

City, University of London Institutional Repository

Citation: Deshmukh, R. (1981). Hierarchal computer control using multi-microprocessor

systems. (Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35358/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

HIERARCHICAL COMPUTER CONTROL

USING MULTI-MICROPROCESSOR SYSTEMS

Bae

HEMANT ANANT DESHMUKH

--00000--

THESIS SUBMITTED FOR THE AWARD

OF THE DEGREE OF DOCTOR OF PHILOSOPHY

--00000--

DEPARTMENT OF SYSTEMS SCIENCE

THE CITY UNIVERSITY

LONDON

OCTOBER 1981

CONTENTS

PAGE

TNA U DNS Sc ccc sca cn ge cue Ned els, oe oF Letis sople! ey See nS deals Ge! estes it Suenos 7

TATHUIS AREA TONS 25 Sees ae eee OD check oe es ese tee es se + cncik = Sentai 8

AG KIN © Wil Hi GEMINI oe ee tec wales «ene fo oe occ Wye che eset ec one se 13

DE GT AURPAVI ICON tes eS ere ee oe ec eres wl als le egos seis eats ees 14

AB SARA Cie ee ak nS ce, ie sews esi ey sl cle so Sin tous 0 taia Wha ete aie sigs 15

CC HIAND URI lee — aN ODUGH LONE, ee stele ots opens 5 oe tela > wince ho wie * ss ols ite!

CHAPTER 2. — MICROPR@CESDORS IN. PROCESS. CONTROL ?:. 2... sis 24

PO EN OVC ON GPa in Ce a RU eae 8s tine ee oS OM ap 24

Sg PERO GH ee NON Rl “PROBLEMA GS... iw x s¥dsekeieo siete bee Pits 25

OMe, CORO eR CON Or LOU | iia spaces da wade se Ve tae a ee 27

BeBe MGC OO a BG. 0 oh Syngas 5 thse ng OR OO eee 30

i Oe ODPL UTR ONY BEE B OO side 4 0 fo Git ths ee wai es Cee 32

Dio. On Mere er Mito Od COOL, s . . Pik oy ge ee hea EOE oaks 33

2.2 . Oe eo THO, CPG EIU. Pie oaiat i eae oo wien le oo 35

Oe ee her OO BOC CE SOR POLS 6 ie a weiss 64 Ue eo 6 aie oe ae 36

2.4.28 Mel preecas CGO l Me Curr eCmOne S .. g'< + 9's i niges wae s 39

2,4.5, A@vontages Ch. AterUreuted, CONEY OL SYSTEMS bi.6 wvve 41

2.65 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN

Ae PROGHSS CONTROL. ENV MRONMEVTO.. «Pia os sl nad Peet 43

Bb: CON ETO TON GH. Fo. ren cs. GMCS Ws + Cathe «'s. 59 Maes 46

CHAPTERS So. SVotnM, Dieter a i oui ies. eae. - 48

ot ae EE es 48

5.2 ~CEVBRARLUCPrCTO OPS VSTEM DESTGN .. .tiess sass ss « ote 49

62 OLY OAC ORI RG. WL e NUCH OME OCES CONS isi ys a aiti os 5 us ot

wo ,.1 1 Peep pes ihe Me is bs. RR a os De

Oe ele eee LOA GING a he ete walt re gente eS cok ce cullen re, cate re a Py

CONTENTS continued PAGE

Slee sou COT tWare / Nar avare.. 2 Wr CGR AEE OM. oi be cee eb 56

6.6. HHH CIM PACHL Ol MeRBOnOPROCHS SOR S OM USERS... 6 10% + on ers’ 57

Oe MUD MNEE Hen OCH SOs SaGne Ms eae ve cae iigs, = one's epeie ashe 6 snes 0 = 59

$4.1, “Revtrepoof multiple pYOGe SSN. SYSTEM wig, o's o's 0 vibieies 59

3.4.2 Problems of destgning wtth multt-mtcrocomputer

ECT ie 6 cis ein, Sooo A he ae eae bee BaP ey oss 68

SW BEL. SYS 6 CMs OIE COPS lg Se eek wie Woke se 8 be 69

Cea” “COMMUNTCALLOW GHG COCCLOL 86.» occ 's es wee sas 69

Baeveoy ULstut buted PrOGes Seige se eke Ue ee es 72

Pes ESC UPUE Ce Gere Gee is wo bo ee + bee. bis oe 74

60¢ee. 5 Syatem reliabtltiy, avaataptiity. and

SROULUGDULEEY <8 Wie ste in ie se ek age, a 75

Stu OG... Syeten. devetopment Gna Ce Bling ise Vee aces 76

Sis ea COMMO LE US TION Susi, , oh cte Set Woe penises eels! euete, tee eee) 6 0) oie. o: oNd i’ oy suis e < leile UE

CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED

OMG, SYSTEM. 2. setae 52 Mer eba e yume el ay LS etsla gees 5 ae 79

Be OU OTE ON ag 10 eas a ¢, See ee es AG Re EGNOS. al eaten 79

4.2 READCTIME DISTRIBUTED: GOUPUTING SYSTEM. os ado es eS: 80

4.3 3 MODES. QF A PROCESSING PLEMENT. G24, «,< De da ee ee ee 82

Ota ENE ORMATT ON HAND TASK Deh ARC Tie 6S sok anon oa te Bes os 87

85. CONTROL. CUCTENM, PHT UM ee Eel. CARE Gig ae bass Ceca 89

46% DUAL PORT MEMORY. UTTOMOALLOM {15s tho Cdl wis Segiesee «48 92

ef: MELT CAT RONG Os, Sele os (a '6 rman bWikiotaeat «oh cca cg 95

Bed CMO RUC TONG. nck UiBc pits <atais PvmtcgMee Tl, 5 6.4 be nak we eae ae,

CHAPTER 5 - A HIERARCHICALLY STRUCTURED MULTI-MICRO-

PROCESSORMSYOLEM cp Oe he Oe dn Bec ee ta ss be owed 98

SoD. ON PRO OE ON mak hoc. ghey htt k chara bs 6 eG ee a ws eh ae 98

5b” HSL OSOPHY ae Mo a a a Oe 65 Soke 100

CONTENTS continued PAGE

5.3 INFORMATION FLOW .. cece cece c err c cence cere rer ccccee 101

pete STRUCGRURH OH FH 1 SM ies dk st oes oe ste e + ccs seein a eens eae 104

a Sear CACHMTON: UNTO RA Gr Gg an SOOO Gad 9 5 Bie Cod Canto 106

Suebe = HMSO AR G Bell Wy CURUsiehiee -seids cosets sere eel eure le ss « 50 ¢0816 oos.0 6 56 10

Oe HMISU nO RU CURU ROH i. tare ate. oe che Bie Se GRsw 6 oceue cele scsi cc ese ss 112

On 6 ae CONG RIS LOM Sees. co woe crehe clei ss sis Bee ho ereiete arene as © eis as

CHAPTER 6 — CONTROL OF A TRAVELLING LOAD FURNACE 7.

Co Le BNE ODO CL LOM ain e <6) cy = Sele 8 o)0 6 + wipiiniel wes 6 GES 6 900 sie 6 oe hee /,

Choo ae TU FAN, CHRD sO Ge TOE TT Oi cr cee ty ed's oe) ciloucetetane oe tnect «ie os sess 118

Gig Pale CONE MOUE SIC TEM irks aoe cote 8 ai soe ee oligo ee: cin: wrehei 4 0806 «ioe @ 120

Gao bo COMERO Lu MCO UA VOMCNES POL. CHS HMO Gets ois ane 60:4 oho 0's Leo

6rd HH OHI. © NAM Gre NT Hee uA Onis BURG) Uta ae CECN Ot Ga) 5 saue ne exe) w ects oie e © 129

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE ,. 131

6.0 iC ONC TU SIO MS ser nis) scale iets eae ie alos och site ore peine' o! «oy eusys Silat nie ass aie'e 137

' CHAPTER 7 -— SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM .. 138

cls UNG OL) CG IIRO VEG chutes oir) te. cece teres sieuats (sc ce gieicns «166 A ete ct 138

eee, ee 0 BWA iri OLE Val Oe VARUN tne ALD ates <0 e500 1 alse c o,0) sole %) 6) 4) « Sire 39

(5 ASSUMP EIR Spee Ais ge He Te NVEIGDE TRO) NGS eset cet eher ev yeie ceil > + = cle «6 141

7:4, 02 ROG RAM: DES CR PRHAEO MN, 2 sets 0eicicc os « Reon shoes eve cise wseva 2 o) oe 146

Lie Aad Widget COMP ULE, GU IATL? © cial s Malas pend in @ Get gio dle we eba se vida sis. 5% oe 149

Tia Ag OMG OL GUT OUT TOY op ui crepe wie) 9:0 Fhe, Ceca § signees!a. ence oye a6 al ace 152

(e403. TR Math, BEOGV GM: («wc oh + sista tiv sp Wey ee ey eae es 154

7.9 CONCLUSIONS sesvecvwvscevenvcvrncvces Oia eee ns ars e's 156

CHAPTER 8 -— SOFTWARE DEVELOPMENT FOR THE PDP-11/10

MIEN TCOMPU TER et ee he as a se ee oe hd pee a ee PAt

Bail GNP ROD UOT TON agate Cats. <b Uivin dst eoeraipuenGetewts ie urs eke Ss D7,

O20 SULT HARE DEVO OME ATR Here vicky. se acieie autite « bes 172

8.3 PROGRAM STRUCTURE Dee wc cs 6 es Cle On ee 74

CONTENTS continued PAGE

SUBST POCO MMGNG SOEVUCT Ue Co aisle 5a 2 sc S56. 2p peti ke eS Lacey eens ple 8) Bs LUT

Cea CON CEU'S RON Geis & ite. ccs, cee ve cc 181

CHAP UP. ee LOM. as is). Sue tad pete ohes 6 cise We SE wien 6 og 190

OPO TON ee ee et, SOG Fo g's ey 8 190

eee sO VU Ale Oi Olin Mal GUO Gini Ope felg el HiltinU PUeoOW noite « selleieie! oie. 0 6 fe 190

9.38 TESTING OF INTERMEDTATE SCRATCHPAD MEMORY INTERFACE 198

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES 202

eo AD ANCHO. Hope Hu Oly melee, wel Ue a agchs ol tele euektes es «she o 6 ¥ 209

9.6 ASSEMBLY LANGUAGE. SUBROUTINE TESTS ON PDP-11/10

TRV aN Ia Cs O VM MICE, wah a Raat hietcs 3's (nid «~ fcs ese -@ teleitel eo beie sinelein > eens ate 214

9.6.1, @Peogrdm Ih and tneeNuMe maero-subYoutine ww)este 6s 214

0.6.2. Program TRIAL aud.the SUB2.maero subroutine ie... « 215

9.7 SIMULATION OF DISPLAY OF PROCESS VARIABLES ON GT42

D TG Peek FOC Paes 5 aca hems 0, 6 <4 8 0 a, sind 8 she <0 Sg es ne wet 218

ies Onn Gee NV) Gre Ur Sls CNRS orem te tetee 6s, 20! obwiies s’ wiidine «a: be Vie ie) s 0 ehe ye talinis oes cgi 221

Ce Oe COM LONG 2 aindbvre we 0 a8. a elena 0 0p See ince Fete ohare Me 226

aE TRAIN © Hig othe Sie ROPMOP Tk SoM ies a) «Cake ig. «oo te scie - spans WY eget aphele oes = 3 230

APPENDIX A —.HARDWARE DETAILS OF THE F8 MICROPROCESSOR . 235

APPENDIX B —. THE FS. PROGRAMMING FEATURES 00... oie Sie ee ee 240

(pga bs” BGI Me dito ah VAR UII IE(OUN, I TRICE Sa Meee re Se ose MMS Hss 6 ve vegies. oe 240

Beez. , VEE OReA Nile POG vA Mel Ni Gaur iil OU Fi Sieiciens e+ exetexe + Ws ee 06 6's 1e%o 241

BI Ore eT HG, TANS Fe URONIC SEN iat a, vapee te cs ah Vice fs, 10 ha etialio ere! os dete aeiate Sie 244

APPENDIX C - THE HMSU PROGRAM NLS OREN Gy gc gete cacao c ns deine cos aie 248

APPENDIX D .— THE DCHMSU. PROGRAM’ LISTING... . ks ee Fee 272

CHAPTER 2

TABLE 2.1

CHAPTER 3

TABLE 8.1

CHAPTER 4

TABLE 4.1

TABLE 4.2

CHAPTER 5

AUB Lal Ope L

CHAPTER 6

WA BiH. 6:01

CHAPTER 7

TABLE 7.1

CHAPTER 8

WABLE 631

TABLES

PAGE

PROCESS CONTROL TECHNIQUES AND SCHEMES 29

IMPACT OF MICROPROCESSORS ON USER

PNVE ROWE Nie cd hci OP ec nS Ov Ace LN 58

ANALOGY OF INFORMATION HIERARCHY TO A

PROCS TON GB LRM BER salad Mette Cis sb oko oy RO gla ON a 90

INFORMATION. PROTOCOL: PRIMITUTIVES 26 48 aks we 94

COMMUNICATION PROTOCOL FOR PROCESSORS OF

FT GU poke oa ne nets Tak Goon we 6 ona ig 105

CONTRO ie MOD CeO Co aso ee ke 128

PORTE AG SEG NUE NT eS oar Me es ee ok nee ane le 145

SUBROUTINE MODULES FOR THE DCHMSU PROGRAM , 178

ILLUSTRATIONS

PAGE
CHAPTER 2

2.1 - GENERAL REPRESENTATION OF PROCESS VARIABLES 26

oa «= BASEC CONVENTIONAL FEEDPACK..CONTROL LOOP. .. 0000s 26

Fos RA LOCC HA St. eae Ia aE ce was Hie Ss ai

2645 >- SUPER V POORT CONTROE AG VOT EM Gg ce «sek Weg s 0 0 6 ote s at

Se pee Cr DIGITAM. CONTROM.< fi... care ee CM GOA ess. 34

2.6. = DISTRIBUTED CONTROL SYSTEM'S CHARACTERISTIC

PPT TO RES es oe Stale Sel Me, occ ae p< a dine eee be « Os 37

2a7 “sre ONCTIONAL LAYERS OF “REBRARCH YT. ou ith 240 Sotho d Dee's 40

CHAPTER 3

3.1 - THE BASIC DESIGN TASK IN A MICROPROCESSOR-BASED

ais. hk pelpix tw Os Vig Be ae as WE Es cee 53

3.2 - A GENERAL PROGRAM DEVELOPMENT PROCEDURE 54

Ra ae OE AT eS CEE COSTS wp peas | he ot bins. 6 ©. on 58

54 FEATURES (OF MULTIPLE PROCESSOR SYSTEMS~ sis 61

Dao ee Sl {PROCESSOR ©. hcg eres 6 Oy uw oss Cb en We eae 65

Sibi, TOD PROBS S ORR Stee oa) ce asics ROR ca Ses 65

3 DP MD? PROCESSORS amu «5 yl. 1 in OS «ace ei ca ne 66

Ba8 : — MIMDERROCH OS OR ait ie i) dad vee: ss ves 66

Oi? an cM EM OR er ORMAT IONE (ete tee UR ey. la. x Gea ee oS 5 67

Sg LO! TINUE CONVECT LON ANETHWORKS Mae ou ee A 71

CHAPTER 4

4,1 - DESCRIPTION OF A DISTRIBUTED COMPUTING SYSTEM .. 81

4.2 - A MODEL OF A PROCESSING ELEMENT OF A DISTRIBUTED

COMER NGG WVU ine 4 See wis > Lie bu ee) oic.e ciel ces © Whee 84

4.3 - PHYSICAL IMPLEMENTATION OF THE INFORMATION

BISTREBU TTON NOD Ee Gog igi, Cider e see ens OLS BO

ILLUSTRATIONS continued PAGE

4.4 - PHYSICAL IMPLEMENTATION OF THE INFORMATION

DOGUMU LATOR MODs) ois oy sbicg swans eevee’ SS 3s 86

4.5 - AN EXAMPLE OF TWO CROSS-COUPLED TASK PROCESSORS

ANDO. ici. Got Me cs iS Huet Won Div cate ok boy gece 88

256 = SIMULTANROUS “GHRVICINGTOF. INGBRAU PTS. So. eS 96

CHAPTER 5

Bee NG ORMA TS ON DOW re. Ci ee ik gs ate wipe & wis ae wnee 102

5.2 -— BIDIRECTION COMMUNICATION BETWEEN PROCESSORS VIA

PADRE OF TEM TL Oe eo Ae Oey Oe ek ie ie aeg ies sa ° 103

5.3 —-— 256 X 8 BIT INTER MEDIATE SCRATCHPAD AND MEMORY

WER MCE tee oie wiv iw ks ine ae ews «Ro ocd wk Va yeaa 107

5.4 - MASTER SLAVE CONFIGURATION FOR COMMON MEMORY ... 109

5.6 —- HIERARCHICAL MICROPROCESSOR SYSTEM UNIT (HMSU) , 111

byt. = SPERARCHEGAL STRUCTURE. 2 tet. ssa Wes coo Ben ee ii6

BOA Om STARS STRUGLURI. o.< cack ae ae nc gt er ae 115

Agee eee TING: SURUC TURE aie tls 6 ce ed eee « ee: 115

CHAPTER 6

6.1 - THE TLF INTERFACED WITH THE HMSU AWD THE PDP-11/

LOMEN TO ONPUDER. | ic tetas ee clas cs een Eek 119

6.2 - A TYPICAL TEMPERATURE CONTROL LOOP OF A PROCESS

PEANE 2. Sto. pico ee ee epee ae . 122

6.5. A cRPATENGSSECTRONS OF. Tae Tammtee Ms 6. oes cei se 2: 126

Cesk — SANPUE/ OUTPUT TNTERIACE *.. cite eg foe fs ae ens 130

6.5. — EXISTING: COMPUTER/FURWACE INTERFACE 1... 00000 0 133

Ce = ANALOGUE MULTIODR AGE SHERREACE. . 06 occa. owes 135

6.7°* = MODIFICATION TO DAC. CHANNELS 48. ..0: nc rhe. 136

' CHAPTER 7

7 sh: ~ THE F8° CROSS-ASSEMBLER.(MK-3) STRUCTURE ... eiius 140

ILLUSTRATIONS continued PAGE

7.2 - MEMORY MAP OF THE MASTER PROCESSOR AND COMMON

MEMO Mle swt a fess BLES ode a's vo Seg SUL a ea ete > 143

(8 SRO ORM UCT EAD MEM ORG MAD 5. Sain Sei oe ORG. os ao 144

7.4 - ISMI MEMORY MAP - INPUT CHANNEL OF THE HMSU 147

7.5 - ISMI MEMORY MAP - OUTPUT CHANNEL OF THE HMSU ... 148

76 a= ANTE RRR T OTRUCTURE WITH PRIEORI@Y«. , sate sce. d va hee 150

7.2 - EXAMPLE OF TWO LEVEL PRIORITY INTERRUPT

BTU C EY ree ee is ko hngtR Ee ous eam wed Gay glo hETE alate 153

7.8 - MAIN PROGRAM OF THE MASTER PROCESSOR+. 160

Y GOs OE DROUIN Be os cus MR ea We wey SO ee Ee ets Se As oi 161

(ull =< GU TPU SUBROUTINE. TO” OUTPUT, POWER. TO. A, ZONE os civ 162

ge 2. — seg OUGE DNB als NS gear te Male cE bse av a 0 163

Jel SUSMTOMT ROUPRNE COCONTLINUED). OOF, Ric thes tt 6 ee ott 164

7.14 - SUBROUTINE: TO COPY ISMI DATA INTO PM AND CM 165

7.15 - TRMIT ROUTINE FOR DATA TRANSFER FROM THE MASTER

TOO / Pad GME OHONNE Ec a ae oe os 166

Cate = BIMER “ENPERRURR ROUTING Ooo Mos eee. 1G7

7.17 - EXTERNAL INTERRUPT ROUTIWE FOR LOAD ADDRESS

UPD AME cise West, 6 GOS + vin SGM Gc ew VAM ps et, 5 Oe

(cto COMMON MEMORY. ROUP ING | = nc nceba sn ctaet einMs «oy 2 169

MLO i CAL Le, AND FOB OUT TT yc, MB oa ate oc at ee hake 170

CHAPTER 8

8.1 - SOFTWARE DEVELOPMENT ENVIRONMENT FOR- THE PDP~-11/

MN OOM RUPE Ie Lanne ike soe cog kke SM ae ee

8.2 - A GENERAL FORTRAN SOURCE PROGRAM DEVELOPMENT

PROCEDURE ..4, a; Pee Woes eek pag Oe eS ae 175

8.3 - SESSION RUN OF THE DCHMSU PROGRAM (INPUT/OUTPUT

APRRAR TVG “ON THE CONSOLE). 4Avi« 2. 8 ahh oP 8 182

10

ILLUSTRATIONS continued PAGE

8.4 - SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED) ... 183

G6 °° = SEOSLOW RUN. OR, PRES DCAMSU. PROGRAM (CONTINUED)184

8.6 .—- SESSION RUN OF THE DCHMSU PROGRAM (CONTINUED)... 185

Oo 2 = PRN T-OULDURUNG LHR. SHSSLON, RUN. OF RHE CDC AMS U

SEARO) Gre Neo gic Setauieh fo Agel amie) OU Ee ai sb ee hin outs (ce eliplel ae Sasuctece! eee +) 07 6 186

8.8 — PRINT-OUT DURING THE SESSION RUN. OF THE DCHMSU

PROG CCON TNR Oe Oy coe ods 3 Mids ole ope ee se sR Sia e e's 187

6.0 a PRINS OUl. DUR ENG] Mite Sioa ShON. RUN. OF iil DCAM SU

PROGRAM WOON iM e ek kW ale oo Bee ale 6 elaisBies 6% 188

G.10 — PRIND-OUT DURING THE SESSTON RUN OF ALHE DCHMSU

PROG RAMP GGO NU) Meas 6. a 4 ie hyyat hes 6 oe ote ase lake a bos 189

CHAPTER 9

9.1. -— SIMULATION SET-UP FOR MICROSWITCH INTERRUPTS

USING TWO IDENTICAL F8& EVALUATION KIT PROCESSORS 192

Mee: - PROGRAM «1 FORGPAE- FS EVALUATION: Kit’ PROCESSOR. 1

OP aE Lae Plt ee een i's «0a ein Walle, Ba le 6 oe 8 pista ect chs cicener « 193

Deid, i PROGRAM 2 POR THE UE BVALUATTON: KET PROCESSOR “2

OP FAO Ee, ee NM. se ats «ps ha wi wig 9 h Se eee Ow ese ae

9.4 - SIMULATION OUTPUT FOR THE SET-UP SHOWN IN

GHEE 2 eile gh a wie age 0 Bids eg WMS Ng Wow! «elas oc eigia, 6 Oe 196

9.5 - ARRANGEMENT FOR TESTING ISMI USING TWO F8

EAE ODT Ne LLG, Beige oe «+ aki Yuna. waa S eas ean © dete A eeigpa’Se.'s 199

926 «TRANSMITTERS, PROGRAM “FOR PROCESSOR: 1: OF

FLO Ta RO Ve eta gee ss iw aikl a ate Cah: & <4 4 Mee crys ase 200

207° “= . "RECEIVER: PROGRAM FOR. PROCESSOR. 2 .0F FIGURE 9-5.. 901

938. = PROGRAM: TO: CLEAR. 64° LOCATIONS. OF RAM OF

PROG EH Si Onis amen eG URE oon. ana... s RU ERG oye, e0 san) vce" chet 201

92a SET-UP. DSING A. PARP OF “THE AMGU. FOR TESTING PM

AND CM MEMORY MODULES Se he Ge Sie ee was 204

11

ILLUSTRATIONS continued PAGE

Die a CHIPaSELECGT.LOGIC DIAGRAMe TOR THE ERRQM;,. EM AND

OMp MEMORY" MOD UIGE Ss. Oe 0 tare less e's 206.2 + 2 sheers © » 0 205

HAND-ASSEMBLED PROGRAM FOR THE PROM SIMULATOR OF

HTEGUIRRE 019519 Meier eioue tells 0 cin ets es eeitece's & jersile © 01g, eieine, * 2 a's 206

SLAVE PROCESGOR'S, OUTPUT FOR. THE TEST! SET-UP OF

HUG OA Bin Ou IGEy, «hace os We tape' Cf sie a olsnedei urls © eyetele ts ++ selene. a ove. «26 207

ADVANCED TEST SET-UP FOR THE HMSU. ...eecercescee aed

MACRO ASSEMBLY OF THE NUMB SUBROUTINE- 216

FORMAT OF ARGUMENT LIST USED BY REGISTER 5 (R35)

DURING FORTRAN SUBROUTINE LINKAGE+-5-2+e-s 216

FORTRAN IV PROGRAM IR WHICH CALLS THE NUMB SUB-

AO MUMS Rett oeeths ottris oor oS colts! cy ele Oks oye” s. v eue le 9) enewe We celle’ opsue vps Bld

OUTPUT RESULT OF LR? PROGRAM ‘OF: .FIGURE. DET © o.0. 0008 217

CONNECTION ARRANGEMENT BETWEEN DR11-C INTERFACE

AND ol SME MODES Os. ahs ses cailee: 0 occ ce = che + sles (sigue ueiekaly 219

PROGRAM TRIAL, MACRO SUBROUTINE SUB2 AND OUTPUT

FAS UM ES OF RRA beSP HOGER AM. 5 Sie, 6 <iecc «ui rpnivercier © Wel. one) use 220

Die STi PE OG HA Mic. Satreitio: hotel ie)se tore) «Peis! sie eietsle «= .e a felaze sii 222

SIMULATION OUTPUT OF DISPLY PROGRAM ON GT42

DS PEAY PR OW BSG OR rons ailstateicgc arsls (sai tis. este ois 4m te olfe le whale 224

DATA FILE SHOWENG PROCESS VARIABLES.222-++6 224

¥

ACKNOWLEDGEMENTS

I would like to extend my thanks to my thesis super-

visor, Professor P. D. Roberts, for his advice, guidance and

interest throughout. I am also indebted to

for his valuable assistance during the development of the

work... L would. also like .tewthank

 for their: helprul ‘suggestions.

id amecratetul to, of, the. Department “of

Electrical. Engineering and’

 of Computer Unit for their: helpful

suggestions and valuable assistance in the Microprocessor

Laboratory.

Finally, I would like to thank my wife for her enduring

patience and constant support. Thanks are also due to

 for her proficient typing.

The work was supported by the Science Research Council

in the form Of.a crant.

;

DECLARATION

The work described in this thesis was carried out in

the Department of Systems Science, The City University,

London, under the supervision of Professor P. D. Roberts.

No part of this work has been submitted for any other

degree. All sources of information have been duly

referenced.

I grant powers of discretion to the University Librar-

jan to allow this thesis to be.copied in whole or in part

without further reference to me. This permission covers

only single copies made for study purposes, subject to

normal conditions of acknowledgement.

October 1981

PUBLICATIONS

Part of this work was used as a basis of the follow-

ing’ papers:

1. A hierarchically structured multi-microprocessor

system, presented at the Fifth EUROMICRO Symposium on Micro-

processing and Microprogramming, held on August 28-30 1979

at Goteborg.

2. Model of a processor within a distributed computing

system, presented at the Seventh EUROMICRO Symposium on

Microprocessing and Microprogramming, held on September 8-10

198i at. Paris.

14

ABSTRACT

The recent advances in integrated circuits technology

and the consequent emergence of microprocessors have

increased interest in developing multi-microprocessor

systems. Microprocessors and microcomputers are being

coupled together in increasingly large numbers in a tightly

or loosely coupled manner as distributed computing

structures which include complex interconnection mechanisms

and interfaces to link thesé to an application. Super-

imposed on this hardware structure, software is written to

provide the communication protocols, synchronisation

between sequential processes and application programs and

so on. A microprocessor or’ a microcomputer, as a process—

ing element, is a major programmable component in these

distributed computing systems which share the primary

advantages over conventional large computer systems of low

cost, reliability and possibly speed of operation. The

main task of implementing a distributed computing system

interfaced to a real-time large-scale complex system is the

partitioning of the main control problem into smaller sub-

problems and identifying the interactions between them, so

that the subproblems and interactions can be programmed

into the processing elements.

This thesis is aimed at the study of hierarchical

computer control using multi-microprocessor systems. In

particular, it is concerned with the design and practical

application of microprocessors and a PDP-11/10 minicomputer

1S

to on-line distributed and hierarchical control of a

laboratory-based pilot scale Travelling Load Furnace CRIGE) 2

The basic processing module from which the system is con-

figured is known as a Hierarchical Microprocessor System

Unit and consists of a number of Fairchild/Mostek F8

microprocessor system chips, a common block of semi-

conductor memory and a bidirectional scratchpad memory

interface. The configuration is designed so that a single.

HMSU can be used either independently or as a building

block in an expandable hierarchical environment. The

hierarchical control scheme involves the use of three

processing units of the HMSU to implement three term

control action on the eight zones of the TLF. The eight

zones of the TLF are divided into 2, 3 and 3 heating zones

designated as the preheat, heat and soak sections respect-

ively. Any one section can be assigned to any one of the

processing units (e.g. a Master processor or either of the

two slave processors) of the HMSU. Operator communication

and overall co-ordination of the system is performed by a

host PDP-11/10 minicomputer.

The main outcome of the research reveals that it is

feasible to implement multi-microprocessor systems such as

the HMSU for reat cite? on-line hierarchical computer

control of industrial processes such as the TLF. However,

in order to justify the cost-effectiveness of such systems,

the need for proper development tools such as Micro-

processor Development Systems (MDS) with in-circuit—

emulation capabilities, testing and debugging tools such as

16

Logic Analysers etc. is paramount. The experience gained

as a result of practical implementation of the HMSU for

the control of the TLF has been invaluable so far as the

insight into the problems of developing hardware, software

and that of partitioning of a control problem into smaller

subproblems and their interactions is concerned, The work

reported in this thesis will provide a useful foundation

for evaluating and extending further possibilities of

developing multi-microprocessor systems.

17

CHAPTER 1 - INTRODUCTION

The impact of recent advances in Large Scale

Integrated (LSI) circuit technology towards low-cost

processors and memory modules has caused increased experi-

mentation with multiple processors, multi-microprocessors

and multi-microcomputer organisations. A variety of

multi-processor and multi-microprocessor systems have been

described which use similar hardware but which differ in

the way in which the components are interconnected. The

spectrum of these Distributed Computing Systems range from

networks of conventional computers, systems containing sets

of microprocessors and novel forms of highly parallel

computer architectures with greater integration of process-

ing and storage. The motivations and importance of research

into these distributed computing systems are many and

varied (SRC 1980). These include:

1. Performance: eventually it will be impossible to

increase the speed of a single processor and retain

commercial viability. Several processors, co-operating on

a Single task, will be the only way to greatly enhance

performance.

2. Reliability: a fully distributed system should be

able to tolerate faults caused by either software or hard-

ware. Hardware faults might be tolerated by having more

than one of each critical element. Software faults might

be reduced by running different algorithms in parallel and

checking the validity of results.

18

3. Clarity: many problems are naturally parallel.

Some problems are inherently simpler if expressed as a set

of interconnected and communicating processes. If a

problem's solution is expressed in this way, it might be

easier to verify the correctness for the whole solution by

partitioning it into subproblem solutions of individual

processes and their interactions. This approach inherent-

ly gives a better insight into a large-scale complex

problem.

A=. Distributions... in aneas: such: as: real-time control ,’

it is often important that processor power is available

where it is required in order to minimise the bandwidth

requirements of data paths.

5. Cost: ° the, low Gost Of microprocessors and memory

systems will allow certain tasks to be performed more

economically on sets of microprocessors than on a single

mainframe processor.

In the Department of Systems Science at The City

University, a research program in computer control of

Travelling Load Furnaces (TLFs) and their application is

being carried out, with the object of finding improved and

more efficient control schemes to be applied in industry.

To this end, the design and modelling of an experimental

Travelling Load Furnace for computer control was under-

taken py. R.. Caffinuaw 1972 and subsequently, further

experimentation was performed by H. H. Sheena using a

digital Ferranti ARGUS 500 ‘computer in 1977.. Based on this

19

research, a project entitled "Microprocessor control of a

Travelling Load Oven'' was successfully completed by the

aucrhor in 1977. usine the Pairchild FS microprocessor

evaluation:kit. This’ work:and.the influence: of the. atove

motivations has directed this research with the following

objectives:

1. To study parallel processing aspect of on-line

computer control.

2. To design. a multi-microprocessor system to the on-

line distributed and hierarchical control of the laboratory-

based pilot scalé Travelling Load Furnace in the department.

The options available for designing a distributed

computing system are enormous. A decision about the

distribution of hardware and software to go along with it

depends mainly on the application for which this distrib-

Utuoneds. Soucht=in the first place... ~The distribution of

hardware for information processing where it is needed may

be limited by cost considerations whereas the distribution

of software to perform the desired processing may be

limited by storage capacity and software development costs.

The optimum choice for both the hardware and software

suggests a modular design approach for the distributed

computing system. In this approach, a processor is made

responsible for a particular task which is some fraction of

the overall distribution of the main problem task. When a

number of such processors, with their assigned tasks, are

interconnected as required by the co-ordination of

20

individual tasks, the overall system then accounts for the

distributed solution of the main problem task. Thus the

main task of design and implementation of a distributed

computing system is the partitioning of the main control

problem into smaller subproblems and identifying the inter-

actions between econ so that the subproblems and inter-

actions can be programmed into the individual processors of

the distributed computing system.

The modular design approach is used for the develop-

ment of a multi-microprocessor system for on-line distrib-

uted and hierarchical control of the TLF. The basic

processing module from which the system is configured is

known as a "Hierarchical Microprocessor System Unit" (HMSU).

The hardware configuration of the HMSU required to control

the TLF consists of three F8 microprocessor systems, a

common memory block, analogue input and digital-input-

output interfaces and a bidirectional scratchpad memory

interface. Each processor has its own private memory but

the bulk of the memory is common to all processors. It is

the task of one particular processor designated the Master

processor to control access by any other processor (called

a slave processor) to the common memory. Apart from this

function, each individual processor acts independently,

performing a dedicated control function (i.e. three term

control action on different sections of the TLF) via its

own Input/Output channels. The three processors operate

asynchronously, all interprocessor communication being

conducted through the common memory under control of the

21

Master processor. The Unit as a whole communicates with

the outside environment, which may be another HMSU, a large

host computer, or any other processing equipment. In this

case, the HMSU unit is controlled by a PDP-11/10 mini-

computer. The master-slave relationship of processors

within the HMSU and on-line supervision of the HMSU by the

PDP-11/10 minicomputer accounts for the hierarchical

structure developed.

In the fies ters other structures using the HMSU as a

building block are discussed in Chapter 5. Since the

application undertaken is related to the control of

industrial processes, Chapter 2 discusses a role of micro-

processors in process control and its related instrument-

ation. Asset of design guidelines for the use of micro-

processors in process control environment are also given in

this chapter. The applications which are based on a single

microprocessor based system are enormous and it is imposs-

ible to enlist them. However, the applications covered by

the use of multiple microprocessors in distributed comput-

ing systems are relatively few but the number of these

applications have been increasing rapully ww. the. S6lencee

Research Council of the UK have co-ordinated a research

programme in distributed computing system and its annual

report outlines on current state of research on the

subject. Chapter 3 reports on the study of multiple

processor system, problems of designing with multi-micro-

computer system and general aspects of system design with

respect to distributed computing system.

ce

In real-time large-scale complex system environment,

the use of distributed computing system is highlighted by

its interfacing issues. A new model of a processing

element of a distributed computing system suitable for such

interfacing is proposed in Chapter 4. The application of

the model in two hypothetical applications is also con-

sidered. Chapter 6 describes the Travelling Load Furnace,

the-PID-control algorithm and modifications required for

the existing interfaces to the department's TLF.

Chapters 7 and 8 describe the software development for the

HMSU and the PDP-11/10 minicomputer and Chapter 9 discusses

methods used for testing the HMSU hardware and its related

software.

The full implementation of the complete HMSU system

for on-line distributed and hierarchical control of the TLF

was set back by the lack of proper development and debug-

ging tools. Despite this fact, however, the research

undertaken demonstrates practical problems of implementing

a multi-microprocessor system such as the HMSU. As such,

this thesis will provide a useful basis for evaluating and

extending further research on multi-microprocessor systems

and their applications.

23

CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL

2 EN ROBUCT TON

The technology of applying digital computers to process

control has developed rapidly since the late 1950s. A

typical computer control system then comprised a centralised

minicomputer with backing stores (disks) and about 8 k or

16 k of 16 bit words. Such a system would interface with

the plant via 'backup' controllers which were essential

safeguards against computer failures. These safeguards were

needed because computer hardware was comparatively unreli-

able and catastrophic effects of the failures of a computer

which controlled perhaps 100 to 200 loops were intolerable.

In the 1970s, this centralised configuration has given

way to smaller computing units. These smaller units

individually control small sections of the process and

collectively form a plant-wide control system which is

interconnected by a digital communication system (Brown,

1979).. This modern configuration, termed as a distributed

control system, has resulted,directly due.to the rise’ of

microprocessers.

In this chapter, a review of the process control

problem and control techniques such as supervisory control

and. diréctdigital.control. is made... The: role’ of micro-

processors in a distributed control system is investigated

and some useful design guidelines as to the use of micro-

processor-based control systems in a process control

environment are also given.

24

2.2 THE. PROCESS CONTROL PROBLEM

Many industrial processes have been reported to have

used successful computer control systems. These include

petroleum and petrochemical plants, blast furnaces, paper

machines, textile mills and glass industries (Smith, 1972):

Each has its unique problems but the common feature is that

the energy is utilised to move and to convert raw materials

into final products. Control over the final output product

is achieved by computers which handle information aspects

regarding the process. In all of these processes, process

information is obtained or derived from process variables

which are divided into four categories as illustrated in

Browne sa od:

1. Manipulated variables: These are variables such

as input raw material flow rate, steam pressure in a vessel

etc. whose values can be adjusted by the control system by

either analogue (conventional) or digital methods.

2. .Controlled wariables: The measure of the perform-

ance of the plant is determined from these variables whose

values are kept at some predetermined target values (set

points) by the control system. Examples include production

rave. product,.quadla tyetc.

3. Disturbances: These are variables whose values

affect the operation of the process but which are not sub-

ject to adjustment by the control system. Examples include

composition of raw material, change in ambient temperature

etc. Some disturbances can be measured while others cannot.

25

disturbances

—_ >

ae Te eee PLANT |____-_>>
manipulated controlled

> OR pp
: é 2 :

variables : PROCESS ; variables

aaa >

e e e

intermediate

variables

FIGURE 2.1 : General representation of process variables.

fro See 4
ANALOGUE

| CONTROLLER ;
|
| Lae controlled

ROL variable
ty} ACTUATOR > PROCRESS =

LAW

l
hie a et

manipulated
variable

SENSOR

FIGURE 2.2 : Basic conventional feedback control loop

26

4. Intermediate variables: These appear at some

intermediate point in the process. The control system can

use these advantageously in determining appropriate control

action. Examples include temperature of the mix, mix

Composa tions ete.

The general control problem is to adjust the manipul-

ated variables so as to maintain the controlled variables

at their target set values in face of disturbances. The

control of a typical process plant which has several

variables in the above categories is no simple task. This

task is further complicated if a mathematical model is

required of the process characteristics. The process

characteristics depend firstly on the level of plant

operation (the plant is usually highly nonlinear) and,

secondly, even at a constant operating level, a plant's

characteristics often change with time (the plant is non-

Stationary).

Supplementary to the above process control problem,

the most common question of primary concern is "How to use

a computer to generate larger economic returns from the

process?" The ability of the digital computer. to acquire

large quantities of data from the process, analyse it and

make logical decisions based upon the results makes it most

attractive for.such an: application.

2.8 COMPUTER CONTROL SYSTEM

The computer control of a process. plant can be

achieved in numerous ways. The various ways of control

27

depend upon the computer and the process plant configur-

ation, control techniques and control schemes. These are

summarised in Table 2.1.

In general, the control schemes are of a more theoret-

ical nature, whereas control techniques are more practic-—

ally oriented. However, the choice of control scheme

depends upon the process to be controlled and this, in

turn, determines the control technique to be adopted.

Before looking into digital. control systems, the

appreciation of the conventional approach to a process

eontro!l proplem is a.helpful. background... The basic control

loop in a conventional (analog) system is the simple feed-

back loop illustrated dn Figure’ 2.2...The“eontrol law

generates a change in manipulated variable so as to drive

the error between the set point and measured control

variable to zero, This: controller. oupput is dmposed upon

the process by an actuator, which is an automatic position-

ing valve in many process control cases. The control law

commonly used is the proportional-integral-derivative (PID)

relationship or some simplification thereof.

In a typical plant, there may be anywhere from a few

of these controllers to upwards of a hundred or more.

Until the late 1950s, these controller. devices were

invariably pneumatic. Most of these controllers and later

their counterparts, initially vacuum-tube and then solid

state electronic controllers,. basically suffered from

inflexibility. This inflexibility imposed several burdens

upon the control system designer:.

28

COMPUTER AND PROCESS

62

NTROL T IQUES CONTROL SCHEMES
PLANT CONFIGURATIONS ete aide mats

1. Of£ line - manual data collection 1. Data logging 1. Sequence control

- automatic data collection 2. Regulatory control

2. In line (real time) 2. Supervisory control - Feedback control

3. On line (real time) Feedforward control

- open loop mode 3. Direct digital control - Ratio control

- closed loop mode Cascade control

4. Time sharing 4. Distributed control 3. Multivariable control

_ 4. Optimising control
TABLE .202 <—. PROCESS. CONTROL

TECHNIQUES AND SCHEMES

_.. the control stratesyemust “be. such that it can be

implemented with analog hardware.

2. <Any subsequent modification to control strategy

requires modifications of the analog hardware.

In the mid-1950s, the digital computers began to play

a Significant role in process control. Thais was due to the

fact that any control strategy is programmable and most

modifications in the strategy require simply program

changes and not hardware changes.

It is not the subject matter of this Chapter to dis-

cuss the control schemes outlined in Table 2.1, because

these are well documented elsewhere in textbooks (e.g. Lowe

and Hidden, 1971; Smith, 1972; Savas, 1965). The following

sections review some of the important features of control

techniques currently practised in process control

industries.

