KEY THE FOLLOWING INPUT COMMANDS ARE AVAILABLE Effect of "DIS" - PRINTS OUT OPERATOR SET INFORMATION [1] pressing [2] "SET"- OPERATOR CAN SET THE PARAMETERS Break Key [3] "CON"- PROGRAM CONTINUES [4] "CHA"- OPERATOR CAN CHANGE THE PARAMETERS [5] "PAR"- PRINTS OUT THE LIST OF PARAMETERS - PRESS RETURN KEY AFTER ANY INPUT COMMAND

FIGURE 8.5 : Session run of the DCHMSU program (continued)

DIS 🛰						- 6th Command
******	*******	*****	******	***********	****	**
THE FOI	LLOWING I	NPUT C	OMMANDS	ARE AVAILABLE		
[1] "D	IS"- PRIN	ITS OUT	OPERATO	R SET INFORMATIO	NC	Effect of
[2] "SI	ET"- OPER	ATOR C	AN SET T	HE PARAMETERS		pressing
[3] "C	ON"- PROG	RAM CC	NTINUES			Break Key
				E THE PARAMETERS	5	DICAR Roy
	AR"- PRIN		THE LIS	San and the second seco		The second
			TER ANY	INPUT COMMAND		- States
*****	*******	*****	*******	*****	****	**
*****	*******	*****	******		****	And an owner of the owner owner.
*****	******	*****	*******		}	And an owner of the owner owner owner.
*****	**************************************	*******	1 = 0.0	*************	****	7th Command
****** CON <		AIN SG	1= 0.0 2= 0.0	***************	**** }	7th Command Partial effect
****** CON	STATE GA		2= Ø•Ø	**************************************	}	7th Command Partial effect
****** CON STEADY STEADY	STATE GA	AIN SG	2= 0.0	**************************************	****	7th Command Partial effect of 7th Command
****** CON STEADY STEADY STEADY	STATE GA	AIN SG	2= 0.0	**************************************	****	7th Command Partial effect of 7th Command appearing on
****** CON STEADY STEADY STEADY	STATE GA	AIN SG	2= 0.0	**************************************	}	7th Command Partial effect of 7th Command appearing on

FIGURE 8.6 : Session run of the DCHMSU program (continued)

THE SYMBOLIC PARAMETERS TO BE USED IN THE CHANGE SUBROUTINE CM - CONTROL MODE	ARE:
LA - INITIAL LOAD ADDRESS IN ZONE 0 NS - NUMBER OF SAMPLES	Effect
MS - CONVEYOR MOTOR SPEED C1, C2, C3 - CONTROLLER STATUS FOR CONTROLLERS 1, 2, 3 ISP1, ISP2, ISP3 - SET POINTS FOR CONTROLLERS 1, 2, 3	of 1st Command
GK1, GK2, GK3 - GAIN CINSTANTS FOR CONTROLLERS 1, 2, 3 T1, T2, T3 - SAMPLING INTERVALS FOR CONTROLLERS 1, 2, 3	
TI1, TI2, TI3 - INTEGRAL ACTION TIMES TD1, TD2, TD3 - DERIVATIVE ACTION TIMES TF1, TF2, TF3 - FILTER TIME CONSTRATS	

CONTROL MODE	:	U			
INITIAL LOAD ADDRESS IN ZON	IE Ø:	Ø			
NUMBER OF SAMPLES		100			
MOTOR SPEED		Ø			
RUN TIME FOR THE FURNACE IN	HOURS:	Ø			
ONTROLLER NO:	N0-1		N0-2	NO-3	Effect
CONTROLLER STATUS:	ON		ON	ON	of 2nd Command
SET POINTS:	50		50	50	
CONTROLLER CONSTANTS					
GAIN:	0. 050		0.050	0. 050	
SAMPLING INTERVAL: IN SECONDS	30.000		30.000	30.000	
INTEGRAL ACTION TIME:	90.000		90.000	90.000	
DERIVATIVE ACTION TIME:	30, 000		30.000	30.000	
FILTER TIME CONSTANT:	30. 000		30.000	30.000	

FIGURE 8.7 : Print-out during the session run of the DCHMSU program

**************************************					Contraction of the second second
CONTROL MODE	;	٧			
INITIAL LOAD ADDRESS IN ZONE	Ø:	2			
NUMBER OF SAMPLES		100			
MOTOR SPEED		Ø			
RUN TIME FOR THE FURNACE IN	HOURS:	5			Effect of 4th
ONTROLLER NO:	N0-1		N0-2	N0-3	Command
CONTROLLER STATUS:	ON		OFF	ON	
SET POINTS:	100		50	200	
CONTROLLER CONSTRNTS					
GRIN:	0.080		0.050	0. 075	
SAMPLING INTERVAL: IN SECONDS	35.000		30.000	32.000	
INTEGRAL ACTION TIME:	90.000		90.000	90.000	
DERIVATIVE ACTION TIME:	30, 000		30.000	30.000	
FILTER TIME CONSTRNT:	30.000		30.000	30.000	

FIGURE 8.8 : Print-out during the session run of the DCHMSU program (continued)

CONTROL MODE		A		
INITIAL LOAD ADDRESS IN ZON	√E Ø:	2		
NUMBER OF SAMPLES	:	100		
MOTOR SPEED	:	0		nue la
RUN TIME FOR THE FURNACE IN	HOURS:	4		
ONTROLLER NU:	N0-1	N0-2	N0-3	Effect of 6th
CONTROLLER STATUS:	ON	OFF	ON	Command
SET POINTS:	100	50	200	
CONTROLLER CONSTRNTS				
GRIN:	0. 080	0. 050	0.075	
SAMPLING INTERVAL: IN SECONDS	35.000	35.000	32.000	
INTEGRAL ACTION TIME:	90.000	90.000	90.000	
DERIVATIVE ACTION TIME:	30. 000	30.000	30.000	
FILTER TIME CONSTANT:	30.000	30.000	30.000	

LIND OF 1	ni omni zoni.					
K1	К2	КЗ	K4			1 T
0. 097	-0.117	0.037	0.462			8-2-1-1
0. 060	-0.073	0. 023	0.462			Sugar B
STEADY STI STEADY STI NUMBER OF S RUN NUMBER	SAMPLES= 240 -IRUN= 1	2= 0.01 3= 0.02 3	1 9 7	COMTRIC		Effect of 7th Command.
HCTUHL RUN A(I) 0.097 -0.117 0.037 0.462 0.060 -0.073 0.023 0.462 0.089 -0.111 0.036 0.484 FINISH	FRACTION FRACTION 0.097 0.117 0.037 0.462 0.060 0.073 0.023 0.462 .0.089 0.111 0.036 0.484		AILL BE= 4HRS: 3 BINARY FRACTIO 00011000 00011001 01110110 00001111 0001001		EQU 24 29 9 118 15 18 5 118 22 28 9 123	INTEGER EQU

FIGURE 8.9 : Print-out during the session run of the DCHMSU program (continued)

Address	Parameter
191	255
190	Ø
189	256
188	2
187	240
186	0
185	1
1.84	1
183	100
182	24
181	29
180	9
179	118
178	35
177	0
176	ø
175	50
174	15
173	18
172	5
171	118
170	35
169	0
168	0
167	200
166	22
165	28
	9
164	
163	123
162	32
161	Ø
160	Ø
159	Ø
158	0
157	0
156	0
155	0
154	0
153	Ø
152	0
151	0
150	Ø
149	0
148	0
147	0
146	0
145	0
144	0
143	Ø
142	0
141	0
140	0
139	0
138	0
137	6
136	U
135	0
134	ø
133	ē
132	0
131	10
130	11
129	12
128	13

FIGURE 8.10 : Print-out during the session run of the DCHMSU program (continued)

CHAPTER 9 - DISCUSSION

9.1 INTRODUCTION

In a modular multi-microprocessor system development, it is desirable to develop a piece of hardware and/or software, which forms a small subsystem of the whole and to test it for its behaviour and performance. The tests generally reveal the correctness of the design of such a small subsystem and any modifications necessary to improve its design and performance. These individually tested subsystem modules, when assembled to produce a complete system, tend to create less problems during their integration phase of the development.

This chapter is aimed specifically at this aspect of testing. In particular, it discusses the testing of hardware and software modules for the HMSU and the software modules for the PDP-11 minicomputer. Each module under test is described with the following common features:

1. The object of testing a particular module.

2. The experimental or test arrangement, circuit diagram, program listing etc.

3. The outcome of the test.

The following sections describe various modules under test with the above features.

9.2 SIMULATION OF MICROSWITCH INTERRUPTS

This simulation is carried out with the following objectives:

 To test for a parallel data transfer between the two F8 processors via their bidirectional Input/Output ports.

2. To test a sequence of F8 assembly language instructions that handle external interrupts.

3. To test a sequence of F8 assembly language instructions that handle the updating of load addresses as the loads travel through the Travelling Load Furnace from one zone to the next. A load address is changed after six microswitch interrupts.

In order to achieve the above objectives, two identical "F8 Evaluation Kits" were employed and the simulation set-up using these kits is shown in Figure 9.1. A brief description of the F8 Evaluation Kit is given in Appendix B. The F8 cross-assembler available on the MAXIMOP system, mentioned in Chapter 7, is used to develop assembly language programs shown in Figures 9.2 and 9.3. The paper tape versions of the object code generated for these two programs is loaded into the RAM memory of each processor. That is, PROGRAM 1 is loaded in Processor 1 and PROGRAM 2 in Processor 2 respectively.

The "PROGRAM 1" shown in Figure 9.2 makes use of the external interrupt line available on the SMI (Static Memory Interface) chip. The program initialises the interrupt control ports on this chip and loops into an idle loop, enabling interrupts at the CPU. When an external interrupt is received from Processor 2, the program reads in a

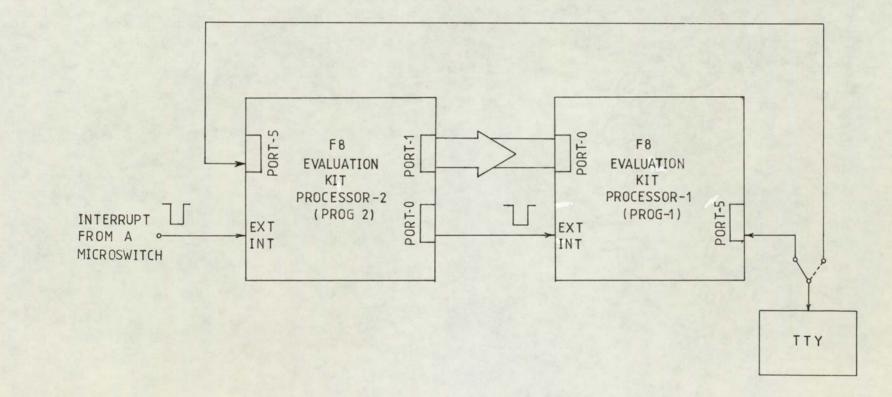


FIGURE 9.1 : Simulation set-up for microswitch interrupts using two identical F8 Evaluation Kit processors

+LIST STOR FIELD TRIAL: PLEASE INFORM DR.A.C.DAVIES OF ANY ERRORS DATE 08/06/78 TIME 14.47.02 MOSTEK F8 CROSS ASSEMBLER THE CITY UNIVERSITY LONDON, EXPERIMENTAL VERSION MK3

					ORG	H'0404'
					PUNCH	ON
				TTYOUT	EQU	H'035D'
**AD	JICI	E: F	REPL	ACE LI	BY LIS	
0404	20	OF			LI	H'OF'
0406	53				LR	3.A .
0407					LISU	7
0408					LISL	7
0409					LR	4, A
040A					INC	
040B					LR	6,A
0400					LIS	5
040D					OUTS	H'0C'
	20	80				1'80'
0410		00			OUTS	H'OD'
0411					LIS	1
0412					OUTS	H'OE'
0413				TOOR		H.OF.
0413		TTT		ĻOOP	EI	1000
0414	90	r E.			BR	LOOP
0570	-				ORG	H'0580'
0580					LIS	0
	BE				OUTS	H'OE'
0582					LIS	3
0583					OUTS	6
0584					INS	0
0585					LR	0,A
0586		-			SR	4
0587		30			AI	H'30'
0589	52				LR	2,A
058A	58	04	40		PI	CHK
058D					LR	A, 2
058E	58				LR O	8.A
058F					LR	A, 0
0590	15				SL	4
0591	14				SR	4 .
0592	24	30			AI	H'30'
0594	52				LR	2.A
0595	28	04	40		PI	CHK
0598	48				LR	A.8
0599	5C			1	LR	S,A
059A	1B.	×			ĖI	
059B	28	03	5D		PI	TTYOUT
059E	42				LR	A,2
059F	5C				. LR	S,A
05A0	1B				EI	
05A1	28	03	5D		PI	TTYOUT
05A4	20	20			LI	H'20'
05A6	5C				LR	S,A
	1B				EI	C. S. Star- L. T.
05A8		03	5D		PI	TTYOUT
05AB				1. 1. 1	DS	3
	84	03			BZ	LOAD
05AE		12			BR	STOP
			EPI	ACE LI		
05B0				LOAD	ĹI	H'OA'
	5C			Jone	LR	S,A
	1B				EI	
05B4		03	50		PI	TTYOUT
	40	20	50.	VIT -	* 1	111001

FIGURE 9.2 : PROGRAM-1 for the F8 Evaluation Kit processor 1 of Figure 9.1

05B7 20 0D	LI	H'OD'
05B9 5C	LR	S,A
05BA 1B 🥔	EI	
05BB 28 03 5D	PI	TTYOUT
	YLIS	
05BE 20 OF	LI	H'OF'
0500 53	LR	3.A
05C1 70 STOP	LIS	0
0502 85	OUTS	5
05C3 B6 P	OUTS	6
0504 80	OUTS	0
0505 71	LIS	1
05C6 BE 05C7 29 04 13	OUTS	H'OE'
0307 29 04 13	JMP	LOOP
+ OTHER CHIPS	ORG	H'0440'
0440 08 CHK SUB	TOUTINE	FOR CHECKING A TO F HEX NUMBERS
0441 42	LR LR	K, P
0442 23 3A	XI .	A,2 H'3A'
0444 84 10	BZ	A
0446 42	LR	A,2
0447 23 3B	XI	H'3B'
0449 84 10	BZ	B
	LR	A, 2
A	XI	H.*3C *
044E 84 1C	BZ	C
0450 42	LR	A, 2
0451 23 3D	XI	H'3D'
0453 84 1C		D
0455 42	LR	A, 2
0456 23 3E	XI	H'3E'
	BZ	E
045A 42	LR	A, 2
	XI	H'3F'
045D 84 1C	BZ	F
045F 90 1D	BR	COUT
	LI	H'41'
	LR	2,A
	BR	COUT
	LI	H'42'
	LR	2,A
	BR	COUT
	LI	H'43'
	LR BR	2,A COULT
	LI	COUT H'44'
	LR	2,A
	BR	COUT
	LI	H*45*
	LR	2;A
	BR	COUT
		H*46*
0 L = 0 = 0	LR	2.A
	PK	RETURN
END OF ASSEMBL NUMBER OF ERRORS= 0		
A 0461 B 0466	C	OAGD GUY OLLO COM
	LOAD	046B CHK 0440 COUT 047D D 0470
- 047A	LOAD	05B0 LOOP 0413 STOP 05C1 TTYOUT=035D
TIME ELAPSED 1.05 MIN	UTES	FIGURE 9.2 (continued)
CHANNEL 2 NOW 40 BU	CKETS	rigone 9.2 (continued)
CHANNEL 7 NOW 10 BU		

13-23-52+ LIST STO2 FIELD TRIAL: FLEASE INFORM DR.A.C.DAVIES OF ANY ERRORS DATE 08/06/78 TIME 13.22.14 MOSTEK FB CROSS ASSEMBLER THE CITY UNIVERSITY LONDON, EXPERIMENTAL VERSION MK3 ORG H'0500'

					ORG	H'0500'
					PUN CH	
0500	2A	07	00		DCI	H!0700'
0503	76				LIS ST	6
0504	17 BC				OUTS	H'OC'
0506	20	38				H' 38'
0508	17				LI ST	
0509	70				LIS OUTS	0 .
050A	B5	-			OUTS	5
050B	20	80			LI OUTS ,	H'80' H'0D'
050D 050E	BD 71				LIS	1
050F	RE				OUTS	H'OE'
0510	1B			LOOP .	EI	
0511	90	FE			BR	LOOP
					ORG	H'0680'
0680	AS	07	00		DCI	H'0700'
0683	16.				LM	
0684	50				LR	0.A
0685	30				DS.	0
0686	84	08			BZ	LOAD
0 688	40				LR	A. 0
0.689.	2A	07	00		DCI	H.0700
068C	17				ST .	
068D	90	20			BR	SEND
0.68 F	76			LOAD	LIS	6
0.690	2A	07	00		DCI	H'0700'
0693	17				ST	
0 69 4	90	04			BR	MOD
0.696	29	05	10	NOMOD	JMP .	LOOP
0 699	16			MOD	LM	
0.69A	50				LR	0. A
.069B	30				DS	0
0690	40				LR	A= 0
069D	25	21			CI	H'21.'
069F	8.4	08			EZ :	RECT
06A1	2A	07_	01		DCI L.R	H'0701'
0 6A4 0 6A5	40				ST	A . O
0646	90				BR	SEND
0 6A8	20	3F		RECT	LI	H'3F'
	AS	07	01		DCI	H*0701*
	17				ST	
	70			SEND	LIS	0
	B1				OUTS	1
		07	01		DCI	H 107'01 1
	16	at and			L.M	
	BI				OUTS	1
	71					
					LIS	.0
	BO					- U
	2B				NOP	
	2B				NOP	
06B9					LIS	0
06BA		DA			OUTS	0
0 6BB	90		n o	F ASSE	BR	NOMOD
NUMPE	RC			RS= 0		
		-				
L.OAD	C)68 F	L	DOP 0	510 MOD	0699 NOMO
TIME	FT A	Det	c p	1.60	MINUTES	
CHANN				1 20	BUCKETS	
OTTASTA	Tart	17	ALOF	1 220	DITCUZIER	

CHANNEL 7 NOW 10 BUCKETS

D 0696 RECT 06A8 SEND 06AE

	404 38		38 :	37	37 :	37	37	37	37	36	36	36 3	36 :	36
35	35	35	35	35	35	34	34	34	34	34	34	33	33	33
33	33	33	32	32	32	32	32	32	31	31	31	31	31	31
30	30	30	30	30	SŁ	2F	2F	2F	2F	2F	SE	SE.	SE	5E
SE	2D	2D	2D	2D	SD	2D	20	20	2C	20	2C	sc	2B	2B
2B	SB	28	SB	2A	2A	2A	2A	2A	2A	29	29	89	29	29
29	28	88	28	28	28	28	27	27	27	27	27	27	26	26
26	26	26	26	25	25	25	25	25	25	24	24	24	24	24
24	23	23	23	23	23	23	55	22	55	22	55	22	3F	ЗF
ЗF	ЗF	3F	ЗF	3E	ЗE	3E	3E	3E	ЗE	3D	3D	3D	3D	3D
3D	3C	3C	ЗC	3C	3C	3C	3B	3B	3B	3B	3B	3В	ЗA	ЗA
	3A 38 3		ЗА	39	39	39	39	39	39	38	38	38		
38	37	37	37	37	37	37	36	36	36	36	35	35	35	35
35	34	34	34	34	34	34	33	33	33	33	33	33	32	32
32	32	32	32	31	31	31	31	30	30	30	30	2F	2F	2F
2F	2F	2F	2E	2E	2E	2E	SE	SE	2D	2D	SD	2D	2D	SD
20	2C	2C	2C	2C	2C	2B	2B	SB	2B	2B	2B	2A	2A	AS
•E	402	4												
•21	A 24	A 24	9 83	9 29	29	9 29	9 29	9 29	9 28	3 28	3 28	3 28	3 28	3 28
27	27	27	27	27	27	26	26	26	26	26	26	25	25	25
25	25	24	24	24	24	24	24	23	23	23	23	23	23	85
55	55	22	22	22	3F	3F	3F	3F	3F	3F	ЗE	3E	3E	ЗE
3E	3E	3D	3D	3D	3D	3D	3D	30	30	30	3C	3C	3C	3B
3B	3B	3B	3B	3B	3A	3A	3A	ЗA	3A	ЗA	39	39	39	39
39	39		2											

FIGURE 9.4 : Simulation output for the set-up shown in Figure 9.1

byte pattern on Port O and converts its lower and upper four bits into ASCII characters, corresponding to the hexadecimal numbers and prints them out onto the TTY using a TTYOUT routine available on the 3851 PSU (Program Storage Unit) chip of Processor 1. The program execution thus prints a hexadecimal number corresponding to each byte received on Port O, per external interrupt received from Processor 2.

The PROGRAM 2, shown in Figure 9.3, also makes use of the external interrupt line available on the SMI chip of Processor 2. After initialising the interrupt control ports on this chip, the program loops into an idle loop, enabling interrupts at the CPU. When a manually generated external interrupt occurs, simulating an interrupt due to the closure of a microswitch, the program generates a load address and outputs it on Port 1 and also ouputs a sequence: H'01' followed by H'00' on Port 0. The output sequence on Port 0 causes an external interrupt generation which is linked to the external interrupt line of Processor 1. The output load address is changed only when Processor 2 receives six external interrupts. This is because a load is assumed to pass through a heating zone of the TLF with six discrete positions (Caffin, 1972).

During the testing procedure, PROGRAM 2 is initially loaded into Processor 2 and set into execution using the Execute command available on the F8 Evaluation Kit's DDT-1 (Designers Development Tool-1) program. Then the TTY is switched to Processor 1 and its PROGRAM 1 is loaded and set

into execution. Then a manually generated external interrupt at Processor 2 causes Processor 1 to print the load address. The resulting output of the simulation set-up is shown in Figure 9.4. Since there are only 30 loads, it may be noted that the load address changes from H'30' to H'2F' to account for the recirculation of the loads.

9.3 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACE

The Intermediate Scratchpad Memory Interfaces (ISMI) used as a buffered communication medium between the HMSU and the PDP-11/10 minicomputer are initially tested using two identical F8 Evaluation Kits. The objective was to test the hardware of the ISMI circuit boards. The test arrangement is shown in Figure 9.5. In the Figure, Processor 1 is used as a transmitter and Processor 2 is used as a receiver. A teletype (TTY) is used to load and execute the programs loaded into the RAM memory of each processor.