2ve.l. Data Loggers

To record a large amount of process data manually is

slow, tedious and inaccurate, and may involve considerable

manpower expenditure. This suggests the value of automatic

on-line data collection and computer control. However, as

illustrated in Figure 2.3, the data logger is not directly

active in the. control. or réguilation:of, the process. It

simply records the values of important process variables at

regular intervals of time. During process modelling, care-

fully devised process tests generate a lot of necessary

data for which a data logger is vital; however, data

30

PROCESS .-PLANT

f

CONVENTIONAL CONVENTIONAL

ANALOGUE ANALOGUE

CONTROLLER CONTROLLER

f

DATA data

LOGGER

FIGURE 2.3 : Data logger

oie at measured
process

PLANT Cae ee variables

oo

\ K

y

ANALOGUE
AC AC eee AC

CONTROLLERS

NG yy

set
points

OPERATORS a COMPUTER

CONSOLE iS

FIGURE 2.4

3]

: Supervisory control system

logging in itself is not adequate. In a few exceptions,

such as nuclear power plants, where the records must be

maintained, and laboratory automation systems, data logging

is of primary importance.

2.3.2 Supervisory control

Supervisory control systems are usually based on pro-

cess models where the basic objective is to optimise the

financial returns on investment. Typical input information

needed for a process model might include:

1. ‘Cost: of:Taw -materigls and utalities

2... Value Of: pRoGgucus

3. Composition of raw materials and products

4. Current values of process variables

5. Constraints. on the process operation (e.g. safety

limitations, preventive maintenance etc.)

6. Specifications on products

7. Demands and market fluctuations for the products.

The operating strategies based upon these inputs and

the process models which are generated by the computer are

usually too complex to be handled by operating personnel.

Thus, in many cases, the control computer simply provides

the set points for the analog controllers, as illustrated

in Figure 2.4. In this configuration, a single centralised

computer is used which does not replace analog hardware.

The backup problem: is noteas eritical, -for.in case of

computer failure the set points simply remain at their last

setting or can be manually adjusted.

32

The problems of supervisory control fall mainly into a

software category, and the main obstacle to the instal-

lation of supervisory system is that mathematical models of

plants are seldom available beforehand. Thus, the econ-

omics of supervisory systems are based on the prospect of

the system producing sufficient improvements in process

operation to justify the financial investment in the

computer control system.

0.3,5° Divreer Vierege, Control. (DDC)

The most basic form of Direct Digital Control (DDC)

involves the replacement of individual hardware elements

(analog controllers) wherever possible with the time shared.

components of a digital control computer. In the DDC

technique the computer calculates the values of the

manipulated variables directly from the values of the set-

points, measured controlled variables and the control

algorithm (e.g. discrete equivalent of conventional PID

relationship). The decisions of the computer are applied

directly to the process and hence the name DDC. The control

arrangement is Shown in Figure 2.5.

Direct digital control has been a fundamental and major

step towards easy and economical application of modern

control technology. It introduces the flexibility of a

choice of specifying any control strategy that can be

programmed in a control computer system. Addition of

control loops to the existing ones, feedforward and combin-

ation systems can be used more widely when the only

components which must be added to the system are transducers

33

ve

measured

controlled variables

MULTIPLEXER

AND ADC

a

; joe : manipulated oe eee PROCRESS
variables

PLANT
a oe

DAC

J

COMPUTER

WITH
ae DDC PROGRAM

CONSOLE

FIGURE 2.5

COMMUNICATIONS

CHANNEL

: Direct Digital Control

~~» to supervisory

computer if

used

and mathematical expressions. The design of a complex

process control system employing DDC allows the possibility

for redesign and "customisation" after installation.

The economic justification of a process control system

employing DDC technique depends upon efficient computer

utilisation, computer down-time costs and the ingenuity of

operating personnel to make desired program changes. In

addition, if a supervisory computer is also used, then the

problems associated with it would be encountered as much as

with a DDC technique.

2.4 DESTREBUTED. CONTROL SYSTEM

A distributed control system is mainly a decentralised

control system where the individual subsystem control units

are distributed among the physical subsystems of the over-

all process. These systems have been developed, not

specifically for process control application, but also for

more commercial applications, such as banking, inter-

company, data-base centralisation, airline reservation

systems, military systems etc. In industrial computer

process control, the digital process control function is

distributed among the individual physical units, using

microprocessors for example, which permit control tasks and

physical, location to be distributed in the plant} such a

system has benefits of improved control, reliability,

flexibility and reduced cabling costs (Roberts, 1979).

The distributed approach to control system designs can

be developed to exploit modularity in both the process

35

control units and the structure of the communication net-

work. These concepts can be pursued in both hardware and

software, and are key features in the production of reliable

and manageable systems (Holding and King, LO) ea woe

flexibility of the resultant control system actually

increases overall systems integrity. Equally important, it

provides a system which can be easily implemented, adapted,

extended, or replaced, either in part or as a whole, The

characteristic features of such a distributed control

system can be given in a tree diagram, shown in Figure 2.6.

Although some of the features are categorised under soft-

ware in the diagram, they do have a close relationship with

some of the features of hardware. For example, the

communication between the processors is very much dependent

upon how the processors are structured.

2.4.1 The mtcroprocessor role

Although not impossible, it may not be useful to

develop a system that has all the features mentioned above.

This is because the flexibility and low’ cost. of the micro-

processor allow it to be used in so many applications that

it 4s difficult to pub any-bolnds. on, the areas: of: applic

ation. Recent surveys of. application’ to control illustrate

the wide range (e.g; Aspinall, 1978; Spencer, 1976;. Barker,

1978). In no way is a particular software or a hardware

solution appropriate to all applications. That is why it

is essential to see the role of a microprocessor with some

distinctions in the type of application.

36

Distributed Control
System

|
Hardware Software

|
| |

Control Communication
between processors

Eo

Control over Distribution of

Processor Structure of the entire dedicated
Architecture Processors system control function

operation

Combinations
Star Ring Hierarchical oe thaea

Y— SISD - Single instruction/single data stream processor

t+— SIMD - Single instruction/multiple data stream processor

t+— MISD - Multiple instruction/single data stream processor

-— MIMD - Multiple instruction/Multiple data stream processor 1__. Other architectures

One to One to Many to
one at many at one (through
time a time suitable priority)

Many to
many

FIGURE 2.6: Distributed control system"s. characteristic features

oy

The market for microprocessors in process control will

be in applications with standard programs with a limited

variation in functional response (Wilkie, 1979). In this

type, firstly, there will be replacement for existing units,

frequently with additional features. Some examples are:

1. Low-cost replacement for analog controllers

2. Intelligent alarm and acquisition systems

3. Intelligent instruments with communication

capabilities.

These applications are essentially at a component

level. The second type of more novel applications might be

regarded at component level because they depend on the

flexibility which surrounds the basic equipment, for example:

1. Sophisticated control strategies, such as self-

tuning controllers

2. High reliability systems.

These applications are important to the process control

designer and allow a variety of new features to be included

in the system (e.g. displays). The third type of applic-

ation, where microprocessors are of significant importance,

is an area previously covered by minicomputers, although not

always economically. These applications include:

1. Distributed control on a unit process basis

2. Sequence control

3. Mixed sequence and continuous control.

For pure sequence control, the existing dedicated PLCs

(Programmable Logic Controllers) provide an economic

38

solution especially for very high-speed work. However, the

inclusion of data logging, VDU.display features or of

continuous control may prove that a microprocessor-based

system solution is more appropriate.

2.4.2 The process control requirements

Having considered the role of a microprocessor, it is

worth looking into the operational requirements of process

control within the background of distributed control

systems. A "top down" design approach of a distributed

system for overall plant control and optimisation can be

considered to meet these requirements, which can be divided

into a.number of hierarchical.levels. This is shown in

Figure 2.7. The lowest level is usually concerned with the

detailed control. of process plant... The next level is

associated with the co-ordination of plant controllers to

produce a unified overall system. The highest level serves

to provide plant optimisation and management information.

This hierarchical operational organisation has to be

implemented within the physical structure of the actual

distributed system during the design process.

Very:.of ten...in. process: control:..time..critical real—

time operations extend throughout all levels and their

execution is essential to correct plant operation. The

majority of real-time tasks, which are fundamental to the

design of a distributed control system, are associated with

detailed plant control... This may involve sequence or

continuous control operations with auxiliary monitoring and

alarm functions. The requirements are serviced in a secure

39

MANAGEMENT /

SELF ORGANISATION

<a

ADAPTION /

OPTIMISATION

CO-ORDINATION

similar links

to other

process plants

CONTOLLERS CONTROLLERS y

CONTROLLERS

PROCESS... PLANT

FIGURE 2.7 : Functional layers of Hierarchy

40

and reliable way. The co-ordination of first-line control-

lers also needs to be carried out in real-time and this

imposes stringent requirements on communication handlers,

network and the various protocols of communication. It

should also be noted that the supervisory and management

system may also be involved in real-time scheduling,

logging and display functions, apart from their normal

decision-making.

2.4.3 Advantages of distributed control systems

A distributed control system as described above is

very similar to that of the team approach taken by

co-operating humans to solve a problem too large for one

individual (Bibbero, 1977). The advantages of such a

distributed control system are many and summarised as

follows:

1. It is more economical because of the low cost of

microprocessors. This makes the first-line controllers

relatively cheap so that it is economical to consider spare

controllers for use in the event of failure. Should a

failure occur, its effect will be limited to only a small

part of the process and in many cases this part can be

operated manually until the replacement controller is put

into’ service: <Hqually, a faijure of;ashigher level com-

puter would not prevent plant operation but would merely

reduce efficiency until the failure was corrected.

2. The distributed control system in its functional

levels of hierarchical structure, which is very suitable

4)

for process control application, has several advantages

over the use of a large central computer. The process

control can be built step by step and experiments in

control in various parts of the process can be made at

reasonable cost (Edgington, 1979). The advantages of step-

by-step approach to building up the control hierarchy are:

A. Sophisticated control: Computer-based control

leading to improved efficiency.

B. The implementation rate can be arranged to suit

subprocess requirements.

C. Technological: A greater flexibility in develop-

ing technical ability of process operators because the

system is implemented gradually.

Dow Low tisk: | Dhe.ettect.of ‘faalunre, 1s localised toa

small area.

E. Future: The system can be expanded and changed to

meet changing requirements or increased understanding of

the process to be controlled.

3. The distributed control system also provides a

communications medium and processing facility which can be

used to provide non-critical information processing, data-

logging or display, using various peripherals distributed

about the system. Wn. particular, 10 can support facilities

for the on-line, editing of control programs for’ the various

units in the system.

42

4. With the recent advances in the theory of hier-

archical control on the one hand and multi-processor

technology on the other, the optimal or near-optimal

regulation of large processes in engineering, socio-

economics etc. is rapidly becoming a real possibility

(Billingsley and Singh, 1975)- > This 1s’ an enormous

advantage, taking into consideration the characteristics

that the distributed control system exhibits.

2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN A

PROCESS CONTROL ENVIRONMENT

Microprocessors are relatively new devices; their

potential needs to be well understood before being applied

to any desired application. A variety of questions should

be answered in the design process of a microprocessor-based

system. For a process control application, the following

set of design guidelines have been given for microprocessor

based systems (Weissberger, 1975).

1s Theunatureed: appitestion: .1t- may be

(A) <A programmable controller

(B) A dedicated processor

(C) ‘An element in a distributed control system.

2. WA) What iis..the number :.of

(a) functional. tasks involved?

(b) input/output points?

(c) points to be controlled?

(d) loops to.be controlled?

43

(B) What is the processing load?

(C) Is real-time response required?

3: <A decision as to the functional task subdivision

and input/output signals assignments for processing

elements is needed. The data load and throughput rate for

processing element also needs to be determined.

4, Microprocessor selection: This can be very

critical and depends on several factors. These are:

Ga) Avail lability

(b) Supplier reputation

(c) Software support

(d) Instruction set, word length

(e) Speed of operation

(f) Architecture - interrupt capability, registers

GG

(g) Second source

(h) Memory capability

(i) Package count

(j) Number of power rails

(k) Power consumption

(1) Development system.

Also, in the selection processes the software design

needs careful attention; for example, programming flexibil-

ity, word size (data/instruction), address capacity,

addressing modes (indexed, indirect, relative, direct etc.),,

instruction set (repertoire and speed), register compliment

a4

(arithmetic,

etc.

index, status, accumulators, general purpose)

5. Environmental considerations: These include

(a) Industrial noise, temperature, electrical

noise

(b) Distance between process variables

(c) Power dissipation, consumption and cooling

(d) Input/output interfacing

(e) Future expansion, space etc.

6. dnterfacine.~ This 1S avery important stage. in

the design process and this includes:

(a)

(b)

(c)

(d)

(e)

(29

(g)

(h)

C1)

CH)

(k)

eh

Transducers

Amplifiers

A/D converters

Multiplexers, demultiplexers

D/A converters

External event counters for real-time applic-

ation

DMA facilities

Line drivers, line receivers, moderns, UARTs

Cabling, twisted pairs,. coaxials, ribbon,

ODULG. Libres etre.

Displays

Consoles, telephone links etc.

Earth loops.

45

7. Distributing: As described earlier, distributing

can produce a cost-effective solution. This may include:

(a) Distribution of microprocessor/controllers

along the peripherals of the plant floor with

a centralised minicomputer

(b) Distribution of individual power supply.

(Ce) Dastributaon of functional task by partation—

ing and software modularity.

A lot of cost savings can be made if the above guide-

lines are followed in the development of microprocessor-

based systems for process control application.

2.6 CONCLUSIONS

In process control, the computer has become one of the

primary instruments for control. The advent of large-scale

integrated circuits and microprocessors has radically

changed the capability and applicability of distributed

computer control systems. These systems can be applied to

a wide range of applications and trial installations have

been established in a number of industries (IEE Conference

pubiieation,..1977)... The modularity and flexibility of

these systems make them more reliable and manageable than

centralised systems. In many situations, they present a

more att¥factive. and. economic solution..to.the control

problem.

The review of the control techniques presented in this

chapter suggests how the changes have taken place over the

46

last two decades. A lot of further research, however, is

needed and the scope is enormous in areas such as distrib-

uted processing, architecture, operational attributes,

resource management etc. (SRC Annual Report, 1977). It has

been the experience of several years that the theory is

always ahead of its practical implementation. This is also

true in process control and the distributed control systems

attempt to bridge such a gap.

Another area which is of interest is that of communic-

ation between processors and the issues of the development

of a standard for communication between the intelligent

subsystems of a process control system (Lee, 1976). The

development of higher-level languages for distributed

control systems and the development of different architec-

tures for multiprocessors have been at the open end of the

research activities in the universities and industrial

research centres. The concept of a transputer (Aspinall,

1978), for example, falls into the category of such archi-

tectural developments. In general, the pressures for

change in computer system architecture are: (1) language

and programming based, (2) applications and systems based,

(3) reliability and technology based, or combinations of

these drives for change (Elliott, 1978).

47

CHAPTER 3 - SYSTEM DESIGN

5.1.6 INURODUCT ION

The process of system design is essentially a process

of translating the problem specification in a high-level

natural language into the problem solution in a lower-level

language notation. The human brain is unable to deal

completely with more than a certain amount of information

at any one time (Miller, 1956). Therefore, the only

natural way in which a large-scale task may be comprehended

and solved 4s by splitting it.up”“into a,set.of smaller,

comprehensive subtasks in a logical manner. The trans-

lation of the problem specification, of a large-scale task

into the problem solution is usually too complex to be

performed in one stage (Dowsing, 1978). As such, it is

normally broken down into a number of smaller translation

steps, each step lowering the level of the language used

for the specification and the complexity of the system

needed to understand it.

It-is true; in general, that. design. is, an art and the

object of art is no simple truth but complex beauty and so

any design usually involves making personal choices and

trade-offs depending upon cost constraints and time limit-

ations. So far as designing with computers or micro-

computers is concerned, the lower-level language notation

typically ranges in complexity between a high-level

programming language and a hardware logic design language

which can readily be used by software and hardware

48

implementation systems respectively. Furthermore, the

advent of microprocessors has opened up a new design era of

multi-microprocessors or multi-microcomputers in which the

designer can think in terms of parallelism or concurrent

performing of smaller subtasks. A design solution result-

ing from the use of multi-microprocessors/microcomputers

may perhaps surpass the human brain capability of dealing

with only a limited amount of information at any one time!

In this chapter, the different phases of the system

design process are examined and the problems of designing

with microprocessors are outlined. An attempt to classify

a multiple processor system is made and a review of such a

system is also given. Finally, the design issues relevant

to a multi-microcomputer or distributed system are dis-

cussed.

3.2 GENERAL ASPECTS OF SYSTEM DESIGN

The process of design in general starts with an effort

to answer a simple question: "What is it that we want to

achieve?" The answer usually attempts to establish the

goals or objectives about a system to be designed. A

defined set of goals or objectives results from a feasib-

ility study of the intended system. When such a system is

envisaged to be feasible under given cost constraints and

time limitations, the process of system design continues

with the following subtasks:

i] Problemsspecitication=. “This first amportant step

involves an unambiguous, rigorous and detailed specific-

49

ation of the problem. The specification must be detailed

enough for a correct solution to be produced but not over-

specified with irrelevant information.

2. Logical design of the problem solution: The next

task is to decide on the method, the algorithm and alter-

natives for solving the problem. A designer has to harness

his skills to discover which is the “best'' solution for the

particular problem in hand. The next logical task is to

produce a formal definition of the chosen problem solution

which may be implemented with the available implementation -

tools, either hardware or software or a mixture of the two.

This task involves a decomposition of the high-level

problem description into a lower-level description contain-

ing details which are more implementation dependent. This

forms a basis for the implementation subtask,

3. Implementation: A task of the implementation

phase is to map the logical design onto the implementation

system. This phase is typically constrained heavily by

costs, time and available resources. An experienced

designer may not have to pay any penalty for the constraints

heavily imposed on the implementation phase if these are

well anticipated and estimated in the feasibility study of

the system design.

4. Testing: The output of the implementation stage

takes the shape of the intended system but the behaviour of

such a system needs to be tested in this phase. This phase

requires testing tools and skills. Any errors, which have

50

occurred in the previous phases of design are revealed in

such a testing stage. Generally, it is best to mingle

implementation and testing in order to detect these errors,

because sooner the error is detected the easier it is to

correct and less effort is extended.

5. Optimisation: Optimisation stage is not strictly

a part of the design phase but is an important technique

for modifying the design so that the resource requirements

of the problem solution may be met. This phase also

avoids the necessity for complete redesign of the system

using a different approach or algorithm.

The design process is an iterative procedure based

around the subtasks outlined above with the specification,

testing and, if necessary, optimisation taking place at

each stage of the problem solution. The complexity and

likelihood of errors is reduced if the designer ensures to

take smaller steps at any stage of the system design.

Another important aspect of any system design is the

quality of its documentation (Fitzgerald and Fitzgerald,

1973). A full documentation of a system design should

provide the solution to the problem, the reasons why the

particular design decisions were taken, the underlying

strategies and their consequences on the rest of the

design.

3.2.1. Déestgntng, with. microprocessors

Although applicable for any systems, the above general

aspects of system design can be followed for systems

5]

incorporating microprocessors as well. However, there are

some important issues, described here, which make designing

with microprocessors a special case.

Microprocessors are a new technology and this technol-

ogy is revolutionising the way in which new electronics

based products are designed. It is creating a whole new

set of problems for designers. Part of this new design

philosophy results from the fact that in a microprocessor,

system functions are stored in memory instead of wired

into discrete logic devices, and the system designer has

the possibility of making modifications simply by changing

the program stored in memory instead of redesigning the

hardware. Hence the software now becomes as important a

part of the design process as the hardware. The basic

design task in a microprocessor-based system can be broken

down into three areas: software, hardware and software/

hardware integration. This is shown in Figure 3.1.

S20. 1.4.e6f ouare.. the: Lirst. step. is to design the

program, a task which requires knowledge of the design

objectives and the microprocessor characteristics. The

design guidelines mentioned in Chapter 2 are very useful

for this purpose. For many. practical programs, the use of

an assembler is necessary; this means coding the flowchart

into a source program and from this assembling into the

object code which will run on the actual microprocessor.

There are a number of ways of achieving an object code from

a source program. These are outlined in Figure 3.2.

oZ

SYSTEM

DEF INITION

HARDWARE SOFTWARE

DESIGN FLOWCHART
LOGIC WRITE

PROGRAM

BREADBOARD CODE

y

PROTOTYPE ASSEMBLE
OR COMPILE

FEST DEBUG

NO YES INTEGRATE YES.
AWD

DEBUG

NO

FIGURE 3.1: The basic design task in a microprocessor-based system

a5

PROBLEM SPECIFICATION

FLOW
DIAGRAM

I
¥ Y

WRITE WRITE
ASSEMBLY HIGH-LEVEL
LANGUAGE LANGUAGE
PROGRAM PROGRAM

HAND SELF CROSS NEE
ASSEMBLY | | ASSEMBLY | |ASSEMBLY ee

MACHINE CODE PROGRAM

RUN ON RUN ON DEVELOPMENT SIMULATOR can

FIGURE 3.2:

PUT

 PROGRAM IN
ROM/EPROM

54

CHECK OUT
PROTOTYPE

A general program development procedure

Coding a source program requires the use of a text

editor with the ability to enter text, modify, insert and

delete] plus a‘set of Utilities..for .creating,. loading. and

manipulating text files and outputting’ to a printer or

terminal. For assembling into object code, the assembler

needs to be speedy and it must produce relocatable code so

that programs can be written in modules which are linked

together after assembly. A high-level language can be used

instead of an assembler, and the choice is very much

dependent on the application. However, with many micro-

processor systems, high-level language solution is not

fully available. In general, the high-level language

approach is best for quick design completion, low-volume

products and where data manipulation is important. The

assembler is better for high-volume products or real-time

control applications where speed is important.

Debugging of software consists of removing all program

errors. A certain amount of debugging can be done on an

emulator, but since the final operation is dependent on the

actual hardware, most debugging has to be done during the

critical software/hardware integration phase.

3.2. 1o2 fordvare: . The first step..is: logic design

which, like program design, can be done using information

on devices (data sheets) and a knowledge of the design

objectives. Breadboarding of the circuit modules is

G€arried out to obtain a prototype. “This isa very typical

procedure followed by most electronic design engineers and

the fools involved are typically an oscilloscope, digital

55

voltmeter and, more frequently nowadays, a logic analyser.

Using such instruments, major hardware faults can be

detected but thorough debugging and testing is possible

only during software/hardware integration.

Another important point of consideration, while

designing hardware, is that of deciding the level at. which

to start: designing with.microprocessors’....There are: three

basic levels of supply of microprocessor hardware:

1s, Chip Level:.-Starting trom. chip level can..be

useful if large production is anticipated, where the design

costs are spread over many units. However, it does require

a large outlay in time and money to get started.

2. Board level: Standard functions available on

ready-made boards is a very convenient way of implementing

a system quickly and at reasonable cost, provided the

restrictions and limitations. of the particular board are

understood and allowed for.

3. System level: Standard systems can be bought from

a number of suppliers. These are self-contained units or

microcomputers.

The choice of the level of hardware depends on the

application and: such. factors as flexibility.,:,expandability

and maintainability.

3.2.1.3 Software/Hardware Integration; This is the

critical stage in completing any successful working design.

It is impossible to tell whether the software is working

56

correctly without using the hardware or vice versa. There-

fore, the task of debugging the original design becomes a

dynamic, interactive process; for example, one may overcome

a hardware problem by modifying the software or vice versa.

Tools such as in-circuit-emulators, logic analysers are

very useful at this design phase.

3.3 THE IMPACT OF MICROPROCESSORS ON USERS

Having seen some of the implications of designing with

microprocessors, it is worth noticeing the impact of micro-

processors on users. Microprocessors, as with main-frame

computers, have same attributes of association with peri-

pheral devices, the development environment and the user's

environment. Mainframe computers have been the case of

bedrock investments for a long time and still will be for

some time to come but now, it is the user of micro-

processors who has to make such huge investments in his own

environment. Furthermore, the user is allured by ever-

increasing cheapness of available microprocessors and new

announcements of more and more powerful microprocessor

architectures and their potential. The peripheral devices

for use with microprocessors and microcomputers are becom-

ing a medium-life phenomenon whereas the development

environment for microprocessors themselves is becoming a

long-life one. This. is all. depicted. in Table.3.1.

Carter (1978) has well reported a number of problems

of using microprocessors in areas such as technical, man-

power, commercial and sales and marketing. Although these

are documented from the viewpoint of a company producing

57

‘ ry

USER'S PROCESSORS
ENV [RONMENT > TRANSIENT 4 wrcROPROCESSORS

< me

DEVELOPMENT MEDIUM {
ENV IRONMENT f LIFE PERIPHERALS

< >

LONG DEVELOPMENT
ere > LIFE 4 ENVIRONMENT

PROCESSORS BEDROCK i USER'S
MAINFRAME COMPUTERS (INVESTMENT 4 ENVIRONMENT

ie A
TABLE 3.1: Impact of microprocessors on user environment

its first microprocessor-based product, the technical and

manpower areas of problems are similar for any micro-

processor development project. Another problem area of

important consideration:-is that of the cost and the

benefits of a microprocessor-based project. Micro-

processor technology is changing rapidly and costs are also

changing quickly. It is important to repeat cost/benefit

analyses at regular intervals, especially if the project is

a longterm one. In the total costs of a microprocessor

project, the basic cost. of the microprocessor chip is

indeed the tip of an iceberg as shown in Figure 3.3.

“> 72-7 MICROPROCESSOR

TEST AIDS

ys SOFTWARE ‘

FIGURE 3.3: Total system costs

58

Working with microprocessors is initially expensive,

although these costs are not repeated for successive pro-

jects unless the choice of processor is changed.

Different considerations outlined in this section are

relevant to system design and should be considered as a

part of the design process while designing with micro-

processors.

3.4. MULTIPLE PROCESSOR SYSTEM

The concept of a multiple processor system is not new

and has been used in very large EDP (Electronic Data

Processing) systems for several years. But the use of

microprocessors in such systems is rather recent. There

are two basic reasons why a multiple processor system

should be envisaged using microprocessors. Firstly, the

microprocessors are very cheap and secondly, since they are

constrained in computing power by the physical limitations

of the chip capability, an extension of this power through

the use of a multiple processor system makes it viable to

produce large as well as small EDP systems.

8.4.1 Revtew of multiple processor system

A review of the literature (e.g. Searle and Freberg,

1975; Weissberger, 1977; Anderson and Jenson, 1975; Flynn,

1972; Thurber and Wald, 1975) reveals a considerable con-

fusion in the classification of multiple processor (com-

puter) system. The same name is given to different

computer organisations and different names are assigned to -

59

the same computer organisations. For example, Joseph (1976)

has reported some twenty-four different ways of referring

to distributed processing which emphasises a particular

architectural difference. He also further admits consider-

able confusion that exists as to the meaning of the term

"distributed processing". However, Flynn (1972) has

suggested a basic classification scheme which describes the

method of operation based on the number of instruction

streams and data streams in the system. A brief mention of

this was included in the characteristic features of

distributed control: system (Fig. -2.6,.Chapter 2), but a

more elaborate tree diagram, shown in Figure 3.4, outlines

some other features associated with a multiple processor

system.

Since different system terms are used today, it is

important to give some definitions. A good review can be

found in Searle and Ferberg (1975).

“A multiple processor system contains more than one

processor. Each processor may be a microprocessor or a

microcomputer executing a specific task. A microcomputer

is a microprocessor system with its own memory and peri-

pherals. Software considerations allow one to discern two

kinds of multiple processor system:

1. <A distributed system, also called a multi-micro-

computer system or distributed intelligence microcomputer

system (DIMS) (Russo, 1977), in which each microcomputer

performs a dedicated function as part of a single

partitioned system. This static allocation of tasks allows

60

Lg

Independent processors

Multiple Processor System

I |
Multicomputer System

with no direct communic-
ation (SISD - Single

Instruction Single Data Array Processors
Stream - see Fig. 3.5)
e.g. a Standard uniprocessor,
or conventional computer.

|

(SIMD - Single Instruction
Multiple Data Stream - see
Fig 3.7), 2g. TELIAG IV.

Pipeline processors (MISD -
Multiple Instruction Single Data
Stream - see Fig. 3.6) e.g. ate
IBM S/360 Model 91, CDC 7600, CDC aehoge an ere
STAR-100, ASC (Texas Instrument ayeeet) eae
Advanced Scientific Computer) microcomputer System.

Main feature: Static
task allocation

|

|
Multiple Processors (MIMD
- Multiple Instruction
Multiple Data Stream - see
Fig. 3.8) |

Multiprocessor (with
operating system). Main
feature: Dynamic task
allocation

| |

Memory Formation (see Fig. 3.9) Interconnection Hardware System Organisation
| Networks

| a (see Fig. 3.10) |
Tightly Loosely Team Time shared/ Crossbar Multiport
Coupled Coupled Approach Bus common bus switch memory

Star Single bus

Ring Unidirectional Mode

Hierarchy buses

Combinations Multiple buses
of the above

FIGURE 3.4: Features of Multiple Processor Systems

Operating System Organisation

| ‘|

Separate Symmetric or
executive anonymous
for each treatment

Master-slave processor. of. all
PROCESSORS

the partition of software and is an attractive solution for

microprocessors. In such a multi-microcomputer system,

there is no integrated operating system as such, but there

exists some kind of communication protocol, either

implemented in software or hardware or the combination of

the two, in order to facilitate communication between a

number of processors. In a distributed system, individual

microcomputers may be locally distributed or there can be

geographical distribution of microcomputers depending upon

application.

2. A multiprocessor system implies a single

integrated operating system which is capable of dynamic

allocation of system tasks. Software is much more complex

for such a system than for a distributed system, but allows

balanced processing loads in real time and fail-soft cap-

BOR TY.

The Figure 3.4 shows that a distributed system and a

multiprocessor system are in the same group of multi-

computer systems which are characterised by multiple

instruction stream operating on multiple streams of data

(e.e see, Fig. 880)...°Apart from this,..two. more.-categories

of multiple processor system need defining. These are as

tol tows:

1. An array processor is one in which multiple

streams of data are treated simultaneously by processing

elements in response to signals from a control unit,

decoding a single instruction stream. The only

62

qualification that distinguishes an array processor from a

multiprocessor is that the control of the number of

processing elements is always associated with one control

unit e.g. see. Fig, 3.7).

One example of an array processor is the ILLIAC IV

system (Feierbach and Stevenson, 1979). The ILLIAC IV has

a single control unit (CU) to direct the activities of

64 processing elements; these processing elements execute

the same instruction in parallel but on different data

fetched from their local memories. Information is

exchanged among the processors through a routing network;

processes are logically arranged in a ring but the

implementation allows routes of a distance of eight

processors to take the same time as routes of a distance of

one processor. All processors are required for array

operation; programs are written and compiled for execution

on 64 processors. When a processor fails, the entire

machine is, unavailable until.it is .fixed.,..There is no run-

time error detection; failures are detected by periodic

confidence tests.

The LLLLAC VY architecture: 16 also partially

reconfigurable via software so that each 64-bit processing

element could be partitioned into either two 32-bit or

eight 8-bit processors. The major application areas for

this type of array processors are the many large-scale

scientific problems in mathematics, numerical analysis and —

engineering in which the nature of data to be processed is

Mena t rao et Oram).

63

2. A pipeline processor can be regarded as a form of

functional partitioning of CPU microfunctions i.e. a

multiple instruction stream operating on a single data

stream fetched from memory (e.g. see Fig. 3.6).

The CDC STAR-100 system (named from the STring/ARray

data it is designed to process) is one of the best known

pipelined systems.(Spencer, 1976). The CDC STAR has a

computer network consisting of nine computers which

execute the operating system, handle the files and deal

with the input/output equipment, and the very large

central computer which handles the processing on the string

and array data.

Multiprocessor systems, array processor systems and

pipeline processor systems have been well discussed in the

literature (e.g. Searle and Ferberg, 1975; Thurber and Wald,

1975; Feierbach and Stevenson, 1979). Most of these

systems have a clearly established modular nature in their

architecture. A computer architecture based on LSI modules

allows for a simple software controlled reconfiguration of

interconnections among modules. For example, processor

modules may be switched among several main memory modules,

I/O modules etc. This concept of reconfiguration of

architecture by software is not new; the LSI technology,

however, has enhanced it. The ILLIAC IV (Feierbach and

Stevenson, 1979), C.mmp (Wulf and Beit. 1972), Cm* {Swan

Fuller and Siewiorek, 1977) are some of the examples of

multicomputer system with capabilities of reconfiguration

of architecture.

64

DATA

PROCESSING

UNIT

A
\

CONTROL

UNIT
DATA

A
| INSTRUCTIONS

 MEMORY <

FIGURE 3.5 : SISD PROCESSOR

PROCESSING UNIT

DATA

h h k A A 4 A x x ‘ | j / a

\ \ \ | / f /
‘ \ \ | I ¥ /

ae \ bed iby ZL
xX \ \ l t L

CONTROL

UNIT

h
| INSTRUCTIONS
I
I

MEMORY

DATA

“FIGURE 3.6 : MISD PROCESSOR

65

CONTROL UNIT M<-----»

|
1 I ' |
1 { | |

\ ! |
y Y Y :

PROCESSING PROCESSING: "6". PROCESSING ;
UNIT UNIT UNIT |

|
k |

|
) Y y |

|

MEMOR ec en er -

FIGURE 3.7 : SIMD PROCESSOR

PROCESSING PROCESSING coe PROCESSING

UNIT UNIT UNIT

I K j A
I

1! | |

|

CONTROL CONTROLS eee sas ee CONT ROL

UNIT UNIT UNIT

i K K
{
|
| ,
! | |

MEMORY

FIGURE 3.8 : MIMD PROCESSOR

66

eM

CM

NOTE:- CM=COMMON MEMORY , M=MOMERY , P= PROCESSOR.

FIGURE 3.9

67

~--- M

: MEMORY FORMATIONS

TIGHTLY

COUPLED

LOOSELY

COUPLED

TEAM

APPROACH

A class of new multicomputer system which cannot be

placed under the classification of Figure 3.4 has been

envisaged by Kartashev and Kartashev (1978). This is a new

LSI multicomputer system with dynamic architecture which

allows one to reconfigure via software and in microseconds

all available hardware resources (widths of processors,

memories and I/O units), each time forming in the system

new computers with different sizes. Based upon given cost

criteria, this -system-with dynamic architecture has. been

comparatively evaluated for synchronous, asynchronous and

modular control organisations.

It is not the object. of ‘this chapter to discuss the

details of multiprocessor systems and their complex

operating systems because these research subjects are well ©

treated elsewhere in the literature (e.g. White, 1976) and

basically there are many software problems associated with

operating system design and high-level programming language

design for such systems. As such, the following section

concentrates on the design issues of multi-microprocessor /

microcomputer systems or distributed systems.

58.4.2 Problems. of destgning wtth.multt-mtcrocomputer system

As outlined in Figure 3.4, one of the main features of

a multi-microcomputer system is a lack of an operating

system and the static nature of allocation of tasks among a

number of processors. This means that a system designer has

to use low-cost microprocessors to design a multi-micro-

processor system which is oriented towards an application

such that the application problem is carefully subdivided

68

for parallel processing or concurrent execution. .The main

advantage of such a subdivided application problem is

modular software development. However, the design of such

a distributed system poses several interesting problems and

these are discussed subsequently.

6.4.2.1. SGetem anenttecture: The system.architecture

differs from a processor architecture and is usually

influenced by application requirements. The following

factors govern the system architecture:

1. Control and management. of resources: The

resources, whether hardware or software, which are

distributed among various processing elements, should be

efficiently used. If a resource is made common or is

shared, then due consideration must be given to resolve

contlicts-tor ats. use.

2. Load balancing and reliability: The nature of the

application determines as to how the processing could be

balanced among various processing elements, This require-

ment may arise due to failure of any processing element,

The reliability specification determines whether the system

component failure is tolerable and, if so, how it degrades

the overall system performance.

3.4.2.2 Communteatron, and control... This is an

essential feature of a distributed system and the quality

of performance of the entire system depends on communic-—

ation and control of information and the complexity of

protocol used.for itv The factors: to be: considered are;

69

1. Interconnection of processing elements (e.g. see

Pie, 3.10).. The: chetee of Interconnection depends upon

the nature of applicacion, flexibility. reliability, cost

and complexity of control. A combination of various net-

works in Figure 3.10 is also possible.

2. Inter-process communication: The flow of control

and data information between various processes processed

in processing elements can be achieved by numerous commun-

ication protocols. These may be based on the following:

A. Serial communication using UARTs, Modems etc.

B. Parallel communication:

(a) port to port transfer using polling

techniques

(db) port to: port.transier. using interrupt

techniques

(c) DMA transfer

(d) transfer using buffer memory.

C. Synchronous/asynchronous communication.

So) Tntormation transtér rates /capacity.. «The .transfer

rate and capacity of a channel determines the number of

busses required and their bandwidths.

4. Message handling: If the communication is based

on messages between various modules, then the following

considerations are important:

A. Message format should include information

about source, destination, priority and error

checking information.

70

FIGURE 3.10 : INTERCONNECTION

NETWORKS

7]

BUS

STAR

RING

HIERARCHY

NOTE:-

P=PROCESSOR

B. Length of message: It could be short or long

or ot a fixed: leneth.

Frequency of messages.

Brror probability.

Acknowledgement delays.

By

eles

a
S
)

Channel transmission rate.

5. System response time requirements: Normally

several modules use the same data channel and hence

sufficient data transfer rates should be maintained while

meeting timing and bus utilisation constraints, and

reduced queue lengths. Whenever the source generation

rate is low, techniques of buffering and multiplexing may

be used.

3.4.2.3 Distributed. processing: Along with the static

distribution of an application task implemented into

various processors as individual subtasks, there exists

interactions between them. Efficient handling of such

interactions between modules depends on the design of the

system architecture and the communication and control

aspects of distributed processing. In addition, although

the distribution of subtasks into processors is static, the

actual processing and utilisation of these subtasks may be

of a dynamic nature. For these reasons, the following

elements of distributed processing need attention;

1, Pask allocation; :This.consistsa of specifying

explicitly, the disjoint. tasks and their interactions

associated with a given problem. This may be possible only

f2

for well-defined application areas where the requirements

are known in advance. Another method is to determine the

sets of individual tasks and allocate them in the local

memories of the individual processors.

2. Fail-safe capability: One of the motivations for

a distributed system is to provide a fail-safe system.

Therefore, distributed processing needs to incorporate a

detection mechanism for failures in the system and to

isolate them so that the errors will not be propagated

throughout the entire system. This feature is very useful

for maintaining the system.

3. Data association and synchronisation: In many

real-time, time-critical applications, the data to be

processed in various processors needs to keep bmacks Or ts

source, when it was generated and how far and in which

processor it has been processed so as to make further

decisions for processing. it. or discarding it. This is

clearly a data association problem which depends on

synchronisation at various stages of distributed process-

ing.

4. Resource allocation:. Just as task allocation,

software control of hardware resource (e.g. memory, data

bus etc.) allocation and deallocation is another important

task. Since there is no central scheduler in a distributed

system, sufficient intelligence should be provided at

various processors so that they can self-schedule and

handle resource allocation. This is achieved by providing

{3

updated strategic information about the system status,

thereby allowing a particular processor to decide upon the

allocation of a resource for a given request at any given

time.

Sl 4c 2 4. 00str¢rpuLea daca pace. Ut ws a very common

requirement for a distributed system to have data distrib-

uted among various processing units as well as a common

data base which bears a functional relationship between

various processes residing at various mouldes of the

distributed system. This requirement is more prominent if

the system as a whole is working on a single overall

application problem. However, the structure of a data base,

whether distributed or common, depends on the application

at hand and the following points are important in this

respect:

1. Memory partitioning: The size of memory for data

and program should be determined carefully for each

processing module, allowing for expansion if necessary.

This basically depends on the application and the access

time requirements.

2. Nature of data: The data base may be static or

dynamic in. nature, A. Statice condition, reters to data

segments or files that are not modified, while data which

gets modified and utilised either externally or internally

during discrete processing steps can be considered as

dynamic.

74

3. Data access time and throughput: For certain real

time applications, the data access time may be very critical

and hence a careful memory system design is needed to

satisfy the system throughput requirements. Holland (1980)

has described three ways of improving the system throughput

by separating the data in, data out and memory address

busses of the memory system. These are (a) address anticip-

ation, (b) pipelining, and (c) cache memory.

4. Access conflicts and deadlocks: When a data base

is shared between various processing elements, there may

exist conflicts in accessing certain data items and simul-

taneous access may not be permitted. Such conflicts should

be considered in conjunction with the allowable delays,

priorities for access and the cost associated with the

duplication of memory system hardware. Hirose a access

conflicts and/or the unavailability of critical data items

or control information can lead to a deadlock situation.

Hence deadlock prevention is important and provision must

be made to detect and backup in the case of a possible

deadlock.

6.4.2.5 System reltabtlity: avatlabtltty and surviv-

ability: It #8 wery difficult to discuss quantitatively

concept of reliability, availability and survivability of

distributed systems because basically these systems are

application-oriented and faults leading to system break-

down are, in general, intermittent in nature. However,

these issues are very important if reliable system perform-

ance is required, which is generally the case. For this

75

reason, it is desirable to implement error detection and

recovery techniques within the system. If a detected error

fails to recover, then the system survival depends on the

operation of the critical processing modules and isolation

of the failed module. In such cases, it is necessary to

provide sufficient redundant information about the system

to be able to recover even after the total failure of some

subsystem. If the cost constraints allow, extra redundant

hardware may also be used to backup the system to improve

reliability.

5.4.2.6 System development and testing; When a

distributed system has been carefully designed, based upon

the considerations outlined above, the development and

testing of such a system can be a major problem. The

design issues mentioned earlier in Section 3.2.1, as applied

to the development of a system incorporating a single

microprocessor, are multiplied by the complexity of the

number of such systems, their interrelationship and inter-

connections which make up a single multi-microprocessor /

microcomputer system. The ease of development and testing

of such a system depends upon the fine description of the

détails: of the: lowest level of lanstace notation for system

architecture, hardware and software, and their integration.

The development of a single processing element or a

module which forms a subsystem of a distributed system can

be performed partially using design techniques outlined in

Section 3.2.1. However, the functional contribution of such

a subsystem towards the entire system is very difficult to

76

test because 1t-canionly be" tested if.the rest of the

system is present. That is why the integration of various

subsystem modules, developed and partially tested individ-

ually needs carefully programmed test procedures. This need

also arises due to the absence of a general purpose system

which can simulate a multi-microprocessor system environment

for real-time applications. The only way around this

problem is to develop and build a desired multi-micro-

processor system by a step-by-step approach. In this

aperenen: partially tested developed subsystem modules are

integrated one by one and testing is carried out with

modular test programs or built-in test procedures together

with externally generated signals which simulate the real-

time application environment. When such a distributed

system is developed and tested successfully, then the

simulated environment can be replaced by the actual real-

time application.

joe sCONCEUSBONS

This chapter demonstrates that a trend towards system-

atic design of multiple processor systems is developing.

The classification issues. for such systems are vague

because of their multi-dimensional attributes and complex-

ity and lack of acceptable common terminology. However, an

attempt to classify these systems, based upon easily

identifiable characteristics, have been made.

The problems of designing with microprocessor and

multi-microprocessor systems suggest that numerous design

if

issues need utmost attention even prior to undertaking a

microprocessor-based project. In particular, integrating

various modules of distributed systems can be a major

problem. The distinction between a distributed system and

a multiprocessor system, based upon the operating system,

is very weak because it is perfectly feasible to intermix

some powerful features of an operating system with the

flexibility and variety of characteristics offered by

distributed systems. For example, it may be possible to

build modular systems which include such features as

dynamic taskeallocation, (1.e. reconfisgurability) to suit a

variety of applications. However, this in itself is a

research area.

78

CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED

COMPUTING SYSTEM

4.1 INTRODUCTION

Distributed computing systems are still at the fore-

front of their evolutionary process. This evolution is

taking place at architectural design level, interprocess

communication design level, intercomputer communication

design level and application level. Consequently, there

are many and varied definitions and taxonomies of distrib-

uted computing systems (Jensen, Thurber and Schneider,

1979). However, these systems in general refer to the use

of multiple, quasi-independent processing modules whose

actions are co-ordinated to accomplish a large task or to

implement a large system. In general, a designer of these

systems is concerned with the following agenda:

1. Distribution of computing power both in hardware

and software.

2. Distriburion of=information processing in the ,form

of top-down distribution of tasks and bottom-up co-ordin-

abion of tasks:

32, Distribution, of..datea .«-This has two scatezories:

(a) data generated as an output from a distributed task, and

(b) data required as an input to a distributed task.

A meaningful implementation of the above is usually

associated with a specific application that characterises a

distributed computing system.

79

The emphasis of this chapter is on issues, regarding

the interfacing of a distributed computing system to a

large-scale real-time complex system. A dual port memory

utilisation is reviewed on this background, and a realis-

ation of a hypothetical application is. considered.

4.2 REAL-TIME DISTRIBUTED COMPUTING SYSTEM

Figure 4.1 shows our description of a distributed

computing system. The system is employed to serve the

needs of a large-scale complex real-time system for its

information processing. It is assumed that the large-scale

system already exists. This assumption is reasonable with

most practical systems. For example, one can think of a

large chemical processing plant, the throughput and perform-

ance of which needs improvement. A distributed computing

system can be a cost-effective solution for such a problem.

In the Figure, P1, P2, P3 etc. are microcomputers with

normal attributes of a conventional computer system. This

facilitates a desired task-oriented program development

environment for any processor to be accomplished independ-

ently under Phase I. The processors" interconnection inter-

face and their physical interconnection system bears a

close relationship which is exclusive to the processors

only. This relationship can be made adaptable for a variety

of microcomputer networks and communication protocols that

link the processors for the co-ordination of their individ-

ual .funetional tasks: *-A-funetional..task. may, involve

numerous interactions of a processor with the large-scale

real-time system or it can be a task of micro-co-ordination

80

PHASE II
PERFORMANCE EVALUATION

AND MONITORING
PHASE I

APPLICATION PROGRAM

DE VELOPMENT

—
—

——
|

[TF p3

 fp} py PS bal

fh ty
INTERCONNECTION

INTERFACE

PHYSICAL
INTERCONNECTION

SYSTEM

LARGE SCALE REAL TIME

COMPLEX SYSTEM

FIGURE 4.1: Description of a Distributed Computing System

81

of other neighbouring tasks. An overall collective co-ordin-

ation of tasks executed by the processors is thus dispersed

amongst the processors, each one being a contributor to it

to some extent.

A separation of Phase II and I is quite arbitrary in

the system shown. The performance evaluation and monitoring

of the processors' behaviour and the large-scale systems'

behaviour in Phase II occurs as a result of successive

developments in Phase I. A gradual hand-over from a then

existing control scheme of the large-scale real-time system

to a new implementation of a distributed computing system is

thus possible with the following major advantages:

1. A modular development of the system, both at soft-

ware and hardware level.

2. <A better insight into the system down to a smallest

subtask level.

3. A reduction in down time of the large-scale system.

4. Improved maintainability due to improved failure

detection.

5. Improved performance, throughput and reliability.

4.38 MODEL OF A PROCESSING ELEMENT

A major element of a distributed computing system is a

processor. A task programmed into the memory of this

processor accounts for its information processing capabil-

ities. A processing task is performed on the input

82

information to produce the resultant output information. A

detailed description of a model of a processing element for

a distributed computing system is shown in Figure 4.2.

One of the main features of this model is that a

processor is assigned a task which is composed of a "process"

and “output information data". The process may contain

several subtasks. The task of a processor is activated by

one or a number of sets of input information data which is

contained in the "Information Accumulator Node™ (JAN). The

output information data from the processor is deposited in

the "Information Distributer Node" (IDN). The character-

istics of IAN and IDN are such that a processor avoids

direct interference with another processor's task and vice

versa. his facilitates the identification of asprocessor!s

communication requirements with another processor or

processors.

Another interesting feature of the model is that a

processor receives its input information data without any

forced interruption’ of its, task.execution:. Similarly,.a

processor generates its output information data which is

made available to another processor to read it whenever it

is. free to: doso.:. Tits, anput intormation data received by

a processor is transformed into output information data by

a task. The output information data generated in this way

can flow through four different kinds of information links.

These are:

1. Feedback Information Link; As the name suggests, —

the. output. data is.fed back as .input..to.the same task. ““For

83

TASK OCCUPIED —7.0 RUN , In

DEFAULT
INFORMATION | A SINGLE PROCESSOR

INPUT
DATA

OUTPUT MONITOR

ENTER IAN PROCRESS INFORMATION OR EXIT

DATA

INITIAL

INFORMATION

INPUT DATA

 USE OF OUrPUT

FEEDBACK
3 INFORMATION DATA

FIGURE 4.2: A Model of a Processing INFORMATION

Element of a Distributed LINK FOR THE SAME TASK
Computing System

v8

INTERACTION OF

INTERACTIVE OUTPUT INFORMATION INFORMATION

FEEDBACK DATA WITH OUTSIDE ACCUMULATOR

INFORMATION LINK | REAL TIME SYSTEM NODE

USE OF OUTPUT

TO ANOTHER TASK Tan Ye CASCADE INFORMATION | ni Sa
PROCESSOR LINK ae DISTRIBUTOR

FOR ANOTHER TASK NODE

1 AN

TO OTHER TASK USE OF OUTPUT
PROCESSORS INFORMATION Renee be se INFORMATION

FOR OTHER TASKS
IAN

example, recursive type algorithms run in a monoprocessor

fall under this category.

2. Interactive Feedback Information Link: In this

type of link;-the output: data interacts’ with its outside

world which it is’ controlling, and the’ processor reacts to

the data presented to it by its controlling environment.

Direct Digital Control (DDC) of a process is a good example

toe mlinstrate this.

Boe) Cascade Information Link: > Usinegthis@link, it may,

be possible to cascade a number of task processors. This

Situation may arise if a single processor fails to accomm-

odate a sintie-larve task oer, «for example. 1t-may, be: that’a

processor after completing its task wishes to trigger

another task processor in cascade with it.

4. Breadcast Information Link: . This: link. is basically

an extension of the cascade link in which output inform-

ation data is made available simultaneously to a number of

other task processors. This link is very useful if a number

of task processors execute identical tasks. This link may

also be useful in synchronising different. task processors.

A physical implementation of IDN and IAN is shown in

Figure 4.3 and Figure 4.4 respectively. Each module of IDN

or IAN is made from dual port scratchpad buffer memory. The

roles. of, IDN and IAN are identical. In.both of then,

information data is stored from one end and it is made

available at the other end. However, the way in which the

modules are grouped and connected makes them either IAN or

85

DUAL PORT SCRATCHPAD
BUFFER MOMERY

* TASK -2
1DN12

TASK=1 € PROCESSOR

PROCESSOR

“. TASK~3
IDN 13

>| PROCESSOR

TASK-4
IDN 14

cE PROCESSOR
FIGURE 4.3: Physical Implementation of the Information Distribution Node

DUAL PORT SCRATCHPAD
BUFFER MEMORY

TASK-1 >
PROCESSOR ~ TAN 61 Se

PROCESSOR

TASK-2 2

PROCESSOR IAN 62 i

TASK-3 > a
PROCESSOR ; .

TASK>4
PROCESSOR f aoe :

TASK-5 <
PROCESSOR Gl

FIGURE 4,4: Physical Implementation of the Information
Accumulator Node

86

IDN. For example, in Figure 4.3 IDNi3 represents that the

Task 1 processor distributes its output information data to

the: Task 3 processor. sSimiler ly, tn Bigure 4:4 1AN74

represents that the Task 7 processor accumulates its input

information data from the Task 4 processor and so on.

Figure 4.5 shows an example of two cross-coupled processors

Pile and’ P22.

4.4 INFORMATION AND TASK HIERARCHY

A task processor may contain one or more information

links. The feedback and interactive feedback information

links are mainly associated with a monoprocessor, while

cascade and broadcast information links account strongly for

a distributed computing system. However, the smaller the

number of information links, then the more simple the task

becomes.

In order to derive some criteria for quantifying a

complex task, one can look at the information hierarchy used

in information theory. *® This d@neludes;

1. Symbolic Information: At this level, messages are

transmitted (and data is stored) as a collection of symbols;

these symbols form basic building blocks from which all

higher forms. of. information hierarchy are developed.

24, Syntatic, Intormation:. ‘Thiss1s.contained: in the

rules limiting the way in which various symbols can be

combined.

3... Semantic Information: This’ is contained in-the

meaning which the recipient can perceive in a message.

87

Sees Se ee ee ee a ee ee ae ee ames er ree: ee

| TASK 1 PROCESSOR P14 | TASK 2 PROCESSOR P2
! , !

|

 —— ROM ROM Sa !
) K es ! co v |

{ 1/0 GP wu | coe Us |
| INTERFACES l INTERFACES |

i

{ | ! 1

I 2 RAM I : RAM a
l 3 5

| : | os
| i
I I | !
Basal ee as: as Pp ee ee Sp Pie te eee ge Ce ae | Btn a gan tae oe ype paeniay oe LE head eee cata Se el Re a ee ee }

t ADDRESS a
: ber fork 2
E CDATA .

©
CO

ae? IDN 1X e Ey IAN 12 > IAN 2X C4 IDN 2X |

Cs K = C => ED =) ae

Es IDN 1X e - IAN 1X qj ps ee IAN 21 C = IDN 2X e]

Cg eer ea = s a) mee:
I it

FIGURE 4.5: An Example of two cross coupled Task Processors Pl and P2

4. Pragmatic Information:This is concerned with the

practical use to which the recipient may make of a message.

5. ‘Aesthetic information: This describes the ability

of the message to affect the senses and decisions of the

recipient.

A processing element of a distributed computing system

bears an analogous relationship to the above information

hierarchy. This is shown in Table 4.1. In a distributed

computing environment, we are mainly concerned with the

aesthetic level of task hierarchy where a task performed by

one processing element affects the decision of another or

several other processing elements. In other words, this is

concerned with the micro-co-ordination function amongst the

processing elements. This micro-co-ordination function is

responsible for minor decision-making based upon the out-

come from different neighbouring task processors and

information filtering. Information filtering relates to

the form in which a distributed computing system presents

the net quantified information about its controlling

environment to a human operator to perceive the perform-

ance of the controlled environment. This task of present-

ing information by a distributed computing system to human

perception represents the highest level in the information

hierarchy.

4.5 CONTROL SYSTEM PHILOSOPHY

The form in which a model of a processing element of a

distributed computing system is presented also reminds us

89

06

A PROCESSING ELEMENT

INFORMATION

HIERARCHY

SOFTWARE HARDWARE

1. Symbolic YOrZ ands li Symbols Logic gates, registers, counters,

2. Syntatetic

3. Semantic

4. Pragmatic

flipflops, decoders etc.

Hexadecimal, octal numbers CPU, ROM, RAM etc.

Instruction set as implied to Computer architecture

be perceived by a computer

Programming of a task or Interfacing a computer to a

an algorithm real outside world

Integrated
 5. Aesthetic System

Ability of one integrated system to interact

with another integrated system

TABLE 4,1: Analogy of information hierarchy to a processing element

of "signal flow diagrams" and "block diagrams" from

classical control system theory. The terms "feedback" and

"cascade" have been chosen deliberately to bring about a

philosophical analogy of a distributed computing system to

classical control systems theory.

In a distributed computing system we are concerned

with informatron: flow. diagrams!) eimitar to.signal* flow

diacrams*.in=a classical: control system. A’ time».constant’,

for example, of a processor: to run its task relates to.a

delay in time after which output information data appears

when input information data is applied. This delay may not

be of a fixed duration; usually this will have maximum and

minimum limits on it depending on the volume, rate and

nature of input information data. This naturally leads to

stability consideration for task processors to be deter-

mined. For example, a stack overflow in task processor

will be clearly an unstable situation. A deadlock situ-

ation between two task processors is another unstable

condition and so on.

In order to identify such unstable conditions, inform-

ation flow in a distributed computing system should be

"observable" and consequently "controllable". This feature

relates to the fact that each task processor should be

examinable for its task-handling and information-handling

attributes. Another possible outcome of this examination

TS the Wdentifacation, ofa. Meritical path” atone which

critical tasks are processed, This is analogous to a PERT

analysis in system design. This critical. path can be very

important with regard to the "micro-co-ordination" or

"decision-making"ability of a task processor.

¥ |

4.6 DUAL PORT MEMORY UTILISATION

A dual port scratchpad memory allows a data item to be

stored (written) into a location from one port and allows

it to be retrieved (read) from the location at’ another

port. These read and write operations can be performed

simultaneously. This type of memory acts as a buffer

storage medium for the communicating task processors and

serves to isolate the internal data, control and address

bus systems of these processors. Input/output information

data flow occurs through this medium denoted by IAN and

[DN in the model.

There are two ways in which the dual port scratchpad

memory may be connected to a task processor. If the

volume of information data flow is small, the processor's

parallel input/output ports may be used. However, this

means that there will be a smaller number of I/O ports

available for connecting other peripherals or interfacing

circuits. Another way is to connect the processor's

internal address and data bus to either the read or write

end of the dual port memory. This allows data storage and

retrieval operations to be the same as RAM. This type of

connection is suitable for a large volume of data transfer.

The size of the dual port scratchpad buffer memory

used in IAN and IDN is a function of the information trans-

fer needed between task processors. There are three kinds

of devices available to build IAN or IDN modules. These

du: Cc.

oa

1. SN74LS670 Med. 16-bit “TTL vepister.files.. “These

files are organised as four words by four bit with on chip

address decoding for separate write and read functions,

thus permitting simultaneous reading from one location and

writing to another. The device is 16 pin DIN packaged. It

requires a combination of two such devices to implement

only four word bytes of storage locations (Deshmukh, 1979).

9.2 AMQ9705 iS o..16 words: by 4: bit’2,..port: RAM... «This

device has two output ports each with separate output con-

trol and separate four-bit latches on each output port.

The device is 28 pin DIN packaged (AMD Data Sheet).

3. MCT0806. isa. dual access: stack with.'32. x 2. memory.,

two address ports, two 9-bit data input/output ports, two

9-bit output registers, flipflops in a*single MECL bipolar

LSI circuit. The device is 48 pin QUIL packaged (Motorola,

LoTO).:

The first two devices are simpler to interface with

most microprocessors while the third has rather special

characteristics. For the purpose of designing systems with

these devices, data sheets are available and so no further

discussion is given here.

The hardware utilisation of a dual-port scratchpad

memory module such as IAN or IDN requires additional soft-

ware protocols for the purpose of information flow between

task processors. An outline of simple protocol primitives

that may be used is shown in Table 4.2. This set of

primitives is derived for two cross-coupled task processors

Pl and P2, as shown in Figure 4.5. Table 4.2 shows what

93

PROTOCOL PRIMITIVE PROTOCOL PRIMITIVE

NO FOR IDN12 = IAN21 FOR IDN21i1 = IAN12

(TASK PROCESSOR 1) (TASK PROCESSOR 2)

1 Stop Read/Start Write Stop Write/Start Read

2 Number of bytes of information a

3 Block program Loading/Finish)
(a) Starting address (2 bytes)) Block Read

(b) Block number)

4 Task number)

(a) Task trigger/End) Task Status
(b) Repetition number

5 Read time information --

6 Data constants --

WL Information set number Set accept information

TABLE 4.2: Information Protocol Primitives

94

information data Task Processor 1 intends to distribute to

Task Processor 2. This information storage is done in

IDNI2 = IAN2I;> ‘The Task Processor’ 2:on the other hand..may

acknowledge its input information data via IDN21 = IAN12.

This coupling of the two processors for their information

exchange is entirely programmable and task-oriented.

4.7, APPLICATIONS

The applications mentioned in this section are hypo-

thetical and intended to show potential areas where our

model of a distributed computing element can be employed.

Two applications are considered:

1. Mathematical Modelling: Modern control philo-

sophy suggests that a real-time large-scale complex system

may be analysed and controlled by utilising its mathemat-

ical model which resides within a computer system. Any

interactions between the subsystems of such a large-scale

real-time system can be accounted for by implementing

these subsystems within our model of a processing element

of the distributed computing system. The mathematical

model performance and the actual system's performance can

then be compared at a subsystem level. Additionally,

actual subsystem's parameters can be estimated and con-

sequently its model parameters can be updated for that

particular subsystem. Furthermore, different mathematical

models can be analysed and tested.

2. Simultaneous Serviceing of Interrupts: In .seme

situations with ‘a.real-time system, .it may be difficult to

95

COORDINATING

MAIN TASK

PROCESSOR

MAIN STATIC DYNAMIC

PROGRAM DATA DATA

1

1 }

ROUTINE 1 ROUTINE 2 ROUTINE 3 ROUTINE 4

INTERRUPT INTERRUPT INTERRUPT INTERRUPT

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

. ie ie fe

FIGURE 4.6: Simultaneous Servicing of Interrupts

96

determine the priority structure of a number of external

as well as software interrupts. In these circumstances,

different interrupt service routines can be implemented in

a processing element of a distributed computing system and

the overall co-ordination of these interrupt service

processors can be performed by another processor whose

task will be to run the main program and take care of any

static and dynamic data movements to and from the inter-

rupt service processors via IDNs and IANs. This is shown

in Figure. 4.6. In the Figure, routines 1 and 3 depend on

static data from the main task processor whereas routines 2

and 4 depend on dynamic data. Hence, these two routines

interact with each other as well as with the main program.

The structure of the interrupt processors depends upon the

actual application and how it relates to the main program

in the co-ordinating processor.

4.8 CONGLUSIONS

A new model of a processing element within a distrib-

uted computing system is presented. The cost-effectiveness

of this model needs to be evaluated. The model provides

means by which new possibilities of communication protocols

may be implemented which are task-oriented. The model also

facilitates a clear partitioning of subtasks and a defin-

ition of their interactions.

27

CHAPTER 5 - A HIERARCHICALLY STRUCTURED

' MULTI-MICROPROCESSOR SYSTEM

O.¢ LY TNTRODUCT ION

As computers and processors have become smaller,

cheaper and more reliable, it is becoming more common to

design systems with more than one actual processor. A

large variety of computer interconnection structures has

been proposed covering the range from tightly to loosely

coupled networks and multiprocessors to array processors

(Anderson and Jensen, 1975; Enslow, 1974). The concept of

distributed. processing had its origins. in the data process-

ing field before the start of the microprocessor revolution.

Enslow (1978), in attemptine to clarify the concept of

distributed data processing, claims that at least four

physical components of a system might be distributed:

processing logic, data, the processing itself and the con-

trol of the operation (e.g. the operating system). Research

In“ thes sarea iS cCOnvuimuune >

The advent of microprocessors has helped to enlarge

the concept of distributed processing beyond the confines

of data processing applications. Many types of system have

been described, ranging from a series of unconnected com-

puters each performing Separate tasks through to a single

computer system within which a number of computing elements

are connected. Enslow (1976) has discussed systems class-

ified as multiprocessors which contain two or more central

processors of comparable capability. These processors

98

share access to a common memory, common input/output

channels and common control devices; the entire system is

controlled by a Single integrated operating system.

Microprocessor technology, however, is often best

employed in systems which are constructed of processing

units each of which is independent in itself but which

communicates with some or all of a number of other process-

ing units in the overall system. Each processing unit may

have a number of dedicated tasks in normal operation; there

is, however, no integrated operating system, and the con-

trol of the system may be distributed among the individual

units.

This chapter describes such a system in which the units

are connected in.a hierarchical structure. The basic pro-

cessing module from which the system is configured is known

as a "Hierarchical Microprocessor System Unit" (HMSU). The

system is designed for the control of a pilot-scale 8-zone

travelling-load furnace, but is sufficiently flexible to

have a wide variety of process control applications.

The HMSU structure consists of a number of Fairchild/

Mostek F8 family chips, a common block of semiconductor

memory and a pair of Intermediate Scratchpad Memory Inter-

face. The configuration is designed so that a single HMSU

can be used either independently or as a building-block in

an expandable hierarchical environment. In either case, it

will normally run dedicated programs which will be held in

ROMs.

Similar usescof microcomputers have been described by

other workers. Harris and Smith (1977) have analysed a

Oo

number of multiprocessor architectures and have discussed

a multi-microprocessor architecture having a hierarchical

structure. Steinhoff (1976) concludes that the comput-

ational potential of minicomputers and a set of bipolar

microprocessors can be harnessed for solving some large

scientific problems that cannot otherwise be solved within

normal, economic and pradtica® constraints. It is not

necessary for all the processors within one system to be

of the same type; for example, Pathak (1977) describes a

configuration of one Intel 8080 and three SC/MP processors.

Hughes (1976) incorporates TI 9900 series microprocessors

and 990 computers for multiprocessor navigation systems.

Tanaka (1976) introduces a new type of hierarchical multi-

microprocessor system that includes nine microprocessors

operating in a system under the overall control of a host

ECLIPSE 8/200 computer.

The objective in developing the HMSU is to make use of

the numerous advantages offered by distributed processing

in establishing a hardware basis for the implementation of

optimal control schemes for large-scale system problems.

o.2. HMSUY PRR OSOPEY,

The hardware configuration of the HMSU is designed on

the following basis. The unit. consists essentially of a

number of individual processors and memory blocks. Each

processor has its own private memory, but the bulk of the

memory is common to all processors. It is the task of one

particular processor, designated the Master Processor, to

100

control access by any other processor to the common memory.

Apart. from this function, each individual processor acts

independently, performing designated control functions via

its own I/O channels. The processors operate asynchronous-—

ly, all inter-processor communication being via the common

memory under control of the Master Processor.

The unit as a whole communicates with the outside

environment via a special buffer known as the Intermediate

Scratchpad Memory Interface (ISMI). The outside environ-

ment may be either another HMSU or a larger host computer,

or indeed any other processing equipment as required by a

particular application.

5.6 INFORMATION FLOW

In designing multi-microprocessor systems such as HMSU,

it is important to consider the basic principles ‘of inform-

ation flow. Microprocessors. are intelligent devices capable

ef acting-as a, source -of.as..assink. of information.

Figure 5.1 shows an example of three units acting as sources

and: sinks’ of. information /anda’ the’ arrows’ indicate.alY the

possible ways of: information flow that may occur.” Lf these

three units are to communicate sensibly with each other,

then at any one time one unit must be transmitting inform-

ation and: the other two. receiving IU.) at will. greatly help

the synchronisation problem if the data is transmitted by

the source to a temporary intermediate store, from which it

may be received by the sink or sinks when they are ready to

“0°ao. This-aveids.the difficulty that ‘can. oecur with

"handshake" systems when two processors may each be waiting

for the sother :

101

oe

FIGURE 5,1 : Information Flow

The Intermediate Scratchpad Memory Interface (ISMI)

that forms such a temporary store for the HMSU allows two

processors to use it to deposit or retrieve data or control

information. Asynchronous reading or writing of data can

be performed by the two processors simultaneously. In the

case of dedicated applications, the form of interprocessor

information flow is completely known and some simple

synchronisation schemes may be adequate. In our case,

where a pair of ISMIs is employed as intermediate inform-

ation storage media, simple software controlled synchronis-—

ation primitives for. block ‘data transfer can be utilised.

For example, in Figure 5.2 two processors, Pl and P2, are

102

PROCESSOR -1

 { PORT] [PORT] [PORT]

WRITE STROBE ——+»

READ STROBE

LI

EB 3
Ewe [az Ae es

WRITE {| LI READ
ADDRESS = Write READ e ADDRESS

ISMI ISMI

ne) ag READ WRITE
ADDRESS TI ae ADDRESS

A wr ZA r 4x
L }
|

LI

bs yy @t— WRITE STROBE

FL eae 4 Reap steose
[Port] | Port] I PORT |

PROCESSOR -2

FIGURE 5.2 ; Bidirectional Communication between processors via a
pair of ISMIs

103

1igked by & paix ot POMIs.. Avatid’ A; are: the lecatzens” in

this pair which are periodically monitored by processors

P2 and Pl respectively. These locations can be used as

flags or codes fom, various sets of ‘block data... .The foblow-—

ing Table 5.1 shows how A and Ai are used as flags for a

block data transfer between the two processors Pl and P2.

The only constraint on the software programmer is in the

assignment of individual ISMI locations to particular items

ot data. ti the functioning ofa task.residing. with P2

depends upon the data generated by Pl, deadlock can occur.

However, in a dedicated system such as a HMSU, where

applications can be either homogeneous or heterogeneous

(Siewiorek, 1975), deadlock problems are certainly anticip-

ated by the very nature of hierarchy. The frequency of

deadlocks in a multi-microprocessor structure is an

important question open to experimentation.

The*volumesof data flow in the two directions. need

not, of course, be the same. This is a necessary feature

for use in a hierarchical structure, where one processor

al bigh. level may beé- receiving a.preat deal of ‘data: from’ a

lower-level processor but sending to it only a few command

Signals at frequent intervals.

6.4 - SRUCTURE ORAITHE =f SME

The Intermediate Scratchpad Memory Interface is built

from SN74LS670 MSI 16-bit TTL register files, These files

are organised as four 4-bit words: on-chip address decod-

ing is provided separately for reading and writing, thus

permitting simultaneous reading from one location and

104

SO
L

A MONITORED BY P2 aA’ MONITORED BY Pl COMMENTS

mi

Pl

Pl

P2

P2

P2

P2

Pl

Pi

starts writing for P2 .. P2

completes writing .°, P2 can

starts reading.’, Pi should

completes reading.”. Pi can

starts writing for Pll) Pl

completes writing .°, Pl can

starts reading ,, P2 should

completes reading ,.°, P2 can

should not read

read

not write

write

should not read

read

not write

write

 X signifies don't care condition

TABLE 5.1 : Communication protocol for processors of FIGURE 5.2

writing to another. The SN74LS670 components can be organ-

ised into a memory of up to 512 words of any number of

multiples of 4=bits. The fast access time (typically

20 ns) and tri-state output makes this type of component

ideal for use in intermediate memories. The organisation

of an ISMI of 256 x 8-—bit words. is Shown in, Figure 5.3.

The scratchpad of this size requires 128 chips of

SN74LS670, ten multiplexers and four driver chips. For

communication in both directions between two processors, a

pair of ISMIs is required.

Several reasons can be numerated for the choice of an

ISMI to couple two processors. Although the use of DMA

channels can be envisaged for communication between two

processors, we find that DMA transfer requires extra

complex interface circuitry with synchronisation logic.

‘Compared to this, the use of ISMI avoids the need for such

a complex interface and also has the advantage of asynchron-

ous communication. The use of ISMI also frees the DMA

channels of the processors to be connected to peripheral

doves for which they are more suitable. The use of ISMI

gives much more flexibility especially when designing multi-

microprocessor systems.

5.5 COMMON MEMORY

A Common Memory (CM) providing a data store which is

accessible by several processors at the same hierarchical

level is an important feature of the HMSU. Because the

processors are operating asynchronously, it is necessary to

ensure that only one processor attempts to access the

106

 —

-
-
-
y
;
-
-
-
7
=
=

S.
es)

NM
oa)

S
a

ae
|

Sehr

0
4
9
8
1
7

+ —-—

!

|

|
9 | 40 |

| |
j |

=—=--1--- "=

|

——— fe.

34

107

(| |

z
hi wo
&

S
e

lle y
e

iad

AS

OL9S
142,

ar }-——— —

|
ee eee ~-4

-- ---=---1\---

54 53

61

e
G
o

il
eee

ae

Ss

nl e
e

I

os <

s
a
e

.
oe

59

ae te ee ee

READ
DATA

256 x 8 Bit Intermediate Scratchpad and Memory Interface FIGURE 5.3 WRITE WRITE READ
ADDRESS ADDRESS DATA

memory at a time. This is achieved by a master-slave organ-

isation, the master processor having the task of allocating

access tothe CM. to slave processors as required. This type

of organisation is quite common; see, for example, Russo

(1976) and Witten and Jenkins (1978), although other poss-

ible structures have been described (Hnstow, 1976). The

master-slave structure has been chosen for the HMSU because

of the simplicity of both hardware and software required,

and because of its applicability to asymmetric systems in

which the workloads of master and slave processors are

appreciably different.

Figure 5.4 illustrates a master-slave configuration in

which eight. processors are used. In this particular design,

the processors are Fairchild/Mostek F8 chips, chosen

largely because of locally available software. The con-

figuration allows the master processor always to have

access to the CM by setting up its own address code on its

address port. When the master processor decides to grant

access to any of the slave processors, it will output the

address code for the particular slave processor on the

address port ..:This. address code will. dink the:.GPU.READ and

R/W lines of the slave to the CM via a multiplexer. At the

same time, the demultiplexer unit opens the appropriate

buffers to link the internal address and data buses of the

Slave to the external address and data buses’ of the CM.

The demultiplexer unit also sets up an external interrupt

for the slave which will activate its common memory access

program.

108

60
1

P
R
I
V
A
T
E

M
E
M
O
R
Y

P
R
I
V
A
T
E

M
E
M
O
R
Y

P
R
I
V
A
T
E

M
E
M
O
R
Y

P
R
I
V
A
T
E

M
E
M
O
R
Y

MASTER | INT SLAVE LJNT

F8-0 F8-1

EXTERNAL ADDRESS

TIONAL DATA

°

T4LS251

CPU READ

T4\.S25$

COMMON MEMORY

°
74LS138

FIGURE 5.4 ; Master Slave Configuration for Common Memory

At the end of the CM access routine, the slave process-

OY Will sienal«to thesmaster: via the masterts external

interrupt line, As “an. addi.pional- check): it“1s.possible Tox

the slave to send an adentification codé to one of the

Hosters -./0. ports. Wiis will enable’ the mastem.t6 reedg-

nise which slave has finished a CM data transfer, which may

be useful if there is. a queue’ of CM access requests.” This

additional check is not necessary to the system, however.

The HMSU architecture is arranged so that all CM

access requests are generated by the master processor; the

slaves do not need to generate such requests themselves.

This avoids the problem of concatenation. When the master

does hot: need to.ask: for any slave to transfer. data,to or

from the CM, it can treat the CM as its own private memory,

transferring ‘data in and out..at. any such time.

5.6 AMSU ARCHITECTURE

The hardware of the HMSU is very simple, It consists

of a master. processor, a pair of ISMIs. serving as a bi-

directional data transfer interface, a common memory as

described above, and a number of slave processors. The

organisation of the HMSU is shown in Figure 5.5.

The master processor performs the following sytem

functions:

1. Receiving of data from. the supremal level host

computer via the ISMI and transfer of that data to the

Common Memory.

110

EL
E

FIGURE 5.5 : Hierarchical Microprocessor

System Unit (HMSU)

 F& PROCESSOR

fe a
| |

|
1

| ADDRESS €Pu READ COMMON j

fetes | om Bs | memory. a MEMORY
' EXTERNAL ADDRESS AND ee 2 | ! WRITE READ DATA BUS CONTROL LINES ST]

| bp o| b> er opr an ee ----7 Ff fa a

| 1c . “EXTERNAL ADDRESS BUS pe I : ; ; 4 1! H i i i ya It | — : ro eae 1 | ! x j (UY UT Le see Tilt
os J LJ DATA BUS ee

| PROCESSOR F8 FB FE Fe :

| 0 PRO PRO PRO PRO |
| 1 2 3 7
: MASTER

i 1
I

INT Pe » ¥ $

I I/o db 1/o 4 I/o Ut I/o i 1/0
io ee ee il | |] | | | | | | | | 1 ! 1 i ! i | | 1 | | 1 1 | ! ! | I I 1 1 \ | | i ! | 1 1

2. Generating CM access requests to allow the slave

processors both to receive data from the CM and to transmit

data gathered or generated by each slave to the CM.

3. Transmitting slave-generated data from the CM back

to the supremal computer, again via the ISMI.

In addition to these system tasks, the master process-

or may be assigned some user tasks if the processing load

allows. It is desirable, however, to share the total

processing load as equally as possible between all the

processors, otherwise the overall system performance may

become degraded.

The slave processors perform individual user tasks,

gathering process data and implementing control functions

via their own individual interfaces and I/O ports. The

proposed structure of the HMSU incorporates up to seven

slave processors. However, more than seven slave processors

can be used if desired, or alternatively, more than one HMSU

can be employed. This distributed processing structure

makes the system very flexible and easily expandable.

A further possibility offered by the HMSU architecture

is that the supremal computer may be used to change the

allocation of tasks amongst the slave processors in the

event of a hardware failure, a facility which makes the

system of very high integrity.

def sAMSU STRUCTURE

A variety of structures can be developed using HMSUs.

Since a pair of ISMIs may be used to link any two process-

ors operating asynchronously, we may use this interface to

link two HMSUs together via their master processors, or to

Hal

link a master processor to a particular slave processor

either “within the same: EMSU ‘or.in a different .one. This

gives very great flexibility in the design of multi-

processor structures.

Figures 5.6, 527 and.5.8 -show three different “systems

constructed from HMSUs each of which has a master and

three slave processors. Figure 5.6 shows a hierarchical

structure using three HMSUs and a supremal host computer.

Figure 5.7 has four HMSUs in a star formation around the

host computer and Figure 5.8 shows five HMSUs and a host

computer in a ring formation. There are endless permut-—

ations on these three structures: the decision as to what

type of structure to use is dependent entirely on the

application.

528% CONCLUSIONS

A hierarchical organisation of microprocessors, known

as the HMSU, has been described. This sytem may be con-

structed at low cost from standard LSI components. The use

of private memories for each processor combined with inter-

mediate memory for interprocess communication avoids the

synchronisation problems often associated with multi-

processor systems and allows great flexibility in designing

large-scale systems based on a number of basic HMSU blocks.

The main disadvantage of the system at present is a

rather high chip count. This would be considerably reduced

if the ISMI were implemented on a single LSI or VLSI chip,

which is technologically, if not economically, possible.

ite

vl

HMSU

=

AO Ss:

COMPUTER

Uf]

COMMON MEMORY ISMI} 1SMI

Bros peo fone 1

it ty
COMMON MEMORY on ISM] ISMI | ISM] COMMON MEMORY

PRO-3 | PRO-2 | PRO-1 ae veno-g | PRO-1 | PRO-2 | PRO-3

ricure 5.6 : HIERARCHICAL STRUCTURE

FIGURE 5.7 : STAR STRUCTURE

HOST

COMPUTER

HMSU

FIGURE 5.8 : RING STRUCTURE

ile

oO MASTER
“ Q oes PRO-! PRO -2

eS \2 ” = ISMI | ISMI | COMMON MEMORY | >
» | # - a1 8
teas t

<< {
Rel

rena

Z5| 3 HOST G|fo
me = | oo :

w ° m g - COMPUTER = 5 a
m—

re

7 es
ne fc t a ee

a : G| &
=< COMMON MEMORY | ISMI| ISMI = —Y ae

So N

MASTER oe . 4
a. PRO-2 | PRO-1 bao eG S

With the present trends of new technologies, increas-

ing reliability and falling costs, system integrity may be

enhanced. by the use of multiple hardware, and the HMSU is

fully capable of providing a high integrity system once the

necessary diagnostic software has been developed. A

further advantage of the HMSU structure is that it allows

modular development of software for each individual pro-

cessor within the strueture. « The “HMSU: structure “is

specially useful for large-scale systems where a large

system problem can be subdivided into smaller subsystem

problems. Individual processors in the HMSU can be

employed to these smaller subsystem problems and co-ordin-

ation for these problems can be achieved by a host computer.

Other potential applications for HMSU can be homogeneous or

heterogeneous.

There are several further research issues to be pur-

sued such as employing a hardware arbiter for allocating

common memory rather than total access control of common

memory by a master processor, deadlock problems associated

with the hierarchical systems and overall system perform-

ance,

116

CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE

6.1. INGRODUCT RON

The HMSU, as discussed in Chapter 5, was designed in

the first instance.as part ofa: programme of work’ on the

control of an 8-zone travelling load electrical billet

reheating furnace. A travelling load furnace (TLF) con-

structed in the Department of Systems Science of The City

University is basically a.laboratory version of industrial

TLFs designed to carry out computer control experiments

(Catiim, “1972>Sheeng, -1977.).

Various schemes exist which may be used to control the

TLF. Some are simple to implement and require minimal

amounts of information about the properties of the plant,

while some are sophisticated and optimal in performance but

require detailed knowledge of the process and the plant,

its inputs and disturbances. A simplified empirical model

was developed and tested for the heating of slabs of metal

in a multizone TLF (Caffin, 1972), whereas Sheena (1977)

implemented and tested the PID algorithm and the on-line

least square identification and control schemes.

This chapter briefly describes the TLF and discusses

an incremental form of PID control scheme with reference to

the control requirements needed to interface the HMSU to

the TLF. The design details of the electronic interface

and modifications to the existing interface needed for this

purpose are also given.

h7

6.2 FURNACE DESCRIPTION

The TLF consists of a 2.7 metre long tunnel with a

number of separately controlled electrical heaters distrib-

uted along its length and a conveyor carrying blocks of

metal (loads) through it. The furnace is designed to heat

loads to temperatures up to 500°C. The conveyor is driven

by a DC motor. Each ofthe weight heating zones is powered

by two banks of three 1 kw electric fire elements, giving a

total furnace power of 48 kw. The zone lining walls are

made of aluminium reflectors which are air-cooled and the

sections near the heaters (top and bottom surfaces) are

water-cooled. Detailed specification of the furnace and the

interface with the computer may be found in Caffin Glo):

A schematic diagram of the furnace interfaced with the

HMSU and the PDP-11/10 minicomputer is shown in Fasure 6.1).

The hierarchical computer control strategy using HMSU and

the PDP-11/10 minicomputer is explained later in the chapter.

The normal operation of the furnace consists of the loads

travelling through the heating zones and recycling them

after suitable cooling. (A water shower is built outside

the furnace if forced cooling is required.) The positions

of the loads in the furnace are tracked using a set of six

microswitches that are closed by appropriately placed bolts

on the conveyor. The interrupt signal generated by the

closure of microswitches is processed by the computer.

The electric power input to each of the heating

elements in the eight zones or to the speed of the DE movor

is adjustable in small discrete steps from zero power to

118

HEATERS

LOADS Y

Pio t eee tooo | CHEE, orator at:

Il L l i l

oe ae ee ee

a &
MULTIPLEXERS

eal: oie

DC.
MOTOR

[ae a ee Fae FC aes

| : | POWER CONTROLLERS
|
| F 8 |

r| PROCESSOR-0° || PRO RRO [ee eis
| MASTER 1 2 fae

can DECODER

| Lok E AND
TS] LATCH INTERFACE

| 4} ce

l

| | ISMI|| [SMI COMMON MEMORY |
| |
i. aS |

PDP 11/10

Ey

FIGURE 6.1

minicomputer

Hg

: The TLF interfaced with the BMSU and the PDP-11/10

full power or zero speed to maximum speed using silicon

eontrolééed rectifier power units... The: control signals. to

these nine power units are generated by the computer and

transmitted .via DAC units.

The temperatures of the loads are measured using

Chromal Alumel, stainless steel sheathed and magnesia

insulated thermocouples inserted inside each individual

load. However, this kind of arrangement for measuring

temperatures is rather uncommon as compared with industrial

practice. The analogue signals from the thermocouples are

multiplexed, amplified and sent to the computer via an A to

D converter.

6.5 BID CONRROL SCHEME

The most conventional form of controller used in the

process industry is the three-term controller with the con-

stituent terms: Proportional-Integral-Derivative action

control (PID). Although PID is the. most tried-out method

of control, it was chosen for implementation within the

processors of the HMSU because of its simplicity and as an

experimental example.

The basic concept:.of. PID feedback’ control is to use

the error, ‘the integral of the.error.and.its rate’ of: change

between a measured variable and a set-point to generate a

signal that actuates the control devices to influence the

process..s0*as to reduce’ this: error to.zero. ~The set-point

may be truly constant or it may be a programmed profile

generated by hardware or software. In the TLF, the zone

120

setpoints. along the. length of the furnace definesthe

temperature profile required for the loads. A typical

control loop for the measurement and control of temperature

within a process plant (or equivalent representative of the

TLF) is shown in Figure 6.2. The Figure shows that a set-

point setting, sampling of error signal, its filtering and

the PID algorithm implementation is performed in a digital

computer.

The discrete PID algorithm is derived from the contin-

uous form of the three-term control algorithm. For a con-

tinuously controlled process variable, the analogue control

Signal is given by:

t
pAeils 1 de (t) p(t) = K(e(t) + uJ e(t) dt + Td)

dt

Il where p(t) Control signal at time t

e(t) = Error between measured and set-point values

hit = Integral time constant or reset time

Tiel = Derivative time constant or rate time

and K = Proportional gain.

Taking Laplace transform of the above equation becomes:

E(S) p(s) = K(E(S) + 5 + Ta(s E(S) - e(0))) Gvsye

ASSuminee dit. £20), e(Q) = 0, equation 6.3.2 becomes:

nfs) = K(1'+ —— + va s}x(s) 6.3.3
Ti s ae

If the error signal is filtered before the control

signal is applied, the effects of noise originating from

the process or instrumentation are reduced. However,

121

éc
l

DIGITAL COMPUTER

SET POINT
CONTROL
SIGNAL

ERROR
ek Py

PID ——————
> ADC FILTER ALGORITHM =

i

t
j i

acy a alae i Se a Soa ie ca ae ean acne eae ef

h ANALOGUE
SIGNAL

ES PROCESS PLANT

Se es
SENSOR ae

FIGURE 6.2

DAC

 HEATER

: A typical temperature control loop of a process plant

filtering will reduce to some extent the effectiveness of

the derivative. action. Using’ a simple first order filter

Witha transter function as:

tee ‘E(s)
E(S) = cfs 6.3.4

where E(S) = Laplace transform of actual error signal

E(S) =» Laplace transform. of.filtered error signal

and Ti. =. Filter.time constant.