During the testing procedure, a program shown in Figure 9.8 is executed on Processor 2. This program clears 64 RAM locations (with address from H'0500' to H'0540') of Processor 2. This clearing operation is performed because the receiver program, shown in Figure 9.7, when executed uses these locations to store data it receives from Processor 1 via the ISMI interface. The TTY is then switched over to Processor 1 and the transmitter program shown in Figure 9.6 is executed. This program sends arbitrary data via Port 1 to the ISMI. The 64 locations of the ISMI, where this data is stored, are addressed via Port 0. The

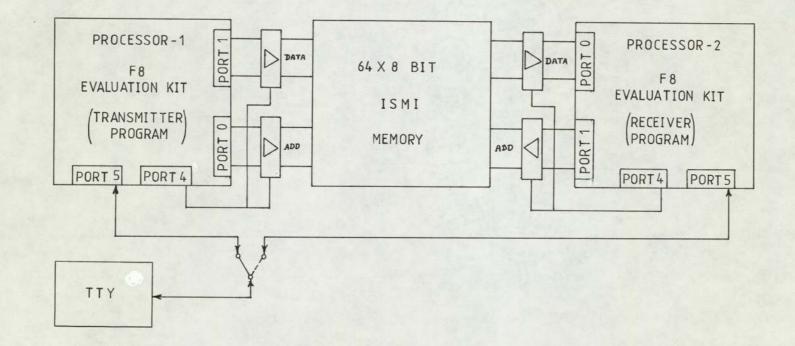


FIGURE 9.5 : Arrangement for testing ISMI using two F8 Evaluation Kits

400	70	CLR		CLEAR ACCUMULATOR.
401	20 40	LI H'	40 *	64 COUNTS STORED IN
403	50	LR 0,1	A	REG O.
404	20 FF	LI H*H	à.B. 4	ARBITRARY DATA STORED IN
406	51	LR 1,4	A	REG 1.
407	20 FF	LI H'I	ग्नु १	ISMI ADDRESS STORED IN
409	52	LR 2,1	1	REG 2.
40A	70 LOOP	LIS O		CLEAR PORTS
40B	BO	OUTS O		101
40C	Bl	OUTS 1		111
40D	В4	OUTS 4		AND '4'.
40E	71	LIS 1		STROBE TO OPEN
40F	B4	OUTS 4		BUFFERS OF ISMI.
410	41	LR A, I		MAKE DATA AVAILABLE
411	Bl	OUTS 1		AT PORT '1'.
412	42	LR A,2	2	MAKE ADDRESS AVAILABLE
413	во	OUTS O		AT PORT 'O'.
414	31	DS 1		DECREMENT DATA.
415	32	DS 2		DECREMENT ADDRESS.
416	30	DS O		DECREMENT COUNT.
417	94 F2	BNZ LOO	DP	IF NOT ZERO, RETURN TO LOOP.
419	70	LIS O		CLEAR PORTS
41A	во	OUTS O		101
41B	Bl	OUTS 1		111
410	B4	OUTS 4		'4'
41D	B5	OUTS 5		151.
41E	29 00 00	JMP H'C	10000	RETURN TO DDT - 1.

FIGURE 9.6 : "Transmitter" program for Processor 1 of Figure 9.5

400	70	CLR		CLEAR ACCUMULATOR.
401	21 05 00	DCI	H'0500'	LOAD DATA COUNTER WITH 0500.
404	20 40	LI	H'40'	64 COUNTS STORED IN
406	50	LR	0,A	REG O.
407	20 FF	LI	H • FF •	ISMI ADDRESS STORED IN
409	51	LR	1,A	REG 1.
40A	70 LOOP	LIS	0	CLEAR PORTS
40B	BO	OUTS	0	101
400	Bl	OUTS	1	11
40D	B4	OUTS	4	AND '4'.
40E	71	LIS	1	STROBE TO OPEN
40F	B4	OUTS	4	BUFFERS OF ISMI.
410	41	LR	A,1	MAKE ADDRESS AVAILABLE
411	Bl	OUTS	1	AT PORT '1'.
412	AO	INS	0	INPUT DATA AND
413	17	ST		STORE AWAY.
414	31	DS	1	DECREMENT ADDRESS.
415	30	DS	0	DECREMENT COUNTER.
416	94 F3	BNZ	LOOP	IF NOT ZERO, RETURN TO LOOP.
418	70	LIS	0	CLEAR PORTS
419	BO	OUTS	0	101
41A	Bl	OUTS	1	11
41B	В4	OUTS	4	*4*
410	B5	OUTS	5	151.
41D	29 00 00	JMP	H*0000*	RETURN TO DDT-1.

FIGURE 9.7 : "Receiver" program for Processor 2 of Figure 9.5

600	20 40	LI	H*40*	64 COUNTS STORED IN
602	50	LR	0,A	REG O.
603	2A 05 00	DCI	H'0500'	POINTER AT 0500 .
606	70	LIS	0	CLEAR ACCUMULATOR.
607	17 LOOP	ST		H'OO' STORED IN 1ST LOCATION
608	30	DS	0	DECREMENT COUNTER.
609	94 FD	BNZ	LOOP	IF NOT ZERO, RETURN TO LOOP.
60B	29 00 00	JMP	H'0000'	RETURN TO DDT-1.

FIGURE 9.8 : Program to clear 64 locations of RAM of Processor 2 of Figure 9.5

TTY is then switched over to Processor 2 and the receiver program is executed. This program reads the 64 locations of the ISMI and writes them into locations from H'0500' to H'0540'. Since the data generated by the transmitter program is known, the same data should be output if the contents of locations H'0500' to H'0540' are printed out using the DDT-1 program. All the programs (i.e. Figures 9.6, 9.7 and 9.8) were fairly short. They were hand-assembled and the paper tape versions of these were produced for testing another identical ISMI circuit board. The test was successful for both the ISMI circuit boards which proved the correctness of the same. Since the test was fairly simple, the results of the test are not included.

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES

Since the master and the slave processors of the HMSU are built using the F8 microprocessor chip set, any application software required for these processors is required to be embedded into PROMs. Indeed it is difficult to test the hardware of such a processor without any software. The availability of the DDT-1 program on 3851 PSU ROM chip allows some testing of the hardware of the processor. For example, the read and write capabilities of a RAM memory may be tested.

In case of the F8 microprocessor system, the CPU executes its first instruction which is stored at H'0000', after the reset action. Hence, any application program must begin at this address. The DDT-1 program on the 3851 PSU ROM chip does start at H'0000'. However, this means

that this chip cannot be used in the final system as the controller program stored in PROMs should also start at H'0000'. This requirement makes the testing of the hardware of the processor a complex task. However, this problem is overcome by using a PROM simulator. A test setup using a PROM simulator for the master processor and the DDT-1 program for one slave processor of the HMSU system is shown in Figure 9.9. The objectives of the test are as follows:

1. To test the chip select (cs) logic for the PROMs, the Private RAM memory and the Common RAM memory.

2. To test the master I/O interface which controls the connection of external address and data buses of the common memory to a particular processor's internal address and data bus.

3. To test the read/write operation of the Private RAM memory and the Common RAM memory modules.

The chip select (\overline{cs}) logic that selects the PROMS for read operation and the Private Memory and the Common Memory for read and write operation is shown in Figure 9.10. This logic is built on each processor board of the HMSU. The Common Memory module, which contains its chip select decoding logic, requires address bus, data bus, $\overline{R/W}$ signal and CPUREAD signal of a particular processor that requires the access of it. In Figure 9.10 the address bus, $\overline{R/W}$ signal and the CPUREAD signal are the output signals of the F8 processor and hence are buffered using the 80C97 hex

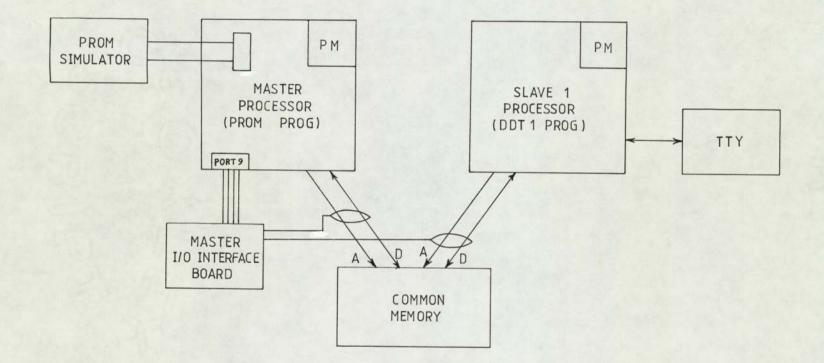


FIGURE 9.9 : Set-up using a part of the HMSU for testing PM and CM memory modules

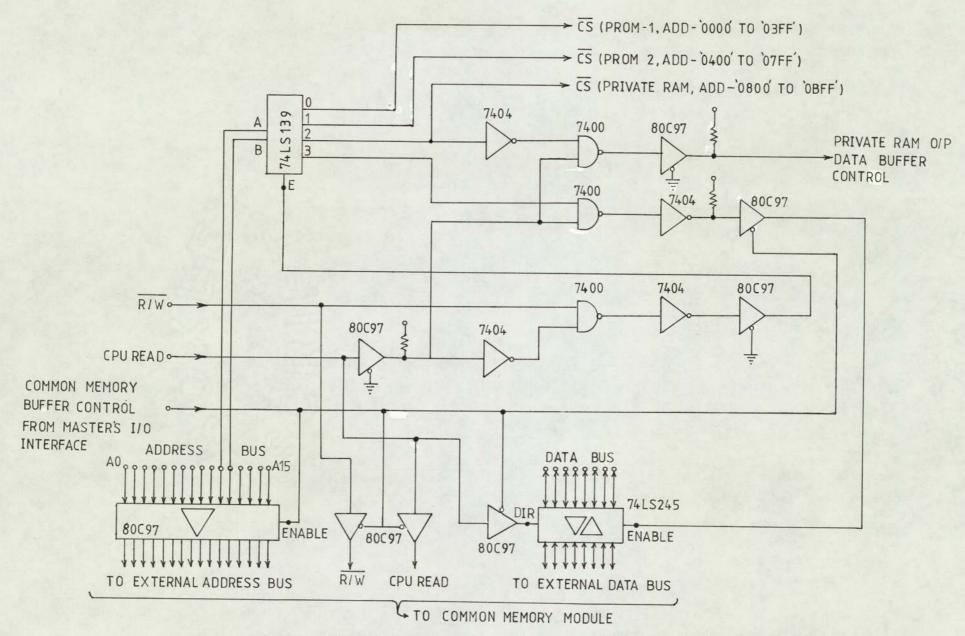


FIGURE 9.10 : Chip select logic diagram for the EPROM, PM and CM memory modules

0000	1A				DI		0036	18			COM	
0001	70				CLR		0037	20			XDC	
0002	BA				OUTS	H'OA'	0038	17			ST	
0003	BE				OUTS	H'OE'	0039	20			XDC	
0004	27	22			OUT	H'22'	003A	31			DS	1
0006	B9				OUTS	H'09 '	003B	94	F9		BNZ	LX
0007	20	7F			LI	H'7F'	003D	71			LIS	1
0009	51				LR	1,A	003E	B9			OUTS	H'09'
A000	2A	oc	00		DCI	H*0000*	003F	70			CLR	
000D	20				XDC		0040	2B		RTN	NOP	
000E	2A	80	00		DCI	H*0800*	9 041	90	FE		BR	RTN
0011	41			LOOP	LR	A,1						
0012	17				ST							
0013	20				XDC							
0014	17				ST							
0015	20				XDC							
0016	31				DS	1						
0017	94	F 9			BNZ	LOOP						
0019	20	7F			LI	H*7F*						
001B	51				LR	1,A						
0010	24	OD	00		DCI	H'ODOO'						
001F					XDC							
0020	24	08	00		DCI	H'0800'						
0023	16			LP	LM							
0024					COM							
0025					XDC							
0026					ST							
0027					XDC							
0028					DS	1						
0029					BNZ	LP						
002B		7F			LI	H'7F'						
002D					LR	1,A						
002E		OE	00		DCI	H,0E00,						
0031					XDC							
0032		OD	00		DCI	H'ODOO'						
0035	16			LX	LM							

FIGURE 9.11 : Hand assembled program for the PROM simulator of Figure 9.9

FIGURE 9.12 : Slave processor's output for the test set-up of Figure 9.9

•T C00,C7F 0000 7F 7E 7D 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 0 C10 6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61 60 5F 5E CPO 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51 50 0 C30 4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41 40 C40 3F 3E 3D 3C 3B 3A 39 38 37 36 35 34 33 32 31 30 CB0 SE 55 50 50 2B 2A 29 28 27 26 25 24 23 22 21 20 C600 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 C70 OF OE OD OC 0B 0A 09 08 07 06 05 04 03 02 01 FF T D00, D7F 0D00 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F DID 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F D20 A0 A1 A2 A3 A4 A5 A6 A7 AC AD AE AF A8 A9 AA AB B0 B1 B2 B3 D300 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF D40 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D50 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF D60 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF D70 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE 00 T EOO, E7F 0 E 0 0 7F 7E 7D 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 E10 6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61 60 E20 5F 5E 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51 50 E30 4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41 40 E40 3F 3E 3D 3C 3B 3A 39 38 37 36 35 34 33 32 31 30 E50 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20 E60 1F 1E 1D 1C 1B 1A 19 17 16 15 14 18 13 12 11 10 OF OE OD OC E70 0B 0A 09 08 07 06 05 04 03 02 01 FF

• X

tri-state buffers. The data bus of the F8 processor is bidirectional and hence is buffered using the 74LS245 octal bus tranceivers. The direction-control signal for the tranceivers is derived from the CPUREAD signal and the 74LS139 decoder logic. The master processor controls the access of the Common Memory by a particular processor by lowering the enable signal to these buffers and tranceivers via its Input/Output interface.

In order to test the chip select logic of the processor, the following procedure is used. The PROM simulator's RAM memory is loaded with a small hand-assembled program shown in Figure 9.11. The PROM compatible plug-at the end of a flat ribbon cable from the PROM simulator is placed in the socket of the PROM-1 position of the master processor. The processors of the HMSU, as shown in the arrangement of Figure 9.9, are powered up and manually reset. The master processor immediately executes its PROM simulator program. The test program performs the following operations in sequence:

1. It writes into 128 locations of the Private Memory RAM with starting address: H'0800' and Common Memory RAM with starting address: H'0C00'. The beginning pattern written is H'7F' which is decremented from one location to the next.

2. It reads from the written patterns (128 locations) of the Private Memory RAM (locations H'0800' to H'087F'), complements each pattern and writes into the Common Memory RAM with starting address: H'0D00'.

3. Then it reads 128 locations from the Common Memory RAM with starting address H'ODOO' and writes into the Common Memory RAM with starting address H'OEOO'.

4. Finally, it sends H'01' at its Port 9 and performs an idle loop. Sending H'01' at Port 9 causes the Slave 1 processor to have the access of the Common Memory.

When the fourth operation of the above program is complete, the DDT-1 program on the 3851 PSU chip of the slave processor can be used to type out the contents of the Common Memory. The teletype output of the above test is shown in Figure 9.12. As expected, the Common Memory contents of locations H'OCOO' to H'OC7F' show the correct write operation to the Common Memory, the locations H'ODOO' to H'OD7F' show the correct read operation and the contents' inversion from the Private Memory and hence the write operation performed in the first sequence for the Private Memory, and finally locations H'OEOO' to H'OE7F' show the correct read operation from H'ODOO' to H'OD7F', the inversion of the contents read and the correct write operation to the Common Memory. The test thus proves that the chip select logic shown in Figure 9.10 performs its required function correctly.

9.5 ADVANCED TEST FOR THE HMSU

Based on the success of the previous tests, it was decided that some means for testing the hardware of the HMSU as a whole was necessary. The design of this test is based on the same resources available as used for previous

tests. A schematic diagram with data and address paths between various modules of the HMSU is shown in the test setup of Figure 9.13. A sequence of steps in which various modules are involved in data transfer for this test are as follows:

Step 1

1. To begin with, a program execution in Slave 1 processor causes some arbitrary data to be written into ISMI (Module 1). Then this processor waits for an interrupt to come from the master processor.

2. When the interrupt comes from the master processor, the Slave 1 processor copies the Common Memory data into its private memory, inverts this data and writes back into the Common Memory into different memory space and signals the master processor that it has finished with its access to the Common Memory.

3. The Slave 1 program ends its execution by returning its control to the DDT-1 program.

Step 2

1. While the above events are taking place in Slave 1 processor, a program in the PROM simulator for the master processor causes the master processor to wait until data has been written into ISMI (Module 1) by the Slave 1 processor.

2. When the data in ISMI (Module 1) is completely written, the master copies this data from the ISMI into its Private Memory and Common Memory and sends Slave 1 address

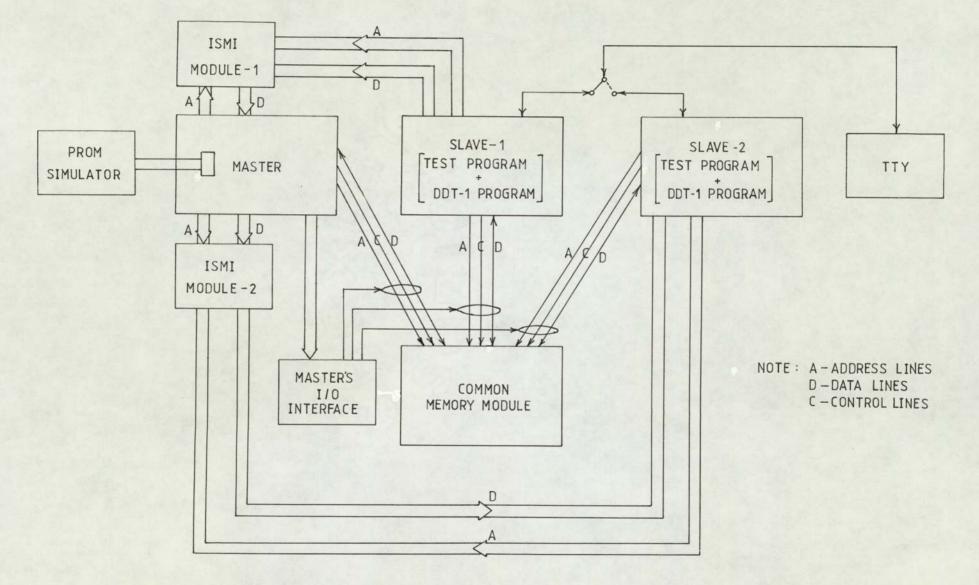


FIGURE 9.13 : Advanced test set-up for the HMSU

to its I/O interface so that Slave 1 processor can have access to Common Memory.

3. The master processor then waits for an interrupt to be received from Slave 1 processor.

4. When this interrupt is received, the master processor then sends the Slave 2 address to its I/O interface so that the Slave 2 processor can have access to Common Memory,

5. The master processor then waits for an interrupt to be received from the Slave 2 processor.

6. When this interrupt is received, the master processor sends the master address to its I/O interface so that it itself can have the access to the Common Memory.

7. The master processor then copies the Slave 1 written data from the Common Memory and writes it into the ISMI (Module 2).

8. The master processor then performs an idle loop.

Step 3

1. While the events in the first two steps are taking place in the master and Slave 1 processor, a program execution in the Slave 2 processor causes it to wait for an interrupt to come from the master processor.

2. When this interrupt is received, the Slave 2 processor copies the master written data from the Common Memory into its Private Memory and signals the master processor that it has finished with access to the Common Memory.

3. The Slave 2 processor then waits until data has been written into ISMI (Module 2) by the master processor.

4. When the data in ISMI (Module 2) is completely written, the Slave 2 processor then copies this data from the ISMI (Module 2) into its Private Memory.

5. The Slave 2 program ends its execution by returning its control to the DDT-1 program.

The above steps explicitly define the tasks required to be performed by each processor. The arbitrary data referred in Step 1 corresponds to 64 bytes as a block of Since all the block data movements are through ISMI data. modules, Common Memory module and the master processor, these are recorded by Slave 1 and Slave 2 processors indirectly in their respective Private Memories. The contents of these Private Memories can be output to a TTY using the DDT-1 program. The implementation of the tasks in the form of programs required for the three processors in this test are not given here. The reason for this was that another test of ISMI modules, not mentioned in this chapter, indicated a hardware fault on one of the ISMI modules. This particular ISMI module showed an error on the most significant bit of alternate locations of its 64 memory locations. The investigation of this fault with limited testing resources caused this test to be suspended. However, this test clearly shows the complex nature of hardware and software integration design phase as related to a multi-microprocessor system development.

9.6 ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-11 MINICOMPUTER

In this section, two assembly language subroutines, which are called by the high-level language program written in FORTRAN IV, are discussed. The assembly language subroutines are developed using the MACRO assembler of the PDP-11 minicomputer. The object modules produced as an output from the MACRO assembler are linked with the object modules of their main FORTRAN IV programs. The subroutines and their main programs are as follows:

9.6.1 Program IR and the NUMB macro subroutine

The program IR reads ten real numbers from the console and stores them in a real array A(I). The integer part of the real number is removed and the fractional part of the number is converted into a binary fraction, that is, using 2^{-n} where n = 1,8. Thus, for example, 0.04 is represented as 00000001 and 0.999 is represented approximately as 11111111. The binary point (equivalent to a decimal point) before the binary fraction is assumed. The NUMB subroutine converts the binary fraction into its corresponding integer value which is required to be sent to the HMSU via the ISMI memory modules. The objective of testing this IR program is thus twofold:

1. To test the calling of the assembly language program such as NUMB by correctly passing the required parameters from the high-level language program, such as program IR, and

2. To test the correctness of the NUMB macro subroutine which converts a string of '0's and '1's of eight bits width into the equivalent integer number.

The listing of the NUMB macro subroutine is shown in Figure 9.14. The register R5, as used in any autodecrement deferred mode, contains the address of an argument list having the format shown in Figure 9.15. The register R1 is used as a temporary register and after its initialisation, the argument contents are added to it and an arithmetic shift left operation is performed on it until all the arguments are added. Thus an integer is formed in R1 from a string of '0's and '1's of eight bits width. The IR program listing is shown in Figure 9.16 and the corresponding output result of the program execution is shown in Figure 9.17. It may be noted that the NUMB subroutine is used in the DCHMSU program described in the previous chapter.