Combining equations 6.3.3 and 6.3.4, we get

ok 1 Bee eet. or bee (a) G.3.6

J Cy

: 1 p(s) + TESP(S) = K{1 + —-—= + Ta s}E(S) 673.46

The inverse Laplace transform of equation 6.3.6 gives;

ita d 1 d pit TE so ptt) = ele (el + ui J e(tjedt + Ta e(t)} » 6.3.7

For digital implementation, a discrete form of

equation 6.3.7 is:

Pk + TE AL TRL = K(ex + 35 y er + Td 2k Skil) 6B '3
r=0

where kK = Sampling instant

e, = Error Signal at the Kth sample interval

Pk = Control signal at the Kth sample interval

tT = Time interval between samples.

Equation 6.3.8 for the (K-1)th sample interval is:

refi UE 7" k=2 = K(ex-1 + = } er + Td os G3 io

123

Subtracting equation 6.3.9 from equation 6.3.8 and simplify-

ing gives:

iv Td A
APk = in ((ex-e-1) ti oe (e,-2e,_1 +eK-2)) har AP, of 6.3719

where

AP HPP Peay 6.3.11

Equation 6.3.10 may be written as:

APy..= Kyey tR2 e124 + Ke Gea 2 Kas APic..4 6.3.12

where

_ Xt ee
Kl = pet (1 TL

) a Kt 2Td
KQ ha oe TE+T ())

6.3.13
ogee

X3 eet ;

nd K gee et 4 * pet

Equation 6.3.12 is*simpler: in arithmetic form than

equation 6.3:10 but a selection of the values of

Ki€ies 12,3 .and.4) whieh will "suit: the ‘process plant, for

tuning ofthe PID algorithm is very difiicult... However,

since these values of Ki are determined by equations 6.3.13,

the: operator shas .a convenient choice *fer the values of ’K, tT,

Ti, Td and Tie with whieh he is much more’ famibiar in térms

of .a‘feelsfor: process control. .Mquations 6.3.11, ° 6.3.12 and

6.3.13 are used for implementation in the software. It is

worth noting that all the control loops of the furnace share

the same PID algorithm but each control loop has its own set

of parameters, past errors and control signals.

124

6.3.1 Control requtrements for the HMSU

One of the main objectives of implementing the HMSU to

interface with the TLF is achieved by splitting up the con=

trol task into smaller tasks so as to allow parallel process-

ing and distributed control. For this purpose, the furnace

has been considered as being divided into three areas having

2, 3 and 3 heating zones respectively and referred to as the

preheat, heat and. soak. sections. This is shown in

Figure 6.3. Initially, the master processor of the HMSU is

assigned to the preheat section which controls two control

loops for the zones 7 and 6, whereas the slave I and

Slave II processors are assigned to the following heat and

soak sections which control each of the three control loops

for. the, Zones 9;.°4,7 3. and.2, 1, 0 respeetivaly. A.temper-

ature profile is defined by the set-point temperatures for

each of the three sections.

The divisiom of the control.tasks. for each’ of. the ‘pro-

cessors in the HMSU and the PDP-11/10 minicomputer are set

out as follows:

1. Equations 6.3.11 .and.6.3.12 are used for implement-

ation in each of the processors of the HMSU, so that each

processor behaves.as. a PID. controller: for the TLF.

2. An individual processor of the HMSU is responsible

for measuring the load temperature by sampling at regular

intervals via its ADC interface channel and sending appro-

priate control signals to the zone heaters via its DAC inter-

face channel.

125

92
L

T T v T 7 T '

O20) 0 : 0220. =0 O56 0 0 20 20 OO 0 ; ° : O50770 QO. 0
1 I | | | | |

LOAD ! LOAD
a 7 6 \ 5 4 3 | 1 | 0 a

ENTRY ! EXIT
| I I '

0% 50.0 O-2Oe 0 ! OO oer Oo 2o ade see, 0 ! O10. er et O12 0,
1 7 i i 1 1

PREHEAT = hes HEAT | SOAK

SECTION SECTION | SECTION

Soo Ae eee ee BN ee Shoe eae ee ee
1

| 1
| |

MASTER SLAVE-1 SLAVE-2
1 1
|
| 1
Oe ee ee es HMSU |

FIGURE 6.3 : Heating sections of the TLF

3. °The Master processor, additionally, is made

responsible for data distribution to the slave processors

via the common memory module, while the data collection

(e.g. set-points, controller constants, sampling intervals,

motor speed etc.) is performed from the PDP-11 computer via

the ISMI module. The master processor also collects inform-

ation data on the current measured temperatures of each

billet and the powercoutput to each zone of the furnace and

returns it to the PDP-11 host computer again via the common

memory and the ISMI. The master processor controls the

speed of the conveyor which is maintained constant.

4. The PDP-11 computer implements equations 6.3.13

with a check on the suitability of the steady-state gain

value which is derived from equation 6.3.12. Under the

steady-state condition AP, = APy_; and e, * ex-1 * ex.2- There-

fore the equation 6.3.12 may be written as;

APE =, (Kt. + .Ko'+ K3) ex + K4AP_

The steady-state gain is defined as ee as t > ©

AP Ki, + Ko + K Kgg = SR - LTR 3
k - K4

From equations 6.3.13, it can. be shown that Koo = Kr.

For steady-state. value. of the error to be“zero, Ko. “is

required to be positive. This control requirement for the

value of K is verified by the operator before the con-
SG

troller constants K1, K2, K3 and K4 are passed onto the

HMSU .

a2).

Another task of the PDP-11 computer is to communicate

with the operator and manipulate the input information data

in a suitable form and present it to the master processor

of the HMSU for its distribution. The display of process

generated data from the TLF is also performed by the PDP-11

computer via its GT42 display processor. More details of

the PDP-11 tasks are covered in Chapter 8.

5. One important feature of a control requirement for

the HMSU is the operation of the controllers by selection

of a control mode from a set of three control modes. The

three control modes are outlined in Table 6.1. The oper-

ator sets up a desired control mode which allocates

specific groups of zones of the TLF to be under the control

of specific processors of the HMSU. For example, under a

control mode (v), the master processor controls zones 2,1,0;

the slave I controls zones 7,6 and the slave II controls

zones 5,4,3 and so on. Thus the three groups of zones of

the TLF are transparent to control action from the pro-

cessors. The importance of this feature is recognised when

a switching of a control mode may be necessary in the event

ef aitaiiure ofa processor. controlling. a critical : sreup of

zones (e.g. a soak zone).

CONTROL MASTER SLAVE I SLAVE II

Pirae ee _ ZONES ZONES ZONES

U 7,6 5,4,3 277 0

rey, 2A O IAS bee, 3

W 5,473 2 pan, O) 7,6

TABLE 6.1 : Control modes

128

6. As the loadsttravel through from one Zone to ah-

other zone, the corresponding zone controllers need to

update the load addresses. A load update signal provided

by the closure of a microswitch is passed simultaneously

onto each of the processors of the HMSU as an interrupt

signal. <A software routine implemented in each processor

of the HMSU accounts for updating the load address simul-

taneously.

6.4 ELECTRONIC INTERFACE REQUIREMENTS

In order to interface the hardware of the HMSU to the

TIf,<a suitable electronic interface .is required for each

processor: so that it/can transfer. data to*’and from .the

furnace. The data transfer is concerned with addressing

zones, addressing thermocouples for temperature measure-

ments and digital data representation of temperature

Signals: This is achieved by the-input/output interface

shown in Figure 6.4.. It may be‘ noted that. since each

processor of the HMSU behaves as a controller for the TLF,

its#input/outputsinterface as identical. to that.shown in the

Figure.

As mentioned earlier in Section 5.5 of Chapter 5, the

processors of the HMSU are designed around the Fairchild/

Mostek F8 microprocessor chips set. The input/output inter-

face in Figure 6.4 uses three eight-bit bidirectional ports

(Ports: 0; 1. and. 8), of :the: PS microprocessor, ‘The port:.O71s

used to input an 8-bit equivalent of a temperature measure-

ment, obtained via ADC82, unipolar analogue to digital

converter. The same port is also uSed..to*output an 8<-bit

29

O€
L

ANALOGUE

IF

I/
O

PO
RT

O

MSB

SERIAL OUT

LAF
5 AppRESS

VU LINES
Ye

Po
we
R

0° O1AF

ANALOGUE

GROUND
PY 50 nSec (min)

+5V @t5V

I/
O

P
O
R
T

1

TAI 23

iA

1B Rext

1CLR Cext

Q
2a

hes

 F&
®

M
I
C
R
O
P
R
O
C
E
S
S
O
R

Q

 Rieext Th04

ND

 +5V

74.06

gee 1/
0

PO
RT

8

 cK

CLR

12 Q 7 &

 Q

FIGURE 6.4 : Input/Output interface

equivalent of a control signal (PK) to the TLF. A processor

acquires a temperature measurement by setting up a thermo-

Couplesaddress: at Port .1-(bits;0.to 5). This: causes. 74121

(monostable multivibrator with Schmitt-trigger input) and

74123 (retriggerable monostable multivibrator). circuits to

generate a conversion command input for the ADC82. When the

ADC82 completes the conversion of analogue signal, it

generates a status signal which is input to 7474 (dual

D-type positive-edge-triggered flip-flop with preset and

clear inputs) via a 7406 (inverter). A change in the state

at bit 1 of Port *& caused by 7474 accounts:for informing, the

processor to read the 8-bit equivalent of temperature via

its Port 1 by opening, the */7403.eates via ats Port -8. A

processor sends out 8-bit equivalent of a control signal

OP) via its Port .0:prior.to.closing the 7403 gates and also

after addressing the appropriate zone via its Port 1 (using

bees. 0 tO os And bite o):.

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE

The existing electronic interface allows for a single

computer connection to be made to control the TLF, irrespect-

ive of any control scheme implementation. An ARGUS-500

process control computer was used by Caffin (1972) and

Sheena (1977). This interface restricts the use of a multi-

microprocessor system such as the HMSU to implement a

distributed control scheme. Hence there is a need for inter-

face modification. There are two main areas where these

modifications are essential.

137

1. Firstly, since we want all the three microprocessors

of the HMSU to make simultaneous temperature measurements of

the amas a Single ADC channel fails to satisfy this require-

ment. Hence, as pointed out in Section 6.4, three independ-

ent ADC channels are needed. In all 30 thermocouples,

signals are multiplexed and the output analogue signal is

passed onto the ADC unit (of the input/output interface)

before its necessary amplification. Thus, for the three ADC

channels, three analogue signals are required from three

independent multiplexer units. This requirement is quite

unique for this particular TLF because of the unconventional

way in which the temperatures are measured.

2. Secondly, since the three microprocessors of the

HMSU compute the actual power (control signal P,) required

for the zones they are assigned to control, no two micro-

processors should be allowed to control a single zone via

its DAC channel. However, although the assignment of which

microprocessor will control which zone is done beforehand

Cbyan, operator's choice)*a*flexibility ‘of a*control “of any

of the eight zones by any of the three microprocessors is

desirable. This requirement leads to a major modification

in the existing interface.

Figure 6.5 shows some relevant details of the existing

computer/furnace interface. Address lines 0 to 4 are used

for either thermocouple addressing or zone addressing. When

measuring a temperature, a thermocouple address and strobe

(on address line 5) is latched by 9308 8-bit latch and is

decoded by 9311 decoder (4 line to 16 line decoder/demulti-

132

ce
l

A
N
P
Y
H
*
O

DATA BUS

TO RELAY O

TO RELAY 15

TO RELAY 16

TO RELAY 31

DELAY

TRIGGER

DAC
845-U10

741

9308 74116 Dual 4bit latche
DELAY with clear.
TRIGGER :

9311 74154 4& line to 16 decoder. ZONE 0 ZONE 1 ZONE 7 MOTOR

CONTROLLER CONTROLLER CONTROLLER CONTROLLER

FIGURE 6.5 : Existing computer/furnace interface

plexer). The output lines of the decoder trip the appro-

priate reed relay for the temperature measurement. When an

8-bit equivalent of appropriate power (control signal P,) is

to be sent to a desired zone, that zone address and strobe

(on address line 6) are decoded to enable the 9308 data

lateh of the DAC. channel.

The reed relays used in the multiplexer -unit*are bulky

devices and introduce noise in temperature measurement. The

size of the multiplexer unit can be considerably reduced

when a set of four, 4051 (single 8 channel) analogue multi-

plexers are used for multiplexing thermocouple signals. The

proposed arrangement using these devices is shown in

Figure’ 6.6. ‘The thermocouple: (T/C) address and the T/C

strobe is latched by. 74116 (Dual 4 bit) latch and is decoded

further to activate the appropriate 4051 analogue multi-

plexer. The analogue signal is further amplified by a

Single stage 741 amplifier and passed onto the ADC. Three

such analogue multiplexer units are needed for the three

microprocessors.

Figure 6.7 shows a proposed (major) modification for

the DAC channels of the zone controlling interface that

would satisfy the second requirement. The Figure shows

three data bus channels from the three microprocessors and

the fourth data bus channel for the ARGUS 500 computer. All

bus channels are buffered by 74LS241 octal tristate buffers.

For every DAC channel there are four buffers, only one of

which is enabled when a zone address appears on 74154

decoder (4 line to 16 line) from the corresponding processor.

The output from the 7440 (NAND buffers) also enable the 9308

134

SE
L

 Y2 |

408139

B IA

Lf

TIC
STROBE

Yo

ITC
ADDRESS

TKIO

From
common

TIC
ground

FIGURE 6.6

Thermocouple
analogue signal

+15V

741

-15V

: Analogue multiplexer interface

 1002

20K 1002 7502

TO
ADC

9E
L

MASTER I/O DATA BUS

SLAVE-1 I/O DATA BUS

SLAVE-2 I/0 DATA BUS
ARGUS-500 I/O DATA BUS

MASTER 1/0

ADDRESS
Bus

T
A
L
S
2
4
1

T
A
L
S
2
4
1
4

TA
LS

24
1

SLAVE-1 I/o

ADDRESS

BUS

T
A
L
S
2
4
1

T
A
L
S
2
4
1

°

SLAVE -2 1/0

ADDRESS
BUS

ARGUS -500 I/o
ADDRESS
BUS

744 741 741

ZONE-0 ZONE-1 MOTOR

CONTROLLER CONTROLLER CONTROLLER

FIGURE 6.7 : Modification to DAC channels

8-bit latches at the same time so that.the buffered data is

latched for that particular DAG channel... Hach DAC unit

converts the latched digital data into analogue signal

which is amplified by 741 operational amplifier and is

responsible for controlling the level of heating inside the

zone.

6.6 CONCLUSIONS

The TLF He aeribed in this chapter is a typical example

of the kind of application selected for employing hierarch-

ical computer control using a multi-microprocessor system

such as the HMSU. The application clearly establishes the

control requirements both at software level and hardware

interface level. The implementation of the control require-

ments for the HMSU is a subject matter for Chapters 7 and 8.

The overall control strategy used for the HMSU to control

the TLF requires a major modification of the existing inter-

face. This has remained in the proposal stage mainly

because of the lack of suitable development and testing

environment for the HMSU and hence is a topic of further

investigation.

13/

CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM

aol NTR ODUCT RON.

The software for the HMSU mainly consists of independ-

ently stored programs, residing in PROMs of individual

processors. For the purpose of this project, these programs

are designed such that each processor within the HMSU

behaves as a controller for the Travelling Load Furnace

(TLF) described in the previous chapter. The processors of

the HMSU execute their stored programs simultaneously. This

accounts for various interactions between (1) the processors

of the HMSU and the TLF, (2) the master and the slave pro-

cessors and (3) the master and the host PDP-11/10 mini-

computer. The software development for the HMSU to resolve

these interactions is indeed a complex task. Other features

of this software development task include:

1. the use of a low level programming language for the

Fairchild F8 microprocessor.

2. programming for real-time operation

3. programming with due care for software dependency

on hardware. architecture

4. programming for a multi-level interrupt structure.

With reference to the above features, this chapter

describes a program for the master processor of the HMSU.

The program design is based upon the three major interactions

outlined above. The entry and exit points for the flow-

charts given in this chapter include, for ready reference,

138

the line numbers of the corresponding listing given in

Appendix C. Furthermore, some details of programming

features unique to the F8 microprocessor, and hardware

details of the master processor, are covered in Append-

ices B and A respectively.

7.2 SOFTWARE DEVELOPMENT AID

In order to develop an object code program from a

source code program, a need for a software development aid

is of vital importance. A general program development

procedure has been already outlined in Chapter 3. The

program described in this chapter was initially developed

on time-sharing, MAXI-MOP operating system for the

ICL 1905E mainframe computer system. The F8 cross-

assembler (Mk 3 version) made available by Davies (1977)

was used to produce an object code program. The cross-

assembler is a two-pass assembler and Figure 7.1 shows its

general structure for producing TAPE and STOR subfiles from

a source program subfile called PROG. The TAPE subfile may

be used to produce a paper-tape version of the object code

for loading into the target F8 microprocessor or for load-

ing and, testing it on a-~simulator. ThesSTOR file contains

the listing of the source subfile PROG and its correspond-

ing object code.

During the course. of. development. of software Lor .the

master processor of the HMSU system, the MAXI-MOP operating

system and the ICL 1905E mainframe computer system were

both withdrawn from service and, for this reason, a need

arose to transfer and create new files onto another

139

O
v

ee >| PRINTER

|
1

CONSOLE ASSEMBLER ASSEMBLER

1 KEYBOARD : ee 2 eee :

i-> SIMULATOR
! !
' 1

r--->} PUNCH | }
\

|
|

t eee
% 4 rs

iz 7 or

|

Peg

PROG SECO ae ae

MAXIMOP FILE AREA

FIGURE 7.1 : The F8 cross assembler (Mk 3) structure

machine. The MOSTEK Z80 disk system (MDS Z80 system) was

made available in the Electrical and Electronic Engineering

Department and the F8 Assembler (F8XASM) available on this

system was finally used for the program development

described in this chapter. The program development was

found to be more efficient than the MAXI-MOP system because

the MDS Z80 system (1979) is a single-user system with

facilities such as Editor, F8 assembler (F8XASM), linker

etc. and a versatile operating system (OS). As the MDS Z80

system description and how to use it are given in the

reference manual, no further discussion is made here. The

object code of the master program called HMSU-SRC

(Hierarchical Microprocessor System Unit-SouRCe) is pro-

duced in Intel format which is intended for loading into

2708 PROMs. The HMSU-LST contains the F8 assembly language

source program and the corresponding object code generation,

an alphabetical list of labels and their cross-references

and the number of errors occurring during the assembly.

7.8 ASSUMPTIONS. AND DEFINITIONS

Before continuing the discussion of the master program,

it is worth mentioning various assumptions and definitions

governing the program. The assumptions are as follows:

1. The hexadecimal number system is used to represent

temperatures, digital control«signal* output.,, constants etc.

2. Arithmetic calculations are performed using two's

complement so that H'00' to H'7F' represent the positive

integers from 0.to 127 and ‘H'FF'"’ to. H'80" represent the

negative integers from -1 to -128.

14]

3. Fixed point arithmetic is used.

4, The hexadecimal representation of temperatures is

such that for every byte change, a change of 2°C in temper-

ature is obtained. Thus, for example, H'19' represents

50°C, H'32' represents 100°C and so on.

The definitions used are as follows:

1. The PROM and RAM address ranges are defined as

shown in Figure 7.2. The memory map for the slave process-

oss is identical to that of the master while the memory map

of the common memory iS common to all three processors of

the HMSU.

2. The 64 bytes of scratchpad registers available on

the’ CPUL(i.c...the F8:microprocessor chip),. for: each’ of..the

processors: are defined to store transient. data... The signif-

icance of this data carries-specific interpretation and

this is shown in Figure 7.3. For example, the control

loop-1 in the Figure shows the use of eight registers (0'70'

to 0'77') for storing temperature measurements, error

Signals, control signals etc. of the PID algorithm

described in the previous chapter.

3. Each of the master and slave processors provides

14 ports, out of which six are input/output and the remain-

der are write only. The ports assignment is defined as

shown in, Dable 7.1.

4. The zone addresses in term of hexadecimal numbers

rangesfroméH' 40° to Hta7™ ter Zone”'d" to’ Zone "7" respect—

142

0000
1K

03FF 0400 2K PROM

1K
O7TFF
0800 >

js BYTES (COPY OF ISMI INPUT CHANNEL)
083F
0840

hea BYTES (AUXILARY DATA)
O87F
0880

fos BYTES (COPY OF SLAVE-1 DATA) 1K
O8BF > PRIVATE
08¢co RAM

jo BYTES (COPY OF SLAVE-2 DATA)
O8FF
0900

768 BYTES (RAM STACK AREA)
OBFF

ocoo
be BYTES (COPY OF ISMI)

0C3F
0¢40

Ma wom (SPARE)
— 1K
0c80

Jo BYTES (SLAVE-1 WRITTEN DATA) Ms ie.
OCBF la MEMORY

jo BYTES (SLAVE-2 WRITTEN DATA)
OCFF
ODO0

768 BYTES (SPARE)
OFFF

1000
1K SPARE COMMON RAM MEMORY

13FF

FIGURE 7.2 : Memory map of the master processor and common memory

CO
NT
RO
L

LO
OP

-3

—
>

DEC oct | DEC Oct 4

o. | 601.) ‘|32 | 40 |)
1 01 ! 331° 41

2 02 1134 | 42 SPARE

3 | 03 GENERAL ! 35 | 43 | b REGISTERS

4 | 04 | > PURPOSE (6

5 | 05 REGISTERS ! 37 | 45

G1 06 1|38 | 46

T (oT) i139 | a7 [J
8 | 10 '}4o | 50 | APk-1

J. 19 eee | Lae tsi Pk a],

wy | 16) 12 SPECIAL i|42 | 52 | AAPk Upper

HL |11 | 13 | & PURPOSE ! 43 | 53 | A\Pk Lower

“wy ae.) ia REGISTERS ! 44 | 54 ek-2

ee | ee 15 1 4 59 ek~1

qu | 14} 16 || 46 | 56 ek

OL. rae LT hi) | 47 57 Temperature

16 | 20]) 148 | 60 | Apk -1

71 et SOFTWARE 49 | 61 Pk = 1

18 | 2 STACK 50 | 62 A\Pk Upper

19 | 23 SPACE || 5d 63 A\Pk Lower

20 | 24 152 | 64 ek~2

2% 125 | Bak 65 ek—1

22 | 26 ‘154 | 66 ek

23 ee) ! 55 | 67 Temperature

24 | 30 | TIMER COUNTER (253) 56 | 70 APk = 1

25 | 31 |30 sec COUNTER FOR PID |'|57 | 72 Pk - 1

26 | 32 |10 sec COUNTER FOR ISMI}'|/58 | 72 | A\Pk Upper

ei | 35 '|59 | 73 | ZAPk Lower

28 | 34 160 | 74 ek~2

29 | 35 ‘161 | 75 ek-1

30 | 36 62 °(.:76 ek

331.37 1|63 | 77 Temperature

oy }

FIGURE 7.3 ; Scratchpad memory map

}
k
*
—
—

C
O
N
T
R
O
L

L
O
O
P
-
1
—
—
>
}
<
—

C
O
N
T
R
O
L

LO
OP
 -
2

CHIP PORT SLAVE I SLAVE If

TYPE NO Deere PROCESSOr PROCESSOR | PROCESSOR

3850 0 Input from ADC and output Same as Same as

CPU data to the TLF (ref. Fig. 6.4) master master

1 Zone and T/C addresses) ae. ea.

plus strobes (ref. Fig. 6.4))

3861 8 Bits O and 1 for I/O interface Same as Same as
PIO (ref. Fig. 6.4) master master

(MK90002)
3 Used for setting up slave Not used | Not used

addresses

A Interrupt control port))
(write only))Same as)Same as

) master) master

B | Timer control port (write only) |))

3861 20 ISMI interface))

PIO))
(MK90003))Not used})Not used

21 ISMI interface))
))

22 Interrupt control port))

(write only))Same as)Same as

) master) master

23 Timer control port (write only) |))

88538 c Interrupt vector address upper Same as Same as

SMI byte (write only) master master

D Interrupt vector address lower se, 5

byte (write only)

E see dee control, port a oe aes

(write only)

F Timer control port (write only) -do- -—do-

TABLE 7.1 : Ports assignment

145

ively. Similarly, the loads which travel through the TLF

have address range from H'20' to H'3D' for Load O to

Load 29. The motor which controls the speed of the convey-

Or hasan address of H¥50...

5. The input and output channels of the HMSU which

consist of ISMI memory modules account for data collection

from and by the PDP-11 respectively. The 64 locations of

each of the ISMI memory modules have write and read

addresses. The read addresses range from H'40' to H'7F'

and the write addresses range from H'80' to H'BF'. The

memory locations of these modules are defined to store

particular items of data. The labels of these data items

and their storage locations are depicted in the matrix form

shown in Figures 7.4 and 7.5. The significance of the

labels used in these Figures and those used in the program,

given in Appendix C, is given at the end of this chapter.

7.4 PROGRAM DESCRIPTION

The master program is only a one-third part of the

overall software required for the three processors of the

HMSU. However, its development is critical because the

master processor behaves as a communicator with the slave

processors, via common memory, and with the PDP-11/10 mini-

computer, via ISMI memory modules. Thus, as far as the

slave processors are concerned, their communication with

the master via common memory is initiated by the master

processor using external interrupts, whereas the master

communicates with the PDP-11 at regular intervals using

146

DATA ENTRY FROM THE PDP-~11

WRITE ADDRESS
(ane

BF BE BD BC BB ea), BO BB

Cl C2 C3 LA NS MS CM TRUN

TF 7E 7D 7¢ 7B TA 19 78

BT B6 B5 B4 B3 Be Bl BO

ISP1 K11 K12 K13 K14 STl

TT 76 15 74 13 4 4 71 70

AF AE AD AC AB AK AQ 48

ISP2 K21 K22 K23 K24 SI2

6F 65 6D 6C 6B 6A 69 68

AT AG A5 AA A3 A2 Al AO

ISP3 K31 K32 K33 K34 ST3

67 66 65 64 63 62 61 60

oF 9E 9D 9¢ 9B 9A es 98

oF 5E 5D 5c 5B 5A 59 58

97 96 95 94 ps G2 91 90

57 56 55 54 53 52 51 50

oF 8B 8D 8C 8B 8A 89 88

4F 45 4D 4c 4B 4A 49 48

87 86 85 84 83 82 81 80

RCPS |RFPS WFPC WFPS

4T 46 45 44 43 42 41 40

ae —“N pean anmess

DATA COLLECTION BY THE

MASTER

FIGURE 7.4 : ISMI memory map - input channel of the HMSU

147

DATA COLLECTION BY THE PDP=11

x READ ADDRESS

aw
Re)

40 41 42 43 44 46 AT

RFMS RFCMS WFMS WFCMS

80 81 82 83 84 85 86 87

48 49 4A 4B 4c 4D 4% 4F

LAS23 POWS23 TEMPS23 |} ZONAS23] SNOS23 LAS22 POWS22

88 89 8A 8B 8¢ 8D 8E 8F

50 51 52 53 54 55 56 57

TEMPS22 | ZONAS22 SNO0S22 LAS21 POWS21 TEMPS21 | ZONAS21 | SNOS21

90 91 92 93 94 93 96 97

58 OY 5A 5B 5C 5D 5E a

LAS13 POWS13 | TEMPS13 | ZONAS13 | SNOS13 LAS12 POWS12

98 99 9A 9B 9¢ gD gE oF

60 61 62 63 64 65 66 67

TEMPS12 | ZONAS12 SNOS12 LASL1 POWS11 TEMPS11 |} ZONASI1 | SNOS11

AO Al A2 A3 AA AS A6 AT
68 69 6A 6B 6C 6D 6B 6F

LAM3 POWM3 TEMPM3 | ZONAM3 SNOM3 LAM2 POWM2

A8 AQ AA AB AC AD AE AF

70 TA 72 5 74 15 76 74

TEMPM2 ZONAM2 SNOM2 LAML POWML TEMPM1 ZONAM1 SNOM1

BO Bl B2 B3 B4 B5 B6 B7

78 9 7A 7B 7¢ 7D TE x i

B8 BY BA BB BC ~~ BE BF

“Swnrme ‘ibis

DATA ENTRY FROM THE

MASTER

FIGURE 7.5 : ISMI memory map - output channel of the HMSU

148

«
M
A
S
T
E
R

DA
T
A
—
—
>
+
—
—
S
L
A
V
E

1
D
A
T
A
—
—
*
—
—

S
L
A
V
E

2
D
A
T
A
—
—
>
|

real-time software interrupts. Thus the structure of the

master program is based on the processing of various

interrupts. Numerous routines are described in the follow-

ing sections which handle interrupts, communication aspects

of the master processor, its controller actions etc.

7.4.1 Interrupt Structure

The hardware architecture of the F8 processor provides

interrupt handling capability using a serial priority net-

work known as a "daisy-chain". The details of this are

described in Appendix B. An interrupt structure with

assigned priorities used in the master program is shown in

Figure 7.6. The priorities are assigned as follows:

i... First priority; A timer available on the first

PIO chip runs continuously and is used to count real time.

The timer port of this chip is loaded with a maximum count

OL 253 {60 that this PIO chip: pulls: the In, REQ: Vine low;

every 3.953 milliseconds. Using this timer, a PID algo-

rithm is entered after counting a time equal to the

sampling interval, required for the measurement of temper-

ature of the loads. The master processor also makes use of

this timer to see if the PDP-11 has sent any new inform-

ation for the controllers. This viewing process is per-

formed at regular intervals, using the timer, say every

10 seconds for example.

2. Second priority: .An external interrupt line

available on the second PIO chip is used to inform the

processor the load position within the zone which is under

149

OS
L

1st PRIORITY

{Internal Timer

2nd PRIORITY

EXT INT

[Microswitch]

3rd PRIORITY

IEXT INT

[From other

Interrupt-used for processors]

PID & ISMI routines J

3861 3861 PI
3850 CPU ang PIO ee! PIO POs 3853 SMI

= [MK 90002] [MK 90003]

Re A ae

INT IRQ INT IRQ INT IRQ INT IRQ

y 1

FIGURE 7.6 : Interrupt structure with priority

control. “A signal coming froma miecroswitch. indicataine

the position of the load, pulls this line low to generate

the external interrupt. A microswitch interrupt routine

which is then entered allows the load addresses to be up-

dated as the loads travel through from one zone of the TLF

to the next.

3. Third priority: This priority Levels. whaich: aliso

uses the external interrupt line available on the SMI chip,

is used for signalling the master processor that a partic-—

ular slave processor has finished with the access of the

common memory. The master processor, having received this

interrupt, allows the next slave processor or itself to

have access to common memory.

The interrupts generated by the PIO and SMI chips with

the above-mentioned priorities need to be processed one at

a time by the CPU. However, a possible occurrence of a

higher priority interrupt causing a lower priority program

execution to be interrupted needs careful handling. This

issue is further complicated by the uncertainty with which

these multi-level interrupts occur. Although serviceing a

large number of interrupts with one CPU having a single

hardware stack is inefficient (Fairchild, F8 users' guide,

1976), this problem can be overcome by using entry and exit

protocols during interrupt serviceing.

In order to handle these multi-level interrupts, two

routines are implemented which use a RAM memory area. This

area is used as a stack to store contents of the accumul-

ator, ISAR (Indirect Scratchpad Address Register), status

151

register, and registers: DCO, DC1, KU and KL, when a

current program execution is interrupted by a higher prior-

ity interrupt. This storing process. 1s werformed by 7a

routine called CALL. When the execution of the higher

priority interrupt routine is complete, the contents of the

accumulator, ISAR, status register. and registers: DCO, DCl,

KU and KL are restored by using the RETN routine, so that

the current program execution is resumed. A pointer is

maintagned in the seratchpad .butfer’ area.of*the CRU, to

point to the next empty stack area of the RAM memory. This

pointer is incremented by nine locations at the end of the

CALL routine and is decremented by nine locations at the

end of the RETN routine. Furthermore, interrupts are

enabled at the CPU after the CALL routine and disabled at

the beginning of the RETN routine, and re-enabled according

to the program execution which immediately follows. An

example of a two-level priority interrupt structure is

shown in Figure 7.7. The flow charts for the CALL and RETN

routines are, shown dn Figure 7219.

7.4.2 Intittaltsatton

The master program 1S initialised at the beginning of

the main program execution. The initialisation procedure

is entered when the HMSU is switched on or by reset action.

The following list shows the actions performed during the

initialisation procedure:

1. Disable all interrupts

A. Meat ALi the aipute output ports

152

Main program

lst vectored interrupt

CALL ROUTINE:
ASSUME SP =
ACC, ISAR, STATUS, KU & KL
LOADED AT SSA+SP ie SSA+0
THEN SP=SP+5 = 0+5

0

ROUTINE 1 EXECUTION

—_» 2nd vectored interrupt

|
|
|
|
\
|
|
|
|

|
1
1
1
|
|
|
I
|
1
\
\
'

1

1

SP = 5
ACC, ISAR,

Main program

NOTE: 1) SSA =
> ACC =

ISAR. =

> CALL ROUTINE:

‘Now SP = 5

ACC, ISAR, STATUS, KU & KL
LOADED AT SSA+SP ie SSA+5

| THEN SP=SP+5 = 5+5 = 10
ROUTINE 2 EXECUTION

(say without interruption)

RETN ROUTINE:
SP = 10
ACC, ISAR, STATUS, KU & KL
RESTORED FROM SSA+SP-5
[THEN SET SP=SP-5 = 10-5 = 5

ROUTINE 1 EXECUTION

RETN ROUTINE:

STATUS, KU & KL
RESTORED FROM SSA+SP—5
THEN SET SP=SP - 5 = 5-5 = 0

Starting Stack Address
Accumulator
Indirect Scratchpad Address Register

KU = Upper byte of K Register
KL = Lower byte of K Register

2) ROUTINE 2 is of higher priority
than ROUTINE 1

FIGURE 7.7 : Example of two-level priority interrupt structure

153

3..Clear the eontrol ‘loop buffers.

4. Switch off all the heaters of the TLF and switch

off the motor of the conveyor by using the SHUT routine.

5. Clear 256 bytes of the private RAM where the input

channel ISMI memory contents are to be copied.

6. Close the timer port and enable the external inter-

rupt port of the second priority PIO chip.

(eo. LOedeoet tl HOB “OL ethe first priority PlO witha

253 count and enable timer interrupts at this chip.

8. Load the SMI vector address ports H'OC' and H'OD'

With H'OL! and H!kO' (1.e.. vector address. H'OLFO”) “and

enable external interrupts at the SMI chip.

9. 2 Koad [SAR@ SO. 31. and, 32 withecounts 293° 30° and: 10

respectively. These are the timer count, sampling interval

count of 30 seconds and ISMI sean. count. of 10 seconds.

10. The PIDFLG (i.e. PID flag) and SNO (sample number)

are cleared and ISMIFG (i.e. ISMI flag) is set.

7.4.3 The matin program

The main program is basically a very short program in

which the master processor loops around, checking if either

the -PIDFIG flac or the [SMiInG flas ore the TRE. flac is’ set.

This program is executed at the lowest priority. The

following tree structure shows how the main program is

related to other subroutines implemented in Appendix C.

the. flow charts of. some specific routines.;such as INPU;

OUTPU, COPY etc. are shown in the corresponding Figure

numbers shown in brackets. In addition, the main program

154

PIDR
(Fig. 7.9)

Subroutines:

iL. DNPU (Figs.7.10)

2aOUTRU: (Figa.7.1b)

3. BSUBT - Binary

subtraction

4. BMPY - Binary

multiplication

5. TRAN - Register

transfer

6. BADD - Binary

addition

7. RECORD - Record

Initialisation

Subroutine SHUT

|
Main Program

(rags 7.8)

ISMI TRMIT
(Fa. 7 seek 9513) (rioe 7215)

Subroutines: Subroutines:

1. CLEAR - Clear Ports 1.

2. CORT (Figache 14) as

is mainly interrupted by the following:

control loop parameters

--o1Or —.. Stop: OF: end? OF

TLF run

. MODLZA - Modify Load-

zone addresses

CLEAR - Clear Ports

WRITE - Write into

output channel of

ISMI

i, ¢ Tamer interrupt routine (hickr7. 16): This routine

as described earlier in the priority structure is respons-

able for counting real time and setting PIDFLG and ISMIFG

155

when the corresponding sampling intervals and ISMI scanning

periods are completed.

2. External interrupt caused by the microswitch

(Fie. .7.b7):°. This routine.1s* responsible..for: updating ‘each

load address as the loads travel through the TLF.

3. External interrupt caused by the other slave

processors: (figs, 7.18): =.This routine, .as,.mentioned, carlier.,

facilitates access to the common memory by the processors

of the HMSU under the supervision of the master processor.

In support of the above three interrupt routines, the

interrupt structure demands the use of CALL and RETN sub-

routines, the flow-charts of which are shown in Figure 7.19.

7.0 CONCLUSTONVS

The program described in this chapter applies to the

master processor only. Similar program development is

necessary for the Slave I and II processors except for the

inclusion of the ISMI routines. Although the master pro-

gram described here is produced with no assembly errors,

the logical testing and debugging of the program on the

actual hardware could not be performed due to lack of test-

ing and debugging facilities. The cross-software develop-

ment aid, such as using cross-assembler on the MAXIMOP

system, for program development has its limitations and is

inefficient for program development of multi-microprocessors.

The scope for: further. development of the program is enormous;

for example, performance evaluation, self-diagnosis of

156

hardware, failure detection and alarm condition signalling

(i.e. fault-tolerance mechanisms) etc. requires further

research.

LIST OF LABELS

FIGURE 7.4

Ci, C2, C3 = Status of controllers 1, 2 & 3. It may he either ON or OFF.

LA = Load address.

NS = Number of samples.

MS = Motor speed of the conveyor.

CM = Control Mode. It may be UUU, VVV or WWW,

IRUN = Integer run number for the TLF.

ISP1, ISP2)

ISP3)

Ki, Ki2 es, eld

K21, K22, K23, K24 = Four " " t" no. 2.

Integer set point temperature for controllers 1, 2 & 3.

Four controller constants for controller no, i.

K32, 2K32,,.K33, K34.= Four i ; a u NO ~3..

SIi, SI2, SI3 = Sampling intervals for controller'no. 1, .2:°& 3.

RCPS = Read count PDP set.

RFPS = Read flag PDP set.

WECPS = Write flag count PDP set.

WFPS = Write flage PDP set.

FIGURE 7.5

RFMS = Read flage master set.

RE'CMS = Read flage count master set.

WEMS = Write flage master set.

WECMS = Write flage count master set.

SNOM1, SNOM2, SNOM3 = Sample number in control loop 1, 2 & 3 of the master.

SNOSIM:, _SNOS#2 = SNOSI3 Sample number in control loop 1, 2 & 3 of the

Slave I.

i SNOS21, SNOS22, SNOS23 Sample number in control loop 1, 2 & 3 of the

Slave II.

ZONAM1, ZONAM2, ZONAM3 Zone address in control loop i, 2 & 3 of the

master.

ZONAS11, ZONAS12, ZONAS13 = Zone address in control loop 1, 2 & 3 of the

Slave I.

J].

ZONAS21, ZONAS22, ZONAS23 = Zone address in control loop 1, 2 & 3 of the

Slave II.

TEMPM1, TEMPM2, TEMPM3 = Temperature measurement in control loop 1, 2 & 3

for the master.

TEMPS11, TEMPS12, TEMPS13 = Temperature measurement in control loop 1, 2

& 3 for the Slave I.

TEMPS21, TEMPS22, TEMPS23 = Temperature measurement in control loop 1, 2

& 3 for the Slave II.

LAMI, LAM2, LAM3 = Load address in control loop 1, 2 & 3 for the master.

TASC, @ HASL2 a LAGI S Load address in control loop 1, 2°& 3, for. the

Slave I.

LAS2 © GAS22 LASZ3¢— Moadeaddress ain control, loco! , 2.6 3 stor the

Slave II.

FIGURE 7.8

PIDFIG = PID control algorithm flag.

ISMIFG = ISMI memory (input channel) scan flag.

TRE = Transmit flage for data transmission to output channel

of the ISMI.

PIDR = PID routine entry point.

ISMI = ISMI routine entry point.

TRMITT, TRMIT = Transmit routine entry point.

FIGURE.’7 .9

TSLA = Temporary starting load address.

SLA = Starting load address.

TSZONA = Temporary starting zone address,

SZONA = Starting zone address.

LZAC = Load-zone address counter.

eet, aS — HneELy., pOlmcsmtor, CONtLOLL,, loop, Ilia 2) 836

CALCU = Calculation of control signal using PID algorithm

(entry point) .

RECORD = Record routine that records the values of control loop

calculations and measurements.

MODLZA = Modify load and zone addresses.

158

FIGURE 7.18

SPAO = Store of port address for the master.

SPA1 = Store of port address for the Slave I.

SPA2 = Store of port address for the Slave II.

CMAR = Entry point for the common memory access routine.

UUU = Entry point for control mode UUU.

VVV = Entry point for control mode VVV.

www = Entry point for control mode WWW.

FIGURE 7.19

ISAR = Indirect scratchpad address register,

CALL = Entry point of CALL subroutine.

DCO = 16 bit data counter register.

bel = 16 bit data counter stack register.

SP = Stack pointer.

SSA = Starting stack address in RAM memory area.

KU = Upper byte of K reguster.

KL = Lower yboy.te of Ky register.

FIGURE 7.15

MTRF = Master transmit flag.

SITRF = slave L transmit flag-<

S2TRF = Slave II transmit flag.

TREC = Transmit flage count.

FIGURE 7.17

MSCNT = Microswitch counter.

NOTE

It is important that the critical parts of the various programs

(eg. Figure 7.12) are made interrupt proof. For instance, important

flags should be tested before interrupts are enabled,

159

ENTER

BUY (128)

ENABLE

INTERRUPTS

AT CPU

TO GOTO

PID / PIDR ae
7-9

GoTo
ISMI

GoTo
TRMITT / TRMIT

FIGURE 7.8 : Main program of the master processor

160

LO
L

ENTER
(PIDR (703) STORE

ee APk UPPER WAS AT PORT 4 IN ISAR OX2 THIS 2nd
DISABLE ae

INTERRUPTS Aeon READ TEMPERATURE STORE
BY INPU ROUTINE Pk-1_ IN
= eae ae ISAR 0X0 oaiueat br

- CONTROL
SET LOOP -3

ankeees CALCULATE ERROR CALCULATE !
Ek =SET PT.-MEAS Pk =4Pk +Pk-1 Sr nseae

TEMP
SET AND STORE IN ISAR INCREDENT,

0X6 ono
OUTPUT Pk TO ZONE

CALCULATE BY OUTPU ROUTINE a 0
CONTROL K11 ® Ek (837)

LOOP BEGINS |
AT _ISAR ar: CALCULATE UPDATE INCREMENT

Kt" Ek -K 12 Ek-1 Ek-1 TO Ek-2 TRUNNO
j CONTROL 1 Pee fe Ss

[LOOP BEGINS Garo ace UPDATE
AT ISAR TKISeEk 2 Ek TO Ek-1 RECORD VALUES] | [RECORD VALUES ae +K13%Ek - OF CONTROL OF CONTROL

LOOP-1 ee

i CALCULATE
CONTROL APk =K148Ek -K12¥Ek-1 MODIFY ein

LOOP BEGINS +K 13KEk -2 MODLZA MODLZ

AT ISAR a +K14*APk ~4

\

(ENDRUN)

FIGURE 7.9: PID Routine

2
9

ENTER
INPU ROUTINE

(932)

READ
PORT 8

Y

OUTPUT 1

AT PORT 8

TO OPEN GATES

—

STORE 0 IN ANSWER

AND OUTPUT 0 Pk
VIA PORT 0

OUT PUT
TSZONA VIA

PORT 1
Y

STORE CALCULATED

Pk IN ISAR OX?