9.6.2 Program TRIAL and the SUB2 macro subroutine

In the DCHMSU program, the operator set information in its final form is assembled by the SEND subroutine. Each element of the address array and the corresponding element of the data array needs packing into a 16 bit word which can be output to the Input ISMI channel of the HMSU, via the DR11-C interface. The necessary connection arrangement between the DR11-C interface and the ISMI modules is shown in Figure 9.18. The packing process of two independently stored bytes to form a 16 bit word is performed by the SUB2

NUMB RT-11 MACRO VM	82-12	00:10:26 PAGE 1		
8 000002 005001 9 000004 105300 10 00006 063501 1\$: 11 00010 006301 12 00012 105300 13 00014 001374 14 00016 006201 15 00020 010135	. GLOB . MCAL . REGD V2. R0=%0 MOV CLR DECB ADD ASL DECB BNE ASL DECB BNE ASL DECB RNE ASL DECB RNE ASL DECB ASL ASL ASL ASL ASL ASL ASL ASL ASL ASL	(R5)+,R0 R1 R0 0(R5)+,R1 R1 R0 1\$ R1 R1,0(R5)+ PC NUMB		
NUMB 00000000 R1 =%000001 R4 =%000004 . V2 = 000001 ABS 000000 000 00024 001 ERRORS DETECTED: 0 FREE CORE: 12365 WORDS NUMB 08J, LP: =NUMB MAC	PC R2 R5	=%000007 =%000002 =%000005	RØ R S P	=%0000000 =%0000005

FIGURE 9.14 : MACRO Assembly of the NUMB subroutine

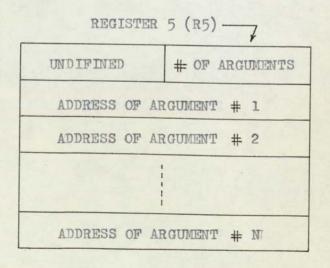


FIGURE 9.15 : Format of argument list used by Register 5 (R5) during FORTRAN subroutine linkage

FORTRAN IV	V010-03A TUE 29-APR-80 02 33 30 PAGE 001
	PROGRAM IR
	DIMENSION A(10), AR(10), SF(8), NAA(10), IA(10,8)
	DATA SF/0. 5, 8, 25, 0, 125, 0, 0625, 0, 03125, 0, 015625,
	1 0.0078125,0.00390625/
0004	CALL PRINT(TYPE THE VALUES OF A')
0005	READ(5,111)(A(I),I=1,10)
0006 111	FURMAT(F7.3)
0007	00 2 I=1,10
89.99	P(I)=ABS(A(I))
0009	IP=IFIX(P(I))
0010	AR(I)=P(I)+FLOAT(IP)
0011	BA=AR(I)
0012	DO 3 N=1,8
0013	TA(N)=BA-SF(N)
0014 0015 25	IF(TA(N))25,29,29
0015 25	IA(I,N)=0 GOTO 3
0017 29	IACI, N)=1
0018	BA=TA(N)
0019 3	CONTINUE
0020 2	CONTINUE
0021	00 50 I=1.10
0022	CALL NUMB (IA(I, 1), IA(I, 2), IA(I, 3), IA(I, 4), IA(I, 5), IA(I, 6),
	1 IA(1,7), IA(1,8), NAR(1))
0023 50	CONTINUE
0024	WRITE(6,300)
0025 .300	FORMAT(1H , 4X, 'A(I)', 4X, 'FRACTION OF A(I)', 4X, 'BINARY FRAC
anne	1 4X/ UCTAL EQU', 4X/ INTEGER EQU')
0026 0027	DO 20 I=1,10
0020 112	WRITE(6,112)A(I), AR(I), (IA(I,N), N=1, 8), NAR(I), NAR(I)
0029 20	FORMAT(1H , 2X, F7, 3, 6X, F6, 3, 12X, 8(11), 8X, 03, 8X, 13) CONTINUE
0020 20	WRITE(6, 200)
0031 200	FORMAT(1H , FINISH')
0032	CALL CLOSE(6)
0033	STOP
8034	END

FIGURE 9.16 : FORTRAN IV program IR which calls the NUMB subroutine

A(1) 100.004 999.999 0.900 0.500 0.250 0.125 -56.219 222.222 0.015 0.150 FINISH	FRACTION OF A(I) 0.004 0.999 0.900 0.500 0.250 0.125 0.219 0.222 0.015 0.150	BINARY FRACTION 0000001 1111111 1100110 1000000 0100000 00100000 0011000 00111000 00111000 001001	OCTAL EQU 4 1 377 255 346 230 200 128 100 64 40 32 70 56 70 56 3 3 3 46 38	INTEGER EQU
				and the second se

FIGURE 9.17 : Output result of IR program of Figure 9.16

macro subroutine. The objective of a test program called TRIAL is to test the correctness of the SUB2 macro subroutine which performs the packing of two bytes into a 16 bit word. The TRIAL program, the SUB2 program and the output result of the TRIAL program is shown in Figure 9.19.

The TRIAL program reads two sets of four integers and stores them into arrays K and L. The corresponding elements of these arrays are packed side by side and the resulting integer is stored in Array N. Array K corresponds to the data byte and Array L corresponds to the address byte. Thus, when a packed element of Array N is sent out via the DROUT output register, the upper byte will contain the data and the lower byte will contain the address. The output result of the TRIAL program shows the correct packing process.

9.7 <u>SIMULATION OF DISPLAY OF PROCESS VARIABLES ON GT42</u> DISPLAY PROCESSOR

The main objective of this simulation exercise is to indicate to the operator of the TLF, the process variables such as set point temperature, actual temperature profile, level of controlled power output to the heaters in a particular zone etc. in a graphical representation. The program called DISPLY which performs this simulation is shown in Figure 9.20. The program uses a variety of subroutines, described in the VT-11 Graphic Support manual, and the real-time TIMR subroutine. A file containing sample numbers, sampling times, measured temperatures and normalised power levels for the heaters is produced and called as

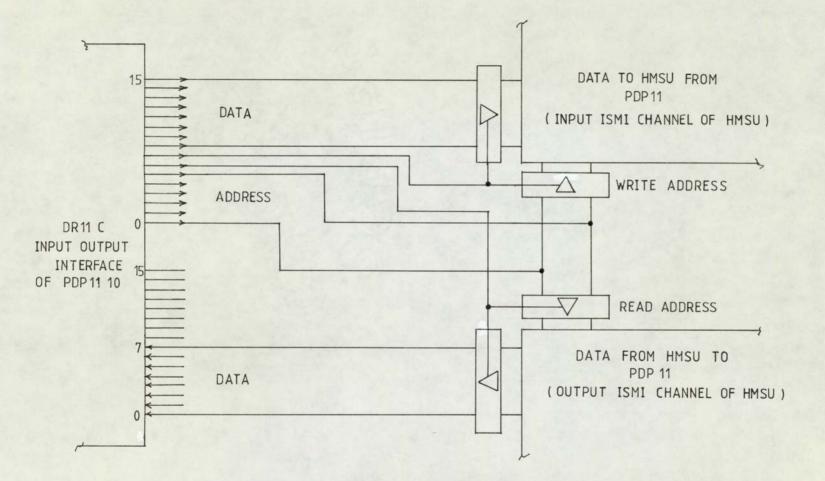


FIGURE 9.18 : Connection arrangement between DR11-C interface and ISMI modules

		pp	ROGRAM TRIAL	
	С			ALLS FOR A SUBROUTINE WRITTEN IN ASSEMBLY
	C	1.6	NGUAGE AND E	RINTS THE RESULTS ON THE PRINTER.
	~		MENSION K(4)	
			MMON KILIN	
				TYPE THE VALUES OF K')
			CAD (5,100) (
				YPE THE VALUES OF L()
			AD (5,100) (
) 10 I=1,4	. m X & 7 7 & - & 7 7 7
			LL SUB2(K(I)	*L(T)*N(T))
	1.0		NTINUE	
		WF	(ITE(6,200)(K	((I),L(I),N(I),I=1,4)
	200			I4,3X,I4,3X,I4)
	1.00	FC	RMAT(14)	
			'OP	
		EN	!E1	
			4	
			01100	
		• TITLE		
				where the second s
		• REGDE) 1/ E. F
			:164020	
			DRCSR+2	
			ROUT+2	
UB:	2:	CLR	DRCSR	CLEAR DR11-C STATUS REGISTER
1 A 1		ADD	#2,R5	YOREPHY DIVER O OTHIOG IVEDEDIEN
		CLR	R1	CLEAR REGISTER 1
				7 We have hard FFA TA have We do We Three FA do
\$:		MOV	@(R5)+,R1	\$LOAD R1 WITH DATA
		SWAB	R1	SHIFT DATA TO HIGHER BYTE
		ADD	@(R5)+,R1	FILL THE LOWER BYTE OF R1 BY ADDRESS
		MOV	R1, DROUT	;OUTPUT DATA & ADDRESS TO ISMI
		MOV	R1,@(R5)+	
		RTS	PC	\$RETURN
		.END		
		0	0 0	
		Ø		
		0	1 1 2 2 3 3	
		0	2 2 3 3	

11.

Ø

512

1024

266

286

514 771

H CM PA T

FIGURE 9.19 : Program TRIAL, MACRO subroutine SUB2 and output result of TRIAL program.

a DATA file. Each sample from the DATA file is fed as an input to the DISPLY program and the DISPLY program displays graphically the data contained in each sample in real time. Thus it simulates the real-time process variable changes influenced by the control algorithm. The results of the simulation output are shown in Figure 9.21 and simulated test samples of a set of data are shown in the DATA file of Figure 9.22. The dash-dotted line in Figure 9.21 shows a set point temperature of 200°C, the bottom rectangular curve shows the level of power required and the smooth curve which meets the set-point line shows the variation of temperatures. It should be noted that the simulation program DISPLY is not implemented into the DCHMSU program.

9.8 CONCLUSION

This chapter indicates one of the transient states of a typical experimental environment under which the project was performed. This phase of experimentation was found to be very important in order to investigate capabilities of the hardware and software developed. The methods of testing and simulations outlined in this chapter point to areas where improvements and further testing is needed. For example, one critical area might be located in the third test (i.e. Section 9.4) where a failure of tristate buffers or 74LS245 tranceivers could create unpredictable problems such as a data bus contention during the memory access. The hardware fault found before an advanced test on the EMSU as a whole could be performed, needs further investigation. In such circumstances, what measures or diagnostic

FORTRAN	IV V01C-03A TUE 04-DEC-79 00:09:46	PAGE 001
0001	PROGRAM DISPLY	
0002	DIMENSION IBUF(800), T(60), TMP(60), P(60), K(60)	
0003	CALL ASSIGN(10, DATA', 0)	
0004	I=1	
0005	K(0)=0	
0006 0007	T(0)=0.0 P(0)=0.0	
0008	TMP(0)=0.0	
0009	CALL PRINT('WHAT IS THE SET POINT TEMP ?')	
0010	READ(5, 150) SP	
0011 15		and the second
0012	CALL FREE	
0013	CALL INIT(IBUF, 800)	
0014	CALL SCAL(-40., -20., 340., 600.)	
0015	CALL APNT(0.,0.,0,-5,0,1)	
0016	CALL LVECT(340.,0.,0,5,0,1)	
0017	CALL APNT(0.,0.,0,-5,0,1)	
0018	CALL LVECT(0., 500., 0, 5, 0, 1)	Service and the service of the servi
0019 0020	CALL APNT(-10.,550.,0,-5,0,1) CALL TEXT((TEMP()	The second second
0021	CALL APNT(-15.,0.,0,-5,0,1)	
0022	CALL LVECT(0., 500., 0, 5, 0, 1)	
0023	CALL APNT(-40.,525.,0,-5,0,1)	
0024	CALL TEXT('POWER')	
0025	CALL APNT(30.,-15.,0,-5,0,1)	
0026	CALL TEXT('TIME IN MINS')	
0027	CALL APNT(0., SP, 0, -5, 0, 1)	
0028	CALL LVECT(340.,0.,0,5,0,4)	
0029	CALL VECT(-100., -20., 0, -5, 0, 1)	
0030 0031	CALL NMBR(1, SP, 1F9, 31)	
0032	CALL APNT(0.,0.,0,-5,0,1) CALL PRINT('N T TMP P')	
0033 10		
0034 20		
0035	IF(JNG.EQ.0)GOTO 500	
0037	TD=T(I)-T(I-1)	
0038	TDN=-TD	
0039	TMPD=TMP(I)-TMP(I-1)	
0040	TMPN=-TMPD	
0041 0042	TMPP=TMP(I-1) TMPPN=-TMPP	
0042	PP=P(I-1)	
0044	PD=P(I)-P(I-1)	
0045	PN=-P(I)	
0046	CALL VECT(0., TMPP, 0, -5, 0, 1)	
0047	CALL VECT(TD, TMPD, 0, 5, 0, 1)	
0048	CALL VECT(TDN, TMPN, 0, -5, 0, 1)	
0049	CALL VECT(0., TMPPN, 0, -5, 0, 1)	
0050	CALL VECT(0., PP, 0, -5, 0, 1)	
0051	CALL VECT(TD, 0., 0, 5, 0, 1)	
0052 0053	CALL VECT(0., PD, 0, 5, 0, 1) CALL VECT(0., PN, 0, -5, 0, 1)	
0054	CALL TIME(15*60)	
0055 30		*

FIGURE 9.20 : DISPLY program

FORTRAN IV	V01C-03A TUE 04-DEC-79 00:09:46		PAGE	002
0056 0058 0059 0060 0061	IF(IE.NE.0)GOTO 300 WRITE(10,200)N,T(I),TMP(I),P(I),JNG K(I)=N I=I+1 IF(I.GE.61)GOTO 500			
0063 0064 500 0065 0066	GO TO 100 CALL TIME(0) CALL STOP WRITE(6,245)SP			
0067 245 0068	FORMAT(1H , ' SET POINT TEMP=', F9. 3/) WRITE(6, 250)			
0069 250 0070 0071 255 0072 0073 0074 FORTRAN IV	FORMAT(1H0, ' N T TMP WRITE(6,255)((K(I),T(I),TMP(I),P(I)),I=1,N) FORMAT(1H,I3,2X,F9.3,2X,F9.3,2X,F9.3) CALL CLOSE(10) STOP END STORAGE MAP	P*)		

FIGURE 9.20 : DISPLY program (continued)

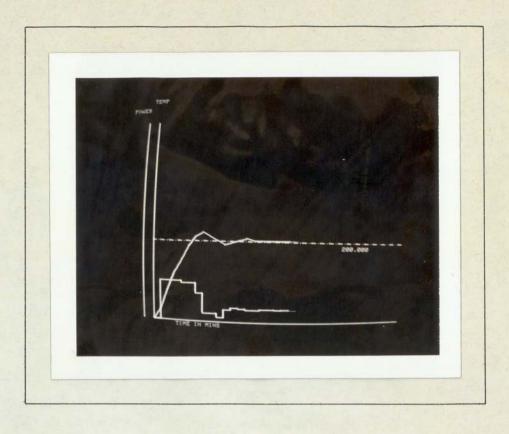


FIGURE 9.21 : Simulation output of DISPLY program on GT42 Display processor

SET	POINT TEMP:	= 200.000	
N	Т	TMP	P
1	10.000	25.000	100.000
2	20.000	75.000	100.000
3	30.000	120.000	100.000
4	40.000	150.000	95.000
5	50.000	185.000	95.000
6	60.000	210.000	70.000
7	70.000	220.000	20.000
8	80.000	210.000	20.000
9	90.000	200.000	10.000
10	100.000	190.000	30.000
11	110.000	195.000	35.000
12	120.000	200.000	33.000
13	130.000	205.000	30.000
14	140.000	200.000	30,000
15	150,000	200,000	32.000
16	160.000	200.000	32.000
17	170.000	200.000	31.000
18	180.000		
19	190.000	201.000	31.000
20	200.000	200.000	32.000
408	210,000	200.000	31.000

FIGURE 9.22 : Data file showing process variables.

procedures or failure detection methods or devices should be used must be carefully considered. Furthermore, the actual application program testing in the integration phase certainly needs sophisticated tools which are available on the Microprocessor Development Systems (MDS). The PROM simulator used for the tests, allows the simulation of a PROM for only one processor. The need of hardware and software testing tools required in a multi-microprocessor environment may surpass the cost-effectiveness hoped to be achieved by a multi-microprocessor system. These are just a few areas where further investigations are needed.

CHAPTER 10 - CONCLUSIONS

The research has shown that it is feasible to apply microprocessors for on-line parallel processing of inform-Any application involved in using a multi-microation. processor system requires analysing the application so that the overall control problem is subdivided into smaller subproblems which are suitable for parallel execution on individual microprocessor-based systems, and any interactions between these subproblems are handled by communication links. The organisations of such systems range from locally distributed to geographically distributed microprocessor and microcomputer systems and a variety of applications range from homogenous to heterogenous applications. The communication links range from serial links to parallel links and man-machine to interprocess communications. It should be emphasised that a designer of such systems is required to balance, firstly, the distribution of hardware and software for the chosen application. Secondly, the application is required to be broken down into its information processing needs in the form of a top-down distribution of tasks and a bottom-up co-ordination of these tasks. Finally, since the hardware, software and tasks are distributed, the distribution of data and its flow to and from various tasks is of paramount importance.

A model of a processor within a distributed computing system which is proposed in this thesis specifically discusses its interfacing issues within a large-scale, real-

time complex system environment. It outlines the importance of application program development and its performance evaluation and monitoring. The four information links described in the model account for a variety of ways of data and control information distribution amongst the processors of the distributed computing system. The use of dual port memory modules as IANs and IDNs for data and control information distribution serve also as a buffered communication medium and provides new possibilities for communication protocols to be designed which are taskoriented.

The design of the Hierarchical Multi-microprocessor System Unit (HMSU) combines the IAN/IDN concept developed in the model and the resource sharing concept in the form of a master-slave relationship with respect to the access of common memory. A modular structure of the HMSU and its use as a building block allow other structures such as hierarchical, star, ring and combinations of these to be configured. The hardware design of the HMSU presented in the thesis is particularly organised using a Fairchild/ Mostek F8 microprocessor chips set mainly because of local software development facilities, such as a F8 crossassembler on the MAXIMOP system, and F8 Evaluation Kits were available. However, since software development facilities are not included or superimposed on the processors of the HMSU, the task of application program development, its performance evaluation, monitoring and testing becomes particularly difficult. These problems are very vivid in the thesis when the HMSU is employed to implement

hierarchical control of the department's Travelling Load Furnace (TLF). If the luxury of providing a highly integrated and fault-tolerant system is to be envisaged, for example one processor taking control over the other in case of the failure of the second, the interfacing issues of the controlled process by the processors of a distributed processing system, such as the HMSU, requires special attention. The ability of a master processor or either of the slave processors to control any one section of the TLF not only requires modifications to the existing interfaces but also requires software diagnostic procedures or failure detection mechanisms to be implemented. A design proposal for modifying existing interfaces of the TLF and a simple mechanism of control mode selection procedure have been described for this purpose.

The research as a whole encompasses design of electronic circuits for input/output interfacing, design of F8 processors of the HMSU and the HMSU architecture, programming of control tasks for the processors of the HMSU in the F8 assembly language, programming of man-machine communication with respect to the control of the Travelling Load Furnace in a high-level language using the PDP-11/10 minicomputer and testing integration aspects of hardware and software developed. The last phase, namely the testing for integration of hardware and software closes a loop of the overall design cycles and the outcome begins to emerge in the form of problems encountered during practical implementation. These problems are highlighted and discussed in the thesis. In particular, the need for proper development

tools both at software and hardware level are vital to the development of the project. The suitability of the F8 processors for the HMSU, for example, can be questioned. The high chip count used in the design of ISMI could be minimised by the use of VLSI technology. Although the costs of CPUs and memory components are reducing the cost of putting these together in a multi-microprocessor system and the cost of writing software for such systems really brings up the cost-effectiveness issue, especially when the application involved is just one-off. These are some of the areas which may be in the realms of research for some time to come. As such, it is difficult to establish a direct relationship of the work undertaken to immediate industrial usage. However, this research will provide a useful benchmark for developing multi-microprocessor systems for hierarchical control of industrial processes.

FOOTNOTE: Further consideration is needed within the programs of the HMSU and the PDP11/10 minicomputer to ensure that critical parts are made interrupt proof, possibly through the implementation of Dijkstra's semaphore techniques (Dijkstra, 1968).

REFERENCES

AMD Data Sheet.

AMD Semiconductor Products, Data Sheet.

ANDERSON, G. A. and JENSON, E. D. (1975).

Computer Interconnection Structures: Taxonomy, Characteristics and Examples. ACM Computing Surveys, Vol. 7, no. 4, pp.197-213 (Dec. 1975).

ASPINALL, D. (1978) (Editor).

The microprocessor and its application. An advance course. Cambridge University Press, Cambridge.

BAILEY, W. N., GAYLER, J. R. and ROBERTS, P. D. (1979).

Introductory guide to using the department's PDP11/10 computer system, The City University, DSS/WNB-JRG-PDR/178 (Feb. 1979).

BARKER, H. A. (1978).

The microprocessors in control. IEE Control and Automation Division, Chairman's Address.

BIBBERO, R. J. (1977).

Microprocessors in Instruments and Control. John Willey and Sons, New York.

BILLINGSLEY, and SINGH, M. G. (1975).

On-line hierarchical control of large scale systems using multiprocessors. IEE - 2nd Conference, Vol. 127, Part 21/25 (April 1975). BROWN, T. J. (1979).

Elements of distributed control systems. Trends in on-line computer control system. IEE Conference, Vol. 172, Part 27-29 (March 1979). CAFFIN, R. (1972).

The design and modelling of an experimental travelling load furnace. PhD Thesis: The City University, Department of Systems Science, London. CARTER, J. W. (1978).

The problems of using microprocessors. Measurement and control. Vol.11, pp.81-97 (Feb. 1978).

DAVIES, A. C. (1977).

F8 Microprocessor User's Guide. The City University, Department of Electrical and Electronic Engineering, London.

DESHMUKH, H. A. (1977).

Microprocessor control of a Travelling Load Oven. MSc Thesis. The City University, Department of Systems Science, London. DESHMUKH, H. A., SCOTT, R. G. F. and ROBERTS, P. D. (1979).

A hierarchically structured multi-microprocessor system. Microprocessors and their applications. Fifth EUROMICRO Symposium on Microprocessing and Microprogramming, Göteborg (Aug. 1979). DATA SHEET for ADC82 (1979).

101 100 1002 (1979).

General Catalog, Burr-Brown.

DOWSING, R. D. (1978).

Introduction to system design. The microprocessor and its application. An advance course. Edited by ASPINALL, D., Cambridge University Press, pp.93-117.

EDGINGTON, J. H. (1979).

Control in the glass industry and future automation: PART 1. Measurement and Control, Vol. 12 (July 1979).

ELLIOTT, I. and ORGANICK (1978).

New directions in computer systems architecture. Large scale integration. EUROMICRO Symposium, Munich (Oct. 1978).

ENSLOW, P. H. ed. (1974).

Multiprocessors and parallel processing. John Wiley, New York. ENSLOW, P. H. Jr. (1978).

What is a 'Distributed' Data Processing Systems? Computer pp.13-21 (Jan. 1978).

ENSLOW, P. H. Jr. (1978).

Multiprocessors and other parallel systems: An introduction and overview. Infotech State of the Art Report. Multiprocessor Systems, pp.219-262.

F8 USER'S GUIDE, Fairchild Microsystems (1976).

FEIERBACH, G. and STEVENSON, D. (1979).

The ILLIAC IV, Super Computers, Infotech State of the Art Report. FITZGERALD, J. M. and FITZGERALD, A. F. (1973).

Fundamentals of Systems Analysis. John Wiley, New York.

FLYNN, M. J. (1972).

Some computer organizations and their effectiveness. IEEE Trans on Computers. Vol. C-21, no. 9, pp.948-960 (Sept. 1972).

HARRIS, J. A. and SMITH, D. R. (1977).

Hierarchical multiprocessor organisations. Fourth Symposium on Computer Architecture, University of Maryland.

HOLDING, D. J. and KING, P. J. (1979).

Experience with a distributed microprocessor control system in an industrial environment. Trends in on-line computer control system. IEE Conference. Vol. 172, Part 27-29 (March 1979).

HOLLAND, P. M. (1980).

Memory system design. IEE Colloquium on Hardware Design Techniques. Digest no. 1980/11, pp.4/1-4/5 (March 1980).

HUGHES, J. M. (1976).

Multiprocessor Navigation Systems. Digest of papers. Fall Compcon 76, pp.264-68.

IEE CONFERENCE PUBLICATION (1977).

Distributed computer control systems. IEE Conference Publication Vol. 153 (Sept. 1977).

JENSEN, E. D., THURBER, K. J. and SCHNEIDER (1979).

A review of systematic methods in distributed processor interconnection; Tutorial: Distributed Processor Communication Architecture; First International Conference on Distributed Computing System. Huntsville, Alabama (Oct. 1979).

JOSEPH, E. C. (1976).