READ TEMPERATURE

AT PORT 0 AND

SPOR 11-2IN

ISAR OX7

y
CLEAR

PORTS 1,880

RE TURN

(944)

ENTER OUTPU
ROUTINE (8 93)

LOAD DELAY
COUNT H50

IN REG 0
’

CLEAR
PORT 0

, dpe ee

STORE CALCULATED

Pk IN ,
ISAR OX1

'
SHIFT LEFT AND

INCREMENT CALCULATED

PK FOR =<FULL

RESOLUTION OF HEATER
SIGNAL

Y
STORE IT IN ANSWER

AND OUTPUT VIA
PORT 0

FIGURE 7.10 : INPU subroutine to read in
temperature of a load

FIGURE 7.11

DECREMENT

REG 0

am
.

ry,

CLEAR

PORTS 0&1

RETURN (929)

|
OUTPUT

TSZONA VIA
PORT 1

 | 4

: OUTPU subroutine to output power to a zone

ENTER
ISMI ROUTINE

147
<

READ INPUT

ISMI
LOCATION 40

1E. WFEPS

COPY ISMI
INTO PRIVATE

AND COMMON
MEMORY

LOAD SI1
INTO ISAR

0°31"

LOAD
SPAO WITH

: SET
PIDFLG = 1

hs LOAD
SPA1. WITH CLEAR

1 | ISMIFG TO 0

\

LOAD RETURN
SPA2 WITH

(298)

FIGURE 7.12 : ISMI Routine

163

v9
L

ENTER UUU
(209)

SET

LZAG =2

\

SET

SLA=LA

{
SET

SZONA= ZONO

SET.

PIDFLG = 1

CLEAR

ISMIFG TO 0

ENTER WWW
(222)

SET

LZACs3

 1

SEF

SLA=LA+2

eet:
SLA = H20

ae,
SLA =H21

SET.

SZONA=ZON2

RETURN

(298)

FIGURE. 7.13:

WY
ISMI Routine (continued)

ENTER. VVV
(251)

SE.
LZAC =3

|
SET

SLA =LA+5

Shia
SLA =H20

SET
SLA = H21

Sti.
SLA=H22

SET
SLA=H23

SET
| SLA =H24

SZONA=ZON5

y

ENTER: COPY.

ROUTINE (301)

DISABLE
INTERRUPTS

AT CPU

Sty

REMS 1]
 |
OUTPUT HOO

AT

 PORT 9

SET DCO POINTER

TO PRIVATE MEMORY

ADDRESS H0800
 |

SET DC1 POINTER

TO COMMON MEMORY ADDRESS HO0CO00
 |

SET COUNT 64

IN REG 0

SET I/P ISMI START

ADDRESS IN REG 1

FIGURE 7.14 :

READ I/P_ ISMI

LOCATION AND STORE

IN PM AND CM AS

POINTED BY DCO &DC1

 DECREMENT

REG 1
!

DECREMENT

REG 0

165

CLEAR

RFMS FLAG

100

SET:

RFCMS=WFCPS

ENABLE
INTERRUPTS
AT CPU RETURN

(344)

Subroutine to copy ISMI data into PM and CM

ENTER TRMIT

ROUTIE (406)

 Y

SEs

TRFC =TRFC+1

COPY PM LOCATIONS
7 H0870 TO HO87F

TO O/P ISMI SET
HB7 TO HAs’ WECHS

N =TRFC

COPY PM LOCATION CLEAR
. HO8BO TO HOS8BF’

TO O/P SMI WEIS
HA7' TO H'98'

N

CLEAR

COPY PM LOCATIONS TRF
Y HO8FO TO HO8FF iS

TO O/P ISMI <
H97' TO H88

N

(475)

FIGURE 7.15 : TRMIT routine for data transfer from the master to

o/p ISMI channel

166

ENTER TIMER
INTE RRUBT) ROUTINE

SAVE DECREMENT
ACC—ISAR4 10 SEC

Wiad
ISe5 ISMI COUNT

EXECUTE :
CALL

ROUTINE

Here

DECREMENT RELOAD
TIMER COUNT

ISAR 030° COUNT

SET

ISMIFG = 1

RELOAD x S
TIMER COUNT
BY HFD’
IE 253 CALL

RETN
ROUTINE

DECREMENT S11
(SAMPLING INTERVAL)

COUNT RESTORE
AT -ISAR. 037 oe air

4, ~ ACC

N
ENABLE

INTERRUPTS
Y AT CP

RESET
ST) BY SITS

ORIGINAL RETURN
ae (533)

SET

PIDFG =1

FIGURE 7.16 : TIMER Interrupt Routine

167

ENTER MICROSW
EXTERNAL INTERRUPT

BIGURE 7.1%. :

ROUTINE(537)

SAVE

ACC > 4
W> J
TSse5

EXECUTE
CALL

ROUTINE

ENABLE

INTERRUPTS

AT CPU

DECREMENT

MSCNT

RESET

MSCNT

TO 6

INCREMENT

SLA

SET

SLA H20 i>

EXECUTE

RETN

ROUTINE

RESTORE
BmlS
J>Ww
4—>ACC

 ENABLE

INTERRUPTS

AT CPU

168

External Interrupt routine for

RETURN

(573)

load address update

ENTER
CMR ROUTINE

(348

SAVE
ACC+>4

Wie)
IS a5

EXECUTE

CALL

ROUTINE

ENABLE

INTERRUPTS

AT CPU

SET OUTPUT H02

SPA2=0 AT PORT 9

SET OUTPUT H0O1

SPA1=0 AT PORT 9

SET OUTPUT H00

SPAO = 0 AT PORT 9

EXECUTE

RETN

ROUTINE

SET
TRF =1

COPY COMMON MEMORY RESTOR
ee LOCATIONS
joo W H0C80' TO HOCFF To
4—>ACC PRIVATE MEMORY

LOCATIONS

RE TURN

(40 3)

H0880' TO HO8FF'

FIGURE 7.18 Common memory routine

169

ENTER
CALL ROUTINE

(623)

SAVE DCO

IN ISAR
40 & 44

SAVE DC1

IN ISAR
42 &43

SSA

=SSAtSP

ISAR4 ~<<SSA>>

9 a» << SSAt te

5 << SSA+ 22>

ISARW> << SSA+3 >>

4j><<SSAt4>>

42+<< SSA+5>>

43+2<< SSA+6>>

KU +<<SSAt7>>

KL »~<<SSAt8>>

NEXT EMPTY STACK

(SPs=*SP479)

IS STORED IN ISAR3

RETURN

(662)

FIGURE 7.19 :

ENTER
RETN ROUTINE

DISABLE

INTERRUPTS

AT CPU

ps ae

SSA= SSA+ SP

<<SSA>> —ISAR 4

<<S SAH

<<SSA+2>> —-5

<< SSA+3>>-—ISAR 40

<<SSA+t4>> 74)
<< SSAt5 >> 42

<<SSA+6>> 743

<< SSA+#7>> —>KU

A SSAC > KL

RESTORE

DC1 FROM ISAR 42& 43

AND

DCO FROM ISAR 41 & 40

 \

RETURN

(701)

CALL and RETN routine

170

CHAPTER 8 - SOFTWARE DEVELOPMENT

FOR THE PDP-11/10 MINICOMPUTER

Goi= INTRODUCTION

This chapter covers the software development carried

out on the PDP-11/10 minicomputer, which forms the

supremal control level of the Hierarchical Microprocessor

System Unit (HMSU), intended for controlling the Travel-

ling Load Furnace (TLF). The processors of the HMSU are

required to be activated by feeding them with the necess-

ary <anput. information data (e.g. controller. constants, set

pointe, control modecetc.).for’ controlling the TLF. This

function is performed by the PDP-11/10 minicomputer in

conjunction with the operator of the TLF. For this

purpose, the PDP-11/10 is programmed to accomplish the

following functional objectives:

1. To communicate with the operator in a suitable

language with which he is familiar concerning the control

process of the TLF.

2... To check on the validity. of the operator set

information data.

3. To allow the operator to change any data which is

set cither by default: or by himself,

4. To display the operator set information data.

5. To convert the operator set information data in a

suitable form in order to pass it onto the master process-

or of the HMSU.

7

6. To display the process variables and control

Signals in a graphical representation.

The implementation of the above objectives is based on

the following software development features:

1. Use of the RT-11 operating system for the PDP-11

/10 minicomputer system.

2. Use of the high-level programming language,

FORTRAN IV.

3. Use of a DRI1I-C input-output interface which

provides 16 output lines and 16 input lines.

4. Use of the assembly language of the PDP-11/10, to

write routines which handle data-flow through the DR11-C

interface.

With reference to the above implementation, this

chapter describes the program called 'DCHMSU". The listing

of this program is given in Appendix D.

8.2 SOFTWARE DEVELOPMENT AID

The software development aid provided under the

PDP-11/10 minicomputer system consists of the RT-11 single-

user programming and operating system with either single-

job operation or powerful Foreground/Background (F/B)

capabilities. The system also provides basic program

development aids such as Editor, Assembler, Linker,

Debugger, a librarian etc. <A: detailed description of these

is well documented in the manuals. A general layout of the

software development environment is shown in Figure 8.1.

112

cL
l

PDP 11/10

MINICOMPUTER

OPERATING
SYSTEM fRT11

PRINTER

GT 42

DISPLAY

PROCESSOR

4

TEKTRONIX

TERMINAL

FLOPPY

DISK DRIVE SYSTEM

KEYBOARD

| a | jeesaness

SY:0 Syl

FIGURE 8.1 : Software development environment for the PDP 11/10 minicomputer

For the purpose of this project, single-job operation

is chosen for simplicity. A general development procedure

for generating an executable object code module from a

FORTRAN source program is outlined in Figure 8.2. Ifa

modification to the FORTRAN source program: is, required, «it

is made using the Editor and subsequent compilation and

linking operations are performed on the modified version of

the source program. The process of modification is repeat-

ed until the desired objectives are achieved when running

the final version of the object module.

8.3 PROGRAM STRUCTURE

The structure of the “DCHMSU" program is modular.

Each module is written in the form of a subroutine. These

subroutines implement the functional objectives outlined in

the introduetion...’.The program execution guides the operat-—

or to set the following information as required by the

processors of the HMSU:

1. The gain (k), sampling interval (1), integral

action time (Tj), derivative action time (Td) and the filter

time constant (Tp), which are the main parameters which

determine the values of controller constants K1, K2, K3 and

K4 as given by the equations 6.3.13 of Chapter 6. The

program allows the operator to set these parameters

independently for each of the three controllers of the HMSU.

2. Additionally, the program asks the operator to set

the control mode (refer to Section 6.3.1), the address of a

load in 'zone 0', the conveyor speed, the status of a

174

 FORTRAN ire y

,

PROGRAM INPUT J

SL
L

SYSTEM

LIBRARY

OTHER
OBJECT

MODULES

EDITED FORTRAN

SOURCE PROGRAM
EDITOR

FORTRAN

COMPILER

FORTRAN

COMPILATION
+ ERRORS?

DIGNOSTICS

ERRORS

N

LINKER

EXECUTABLE OBJECT

MODULE READY FOR

RUNNING THE PROGRAM

FIGURE 8.2 : A general FORTRAN source program development procedure

controller (i.e. either ON or OFF), the number of hours the

TLF should run or the number of samples required to measure

and control the temperature of the loads and the set point

temperatures for the controllers.

Having set the above information, the program checks

on the validity of the parameters. For example, it solves

equations 6.3.13 and checks whether the steady state gain,

computed from the values of K1, K2, K3 and K4 is positive.

If it works out to be -ve, the program requests the operat-

or to change the values of the appropriate parameters for

that particular controller. The operator is also able to

alter the value of any wrongly set parameter. If no

information is set by the operator, the program assumes

normal operating conditions for the controllers and sets

the values of the various parameters by default determined

at the initialisation of the DCHMSU program.

Finally, the program works out thevalues of the para-

meters in integers, each integer being one byte (8 bits)

wide. This calculation is essential as these bytes, which

represent the values of the parameters, are passed onto the

master processors of the HMSU via the Intermediate Scratch-

pad Memory Interface (ISMI). Noting that the storage

locations in the ISMI can only store a byte per location,

the program also generates the appropriate addresses of

these locations where each parameter gets stored. In other

words, the program prepares the data for transmission as

requred by the ISMI memory map shown in Figure 7.4 of the

previous chapter.

176

Since the 'DCHMSU" program is written in a high-level

language such as FORTRAN IV, it is easier to comprehend it

from its listing given in Appendix D. However, instead of

presenting flowcharts for the various subroutines, the next

section demonstrates a session run which describes the

actions taken by an operator and their countereffects as

produced by the program execution. Table 8.1 shows the

description of the various subroutines developed for the

program as a whole.

8.8.1 Command Structure

Communication between the operator and the PDP-11/10

minicomputer, when the DCHMSU program is executed, is per-

formed by different types of commands that are available to

the operator. In all five commands have been developed.

The information about these commands is depicted to the

operator at the console when the DCHMSU program is run.

This is.shown in. figure«3.3....When. the, operator, selects,

say a "PAR" command, more information about the parameters

of the controllers is printed out. Thus the effect of the

first command is shown in Figure Set

When a particular input command and its action is

complete, the operator is required to press a “BREAK" key

on the console. This brings him to the command mode and

all the input commands available to him are displayed at

the console. An object code module called IBREAK.OBJ is

used during the linking procedure of all the object modules

required by the DCHMSU program. This IBREAK.OBJ module

accounts for the action of pressing a "BREAK" key.

177

NAME DESCRIPTION

PROGRAM

"DCHMSU'

SUBROUTINE

OP INFO

SUBROUTINE

CHANGE

SUBROUTINE

CALCU

Under this title the following subroutines are compiled

- 1. System library routine: "PRINT"

- 2. Subroutine: "Q" - A question-answer subroutine

that requires passing of two parameters:

lst parameter - A question in quotes

2nd parameter - An answer as integer

- 3. Subroutine: "CONST" - Requires passing of five

parameters:

(a) Gain - GKX

(ob) Sampling interval - TX

(c)integral action time — TIX

(d) Derivative acting time - TDX

(e) Filter time constant - TFX

(where x = either 1 or 2 or 3)

- 4, Subroutine: "LIST" - This subroutine lists the

descriptions of the parameters and requires no

passing of any parameter.

This subroutine prints out the operator set inform-

ation. Makes use of the following common blocks;

cule eBhock d. — Gl. (C2 7634 CM

=(2) Block 3..-.GK1.,. GK2¥ GK3; .T1,“f2,, 8a, Til; Tr2,
TI3, TDIVSTD2, TD3; TF1,,. RZ, TFS

= 3, Blog. 4, — LA,’ NS,.MS,. Ri) aSPl',. ESh2,.1SP3

And it uses a system library routine: "CLOSE" for

closing output buffer for the printer.

This subroutine allows the operator to change the

value of any parameter described by the "LIST" sub-

routine. It uses the following common hlocks;

- 1. Block 1 as described above

= 2. BLOCK 2.—,NOC1, “NOG2;. NOCS

3. Block 3 as described above

4, Block 4 as described above

Makes use of EQUIVALENCE statement.

This subroutine calculates the values of controller

constants given by equations 6.3.13. Requires input

parameters: GK, T, TI, TD and TF.and output parameters;

XKI eRKZ), MSs anduxXK4 |

(Note: This subroutine is compiled along with the

Program DCHMSU)

CONTINUED/,..

TABLE 8.1 : Subroutine modules for the DCHMSU program.

178

TABLE 8.1 (continued from previous page)

NAME DESCRIPTIO,

SUBROUTINE

SUBIR

SUBROUTINE

SEND

1, This is a number crunching subroutine. It uses

common block 5 —- XK, IXK, makes use of equivalence

statements. It converts fractional values of con-

troller constants into binary (byte) fractions,
their octal equivalents and integer equivalents and

prints them out. This subroutine is exclusively

used during development only.

2. This subroutine calls an assembly language sub-

routine called NUMB. This NUMB subroutine is mainly

used for assembling the decimal equivalent of a

binary iracttongas: ‘O's and ‘its:

3. This subroutine also calls a system library routine

called "CLOSE" to close the output buffer for the

printer.

This subroutine assembles various values of parameters

and their corresponding addresses (required by the

ISMI) into two integer arrays of 64 dimension (note:

the input channel of the HMSU i.e. ISMI has 64 memory

locations). The routine also prints out these integer

arrays. This feature is used only during the develop-

ment phase.

It uses the following common blocks:

- 1. Block 2 as described previously

2. Billocks sa. x a

Sy Bloek'4: i! u ¥

= 42 Blocks) —" " E

5. Block 6 —' KEM, IRCPS, IRFPS,. IWCPS, LWFPS

6 7 BLOCK /.—=3LSA,20SD, PRUN

It also makes use of EQUIVALENCE statements.

3

The second command in Figure 8.3 displays the default

values of the parameters as shown by its effect in

Figure 8.7. These default values may not necessarily match

with actual values required at run time. For example, the

load, address im Zone, 0; may~not.be. 'O%.2 tence, a VSETY

command is required which enables the operator to set the

different parameters. The effect of the “SET" command is

demonstrated in Figures 8.3 and 8.4. To check and compare

the new values of the parameters with their default values,

the operator makes use of "DIS" (fourth command in the run

sequence) comnand. Thus, changes made in the parameter

values may be-compared from Figure 8.7 (i.e. effect of

second command) and Figure 8.8 (i.e. effect of fourth

command). Note that the status of controller no. 2 has

been changed to "OFF". However.,, its "Set point and default

constants are not altered.

In order, to: change: an: undesired value; of..a parameter,

the operator can make use of "CHA" command. This command

allows the atc tor ce directly specify a particular para-

meter. When such a parameter is specified by its name, its

current value is displayed on the console and the operator

is asked tosspecify its new value... The operator is also

asked if he wants to change any more parameters; a "Yes"

answer sets him in the "CHA" command loop and a "No" answer

brings him back into the general input command mode. The

effect of a "CHA" command (the fifth command in the run

sequence) is shown in Figure 8.5.

The sixth command used by the operator in the run

sequence is again a "DIS" command, the effect of which is

180

shown in Figure 8.9. This may again be compared with the

effects of fourth and second "DIS" commands.

Finally, the seventh command in the run sequence is a

"CON'' command which continues the rest of the program.

This command is mainly included for development purposes,

in order to display the number-crunching process described

in daple &.1. Ihe ¢iieect*of* this. tommand is to: point

various computed values of controller constants (i.e. K1,

K2, K3 and K4), the steady state gain of the controllers

etc. ‘This éffect is shown in Figures 8.9.and: 8.10.

624. CONCELUSTON S

This chapter illustrates the state of the program

developed onthe PDP-11/10 minicomputer. There is plenty of

scope for further developments on this program. For

example, the functional objective no. 6 mentioned in the

introduction needs implementation, the "CON" command needs

modification so that the communication between the HMSU and

the PDP-11 is established via the ISMI Interfaces and the

DR11-C interface. The program development is not complete

for the reasons mentioned in the conclusion sections of the

previous two chapters. It may be possible to use the

Foreground/Background capabilities of the PDP-11 minicomputer

so that the operator's communteation program is run as a

foreground job and the graphic display of process variables

and their control as a background job, with facilities for

displaying any desired zone-temperature profile in real time

operation. However, this requires further work.

18]

»

*RUN DCHMSU
SOR RO OR ARO ORO OOO a kok kok kak ak

THE FOLLOWING INPUT COMMANDS ARE AVAILABLE

Clo: "DIS" > "PRINTS. OUT: OPERATOR SET: INFORMATION

C2] “SET"- OPERATOR CAN SET THE PARAMETERS

C3] “CON’- PROGRAM CONTINUES

C4] "CHA'- OPERATOR CAN CHANGE THE PARAMETERS

Eo] “PAR - PRINTS OUT THE LIST: OF PARAMETERS

- PRESS RETURN KEY AFTER ANY INPUT COMMAND

FRICKE RK KK OK

ae Sy

f __ PAR <—————— —— —— 2 <1st Command
DIS ~« —"Pnd Command

a oo oe —_ ———— 3rd Command
a SELECT THE CONTROLLER NO - €1-E* 1 OR 2 OR 3) oe

. | en

N DO YOU WANT CONTROLLER-1 TO BE ON ?
.
SPECIFY CONTROLLER-1 SET POINT

| 120
SPECIFY CONTROLLER-1 CONSTANTS
GAIN

0-93
SAMPLING INTERVAL ‘
oar. Effect of 3rd
INTEGRAL ACTION TIME

90-9 Command
DERIVATIVE ACTION TIME a

32-2
FILTER TIME CONSTANT

33-2 }

DO YOU WANT CONTROLLER-2 TO BE ON ?
N
SELECT THE CONTROLLER NO - C(I-E- 1 OR 2 OR 3) a
3 ey,

DO YOU WANT CONTROLLER-3 TO BE ON ? y Ay
SPECIFY CONTROLLER-3 SET POINT j

202 i. V's

FIGURE 8.3 : Session run of the DCHMSU program (Input/output

appearing on the console)

182

SPECIFY CONTROLLER-3 CONSTANTS
GAIN

B.875 |
SAMPLING INTERVAL |

32-0
INTEGRAL ACTION TIME |

94-2 |
DERIVATIVE ACTION TIME

30-0
FILTER TIME CONSTANT

32 -@ c
Wht C Wk t DE FO! N r 2 y ae 1S THE CONTROL MODE FOR CONTROLLRRS? Eredar ges

WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-@? Command
2
SPECIFY THE NUMBER OF SAMPLES Continued

12g
SPECIFY THE MOTOR SPEER

o
SPECIFY THE RUN TIME FOR THE (RURNACE
IN HOURS - CINTEGER VALUED

2
PRESS BREAK KEY NOW
RK A AK A A A OR ROKR RK ROK ROR ROR ROK OR ORK ROK KK ORK K
THE FOLLOWING INPUT COMMANDS ARE AVAILABLE | Effect of
Cl] “DIS"- PRINTS OUT OPERATOR SET INFORMATION | pressing
[2] "SET'- OPERATOR CAN SET THE PARAMETERS _ Break Key ES). "CON" = -PROGRAM. CONTINUES

C4] "CHA'- OPERATOR CAN CHANGE THE PARAMETERS

[5] "PAR" = PRINTS OUT PAE LIST OF. PARAMETERS

- PRESS RETURN KEY AFTER ANY INPUT COMMAND

SRO ROOK GOI RA a Ka a a a KK KK ok kk
DIS << ‘4th Command

FIGURE 8.4 : Session run of the DCHMSU program (continued)

183

 CHA ~€ Sth Command —
SPECIFY THE PARAMETER YOU WANT TO CHANGE A :

RH

THE CURRENT VALUE OF RH =

SPECIFY THE NEW VALUE OF RH

4

ul

DO YOU WANT TO CHANGE ANY MORE PARAMETERS?

¥
SPECIFY THE PARAMETER YOU WANT TO CHANGE

ce

THE CURRENT VALUE OF C2 =0N
SPECIFY THE NEW VALUE OF C2
OFF :

DO YOU WANT TO CHANGE ANY MORE PARAMETERS? as : :
Effect of SPECIFY THE E 1 ANGE ey THE PARAMETER YOU WANT TO CHANGE 5 tl Command

THE CURRENT ‘VALUE OF C2 =OFF
SPECIFY THE NEW VALUE OF C2
ON

DO YOU WANT TO CHANGE ANY MORE PARAMETERS? | : “

SPECIFY THE PARAMETER YOU WANT TO CHANGE
Tea9k

THE CURRENT VALUE OF T22 =ON
SPECIFY THE NEW VALUE OF T22
ON

DO YOU WANT TO CHANGE ANY MORE PARAMETERS?
7
SPECIFY THE PARAMETER YOU WANT TO CHANGE

+2 .

THE CURRENT VALUE OF T2 = 39.909
SPECIFY THE NEW VALUE OF T2
35-20

DO YOU WANT TO CHANGE ANY MORE PARAMETERS?
N
PRESS BREAK KEY _ ae
FRR RO KOK ROKR ROR OOK ROR ROK OKO A OR KK KKK CK ie
THE FOLLOWING INPUT COMMANDS ARE AVAILABLE RPPect of >
C1] “DIS"- PRINTS OUT OPERATOR SET INFORMATION pressing |
C21 "SET"- OPERATOR CAN SET THE PARAMETERS Meek cass
C3] "CON"'- PROGRAM CONTINUES

C4] “CHA'- OPERATOR CAN CHANGE THE PARAMETERS
C5]. “PAR"= PRINTS OUT THE LIST OF PARAMETERS

~- PRESS RETURN KEY AFTER ANY INPUT. COMMAND
FCIAC IO ICA KOK

FIGURE 8.5 : Session run of the DCHMSU program (continued)

184

is

DIS = “6th Command
SEO OR OOOO AIK | :

THE FOLLOWING INPUT COMMANDS ARE AVAILABLE :

Cl] "DIS"=- PRINTS OUT OPERATOR SET INFORMATION Effect of

C2] "SET"- OPERATOR CAN SET THE PARAMETERS

pressing
[3] “CON'"- PROGRAM CONTINUES Break Key

C4] “CHA'- OPERATOR CAN CHANGE THE PARAMETERS

[5] “PAR"- PRINTS OUT THE LIST OF PARAMETERS

- PRESS RETURN KEY AFTER ANY INPUT COMMAND

FOI IK OK OOK ORR OR IG RG OK IGG aK aK aK KK ak a ok kK >

CON ~€ - 7th Command

STEADY STATE GAIN SG 1= 3-831 Partial effect

STEADY STATE. GAIN. SG = 9-819 of 7th Command

STEADY STATE GAIN SG 3= BeB27 appearing on

STOP -- console,

4

FIGURE 8.6 : Session run of the DCHMSU program (continued) -

185

ieee

Pope SB is ope oe ie og ce ee i ce fee oe ek oe et ob i ee ie od te oe

my J

meg
'

HT
TRH

RMATI

ry
2

a)

Ey

VLR i

ET F

GAIN

regi

¢

see ce oe co oe ce oe coe oe oc he ds oe ode it oh ok oe te ok ok oe ee oe ok ce ok eo oo oo eit et de ods oe cc ce cco dc ds ht os os oo

-
ms

wm
a
a

Se i

i i
af

cht
co

oe
E-

sea
3

ome
=

nee
eu

‘

EED—------------~-~- +--+:

tthe

“
ee NO-3

{
2

the

iF

POINT

va
1

mot
ante!

ae
yt

a
at

a
my

a:
yr OI ate I io ae a

on
eo
eect

eEEh

i

i
 = _

mu

et
re

ue

i
r

mo

a

Li]

yt
in
Te
P
eu

=
it]

SedB ok oh oe oe i oe ec ie i

shebch shhh kok ok

86]

toh dck sh ck sec se ssi ch skh sk ick +

Print-out during the session run of the DCHMSU program FIGURE 8.7 4

+. > ae
& ea
ee
ie =z a 5 x ake
te

oe
ie
ie ae a a aes
Ca ae

veges oo oo fe oe of feof of oak oe okok de ake ok ok eR

SRE Hed ob oe soi sok et ot is is ot oe oo ok ae se ok es oe

BE wm em ae a a a a ee ee ne hi
i ik IMTR aay

han? Sa!
i §,

Effect of

Ath? |

uo

Command
hdd i

Love

o
3

rire

Gs

bry

b NM

SOLLER:

E

Hamann:

INTE CO

TN

es
es
wo
tt

sais
tat
iT

en
era

i
es
wei
i
i

art

fsbsick obs ck ick

the session run of the DCHMSU program

187

Print-out during

(continued)

FIGURE 8.8

fckchok sh seach sk kok deck shoe

45) th a of thskchokshckhsechkcci ck

PLAY OF OPERATOR =

PALTIAL LORD ADDRESS IN ZONE @--- = a

| ES A OPIE ET Lach Oconee ent ere orem 18S
|

ti

| ‘MBTOR SPEED------—-~----—-~—--~—--———; a |

SET POINTS------------: LAA 58 oan S

| CONTROLLER CONSTANTS
ie ;

ee ee rs a. ASG @ ars

| *

SANREING ITNTERVAL----— : oo. BG 25 aan 23 8OR |

SECONDS
| a

INTEGRAL ACTION TIME-- 38. BEG 3H BRE 3H. BES | :

DERIVATIVE ACTION TIME 2h. GEG 28. 998 =A Age ;

2H, BEE 4

Se sR se vi sh ese tt os oh
EM OF LMPuRMAT LUN EHEreeeanoremamanncmericscississkaktay
 — — —

fe
te

 5

8. BS? 24. 24 Bi 8. 462

8. Boe ~B. 8s 8. B22 a. $62

a. 8e9 ~8. 441 a. 484

STEADY STATE GAIN Effect of
STEADY STATE GAIN Tth ae
STEADY STATE GAIN = Command.)

NUMBER OF SAMPLES= i
RUM NUMBER—1RUN= eae

ACTUAL RUN TIME OF LL BE= 4HRS: Z8MINS. i
ACT3 FRACTIO INARY FRACTION OCTAL Eau INTEGER Eau
a. BaF a. BSF Bao LeeS 28 24 be

-0. 447 B. 447 AAG11io4 25 29 ie
a BE? 8. G2? BARaLAaL ti 3 :
& de a, Biiisiie 166 448
a Be a2 anaaiiid 1? 45

-~f, APE a. 8 AGRLEGL 22 18
a. 822 a a: SRRBRLA4 5 5
& 462 a. 4 Bi11e4i8 166 4146
a. aes 8.8 AGALB11e 26 a2

~. dit G. 4: AaeLALae 24 Ze
8. 826 8. oe ABAaLEaL 44 3
& 454 a 4 Biiiisid <72

 E
 be
t i ur

i

|

7

FIGURE 8.9 : Print-out during the session run of the DCEMSU program , eS
(continued)

— h 188 ye : : : i - * ‘

Address Parameter

m
m

at
AE

a}
ce

oad
ed

fl
Cd

tl

Ty
of,

0
he

rae
to

o
f

a
f

| c
e
d

o
l

of
<
i

<
4

*
ix |

un
at es

x

[.

a

e
d

ord
e
d

oot
a
F

ad

M
i
m
e

Ho
yy

Oo
i

oo

wrt
al
ad

Gi
ty

ty
eu Ph

oe
Lo

bg
te

ag

eciel
eee

sia
Taal

OEa
he

ace
eee

Era
e
e

Ce
ee

Ea
aes

Re
he

EE
Ee

w
h
o

ed et od

Ol
ck

+1
eit

ee
geet

Fl
o
c
t

obiet' <

yoy
e
m
!

Lon Lun

©

aa

© & o At
By Print-out during the segs

of the DCHMSU program (continued)

189

CHAPTER 9 - DISCUSSION

Gee, SINE ROD Cal LOM

In a modular multi-microprocessor system development ,

it is desirable to develop a piece of hardware and/or soft-

ware, which forms a small subsystem of the whole and to

test it: for its behaviour. and performance. The’ tests

generally reveal the correctness of the design of such a

small subsystem and any modifications necessary to improve

its design and performance. These individually tested sub-

system modules, when assembled to produce a complete

system, tend to create less problems during their

integration phase of the development.

This chapter is aimed specifically at this aspect of

testing: In particular, it discusses. the testing of hard-

ware and software modules for the HMSU and the software

modules for the PDP-11 minicomputer. Each module under

test is described with the following common features:

1: ‘The object.of: testing arparticular:module.

2. The experimental. or test arrangement, circuit

diagram, program listing etc.

37> The, outcome of the test.

The following sections describe various modules under

test with the above features.

9.2 SIMULATION OF MICROSWITCH INTERRUPTS

This simulation is carried out with the following

objectives:

190

1. To test for a parallel data transfer between the

two F8 processors via their bidirectional Input/Output

Pporus.

2. To test a sequence of F8 assembly language instruc-—

tions that handle external interrupts.

3. To test a sequence of F8 assembly language instruc-

tions that handle the updating of load addresses as the

loads travel through the Travelling Load Furnace from one

zone to the next. A load address is changed after six

microswitch interrupts.

In order to achieve the above objectives, two identical

"F8 Evaluation Kits" were employed and the simulation set-up

using these. kits is. shown’ in Figure 9.1.:-A brief descrip-

tion of the F8 Evaluation Kit is given in Appendix B. The

F8 cross-assembler available on the MAXIMOP system, mention-

ed in Chapter 7, is used to develop assembly language

programs shown in Figures 9.2 and 9.3. The paper tape

versions of the object code generated for these two programs

is. loaded, into: the RAM. memory of each processor:....That is;

PROGRAM 1 is loaded in Processor 1 and PROGRAM 2 in Pro-

cessor 2 respectively.

The "PROGRAM 1" shown in Figure 9.2 makes use of the

external interrupt line available onthe SMI (Static Memory

Interface)..chip. . Tre program initialises the interrupt

control ports on this chip and loops: into an idle loop,

enabling interrupts at the CPU. When an external inter-

rupt is received from Processor 2, the program reads in a

191

Z6
L

uN Nee o
it F8 : F8
© — EVALUATION © EVALUATION PO

RT
-1

Le

e

;

KIT KIT

PROCESSOR-2 | PROCESSOR-1

INTERRUPT | bPROG 2) si | | (PROG-1) AE
EXT = EXT =

FROM Boe eer ae 9 a S

MICROSWITCH

Tey

FIGURE 9.1 : Simulation set-up for microswitch interrupts using two identical F8

Evaluation Kit processors

“LIST STOR” Tycnuiew eRe
FIELD TRIAL: PLEASE INFORM DR.A.C.DAVIES OF ANY ERRORS

DATE 08/06/78 TIME 14.47.02

MOSTEK F8 CROSS ASSEMBLER THE CITY UNIVERSITY

LONDON» EXPERIMENTAL VERSION MK3

ORG H*O404°
PUNCH ON

as TTYOUT EQU H'O35D*
** ADVICE: REPLACE LI BY LIS
O404 20 OF Ee ' H'OF!
0406 53 LR [CBs6
O407 67 LISU 4
0408 6F : LISL 7
0409 54 LR AsA
O40A 1F ee INC
O40B 56 oN 6A
0400 75 LIs 5
O40D BC OUTS H'*'OC'
O4OE 20 80 LI H'so?
0410 BD OUTS H'toD?t
0411°71 LIS 1
0412 BE. OUTS H'OE?
0413 1B LOOP EI a
O414 90 FE BR LOOP

_ ORG H'0580'
0580 70 es 0 ;
0581 BE OUTS H'OE!'
0582 73 : iS 3
0583 B6 OUTS. 6
0584 AO INS O°
0585 50 LR OsA
O586 14 SR A
0587 24 30 al H'30°
0589 52 LR 2yA
O58A 28 04 AO PI CHK
O58D ‘42 LR “Ay 2
O58E 58 LR O BsA
O58F 40 LR AsO
0590 15 SL a
0591 14 SR oe
0592 24 30 Al H*30°
0594 52 LR 2,4
0595 28 04 40 “BT CHK
0598 48 LR As8
0599 5¢ : LR SsA
059A 1B ee
O59R 28 03 5D PI TTVOUT
O59E 42 LR As2
O59F 5¢ te SoA
0580 1B . FI.
O5A1 28 03 5D PI TTYOUT
O5A44 20 20 - it Hteor
OSA6 5C | ee LR SsA
O547 1B EI
0588 28 038 5D | PI Tour
O5AB 33 DS 3
OSAC 64°03. . oe LOAD

OSAE 90 12 | BR STOP FIGURE 9.2 : PROGRAM-1 for

ee Se es ae a ee icc O5B2 SC’ LR SA processor of Figure 9.1

O5B3 1B EI a i
O5B4 28 93 5D. : PI cS TyOuT

13

O5B7 20 OD | TT a
05B9 5c ales Sn
O5BA 1B “ EI
OSBB 28 03 5D: . PI TTYOUT
**ADVICE: REPLACE LI BY LIS
‘OS5BE 20 oF ao H'OF®
0500 53 | Rao) 3,8
O5C1 70 STOP) si hs 0
o5c2 BS’ NUTS 5
6503 86: — P OUTS 6
O5C4 BO ouTS Oo
050571 - LIS 1 55
O5C6 BE OUTS, HtOn*
0507 29 04 13 : JMP LOOP

ORG H'0440'
*CHK SUBROUTINE FOR CHECKING A TO F HEX NUMBER

N440 08 Pe re a ae K,P
O441 42° ' ie As2. :
0442 23 °3Aa Xt tant
0444 84 1C _ BZ A ;
O446 42 LR As2 é ce
0447 23 3B XI H'*3Bt
0449 64 1c > BZ B
O44B 42 LR A,2
O440 23 3¢C XT H'3C"
O44E 84 1C BZ Cc
0450 42 Le As2
0451 28 3D XI H'3p*
04538 84 1C BZ D
0455 42 LR As2
0456 23 3E XI H'3E*
0458 84 ic BZ E
O45A 42 LR As2-
O045B 23 3F XI H'SF?
O45D 84 1C Blo Ee
O45F 90 1D. BR cout
0461 20 41 = A KI Hai
0463 52 LR 2,8
0464 90 18 BR COUT
0466. 20 42. B Lr H'4e2"
0468 52 ; LR 25A
0469 90 13. BR COUT
046B 20 43 ‘Ct LI H*age

O46D 52 LR 2,8
O46E 90 OF BR COUT
0470 20 44. D Gi Haat.
0472 52 LR By h :
0473 90 09 BR ‘COUT ‘ ee 0475 20 45 E LI H'45° “|
0477 52 LR 254
0478 90 04 BR COUT
.O47A 20 46 F Ly H'46"

_ 047C Se LR 22A -
O47D OC COUT PK . RETURN.

END OF ASSEMBLY
NUMBER OF ERRORS= 0

A 0461 B 0466 C 046B CHK 0440 COUT 9047D D 90470 E 0475 F 047A LOAD O5B0 LOOP 0413 STOP 05C1 TTYOUT=035D

TIME ELAPSED 1.05 MINUTES —° = FIGURE.9.2 (continued) |
CHANNEL 2 Now 40 BUCKETS
CHANNEL 7 NOW 10 BUCKETS

194

28-288+5e- LIST stue
FIELD TRIAL: PLEASE INFORM DR As Cs DAVIES oF! ANY ERRORS |

DATE 08/06/78 TIME 14.0061 4
_ MOSTEK F8 CROSS ASSEMBLER THE CITY UNIVERSITY
LON DON» EXPERIMENTAL VERSION MK3

one #0500!
| ' PUNCH ON. i Se

0500 2A O7 00 C DCI H*0700! , -
0503 76 LIS 6 :
0504 17 . "BT |
0505 BC . OUTS. .H* OC’
0506 20 3 a: Hiss)
0508 17 | S
0509.70 | Li

“P50A BS ~ 8
Be20.60, ¢ i

E71 LIS
OF RE DUES HIDE!
10 18 LOOP . EI

511 90 FE

y
O
 3

LOD
mt

5
e
e

U
O

LOOP “}

(=I

o
 a

2 ORG” H'0680!
0680 2A 07 00 DCI H'0O700°
0683 16. LM
0684 50 . LR 02 A

0685 30 DS: 0
0686 B84 08 BS LOAD:

0 688 AO LR AsO
. 39, BA 07 OD Des H*0700"

OE Se
Ip 90 20 RR SEND
sF 76 1 LOAD Lis 6

590. 2A 07 00. PCI H'O700"
+ <r

RB

eG Ba
90 04 BR MOD
29 05° 10 NOMOD

JMP:. LOOP

iV é MO”? LM :

50 : LR gers

30 ps

C 40 es LE
D69D Poe at Cr

O69F 84 08: RY,
O6AlL 2A O07. O1 pel
0684 AO as Lo
U6A5< 27) or

0686 90 07 Cee BR
06A3 20 3F RECT Lt

2A 07 01 DCI H*O701"
a a.

OG6AE 70, SEN D LIS 0 :
QO6AF Bl ‘OUTS, % wes 50)
O6R0-.2A 07 O01 DCI H*O701"
O6BS. 16°" i LM .
O6RB4 RI OUTS 1
O6B5 71 ae at
O6R6 BO BUTS. ~26
OGET CB NOP
0688 2B NOF

-O6R9 70 Lic 0
O6BA BO BUTS 0 :
O6BB 90 DA BR NOMOD

END OF ASSEMBLY
NUMBER OF ERRORS= 0

LOAD O68F LOOP 0510 MOD 0699 NOMOD 0696 RECT 0688 SEND Q6AE

“t
h

TIME ELAPSED 1260 MINUTES
CHANNEL 2& NOW AO BUCKETS
CHANNEL 7 NOW lO -BUCKETS

i“ ; a

FIGURE 9.3 : PROGRAM-2 for the F8 Evaluation Kit Processor 2 of Figure 9.1
195

0K 404

toon 36 356 37 ST O37 27 37°37 66 36 86 36: 36

ae so 3S. So 00 35-34-34 34 34' 94 34-938 33°33

we 6 on. oe Ge 3o 92 38, 32:31 °31 S1..31 3) 21

90 30°30 39 30 OF SF 2F OF eF OF SE OE 2b er

eh 20 2D ep 2D:2D 2D BC aC SC ec SC SC Bk a8

2B 2B 2B 2B 2A 2A 2A 2A 2A 2A 29 29 29 29 29

a4 86: 26 28 88 2828 27-27 27 27 B/ A026 26

26 26 26 26 25 25.25 25 25 25 24 24 24 24 24

24°23 238 26. 23-23 23 22 28, e8-Be ao ae aecae

Sf OF SFO Sr GE 3E SE SE 3B.3E oD 3D 4D Gn an

3D 3C 3C 3C 3C 3C 3C 3B 3B 3B 3B 3B 3B 3A 3A

3A 3A 3A 3A 39 39 39 39 39 39 38 38 38
« 38 38

WO Oh ot 3737 37.37.36 36" 3636 35.35 Gavac

Os 34°44 34 34 34 34 33 35 3a 33 33°93 @2.762

$2.80. Ga Sa, 31-31 31 31 30.3030 30 2k 2h en

ob 2P 2h en OF 2k 2 Sk RE 2D 2) ep el) 2.2.

eC 2C 20 @C eC @C 2B 2B 2B QB 2B 2B 2A 2A oA

°E 404

"ch. BA 2A 29 29.29 29 29 29/28 86:28 25 2h oe

e7°ay 87 87: 27 827 26 26 26 26.26 26 25 25 25 |

-25 25 24 24 24 24 BA 24 23 23°23. 2g-23-93. 20

22 omcee a2 82 OF. OF OF SF. SF SF SE Se gGraae

[oe Se SD 3D 6D 30 SD Sb. SC 3C.-30 SE So 201 se

“3B 3B 3B 3B 3B 3A 3A 3A 3A 3A 3A 39 39 39 39

39.39

FIGURE 9.4 : Simulation output for the set-up shown in Figure 9.1

196

byte pattern on Port O and converts its lower and upper

four bits into ASCII. characters,.: corresponding to the hexa-

decimal numbers and prints them out onto the TTY using a

TTYOUT routine available on the 3851 PSU (Program Storage

Unit). chip of Processor 1.. The program execution thus

prints a hexadecimal number corresponding to each byte

received on Port O, per external interrupt received from

Processor 2 .

The PROGRAM 2, shown in Figure 9.3, also makes use of

the external,interrupt line available on: the. SMI chip of

Processor 2. After initialising the interrupt control

Ports ONwinis Gain, thesprogram loops: into an Ide loop,

enabling interrupts at the CPU. When a manually generated

external interrupt occurs, simulating an interrupt due to

the closure of a microswitch, the program generates a load

address and outputs it on Port 1 and also ouputs a

Sequence, “H.O1' followed by H'00": on Port, 0. The*output

sequence on Port O causes an external interrupt generation

which is linked to the external interrupt line of Pro-

cessor 1. The output load address is changed only when

Processor 2 receives six external interrupts. This is

because a load is assumed to pass through a heating zone

Of, the, FLPowith ‘six discrete positions *(Catiin, 1072).

During. @he testing procedure; PROGRAM 2 1s initially

loaded into Processor 2 and set into execution using the

Execute command available on the F8 Evaluation Kit's DDT-1

(Designers. Development: Tool-—l) program... Then the TTY is

switched to Processor 1 and its PROGRAM 1 is loaded and set

1Q7

into execution. Then a manually generated external inter-

rupt.at Processor. 2 causes. Processor 1 to print the load

address. The resulting output of the simulation set-up is

shown in Figure 9.4. Since there are only 30 loads, it may

be noted that the load address changes from H'30' to H'2F'

to account for the recirculation of the loads.

9.35 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACE

The Intermediate Scratchpad Memory Interfaces (ISMI)

used as a buffered communication medium between the HMSU

and the PDP-11/10 minicomputer are initially tested using

two identical F8 Evaluation Kits. The objective was to

test the hardware of the ISMI circuit boards. The test

arrangement is shown in Figure 9.5. In the Figure,

Processor 1 is used as a transmitter and Processor 2 is

used as a receiver. A teletype (TTY) is used to load and

execute the programs loaded into the RAM memory of each

processor.

During the testing procedure, a program shown in

Figure 9.8 is executed on Processor 2. This program clears

64 RAM locations (with address from H'0500' to H'0540"') of

Processor 2. This clearing operation is performed because

the receiver program, Shown in Figure 9.7, when executed

uses these locations to store data it receives from Pro-

eessor 1. via’ the: ISMI interface.“ The TTY is then switched

over to Processor 1 and the transmitter program shown in

Figure 9.6 is executed. This program sends arbitrary data

via Port 1 ‘to the ISMI. ‘The 64 locations: of the, ISMI,

where this data is stored, are addressed via Port 0. The

198

66
1

 PROCESSOR -1

F8
DATA

 POR
T

1

a

|

EVALUATION KIT

TRANSMITTER

PROGRAM
PO
RT

0
ADD

>
[port 5] [PorT4|

re elma” |

64X8 BIT

LS MI

MEMORY

° PROCESSOR -2
pata |

o F8
EVALUATION KIT

pee eh
ae - PROGRAM

oO
a

 [port4| [Ports]
A

os

FIGURE 9.5 : Arrangement for testing ISMI using two F8 Evaluation Kits

400
401

403
404

406

407
409

AOA
40B
A0c
40D

AOE
AOF
410
411
412

413

414

415

416

417

419
ALA
41B
4c
ALD
41E

70

20 40

50

20 FF

51

20 FF

52

70

BO

Bl

B4

71

BY

41

Bl

42

BO

31

32

30

94 F2
710

BO

Bl

B4

B5

29 00

FIGURE:9.6 :

CLR

LI

LI

LI

LOOP LIS

ouTS

ouTS

OUTS

LIS

OUTS

OUTS

LR

OUTS

DS

DS

DS

BNZ

LIS

ouTS

OUTS

OUTS

ouTS

00 JMP

Ht4ot

0,A

Htrrt

1,A

Htrrt

r
e

P
R
P

BR

F
O

Oo

X
 hd

~ nM

No
F
 6

*0000'

CLEAR ACCUMULATOR.
64 COUNTS STORED IN
REG 0+
ARBITRARY DATA STORED IN
REG le
ISMI ADDRESS STORED IN
REG 2.
CLEAR PoRTS
tor

yt

AND *4'.
STROBE TO OPEN
BUFFERS OF ISMI.
MAKE DATA AVAILABLE
AT PORT '1!,
MAKE ADDRESS AVAILABLE
AT PORT tot, }
DECREMENT DATA,
DECREMENT ADDRESS,
DECREMENT COUNT.
IF NOT ZERO, RETURN TO LOOP.
CLEAR PoRTS
tor

tyt

tat

tht,

RETURN TO DDT — 1.

"Transmitter" program for Processor 1 of Rrcuce: 3925

200

400

401

404
406

407
409
40A

40B

40c
40D

408

4OF

410

411

Ai2

413
414
415
416

418

419
AlA
41B

41€

41D

FIGURE 9.7

600

602

603

606

607

608

609

60B

FIGURE 9.8

70

2h 05

20 40

50

20 FF

51

710

BO

Bl

B4

71

BA
Al

Bl

AO

a

31

30

94 F3

70

BO

Bl

B4

B5

29 00

20 40

50

2A 05

70

17

30

94 FD

29 00

CLR

00 DCI

ds

LI

LOOP LIS

OUTS

OUTS

oUuTS

LIS

ouTS

OUTS

INS

st

DS

DS

BNZ

LIS

outs

ouTs

OUTS

OUTS

00 JMP

LI

LR

00 DOT

LIS

LOOP ST

DS

BNZ

00 JMP

Figure 9.5

H'0500?

H'4ot

0,A

H'FF?

1A

oO

O
n
e

>

P&er
Y
B
e

GS

re

0

LOOP

0

0

1

4

2

H*oooot

Ht4ot

O,A

H*0500*

0

0

LOOP

Ht 0000!

201

CLEAR ACCUMULATOR.

LOAD DATA COUNTER WITH 0500.

64 COUNTS STORED IN

REG 0.

ISMI ADDRESS STORED IN

REG 1.

CLEAR PORTS

10?

yt

AND '4'.

STROBE TO OPEN

BUFFERS OF ISMI.

MAKE ADDRESS AVAILABLE

AP PORTE TLS,

INPUT DATA AND

STORE AWAY.

DECREMENT ADDRESS.

DECREMENT COUNTER.

IF NOT ZERO, RETURN TO LOOP.

CLEAR PORTS

tor

he

‘gt

15,

RETURN TO DDT—1.

: "Receiver" program for Processor 2 of Figure 9.5

64 COUNTS STORED IN

REG 0.

POINTER AT 0500.

CLEAR ACCUMULATOR.

H'00' STORED IN 1ST LOCATION

DECREMENT COUNTER.

IF NOT ZERO, RETURN TO LOOP.

RETURN TO DDT-1,

: Program to clear 64 locations of RAM of Processor 2 of

TEY:is* then switched: over to’ Processor 2 and. the,receiver

program is executed. This program reads the 64 locations

of the ISMI and writes them into locations from H'0500' to

H'0540'. Since the data generated by the transmitter pro-

gram is known, the same data should be output if the con-

tents of* locations H!0500"-46-H"0540" are printed out using

the DDT-1. program. All the programs (i.e. Figures 9.6,.9.7

and 9.8) were fairly short. They were hand-assembled and

the paper tape versions of these were produced for testing

another identical ISMI circuit board... The test was success-—

ful for both the ISMI circuit boards which proved the

correctness of the same. Since the test was fairly simple,

the results of the test are not included.

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES

Since the master and the slave processors of the HMSU

are built using the F8 microprocessor chip set, any applic-

ation software required for these processors is required to

be embedded into PROMs. Indeed it is difficult. to test the

hardware of such a processor without any software. The

availability of the DDT-1 program on 3851 PSU ROM chip

allows some testing of the hardware of the processor. For

example, the read and write capabilities of a RAM memory may

be tested.

In case of the F8 microprocessor system, the CPU

executes its first anstrietaon, which is:stored.at H‘O000° ,

after the reset action. Hence, any application program

must begin at this address. The DDT-1 program on the 3851

PSU ROM chip does start at H'0000'. However, this means

202

that this chip cannot be used in the final system as the

controller program stored in PROMs should also start at

H'0000'. This requirement makes the testing of the hard-

ware of the processor a complex task. However, this prob-

lem is overcome by using a PROM simulator. A test setup

using a PROM simulator for the master processor and the

DDT-1 program for one slave processor of the HMSU system is

shown in Figure 9.9. The objectives of the test are as

follows:

i. To vest the chip select, (Gs) ‘logic. for the PROMS,

the Private RAM memory and the Common RAM memory.

2. Tottest the master I/O interface which controls

the connection of external address and data buses of the

common memory to a particular processor's internal address

and-data “bus:

3. To test the read/write operation of the Private

RAM memory and the Common RAM memory modules.

The chip select (GS) logic that selects the PROMS for

read operation and the Private Memory and the Common Memory

for read and write operation is shown in Figure 9.10. This

logic is built on each processor board of the HMSU. The

Common Memory module, which contains its chip select

decoding logic, requires address bus, data bus, R/W signal

and CPUREAD signal of a particular processor that requires

the access of it. In Figure 9.10 the address bus, R/W

Signal and the CPUREAD signal are the output signals of the

F8 processor and hence are buffered using the 80C97 hex

203

PROM PM PM

SIMULATOR

v0
2

MASTER SLAVE 1
PROCESSOR PROCESSOR

(PROM PROG) (DDT 1 PROG)
TTY

[ports

MASTER ;
1/0 INTERFACE an D

BOARD

COMMON
MEMORY

FIGURE 9.9 : Set-up using a part of the HMSU for testing PM and CM memory modules

G0
2

 > CS (PROM-1, ADD- 0000 TO ‘03FF’)

CS (PROM 2,ADD- 0400 TO O7FF)

> (SS (PRIVATE RAM, ADD-0800 TO OBFF)

o : 7404 Alm 7400 80C97 =. 12 > PRIVATE RAM O/P B| = B
DATA BUFFER x

if CONTROL E -
4

=

7400 % : ngc97

7400 7404 80C97
RiWo—> e: > ro

80097 : 7404 ae

CPU READ o——> a 1 =

COMMON MEMORY
BUFFER CONTROL o——> :

“u” TENT sun

80C97 WZ ENABLE Fah / | VE Tee:

AT R/W CPU READ oe aT B

Cte COMMON MEMORY MODULE

FIGURE 9.10 : Chip select logic diagram for the EPROM, PM and CM memory modules

0000 1A

0001 70

0002 BA

0003 BE

0004 27 22

0006 B9

0007 20 7F

0009 51

OOOA 2A

000D 2¢

000E 2A 08 00

0011 41

0012 17

0013 2c

0014 17

0015 2¢

0016 31

OOLT 94 F9

0019 20 7F

OO1B 51

001C 2A OD 00

OOF 2¢

0020 2A

0023 16

0024 18

0025 2¢

0026 17

0027 2c

0028 31

0029 94 F9

002B 20 7F

002D 51

002E 2A

0031 2¢

0032 2A

0035 16

OC 00

08 00

OE 00

OD) 00

FIGURE 9.11

DI

CLR

OUTS

OUTS

ouUT

OUTS

LI

LR

DCI

XDC

DCI

LOOP LR

St

XDC

ST

XDC

DS

BNZ

LI

LR

DCI

XDC

DCT

BP LM

com

XDC

ST

XDC

DS

BNZ

LI

LR

DOT

XDC

DCT

LX LM

0036 18

0037 2c

H'OA! 0038 17

H'OR' 0039 2¢

Ht22 003A 31

Htog? 003B 94 F9

H'7F! 003D 71

A 003E B9

H'ocoo! 003F 70

0040 2B RIN

Ht0800! 9041 90 FE

A,l

1

LOOP

H'7Ft

1,A

H'oDOO!

H*0800!

1

LP

H'7F*

1,A

H'OEOO'

H'ODOO'

of Figure 9,9

206

COM

XDC

ST

XDC

DS

BNZ

LIS

OUTS

CLR

NOP

BR

: Hand assembled program for the PROM simulator

LX

Hto9!

RIN

-T COO ,C7F

OC00.. 7% TE 7D 76, “Tags “TS 77.76 75.74 Pate 7h 70
0 C10 6F 6E 6D 6C 6B 6A.69 68 67 66 65 64 63°62 61 60
C@0: SF SE SD SCo#em.5a°59 58 57 56 55 54° 53 58-51. 50

0 C30 .4F 4E 4D 40 4B 48°49 48 47 46 45 44 43 42.41 40
C40 .OF 3E 3D Ga ee..on 39 Ge 37 36 35 34 33 34°31 40
Peo. 28 ee 2D 2UwRw ee 26. 27.26 25 @4 23 22°21 30
wee. Seeger 1D iC #16 1A PS Tees 464.1514 13 12771 10
C7@. OF GE 0D 0C OB" 0A 09 08 07 06 05 04 03 02 O01 FF
T B005,D7F

Meee) 61 62 83 84 85.86.87...80, 89 BA SB 8C 8D BE BF
Dibews0 91 Gan93..94 95 96 97 98 99 9A 9B 9C 9D OF OF
D20 AD Al A2 AS Ad AS AG ATicAB- ARAA 4B AC AD AE AF
wont BO B! Be BS B4 85 B6 B7 BS B9.BA BB BC BD BE BF
pee ©0 Cl C2 C3 Cee RrOtmcs. C9 CA CB. CC CD CE CF
Meee. DO D1 D2 BS "D4 D5 D6 D7 DS DS Da.DB DMC DD DESDF
Meee EQ Fl E2 F3. £4 ES E6 EV ES ED EA BB. GEC ED EF
DT@ FO Fl a2 FS: Bac cP Seh6eR7FSeRO8PAcFB . FC FD FE 090
T BOOSETF

Gpevur eds 7E 7D 7C 7B TA 79 78-92. 96 [eee Fh 7R 7A
E10 6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61 60
Fag. GF SE SD°SCU oR On 59 56 8 °S%-G$6055 54 53 SB 51 5B
E30 4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41 AD
EAG@.. SF SE 3D SC... ameserge 3s Gr ae 35 34 33 32 31 439
Ete GF GE @D 2@C 98 Ba 69 oe... 87 S6°NS 244 29 Be 21 BF
Pepe oy 16. 1D-1C IB TA 29 18 .27:t8 Ge ie 43 1 1t
Ere YUF 0F-0D 0C. 0B GA 09: 08 07.06.05 08. 93 02201: Fe

FIGURE 9.12 : Slave processor's output for the test set-up Of Figure 9.9

207

tri-state buffers. The data bus of the F8 processor is

bidirectional and hence is buffered using the 74LS245 octal

bus tranceivers. The direction-control signal for the tran-

ceivers is derived from the CPUREAD signal and the 74LS139

decoder logic. The master processor controls the access of

the Common Memory by a particular processor by lowering the

enable signal to these buffers and tranceivers via its

Input/Output interface.

im-order, to.test the.chip: select’ logic..of the processor. ,

the following procedure is used. The PROM simulator's RAM

memory is loaded with a small hand-assembled program shown

in Figure 9.11. The PROM compatible plug—attthe end of a

flat ribbon cable from the PROM simulator is placed in the

socket of the PROM-1 position of the master processor. The

processors of the HMSU, as shown in the arrangement of

Figure 9.9, are powered up and manually reset. The master

processor immediately executes its PROM simulator program.

The test program performs the following operations in

sequence:

1. It writes into 128 locations of the Private Memory

RAM with starting address: H'0800' and Common Memory RAM

with starting address: H'0C00'. The beginning pattern

written is H'7F' which is decremented from one location to

the next.

oe It reads. from the written patterns’ (128 locations)

of the Private Memory RAM (locations H'0800* to H'087F*),

complements each pattern and writes into the Common Memory

RAM with starting address: H'ODOO'.

208

3. Then it reads 128 locations from the Common

Memory RAM with starting address H'ODOO' and writes into

the Common Memory RAM with starting address H'OEOO'.

4 urine liv, «14. sends H'O1l" at. ite Port O<and. performs

an idle “l6op?.: Sending H' 01" at. Pert, 9-causes the Slave. tf

processor to have the access of the Common Memory.

When the fourth operation of the above program is

complete, the DDT-1 program on the 3851 PSU chip of the

slave processor can be used to type out the contents of the

Common Memory. The teletype output of the above test is

shown in Figure 9.12. As expected, the Common Memory con-

tents ‘of.locations H0€00' to. H'0C 7k. sehow: the +correct

write operation to the Common Memory, the locations H'0ODOO’

to H'OD7F' show the correct read operation and the contents’

inversion from the Private Memory and hence the write

operation performed in the first sequence for the Private

Memory, and finally locations H'OEOO'.to H'OE7F' show the

correct’ read operation from H'ODOO' to H'OD7E!, the

inversion of the contents read and the correct write oper-

ation to the Common Memory. The test thus proves that the

chip select. logie, shown in Figure’: 9.10 performs its

required function correctly.

2.5 ADVANCED TEST FOR THE. AMSU

Based on the success of the previous tests, it was

decided that some means for testing the hardware of the

HMSU as a whole was necessary. The design of this test is

based on the same resources available as used for previous

209

tests. A schematic diagram with data and address paths

between various modules of the HMSU is shown in the test

setup of Figure 9.13. A sequence of steps in which various

modules are involved in data transfer for this test are as

follows:

Step 1

1. To begin with, a program execution in Slave 1 pro-

cessor causes some arbitrary data to bé written into ISMI

(Module 1). Then this processor waits for an interrupt to

come from the master processor.

2. When the interrupt comes from the master processor,

the Slave 1 processor copies the Common Memory data into its

private memory, inverts this data and writes back into the

Common Memory in -a different memory space and signals the

master. processor that. it has finished with its access to

the Common Memory.

3... Lhe. Slave: laprogram. énds* its execution, by. return—

ing its control to the DDT-1 program.

Step 2

1. While the above events are taking place in Slave 1

processor, a program in the PROM simulator for the master

processor causes the master processor to wait until data

has been written into ISMI (Module 1) by the Slave 1 pro-

cessor.

2. When the data in ISMI (Module 1) is completely

written, the master copies this data from the ISMI,into its

Private Memory and Common Memory and sends Slave 1 address

210

LL
2

PROM

SIMULATOR

SLAVE -2
TEST PROGRAM |

+

DDT-1 PROGRAM

sah
ISMI x

MODULE -1 as
D

Ay itp

SLAVE-1

| MASTER TEST PROGRAM
+

DDT-1 PROGRAM

AY q D

A A\ ¢ |D
ISMI

MODULE -2

AAA

MASTER'S
1/0 COMMON

INTERFACE MEMORY MODULE

NOTE :

EIGURE 9.13 : Advanced test set-up for the HMSU

ete Y:

A-ADDRESS LINES

D—DATA LINES

C —CONTROL LINES

to its I/O interface so that Slave 1 processor can have

access to Common Memory.

3. The-master processor then waits for an interrupt

to be received from Slave 1 processor.

4, When this interrupt is received, the master pro-

cessor then sends the Slave 2 address to its I/O interface

so that the Slave 2 processor can have access to Common

Memory,

5. The master processor then waits for an interrupt

to be received from the Slave 2 processor.

6. When this interrupt is received, the master pro-

cessor sends the master address to its I/O interface so

that. it itself can have the access to the Common Memory.

7. The master processor then copies the Slave 1

written data from the Common Memory and writes it into the

ISMI (Module 2).

8. The master processor then performs an idle loop.

Step 3

1. .While the events in the first two steps are taking

place in the master and Slave 1 processor, a program exec-

ution in the Slave 2 processor causes it to wait for an

interrupt to come from the master processor,

2. When this interrupt is received, the Slave 2 pro-

cessor copies the master written data from the Common

Memory into its Private Memory and signals the master pro-

cessor that it has finished with access to the Common

Memory.

212

3. The Slave 2 processor then waits until data has

been written into ISMI (Module 2) by the fneter processor.

4. When the data in ISMI (Module 2) is completely

written, the Slave 2 processor then copies this data from

the ISMI (Module 2) into its Private Memory.

5. The Slave 2 program ends its execution by returning

its control to the DDT-1 program.

The above steps explicitly define the tasks required

to be performed by each processor, The arbitrary data

reférred in Step 1 corresponds to 64 bytes as a block of

data. Since all the block data movements are through ISMI

modules, Common Memory module and the master processor,

these are recorded by Slave 1 and Slave 2 processors

indirectly in their respective Private Memories. The con-

tents of these Private Memories can be output to a TTY using

the DDT-1 program. The implementation of the tasks in the

form of programs required for the three processors in this

test are not given here. The reason for this was that

another test of ISMI modules, not mentioned in this chapter,

indicated. a hardware fault..on: one: of the:.ISMI modules. , This

particular ISMI module showed an error on the most signific-—

ant bit of alternate locations of its 64 memory locations.

The investigation of this fault with limited testing

resources caused this test to becsuspended. However, this

test clearly shows the complex nature of hardware and soft-

ware integration design phase as related to a multi-micro-

processor system development.

213

9.6 ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-i1

In this section, two assembly language subroutines,

which are called by the high-level language program written

in FORTRAN IV, are discussed. The assembly language sub-

routines are developed using the MACRO assembler of the

PDP-11 minicomputer. The object modules produced as an

output from the MACRO assembler are linked with the object

modules of their main FORTRAN IV programs. The subroutines

and their main programs are as follows:

9.6.1 Program IR and the WUMB macro subroutine

The program IR reads ten real numbers from the console

and stores them in a real array A(I). The integer part of

the real number is removed and the fractional part of the

number is converted into a binary fraction, that is, using

278 where n #.1,8....Thus, for example, 0.04.is ‘represented

as 00000001 and 0.999 is represented approximately as

11111111. The binary point. (equivalent bt6 a decimal point)

before the binary fraction is assumed. The NUMB subroutine

converts the binary fraction into its corresponding integer

value which is required to be sent to the HMSU via the ISMI

memory modules. The objective of testing this IR program

is thus twofold:

1. To test the calling of the assembly language pro-

gram such as NUMB by correctly passing the required para-

meters from the high-level language program, such as program

TRE anid,

214

2. To test the correctness of the NUMB macro sub-

routine: which, ¢onvyerts a string of ‘0's. and.'1‘s of eight

bits width into the equivalent integer number.

The listing of the NUMB macro subroutine is shown in

Figure 9.14. The register R5, as used in any autodecrement

deferred mode, contains the address of an argument list

having the format shown in Figure 9.15. The register R1 is

used as-a>temporary register and after its initialisation,

the argument contents are added to it and an arithmetic

shift left operation is performed on it until all the argu-

ments are added. Thus an integer is formed in R1 from a

Strineeone' O'S and: "I's of ecicht bits width. . The LR. pro-

gram listing is shown in Figure 9.16 and the corresponding

output result of the program execution is shown in

Figure 9.17. It may be noted that the NUMB subroutine is

used in the DCHMSU program described in the previous chap-

Ger.

9.6.2. Program TRIAL and. the SUB2.macro subrouttne

In the DCHMSU program, the operator set information in

its final form is assembled by the SEND subroutine. Each

element of the address array and the corresponding element

of the data array needs packing into a 16 bit word which

can be’-output to .vhe Input ISM channel. of the..HMSU, «via

the DR11-C interface. The necessary connection arrangement

between the DR11-C interface and the ISMI modules is shown

in Figure 9.18. The packing process of two independently

stored bytes *to form a “16 bit’ word. is performed by the SUB2

216

ERIGURE 9°14:

PIGURE 9.15

MACRO Assembly of the NUMB subroutine

REGISTER 5 (R5) cay

UNDIFINED 4+ OF ARGUMENTS

ADDRESS OF ARGUMENT # 1

ADDRESS OF ARGUMENT + 2

'
|

‘
!
!

ADDRESS OF ARGUMENT + WI

: Format of argument list used by Register 5 (R5) during
FORTRAN subroutine linkage

216

ane h calls the NUMB subrouti 1C. FORTRAN IV program IR whi .
. FIGURE 9.16

Bt
ee

Od
ua

A

poy
0
a

0
ge

ro
“sj

cod

vce

o
d

hed

eet
a

roi
a
i
s

sel
a

rea
WEP

nf
EA

sot
rr

a
saad

op
AN

Se
URE

S
a
i

ae
O
e

te
ad

e
T

Pe
yy

et

i nH
a ead

baal
ee

 z=
aS

it
ie

it

sr
s
o
m
a

Es
m
t

i

a

to
OY

ef
as

4
in

b
e
e

a
yp

od
ay

td
me

ae

9.16 igure PeIGURE 9517 Output result of IR program of F

eh

macro subroutine. The.objective of a-test program called

TRIAL is to test the correctness. of the SUB2 macro sub-

routine which performs the packing of.two bytes into a

16 bit word. The TRIAL program, the SUB2 ‘program and the

output result of the TRIAL program is shown in Figure 9.19.

The TRIAL program reads two sets of four integers and

stores them into arrays K and L. The corresponding elem-

ents of these arrays are packed side by side and the result-

ing integer is storéd in Array N. Array K, corresponds ‘to

the data byte and Array L corresponds to the address byte.

Thus, when a packed element of Array N is sent out via the

DROUT output register, the upper byte will contain the data

and the lower byte will contain the address. The output

result of the TRIAL program shows the correct packing

process.

9.7. * SIMULATION OF. DISPLAY OF PROCESS VARIABLES ON GT42

DISPLAY PROCESSOR

The main objective of this simulation exercise is to

indicate to the operator. of .the TEF, the process variables

such as set point temperature, actual temperature profile,

level of controlled power output. to the heaters in a

particular. zone. etc. in. a..graphical: representation. The

program called DISPLY which performs this simulation is

shown in Figure 9.20. The program uses a variety of sub-

routines, described’in.thesyI-ll Grapiic.Support manual, and

the real-time TIMR subroutine. A file containing sample

numbers, sampling times, measured temperatures and normal-

ised power levels for the heaters is produced and called as

218

6L
2

DATA TO HMSU FROM

POP 4

(INPUT ISMI CHANNEL OF HMSU)

 J J if

 /\ WRITE ADDRESS

 \J READ ADDRESS

| [

2 eee

15
———— >

eae

eR DATA
a

ee

a =. SRDDRESS
a. Samed

DR11 C 0 :

INPUT OUTPUT
INTERFACE 4[

OR: POP TO ines

7
oA
DESaZE DATA
amare

<—_—_—_——

0

came

FIGURE 9.18

DATA FROM HMSU TO

PDP 41

(OUTPUT ISMI CHANNEL OF HMSU)

: Connection arrangement between DR11-C interface and ISMI modules

FROGRAM TRIAL
C THIS FROGRAM CALLS FOR A SUBROUTINE WRITTEN IN ASSEMBLY
C LANGUAGE AND FRINTS THE RESULTS ON THE PRINTER,

DIMENSION K(4)9L¢4)9NC4) ;
COMMON Kelen
CALL FRINTC’ TYPE THE VALUES OF K?)
REAL (2100) (KCL) sI=194)
CALL PRINT(’ TYPE THE VALUES OF L’)
READ ¢€59100) (L¢L)sT=194)
0 10 T=14
CALL SUB2(KCL) LOL) eNCT))

196 CONTINUE
WRITE CG 2200) (KOT) oh CL) oNCI De T=194) ,

200 FORMATCLH »3X*eI4e3X2T423XsT4)
190 FORMAT (I 4)

STOF

END

erlLTee” SUR

7ULOBL Supe
+>ACALL +¢Voee92REGTIEF

+REGUEF
DRCSR=1464020
TROUT=DRCSR+2

DRIN=DROUT+2
SUBS Y CLR DRCSR LEAR IRD CO STATUS REGISAER

Ang #2rkS

CLR Ra PCLEAR REGISTER 1

Le MOV @CRS+eR1 PLOAD RL WITH DATA

SWAB Ri *SHIFT DATA TO HIGHER BYTE

ALT BCRS+eRi $F LLL THESWAWER- BYTE: OF “Ri ERY AUURESS
MOV Rie TROUT SOUTFUT DATA & ANDRESS TO ISMI
MOV Rir@C(RS3+

RTS el. > RETURN
eENT

ree 8 og
ee: 4 4

oe = Z

< ec i Sas

z #B Sie
2 a Fee
4 A 1924

FIGURE 9.19 : Program TRIAL, MACRO subroutine
oe W206 SUB2 and output result of TRIAL program.
a ao | S66

eo 28 276
Peet 28 Zee

4 24 age
oe. S44
28) Ve ee
od 4 16268

ee

220

Si

a DATA file. Each sample from the DATA file is fed as an

mnput to the DISPLY program and the: DISPLY program displays

graphically the data..contained in each, sample. in real. tine.

Thus it simulates the real-time process variable changes

influenced by the control algorithm. The results of the

simulation output are shown in Figure 9.21 and simulated

test samples of a set of data are shown in the DATA file of

Figure 9.22. The dash-dotted line in Figure 9.21 shows a

set point temperature of 200°C, the bottom rectangular

curve shows the level of power required and the smooth

curve which meets the set-point line shows the variation of

temperatures. It should be noted that the simulation pro-

gram DISPLY is not implemented into the DCHMSU program.

9.8 CONCLUSION

This chapter indicates one of the transient states of

a typical experimental environment under which the project

was performed. This phase of experimentation was found to

be very important in order to investigate capabilities of

the hardware and software developed. The methods of testing

and simulations outlined in this chapter point to areas

where improvements and further testing is needed. For

example, one critical area might be located in the third

test (i.e. Section 9.4) where a failure of tristate buffers

or 74L8245 tranceivers could create unpredictable problems

such as a data bus contention during the memory access.

The hardware fault found before an advanced test on the

HMSU as a whole could be performed, needs further investig-

ation. In such circumstances, what measures or diagnostic

22]

Le
n 1

eb

i
n

tl

il

O
d
a

Po

po

a

pa
t

fe

C
t

a

a

oa

a

a
a
a

a
8

a

a

a

a

a)

a
8
8

We

ey
e

C
a
t
e

f
e

of

e
p

o
d
e

nd

Ph
a
pe

iE

E
ah

ty

ys

Ai

OU

a

ie
d

Pe
e

L
a

Ag
e

DIMENSION TOU ce08), Tse), THPCEB>, PCED, KCEa?
ae ASSIGN (LB, ° ‘DATA, a3

CALL PRINTC“WHAT IS THE SET POINT TEMP
OREADCS. 1583 SF
FORMATCFS. 23

INITCTBUF. Sao > : :
SCAL(-48..-28.. 248. . 668. 3
APNTCG..8..8.-5,8.43
L¥ECT(246..6..8,5,0.43—
APNT(O..@.,8,—-5, 8,43
EVECT CS. . 366.,0) 3, O51)

APNT<(-18.,558..@,-S)@, 4)
TER LS Ss iis
Pearl Lo.
IVR Tee |;

APNT¢-4e.,

{

te as

©
~

cn
in

at
t
S

ey
e

a

o
s

be

a

os

5..8,-5,. 8,43
“TIME IN MINS*3

APNTOB.. SP. -5. 1)
LYECT(240. 8.8.5.0,
VECT(-188,.-28., 0,-5.0. 4)
NMBR C4. SP. “FS. 2
APNTCG..@.. 8,-5.6. 43
PRINTO°N Tae, TMP Pry

ADCS, 2089N. TCT}, THPCT, PET), ING
FORMAT CIE, 3Fs 2)
IFCING. ER B>G0TO 500
TheT¢Ty-TeI-d3
TON=-TD
THPDSTMP CT 3-TMPCI-13
THPN=-TMPO
TMPFSTMP 1-13
THPPN=-TMPP
PP=PC I-41)
PDSPCT3-P¢ I-13
PN=-PdT3
CALL VECTCS.. TMP. @. -5. 8. 13
CALL VECTCTD. TMPD. &. 5.8.49.
CALL VECTCTON, TMPN, &. -5, 8.4)
CALL VECTCG.. TMPPN, &. -5. 8) 4)
CALL VECTC®. PP, @, -5, 8,13
CALL VECTCTE. @. 68, 5.8,49
CALL VECTCG.. PD. @, 5, 8,4)
CALL VECTCS. . PN. B - 5.8: 4)

en

GALL. TINE C15*68>
CALL TIMRCIE?

_ FIGURE 9.20 : DISPLY program

“T
H

co

>t

a
t

—

ee

oy

es

Li
t

yt

Oe

ey

ts
e

ae

a
e

Sa

et
h

a!

ct
!

na
. i a
 "I

acs
.

Pe

Sa

bos
ae

ge

a
e

hs

ct
!

A
T
,

CS
P

fe

fe
d

pe

ge

co
h.

Se

at

y
r

35

ing,

5

=
3
&
&
&
5

&
&

&
é

3 oge
e ite

M
y
,

9 1
J

J
A

a

net
s

or
e ct

at
t

ae

m
e
t

is
 oe

t
o
y

CS

aa
!

eo

Th
e

a

VELC-BSA TUE 84-DEC-79 88:89: 46

 Ci Jo he - pet yh
oy co :

Peer =o

FIGURE 9.20 : DISPLY program (continued)

G23

em

las
te

fe
t

oy
 i

FIGURE 9.21 : Simulation output of DISPLY program on GT42 Display

processor

FIGURE 9.22 : Data file showing process variables.

224

procedures or failure detection methods or devices should

be used must be carefully considered. Furthermore, the

actual application program testing in the integration phase

certainly needs sophisticated tools which are available on

the Microprocessor Development Systems (MDS). The PROM

simulator used for the tests, allows the simulation of a

PROM for only one processor. The need of hardware and

software testing tools required in a multi-microprocessor

environment may surpass the cost-effectiveness hoped to be

achieved by a multi-microprocessor system. These are just

a few areas where further investigations are needed.

225

CHAPTER 10. - CONCLUSIONS

The research has shown that it is feasible to apply

microprocessors for on-line parallel processing of inform-

ation. Any application involved in using a multi-micro-

processor system requires analysing the application so that

the overall control problem is subdivided into smaller sub-

problems which are suitable for parallel execution on indiv-

idual microprocessor-based systems, and any interactions

between these subproblems are handled by communication

links. The organisations of such systems range from locally

distributed to geographically distributed microprocessor and

microcomputer systems and a variety of applications range

from homogenous to heterogenous applications, The communic-—

ation links range from serial links to parallel links and

man—-machine to interprocess communications. It should be

emphasised that a designer of such systems is required to

balance, firstly, the distribution of hardware and software

tor the chosen application... Secondly, the, application is

required to be broken down into its information processing

needs in the form of a top-down distribution of tasks and a

bottom-up co-ordination of these tasks. Finally, since the

hardware, software and tasks are distributed, the distrib-

ution..Ob. data, and Jts.<£ low “uo and: trom yarious. tasks is of

paramount importance.

A model of a processor within a distributed computing

system which is proposed in this thesis specifically dis-

cusses its interfacing issues within a large-scale, real-

226

time complex system environment. It outlines the import-

ance of application program development and its performance

evaluation and monitoring. The four information links

described in the model account for a variety of ways of

data“and control: anfermation distribution amongsttthe pro-

cessors of the distributed computing system. The usecof

dual port memory modules as IANs and IDNs for data and

control information distribution serve also as a buffered

communication medium and provides new possibilities for

communication protocols to be designed which are task-

oriented.

The design of the Hierarchical Multi-microprocessor

System Unit (HMSU) combines the IAN/IDN concept developed

in the model and the resource sharing concept in the form

of a master-slave relationship with respect to the access

of common memory. A modular structure of the HMSU and its

use as a building block allow other structures such as

hierarchical, star, ring and combinations of these to be

configured. The hardware design of the HMSU presented in

the thesis is particularly organised using a Fairchild/

Mostek F8 microprocessor chips set mainly because of local

software development facilities, such as a F8 cross-

assembler on the MAXIMOP system, and F8 Evaluation Kits

were available. However, since software development

facilities are not included or superimposed on the process-

ors of the HMSU, the task of application program develop-

ment, its performance evaluation, monitoring and testing

hecomes particularly. difficult.« These; proiems are ‘very

vivid in the thesis when the HMSU is employed to implement

Cid

hierarchical control of the department's Travelling Load

Furnace (TLF). If the luxury of providing a highly inte-

grated and fault-tolerant system is to be envisaged, for

example one processor taking control over the other in case

of the failure of the second, the interfacing issues of the

controlled process by the processors of a distributed pro-

cessing system, such as the HMSU, requires special atten-

tion. «The ability ‘of a master processor: or either. of..the

slave processors to control any one section of the TLF not

only requires modifications to the existing interfaces but

also requires software diagnostic procedures or failure

detection mechanisms to be implemented. A design proposal

for modifying existing interfaces of the TLF and a simple

mechanism of control mode selection procedure have been

described for this purpose.

The research as a whole encompasses design of electronic

circuits for input/output interfacing, design of F8 process-

ors of the HMSU and the HMSU. architecture, programming of

control. tasks for the processors of the HMSU in the F8

assembly language, programming of man-machine communication

with respect to the control of the Travelling Load Furnace

in a high-level language using the PDP-11/10 minicomputer

and testing integration aspects of hardware and software

developed. The last phase, namely the testing for

integration of hardware and software closes a loop of the

overall design cycles and the outcome begins to emerge in

the form of problems encountered during practical implement-

ation. These problems are highlighted and discussed in the

thesis. In particular, the need for proper development

228

tools both at software and hardware level are vital to the

development of the project. The suitability of the F8 pro-

cessors for the HMSU, for example, can be questioned. The

high chip count used in the design of ISMI could be mini-

mised by thesuse,of VLSI: technology. Although the. costs of

CPUs and memory components are reducing the cost of putting

these together in a multi-microprocessor system and the

cost of writing software for such systems really brings up

the cost-effectiveness issue, especially when the applic-

ation involved is just one-off. These are some of the

areas which may be in the realms of research for some time

tOmcome. “AS@such® "1601S daifticultetvorestablash. a direct

relationship of the work undertaken to immediate industrial

usage. However, this research will provide a useful

benchmark for developing multi-microprocessor systems for

hierarchical control of industrial processes.

FOOTNOTE: Further consideration is needed within the programs of the

HMSU and the PDP11/10 minicomputer to ensure that critical parts are
made interrupt proof, possibly through the implementation of Dijkstra's

semaphore techniques (Dijkstra, 1968).

209

_ REFERENCES

AMD Data Sheet.

AMD Semiconductor Products, Data Sheet.

ANDERSON, G. A. and JENSON, E. D. (1975).

Computer Interconnection Structures: Taxonomy, Characteristics and

Examples. ACM Computing Surveys, Vol. 7, no. 4, pp.197-213

@ece. 1975)2

ASPINALL, D.. (1978) (Editor).

The microprocessor and its application. An advance course.

Cambridge University Press, Cambridge.

BAILEY, W. N., GAYLER, J. R. and ROBERTS, P. D. (1979).

Introductory guide to using the department's PDP11/10 computer system,

The City University, DSS/WNB-JRG-PDR/178 (Feb. 1979).

BARKER, H. A. (1978).

The microprocessors in control. IEE Control and Automation Division,

Cha irman's Address.

BEBBERO, R. od. (1977).

Microprocessors in Instruments and Control. John Willey and Sons,

New York.

BILLINGSLEY, and SINGH) Ma -G.2 (1975),

On-line hierarchical control of large scale systems using multi-

processors. IEE - 2nd Conference, Vol. 127, Parti:21/25 (April 1975).

BROWN, Dette glo 1 9) ie

Elements of distributed control systems. Trends in on-line computer

control system. IEE Conference, Vol. 172, Part 27-29 (March 1979).

CABEIN;, Re Cl972) .

The design and modelling of an experimental travelling load furnace.

PhD Thesis: The City University, Department of Systems Science, London.

CARTER, Jj. W. .(1978).

The problems of using microprocessors. Measurement and control. Vol.1l,

pp.8l-97, (Feb. 1978)"

DAVES; @As C. (977 es

F8 Microprocessor User's Guide. The City University, Department of

Electrical and Electronic Engineering, London.

DESHMUKH, H. A. (1977).

Microprocessor control of a Travelling Load Oven. MSc Thesis. The

City University, Department of Systems Science, London.

230

DESHMUNEH, 9H. vA. mCOLl, R-.Goch andeROBERUS, Prop. (1979)..

A hierarchically structured multi-microprocessor system. Micro-

processors and their applications. Fifth EUROMICRO Symposium on

Microprocessing and Microprogramming, Goteborg (Aug. 1979).

DATA SHEET for ADC82 (1979).

General Catalog, Burr-Brown.

DOWSING, R. D. (1978).

Introduction to system design. The microprocessor and its applic-

ation. An advance course. Edited by ASPINALL, D., Cambridge

University Press, pp.93-117.

EDGINGTON, Ji.» HH. (1979) .

Control in the glass industry and future automation: PART 1.

Measurement and Control, Vol. 12 (July 1979).

ELLIOTT, I. and ORGANICK (1978).

New directions in computer systems architecture. Large scale

integration. EUROMICRO Symposium, Munich (Oct. 1978).

ENSLOW, P. H. ed. (1974).

Multiprocessors and parallel processing. John Wiley, New York.

ENSLOW,. P. H. Jr... (1978).

What is a 'Distributed' Data Processing Systems? Computer pp.13-21

(Jan. 1978).

ENSLOW), Pov. Jee. (1978):

Multiprocessors and other parallel systems: An introduction and

overview. Infotech State of the Art Report. Multiprocessor Systems,

pp.219-262,

F8 USER'S GUIDE, Fairchild Microsystems (1976).

FEIERBACH, G. and STEVENSON, D. (1979).

The ILLIAC IV, Super Computers, Infotech State of the Art Report.

FITZGERALD, J. M.. and FITZGERALD, A. F.. (1973),

Fundamentals of Systems Analysis. John Wiley, New York,

PEYNN, M. w.. (1972)

Some computer organizations and their effectiveness. IEEE Trans on

Computers. Vol. C-21, no..9, pp.948-960 (Sept. 1972).