Distributed processing architecture - past, present and future trends. Distributed Systems. Infotech State of the Art Report, pp.319-333. KARTASHEV, S. I. and KARTASHEV, S. P. (1978).

Selection of the control organisation for a multicomputer system with dynamic architecture. Large Scale Integration EUROMICRO Symposium, pp.346-357 (Oct. 1978).

LEE, J. L. (1976).

Intersubsystem communications for process control. Instrumentation in the chemical and petroleum industries. Vol. 12. Proceedings of the 1976 Computer Interface Instrumentation System.

LOWE, E. I. and HIDDEN, A. E. (1971).

Computer Control in Process Industries. Peter Peregrinus Ltd. MDS Z80 SYSTEM (1979).

MDS Z80 System reference manuals.

MILLER, G. A. (1956).

The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. Vol. 63, pp.81-97. MOSTEK, F8 Microprocessor hardware support.

Application Note, F8 Evaluation Kit. MOTOROLA (1979).

Microcomputer Components, Motorola Semiconductors.

PATHAK, J. (1977).

Software setup eases traffic flow for multiprocessors. Electronics pp.108-112 (March 1977).

PDP-11/10 FORTRAN IV.

Language reference manual.

PDP-11/10 FORTRAN IV.

User's Guide.

PDP-11/10 System Reference Manual.

ROBERTS, P. D. (1979).

Introduction to large-scale control system. IEE Computing and Control Division. Specialist Seminar on Optimal Control of Large Scale Systems (Sept. 1979).

RUSSO, P. M. (1976).

An interface for multi-microprocessor systems. Digest of papers, Fall Comp. Con. pp.277-282.

RUSSO, P. M. (1977).

Interprocessor communication for multi-microcomputer systems.

Computer Vol. 10, No. 4, pp.67-75 (April 1977).

SAVAS, E. S. (1965).

Computer Control of Industrial Processes. McGraw-Hill, New York. SEARLE, B. C. and FREBERG, D. E. (1975).

Tutorial: Microprocessor application in multiple processor systems. Computer, pp 22-30 (Oct. 1975).

SHEENA, H. H. (1977).

Computer control of a travelling load furnace. PhD Thesis: The City University, Department of Systems Science, London.

SIEWIOREK, D. P. (1975).

Process co-ordination in multi-microprocessor systems. Euromicro Workshop, Nice (June 1975).

SMITH, C. L. (1972).

Digital Computer Process Control. Intext Educational Publishers. SPENCER, J. P. (1976) (Editor).

Distributed Systems. Infotech State of the Art Report. Infotech International Ltd.

SRC (1977).

Distributed computing systems. Annual report. The Computing Science Committee of the Science Research Council (Sept. 1977-Sept. 1978). SRC (1980).

Distributed computing systems. The Computing Science Committee of the Science Research Council (Sept. 1979-Sept. 1980).

STEINCHOFF, J. and McGILL, R. (1976).

An approach solving scientific problems using multiple-microprocessors. EUROMICRO Symposium, Venice, pp.285-293 (Oct. 1976). SWAN, R. J., FULLER, S. H. and SIEWIOREK, D. P. (1977).

Cm* - A modular multimicroprocessor. AFIPS Conference Proceedings, AFIPS Press, Vol. 46, pp.637-643.

TANAKA, Y., MIYASHITA, K., KOYAMA, S., MIYAMOTO, E. and TSUDA, T. (1976). HARPS - A new hierarchical array processor system. EUROMICRO Symposium, Venice, pp.91-98 (Oct. 1976).

THURBER, K. J. and WALD, L. D. (1975).

Associative and parallel processors. Computing Surveys Vol. 7, No. 4, pp.215-255 (Dec. 1975).

THE TTL DATA BOOK FOR DESIGN ENGINEERS,

2nd Edition.

VT-11 GRAPHIC SUPPORT.

PDP-11 Reference Manual.

WEISSBERGER, A. J. (1975).

Microprocessors simplify control system. Canadian Electronic Engineering (June 1975).

WEISSBERGER, A. J. (1977).

Analysis of multiple microprocessor system architectures. Computer Design, pp.151-163 (June 1977).

WHITE, C. H. (1976) (Editor).

Distributed Systems. Infotech State of the Art Report.

WILKIE, J. D. F. (1979).

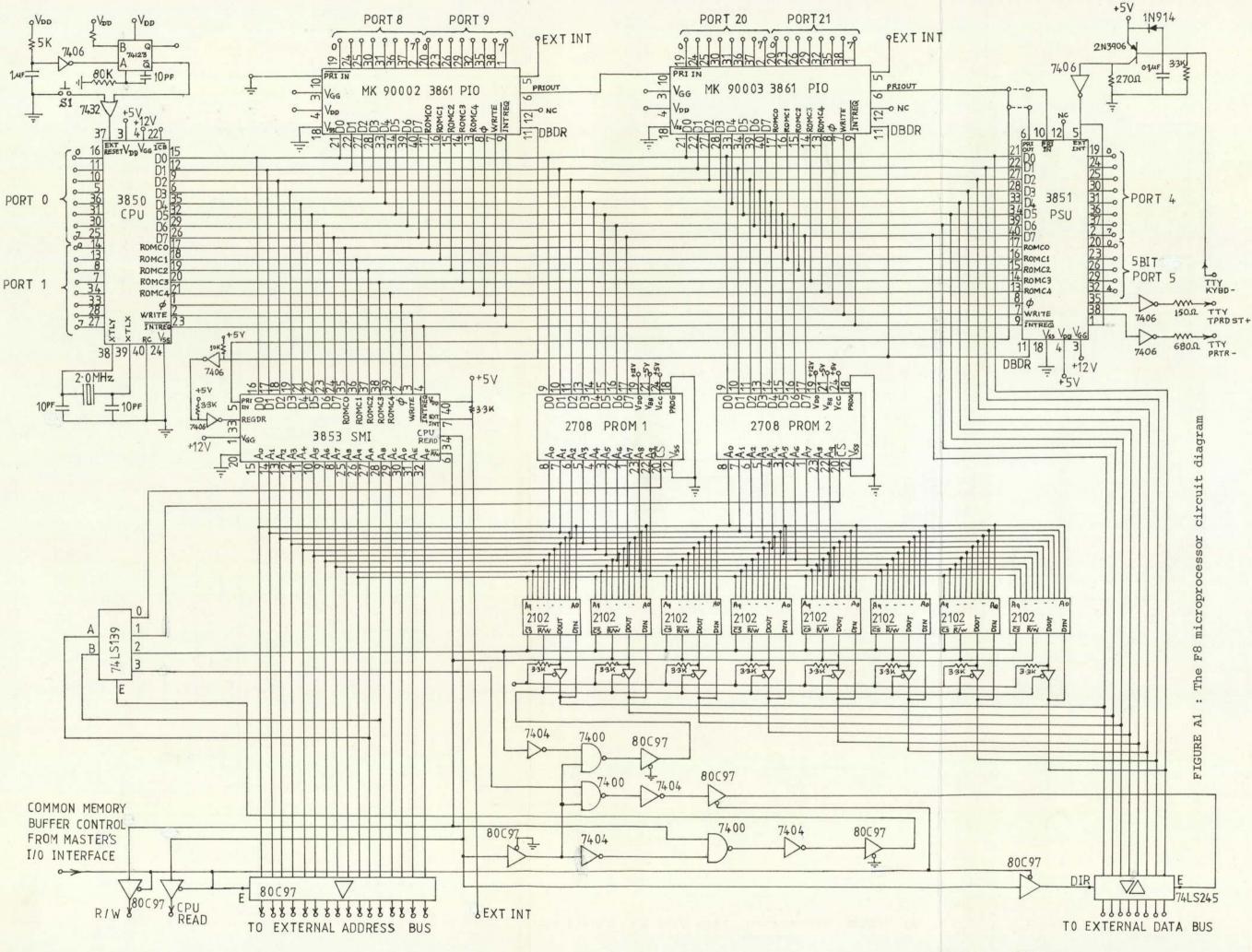
A microprocessor philosophy for process control systems. Trend in on-line computer control system. IEE Conference Publication, vol. 172, pp.27-29 (March 1979).

WITTEN, J. H. and RICHARD, L. J. (1978).

Processor-processor dialogue through existing input-output channels. Computer and Digital Techniques, Vol. 1, No. 4 (Oct. 1978). WULF, W. A. and BELL, C. G. (1972).

C.mmp - A multimini processor. Fall Joint Computer Conference, AFIPS Proc., Vol. 41, Montvale, N.J.: AFIPS Press.

DIJKSTRA, E. W. (1968).


Co-operating sequential programming. Programming Languages. Genuys, F. (Editor). Academic Press, London.

APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR

The three F8 microprocessor boards built for the HMSU are identical. Each board consists of the following:

- 1. One 3850 CPU (Central Processing Unit)
- 2. Two 3861 PIO (Peripheral Input/Output) Chips (i.e. versions MK 90002 and MK 90003)
- 3. One 3851 PSU (Program Storage Unit)
- 4. One 3853 SMI (Static Memory Interface)
- Two 2708 EPROM chips (i.e. 2 kilobytes of PROM memory)
- Eight 2102 Static RAM chips (i.e. 1 kilobyte of static RAM memory).

A detailed circuit diagram for the F8 microprocessor board is shown in Figure A1. The inclusion of 3851 PSU in which the DDT-1 (Designer's Development Tool 1) program resides, allows the testing of the F8 microprocessor circuit board. However, this PSU chip cannot be used when EPROM chips containing the HMSU control program are used. The reason for this is that the DDT-1 program and the HMSU control program both start at H'0000' address. Thus, only one program can be run at a time. Additionally, when the HMSU control program is to be used, the PRIORITY OUT line from the 3861 PIO (MK 90003 version) chip is directly connected to the PRIORITY IN line of the 3853 SMI chip. The 3850 CPU chip is provided with manual reset (switch S1) and automatic "Power ON" reset inputs. These input lines are connected to EXT RESET input of the CPU through 7432 OR

gate. The F8 microprocessor board mainly provides six 8-bit Input/Output ports, three external interrupt lines, sixteen external address lines (i.e. address bus) and eight bidirectional external data lines (i.e. data bus). All the IC chips use wire-wrap sockets which are mounted on the DIP vero board (No. 10-0154L). One of the F8 microprocessor circuit boards is shown in Figure A2. Figure A3 illustrates the two sides of ISMI circuit board and Figure A4 shows the HMSU on the background of the Travelling Load Furnace (TLF).

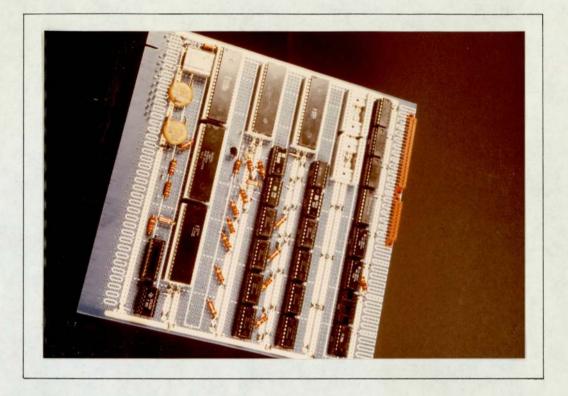


FIGURE A2 : The F8 microprocessor circuit board

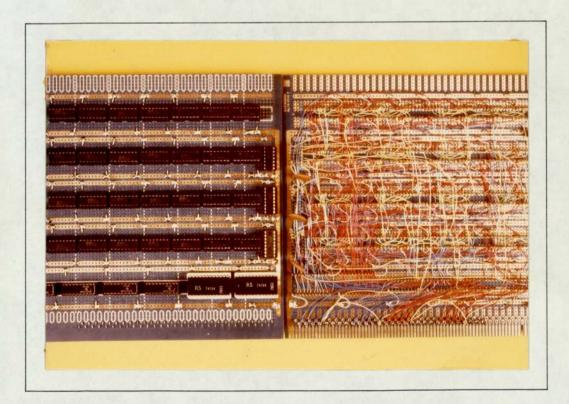


FIGURE A3 : The ISMI circuit boards

FIGURE A4 : The HMSU on the background of the $\ensuremath{\mathsf{TLF}}$

APPENDIX B - THE F8 PROGRAMMING FEATURES

This appendix covers a brief description of the F8 Evaluation Kit, some important programming features unique to the F8 microprocessor and the F8 instruction set.

B1 THE F8 EVALUATION KIT

The F8 Evaluation Kit built by MOSTEK consists of minimum hardware system containing 3850 CPU, 3851 PSU, 3853 SMI and 1 kilobyte of static memory RAM and a Teletype interface (20 mA loop). The Designer's Development Tool 1 (DDT-1) program resides in the 3851 PSU which is located in the low order 1 kilobyte of memory space (i.e. H'0000' to H'03FF'). The RAM address space range from H'0400' to H'07FF'. All eight bits of Port 0, Port 1 and Port 4 are available to the user, providing 24 I/O lines. A selection 110 or 300 baud Teletype rate is available from Port 5.

The DDT-1 program serves a convenient means for evaluating the F8 and the debugging of application programs. A summary of the commands accepted by the DDT-1 is as follows:

1. B - Breakpoint (software) address.

Format: B aaaa, where aaaa is a breakpoint address.

2. C - Copy memory arrays.

Format: C ssss, ffff, dddd, where ssss = start address, ffff = finish address and dddd = destination address

3. D - Dump memory onto paper tape. Format: D ssss, ffff, where ssss = start address and ffff = finish address.

- 4. E Execute at specific address.Format: E ssss, where ssss = start address.
- 5. H Hexadecimal arithmetic operations. Format: H a + b = result or H aaaa + bbbb - cccc = result.
- 6. L Load memory from paper tape.
- 7. M Memory content display and modify. Format: M aaaa, where aaaa = address of memory location.
- P Port content display and modify.
 Format: P pp, where pp is the port address to be examined or modified.
- 9. T Type memory content array. Format: T ssss, ffff, where ssss = start address and ffff = finish address of the memory block to be printed.

B2 IMPORTANT PROGRAMMING FEATURES

1. When power is turned on, all PCO (program counter registers) in the F8 microprocessor system are set to 0. Therefore, the first instruction executed is located at memory byte 0. Thus, the first program to be executed must be originated at H'0000'.

2. A subroutine linkage is associated with calling from and returning to the main program. There are two instructions used to call a subroutine into execution:(a) Instruction PK saves the contents of the program counter (PCO) in the stack register (PC1), then loads the

subroutine starting address from the K register into the program counter.

(b) Instruction PI saves the contents of the program counter in the stack register. It then loads the subroutine starting address (which is in the two bytes of object program following the PI op code byte) into the program counter.

Similarly, there are two ways to return from subroutines:

(a) Instruction POP moves the contents of the stack register back to PCO.

(b) Instruction Pk may also be used to return from a subroutine by having the return address in the k registers.

If, for example, subroutines are nested two deep, the following steps show the call and return sequence:

Initially,	outer	routine	start	address	s is	put	in	k:	<k< th=""><th><></th><th>= b</th></k<>	<>	= b
Outer Call		Pk		<pco></pco>	→ P(C1			a	+	PC1
				<k></k>	→ P(20			b	+	PC0

Save PC1 in k in preparation for inner call:

	LR K, P	<pc1></pc1>	<i>→</i>	k	a	+	k
Inner Call	PI	<pc0></pc0>	÷	PC1	с	+	PC1
		(.+1)(.+2)	<i>→</i>	PC0	е	+	PC0
Inner Return	POP	<pc1></pc1>	+	PC0	с	+	PC0
Outer Return	Pk	<pc0></pc0>	+	PC1	d	\rightarrow	PC1
		<k></k>	+	PC0	a	+	PC0

where a, b, c, d and e are 16 bit addresses.

For nesting to greater depth, a stack for return addresses is required to be set up.

3. The basic interrupt handling capacity is a micro-programmed function of the 3850 CPU. The sequence of events surrounding an interrupt is as follows:
(a) For interrupts to be processed, interrupts must be enabled within the 3850 CPU and at the chip receiving the interrupt request signal (i.e. 3861 or 3851 or 3853 chips).
(b) When more than one device simultaneously request to interrupt the 3850 CPU, priorities are determined on the basis of 'daisy-chaining'. The daisy-chain sequence is a hardware feature of an F8-microprocessor system.

(c) When a valid interrupt request signal is detected by the 3850 CPU, it ceases current program execution at the conclusion of the instruction currently being executed. However, an interrupt will not be acknowledged at the conclusion of the following privileged instructions:

Pk PI POP JMP OUTS (except 0,1) OUT EI LR W,J

(d) The 3850 CPU SENDS out an interrupt acknowledge signal.
It is the way in which this signal is trapped that implements interrupt priority, when more than one interrupt request line is true, as described in step (b).
(e) When the 3850 CPU sends out an interrupt acknowledge

signal, it clears the interrupt enable status within the 3850 CPU thus disabling all subsequent interrupts.

(f) The chip that traps the interrupt acknowledge signal output in step (e) responds by transmitting the contents of its interrupt address register as the next contents of PCO register. These interrupt addresses are as follows for different chips:

CHIP	INTERRUPT ADDRESSES			
CHIP	TIMER	EXTERNAL		
3851 PSU	Non-programmable mask option			
3861 PIO (MK 90002)	H'0340'	H'03C0'		
3861 PIO (MK 90003)	H'0320'	H'03A0'		
3853 SMI	Programma	ble option		

(g) The PSU or SMI logic moves the contents of PCO to PC1 and then loads the address from step (f) into PCO. Thus, a program dedicated to the acknowledged interrupt request line is executed.

B3 THE F8 INSTRUCTION SET

The following pages describe the F8 instruction set.

The F8 instruction set (p.245-247) has been removed for copyright reasons

APPENDIX C - THE HMSU PROGRAM LISTING

The foll	owing HMS	U prog	ram is for t	the master processor
of the HMSU:				ROSS ASSEMBLER PAGE 0001
ADDR OBJECT FLAG	ST # SOURCE	STATEMEN	T DATASET	= DKO:HMSU .SRC
OCESSOR	0001 #TITLE-	HMSU-AN	ASSEMBLY LANGUAG	E PROGRAMME FOR MASTER PR
>0800	0002 C1	EQU	H'0800'	
>0801	0003 C2	EQU	H'0801'	
>0802	0004 C3	EQU	H'0802'	
>0803	0005 LA	EQU	H'0803'	
>0804	0006 NS	EQU	H'0804'	
>0805	0007 MS	EQU	H'0805'	
>0806	0008 CM	EQU	H'0806'	
>0807 >0808	0009 RUNNO 0010 ISP1	EQU	H'0807'	
>0809	0010 15F1 0011 K11	EQU	H'0808' H'0809'	
>080A	0012 K12	EQU	H'080A'	
>080B	0013 K13	EQU	H'080B'	
>080C	0014 K14	EQU	H'080C'	
>080D	0015 SI1	EQU	H'080D'	
>0810	0016 ISP2	EQU	H'0810'	
>0811	0017 K21	EQU	H'0811'	
>0812	0018 K22	EQU	H'0812'	
>0813 >0814	0019 K23 0020 K24	EQU	H'0813' H'0814'	
>0815	0021 SI2	EQU	H'0815'	
>0818	0022 ISP3	EQU	H'0818'	
>0819	0023 K31	EQU	H'0819'	
>081A	0024 K32	EQU	H'081A'	
>081B	0025 K33	EQU	H'081B'	
>0810	0026 K34	EQU	H'081C'	
>081D >083C	0027 SI3 0028 RCPS	EQU	H'081D'	ADEAD COUNTED DED OFT
>083D	0028 REPS	EQU	H'083C' H'083D'	FREAD COUNTER PDP SET
>083E	0030 WFCPS	EQU	H'083E'	WRITE FLAG COUNTER PDP
SET				THEFT FUNCTION OF THE TOP
>083F	0031 WFPS	EQU	H'083F'	WRITE FLAG PDP SET
>0040	0032 ZONO	EQU	H'40'	HEATING ZONE ADDRESSES:
>0041	0033 ZON1	EQU	H'41'	
>0042	0034 ZON2	EQU	H'42'	
>0043 >0044	0035 ZON3 0036 ZON4	EQU	H'43' H'44'	
>0045	0037 ZON5	EQU	H'45'	
>0046	0038 ZDN6	EQU	H'46'	
>0047	0039 ZON7	EQU	H'47'	
>0050	0040 MDTA	EQU	H'50'	FCONVEYOR MOTOR ADDRESS
>0840	0041 LZAC	EQU	H'0840'	FLOAD & ZONE ADDRESS COU
NTER >0841	0042 SZONA	EQU	H'0841'	ANTANTANA TANE ADDRESS
>0842	0042 S20NA	EQU	H'0842'	STARTING ZONE ADDRESS
ESS	VVIO IOLONA	Lao	11 0042	TENT STARTING ZORE HDDR
>0843	0044 RFCMS	EQU	H'0843'	FREAD FLAG COUNTER MASTE
R SET				
>0844	0045 PIDFLG	EQU	H'0844'	PID FLAG
>0845	0046 ISMIFG	EQU	H'0845'	ISMI FLAG
>0846 >0847	0047 MSFLG 0048 CMFLG	EQU	H'0846'	MICRO SWITCH FLAG
>0848	0048 CHPLB	EQU	H'0847' H'0848'	COMMON MEMORY FLAG
>0849	0050 TSLA	EQU	H'0849'	JTEMP STARTING LOAD ADDR
ESS				
>084A	0051 TLZAC	EQU	H'084A'	FTEMP LOAD & ZONE ADD CO
UNTER				
>087F TER	0052 SPA0	EQU	H'087F'	STORED FORT ADD FOR MAS
>OBBF	0053 SPA1	EQU	H'08BF'	STORED PORT ADD FOR SLA
VE1	0000 01 HI	2.00	II VODP	STORED FORT HDD FOR SEA
>OBFF	0054 SPA2	EQU	H'08FF'	STORED PORT ADD FOR SLA
VE2		See Providence		
>084C >084F	0055 RFMS	EQU	H'084C'	READ FLAG MASTER SET
7084F T	0056 WCMS	EQU	H'084F'	WRITE COUNTER MASTER SE
>0850	0057 WFMS	EQU	H'0850'	WRITE FLAG MASTER SET
>087E	0058 MTRF	EQU	H'087E'	MASTER TRANSMITT FLAG

ADDR	OBJECT FLA	G ST #	SOURCE S			CROSS ASSEMBLER PAGE 0002 T = DK0:HMSU .SRC
>08BE			SITRF	EQU	H'OBBE'	SLAVE1 TRANSMITT FLAG
>08FE			S2TRF	EQU	H'OBFE'	SLAVE2 TRANSMITT FLAG
>0851 >0852		0061		EQU	H'0851' H'0852'	TRANSMISSION FLAG
ER		0062	TRFC	EQU	H 0652	FIRMASHISSION FLAG COUNT
>0400		0063	SSA	EQU	H'0A00'	STARTING STACK ADDRESS
>0853			MSCNT	EQU	H'0853'	#MICRO SWITCH COUNTER
>0854		0065	SNO	EQU	H'0854'	SAMPLE NUMBER STORE
>0855		0066	ANSWER	EQU	H'0855'	TEMP STORE FOR CALCULAT
ED POW						
>0856			TRUNNO	EQU	H'0856'	TEMP STORE FOR RUNNO
>0870			REC01 REC02	EQU	H'0870'	FLOOP1 RECORD ADDRESS
>087A			REC02	EQU	H'0875' H'087A'	ILOOP2 RECORD ADDRESS
						ARTS HERE
>0000		0072		ORG	H'0000'	FROGRAM-HMSU STARTS AT
0000						
10000	1A	0073		DI		DISABLE ALL INTERRUPTS
AT CPU						
10001	70	0074		CLR		CLEAR I/O PORTS
10002	BO	0075		OUTS	0	₩0-0
10003	B1 B8	0076		OUTS	1 8	;N0−1 ;N0−8
10005	B9	0078		OUTS	9	\$NO-9
10006	BA	0079		OUTS	H'0A'	\$NO-A
10007	2720	0080		OUT	H'20'	;ND-20
10009	2721	0081		OUT	H'21'	\$N0-21
'000B	2722	0082		OUT	H'22'	\$N0-22
1000D	67	0083		LISU	7	CLEAR CONTROL LOOP BUFF
ER 1000E	200407/	0004			7500	\$0'77'-0'70'
10011	280407' A	0084		PILISU	ZERO 6	10'67'-0'60'
10012	280407' A			PI	ZERO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
10015	65	0087		LISU	5	10'57'-0'50'
10016	280407' A	0088		PI	ZERO	
10019	28040E' A	0089		PI	SHUT	JUMP TO SHUTDOWN SUBROU
TINE						
'001C	240800	0090		DCI	C1 H'FF'	
'001F '0021	20FF 50	0091		LI LR	0,A	
10022	70	0093		LIS	0	
10023	17		AGA	ST		
10024	30	0095		DS	0	
10025	94FI	0096		BNZ	AGA	
10027	20FF	0097		LI	H'FF'	CLOSE TIMER AT PIO-2
10029	2723	0098		OUT	H'23'	TENT THE CHARLED AT DID.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	71	0099		LIS	1	FEXT INT ENABLED AT PID-
·0020	2722	0100		OUT	H'22'	
'002E		0101		LI	H'FD'	\$253 TIMER MAX COUNT LOA
DED IN	1					
10030	BB	0102		OUTS	H'OB'	FORT-B OF PIO-1
10031	73	0103		LIS	3	TIMER INT ENABLED AT PI
0-1	BA	0104		OUTS	H'OA'	
10033	71	0105		LIS	1	SMI VECTOR ADD PORTS H'
0C'-H'						
10034	BC	0106		OUTS	H'0C'	FARE LOADED WITH H'0280'
10035	20F0	0107		LI	H'FO'	
10037	BD	0108		OUTS	H'OD'	TENT THE ENTRY IS AN ANT
10038	71	0109		LIS	1 H'OE'	FEXT INT ENABLED AT SMI
10039 1003A	BE 63	0110		OUTS LISU	3	
'003B	68	0112		LISL	0	
'003C	20FD	0113		LI	H'FD'	
1003E	50	0114		LR	I,A	
'003F	201E	0115		LI	30	
10041	50	0116		LR	I,A	

						MOSTEK	3870/F8 CROSS ASSEMBLER PAGE 0003
ADDR	OBJECT	FLAG	ST #	SOURCE	STATEMEN	Т	DATASET = DKO:HMSU .SRC
100.00							
10042	200A		0117		LI	H'OA'	
10044	50		0118		LR	S,A	
10045	70		0119		LIS	0	
10046	2A0844		0120		DCI	PIDFLO	
10049	17		0121		ST		
1004A	2A0854		0122		DCI	SNO	
'004D	17		0123		ST		
1004E	2A0845		0124		DCI	ISMIFG	
10051	71		0125		LIS	1	
10052	17		0126		ST		
			0127	MAIN	PROGRAM -	LOWEST	PRIORITY ROUTINE STARTS HERE
10053	1 B		0128	BUY	EI		
10054	2A0844		0129		DCI	PIDFLG	
10057	16		0130		LM		
10058	2501		0131		CI	1	
1005A	8413		0132		BZ	PID	
'005C	2A0845		0133		DCI	ISMIFG	
1005F	16		0134		LM	1011110	
10060	2501		0135		CI	1	
10062	8415		0136		BZ	ISMI	
10064	2A0851		0137		DCI	TRF	
10067	16		0138		LM	TRE	
10068	2501		0139		CI	1	
'006A	8408		0140		BZ	TRMITT	
'006C	90E6		0141		BR	BUY	
1006E	290489'	A	0142	PTD	JMP	PIDR	
10071	90E1	n	0143	110	BR		
10073	290248	A		TRMITT	JMP	BUY	
10076	90DC	п	0145	INNITI	BR	TRMIT	
0070	7010			FISHI		BUY	FOR NEW DATA THOUT CROW CRO 44
10078	2040		0148		LI		FOR NEW DATA INPUT FROM PDP-11
1007A	2720			ISHI		H'40'	
1007C			0148	OTAV	OUT	H'20'	
'007E	2621		0149	STAT	IN	H'21'	
10080	2501		0150		CI	1	
10082	84FB		0151		BZ	STAY	
10085	2A083E		0152	FULL	DCI	WFCPS	
	280400'	A	0153		PI	CLEAR	
10088	2041		0154		LI	H'41'	
1008A	2720		0155		OUT	H'20'	
10080	2621		0156		IN	H'21'	
1008E	8D		0157		CM		
1008F	840D		0158		BZ	SAME	
10091	280191'	A	0159		PI	COPY	
10094	63		0160		LISU	3	
10095	69		0161		LISL	1	
10096	240800		0162		DCI	SI1	
10099	16		0163		LM		
1009A	50		0164		LR	S,A	
1009B	9004		0165		BR	TEST1	
'009D		A	0166		JMP	BUYOT	
	290189'					C1	
100A0	2A0800		0167	TEST1	DCI	01	
100A0 100A3	2A0800 16		0168	TEST1	LM		
100A0 100A3 100A4	2A0800 16 25FF		0168 0169	TESTI	LM CI	H'FF'	
100A0 100A3 100A4 100A6	2A0800 16 25FF 8403		0168 0169 0170	TESTI	LM CI BZ	H'FF' SET1	
100A0 100A3 100A4 100A6 100A8	2A0800 16 25FF 8403 9006		0168 0169 0170 0171		LM CI BZ BR	H'FF' SET1 X1	
100A0 100A3 100A4 100A6 100A8 100A8	2A0800 16 25FF 8403 9006 2A087F		0168 0169 0170 0171 0172		LM CI BZ BR DCI	H'FF' SET1 X1 SPA0	
100A0 100A3 100A4 100A6 100A8	2A0800 16 25FF 8403 9006		0168 0169 0170 0171		LM CI BZ BR	H'FF' SET1 X1	

ADDR	OBJECT	FLAG	ST #	SOURCE	STATEMEN	r	DATASET	= DKO:HMSU	.SRC
'00AF	2A0801		0175	X1	DCI	C2			
'00B2	16		0176		LM				
'00B3	25FF		0177		CI	H'FF'			
'00B5	8403		0178		BZ	SET2			
'00B7	9006		0179		BR	X2			
'00B9	2408BF			SET2	DCI	SPA1			
'OOBC	71		0181		LIS	1			
OOBD	17		0182		ST	-			
'OOBE	2A0802		0183	X2	DCI	C3			
'00C1	16		0184		LM				
'00C2	25FF		0185		CI	H'FF'			
'00C4	8404		0186		BZ	SET3			
10006	290184	A	0187		JMP	BUYOUT			
10009	2408FF			SET3	DCI	SPA2			
'00CC	71		0189		LIS	1			
'00CD	17		0190		ST	-			
'00CE	2A0800			TEST2	DCI	C1			
'00D1	16		0192		LM				
'00D2	25FF		0193		CI	H'FF'			
10004	8404		0194		BZ	NO			
'00D6	2901F0	A	0195		JMP	CMAR			
'00D9	2A0806		0196	ON	DCI	CM			
'OODC	16		0197		LM	0			
'OODD	2501		0198		CI	H'01'			
'OODF	8414		0199		BZ	UUU			
'00E1	2A0806		0200		DCI	CM			
'00E4	16		0201		LM	1993			
'00E5	2502		0202		CI	H'02'			
'00E7	8455		0203		BZ	VVV			
'00E9	2A0806		0204		DCI	CM			
'00EC	16		0205		LM				
'OOED	2503		0206		CI	H'03'			
'00EF	841C		0207		BZ	សសស			
'00F1	290184	A A	0208		JMP	BUYOUT			
'00F4	2A0840		0209	UUU	DCI	LZAC			
'00F7	72		0210		LIS	2			
'00F8	17		0211		ST				
'00F9	2A0848		0212		DCI	SLA			
'OOFC	20		0213		XDC				
'OOFD	2A0803		0214		DCI	LA			
10100	16		0215		LM				
'0101	20		0216		XDC				
10102	17		0217		ST				
'0103	2A0841		0218		DCI	SZONA			
'0106	2040		0219		LI	ZONO			
10108	17		0220		ST				
10109	290184	' A	0221		JMP	BUYOUT			
'010C	2A0840		0222		DCI	LZAC			
'010F	73		0223		LIS	3			
10110	17		0224		ST				
10111	240848		0225		DCI	SLA			
10114	20		0226		XDC	1.0			
0115	240803		0227		DCI	LA			
10118	16		0228		LM	H'02'			
'0119	2402		0229		LR	0,A			
'011B	50		0230		CI	H'3E'			
'011C	253E		0231		BZ	LAO			
'011E	840B		0202		DL	LHU			

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0004 ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DK0:HMSU .SRC

ADDR	OBJECT	FLAG	ST #	SOURCE	STATEM	ENT	DATASET = DKO:HMSU	• 5
10120	40		0233		LR	A,0		
10121	253F		0234		CI	H'3F'		
10123	840C	1.2	0235		BZ	LAN		
10125	20		0236		XDC			
10126	40		0237		LR	A,0		
10127	17		0238		ST			
10128	900B		0239		BR	BUY1		
'012A	2020		0240	1 40	LI	H'20'		
10120	2020		0241	LHO	XDC			
'012D	17		0242		ST			
'012E	9005		0243		BR	BUY1		
10130	2021		0244	1.0.0	LI	H'21'		
					XDC	11 22		
'0132	20		0245					
10133	17		0246	DUVA	ST	SZONA		
10134	2A0841			BUY1	DCI	ZON2		
10137	2042		0248		LI	ZUNZ		
10139	17		0249		ST	DUIN		
'013A	290053		0250		JMP	BUY		
'013D	2A0840		0251		DCI	LZAC		
10140	73		0252		LIS	3		
'0141	17		0253		ST			
'0142	2A0848		0254		DCI	SLA		
10145	20		0255		XDC			
10146	2A0803		0256		DCI	LA		
10149	16		0257		LM			
'014A	2405		0258		AI	H'05'		
'014C	50		0259		LR	0,A		
'014D	253E		0260		CI	H'3E'		
'014F	841A		0261		BZ	LAO		
'0151	40		0262		LR	A,0		
10152	253F		0263		CI	H'3F'		
10154	8419		0264		BZ/	LA1		
10156	40		0265		LR	A,0		
10157	2540		0266		CI	H'40'		
10159	8418		0267		BZ	LA2		
'015B	40		0268		LR	A,0		
'015C	2541		0269		CI	H'41'		
'015E	8417		0270		BZ	LAS		
						0,4		
10160	50		0271		LR CI	H'42'		
10161	2542 8416		0272		BZ	LA4		
10163			0274		XDC	L.1.4		
10165	20		0274		LR	A+0		
10166	40				ST	HIO		
'0167	17		0276			DUVO		
10168	9015		0277		BR	BUY2		
'016A	2020			LAO	LI	H'20' BUY3		
'016C	900F		0279		BR			
'016E	2021			LA1	LI	H'21'		
10170	900B		0281		BR	BUY3		
10172	2022			LA2	LI	H'22'		
'0174	9007		0283		BR	BUY3		
10176	2023			LA3	LI	H'23'		
10178	9003		0285		BR	BUY3		
'017A				LA4	LI	H'24'		
'017C	20			BUY3	XDC			
'017D	17		0288	3	ST			
'017E	2A0841	L	0289	BUY2	DCI	SZONA		
10181	2045		0290)	LI	ZON5		

-

4

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0005 ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DK0:HMSU .SRC

							3870/F8	B CROSS ASSEM	BLER PAGE	0006
ADDR	OBJECT F	LAG	ST #	SOURCE	STATEMEN	1 T	DATASE	ET = DKO:HMSU	J .SRC	
10183	17		0291		ST					
10184	2A0844			BUYOUT	DCI	FIDFLG	E.			
10187	71		0293		LIS	1				
10188	17		0294		ST					
'0189	2A0845		0295	BUYOT	DCI	ISMIFG				
'018C	70		0296		LIS	0				
'018D	17		0297		ST					
'018E	2900531	A	0298		JMP	BUY				
			0299	FCOPY S	UBROUTIN	AE COPIE	S ISMI	INTO MASTER'	S PRIVATE	MEMOR
Y										
			0300	FAND CO	MMON MEN	10RY OF	THE HMS	SU SYSTEM.		
10191	08		0301	COPY	LR	K,P				
10192	1A		0302		DI					
10193	71		0303		LIS	1				
10194	2721		0304		OUT	H'21'				
10196	2080		0305		LI	H'80'				
10198	2720		0306		OUT	H'20'				
'019A	70		0307		LIS	0				
'019B	B9		0308		OUTS	9				
'019C	2720		0308							
'019E					OUT	H'20'				
	240000		0310		DCI	H.0C00				
'01A1	20		0311		XDC					
'01A2	2A0800		0312		DCI	H'0800				
'01A5	2040		0313		LI	H'40'		FCOUNT 64	A LOADED I	N REG
0										
'01A7	50		0314		LR	0,A				
'01A8	207F		0315		LI	H'7F'		FREAD ADI	D LOADEDIN	REG 1
'01AA	41			REPT	LR	A,1				
'01AB	2720		0317		OUT	H'20'				
'01AD	2621		0318		IN	H'21'				
'01AF	17		0319		ST					
'01B0	20		0320		XDC					
'01B1	17		0321		ST					
'01B2	20		0322		XDC					
'01B3	70		0323		LIS	0				
'01B4	2720		0324		OUT	H'20'				
'01B6	2721		0325		OUT	H'21'				
'01B8	31		0326		DS	1				
'01B9	30		0327		DS	ō				
'01BA	94EF		0328		BNZ	REPT				
'01BC	2A083E		0329		DCI	WFCPS				
'01BF	70		0330		LIS	0				
'01C0	2721		0331		OUT	H'21'				
'01C2	2080		0332		LI	H'80'				
'01C4	2720		0333		OUT	H'20'				
10104	70		0334		LIS	0				
10107	2720		0335		OUT	H'20'				
10109			0335			n 20'				
	16				LM	4044				
'01CA			0337		OUT	H'21'				
'01CC	2081		0338		LI	H'81'				
'01CE	2720		0339		OUT	H'20'				
'01D0	70		0340		LIS	0				
'01D1	2720		0341		OUT	H'20'				
'01D3	2721		0342		OUT	H'21'				
'0105	1 B		0343		EI					
'01D6	00		0344		PK			FRETURN		
			0345	FCOMMON	MEMORY	ROUTINE	MAKES	COMMON DATA	AVAILABLE	TO OT
HER SL	AVE									
				#PROCES						
>01F0			0347		ORG	H'01F()'			
'01F0	08		0348	CMAR	LR	K,P				

ADDR	OBJECT	FLAG	ST #	SOURCE	STATEMENT	r	DATASET	= DKO:HMSU	.SRC	
'01F1	54		0349		LR	4,A				
'01F2	1E		0350		LR	J,W				
'01F3	0A		0351		LR	A,IS				
'01F4	55		0352		LR	5,A				
'01F5	280435	A	0353		PI	CALL				
'01F8	1B		0354			CHLL				
'01F9					EI	CDAD				
	2408FF		0355		DCI	SPA2				
'01FC	16		0356		LM	12				
'01FD	2501		0357		CI	1				
'01FF	8413		0358		BZ	SLV2				
10201	2A08BF		0359		DCI	SPA1				
10204	16		0360		LM					
10205	2501		0361		CI	1				
10207	8414		0362		BZ	SLV1				
10209	2A087F		0363		DCI	SPAO				
10200	16		0364		LM					
'020D	2501		0365		CI	1				
'020F	8413		0366		BZ	SLVO				
10211	902D		0367		BR	OUTT				
10213	2A08FF		0368	SLV2	DCI	SPA2				
10216	70		0369		LIS	0				
10217	17		0370		ST					
10218	72		0371		LIS	2				
10219	B9		0372		OUTS	9				
'021A	9024		0373		BR	OUTT				
'021C	2A08BF			SLV1						
'021F	2HUBBF 70			SLVI	DCI	SPA1				
			0375		LIS	0				
10220	17		0376		ST					
10221	71		0377		LIS	1				
10222	B9		0378		OUTS	9				
10223	2A087F			SLVO	DCI	SPAO				
10226	70		0380		LIS	0				
10227	17		0381		ST					
10228	B9		0382		OUTS	9				
10229	2A0851		0383		DCI	TRF				
'022C	71		0384		LIS	1				
'022D	17		0385		ST					
'022E	2080		0386		LI	H'80'				
10230	50		0387		LR	0,A				
'0231	2A0880		0388		DCI	H'0880'				
10234	20		0389		XDC					
10235	2A0C80		0390		DCI	H'0C80'	14. I			
10238	16		0391	REP	LM					
10239	20		0392		XDC					
'023A	17		0393		ST					
'023B	20		0394		XDC					
'023C	30		0395		DS	0				
'023D	94FA		0396		BNZ	REP				
1023F	280460	' A		OUTT	PI	RETN				
10242	45		0398	0011	LR	A+5				
10243	OB		0399		LR	IS,A				
10243	1D		0400		LR	W,J				
10245	44		0400		LR					
10245			0401		EI	A,4				
10248	1 B 0 C		0402		PK			FRETURN		
0247	00					OUTTHE	TRANCHT		AUE 4	
								TS MASTER, SL	HVEI &	
10040	2042						10 PDP-	11 VIA ISMI		
10248	2042		0408	TRMIT	LI	H'42'				

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0007 ADDR DBJECT FLAG ST & SOURCE STATEMENT DATASET = DK0:HMSU .SRC

ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DM '024A 2720 0407 OUT H'20' '024C 2621 0408 TRY IN H'21' '024E 2501 0409 CI 1 '0250 84FB 0410 BZ TRY '0252 2A084F 0411 DCI WCMS '0257 2720 0413 OUT H'21' '0258 8D 0415 CM '0258 8D 0415 CM '0252 290053' A 0417 JMP BUY '0258 8D 0416 BZ SEND '0252 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 1 '0265 2721 0420 OUT H'21' 1 '0267 2082 0421 LI H'82' 1 '0268 2A087E 0423 TRO	
'024C 2621 0408 TRY IN H'21' '024E 2501 0409 CI 1 '0250 84FB 0410 BZ TRY '0252 2A084F 0411 DCI WCMS '0255 2043 0412 LI H'43' '0257 2720 0413 OUT H'20' '0258 8D 0415 CM '0252 '0250 8404 0416 BZ SEND '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '026' '026' 2720 0422 OUT H'21' '026' '026' 200'	
'024E 2501 0409 CI 1 '0250 84FB 0410 BZ TRY '0252 2A084F 0411 DCI WCMS '0255 2043 0412 LI H'43' '0257 2720 0413 OUT H'20' '0259 2621 0414 IN H'21' '0258 BD 0415 CM '0252 290053' A 0417 JMP '0252 290053' A 0417 JMP '0252 290053' A 0417 JMP '0254 280400' A 0418 SEND FI '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0264 16 0424 LM C 1	
'0250 84FB 0410 BZ TRY '0252 2A084F 0411 DCI WCMS '0255 2043 0412 LI H'43' '0257 2720 0413 DUT H'20' '0259 2621 0414 IN H'21' '0258 8D 0415 CM '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0254 280400' A 0418 SEND FI CLEAR '0264 71 0419 LIS 1 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0264 2501 0425 CI 1 1 '0271 8413 0426 BZ MTR '0273 <td></td>	
'0252 2A084F 0411 DCI WCMS '0255 2043 0412 LI H'43' '0257 2720 0413 OUT H'20' '0259 2621 0414 IN H'21' '0258 8D 0415 CM '025E 290053' A 0416 BZ SEND '025E 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '121' '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0268 2A087E 0423 TRO DCI MTRF '0268 2A087E 0423 TRO DCI MTRF '0264 16 0424 LM '0267 268 A088E BZ MTR '0271 8413 0426 BZ MTR '0276 16 0428	
'0255 2043 0412 LI H'43' '0257 2720 0413 OUT H'20' '0259 2621 0414 IN H'21' '0258 8D 0415 CM '0252 8404 0416 BZ SEND '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0265 2721 0420 OUT H'22' '026' '026' 2720 0422 UUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0264 16 0424 LM '026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF	
'0255 2043 0412 LI H'43' '0257 2720 0413 OUT H'20' '0259 2621 0414 IN H'21' '0258 8D 0415 CM '0252 290053' A 0416 BZ SEND '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '21' '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0268 2A087E 0423 TRO DCI MTRF '0268 2A087E 0423 TRO DCI MTRF '0264 16 0425 CI 1 1 '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM <td></td>	
'0257 2720 0413 OUT H'20' '0259 2621 0414 IN H'21' '0258 8D 0415 CM '0250 8404 0416 BZ SEND '0252 290053' A 0417 JMP BUY '0252 290053' A 0417 JMP BUY '0254 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0265 2721 0420 OUT H'20' '0267 2082 0421 LI H '82' '0267 2082 0421 LI H '82' '026' '026' 2720 0422 OUT H'20' '0268 2A087E 0423 TR0 DCI MTRF '0264 16 0424 LM '027' 3208BE 0427 TR1 DCI S1TRF '0273 2A08BE 0427 TR1 DCI	
'0259 2621 0414 IN H'21' '025B 8D 0415 CM '025C 8404 0416 BZ SEND '025E 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0267 2082 0421 LI H'82' '0267 2082 0421 LI H'82' '0267 2082 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0265 2501 0425 CI 1 '0267 2408BE 0427 TR1 DCI S1TRF '0268 2A087E 0425 CI 1 1 '0267 2501 0425 CI 1 1 '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 '0277 2501 </td <td></td>	
'025B 8D 0415 CM '025C 8404 0416 BZ SEND '025E 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0267 2082 0421 UT H'20' '0268 2A087E 0423 TRO DCI MTRF '0265 2501 0425 CI 1 1 '0267 268E 0427 TR1 DCI MTRF '0268 2A087E 0425 CI 1 1 '0267 2501 0425 CI 1 1 '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 1 '0277 2501 0429 CI 1 1	
'025C 8404 0416 BZ SEND '025E 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND FI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0264 16 0424 LM '026F 2501 0425 CI 1 '0267 28413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'025E 290053' A 0417 JMP BUY '0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0268 2A087E 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0265 2501 0425 CI 1 '0267 2680 0424 LM '0267 '0268 2A087E 0423 TRO DCI MTRF '0265 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR S1TR '0279	
'0261 280400' A 0418 SEND PI CLEAR '0264 71 0419 LIS 1 '0265 2721 0420 DUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 DUT H'20' '0268 2A087E 0423 TRO DCI MTRF '0265 2501 0425 CI 1 '0267 2808E 0425 CI 1 '0273 2A08BE 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 1 '0277 2501 0429 CI 1 1 '0279 8419 0430 BZ S1TR	
'0264 71 0419 LIS 1 '0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TR0 DCI MTRF '0265 2501 0425 CI 1 '0267 28413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 1 '0277 2501 0427 CI 1 1 '0277 2501 0429 CI 1 1 '0279 8419 0430 BZ S1TR	
'0265 2721 0420 OUT H'21' '0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 1 '0277 2501 0429 CI 1 '0277 8419 0430 BZ S1TR	
'0267 2082 0421 LI H'82' '0269 2720 0422 OUT H'20' '0268 2A087E 0423 TRO DCI MTRF '026E 16 0424 LM '026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR S1TR	
'0269 2720 0422 OUT H'20' '026B 2A087E 0423 TRO DCI MTRF '026E 16 0424 LM 1 '026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR S1TR S1TR	
O26B 2A087E O423 TRO DCI MTRF O26E 16 O424 LM MTR <td></td>	
'026E 16 0424 LM '026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'026F 2501 0425 CI 1 '0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM 1 '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'0271 8413 0426 BZ MTR '0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'0273 2A08BE 0427 TR1 DCI S1TRF '0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
0276 16 0428 LM '0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'0277 2501 0429 CI 1 '0279 8419 0430 BZ S1TR	
'0279 8419 0430 BZ S1TR	
AND DAARE AAT TRO DET SOTRE	
VETE ENTER	
'027E 16 0432 LM	
'027F 2501 0433 CI 1	
'0281 841F 0434 BZ S2TR	
10283 9029 0435 BR NEW	
'0285 2010 0436 MTR LI H'10'	
10287 50 0437 LR 01A	
'0288 20B7 0438 LI H'B7'	
'028A 51 0439 LR 1,A	
'028B 2A087F 0440 DCI H'087F'	
'028E 2802D3' A 0441 PI WRITE	
'0291 90E1 0442 BR TR1	
'0293 2010 0443 S1TR LI H'10'	
10295 50 0444 LR 0,A	
'0296 20A7 0445 LI H'A7'	
10298 51 0446 LR 1+A	
'0299 2A08BF 0447 DCI H'08BF'	
'029C 2802D3' A 0448 PI WRITE	
1029F 90DB 0449 BR TR2	
'02A1 2010 0450 S2TR LI H'10'	
102A3 50 0451 LR 07A	
'02A4 2097 0452 LI H'97'	
102A6 51 0453 LR 1,A	
'02A7 2A08FF 0454 DCI H'08FF'	
'02AA 2802D3' A 0455 PI WRITE	
'02AD 280400' A 0456 NEW PI CLEAR	
V2AD 200400 A 0100 ACT 1000	
VEDV ENVOUL	
VLDT LINUUL	
VEDT LO	
'02BB 2721 0464 OUT H'21'	