HARES - JievA.- and. GMITH, D.. Ri. O77).

Hierarchical multiprocessor organisations. Fourth Symposium on

Computer Architecture, University of Maryland.

HOLDING, D. J. and KING, P. J. (1979),

Experience with a distributed microprocessor control system in an

industrial environment. Trends in on-line computer control system.

IEE Conference. Vol. 172, Part 27-29 (March 1979).

231

HOLLAND, P. M. (1980).

Memory system design. IEE Colloquium on Hardware Design Techniques.

Digest no. 1980/11, pp.4/1-4/5 (March 1980).

HUGHES, J. M. (1976).

Multiprocessor Navigation Systems. Digest of papers. Fall Compcon 76,

pp.264-68.,

IEE CONFERENCE PUBLICATION (1977).

Distributed computer control systems. IEE Conference Publication

Vols 453 (Sept. 1977).

JENSEN, E. D., THURBER, K. J. and SCHNEIDER (1979).

A review of systematic methods in distributed processor interconnec-—

tion; Tutorial: Distributed Processor Communication Architecture;

First International Conference on Distributed Computing System.

Huntsville, Alabama (Oct. 1979).

JOSEPH, B:-C.». (1976) .

Distributed processing architecture - past, present and future trends.

Distributed Systems.. Infotech State of the Art Report, pp.319-333.

KARTASHEV, S. I. and KARTASHEV, S. P.. (1978).

Selection of the control organisation for a multicomputer system with

dynamic architecture. Large Scale Integration EUROMICRO Symposium,

pp.346-357 (Oct. 1978).

LEB joo. Le (1976).

Intersubsystem communications for process control. Instrumentation in

the chemical and petroleum industries. Vol..12. Proceedings of the

1976 Computer Interface Instrumentation System.

ROWE, 2H ce and HEDDEN, Ae.) (974).

Computer Control in Process Industries. Peter Peregrinus Ltd,

MDS Z80 SYSTEM. (1979) .

MDS Z80 System reference manuals.

MIGEER, Go A. (1956):

The magical number seven plus or minus two: Some limits on our

capacity for processing information. Psychol. Rev. Vol. 63, pp.81-97.

MOSTEK, F8 Microprocessor hardware support.

Application Note, F8 Evaluation Kit.

MOTOROLA (1979).

Microcomputer Components, Motorola Semiconductors.

PATHAK, J. (1977).

Software setup eases traffic flow for multiprocessors. Electronics

pp.108-112 (March 1977).

oye

PDP-11/10 FORTRAN IV.

Language reference manual.

PDP-11/10 FORTRAN IV.

User's Guide.

PDP-11/10 System Reference Manual.

ROBERTS, “PS Diss (1979) s

Introduction to large-scale control system. IEE Computing and Control

Division. Specialist Seminar on Optimal Control of Large Scale

Systems (Sept. 1979).

RUSSO? speaM.. (1976)

An interface for multi-microprocessor systems. Digest of papers,

HalinGomp. Con. pp.277-262.

RUSSO, err aM (h97 7).

Interprocessor communication for multi-microcomputer systems.

Computer Vol. 10, No. 4, pp.67-75 (April.1977).

SAVAS, B.2S....(1965).

Computer Control of Industrial Processes. McGraw-Hill, New York.

SEARLE, B..C. and PREBERG,. Di. E. (1975) <

Tutorial: Microprocessor application in multiple processor systems.

Computer, pp 22-30 (Oct. 1975).

SHEENA, 2b. hi (1977).

Computer control of a travelling load furnace. PhD Thesis: The City

University, Department of Systems Science, London.

SIEWEORHK,: DomeP. (L975) <

Process co-ordination in multi-microprocessor systems. Euromicro

Workshop, Nice (June 1975).

SMUG pe = lees (C1972 2)

Digital Computer Process Control. Intext Educational Publishers.

SPENCER, «J.P. (1976) (Editor),

Distributed Systems. Infotech State of the Art Report. Infotech

International Ltd.

EREe (LOU7))<

Distributed computing systems. Annual report. The Computing Science

Committee of the Science Research Council (Sept. 1977-Sept. 1978).

SRC (1980).

Distributed computing systems. The Computing Science Committee of the

Science Research Council (Sept. 1979-Sept. 1980).

STEINCHOFF, J. and McGILL, R. (1976).

An approach solving scientific problems using multiple-microprocessors.

EUROMICRO Symposium, Venice, pp.285-293 (Oct. 1976).

233

SWAN, R. J., FULLER, S. H..and® SEEWLOREK,. Die Pi... (1972) .

Cm* - A modular multimicroprocessor. AFIPS Conference Proceedings,

AFIPS Press, Vol. 46, pp.637-643.

TANAKA,> Y.,; MUYASHITA, Ke, KOYAMA,” S., MIYAMOTO, E.cend TSUDA, T... (1976) -

HARPS - A new hierarchical array processor system. EUROMICRO

Symposium, Venice, pp.91-98 (Oct. 1976).

THURBER, Kids and. WALD lis D. - (1975)%

Associative and parallel processors. Computing Surveys Vol. 7, No. 4,

pe. 215-255.) (Dec. #1975) -

THE TTL DATA BOOK FOR DESIGN ENGINEERS,

2nd Edition.

VT-11 GRAPHIC SUPPORT.

PDP-11 Reference Manual.

WEISSBERGER, A. J. (1975).

Microprocessors simplify control system. Canadian Electronic

Engineering (June 1975).

‘WEISSBERGER, A. J. (1977).

Analysis of multiple microprocessor system architectures. Computer

Design, pp.151-163 (June 1977).

WHITE. G.-H. (1976) (Editor).

Distributed Systems. Infotech State of the Art Report.

WE BKEb eb. He ChO7 Oo).

A microprocessor philosophy for process control systems. Trend in

on-line computer control system. IEE Conference Publication, vol. 172,

pp. 27-29. (March-1979) .

WELDEN, -J.. Ho and RIGHARD 2 ili. Ji.1 (1978).

Processor-processor dialogue through existing input-output channels.

Computer and Digital Techniques, Vol. 1, No. 4 (Oct. 1978),

WULE), W.%A...and BEI. GosG. . (972),

C.mmp - A multimini processor. Fall Joint Computer Conference, AFIPS

Proc., Vol. 41, Montvale, N.J.: AFIPS Press.

DIJKSTRA, E. W. (1968).

Co-operating sequential programming. Programming Languages,
Genuys, F, (Editor), Academic Press, London,

234

APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR

The three F8 microprocessor boards built for the HMSU

are.rdentical: “Hach: beard: ‘consists. of: the ‘following:

1. One - 3850 CPU (Central Processing Unit)

2. Two - 3861 PIO (Peripheral Input/Output) Chips

(i.e. versions MK 90002 and MK 90003)

3. One - 3851 PSU (Program Storage Unit)

4. One - 3853 SMI (Static Memory Interface)

5. Two - 2708 EPROM chips (i.e. 2 kilobytes of PROM

memory)

Oe “Mreht = 2102 Static RAM chips (i.e. :1. kilebyte of

static RAM memory).

A detailed circuit diagram for the F8 microprocessor

board is shown in Figure Al. The inclusion of 3851 PSU in

which the DDT-1 (Designer's Development Tool 1) program

resides, allows the testing of the F8 microprocessor circuit

board. However, this PSU chip cannot be used when EPROM

chips containing the HMSU control program are used. The

reason for this is that the DDT-1 program and the HMSU

control program both start at H'0000' address. Thus, only

one. program can, be run at a time... Additionally, when the

HMSU control program is to be used, the PRIORITY OUT line

from the 3861 PIO (MK 900038 aes oh) chip is directly con-

nected to the. PRIORITY. IN.. tine of, the. 3853 SMI Ghip. “The

3850 CPU chip is provided with manual reset (switch S1) and

automatic "Power ON'' reset inputs. These input lines are

connected to EXT RESET input of the CPU through 7432 OR

Co

+5V

Vpo Vpp PORT 8 PORT 9 PORT 20 2 PORT 21 4N914

s EXT INT o. EXT INT

=r

5K
14,06 UH23 , -

‘ar 5 10PF PRI IN
S IN

| mVec = MK 90002 3861 PIO —lVsg MK 90003 3861 PIO
Si | oo : ae :

aS Su oO: at LINO
AGaa OO00 ®. co oO

PORT 0 ~

SBIT
PORT 5 TTY

KYBD -
PORT 1 4

1509. TTY
TA406 TPRDST+

6809. TTY
7406 PRTR -

tot NM Orn 2
40PF. BOQOQROOOS aono0mgooos

2708 PROM 1 2708 PROM

ay

>>

Z

~ on >

Ag > Ad [Mo : . - ae
2102 2102 102

:
Th
e

F8

m
i
c
r
o
p
r
o
c
e
s
s
o
r

c
i
r
c
u
i
t

d
i
a
g
r
a
m

F
I
G
U
R
E

Al

COMMON MEMORY

BUFFER CONTROL
FROM MASTER'S

T/0 INTERFACE

80097 VA

EXT INT
TO EXTERNAL ADDRESS BUS TO EXTERNAL DATA BUS

4LS245

 READ

236

gate. The F8 microprocessor board mainly provides six

8-bit Input/Output ports, three external interrupt lines,

sixteen external address lines (i.e. address bus) and eight

bidirectional external data lines (i.e. data bus). All the

IC chips use wire-wrap sockets which are mounted on the DIP

vero board (No. 10-0154L). One of the F8 microprocessor

circuit boards 1s shown in Hisure A2s hicure As) illustrates

the two sides of ISMI circuit board and Figure A4 shows the

HMSU on the background of the Travelling Load Furnace (TLF).

gor

FIGURE A2 : The F8 microprocessor circuit board

FIGURE A3 : The ISMI circuit boards

238

6€
2

FIGURE A4 : The HMSU on the background of the TLF

APPENDIX B - THE F8 PROGRAMMING FEATURES

This appendix covers a brief description of the F8

Evaluation Kit, some important programming features unique

to the F8 microprocessor and the F8 instruction set.

Bl THEE Gs EVA LUA TL ON Rie

The F8 Evaluation Kit built by MOSTEK consists of mini-

mum hardware system containing 3850 CPU, 3851 PSU, 3853 SMI

and 1 kilobyte of static memory RAM and a Teletype inter-

face (20 mA loop). The Designer's Development Tool 1 (DDT-1)

program resides in the 3851 PSU which is located in the low

order 1 kilobyte of memory space (i.e. H'0000' to H'O3FF').

The RAM address space range from H'0400' to H'O7FF'. All

eight bits of Port 0, Port 1 and Port 4 are available to

the user, providing 24 I/O lines, A selection.110 or 300

baud Teletype rate is available from Port 5.

The DDT-1 program serves a convenient means for evalu-

ating the F8 and the debugging of application programs. A

summary of the commands accepted by the DDT-1 is as follows:

1. B - Breakpoint (software) address.

Format: B aaaa, where aaaa is a breakpoint address.

2. C - Copy memory arrays.

Il Format: C ssss, ffff, dddd, where ssss start

i address, ffff = finish address and dddd destin-

ation address

3. D - Dump memory onto paper tape.

Format: D ssss, ffff, where ssss = start address

and-fiti.= finish address,

240

4. E - Execute at specific address.

Format: E ssss, where ssss = start address.

>. H - Hexadecimal arithmetic eperations:

Format: Hwa + b= result or H aaaa.t-bbbb:— ecee

result.

6. L- Load memory from paper tape.

7. M - Memory content display and modify.

Format: M aaaa, where aaaa = address of memory

location.

8. P - Port content display and modify.

Format: P pp, where pp is the port address to be

examined: or modified.

9. T - Type memory content array.

Format: T ssss, ffff, where ssss = start address

and ffff = finish address of the memory block to

be printed.

B2 IMPORTANT PROGRAMMING FEATURES

1. When power is turned on, all PCO (program counter

registers) in the F8 microprocessor system are set to 0.

Therefore, the first instruction executed is located at

memory byte 0. Thus, the first program to be executed must

be originated at H'0000".

2. A subroutine linkage is associated with calling

from: and returning to: thé, main, program. © There’ are two

instructions used to call a subroutine into execution:

(a) Instruction PK saves the contents of the program

counter (PCO) in the stack register (PC1), then loads the

241

Subroutine starting address from the K register into the

program counter.

(b) Instruction PI saves the contents of the program

counter in the stack register. It then loads the subroutine

Starting address (which is in the two bytes of object

program following the PI op code byte) into the program

counter.

Similarly, there are two ways to return from sub-

routines:

(a) Instruction POP moves the contents of the stack

register back to PCO.

(b) Instruction Pk may also be used to return from a sub-

routine by having the return address in the k registers.

et , for example, subroutines are nested two deep, the

following steps show the call and return sequence:

Initially., outer routine start address ie pus.in ks. <Kk> =p

Outer Call Pk <PEO2z 7 PEL ave. PCL

SK 2a PCO be. PCO

Save PC1l in k in preparation for inner call:

LR K,P SPGCL eek Gyo k

Inner Call PI <PCO> > PCI C.> PCL

Cor) Gata aeRO e + PCO

Inner Return POP <PGi> =~. PCO G2, PCO

Outer’ Return Pk <PCO> <>. PCI a. >. PGL

4K = PCO a.* PCO

wheme:a, b, ¢, ad and. eC ‘are 16 bit addresses.

For: nesting to greater. depth, a stack for return

addresses is required to be set up.

242

S,. The basic interrupt handling capacity 1s*a micro—

programmed function of the 3850 CPU. The sequence of

events surrounding an interrupt is as follows:

(a) For interrupts to be processed, interrupts must be

enabled within the 3850 CPU and at the chip receiving the

Imterruptl request srenai 1 6.73661 0r 8551 -0r “S854 chips).

(b) When more than one device simultaneously request to

interrupt the 3850 CPU, priorities are determined on the

basis of 'daisy-chaining'. The daisy-chain sequence is a

hardware feature of an F8-microprocessor system.

(c) When a valid interrupt request signal is detected by

the 3850 CPU, it ceases current program execution at the

conclusion of the instruction currently being executed.

However, an interrupt will not be acknowledged at the con-

clusion of the following privileged instructions:

Pk

PI

POP

JMP

OUTS (except 0,1)

OUT

EI

LR W,J

(d) The 3850 CPU SENDS out an interrupt acknowledge signal.

It is the way in which this signal is trapped that imple-

ments interrupt priority, when more than one interrupt

request’ line, is. truc,.as described..in.step Cb).

(e) When the 3850 CPU sends out an interrupt acknowledge

signal, it clears the interrupt enable status within the

3850 CPU thus disabling all subsequent interrupts.

243

(f) The chip that traps the interrupt acknowledge signal

output in step (e) responds by transmitting the contents of

its interrupt address register as the next contents of PCO

register. These interrupt addresses are as follows for

different chips:

INTERRUPT ADDRESSES
CHIP

TIMER EXTERNAL

3854 PSU Non-programmable mask option

3861 PIO (MK 90002) H'0340' H'03CO'

3861 PIO (MK 90003) H'0320' H'03A0'

3853 SMI Programmable option

(zg) * The. PSU‘or. SMI: logic moves the. contents*of PCO. to PCL

and. ‘then...loads ‘the address from stép (f). into».PCO;7 Thus, 4

program dedicated to the acknowledged interrupt request

line is executed.

Bom lake HO TN Sk UCL PON ee

The following pages describe the F8 instruction set.

244

The F8 instruction set
(p.245-247)
has been removed
for copyright reasons

APPENDIX C_ - THE HMSU PROGRAM LISTING

The following HMSU program is for the master processor

of the HMSU:

ADDR OBJECT FLAG ST #

OCESSOR
20800

208014
29802

70804
+0805
20806
>0807
0808
+0809
>OBOA
>O80R
+O80C
>OB0n
+OB10
P0811
20812
+0813
70814
>0815
>0818
>0B819
>OB1A
>OB1E
>oBic
>OBin
>OB3C
>083D
>OB3E

2O83F

20040
70041
70042

20043
20044
20045

20046
20047
20050

20840
NTER
2OB41

20842
ESS
20843

R SET
20844
20845

20846
70847
70848
2OB49

ESS
20844

UNTER

SO87F
TER

*OBRF
VE1
SOBFF

VE2
2O84C
2O84F

=0850
2OB7E

0001

0002

0003
0004
0005

0006
0007
0008
0009
0010
oo11
0012
0013
0014
0015
0016
0017

0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

0030

0031
0032
0033
0034

0035
0036
0037
0038
0039
0040

0041

0042

0043

0044

0045
0046
0047
0048
0049

0050

0057
0058

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0001
SOURCE STATEMENT

sTITLE-HMSU-AN ASSEMBLY

C1 EQU H’0800’

C2 EQu H‘O8017
C3 EQU H‘O0802¢
LA EQU H’O803°
NS EQU H‘0804’
MS EQU H‘0805’
CM EQU H‘0806°
RUNNO EQU H‘0807°
ISFi EQU H’0808°
Kid EQU H‘08097
Ki2 EQu H‘O80A‘
Ki3 EQU H’‘O80B’
K14 EQU H‘O80C’
STi EQU H’O8on’
ISP2 EQU H‘0810°
K21 EQU HoOslis

K22 EQU H‘08127
K23 EQU H‘0813’
K24 EQu H‘08147’

SI2 EQU H‘0815’
ISF3 EQU H’‘0818°
K31 EQU H‘ 0819’
K32 EQU H‘O81A’
K33 EQU H‘O81B‘
K34 EQU H*7 087"
$13 EQU H‘OSiL’
RCFS EQU H‘O83C’
RFPS EQU H’OS3n’

WFCFS EQU H’ OB3E ¢

WFFS EQU H’O83F
ZONO EQU H’ 40’
ZON1 EQU H’ 41°
ZON2 EQU H’ 42°

ZONS EQU H‘ 43’
ZON4 EQU H’ 44°
ZONS EQU H’ 45’

ZONG EQU H’46/
ZON? EQU H’47°
MOTA EQU Bigo.04

LZAC EQU H‘0840°

SZONA EQu H’O841°

TSZONA EQU H‘0842°

RFCMS EQU H‘0843/

PIDFLG EQU H‘0844’
ISMIFG EQU H‘0845°

MSFLG EQU H‘08467
CMFLG EQU H‘0847’
SLA EQU H’0848’

TSLA EQU H’0849’

TLZAC EQU H‘ 084A‘

SFAO EQU H‘O87F ’

SFAL EQU H’ OSBF ’

SFPA2 EQU HOSE ES

RFMS EQU H’O84C’
WCMS EQu H’OS4F’

WFMS EQU H‘0850’
WTRF EQU Hee O77. EZ

248

: DKOZHMSU SRC

LANGUAGE PROGRAMME FOR MASTER PR

*READ COUNTER FOP SET
sREAD FLAG FOF SET

+WRITE FLAG COUNTER POP

sWRITE FLAG FDF SET
sHEATING ZONE ADDRESSES?

sCONVEYOR MOTOR ADDRESS
*LOAD & ZONE ADDRESS Cou

sSTARTING ZONE ADDRESS

STEMP STARTING ZONE ADDR

sREAD FLAG COUNTER MASTE

sPIT FLAG
sISMI FLAG
sMICRO SWITCH FLAG
5COMMON MEMORY FLAG
s;STARTING LOAD ADDRESS

s;TEMP STARTING LOAD AnnR

sTEMF LOAD & ZONE ADD co

sSTORED FORT AND FOR MAS

sSTOREL FORT ADL FOR SLA

ISTORED FORT ADD FOR SLA

jREAD FLAG MASTER SET
sWRITE COUNTER MASTER SE

*WRITE FLAG MASTER SET
*MASTER YRANSMITT FLAG

OBJECT FLAG ST # ALIR

2 OB8BE
SO8FE
2OBS1

20852
ER
=OA00
20853
20854
20855

Et FOWER
20856
20870
20875
2OB7A

=0000
0000
‘0000 if

AT CFU
COOOL. 70
‘0002 BO
£00038). Bi
‘0004 8
‘0005 B89
‘0006 BA
‘0007 2720
“9009 2721
‘O0O0B 2722
‘ooon 67
ER

‘OOOE 280407°
“OO11 6S
‘0012 280407/

£0045. 60
‘0016 280407’
‘0019 28040E’
TINE
‘001C 240800
“OOLR. 20RE

,00215.: 39
(9022. a0)
“O028- 2-17

‘0024 30
“0025 94FIt
“0027-. 2O0FE
“0029. 27235
“O02 = 71
2

“0020 “2722
COOZE.-20F)
DEL IN
‘0030 BE
COOS1 = 73
Ged
‘0032 BA
60033. o 7a
OC! Hi ORF
‘0034 BC
‘0035 20F0
“0087. Bi

‘0038s AL
SOO C9 BE:
‘003A 63

‘003R 68
‘003C 20FI
*OOSE)@350
CO0SF e201 E
‘0041 St

0059
00460
0061
0062

0063
0064
0065
0066

0067
0068
0069
00790
0071

0072

0073

0074
0075

S1TRF
S2TRF
TRF

TREC

SSA
MSCNT
SNO
ANSWER

TRUNNO
RECOL

RECO2
RECO3

9 INITIALIZATION

AGA

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0002
SOURCE STATEMENT

EQU H‘OSBE’
EQu He OSF be
EQU A. O852 4
EQU He 0832"

EQU H’O0A00’
EQu H’O833"
EQU H‘0854’
EQU H’0855°

EQU H‘0856'
EQU H‘0870°
EQU HeOsrs
EQU H‘OB7A‘

ORG H‘0000’

nl

CLR
OUTS 0

OUTS 1
ouTSs 8
OUTS 9
OUTS H‘OA’
OUT Ho20)7
OUT Hoel.
OUT HZ
LISu 7.

FI ZERO
LISU 6
Ri ZERO

LISU a
Pa ZERO
Ea SHUT

DCI Gt
ET Hk Bi
LR OrA
brs 9
Su

ns 9
BNZ AGA
EE Hare
OUT HO 2a
Lis 1

ouT Hie
Ey Fite ee

ouTS H‘ OB’
aS) x

OUTS H‘OA’
ETS i

oUuTS HOOC?
a Ho EO.
OUTS H‘ On’

ELS d
QuTSs HOR
EISu 3

Erste 0
eT HPD
LR IvA

Er 30
LR IvA

249

DROSHMSU «SRC

*SLAVEL TRANSMITT FLAG
*SLAVE2 TRANSMITT FLAG
+ TRANSMISSION FLAG
s TRANSMISSION FLAG COUNT

sSTARTING STACK ADDRESS
sMICRO SWITCH COUNTER
sSAMPLE NUMBER STORE
sTEMP STORE FOR CALCULAT

sTEMP STORE FOR RUNNO
sLOOF1 RECORD ADDRESS

sLOOF2 RECORD ADDRESS
sLOOF3 RECORD ADDRESS

PROCESURE STARTS HERE. + ceca ccdeteeeres

sFROGRAM-HMSU STARTS AT

sDISABLE ALL INTERRUPTS

sCLEAR 1/70 FORTS
+NO-O
sNO~-1
+NO-8
+NO-9
3NO-A
+NO-20
§NO-21
sNO-22
sCLEAR CONTROL LOOP BUFF

$0577 0.70"
40°67 5-0 7607

90° 975-0750"

sJUMF TO SHUTDOWN SUBROU

$CLOSE TIMER AT FIO-2

$EXT INT ENABLED AY PIO-~

$253 TIMER MAX COUNT LOA

+PORT-B OF FIO-1
sTIMER INT ENABLED AT PI

sSMI VECTOR ADD FORTS H’

sARE LOADED WITH H’0280’

sEXT INT ENABLED AT SMI

ADR

°0042

*0044
‘0045
£0046
“0049
“0044
‘oo04t
‘OO4E
‘O0S1
£0052

‘0053
‘0054

‘0057
0058
‘OOSA

‘O0SC
“OOSF
°0060
°0062
°0064
“0067
‘0068
“OO6A
°006C
“OO6E
‘OO71
0073

‘0076

"0078

‘007A
“007C
TOO7E
*0080
°0082
‘0085
*0088
“OOBA
“008C

‘OO8E
‘OO8F
‘0091
“0094
9095
‘0096

“0099
“009A
“OO9R
‘Ooon
“O0OA0
‘OOAS
‘OOA4
“OOAS
‘OOAS

‘OOAA
“OOAD

“OORE

OBJECT FLAG ST # SOURCE STATEMENT

200A 0117

0118
O11?
0120
O121
0122
0123
0124
0125
0126
0127
0128
0129

0130
0131
0132

0133
0134
0135
0136
0137
0138
0139
0140
O141
0142
0143
0144

0145
0146
0147

0148
0149
0150
0151
0152
0153

0154
o155
0156

0157
0158
0159
0160
0161
0162

0163
01464
0165
0146
0167
0168
0169
0170
O171

0172
0173
O174

BUY

PID

TRMITT

sISMI
ISMI

STAY

RULE

SAME
TES TL

SEEL

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0003

DATASET = DKOSHMSU .SRC

Lt H’OA‘

LR SrA
tis o
nel PIDFLG
Si

nel SNO
oi

NCI ISMIFG
LIs 1
on

*MAIN FROGRAM - LOWEST FRIORITY ROUTINE STARTS HERE.....
EX

nctI FIDFILG
LM

Cy 1
BZ PID

DCI ISMIFG
LM
CT 1

BZ ISMI
nel TRF
LM

CT 1
BZ TRMITT
BR BUY
JMF PIDOR
BR BUY
JMF TRMIT
BR BUY

ROUTINE LOOKS FOR NEW DATA INPUT FROM PIP-11...-
er H’ 40°

ouT H*°20°
IN He21*
Gr 1
BZ STAY
DCI WFCFS
PI CLEAR

Ler H‘41/

OUT He20<
IN Het?

CM
BZ SAME
Ba COFY
LIsu 3

LISE 1

ncrI S11

LM

LR SxA
BR feohs
JMF BUYOT
ucrI Ci
LM

Cr eee
BZ Ser.
BR Xi
nel SFAO
LIS 1
oi

250

ALI

“OOAF
‘OOK2
‘OOB3

“OORS
‘OOB7
“OOR?

“OORC
“OORD
“OORE
“ooci
“o0C2
‘00C4
°00CE
“O0C9
‘o0cc
‘oocn
“QOOCE
‘oon

‘oon
‘Oon4
‘oons

“Oon9
*oonc
‘oonn

‘OODF
“OOEL
‘QOE4
“OOES
“QOE7
“QOE?
“OOEC
‘OOED
*QOEF
“OGEL
‘OOF4
(OOR7

‘OOFS
COORD:
“OOFC

‘OOFD
“0100
SOL OF
‘0102
‘0103
°0106
‘0108
21 09
*010C
“O1L0F
‘0110
COUTt

“0114
POLLS
‘o1i8

POaLS
‘O11B
a9 ELE
OAL E:

OBJECT FLAG ST #

2A0801
16
2S5FF
8403
9006
2A08RF

71
17
2A0802
16
25FF
8404

290184’ A
2AOSFF

16
2501
8414
2A0806
16

2502
8455
2A0806
16
2503
841C
290184' A
2A0840
72

7
2A0848
2c
2A0803

2c
2A0803
16
2402
50

0175
0176
0177

0178
O172
0180

0181
0182
0183

0184
0185
0186
0187
0188
0189

0190
0191
0192
0193
0194
0195

0196
0197
0198
0199
0200
o201

0202
0203
0204
0205
0206
0207

0208
0209
0210

O211
O212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225

0226
0227
0228
0229
02390
O231
0232

X1

SET2

SETS

TEST2

ON

UUU

Wu

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE

SOURCE STATEMENT DATASET = DKOSHMSU .SRC

c2

H’FF’
SET2
x2
SPAL

c3

H‘FF’
SET3
BUYOUT
SPA2

mt

H/FF’

CMAR

CM

Heol?

UUuU

neO2
VVUV
CM

H‘03°
Wu
BUYOUT
LZAC

SLA

LA

SZONA
ZONO

BUYOUT
LZAC
iS

SLA

LA

Hz O22
OrA
Hes
LAO

29!

0004

ADIR

10120
“O24

£0123
Oto
0126
“OL 27
*0128
“O13A
“O12
0120

op vals
0130

‘0132

"O133

‘0134
“OLS7
(OT39

‘O13A
OTs
70140
‘o141

‘0142

“0145
“0146

“0149

“0144

*O14C
‘O14
“OL4F

LOUS4
‘Olle

“O154
COTS
*O1s7
‘G1S9

‘O15B
‘O1SC

ZO 1 oe
“0160
‘O161
“0163
70165
0166
LOLG7T

°0168

‘O16A

£OPECE

“O16E
SOV70,

“O172

“O174
70176

"O176

“OL74A
“OL 7G

‘O170

“OL7E
SOUS I

ORJECT FLAG ST #

0233
0234
0235

0245

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE
SOURCE STATEMENT DATASET = DKO?HMSU .SRC

LR Ard
oh Woo

BZ LAN
xne
LR Ar0
ST,
BR BUY

LAQ EL Hie OF

xnec
St
BR BUY1

LAN er Hy at
xne
ST

BUY1 nel SZONA
LI ZON2
ST
JMF BUY

VVUV nel LZAC
LIs So
ST
nel SLA
xnc
nel LA
LM
Al nH’ OS’
LR OrA

lea HSE
BZ LAO

LR A709
cI HDF *
BZ LAL

LR A290

CT H‘ 40°
BZ LA2

LR Ar9
Ct H‘41°
BZ LA3
LR OVA

cI H‘42¢
RZ LA4

xre
LR Ax0
Sat
BR BUY2

LAO Er Hoe Os
BR BUYS

LAL er He 2d
BR BUYS

LA2 LI Higa es
BR BUYS

LAS Lt Hees <
BR BUYS

LA4 ter H’24’
BUY3 xnc

ST

BUY2 nel SZONA
fer ZONS

252

0005

AUDR OBJECT FLAG ST #

CO Lae. 17 0291
0184 2A0844 0292
"OLS 73/7 % 0293
SOLS oe) 17 0294

‘0189 2A0845 0295
Ons GH70: 0296
COPB O17 0297
SOLBES 2900532" A 0298

0299
ry;

0300
SOLO T2208 0301
O19 2" tA 0302
OO sce al 0303
“0494 32721 0304
“0196 2080 0305

*O198 2720 0306
‘O19A 70 0307
POTS Bs Be 0308
“OTGE - 2720 0309
‘O19E 2A0C00 0310
“0 TALS 26 O311

‘O1A2 2A0800 0312
“OLAS 2040 0313
°

LOLA 4 59 0314
‘O1A8 207F 0315
‘O1AA 41 0316
‘O1AB 2720 0317
‘O1AD 2621 0318
SOLAR 17 0319
“OIRO. 2C 0320
“OLRT) 17 0321
“OTR2. (2C 0322

COLBS: 70 0323
“OLB4): 2720 0324
FOLBGS 2728 0325
POLES. 231 0326
“OLB? 50 0327
‘O1BA 94EF 0328
‘O1BC 2A083E 0329
“OLRE 70 0330
COLEOR 272% 0331
‘01C2 2080 0332
“01C4 2720 0333
FOLGS6 70 0334
*O1E72 2720 0335
LOLEP 16 0336
“OQ1CA. 2721 0337

‘O1CC 2081 0338
ZOLCE 2720 0339
LOLDOO +70 0340
*OTRL -2720 0341
A Odiseh S272 4 0342
“O1N5 2B 0343
SO Lue. Ol 0344

0345
HER SLAVE

0346

>O1FO 0347
LOTEO = 08 9348

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0006
SOURCE STATEMENT DATASET = DRKOSHMSU .SRC

ST

BUYOUT [CI FIDFLG
LIS i
ST

BUYOT pct ISMIFG

Eas) 0

St

JMP BUY
sCOFY SUBROUTINE COPIES ISMI INTO MASTER’S FRIVATE MEMOR

SANIT COMMON MEMORY OF THE HMSU SYSTEM.
COPY LR RerP

rl
LIS 1
OUT hoe’
Ey HY’ BO.
OUT 720°
LIS 0
OUTS o

OUT H“20°
DCI H’0OC00’
xXnCc

DCI H‘O800°
cI H’ 40° sCOUNT 64 LOADED IN REG

LR OvA

EL Hee7Re sREAD ADD LOADEDIN REG 1
REPT LR Avl

OUT HoO2O’
IN H’ 2)’
ot
XC
ST

XC

LIS 0
OUT He 20"
OUT Hie 105

ns 1
ns °

BNZ REPT
DCI WFCFRS

1S Qo

OUT He2t?

ES Hoso7
OUT Ho204

LIS °

OUT H* 20"
LM
OUT Hel’
Ls Hee 14

OUT HH’ 20%
Lis 9
OUT H“20°
OUT Hott
Ed

PK sRETURN
+>COMMON MEMORY ROUTINE MAKES COMMON TATA AVAILABLE TO OT

sFROCESSORS,
ORG HLOLRGs

CMAR LR KoF

253

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0007
ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC

SOAR 1. 5A 0349 LR 4A
COLES. (LE 0350 LR Joi
‘O1F3 OA 0351 LR ArIS
COLE As Sa 0352 LR SA
“OLE S" = 280435". A> 203535 PL CALL
COLES: DR 0354 Er
COLE? <- 2h08FF 0355 nel SFA2
COUPE 216 0356 LM
SOTRD 2504 0357 CI 1

COLEF -8413 0358 BZ SLV2
‘0201 2A08BF 0359 NCI SFAL
‘0204 16 0360 LM

‘0205 2501 0361 cI 1.
‘0207 8414 0362 BZ SLV1
‘0209 2A087F 0363 DCI SFAO

fO200 16 0364 LM
(O2Z0D.: 2501 0365 cI 1
‘QO20F 8413 0366 BZ SLVO
SO21T 9021 0367 BR OuTT
‘0213 2A08FF 0368 SLV2 NCI SPA2
“O216 70 0369 Lis 9
SOLU AAT 0370 ST
CORA B27 2 0371 Lis 2
S021 a. BS 0372 OUTS 2

‘O21A 97024 0373 BR OUuTT
‘O021C 2A08RF 0374 SLV1 DCI SPAL
“OCT 3270 0375 LIS 0
“O220. 17 0376 ST
GO2215 °71 0377 LTS 1
£O2 22-389. 0378 OUTS 9

°0223 2A087F 0379 SLVO DCI SFAO

‘0226 70 0380 LIs 0
"C227. he O381 ST
‘0228 &B9 0382 ouTS o
‘0229 2A0851 0383 ncrI ERE:
“0220. “71 0384 Lis i.
“O22 a7 0385 ST
‘022E 2080 0386 Et Hes oe
“0230 S50 0387 LR OrA
‘0231 2A0880 0388 LCI H‘0880’
20234, .2€ 0389 xnC
‘0235 2A0C80 0390 ncr H‘0C80’
0238 16 OSI REP LM
"0239 2C 0392 Xe
‘023A 17 0393 ST
AQ23E 26 0394 XBC
fO23C 220 0395 nS 9
‘O23D 94FA 0396 BENZ REF
“O23k. 280460" &) 0397 0UTT Fad RETN
0242 45 0398 LR Ar
‘0243 OB 0399 LR ISvA
0244 10 0400 LR WoJ
0245 44 0401 LR Ar4
“O246 15 0402 EL
0247 OC 9403 PK sRETURN

0404 sTRAIT-THIS SUBROUTINE TRANSMITS MASTER*SLAVE1 &
0405 #SLAVE2 GENERATED DATA TO FOF-11 YIA ISMI

0248 2042 0406 TRHIT tr H’ 42°

204

ATI

“O24A
“o24C

“O24E
‘0250
0252

‘0255
‘0257
‘9259

‘O258
‘O25C
“O25E
0261
“0264
0265
°0267
°0269
“O26B

‘O26E
‘O26F
‘O272

0273
0276
‘0277

°0279
‘O278
“O27E
“0278
0281
0283
0285
‘0287
‘0288
“O28A
‘QO288
‘O28E

£0297
70293
0295

“0296
“0298
i O27 7.
°029C
L027 F
‘QO2Al
‘O2A3
“Q2A4
“O2A6
‘O2A7
“O2AA
“O2An

°Q2B0
"O2k3
‘QO2B4

fO257
‘O288
‘O2R9
‘O2RA
‘O2RR

OBJECT FLAG

2720
Boot

2501
84FER
2A0B4F

2043
2720
Boo)

8h
8404
270053" A
280400’ 4
a

2721
2082

2720
2A0B7E

16

2501
8413
2AOBBE
16
2501

8419
2AOBFE
16
2501
841F
9029

2010
50
2087

51
2A087F
280203’ A

9OE1
2010
50

20A7
Oh
2A0S8BF
280203’ A
FOR
2010

50
2097
ay
2A0BFF

280203’ A
280400 A
2A08S2

ot
2A0BS2

16
ay.

2c

t7
2721

ST # SOURCE STATEMENT

0407
0408
0409
0410
o411

0412
0413
o414

o415
0416
0417
0418
0419
0420

0421
0422
0423

0424
0425
0426
0427
0428
0429

0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444

0445
0446
0447
0448
0449
0450
O451
0452
0453
0454
0455
0456

0457
0458
0459

0460
0461
0462
0463
0464

TRY

SEND

TRO

TRI

TR2

MTR

Suk

NEW

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0008
DATASET = DKOSHMSU .SRC

e207
Hee

1
TRY
WCOMS

H’ 43’
H‘20’
Hie 2%

SEND

a° 10°
OrA
HeB 77
1sA
HaOS Zee
WRITE
TRI
£07
OrA
H‘A7’
1A
H’‘OSEF’
WRITE
TR2
HAOe

OrA
ing a
1vA
HOOSFE “
WRITE
CLEAR

TREC

TREC

£90

ADIR

‘O2BD

‘O2BF
“02C1
“O2C4
°02C5
°02C7
"0209
‘O2CE
°Q02CE
°O2CF

‘O20

‘0203
‘0204
‘0205

“O207
‘0209
“O2TA
“O20C
‘o2nn
‘O20F

‘O02E0
‘O2E2

20340
‘0340

°O341
‘0342
‘0343

‘0344
0345
‘0348
‘0349
‘O34A
‘O34E
0340
‘O34F
“0351
‘0352
‘0353
0355
‘0357
‘0358
0359
‘O35K
‘O35r
‘O3SF
03690
0363
0364
0365
0368
‘0369
“O36A
°036C
‘O36L

MOSTEK
OBJECT FLAG ST # SOURCE STATEMENT

2083 0465 ET Hoa.
2720 “0466 OUT H220%
280400 A 0467 PBI CLEAR
70 0468 LIS 0
2721 0469 ouT He2t7
2082 0470 LY HH’ 827
2720 0471 ouT e204
2A08S51 0472 net TRF
70 0473 LIs o
17 0474 ST

290053’ A 0475 JMP BUY
0476
0477 sISMI WHICH IS USED BY

08 0478 WRITE LR KoF
79 0479 Wi LIs 9
2720 0480 ouT H‘20°

2721 0481 OUT He2a ©
16 0482 LM
2721 0483 OUT He2ts
41 0484 LR Ast
2720 0485 ouT Hy20¢
30 0486 nS 0
9AFS 0487 BNZ Wi
oc 0488 PK

0489
0490

0491 ORG H’0340
os 0492 LR KoP

34 0493 LR 4A

TE 0494 LR Jo
OA 0495 LR AvIS

55 0496 LR oA
280435’ A 0497 PI CALL
63 0498 LISU 3
68 0499 LISL 9
4c 0500 LR AsS
24FF OS01 Al HER’
9427 0502 BNZ EXE
20Fr 0503 ex Aan
on 0504 LR Ivf

4c 0505 LR ArS
24FF 0506 al al Tale
8409 0507 BZ SE.