ADDR	OBJECT	FLAG	ST #	SOURCE	STATEME		3870/F8 CROSS ASSEMBLER PAGE 0009 DATASET = DK0:HMSU .SRC
		1 Eno		SOURCE			DATASET - DROTANSO TSRC
'02BD	2083		0465		LI	H'83'	
'02BF	2720		0466		OUT	H'20'	
'02C1	280400	A	0467		PI	CLEAR	
102C4	70		0468		LIS	0	
10205	2721		0469		OUT	H'21'	
10207	2082		0470		LI	H'82'	
'0209	2720		0471		OUT	H'20'	
'02CB	2A0851		0472		DCI	TRF	
'02CE	70		0473		LIS	0	
'02CF	17		0474		ST		
'02D0	290053	' A	0475		JMP	BUY	
			0476	#WRITE-	-SUBROUT	INE COPI	ES PM DATA INTO
							PDP-11 FOR DISPLAY
'02D3	08		0478	WRITE	LR	K,P	
'02D4	70		0479	W1	LIS	0	
'02D5	2720		0480		OUT	H'20'	
'0207	2721		0481		OUT	H'21'	
'02D9	16		0482		LM		
'02DA	2721		0483		OUT	H'21'	
'02DC	41		0484		LR	A,1	
'02DD	2720		0485		OUT	H'20'	
'02DF	30		0486		DS	0	
'02E0	94F3		0487		BNZ	W1	
'02E2	OC		0488		PK		RETURN
				TIMER		PT ROUTT	NE STARTS HERE
			0490	TOP PE	TORITY	ROUTINE	- PIO-1-90002 - VECT ADD H'0340'
>0340			0491	,	ORG	H'0340	
10340	08		0492		LR	K,P	
10341	54		0493		LR	4,A	
10342	1E		0494				
10343	0A		State Company		LR	JyW	
10344			0495		LR	A,IS	
10344	55		0496		LR	5,A	
10345	280435	A	0497		PI	CALL	
10348	63		0498		LISU	3	
'0344	68		0499		LISL	0	
'034B	40		0500		LR	A,S	
'034D	24FF 9427		0501		AI	H'FF'	
'034F	20FD		0502		BNZ	EXIIT	
10351	20FD 5D		0503		LI LR	H'FD'	
10352			0504			I,A	
	40		0505		LR	A,S	
10353	24FF		0506		AI	H'FF'	
10355	8409		0507	VB	BZ	SETP	
10357	6A		0508	XP	LISL	2	
10358	40		0509		LR	A,S	
10359	24FF		0510		AI	H'FF'	
'035B	8410		0511		BZ	SETI	
'035D	9017		0512		BR	EXIIT	
'035F	69			SETP	LISL	1	
0360	24080D		0514		DCI	SI1	
0363	16		0515		LM		
10364	50		0516		LR	S,A	
10365	2A0844		0517		DCI	PIDFLO	
10368	71		0518		LIS	1	
10369	17		0519		ST	Service and	
'036A	90EC		0520		BR	XP	
'036C	6A			SETI	LISL	2	
'036D	200A		0522		LI	H'OA'	

						MOSTEK	3870/F8 CROSS ASSEMBLER PAGE 0010
ADDR	OBJECT F	LAG	ST #	SOURCE	STATEMEN	T	DATASET = DKO:HMSU .SRC
1036F	50		0523		LR	S,A	
10370	2A0845		0524		DCI	ISMIFG	3
10373	71		0525		LIS	1	
10374	17		0526		ST		
10375	280460'	A	0527	EXIIT	PI	RETN	
10378	45		0528		LR	A,5	
10379	OB		0529		LR	IS,A	
1037A	1 D		0530		LR	W+J	
'037B	44		0531		LR	A,4	
'037C	1B		0532		EI		
'037D	OC		0533		PK		#RETURN
			0534	FEXTER	NAL MICRO	SWITCH	INTERRUPT ROUTINE STARTS HERE
			0535	#PI0-2-	-VECT ADI	0 H'03A0	0'
>03A0			0536		ORG	H'03A0	
'03A0	08		0537		LR	K,P	
'03A1	54		0538		LR	47A	
'03A2	1E		0539		LR	J,W	
'03A3	0A		0540		LR	A,IS	
103A4	55		0541		LR	5,A	
103A5	280435'	A	0542		PI	CALL	
'03A8	1B		0543		EI		
'03A9	2A0853		0544		DCI	MSCNT	
103AC	20		0545		XDC		
'03AD	2A0853		0546		DCI	MSCNT	
'03B0	16		0547		LM		
'03B1	24FF		0548		AI	H'FF'	
'03B3	20		0549		XDC		
'03B4	17		0550		ST		
'03B5	8403		0551		BZ	SET6	
'03B7	9022		0552		BR	QUIT	
'03B9	2A0853			SET6	DCI	MSCNT	
'03BC	76		0554		LIS	6	
'03BD	17		0555		ST		
'03BE	240848		0556		DCI	SLA	
'03C1	16		0557		LM		
'03C2	1F		0558		INC		
10303	240848		0559		DCI	SLA	
10306	17		0560		ST		
10307	253E		0561		CI	H'3E'	
10309	8403		0562		BZ	NVAL	
'03CB	900E		0563		BR	QUIT	
'03CD	2020			NVAL	LI	H'20'	
'03CF	2A0848		0565		DCI	SLA	
'03D2	17		0566		ST		
'03D3	280460	A	0567		PI	RETN	
'03D6	45		0568		LR	A,5	
'03D7	OB		0569		LR	IS,A	
10308	10		0570		LR	WrJ	
			0571		LR	A,4	
'03D9	1B			QUIT	EI	a destruction of the	
'03DB	00		0573		PK		FETURN
VSUD	00		0574	CLEAR	-SUBROUT	INE CLE	EARS I/O PORTS 20 &21
>040	0		0575		ORG	H'040	
10400	08			CLEAR	LR	K,P	
10400	70		0577		LIS	0	
10401	2720		0578		OUT	H'20'	
10402	2720		0579		OUT	H'21'	
10404	00		0580		PK	Sentered.	FRETURN
0400			0000	-			

ADDR	OBJECT FLAG	ST #	SOURCE				COSS ASSEMB DKO:HMSU	LER PAG	E 0011
		0581	#ZERO	SUBROUTIN	E CLEAR	S THE CONT	ROL LOOP B	UFFERS	
10407	08 .	0582		LR	K,P				
10408	6F	0583	der bes 1 1 ter	LISL	7				
10409	70	0584		LIS	Ó				
1040A	5E		LUP1	LR	D,A				
1040B	BFFE	0586	LUI 1	BR7	LUP1				
'040D	OC	0587		PK	LOIT				
0400	00		CUIT		E STOPS	THE CONVE	TAR AND		
							THE FURNA	CE	
'040E	08		SHUT	LR	K,P	ILATERS OF	THE FORM	CL.	
'040F	2050	0591	SHUT	LI	H'50'				
'0411									
'0411	50	0592		LR	0,A				
	70	0593		LIS	0				
10413	BO	0594		OUTS	0				
0414	40	0595		LR	A,0				
10415	B1	0596		OUTS	1				
10416	30		WAIT1	DS	0				
'0417	94FE	0598		BNZ	WAIT1				
'0419	2050	0599		LI	H'50'				
'041B	50	0600		LR	0,A				
'041C	78	0601		LIS	8				
'041D	51	0602		LR	1,A				
'041E	40	0603		LR	A,0				
'041F	B1	0604		OUTS	1				
10420	2047	0605		LI	H'47'				
10422	52	0606		LR	2,A				
10423	70	0607	CLOSE	LIS	0				
10424	BO	0608		OUTS	0				
10425	42	0609		LR	A,2				
10426	B1	0610		CUTS	1				
10427	30	0611	WAIT	DS	0				
10428	94FE	0612		BNZ	WAIT				
1042A	70	0613		LIS	0				
'042B	B1	0614		OUTS	1				
10420	BO	0615		OUTS	0				
'042D	2050	0616		LI	H'50'				
'042F	50	0617		LR	0,A				
10430	32	0618		DS	2				
'0431	31	0619		DS	1				
10432	94F0	0620		BNZ	CLOSE				
10434	00	0621		PK		FRETURN			
				SUBROUTIN	E STORE	S WORKING	REGISTORS	IN RAM	STACK
10435	64	0623	CALL	LISU	4				
10436	68	0624		LISL	0				
10437	0E	0625		LR	Q,DC				
10438	02	0626		LR	A,QU				
10439	50	0627		LR	I,A				
'043A	03	0628		LR	A,QL				
'043B	5D	0629		LR	I,A				
'043C	20	0630		XDC					
10430	0E	0631		LR	Q,DC				
'043E	02	0632		LR	A,QU				
1043F	5D	0633		LR	I,A				
10440	03	0634		LR	A,QL				
10441	50	0635		LR	S,A				
10442	240400	0636		DCI	SSA				
10445	43	0637		LR	A+3				
10446	8E	0638		ADC					
		and the state		1108361775					

					38/0/F8 CRUSS ASSEMBLER PHOE 0012
ADDR	OBJECT FLAG	ST # SOURCE	STATEMEN	r	DATASET = DKO:HMSU .SRC
100000 000		1			
'0447	44	0639	LR	A , 4	
10448	17	0640	ST		
10449	49	0641	LR	A,9	
'044A	17	0642	ST		
'044B	45	0643	LR	A,5	
'044C	17	0644	ST		
'044D	64	0645	LISU	4	
'044E	68	0646	LISL	0	
'044F	4D	0647	LR	A,I	
0450	17	0648	ST		
10451	4D	0649	LR	A,I	
10452	17	0650	ST		
10453	4D	0651	LR	A,I	
10454	17	0652	ST		
10455	4C	0653	LR	A+S	
10456	17	0654	ST		
10457	00	0655	LR	A,KU	
10458	17	0656	ST		
10459	01	0657	LR	A,KL	
'045A	17	0658	ST		
'045B	43	0659	LR	A,3	
'045C	2409	0660	AI	H'09'	
		0661	LR	3,A	
'045E '045F	53	0662	POP	37H	
·045F	10	0002 0//7 *DETM	CUPPOULTIN	E PETH	RNS THE WORKING REGISTERS FROM RAM
OTAOK		U003 FREIR	SUBROUTIN	E KEIU	KRS THE WORKING REDISTERS TRON KAN
STACK		ALLA DETH	DT		
10460	1A	0664 RETN	DI DCI	SSA	
0461	2A0A00	0665			
10464	43	0666	LR	A,3	
10465	24F7	0667	AI	H'F7'	
10467	53	0668	LR	3+A	
10468	8E	0669	ADC		
10469	16	0670	LM		
1046A	54	0671	LR	4 , A	
'046B	16	0672	LM	-	
'046C	59	0673	LR	9,A	
'046D	16	0674	LM		
1046E	55	0675	LR	5,A	
'046F	64	0676	LISU	4	
10470	68	0677	LISL	0	
'0471	16	0678	LM		
10472	5D	0679	LR	I,A	
10473	16	0680	LM		
10474	50	0681	LR	I,A	
10475	16	0682	LM		
10476	5D	0683	LR	I,A	
10477	16	0684	LM		
10478	50	0685	LR	S,A	
10479	16	0686	LM		
1047A	04	0687	LR	KU,A	
'047B	16	0688	LM		
'047C	05	0689	LR	KL + A	
'047D	4E	0690	LR	A,D	
'047E	07	0691	LR	QL .A	
'047F	4E	0692	LR	A,D	
10480	06	0693	LR	QU,A	
10481	OF	0694	LR	DC,Q	
10482	20	0695	XDC	and the	
10483	4E	0696	LR	A,D	
V403	The			1.	

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0012

ADDR	OBJECT FL	AG	ST 🛊	SOURCE			DATASET = DKO:HMSU .SRC
10484	07		0697		LR	QL,A	
10485	4E		0698		LR	A,D	
10486	06		0699		LR	QU,A	
10487	OF		0700		LR	DC,Q	
10488					POP	LICTU	
0400	10		0701			CTADTO	NEDE
						STHRIS	HERE
10489	14			PIDR	DI	TOLA	IDETERMINED CTARTING LOAD ADDRED
'048A	240849		0704		DCI	TSLA	DETERMINES STARTING LOAD ADDRES
S					VDO		
'048D	20		0705		XDC		
'048E	240848		0706		DCI	SLA	
10491	16		0707		LM		
10492	20		0708		XDC		
10493	17		0709		ST		
10494	2A0842		0710		DCI	TSZONA	A #DETERMINES STARTING ZONE ADDRES
S							
'0497	20		0711		XDC		
10498	2A0841		0712		DCI	SZONA	
'049B	16		0713		LM		
'049C	20		0714		XDC		
'049D	17		0715		ST		
'049E	2A0840		0716		DCI	LZAC	
'04A1	16		0717		LM		
'04A2	2503		0718		CI	3	
'04A4	8409		0719		BZ	L1	
'04A6	240840		0720		DCI	LZAC	
'04A9	16		0721			LZHC	
'04AA	2502				LM	-	
'04AC	8405		0722		CI	2 L2	
'04AE			0723		BZ		
	67		0724	LI	LISU	7	
'04AF	6F		0725		LISL	7	
	9007		0726		BR	CALCU	
'04B2	66		0727	12	LISU	6	
'04B3	6F		0728		LISL	7	
'04B4	9003		0729		BR	CALCU	
'04B6	65		0730	LS	LISU	5	
104B7	6F		0731	041.011	LISL	7	
104B8	2A0849			CALCU	DCI	TSLA	
'04BB	16		0733		LM		
'04BC	B1	1.5	0734		OUTS	1	
'04BD	2805EE'	A	0735		PI	INPU	
10400	2A0808		0736		DCI	ISP1	
104C3	16		0737		LM		
'04C4	SA		0738		LR	10,A	
'04C5	70		0739		LIS	0	
10406	5B		0740		LR	11,A	FREG 11 CONTAINS ZERO
'04C7	51		0741		LR	1,A	FREG 1 CONTAINS ZERO
10408	4C		0742		LR	A,S	
10409	50		0743		L.R	0 # A	FREG O CONTAINS MEASURED TEMPERA
TURE							
'04CA	280619'	A	0744		PI	BSUBT	
'04CD	6E		0745		LISL	6	
'04CE	4A		0746		LR	A,10	
'04CF	5C		0747		LR	S,A	STORE AWAYERROR EK
'04D0	52		0748		LR	2,A	FLOAD EK IN REG 2
'04D1	2A0809		0749		DCI	К11	<pre>#K11 IS LOADED IN REG 1</pre>
10404	16		0750		LM		
10405	51		0751		LR	1,A	
10406	28063A'	A	0752		PI	BMPY	\$K11*EK
10409	46		0753		LR	A+6	
'04DA	5A		0754		LR	10,A	
A 1 4 1 1	Contraction of the second				10000		

						3870/F8 CROSS ASSEMBLER PAGE 0014
ADDR	OBJECT	FLAG	ST # SOU	RCE STATEMEN	Т	DATASET = DKO:HMSU .SRC
'04DB	70		0755	LIS	0	
'04DC	5B		0756	LR	11,A	
'04DD	6D		0757	LISL	5	POINTER AT EK-1
'04DE	4C		0758	LR	A,S	
104DF	52		0759	L.R	2,A	FEK-1 IN REG 2
'04E0	2A080A		0760	DCI	K12	\$K12 IS LOADED IN REG1
'04E3	16		0761	LM		
'04E4	51		0762	LR	1,A	
'04E5	28063A'	A	0763	PI	BMPY	\$K12*EK-1
'04E8	280695'	A	0764	PI	TRAN	
'04EB	280619'	A	0765	PI	BSUBT	<pre>\$K11*EK-K12*EK-1 = RESULT IN HU.</pre>
HL						
'04EE	60		0766	LISL	4	FOINTER AT EK-2
'04EF	40		0767	LR	A,S	
'04F0	52		0768	LR	2,A	FEK-2 IN REG 2
'04F1	2A080B		0769	DCI	K13	\$K13 IN REG 1
'04F4	16		0770	LM		
104F5	51		0771	LR	1,A	
'04F6	28063A'	A	0772	PI	BMPY	\$K13*EK-2
'04F9	280695'	A	0773	PI	TRAN	
'04FC	2805FD'	A	0774	PI	BADD	\$K11*EK - K12*EK-1 + K13*EK-2 =
HU.HL						
'04FF	68		0775	LISL	0	
10500	4C		0776	LR	A,S	
10501	52		0777	LR	2,A	DEK(PK-1)U IS MOVED TO REG 2
10502	2A080C		0778	DCI	K14	\$K14 IN REG 1
10505	16		0779	LM		
10506	51		0780	LR	1,A	
10507	28063A'	A	0781	PI	BMPY	\$K14*DEL(PK-1)U
1050A	280695		0782	PI	TRAN	
'050D	2805FD'		0783	PI	BADD	\$K11*EK - K12*EK-1 + K13*EK-2 +
	L(PK-1)					
10510	6A		0784	LISL	2	# POINTER AT DEL(PK)U
10511	4A		0785	LR	A,10	
10512	50		0786	LR	S,A	
10513	68		0787	LISL	0	FOINTER AT DEL(PK-1)
10514	50		0788	LR	S,A	
10515	6B		0789	LISL	3	FOINTER AT DEL(PK)L
10516	4B		0790	LR	A,11	
10517	50		0791	LR	S,A	
10518	69		0792	LISL	1	POINTER AT PK-1
10519	40		0793	LR	A,S	
'051A	50		0794	LR	0,A	
'051B	70		0795	LIS	0	
'051C	51		0796	LR	1 . A	
'051D	2805FD	A	0797	PI	BADD	<pre>\$PK=DEL(PK) + PK-1 = HU+HL</pre>
10520	2805BB		0798	PI	OUTPU	
10523	6D		0799	LISL	5	
10524			0800	LR	A,D	
			0801	LR	STA	FUPDATE EK-1 TO EK-2
10525 10526	5C 6E		0802	LISL	6	
10527	4E		0802	LR	A,D	
10528	4E 5C		0804	LR	S+A	UPDATE EK TO EK-1
10528	0A		0805	LR	A, IS	and an and the second s
10524	18		0805	COM		
1052A	2138		0807	NI	H'38'	
	2138 843F		0808	BZ	CL2	
1052D 1052F	0A		0808	LR	A, IS	
1052F	18		0810	COM		
10530			0810	NI	H'30'	
10533	2130		0812	BZ	CL3	
0333	8445		0012	the the	~~~~	

ADDR	OBJECT F	1 46	ST &	SOURCE	STATEME		DATASET = DKO:HMSU +SRC
ADDI	ODSECT 1	LND	0	obonice			
10535	2A087A		0813		DCI	REC03	
10538	2805991	A	0814		PI	RECORD	
'053B	240844		0815		DCI	PIDFLG	
'053E	70		0816		LIS	0	
'053F	17		0817		ST		
10540	2A0854		0818		DCI	SNO	
			0819		LM	ono	
10543	16				INC		
10544	1F		0820			SNO	
10545	2A0854		0821		DCI	5110	
10548	17		0822		ST		
10549	2A0804		0823		DCI	NS	
'054C	80		0824		CM		
'054D	8404		0825		BZ	TSTRUM	
'054F	2900531	A	0826		JMP	BUY	
10552	2A0856		0827	TSTRUN	DCI	TRUNNO)
10555	16		0828		LM		
10556	2A0807		0829		DCI	RUNNO	
10559	8D		0830		CM		
1055A	840D		0831		BZ	ENDRUM	
1055C	2A0856		0832		DCI	TRUNNO	
1055F	16		0833		LM	inonne	
10560	1F		0834		INC		
10561	240856		0835		DCI	TRUNN	
			0836		ST	INDIAN	,
10564	17					DIIV	
10565	2900531	A	0837	FURBILI	JMP	BUY	
10568	28069B'	A		ENDRUN		STOP	
'056B	90FC		0839		BR	ENDRUI	4
'056D	2A0870		0840	CL2	DCI	REC01	
10570	2805991	A	0841		PI	RECOR	
10573	2805851	A	0842		PI	MODLZ	A
10576	2904B2'	A	0843		JMP	L2	
10579	2A0875		0844	CL3	DCI	REC02	
1057C	2805991	A	0845		PI	RECOR	0
1057F	2805851	A	0846		PI	MODLZ	A
10582	2904B6'	A	0847		JMP	L3	
			0848	; MODLZ	A SUBROL	ITINE MO	DIFIES LOAD & ZONE ADDRESS FOR THE
			0849	;NEXT	CONTROL	LOOP OF	THE PID ALGORITHM
10585	08			MODLZA		K,P	
10586	2A0849		0851		DCI	TSLA	
10589	16		0852		LM		
1058A	16 1F		0853		INC		
'058B	240849		0854		DCI	TSLA	
			0855		ST		
1058E	17		0856		DCI	TSZON	۵
1058F			0857		LM	10201	
10592	16						
10593			0858		INC	TOTON	A
10594			0859		DCI	TSZON	H
10597			0860		ST		TRETHON
10598	00		0861		PK		RETURN
			0862	FRECOR	D SUBRUI	UTINE RE	CORDS SAMPLE NUMBER, ZONE ADDRESS,
							WER TO THE ZONE & LOAD ADDRESS
10599	08		0864	RECORD		K + P	
1059A	20		0865		XDC		
'059B	2A0854		0866		DCI	SNO	
1059E			0867	•	LM		
1059F			0868		XDC		
105A0			0869		ST		
105A1			0870		XDC		
o o nit	Bar Sal						

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0015

ADDR	OBJECT FLAG	ST #	SOURCE	STATEMENT		DATASET = DKO:HMSU .SRC
'05A2	240842	0871		DCI	TSZONA	
105A5	16	0872		LM	1 40 40 10 1111	
105A6	20	0873		XDC		
105A7	17	0874		ST		
05A8	6F	0875		LISL	7	
105A9	40	0876		LR	Ars	
105AA	17	0877		ST		
'05AB	20	0878		XDC		
	2A0855	0879		DCI	ANSWER	
105AC		0880		LM	MICOWEN	
105AF	16 20	0881		XDC		
05B0	17	0882		ST		
	20	0883		XDC		
105B2 105B3	240849	0884		DCI	TSLA	
'05B6	16	0885		LM	1 67 66 14	
'05B7	20	0886		XDC		
05B7		0887		ST		
'05B8	17 0C					* (5) (7) (1) (5) A
105B9	28	0888		PK		FRETURN
USBH	20		OUTPU			UTS A BYTE OF ABSOLUTE POWER
						Y 150 MICRO SECONDS DELAY AND
						IS SET UP ON PORT 1
05BB	08		OUTPU	LR	K+P	10 bel of on for 1
	2050	0873	UUTFU	LI	H'50'	
'05BC		0874		LR	0,A	
	50	0875		LIS	0	
'05BF	70	0898		OUTS	0	
10500	BO			LR	A,10	
'05C1	4A	0898		XI	H'80'	
10502	2380 8103	0900		BP	NIL	
10504	9011	0901		BR	CONT	
10508	7011	0902		LIS	0	
10509	240855	0903		DCI	ANSWER	
'05CC	17	0904		ST		
'05CD	BO	0905		OUTS	0	
105CE	2A0842	0906		DCI	TSZONA	
'05D1	16	0907		LM		
'05D2	B1	0908		OUTS	1	
10503	69	0909		LISL	1	
10504	44	0910		LR	A:10	
- 10505	50	0911		LR	SYA	
10506	9010	0912		BR	TST	
10508	69		CONT	LISL	1.	
105D9	4A	0914		LR	A,10	
'05DA	50	0915		LR	S,A	
'05DB	13	0916		SL	1	
'05DC	1F	0917		INC		
'05DD	2A0855	0918		DCI	ANSWER	
'OSEO	17	0919		ST		
'05E1	BO	0920		DUTS	0	
105E2	2A0842	0921		DCI	TSZONA	
'05E5	16	0922		1.11		
105E6	B1	0923		OUTS	1	
105E7	30		TST	DS	0	
105E8	94FE	0925		BNZ	TST	
105EA	70	0926		LIS	0	
OSEB	BO	0927		OUTS	0	
'05EC	B1	0928		OUTS	1	
Constantine and						

MOSTEK 3870/FB CROSS ASSEMBLER PAGE 0016

					4	OSTEK 38	370/F8 CROSS ASSEMBLER PAGE 0017
ADDR	OBJECT	FLAG	ST #	SOURCE S	STATEMENT	r I	DATASET = DKO:HMSU +SRC
'05ED	00		0929		PK		FRETURN
			0930	FINPU SU	JBROUTINE	INPUTS	A BYTE OF DATA VIA PORT O
			0931	FOLLING	ON STAT	US BIT 1	1 OF PORT 8
'05EE	08		0932	INPU	LR	K,P	
'05EF	AB		0933	LOOP2	INS	8	
105F0	2102		0934		NI	H'02'	#MASK BIT 1
'05F2	84FC		0935		BZ	LOOP2	
'05F4	71		0936		LIS	1	JOPEN GATE
'05F5	B8		0937		OUTS	8	IVIA PORT 8
'05F6	AO		0938		INS	0	FREAD DATA VIA PORT O
'05F7	50		0939		LR	S,A	AND STORE IN 0'77'
'05F8	70		0940		LIS	0	
'05F9	B1		0941		OUTS	1	
'05FA	B8		0942		OUTS	8	CLOSE GATE
'05FB	BO		0943		OUTS	0	
'05FC	00		0944		PK		FRETURN
							BINARY ADDITION IN
							REG(1)=HU.HL
'05FD	08			BADD	LR	K+P	
'05FE	10		0948		LR	DC,H	FMOVE AUGEND TO DCO
'05FF	41		0949		LR	A,1	FLOAD LOWER ORDER BYTE OF ADDEND
10600	8E		0950		ADC		FADD TO AUGEND
'0601	F1		0951		NS	1	
'0602	11		0952		LR	H, DC	FRESTORE PARTIAL SUM TO H
10603	4A		0953		LR	A,10	FLOAD HIGH ORDER BYTE OF PARTIAL
ANS							
'0604	8102		0954		BP	BAO	
10606	1F		0955	2010	INC		
10607	CO		0956	BAO	AS	0	ADD HIGH ORDER BYTE OF ADDEND
10608	5A		0957		LR	10,A	FRESTORE TO GIVE COMPLETE ANS IN
H					DUG		
10609	980E		0958		BNO	FINISH	
'060B	40		0959		LR	A,0	
'060C	2380		0960		XI	H'80'	
1060E	8106		0961		BP	NEGT	
'0610 '0612	207F		0962		LI LR	H'7F' 10,A	
	5A 9004		0963		BR	FINISH	
'0613 '0615	2080			NEGT	LI	H'80'	
'0617	2080 5A		0966	REGI	LR	10,A	
10618	00			FINISH	PK	1074	RETURN
0010	VC					NE-16 BT	T BINARY SUBTRACTION IN
							.REG(1)=HU.HL
10619	08			BSUBT	LR	K+P	
'061A	44		0971		LR	A,10	
'061B	58		0972		LR	8,A	
'061C	10		0973		LR	DC .H	MOVE SUBTRAHEND TO DCO
'061D	41		0974		LR	A,1	ILOAD LOW ORDER BYTE OF MINUEND
'061E	18		0975		COM		COMPLEMENT IT
'061F	1F		0976		INC		FINCREMENT IT
10620	8E		0977		ADC		FADD TO SUBTRAHEND
10621	8102		0978		BP	BSO	FIF BIT 7 = 1
10623	30		0979		DS	0	COMPENSATE BY DECREMENTING HIGH
ORDER							
10624	11		0980	BSO	LR	H,DC	FRESTORE PARTIAL SUM TO H
10625	40		0981		LR	A,0	FLOAD HIGH ORDER BYTE OF MINUEND
10626	18		0982		COM		COMPLEMENT
10627	1F		0983		INC		INCREMENT
10628	CA		0984		AS	10	
10629	SA		0985		LR	10,A	STORE ANSWER IN REG(10)
1062A	980E		0986		BNO	DONE	

ADDR	OBJECT	FLAG S	ат #	SOURCE	STATEMEN		3870/F8 CROSS ASSEMBLER PAGE 0018 DATASET = DK0:HMSU .SRC
1062C	48	0	987		LR	A,8	
						H'80'	
1062D	2380		988		XI		
1062F	8106		989		BP	NPOS	
'0631	207F		990		LI	H'7F'	
10633	5A -		991		LR	10,A	
10634	9004		992		BR	DONE	
10636	2080			NPOS	LI	H'80'	
10638	5A		994	all'establish	LR	10,A	
10639	00	-		DONE	PK		FRETURN
		C	996	BMPY S	SUBROUTIN	E - 8 1	BIT(REG1:MULTIPLIER)*8 BIT(REG2:MUL
TIPLIC	AND)						
							EG7(INT).REG6(FRA)
1063A	08			BMPY	L.R	K,P	
'063B	41	C	999		LR	A,1	
'063C	E2	1	000		XS	2	
1063D	58	1	001		LR	8,A	SET MARK IN REG 8 FOR -VE ANSWE
R							
'063E	41	1	002		LR	A+1	
'063F	2380	1	1003		XI	H'80'	FTEST FOR -VE NUMBER IN REG 1
10641	8108	1	1004		BP	NEG1	
10643	42	1	005	NEXT	LR	A+2	FTEST FOR -VE NUMBER IN REG 2
10644	2380	1	006		XI	H'80'	
10646	8109	1	007		BP	NEG2	
10648	900B	1	8001		BR	MULT	BRANCH TO MULTIPLICATION
1064A	41			NEG1	LR	A+1	
'064B	18	1	1010		COM		
'064C	1F		011		INC		
'064D	51		012		LR	1,A	FREG1 NUMBER IS THE NOW
1064E	90F4		013		BR	NEXT	
10650	42			NEG2	LR	A,2	
10651	18		015		COM		
10652	1F		1016		INC		
10653	52		1017		LR	2,A	FREG2 NUMBER IS +VE NOW
10654	78			MULT	LIS	8	FINITIALISE COUNTER TO 8
10655	55		1019	nori	LR	5,A	
10656	70		1020		LIS	0	FINITIALISE PARTIAL PRODUCT
10657	56		1021		LR	6,A	
10658	57		1022		LR	7,A	
10659	70			BMP1	LIS	0	
1065A	C1		1024	Dill T	AS	1	IS SIGN BIT OF MULTIPLIER SET ?
'065B	8107		1025		BP	BMP2	INO! THEN SHIFT PARTIAL PRODUCT
'065D	42		1026		LR	A+2	THER SHITT THRITHE TRODUCT
1065E					AS	6	TYES! ADD MULTIPLICAND TO
	C6		1027				
1065F	56		1028		LR	6,A	PARTIAL PRODUCT
10660	47		1029		LR	A,7	
'0661	19		1030		LNK	7 4	
10662	57		1031	DVDD	LR	7.A	
10663	41			BMP2	LR	A,1	TOUTET THE MINITED LEFT 1
'0664	13		1033		SL	1	SHIFT THE MULTIPLIER LEFT 1
10665	51		1034		LR	1,A	ADDODENENT THE COUNTED
0666	35		1035		DS	5	DECREMENT THE COUNTER
'0667	840C		1036		BZ	BMP3	FEXIT IF DONE
10669	46		1037		LR	A,6	
1066A	C6		1038		AS	6	
'066B	56		1039		LR	6 . A	
1066C	1E		1040		LR	J , M	ISAVE STATUS FOR CARRY
'066D	47		1041		LR	A,7	
1066E	13		1042		SL	1	
1066F	1 D		1043		LR	W + J	
10670	19		1044		LNK		

ADDR	OBJECT FLAG	ST \$	SOURCE			3870/F8 CROSS ASSEMBLER PAGE 0019 DATASET = DKO:HMSU .SRC
10671	57	1045		LR	7,A	
10672	90E6	1046		BR	BMP1	JOD BACK FOR NEXT
10674	47		BMP3	LR	A,7	YOU DHEN TON NEXT
10675		1048	Din C	XI	H'00'	TEST FOR ALL ZEROS IN REG 7
10677	8406	1049		BZ	TEST	TEST FOR HEL ZEROS IN REO 7
10679	207F	1050		LI	H'7F'	
'067B	56	1051		LR		
'067C	900C	1051			6+A	
1067E	24日 (1997年) 第二		TFOT	BR	ANS	
1067E	46 2380		TEST	LR	A+6	
10681		1054		XI	H'80'	
	8103	1055		BP	TWOS	
10683	9005	1056	THOS	BR	ANS	
10685	46		TWOS	LR	A,6	
10686	18	1058		COM		
10687	1F	1059		INC		
10688	56	1060		LR	6,A	
0689	48	1061	ANS	LR	A,8	
1068A	2380	1062		XI	H'80'	FCHECK FOR -VE ANSWER
1068C	8103	1063		BP	NEGA	
1068E	9005	1064		BR	EXIT	
10690	46	1065	NEGA	LR	A+6	
10691	18	1066		COM		
10692	1F	1067		INC		
10693	56	1068		LR	6.A	
10694	00	1069	EXIT	PK		FRETURN
		1070	TRAN	SUBROUTIN	E TRANS	FERS THE CONTENTS OF REG 6 TO 0 &
REG1=0						
10695	08	1071	TRAN	LR	K,P	
10696	46	1072		LR	A+6	
10697	50	1073		LR	0,A	
10698	70	1074		LIS	0	
10699	51	1075		LR	1,A	
1069A	00	1076		PK		FRETURN
		1077	\$STOP	SUBROUTIN	E STOPS	THE CONVEYOR AND CLOSES ALL THE H
EATING						
		1078	#ZONES	ASSOCIAT	ED WITH	CONTROLLER NO-1
'069B	08	1079	STOP	LR	K,P	
1069C	2050	1080		LI	H'50'	
'069E	50	1081		LR	0,A	
'069F	70	1082		LIS	0	
106A0	BO	1083		OUTS	0	
'06A1	40	1084		LR	A,0	
106A2	B1	1085		OUTS	1	
106A3	30		TST2	DS	0	
'06A4	94FE	1087	100000	BNZ	TST2	
106A6	2050	1088		LI	H'50'	
106A8	50	1089		LR	0,A	
106A9	2A0840	1090		DCI	LZAC	
'06AC		1091		LM		
'06AD	51	1092		LR	1,A	
106AE	2A0841	1093		DCI	SZONA	
'06B1	16	1094		LM		
'06B2	52	1095		LR	2,A	
'06B3	70		TURN	LIS	0	
'06B4	BO	1097	TONA	OUTS	õ	
'06B5	42	1098		LR	A+2	
'06B6	92 B1	1098		OUTS	1	
'06B7	30		TST1	DS	0	
'06B8	94FE		1511			
106BA	2050	1101		BNZ	TST1	
VODH	2000	1102		LI	H'50'	

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0020 ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DK0:HMSU .SRC

ADDK	UBJECT	FLH0 51 # 500	NCE STRIEM			
'06BC	50	1103	LR	0,A		
'06BD	32	1104	DS	2		
106BE	31	1105	DS	1		
106BF	94F3	1106	BNZ	TURN		
'06C1	00	1107	PK		FRETURN	
'>06C2		1108 ENI)			

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0021 ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DK0:HMSU .SRC

AGA	0023 ANS	0689 ANSWER	0855 BADD	05FD
BAO	0607 BMF1	0659 BMP2	0663 BMP3	0674
BMPY	063A BS0	0624 BSUBT	0619 BUY	0053
BUY1	0134 BUY2	017E BUY3	017C BUYOT	0189
BUYOUT	0184 C1	0800 C2	0801 C3	0802
CALCU	04B8 CALL	0435 CL2	056D CL3	0579
CLEAR	0400 CLOSE	0423 CM	0806 CMAR	01F0
CMFLG	0847 CONT	05D8 COPY	0191 DONE	0639
END	06C2 ENDRUN	0568 EXIIT	0375 EXIT	0694
FINISH	0618 FULL	0082 INPU	OSEE ISMI	0078
ISMIFG	0845 ISP1	0808 ISP2	0810 ISP3	0818
K11	0809 K12	080A K13	080B K14	0800
K21	0811 K22	0812 K23	0813 K24	0814
K31	0819 K32	081A K33	081B K34	0810
L1	04AE L2	04B2 L3	0486 LA	0803
LAO	016A LA1	016E LA2	0172 LA3	0176
LA4	017A LAN	0130 LAD	012A L00P2	05EF
LUP1	040A LZAC	0840 MODLZA	0585 MOTA	0050
MS	0805 MSCNT	0853 MSFLG	0846 MTR	0285
MTRF	087E MULT	0654 NEG1	064A NEG2	0650
NEGA	0690 NEGT	0615 NEW	02AD NEXT	0643
NIL	05C8 NPOS	0636 NS	0804 NVAL	03CD
	00D9 OUTPU	05BB OUTT	023F PID	006E
ON PIDFLG	0844 PIDR	0489 QUIT	03DA RCPS	0830
	0870 REC02	0875 REC03	087A RECORD	0599
RECO1 REP	0238 REPT	01AA RETN	0460 RECMS	0843
		083D RUNNO	0807 S1TR	0293
RFMS	084C RFPS 08BE S2TR	02A1 S2TRF	OBFE SAME	009D
SITRF	0261 SET1	00AA SET2	0089 SET3	0009
SEND	03B9 SETI	036C SETP	035F SHUT	040E
SET6	080D SI2	0815 SI3	081D SLA	0848
SI1		021C SLV2	0213 SNO	0854
SLVO	0223 SLV1 087F SPA1	08BF SPA2	OBFF SSA	0000
SPAO	007C STOP	069B SZONA	0841 TEST	067E
STAY	00A0 TEST2	OOCE TLZAC	084A TRO	026B
TEST1	0273 TR2	027B TRAN	0695 TRF	0851
TR1	0852 TRMIT	0248 TRMITT	0073 TRUNNO	0856
TRFC		0849 TST	05E7 TST1	06B7
TRY		0552 TSZONA	0842 TURN	0683
TST2		00F4 VVV	013D W1	0204
TWOS	0685 UUU 0427 WAIT1	0416 WCMS	084F WFCPS	083E
WAIT			02D3 WWW	0100
WFMS	0850 WFPS	083F WRITE - 00BE XP	0357 ZERO	0407
X1	00AF X2		0042 ZUN3	0043
ZONO	0040 ZDN1	0041 ZDN2 0045 ZDN6	0042 ZUN3	0043
ZON4	0044 ZON5	0045 2010	0040 2010	~~~~

ADDR OBJECT FLAG ST # SOURCE STATEMENT

0

0

K32

K33

K34

081A

081B

081C

0024

0025

0026

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0022

				MOSTE			SEMBLER PAGE	0023
ADDR	OBJECT FLAG	ST # SOURC	E STATEME	NT	DA	TASET = DKO:H	HMSU +SRC	
L1	04AE	0724	0719					
L2	04B2	0727	0843 0723					
L3	0486	0730	0847 0256 0227	0214				
LA	0803	0005		0214				
LAO	016A	0278 0280	0261 0264					
LA1	016E 0172	0280	0267					
	0172 0176	0284	0270					
LA3 LA4	0178 017A	0286	0273					
LAN	0130	0244	0235					
LAO	012A	0240	0232					
LOOP2		0933	0935					
LUP1	040A	0585	0586					
LZAC	0840	0041		0716	0251	0222 0209		
	A 0585	0850	0846 0842					
MOTA	0050	0040						
MS	0805	0007						
MSCNT	0853	0064	0553 0546	0544				
MSFLG	0846	0047						
MTR	0285	0436	0426					
MTRF	087E	0058	0423					
MULT	0654	1018	1008					
NEG1	064A	1009	1004					
NEG2	0650	1014	1007					
NEGA	0690	1065	1063					
NEGT	0615	0965 0456	0961 0435					
NEW	02AD 0643	1005	1013					
NIL	0508	0902	0900					
NPOS	0636	0993	0989					
NS	0804	0006	0823					
NVAL	OJCD	0564	0562					
ON	0.0 D 9	0196	0194					
OUTPL	J O5BB	0893	0798					
OUTT	023F	0397	0373 0367	,				
PID	006E	0142	0132			vantees.		
PIDFL	G 0844	0045	0815 0517	0292	0129	0120		
PIDR	0489	0703	0142					
QUIT	03DA	0572	0563 0552	2				
RCPS		0028	0040					
RECO		0068	0840					
RECO		0070	0813					
	RD 0599	0864	0845 0843	0814				
REP	0238	0391	0396					
REPT		0316	0328					
RETN		0664	0567 0523	7 0397				
RFCM	5 0843	0044						
RFMS	084C	0055						
RFPS	0830	0029						
RUNN		0009	0829					
SITR	0293	0443	0430					
SITR		0059	0427					
S2TR	02A1	0450	0434					
S2TR		0060	0431					
SAME	0090	0166 0418	0158 0416					
SEND SET1	0261 00AA	0418	0170					
SELL	OOHH	0172	WAT V					

							MOSTI	EK 38	70/F8	CROSS ASSEMBLER PAGE	0024
ADDR	OBJECT	FLAG	ST	# SOUR	CE ST	ATEMEI	T	D	ATASE	T = DKO:HMSU .SRC	
SET2	00B9			0180	0178						
SET3	0009			0188	0186						
SET6	03B9			0553	0551						
SETI	0360			0521	0511						
SETP	035F			0513	0507						
SHUT	040E			0590	0089						
SI1	0800			0015		0162					
SI2	0815			0021	1. 7. 20. 27. 10						
SI3	081D			0027							
SLA	0848			0049	0706	0545	0559	0556	0254	0225 0212	
SLVO	0223			0379	0366	0000	0007	0000	V	VERU VERE	
SLV1	0210			0374	0362						
SLV2	0213			0368	0358						
SNO	0854			0065		0821	0818	0122			
SPAO	087F			0052		0363					
SPA1	08BF			0053		0359					
SPA2	08FF			0054		0355					
SSA	0000			0063		0636					
STAY	0070			0149	0151						
STOP	069B			1079	0838						
SZONA	0841			0042		0712	0289	0247	0218		
TEST	067E			1053	1049						
TEST1	00A0			0167	0165						
TEST2	OOCE			0191							
TLZAC	084A			0051							
TRO	026B			0423							
TR1	0273			0427	0442						
TR2	027B			0431	0449						
TRAN	0695			1071		0773	0764				
TRF	0851			0061		0383					
TRFC	0852			0062		0457	010/				
TRMIT				0406	0144	0.07					
TRMITT				0144	0140						
TRUNNO				0067		0832	0827				
TRY	0240			0408	0410						
	0849			0050			0851	0732	0704		
TST	05E7			0924		0912					
TST1	06B7			1100	1101						
TST2	06A3			1086	1087						
TSTRUN				0827	0825						
TSZONA				0043			0871	0859	0856	0710	
TURN	06B3			1096	1106						
TWOS	0685			1057	1055						
UUU	00F4			0209	0199						
VVV	0130			0251	0203						
W1	0204			0479	0487						
WAIT	0427			0611	0612						
WAIT1				0597	0598						
	084F			0056							
WECES				0030		0152					
WFMS	0850			0057		10 14 W. S.					
WFPS	083F			0031							
WRITE	0203			0478	0455	0448	0441				
WWW	0100			0222	0207						
X1	OOAF			0175	0171						
X2	OOBE			0183	0179						
XF	0357			0508	0520						
ZERO	0407			0582		0086	0084				
					0000						

ADDR	OBJECT	FLAG ST	r 🛊 soui	RCE STATEM	3870/F8 DATASET		• SRC	0020
ZONO	0040		0032	0219				
ZON1	0041		0033					
ZON2	0042		0034	0248				
ZON3	0043		0035					
ZON4	0044		0036					
ZONS	0045		0037	0290				
ZON6	0046		0038					
ZON7	0047		0039					

ERRORS=0000

APPENDIX D - THE DCHMSU PROGRAM LISTING

The following DCHMSU program listing for the PDP-11/10

minicomputer system:

0

PROGRAM DCHMSU

0000	THIS IS A COMMUNICATION PROGRAM BETWEEN A OPERATOR AND THE SUPREMAL LEVEL PDP-11/10 MINICOMPUTER, THE INFIMAL LEVEL CONSISTS OF THREE CONTROLLERS USED FOR CONTROLLING THE TRAVELLING LOAD FURNACE IN THE DEPT OF SYSTEMS SCIENCE. THE THREE CONTROLLERS ARE IMPLEMENTED IN THE HIERARCHICAL MICROPROCESSOR SYSTEM UNIT (HMSU) USING THREE F8 MICROPROCESSORS.
	DIMENSION XK(4,3),A(12),AR(12),SF(8),NAA(12),IA(12,8), 1 IXK(4,3),SG(3),ISA(64),ISD(64) INTEGER RH,IRUN
	DIMENSION S1(4),S2(15),S3(7),S4(2),S11(4),S22(15),IS3(7),IC(3) COMMON /BLK1/C1,C2,C3,CM COMMON /BLK2/NO1C,NO2C,NO3C
	COMMON /BLK3/GK1,GK2,GK3,T1,T2,T3,TI1,TI2,TI3,TD1,TD2,TD3, 1 TF1,TF2,TF3 COMMON /BLK4/LA,NS,MS,RH,ISP1,ISP2,ISP3
	COMMON /BLK5/XK,IXK
	COMMON /BLK6/KCM,IRCPS,IRFPS,IWCPS,IWFPS COMMON /BLK7/ISA,ISD,IRUN
	DATA ON/'ON'/,OFF/'OFF'/,DIS/'DIS'/,SET/'SET/',CON/'CON'/ DATA CHA/'CHA'/,PAR/'PAR'/
	DATA PX/0.004/,U//U//,V//V//W//W//
C	THE DEFAULT VALUES OF THE CONTROLLER PARAMETERS ARE :
	CM=U
	LA=0
	NS=100
	MS=0 RH=0
	C1=ON
	C2=DN
	C3=0N
	ISP1=50.0
	ISP2=50.0
	ISP3=50.0 GK1=0.05
	GK2=0+05
	GK3=0.05
	T1=30.0
	T2=30.0
	T3=30+0
	TI1=90.0
	TI2=90.0 TI3=90.0
	TD1=30.0
	TD2=30.0
	TD3=30.0
	TF1=30.0
	TF2=30.0 TF3=30.0
	N01C=255
	N02C=255
	N03C=255
	GOTO 700
50	READ(5,1001)ICN0
1.0	001 FORMAT(12)
	IF(ICNO.EQ.1)60T0 60 IF(ICNO.EQ.2)60T0 2
	IF(ICNO,EQ.3)GOTO 5

51	GOTO 50
60	CALL Q('DO YOU WANT CONTROLLER-1 TO BE ON ?', INOIC)
	IF(IN01C)1,2,3
1	NDIC=0
.L.	
	C1=OFF
	GOTO 51
3	N01C=255
	C1=ON
	CALL PRINT(' SPECIFY CONTROLLER-1 SET POINT')
	READ(5,1111)ISP1
	CALL PRINT(' SPECIFY CONTROLLER-1 CONSTANTS')
	CALL CONST(GK1,T1,TI1,TD1,TF1)
2	CALL Q('DO YOU WANT CONTROLLER-2 TO BE ON ?', INO2C)
	IF(IN02C)4,5,6
4	ND2C=0
-4	
	C2=OFF
	GOTO 51
6	N02C=255
	C2=0N
	CALL PRINT(' SPECIFY CONTROLLER-2 SET POINT')
	READ(5,1111)ISP2
	CALL PRINT(' SPECIFY CONTROLLER-2 CONSTANTS')
	CALL CONST(GK2,T2,T12,TD2,TF2)
5	CALL Q('DO YOU WANT CONTROLLER-3 TO BE ON ?', INO3C)
	IF(IN03C)7,8,9
7	ND3C=0
	C3=OFF
	GOTO 51
9	N03C=255
	C3=DN
	CALL PRINT(' SPECIFY CONTROLLER-3 SET POINT')
	READ(5,1111)ISP3
1.1.1.1	FORMAT(I4)
	CALL PRINT(' SPECIFY CONTROLLER-3 CONSTANTS')
	CALL CONST(GK3,T3,TI3,TD3,TF3)
B	CALL PRINT(' WHAT IS THE CONTROL MODE FOR CONTROLLERS?')
	READ(5,500)CM
500	FORMAT(A1)
	CALL FRINT(' WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-0?')
	READ(5,501)LA
501	FORMAT(12)
	CALL PRINT(' SPECIFY THE NUMBER OF SAMPLES')
	READ(5,502)NS
502	FORMAT(14)
	CALL PRINT(' SPECIFY THE MOTOR SPEED')
	READ(5,503)MS
503	FORMAT(14)
	CALL PRINT(' SPECIFY THE RUN TIME FOR THE FURNACE')
	CALL PRINT(' IN HOURS - (INTEGER VALUE)')
	READ(5,503)RH
	CALL PRINT(' PRESS BREAK KEY NOW')
25	IF(IBREAK(),NE,0)GOTO 700
	GOTO 25
700	CALL PRINT(/ ***********************************
	CALL PRINT(' THE FOLLOWING INPUT COMMANDS ARE AVAILABLE')
	CALL PRINT(' [1] "DIS"- PRINTS OUT OPERATOR SET INFORMATION')
	CALL PRINT(' [2] "SET"- OPERATOR CAN SET THE PARAMETERS')
	CALL PRINT(' [3] "CON"- PROGRAM CONTINUES')
	CALL PRINT(' [4] "CHA"- OPERATOR CAN CHANGE THE PARAMETERS')
	CALL PRINT(' 15] "PAR"- PRINTS OUT THE LIST OF PARAMETERS')
	CALL PRINT(' - FRESS RETURN KEY AFTER ANY INPUT COMMAND')
	CALL PRINT(' ************************************
599	READ(5,600)COMD
600	FORMAT(A4)
	IF(COMD,EQ,DIS)GOTO 701
	IF(COMD.EQ.SET)GOTO 702

	IF(COMD,EQ.CON)GOTO 703
	IF(COMD,EQ,CHA)GOTO 704
	IF(COMD+EQ+PAR)GOTO 705
	CALL PRINT(' *ERROR*-INVALID COMMAND, TYPE COMMAND AGAIN') GOTO 599
705	CALL LIST
	GOTO 25
701	CALL OPINFO
	GOTO 25
702 704	GOTO 50
704	CALL CHANGE CONTINUE
	CALL Q(' DO YOU WANT TO CHANGE ANY MORE PARAMETERS?', IR)
	IF(IR)311,311,704
311	CALL PRINT(' PRESS BREAK KEY')
***	GOTO 25
703	CONTINUE
	CALL CALCU(GK1,T1,TI1,TD1,TF1,XK(1,1),XK(2,1),XK(3,1),XK(4,1)) CALL CALCU(GK2,T2,TI2,TD2,TF2,XK(1,2),XK(2,2),XK(3,2),XK(4,2))
	CALL CALCU(GK3,T3,TI3,TD3,TF3,XK(1,3),XK(2,3),XK(3,2),XK(4,3))
	DO 1010 I=1,3
	DO 1011 J=1,4
	IF(XK(J,I).GT.1.0.OR.XK(J,I).EQ.1.0)GOTO 1012
1011	CONTINUE
1010	GOTO 1015
1012	CALL PRINT('INVALID CONTROLLER CONSTANTS
	WRITE(5,1013)I
1013	FORMAT(1H , ' SELECT NEW PARAMETERS FOR CONTROLLER NO', 11, ' '/)
1045	GOTO 1016
1015 39	WRITE(6,39) FORMAT(1X/1H * / K1',8X,* K2',8X,* K3',8X,* K4')
3,	FURMAT(1X/1H , K1',8X, K2',8X, K3',8X, K4') DO 1005 I=1,3
	WRITE(6,40)XK(1,I),XK(2,I),XK(3,I),XK(4,I)
40	FORMAT(1X/1H ,F7.3,4X,F7.3,4X,F7.3,4X,F7.3)
1005	CONTINUE
	DO 1006 I=1,3
	Z=XK(1,I)+XK(2,I)+XK(3,I) Y=1.0-XK(4,I)
	SG(I) = Z/Y
	IF(SG(I))82,82,83
B3	IF(SG(I),LT,PX)GOTO 82
	WRITE(5,84)I,SG(I)
00	
82	CALL PRINT(' UNSTABLE STEADY STATE GAIN
	CALL PRINT(',SELECT NEW VALUES FOR K,T,TI
85	FORMAT(1H , ' OF CONTROLLER NO ', I2)
1016	CALL PRINT('PRESS BREAK KEY AND USE "CHA" COMMAND')
	GOTO 25
84	FORMAT(1H , ' STEADY STATE GAIN SG', 12, '=', 1X, F7.3)
1006	CONTINUE DO 1007 I=1,3
	WRITE(6,84)I,SG(I)
1.007	CONTINUE
	IRUN=0
	BIG=AMAX1(T1,T2,T3)
	IF(RH+LE+0)GDTO 31
	TIM=FLOAT(RH)*3600.0 GOTO 2001
31	IF(NS+EQ+0)G0T0 999
	TIM=FLOAT(NS)*BIG
2001	SAM=TIM/BIG
	IF(SAM.GE.240.0)GOTO 100
	NS=INT(SAM)
	IRUN=0

		GOTO 331
	100	NS=240
		RUNNO=SAM/240.0
		IRUN=INT(RUNNO)
	331	RNS=FLOAT(NS)
		TM=(RNS*BIG)/3600,0
		REP=FLOAT(IRUN)
		ATIM=TM*(1.0+REP)
		IHRS=INT(ATIM)
		FATIM=ATIM-FLOAT(IHRS) AMIN=FATIM*60+0
		IMIN=INT(AMIN)
		WRITE(6,101)NS
	101	FORMAT(1H , 'NUMBER OF SAMPLES=', I4)
		WRITE(6,102)IRUN
	102	FORMAT(1H, 'RUN NUMBER-IRUN=', 14)
		WRITE(6,103)IHRS,IMIN
	1.03	FORMAT(1H , 'ACTUAL RUN TIME OF THE FURNACE WILL BE=', 12, 'HRS:',
		1 I2, 'MINS.')
		GOTO 998
	999	CALL PRINT(' ERROR- NS=0 IS INVALID')
		CALL PRINT(' USE "CHA" COMMAND')
	000	GOTO 700 CALL SUBIR
	998	CALL SUBIR
		STOP
		END
		SUBROUTINE Q(A,I)
		REAL NINC
		DATA Y/1HY/,N/1HN/,NC/2HNC/
		CALL PRINT(' ')
		CALL PRINT(A)
		READ(5,1000)ANS
	1000	FORMAT(A4)
		I≡O
		IF(ANS.EQ.NC)GOTO 92
		IF(ANS.EQ.Y)GOTO 90
		IF(ANS,EQ,N)GOTO 91
	90	GOTO 92 I=1
	74	GOTO 92
	91	I=-1
	92	CONTINUE
		RETURN
		END
		SUBROUTINE CONST(GK,T,TI,TD,TF)
		CALL PRINT(' GAIN')
		READ(5,2000)GK
		CALL PRINT(' SAMPLING INTERVAL')
		READ(5,2000)T
		CALL PRINT(' INTEGRAL ACTION TIME')
		READ(5,2000)TI CALL PRINT(' DERIVATIVE ACTION TIME')
		READ(5,2000)TD
		CALL PRINT(' FILTER TIME CONSTANT')
		READ(5,2000)TF
	2000	FORMAT(F7.3)
		RETURN
		END
		SUBROUTINE CALCU(GK,T,TI,TD,TF,XK1,XK2,XK3,XK4)
		P1=GK*T
		P2=TF+T
		XK1=(P1/P2)*(1.0+(T/TI)+(TD/T))
J		XK2=-((P1/P2)*(1.0+((2.0*TD)/T)))
ł		XK3=(GK*TD)/F2 XK4=TF/F2
		ANTELLIE

```
RETURN

END

SUBROUTINE LIST

WRITE(6,3000)

FORMAT(1H ,'THE SYMBOLIC PARAMETERS TO BE USED IN THE CHANGE

1 SUBROUTINE ARE:'/,

1 'CM - CONTROL MODE'/,

1 'LA - INITIAL LOAD ADDRESS IN ZONE 0'/,

1 'NS - NUMBER OF SAMPLES'/,

1 'MS - CONVEYOR MOTOR SPEED'/,

1 'GS - CONVEYOR MOTOR SPEED'/,

1 'GS - CONVEYOR MOTOR SPEED'/,

1 'GS - CONTROLLER STATUS FOR CONTROLLERS 1,2,3'/,

1 'ISP1,ISP2,ISP3 - SET POINTS FOR CONTROLLERS 1,2,3'/,

1 'GS1,GK2,GK3 - GAIN CINSTANTS FOR CONTROLLERS 1,2,3'/,

1 'TI,T2,T3 - SAMPLING INTERVALS FOR CONTROLLERS 1,2,3'/,

1 'TI,T12,TI3 - INTEGRAL ACTION TIMES....'/,

1 'TD1,TD2,TD3 - DERIVATIVE ACTION TIMES....'/,

1 'TF1,TF2,TF3 - FILTER TIME CONSTANTS.....')

CALL CLOSE(6)

RETURN

END
```

	SUBROUTINE CHANGE
	INTEGER RH
	DIMENSION S1(4), S2(15), S3(7), S4(2), S11(4), S22(15), IS3(7), IC(3)
	COMMON /BLK1/CM,C1,C2,C3
	COMMON /BLK2/NO1C,NO2C,NO3C
	COMMON /BLK3/GK1,GK2,GK3,T1,T2,T3,TI1,TI2,TI3,TD1,TD2,TD3,
	1 TF1+TF2+TF3
	COMMON /BLK4/LA,NS,MS,RH,ISP1,ISP2,ISP3
	EQUIVALENCE (CM,S11(1))
	EQUIVALENCE (IC(1),NO1C),(IC(2),NO2C),(IC(3),NO3C)
	EQUIVALENCE (GK1,S22(1))
	EQUIVALENCE (LA, IS3(1))
	DATA S1/'CM', 'C1', 'C2', 'C3'/
	DATA S2/'GK1','GK2','GK3','T1','T2','T3','TI1','TI2','TI3', 1 'TD1','TD2','TD3','TF1','TF2','TF3'/
	DATA S3//LA', 'NS', 'MS', 'RH', 'ISP1', 'ISP2', 'ISP3'/
	DATA S4/'ON','OFF'/
9	CALL PRINT(' SPECIFY THE PARAMETER YOU WANT TO CHANGE')
,	READ(5,400)PARA
400	FORMAT(A4)
400	IF(PARA,EQ,CM)GOTO 20
	DO 10 K=2,4
	IF(PARA+EQ+S1(K))GOTO 21
10	CONTINUE
10	
	DO 11 I=1,15
	IF(PARA+EQ+S2(I))GOTO 22
11	CONTINUE
	DO 12 J=1,7
10	IF(PARA.EQ.S3(J))GOTO 23
12	CONTINUE
20	WRITE(5,300)PARA,S11(1)
	WRITE(5,301)PARA
	READ(5,302)S11(1)
21	
21	WRITE(5,300)PARA,S11(K) FORMAT(' THE CURRENT VALUE OF ',A4,' =',A4)
300	WRITE(5,301)PARA
701	FORMAT(' SPECIFY THE NEW VALUE OF ',A4)
301	READ(5,302)S11(K)
302	FORMAT(A4)
302	IF(S11(K),EQ,S4(1))GOTO 30
	IF(S11(K),EQ,S4(2))GOTO 31
70	GOTO 310
30	IC(K)=256
24	
31	
	GOTO 310
22 303	WRITE(5,303)PARA,S22(I)
303	FORMAT(' THE CURRENT VALUE OF ',A4,' =',F7,3) WRITE(5,301)PARA
200	READ(5,304)S22(1)
304	FORMAT(F7+3)
200	GOTO 310
23	WRITE(5,305)PARA,IS3(J)
305	FORMAT(' THE CURRENT VALUE OF ',A4,' =',I4)
	WRITE(5,301)PARA
17.0.2	READ(5,306)IS3(J)
306	FORMAT(14)
310	CONTINUE
	RETURN
	END

	SUBROUTINE OPINFO
	INTEGER RH
	COMMON /BLK1/C1,C2,C3,CM
	COMMON /BLK3/GK1,GK2,GK3,T1,T2,T3,TI1,TI2,TI3,TD1,TD2,TD3,
	1 TF1, TF2, TF3
	COMMON /BLK4/LA,NS,MS,RH,ISP1,ISP2,ISP3
	WRITE(6+149)
149	FORMAT(' ************************************
150	WRITE(6,150)CM FORMAT(1X// CONTROL MODE:',4X,A1)
150	
	WRITE(6,151)LA
151	FORMAT(1X/' INITIAL LOAD ADDRESS IN ZONE 0:',2X,I4)
	WRITE(6,152)NS FORMAT(1X// NUMBER OF SAMPLES:',2X,I4)
152	
153	WRITE(6,153)MS FORMAT(1X/' MOTOR SPEED:',2X,I4)
102	WRITE(6,165)RH
165	FORMAT(1X/' RUN TIME FOR THE FURNACE IN HOURS: ',2X,14)
	WRITE(6,154)
154	FORMAT(1X//CONTROLLER NO:',8X,'NO-1',9X,'NO-2',9X,
1.04	1 (NO-3')
	WRITE(6,155)C1,C2,C3
155	FORMAT(1X// CONTROLLER STATUS::',9X,A3,10X,A3,10X,A3)
4.00	WRITE(6,156)ISP1,ISP2,ISP3
156	FORMAT(1X/' SET POINTS:',9X,13,10X,13,10X,13)
1.00	WRITE(6,157)
157	FORMAT(1X// CONTROLLER CONSTANTS')
1. 01	WRITE (6,158) GK1, GK2, GK3
158	FORMAT(1X/' GAIN:',6X,F7.3,6X,F7.3,6X,F7.3)
	WRITE(6,159)T1,T2,T3
159	FORMAT(1X/' SAMPLING INTERVAL: ',6X,F7.3,6X,F7.3,6X,F7.3)
	WRITE(6,160)
160	FORMAT(' IN SECONDS')
	WRITE(6,161)TI1,TI2,TI3
161	FORMAT(1X/' INTEGRAL ACTION TIME: ',6X,F7,3,6X,F7,3,6X,F7,3)
	WRITE(6,162)TD1,TD2,TD3
162	FORMAT(1X/' DERIVATIVE ACTION TIME: ',6X,F7,3,6X,F7,3,6X,F7,3)
	WRITE(6,163)TF1,TF2,TF3
163	FORMAT(1X/' FILTER TIME CONSTANT:',6X,F7.3,6X,F7.3,6X,F7.3)
	WRITE(6,164)
164	FORMAT(1X// ***********************************
	1*************************************
	5*************************************
	CALL CLOSE(6)
	RETURN
	END

	SUBROUTINE SUBIR DIMENSION XK(4,3),A(12),AR(12),SF(8),NAA(12),IA(12,8), 1 IXK(4,3)
	COMMON /BLK5/XK,IXK
	EQUIVALENCE (XK(1,1),A(1))
	EQUIVALENCE (IXK(1,1), NAA(1))
	DATA SF/0.5,0.25,0.125,0.0625,0.03125,0.015625,
	1 0.0078125,0.00390625/
	DO 2 I=1+12
	P(I)=ABS(A(I))
	IP=IFIX(P(I))
	AR(I)=P(I)-FLOAT(IP)
	BA=AR(I)
	DD 3 N=1+8
	TA(N)=BA-SF(N)
	IF(TA(N))25,29,29
25	IA(I,N)=0
-	GOTO 3
29	IA(I,N)=1
	BA=TA(N)
3	CONTINUE
2	CONTINUE
	DO 50 I=1,12 CALL NUMB (IA(I,1),IA(I,2),IA(I,3),IA(I,4),IA(I,5),IA(I,6),
	1 IA(I,7), IA(I,8), NAA(I))
50	CONTINUE
	WRITE(6,300) FORMAT(1H ,4X,'A(I)',4X,'FRACTION OF A(I)',4X,'BINARY FRACTION',
300	
	1 4X, 'OCTAL EQU', 4X, 'INTEGER EQU')
	DO 20 I=1,12 WRITE(6,112)A(I),AR(I),(IA(I,N),N=1,8),NAA(I),NAA(I)
	WRITE(6,112)A(1), AR(1), (1A(1), N-1), (1A(1), N-1), (1A(1), N-1), (1A(1), (1A(1), N-1), (1A(1), (1A(1
112	FORMAT(1H ,2X,F7.3,6X,F6.3,12X,8(I1),8X,03,8X,I3)
20	CONTINUE
	WRITE(6,200)
200	FORMAT(1H , 'FINISH')
	CALL CLOSE(6)
	RETURN
	END

0

-

0 0 0

```
SUBROUTINE SEND
INTEGER RH
DIMENSION ISA(64),ISD(64),N1(4),N2(4),N3(4),Z(12)
DIMENSION XK(4,3), IXK(4,3)
COMMON /BLK2/N01C,N02C,N03C
COMMON /BLK3/GK1,GK2,GK3,T1,T2,T3,TI1,TI2,TI3,TD1,TD2,TD3,
1 TF1, TF2, TF3
COMMON /BLK4/LA,NS,MS,RH,ISP1,ISP2,ISP3
COMMON /BLK5/XK,IXK
COMMON /BLK6/KCM, IRCPS, IRFPS, IWCPS, IWFPS
COMMON /BLK7/ISA,ISD,IRUN
EQUIVALENCE (XK(1,1),Z(1))
EQUIVALENCE (IXK(1,1),N1(1))
EQUIVALENCE (IXK(1,2),N2(1))
EQUIVALENCE (IXK(1,3),N3(1))
ISA(64)=128
KCM=1
IRCPS=10
IRFPS=11
IWCPS=12
IWFPS=13
DO 1 N=1,63
ISA(64-N)=ISA(64)+N
CONTINUE
ISD(1)=NO1C
ISD(2)=NO2C
ISD(3)=N03C
ISD(4)=LA
ISD(5)=NS
ISD(6)=MS
ISD(7)=KCM
ISD(8)=IRUN
ISD(9) = ISP1
ISD(14)=INT(T1)
ISD(17)=ISP2
ISD(22)=INT(T2)
ISD(25)=ISP3
ISD(30)=INT(T3)
DO 4 J=1,2
ISD(14+J)=0
ISD(22+J)=0
ISD(30+J)=0
CONTINUE
DO 5 K=1,28
ISD(32+K)=0
CONTINUE
DO 7 M=1,4
ISD(9+M)=N1(M)
ISD(17+M)=N2(M)
ISD(25+M)=N3(M)
CONTINUE
ISD(61)=IRCPS
 ISD(62)=IRFPS
ISD(63)=IWCPS
ISD(64)=IWFPS
DO 3 N=1,64
WRITE(6,2)ISA(N), ISD(N)
FORMAT(2(I4,3X))
 CONTINUE
 RETURN
 END
```

4

55

7