6A 0508 XP LISL 2
4c 0509 LR Ass
24FF 0510 Al Hae Rs
8410 OS11 BZ SETI
9017 0512 BR EXT:
69 OS13 (SETP List i
2A08on 0514 ncI STi
16 0515 LM
sc OS16 LR SyA
2A0844 0517 ncl ELOELG
7s 0518 LIS 1
17 0519 ST

SOEC 0520 BR XF
6A Oaz1 SELL Let 2
200A 0522 Ee H’OA’

256

3870/F8 CROSS ASSEMBLER PAGE 0009

DATASET = DKOSHMSU .SRC

+WRITE-SUBROUTINE COPIES FM DATA INTO

POP-11 FOR DISPLAY

RETURN
#TIMER INTERRUPT ROUTINE STARTS HEREsescesrerseeorere

9TOP FRIORITY ROUTINE - PIO-1-90002 - VECT ADD H’0340'
’

ADDR

‘O36F
‘0370
‘0373
“0374
‘0375
‘0378

‘0379
‘O37A
‘O378

“037C
“O37D

>O3A0
“O3A0
“OSA1
“O3A2
‘03A3

“O3A4
“O3AS
‘O3A8

“OSAP
“O3AC
“O3AN

“O3BO0
‘OSB1i
‘O3R3
‘O3B4
‘O3BS
“OSB7
“O3R9
‘OSBC
‘O3BR
“OSBE
‘O3C1
°03C2

‘03C3
“03C6
‘0307

“O3C9
“O3CE
7O3Cn
“O3CF
‘O3n2
‘O3D3
‘O36
‘0307
‘O308

‘OSn9
‘O3DA
‘O3DK

70400
“0400
‘0401
‘0402
°0404
‘0406

OBJECT FLAG ST #

A

0523
0524
0525
0526
0527
0528
0529
0530
0531

0532
0533
0534
0535
0536
0537

0538
0539
9540

0541
0542
0543

0544
03545
0546

0547
0548
0549
0550
O351
0552
0553
0554
OSS5

0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0548
0569
0570
0371
0572
0373

0574
0575
0576

0377
0378
0379
03580

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0010

SOURCE STATEMENT DATASET = DKO?HMSU «SRC

LR SxA
nCc.I ISMIFG

ELS i

oy
EXLiy PI RETN

LR Ars
LR ISvA

LR Wed
LR Axr4

Et
PRK +RETURN

SEXTERNAL MICROSWITCH INTERRUFT ROUTINE STARTS HERE+ +++

sFIO-2-VECT ALD H’O3A0’
ORG H‘O3A0’
LR KeP

LR 49A
LR JoW
LR AvIS

LR SA
PI CALL
EI
DCI MSCNT
xne
nel MSCNT

LM
Al HER
xXuCc

ol
BZ SETS
BR QUIT

SELo DCI MSCNT
ES 6
ST
HG SLA
LM
INC
ner SLA
ST
CI Hie SER

BZ NVAL
BR QUIT

NVAL LI H’20’
ner SLA

oT
Fi RETN

LR Ars

LR ISeA
LR We J

LR Ar4

QUIT Et

PRK sRETURN

;CLEAR-SUBROUTINE CLEARS 1/0 FORTS 20 &21

ORG H’0400%

CLEAR LR KoP

ees 0

OUT His 207
ouT Heet?
PR sRETURN

for

ALLR

“0407

“0408
“0409
‘OAOA
‘O40B
‘o40n

‘O40E
“O40F

“O411
‘0412
0413
“O414
‘0415
‘0416
‘0417
“O419
‘O41B
'O41C
‘O410
“O41E
‘O41F
*0420
“90422

0423

‘0424
°0425

0426
0427
°0428

‘042A
‘0428
°042C
‘0420
°042F
“0430

0431
°0432
‘0434

“0435
“0436
“0437
“0438
"0439
“O4ZA
“O43B
“O43C
“O43n
“O43E
“OA3F
“0440
“0441
“0442
“0445
“0446

OBJECT FLAG ST #

64
68
OE
02
ot
03
ot
2C
OE
02
on
o3
3c
2A0A00

43
BE

ose
- 0582

0583
0584
o38s
0586
0587
0588
OS89

0590
O591
OS92
0593
0594

OS9S
0596
0597

0598
0599
0600

0601
0602
0603
0604

0605
0606

9607

0608
0609
0610
0611
0612

0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
9625
0626
0627
0628

0629
0630
0631
0632
0633
0634
0635
0636

0637
0638

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0011

SOURCE STATEMENT DATASET = DKO?HMSU «SRC

+ZERO SUBROUTINE CLEARS THE CONTROL LOOF BUFFERS

ZERO

EURT

LR

LISL
LIs
LR
BR7
FR

KyP

7
0
DeAé
LUFL

¢SHUT SUBROUTINE STOFS THE CONVEYOR AND
sSWITCHES OFF ALL THE HEATERS OF THE FURNACE

SHUT

WAIT

CLOSE

WAIT

CALL

LR KoF
LI MH? S30”

LR OrA
LTS 0
OUTS 9°
LR Ard
OUTS 1
nS Qo

BNZ WAITI
LI H‘30’
LR OrA

Lio 8
LR 1sA
LR Ar0

OUTS 1

Let H‘ 47°
LR 292A

Lis °

OUTS 0
LR Ar2
CUTS 1
nS 0
BENZ WAIT

£38 0
OUTS 1
OUTS 9
vat H‘30’
LR OvA

ns 2
ns {
BNZ CLOSE
PR sRETURN

sCALL SUBROUTINE STORES WORKING REGISTORS IN RAM STACK
LIsu 4
Lisl Qo
LR QTC
LR A»QU
LR IvA

LR Ar Qe
LR IvA
xnCc
LR Qc
LR Ar QU
LR IvA

LR Av Qab
LR SA
ner SSA

LR Ars
AnC

258

ADDR

“0447
‘0448
“0449
“044A

‘O44E
“O044C
“0440

“O44E
‘O44F
°Q450

‘0451
‘0452
‘0453
“0454
“0455
°0456
*0457
‘0458
‘0459
‘O45A
“O45B
‘045C
‘O4S5E
‘O4ASF

STACK
“0460
70461
“O464
‘0465
“0467
“0468
“0469
‘046A
“O46B
°046C
‘0460
“O4GE
“O46F
‘0470

“0471
0472
‘0473
“0474
‘0475
“0476
‘0477
“0478
‘0479
“O47A
“O47B
“047C
‘0470
“OA7E
“O47F

“0480
“O481
“0482
‘0483

ORJECT FLAG ST # SOURCE STATEMENT

0639
0640

“0641
0642

0643
0644
0645

0646
0647
0648

9649
0650
0651

0652
0653
0654

0655
0656
0657

04658
0659
0660

0661
0662
0663

0664
0665
0666
0667
0668
0669
0670
0671

0672
0673
0674
0675
0676
0677

0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
9689

0690
Oé691
0692
0693
0694
0695
0696

RETN

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0012
DATASET = DKOSHMSU «SRC

LR Ax4

St.
LR Ar?
ST
LR Avs
ST
LISU 4

LIS 0
LR Ayl
ST
LR AvI
ST
LR Arr

ST
LR Ars
ST
LR AryKU
Sk
LR ArKL

ST
LR Ar3
Al BOP!
LR 3rA
BOG

sRETN SUBROUTINE RETURNS THE WORKING REGISTERS FROM RAM

nt
ncl SSA
LR Ass
Al HOR? *
LR 3A
ADC
LM
LR 4A

LM
LR 999A

LM
LR SrA
LISU 4
Ci¢ge 9

LM
LR IvA
LM
LR IvA
LM
LR IvA

LM
LR SrA
LM
LR KUsA
LM
LR KL+A
LR AsT
LR QLrA
LR Ay
LR QUrA
LR nc»
Xn
LR Art

259

ALDR

‘0484
‘0485

“0486
‘0487
“0488

“0489
“048A
8
“o4sn
“Q4B8E
“O49l
“0492
“0493
“0494
S
"0497
“0498
“O49R
“O49C
“0490
“OA9E
“O4A1
“O4A2
“O4A4
“O4A6
“0409
“O4AA
“O4AC
“O4AE
“OAAF
“0480
“O4R2
“O4B3
“O4R4
“O4B6
“O4B7
“O4R8
‘O4BE
“O4BC
‘O4BL
“04C0
“O4C3
“044
“O4C5
“0406
“O4C7
“048
“O4C9
TURE
“OACTA
“o4cn
“O4CE
“O4CF
“O4TI0
“O4ti
“o4n4
“O45
“O4L6
“O4ng
“OATIA

OBJECT FLAG

07
4E

06
OF
1c

1A
2A0849

2c
200848
16
2c
7

2A0842

BoOGL 9. sR
6E
46
sc
a2
2A0809

16
si
28063A’ A

46
SA

ST #

0697
0698

0699
“0700
0701
0702
0703
0704

0705
0706
0707
0708
0709

0710

O711

O7.12
0713
0714

O715
0716
O7 47,

0718

9719
0720

0721
0722
0723

0724
0725
0726

0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738

0739
0740
O741

0742
0743

0744
0745
0746
974?
0748
0749

0759
O751
07352

0753
0754

sFID - ROUTINE STARTS

PIDR

Loe

L3

CALCU

LR
LR
LR
LR
POF

nr
nel

xc
DCI

LM
xnec
ST

ner

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0013
SOURCE STATEMENT

QL +A
Art

QU:A
ncra

TSLA

SLA

TSZONA

SZONA

LZAC

bi

rc

N

D>

2

bh

ALCU

ALCU

N
U

O
N
G
&

O
N
N

T
h
o

+

wo

rc

D>

INPU
ISP1

10%A

119A

OrA

107A

260

DATASET = DKOSHMSU .SRC

HERE s occ cicee

sTETERMINES STARTING LOAD ADDRES

sDETERMINES STARTING ZONE ADDRES

#REG 11 CONTAINS ZERO
sREG 1 CONTAINS ZERO

sREG O CONTAINS MEASURED TEMPERA

+STORE AWAYERROR EK
sLOAD EK IN REG 2
¢K1i1 IS LOADED IN REG 1

dKILXER

ALDR

‘O40R 70
‘o4nc SE
‘o4nn 60
‘O4DE 4C

‘O4DF 52
“04E0 2A080A
‘O4E3 16

‘O4E4 Si
‘O4ES 280463A’
‘O4E8B 280695°

‘O4ER 2806197
HL.
‘O4EE 4C
‘O4EF - 4C
‘O4FO S2
‘O4Fi1 2A080B
‘O4F4 16
‘O4FS Sil
‘O4F& 28063A’%
“O4F9 280695’
“O4FC 2805FD’
HU.HL
‘O4FF 68

“0500 «64C
‘0501 S2
‘0502 2A080C
£05039 216
£0506) Oo.
‘0507 28063A’
‘OSOA 280695
‘OSOn 2805FD’

KI44xDEL(PK-1)
‘0510 6A
‘0511 4A

(O5t2 SC
‘0513 68
‘0514 Sc
‘0515 4B
‘0516 4B
FOS1L7. 38
"OSTS (69
“OS19°= 46
‘OS1A 50
LOSE == 7.0
FOSLeE 94
fOSTH “2805F DY
‘0520 2805BR’

‘0523 60
‘0524 4E
“0525 SC
COB2a. GE.
{0927.2 /4E
‘9528 Sc
‘0529 OA
‘OS2A 18
‘OS2R 2138
‘OS2n 843F
“OO2ZF 2 OR
“0530.18
“0S31 2130
‘0533 8445

D
p
P
r
P
D

p
P
D
r
D
D

D
D
D

A

A

0755

0756
0757
0758
0759
07690
0761

0762
0763
0764

0765

0766

Lis

LR
ETSI
LR

LR
ner
LM

LR
EE
FI

Ex

LISL
LR
LR
ncl
LM
LR

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0014

ORJECT FLAG ST # SOURCE STATEMENT

0

1ivA
3
ArS
278

Kae

1:A
BMFY
TRAN

BSUBT

Ars
29A
K13

1:A
BMPY

TRAN

BADD

9
Avs

2A
K1i4

1:A
BMF Y
TRAN
BALL

=
Arv19

SrA
0
S9A

>
Avil
SA
t
ArS
OrA

0
ivA

BADD
QUTFU

3
Art
SrA
6
Ast

SA

AvIS

He332
CL2
ArIS

H23.07
CL3

26 1

DATASET = DKOSHMSU «SRC

sPOINTER AT EK~1

7EK-1 IN REG 2
¢Ki2 IS LOADED IN REGI

sKL2KEK-1

$KLI*XEK-K1I2KXEK-1 = RESULT IN HU.

sFOINTER AT EK-2

SER-2 IN REG 2
§K13 IN REG 1

sKISKEK-2

sKIAKEK - KI2KEK-1 + KI3*EK-2 =

sDEKCPK-1)U IS MOVED TO REG 2
$K14 IN REG 1

SKI4KDEL (CP K-1)U

IRUEPRER —ARL2KER-1 + ORLGAERS 2 ot

§ FOINTER AT DELCPR)U

sPFOINTER AT DEL CPRK-1)

sFOINTER AT DEL CPRIL

sPOINTER AT PR-1

sFPK=DELCPR) + FK-1 = HU-HL

sPOWER IS OUTPUT TO HEATERS

SUR DRE Rad TO ENS

sUPDATE EK TO EK-1

ADDR

‘0S35
0538
‘0538
“OSSE
“OS3SF
0540
‘0543
“0544
‘0545

‘0548
'OS49
“OS4C
‘os4n
‘OS4F
‘0552

‘0555
0556
‘0359

“OSSA
“OSSC
‘OSSF

0560
‘OS61
‘0564

‘0565
‘0568
‘OS6B

‘OS60
“0570
“0573
‘0576
‘0579
“0S7C
‘OS7F
‘0582

0585
‘0586
‘0589
‘OS8A
‘OS8B

‘OS8E
‘OS8F
"0592
“O0S93
“O5S94
‘0597

0598

OS???
OS9A

‘OSOR

“OSE
OS9F

‘OSAO

“OSAL

ORJECT FLAG

2A087A
280599" A
2A0844

2A0870
280599"
280585’
2904B2’
2A0875
280599 °
280585’
2904B6‘

p
D
D
d

D
>
D
D
D

. 0813
0814
oB15
0816
0817
0818
0819
0820
0821

0822
0823
0824

0825

0826
0827

0828
0829
0830

Ossi
0832
0833

0834
0835
0836

0837
0838
0839

0840
oO84i
0842
0843
0844
0845
0846
0847
0848
0849
0850
Ossi
9852
0853
0854

0855
0856
0857
0858
oss?
0860
0861
0862
0863

0864
0865
0866

0867
0868
OB49

;RECORD SUBROUTINE RECORDS SAMPLE NUMBER»
FOWER TO THE ZONE & LOAD ADDRESS

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0015
DATASET = DKOSHMSU .SRC

& ZONE ADDRESS FOR THE

OF THE FID ALGORITHM

sRETURN
ZONE ADDRESS»

ST # SOURCE STATEMENT

ncr RECQ3
By RECORD
nct FIDFLG
LIS 9
ST
nel SNO

LM
INC
nel SNO

ST
ncl NS
CM
BZ TSTRUN

JMP RUY
TSTRUN [DCI TRUNNO

LM
NCI RUNNO
cM

BZ ENDRUN
ncr TRUNNO
LM

INC
ncI TRUNNO
Si

JMP BUY
ENDRUN PI STOP

BR ENDRUN

CL2 ner RECOIL
Ce RECORD
PI MODLZA
JMP C2

CL3 net RECO2
Pr RECORD
PI MODLZA
JMF L3

;MODLZA SUBROUTINE MODIFIES LOAD

sNEXT CONTROL LOOF
MODLZA LR KyP

nCI TSLA
LM
INC
ncr TSLA

ST
Hcl TSZONA
LM
INC
ne! TSZONA
ST
FR

sLOAD TEMPERATURE»

RECORDS: Ek KoF
XDC
ner SNO

LM
XnC
ST

XC 0870

262

ALOR

“OSA2
‘OSAS
“OSA6
“OSA?
‘OSAB
“OSAP
‘OSAA
‘OSAB
“OSAC

‘OSAF
‘OSBO
‘OSE1
‘OSE2
“OSB3

‘OSB6
‘OSE?

‘OSB8
‘OSB?
“OSBA

‘OSEB

“OSBC
‘OSBE
‘OSBF
“O5SCO0
‘OSC
‘QSC2
“oSC4
“OSCS
“0SC8
‘OSC?
“oscc
‘OSch
“OSCE

“OS01
‘oSn2

OSnS
‘OSTA
‘OSDS
‘OSn6
‘OSn8
‘OSD9
“OSTA
‘OSD0B
OSnC
“OSDgn
‘OSEO

‘OSEL
OSE2
OSES
10 SEG
7OSE7
/OSt3

‘OBER
“Ogre
*OSEE

ORJECT

2A0842
16
2c
G7
éF
4c
id

2c
2A08S5

16
ac
17

2c
2AQEAD

16
2c
17

oc
2B

FLAG

MOSTEK 3870/7F8 CROSS

ST # SOURCE STATEMENT

Os71
0872
0873
0874
0875
0876
0877

0878
0879

0880
Ossi
0882
0883
0884

0885
0886

0887

0888
0889
0890
OB9L

0892
0893

0894
O89s
0896
0897
0898
OB99
0900
O901
0902
0903
0904
0905
09046

0907
0908
0909
OF10
O9Ld
O9Ne
O913
OPF14
OO1s
O916
0917
0918
OFT
0920
OF 24

sOUTFU

ner

Ba

Kn

St
List
CE

ol

Xn

Ler

LM
xo
St
Ie,
UCI

Li
Olle

or

PR
NOF

SUBROUTINE OUTFUTS A BYTE
*VIA FORT O FOLLOWED

TSZONA

7

AyS

ANSWER

ASSEMBLER FAGE

DATASET = TKOTHMSU «SRC

*RETURN

OF ABSOLUTE FOWER
BY 150 MICRO SECONDS DELAY ANE

*THEN THE ZONE ADDRESS IS SET UF ON FORT 1

OUTFU

NIL

CONT

TS1

LR
Ly
LR
LES
OUTS
LR

XI

EF
BR

Lis

ner
Si
OUTS

ncr

uM
OUTS

ETS
LR

GR
BR
ELS
LR

LR

St
INC

Ko F

HS"
OvA

0
9%
Av190

H* 30"
NIL
CONT
OQ

ANSWER

9
TSZONA

a

ih

Arild

SyvA

eae

a

Ay id

Saf

1

ANSWER

0

TSZONA

1
0
a

9
1

263

0016

ADIR

‘OSED

‘OSEE
‘OSEF
“OSFO
‘OSF2
“OSF4

“OSES
‘OSFS6
‘OSF7

‘OSF8
LOSh?
‘OSFA
‘OSFB
‘OSFC

‘OSFD
‘OSFE

“OSFF
“0600
‘0601

‘0602
°0603
ANS

°0604
“0606
°0607

“0608
H

"0609
“O60R
*060C
‘O60E

“0610
‘0612
‘0613

‘0615
°0617
°0618

‘0619
‘OS1A
‘O61E
“O61C
“O06i0
“O61E
“O61F
°0620
‘0621
‘0623
ORDER

°0624
£0625

°0626
°0627
‘0628
°0629
‘062A

OBJECT FLAG ST #

oc

8102
TF
co

SA

980E

2380
8106

207F
SA
9004

2080

oc

0929
0930
0931
0932

* 0933
0934
0935
0936

0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948

O94?
0950
o951

0952
0953

0954
o9ss
0956

0957

0958
0959
0960
O961

0962
0963
0964
0965
0966
0967
0968
0969
0970
o971
0972
0973
0974
0975
0976
O977

0978
0979

0980
o981

0982
0983
0984
o98S
0986

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0017
SOURCE STATEMENT DATASET = DKOZSHMSU .SRC

PK s RETURN
sINFU SUBROUTINE INPUTS A BYTE OF DATA VIA FORT 0
sFOLLING ON STATUS BIT 1 OF FORT 8
INFU LR KoF
LOOF2 INS 8

NI He 02” *MASK BIT 1
BZ LOOF2
LIs 2 sOPEN GATE

OUTS 8 sVIA FORT 8
INS 0 sREAD DATA VIA FORT O
LR SrA sAND STORE IN 0°77’

LIS o
OUTS 1
ouTS 8 sCLOSE GATE
OUTS 9
PR sRETURN

sBADD SUBROUTINE-i6 BIT BINARY ADDITION IN

sREGCHU).REGCHL)+REG(0O). REGC1)=HU.HL
RAD LR KoF

LR DC+H sMOVE AUGEND TO NCO

LR Asli sLOAD LOWER ORDER BYTE OF ADDEND
Alc sADLR TO AUGEND
NS i

LR He DC sRESTORE PARTIAL SUM TO H
LR A109 sLOAD HIGH ORDER BYTE OF PARTIAL

BP BAQ

INC
RAQ As 9 sADD HIGH ORDER BYTE OF ADDEND

LR 109A sRESTORE TO GIVE COMPLETE ANS IN

BNO FINISH

LR AO
xI H‘80’
BP NEGT

Et Bees
LR 109A
BR FINISH

NEGT EY H’80’
LR 10%A

FINISH PK sRETURN

#BSUBT SUBROUTINE-16 BIT BINARY SUBTRACTION IN
sREGCHU).REGCHL)-REG(O). REG(1)=HU.HL
ESUBT LR KeP

LR Av10
LR BrA
LR DCyH sMOVE SUBTRAHEND TO DCO
LR Asi sLOAD LOW ORDER BYTE OF MINUEND
COM sCOMPLEMENT IT
INC sINCREMENT IT

Alc sADD TO SUBTRAHEND
BP BSO SIRS RIT 7201. ts
nS 9 sCOMPENSATE BY DECREMENTING HIGH

RSO LR Hel sRESTORE FARTIAL SUM TO H
LR A290 sLOAD HIGH ORDER BYTE OF MINUEND

COM § COMPLEMENT
INC 5 INCREMENT
As 10
LR 109A #STORE ANSWER IN REG(10)
ENO DONE

264

OBJECT FLAG ST # ADIN

°062C 48

‘0620 2380
‘Q62F 8106
‘0631 207F

‘0633 SA-
“0634 9004
0636 2080
‘0638 SA
"0639 OC

TIPLICAND)

‘063A 08

‘O63B 41
°063C E2
‘063 58

R
‘O63E 41
‘063F 2380
‘0641 8108
0643 42
0644 2380

‘0646 8109
‘0648 9O00R
‘064A 41
‘O64B 18
‘064C IF
‘0640 Sil
‘064E %90F4
‘0650 42
(N6S1 13

‘0652 IF
‘0653 52
‘0654 78
‘0655 SS
‘0656 70
‘0657 56
‘0658 57
“0659: *7.0
‘065A Ci
‘O60E- 3107
‘065D 42
‘O6SE Cé
“Q65R 36
“0660 47
(O66) 39

0662 57
‘0663 41
‘0664 13
PO6Oq 151
‘0666 35
‘0667 840C
°0669 46
‘066A C6
‘O66R 56

20G6(%, TE
‘0660 47
COG6E 3:13

SO66E o-Ep
996705 219

0987

MOSTEK

SOURCE STATEMENT

NPOS

TONE

LR

XI

PR

Ar8

H‘ 80’
NFOS
Heer

107A
DONE
H’*S0*
109A

3870/F8 CROSS ASSEMBLER PAGE 0018

DATASET = DROSHMSU .SRC

sRETURN
sBMFY SUBROUTINE - 8 BITCREGIS MULTIPLIER) *8 BITCREG2¢ MUL

#=16 BIT FRODUCT IN REG7(CINT).REGS(FRA)
BMFY

NEXT

NEG1

NEG2

MULT

BMF i

BMF2

LR

LR
XS
LR

LR
XI
BF

KyP

Avil
~

BrA

Avi
H’80’
NEG1
Ar2
H‘80’
NEG2
MULT
Avi

1A

NEXT
Ar2

2A

oA

6A
79A

BMF 2
Ar2

69A
Ar?

79A
Ast

1sA

BMPS
Aré

9A

JoW

Ar?

We J

265

sSET MARK IN REG 8 FOR -VE ANSWE

sTEST FOR -VE NUMBER IN REG 1

sTEST FOR -VE NUMBER IN REG 2

sBRANCH TO MULTIPLICATION

sREGI NUMBER IS +VE NOW

sREG2 NUMBER IS +VE NOW
sINITIALISE COUNTER TO 8

sINITIALISE PARTIAL PRODUCT

$#I1S SIGN BIT OF MULTIPLIER SET ?

sNO! THEN SHIFT FARTIAL PRODUCT

sYES! ADD MULTIFLICAND TO
sPARTIAL PRODUCT

7SHIPT THE MUETIPCIER CERT.

sNECREMENT THE COUNTER
s5EXIT IF DONE

sSAVE STATUS FOR CARRY

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0019
ALDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC

“QVevt. 9-37 1045 LR 79A

‘0672 90E46 1046 BR BMF 1 5GO BACK FOR NEXT
‘0674 47 1047 BMPS LR As7
0675 2300 . 1048 XI H‘00¢ STEST FOR ALL ZEROS IN REG 7

‘0677 8406 1049 BZ TEST
£0679 72078 1050 er HeZE *
‘O067B 56 1051 LR ésA
°067C + 900C 1052 ER ANS
‘O67E 46 1053 TEST LR Ass
CO67F 2380 1054 XI H’80’

“0681 8103 1035 BF Twos
‘0683 9005 1056 BR ANS
‘0685 46 1057 Twos LR Ard

0686 18 1058 COM
{0607 se 1059 INC
‘0688 56 1060 LR 69A
‘0689 48 1061 ANS LR Av8
‘O68A 2380 1062 XI H’80° sCHECK FOR -VE ANSWER
‘O068C 8103 1063 BP NEGA

‘O68E 9005 1064 BR EXIT
“0690 46 1065 NEGA LR Axré
“O691>. 13 1066 com

"069.2. 1F 1067 INC
“0693 36 1068 LR 6rA
“0694 OC 1069 EXIT PK #RETURN

1070 sTRAN SUBROUTINE TRANSFERS THE CONTENTS OF REG 6 TO 0 &
REG1=0

‘0695 08 1071 TRAN LR KoP
"0696 46 1072 LR Ad
(0697-50 1073 LR OA
70698. 70 1074 irs 9
SO699. soa 1075 LR isA
“069A OC 1076 PR s RETURN

1077 $STOP SUBROUTINE STOPS THE CONVEYOR ANI) CLOSES ALL THE H
EATING

1078 sZONES ASSOCIATED WITH CONTROLLER NO-1
°O69R 08 1079 (STOR LR KoP

°069C 2050 1080 Et H’S0’
LOGIE ea 1081 LR OrA
CO6PF 20 1082 LIS 9
‘O6A0 BO 1083 OUTS 0
‘O6A1 40 1084 LR Ad
‘O6A2 Bi 1085 OUTS 1
‘06A3 30 1086 TST2 ns 9
°O6A4 Q9AFE 1087 BNZ TST2
‘06AG 2050 1088 tt H‘S0O’

‘06A8 50 1089 LR OrA
“O6A9 2A0840 1090 UCI LZAC
‘O6AC 16 1091 LM
‘O6AD Si 1092 LR 1A
‘O6AE 2A0841 1093 ucrI SZONA
SO6RI = t6 1094 LM

“O6B2>. 32 1095 LR 27
‘O6B3 70 1096 TURN ETS 9
‘O6B4 &0 1097 OUTS o

‘O6B5 42 1098 LR Ax2
“U6GEG. “BI 1099 OUTS 1
“0687 30 1100 TSTi ns 0
‘O6B8 FA4FE 1101 BNZ TSht
‘O6BA 2050 1102 tI H*S0/

266

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0020

ALDR ORJECT FLAG ST # SOURCE STATEMENT DATASET = DIKOtHMSU .SRC

‘O6BC 50 1103 LR OvA
“O6ERD 32 1104 ns 2
“O6BE 31 1105 Ls 1
“O6BF 94F3 1106 BNZ TURN
2066100 06 ‘1107 PK sRETURN

“>06C2 1108 END

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0021

ADOR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC

AGA 0023 ANS 0689 ANSWER o8S5 BALN OSFD

BAQ 0607 BMFP1L 0659 BMP2 0663 BMF3 0674

BMPY 063A BSO 0624 RSUBT 0619 BUY 0053

BUY1 0134 BUY2 O17E BUYS 017C BUYOT 0189

BUYOUT 0184 C1 0800 C2 oso1 C3 0802

CALCU O4B8 CALL 0435 CL2 O56n CLS 0579

CLEAR 0400 CLOSE 0423 CM 0806 CMAR O1FO

CMFLG 0847 CONT oSne CORY 0191 DONE 0639

END 06C2 ENDRUN 0568 EXIIT 0375 EXIT 0694

FINISH 0618 FULL 0082 INFU OSEE ISMI 0078

ISMIFG 0845 ISF1 0808s ISF2 0810 ISF3 0818

Kit 0809 Ki2 OB80A K13 O80BR Ki4 osoc

K2i 0811 K22 0812 K23 0813 K24 0814

K31 0819 K32 OB1A K33 O81B KS4 osic

eal O4AE L2 O4B2 L3 O4B4 LA 0803

LAO 016A LAL O16E LA2 0172 LAS 0176

LA4 017A LAN 0130 LAO 012A LOOP2 OSEF

LUFI 040A LZAC 0840 MODLZA 0585 MOTA 0050

MS 0805 MSCNT 0853 MSFLG 0846 MTR 0285

MTRF O87E MULT 0654 NEG1I 064A NEG2 0650

NEGA 0690 NEGT 0615 NEW O2AT NEXT 0643

NIL O5C8 NFOS 0636 NS 0804 NVAL o3cn

ON oong OUTFU OSBB OUTT O23F PID Q06E

FIDFLG 0844 FIDIR 0489 QUIT O3DA RCFS 083C

RECOL 0870 RECO2 0875 RECOS3 087A RECORD 0599

REF 0238 REPT O1AA RETN 0460 RFCMS 0843

RFMS O84C RFFS O83 RUNNO 0807 SITR 0293

SITRF OB8BE S2TR O2A1 S2TRF OSFE SAME oo9n

SEND 0261 SEai OOAA SET2 OOB9 SETS ooc9?

SET4 O3B9 SETI O36C SETP O35F SHUT O40E

STi oson Si2 Osis siz osil SLA 0848

SLVO 0223, SLV1 o21C SLV2 0213 SNO 0854

SFAO O87F SFAL OBEF SPAZ O8FF SSA OA00

STAY 007C STOF O069R SZONA 0841 TEST O67E

TEST 1 00AO TEST2 OOCE TLZAC 084A TRO 0268

TR1 0273. TR2 0278 TRAN 0695 TRF ossi

TREC 0852 TRMIT 0248 TRMITT 0073 TRUNNO 0856

TRY 024C TSLA 0849 TST O5E/ 1S) 06B7

TST2 06A3 TSTRUN O3552 TSZONA 0842 TURN 0683

TWOS 0685 UUU OOF4 VYY 0130 Wi o2n4

WAIT 0427 WAIT 0416 WCMS OB84F WFCFS O83E

WFMS 0850 WFFS OB83F WRITE " O203 WWW 010C

X1 OOAF X2 OORE XF 0357 ZERO 0407

ZONO 0040 ZON1 0041 ZON2 0042 ZON3 0043

ZON4 0044 ZONS 0045 ZON6 0046 ZON7 0047

267

ADDR

CROSS REFERENCE LISTING
SYMBOL VALUE

AGA
ANS
ANSWER
BADD
RAO
BMF IL
BMF 2
BMF 3
BMFY
BSO

BSUBT
BUY
BUY1
BUY2
BUY3
BUYOT
BUYOUT

ENTIRUN
EXIIT
EXIT
FINISH
RUE
INFU

ISMI
ISMIFG
ISP1
ISF2
ISF3
Kil

Ki2
Kis
K14
K2i
K22
K23
K24
K31
K32

K33
K34

0023
0689
osss
OSFI

0607
0659
0663
0674
063A
0624

0619
0053

0134
O17E
017C
0189
0184
0800
osol
0802
0488
0435
OSé60
0579
0400
0423
0806
O1FO
0847
OSr8

0191
0639
06C2
0568
0375
0694
0618

0082
OSEE
0078
0845
0808
0810
0818
0809

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0022
OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU .SRC

STMT STATEMENT REFERENCES

0094 0096
1061 10546 1052
0066 0918 0903 0879
0947 0797 0783 0774
0956 0954
1023 1046
1032 1025
1047 1036
0998 0781 0772 0763 0752
0980 0978

0970 0765 0744

0128 0837 0826 0475 0417 0298 0250 0145 0143 0141
0247 0243 0239
0289 0277
0287 0285 0283 0281 0279
0295 0166
0292 0221 0208 0187
0002 0191 0167 0090
0003 0175
0004 0183
9732 0729 0726
0623 0542 0497 0353
0840 0808
0844 0812

0576 0467 0456 0418 0153
0607 0620

0008 0204 0200 0196
0348 0195
0048
9913 o9701

O301 0159
0995 0992 0986
1108
0838 0839 O831
0527 0512 0502
1069 1064

0967 0964 0958
0152
0932 0735
0147 0136

0046 0524 0295 0133 0124
0010 07364
0016
0022
9011 0749
0012 07690
0013 0769
0014 0778
9017
0018
0019
0020

0023 ~
0024

0025
0026

268

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0023

ALR ORJECT FLAG ST # SOURCE STATEMENT DATASET = IKOSHMSU .SRC

EL O4AE ; 0724 Odeo)

2 O4B2 0727 0843 0723
Ss O4B6 0730 0847

LA 0803 0005 0256 0227 0214

LAQ O16A 0278 O261
LAL O16E 0280 0264
LA2 0172 0282 0267
LAS 0176 0284 9270
LA4 017A 0286 0273
LAN 0130 0244 0235

LAQ 012A 0240 0232
LOOF2 OSEF 0933 0935
LUF 1 040A O58S 0586
LZAC 0840 0041 1090 0720 0716 0251 0222 0209

MODLZA 0585 0850 0846 0842
MOTA 0050 0040
MS 0805 0007
MSCNT 0853 0064 O3553 0546 0544
MSFLG 0846 0047

NTR 0285 0436 0426
MTRF O87E 0058 0423
MULT 0654 1018 1008

NEG 064A 1009 1004
NEG2 0650 1014 1007
NEGA 0690 1065 1063

NEGT 0615 0965 O961
NEW o2An 0456 0435
NEXT 0643 1005 1013
NIL 05C8 0902 0900
NFOS 0636 0993 0989
NS 0804 0006 0823
NVAL o3ch 03564 0562
ON OoOng 9196 0194
QOUTFU OSBR 0893 0798
OUTT O23F 0397 0373 0367
Pitt OO06E 0142 0132

PIDFLG 0844 0045 0815 0517 0292 0129 0120

FIDR 0489 0703 0142
QUIT O3DA 0372 0563 0552
RCFS 083Cc 0028
RECOIL 0870 0068 0840
RECO2 0875 0069 0844
RECOS 087A 0070 0813

RECORD 0599 0864 0845 0841 0814

REP 0238 O391 0396
REFT O1AA 0316 0328
RETN 0460 0664 0567 0527 0397

RFCMS 0843 0044
RFMS oB4c 0055
RFPS os3t 0029
RUNNO 0807 0009 0829
SiTR 0293 0443 0430
SPUERF .OSHE 0059 0427
S2TR O2Al 0450 0434
S20 RE OSE 0060 0431

SAME ooon 0166 0158
SEND 0261 0418 0416
SETI OOAA 0172 9170

269

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0024
ALUR ORJECT FLAG ST # SOURCE STATEMENT DATASET = DROSHMSU .SRC

SEE2 OOB9? 0180 0178
SETS 00Cc? ' 0188 0186
SENG O3B9 0353 Os5st

SETI 036C OS21 o511
SEP O35F O51%3 0507
SHUT O40E 0590 0089
STi oson 0015 0514 0162
sit2 Osis 0021
Sis osin 0027

SLA 0848 0049 0706 05465 O559 0556 0254 0225 0212
SLYVO 0223 0379 0366
SLV1 021C 0374 0362
SLV2 0213 0368 0358
SNO 0854 0065 0866 0821 0818 0122
SFAO O87F 0052 0379 0363 0172

SPA1L OSEF 0053 0574 O359 0180
SFA2 O8FF 0054 0368 0355 0188
SSA OA00 0063 0665 0636

STAY 007C 0149 0151
STOF 0698 1079 0838
SZONA 0841 0042 1093 0712 0289 0247 0218
TEST O67E 1053 1049
TESTi OOAO 0167 0165
TEST 2 OCOCE O191
TLZAC O84A ooS1
TRO O26B 0423
TRI 0273 0427 0442

TR2 0278 0431 0449
TRAN 0695 1071 0782 0773 0764
TRE 0851 oo0é1 0472 0383 0137
TRFC 0852 0062 0459 0457
TRMIT 0248 0406 0144
TRMITT 0073 0144 0140

TRUNNO 0856 0067 0835 0832 0827
TRY O24C 0408 0410
TSLA 0849 0050 0884 0854 0851 0732 0704
TST OSE7 0924 0925 0912
TST1 O&6B7 1100 1101
TST2 06A3 1086 1087
TSTRUN OSS2 0827 0825
TSZONA 0842 0043 0921 0906 0871 0859 0854 0710
TURN 0683 1096 1106

TWOS 0685 1057 1055
YUU OOF 4 0209 0199
VUYV O13n 0251 0203

Wi o2n4 0479 0487
WAIT 0427 0611 0612
WAITI 0416 0597 0598

WOMS OB84F 0056 O411
WFCFS O83E 0030 0329 0152
WFMS 0850 0057

WFFS O83F 0031
WRITE O203 0478 0455 0448 0441
WWW 010C 0222 0207

X1 OOAF 0175 O171
X2 OOBE 0183 0179
XF 0357 0508 0520
ZERO 0407 0582 0088 00846 0084

270

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0025

ALOR OBJECT FLAG ST # SOURCE STATEMENT DATASET = IIKOSHMSU «SRC

ZONO 0040 ; 0032 0219
ZON1 0041 0033

ZON2 0042 0034 0248
ZON3 0043 0035
ZON4 0044 0036

ZONS 0045 0037 0290
ZONS 0046 0038
ZON7 0047 0039

ERRORS=0000

271

APPENDIX D - THE DCHMSU PROGRAM LISTING

The following DCHMSU program listing for the PDP-11/10

minicomputer system:

C
r
)

O
F
T

C
i
e

C3

Cc

50

FROGRAM DICHMSU

THIS IS A COMMUNICATION FROGRAM BETWEEN A OPERATOR ANDI THE
SUFREMAL LEVEL FIOF-11/10 MINICOMFUTER. THE INFIMAL LEVEL
CONSISTS OF THREE CONTROLLERS USED FOR CONTROLLING THE
TRAVELLING LOAD FURNACE IN THE DEFT OF SYSTEMS SCIENCE.

THE THREE CONTROLLERS ARE IMPLEMENTED IN THE HIERARCHICAL
MICROPROCESSOR SYSTEM UNIT (HMSU) USING THREE F8 MICROPROCESSORS,

DIMENSION XK(423)2AC12) 9ARC12)9SF (8) »NAACI2) »TACL 298)»
1 IXK(423)sSG(3)»ISAC64) »ISH(64)
INTEGER RH» TRUN
DIMENSION $164) 292015) 9S3(7)9S4(2)»S11(04) »S22(15) »1S3(7) ICS)

COMMON /BLKI/C1i:sC22C3>CM
COMMON /BLK2/NO1C»NO2C»NO3C
COMMON /BLK3/GRLisGR2rGK39T1isT29T3eTIisTIi2sTiSs Thy Tes Thy

TTR thes Ths
COMMON /BLK4/LAsNS»MS*RH» ISPisISF2,1SF3
COMMON /BLKS/XKsITXK
COMMON /BLAG/KCM? IRCPS? IT RFPS» IWCFS»s IWFPS
COMMON /BLK7/ISA,rISIy IRUN
DATA ON/’ON’/,OFF/‘OFF’/sDIS/’DIS’/»SET/’ SET’ /»CON/’ CON’ /

TATA CHA/’ CHA’ /sFAR/’ PAR’ /
DATA FX/O0,004/ 9 US SUS 9 VSI So WS IWS

THE DEFAULT VALUES OF THE CONTROLLER FARAMETERS ARE ¢

CM=U
LA=0
NS=100

MS=0
RH=0
Ci=ON

C2=0N
C3=O0N
ISF1=50.0
ISF2=50.0
ISF3=50,.0
GK1=0,.05

GR2=0,05
GR3=0.05

T1=30-.0

T2=30.0
T3=30.0

TI1=90.0
TIZ=90.0
TISZ=90.0
THA=30.0
TH2=30.0
THS=30+0
TF1=30.0
TF2=30.0

GOTQ 700
CALL: PRINT (SELECT (THE GONTROLLER NOW (1.E.01, ORS2 OR 4).7)
REALICS» 1001) TCN0

LOOL FORMAT (T2)

IFCICNQ,EQ.1)G0TO 40
IF CICNO.EQ,.2)GOTO 2
IF CICNO.EQ.3)60TO &

aie

wd. GOTO So
HO CALL Q@¢°DO YOU WANT CONTROLLER-1 TO BE ON ?’y*INOIC)

IFCINOIC) 1,293

iL NOIC=0
C1l=0FF
GOTO Sti

3 NOIC=255
C1. =0N
CALE PRINT Ce SPECTRY CONTROLEER] I Seq FO ine >
REALDCS*s LiL). 1SP4
CALL PRINT(’ SPECIFY CONTROLLER-1 CONSTANTS’ >

CALL CONST(GRisTisTIi>TiisTFi>
2 CALL Q¢’TO YOU WANT CONTROLLER-2 TO BE ON ?’sINO2C)

IF CINO2C} 49596

4 NO2C=0
C2=0FF
GOTO Si

& NO2C=255
C2=O0N
CALL PRINEC’. SPECIFY. CONTROLLER=2) SE RAPOIN® % >
READCS»1111) 1SP2
CALL FRINT(’ SPECIFY CONTROLLER-2 CONSTANTS’)
CALL CONST(GK2,T2*TI2sTD2,TF2)
CALL Q@¢’TO YOU WANT CONTROLLER-3 TO BE ON ?/’,INO3C)

IF CINOSC)7+899
a NO3C=0

C3=O0FF

GOTO Si
o NO3C=255

C3=0N
CARLAER INE SREEGIFY CONTROLLER=27 SE) POINT.)
READCSs 1111) ISPS

fol FORMAT(14)
CALL PRINT(’ SPECIFY CONTROLLER-3 CONSTANTS’ >
CALL CONST(GR3sT3rTI3s TIS» TFS)

B CALL. FRINT(’ WHAT IS THE CONTROL MODE FOR CONTROLLRRS?? >

READCS2500)CM
500 FORMAT CAL?

CALL FRINT(’ WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-O?? >
REAICSsS01)LA

Ol FORMAT(1I2)
CALL PRINT(’ SFECIFY THE NUMBER OF SAMPLES’)

READS sS02)NS
HOR FORMAT (CT 4)

CALE PRINT(* SPECIFY THE MOTOR SPEED 2)

READCS 2503)MS
503 FORMAT (14)

CALE PRINT(’ SPECIFY THE RUN: TINE ROR ST HEE URNACE)
CALL FRINT(’ IN HOURS ~- CINTEGER VALUE)’ >
REATICS 503)RH
CALL FRINT(’ PRESS BREAK KEY NOW’)

IFCTBREAK().NE.O)GOTO 700
GOTO 25

709 CALL PRINT (7 GOO OOOO OOO COR KOK K “>
CALL FRINT(C’ THE FOLLOWING INFUT COMMANIIS ARE AVAILABLE’ >
GALL PRINT@* [ij "§DIS'- PRINS OU; OPERAIGk SET TNEORMA TION,)
CALL FPRINT(’ C2] “SET"~- OPERATOR CAN SET THE FARAMETERS >

CALL FRING 0S) “CONS ocRROGRAM CUNT TINUE S. >
CALL FRINT(’ £42 "CHA" OFERATOR CAN CHANGE THE FARAMETERS%)
CALL. PRINTC? ES “PARS= PRINTS OUR HE sino? GF MPARAME TERS“)

CALL FRINT(’ ~ FRESS RETURN KEY AFTER ANY INFUT COMMANI!’ >
CALL PRINT (% OOOO OOOO OK KOK “>

ear REALS» 600) COME

HOO FORMAT CA4)
TF (COMD.EQ. 1.
IF CCOMD.EQ.¢

 $)GOTO 701

GOTO 702

273

705

“OL

702
704

703

1011
1010

1012

1013

LOLS
39

40

1005

85
1LO16

84
1006

L007

31

2001

TF CCOMD.LEQ,CONIGOTO 703
TF CCOMELEQ.CHAIGOTO 704

TF¢ COMED. EQ. FARIGOTO 705
CALL PRINT(’ “ERROR'-INVALID COMMAND, TYPE COMMAND AGAIN?)
GOTO S99
CALL Eley

GOTO 25
CALL OF INFO
GOTO 25

GOTO So
CALL CHANGE
CONTINUE
CALL Q¢’ [0 YOU WANT TO CHANGE ANY MORE FARAMETERS?’»IR)
IF CIR 3119311704

CALL PRINT(’ FRESS BREAK KEY’)
GOTO 25
CONTINUE
CALL CALCUCGKLsTisTIis Tid eTFiyXK C191) eXK C291) oXK C391) XK C4e1))
CALL CALCUCGK2»T2sTI2yTI22TF22XK (192) »XK(292) »XK (392) XK 0492))
CALL CALCUCGK3+T3sTIS»TISsTF3sXK C193) »XK (223) eXK (393) XK 493))
[10 1010 T=193

OO 1011 J=1+4
IF CXK(Je1T).GT.1.0.0R.XK(Je1),EQ.1.0)G0TO 1012
CONTINUE

CONTINUE
GOTO 1015
CALL PRINT(C’..+ INVALID CONTROLLER CONSTANTS. coccsecceeeeccces”)
WRITE (S 210131
FORMATCIH +’.+,SELECT NEW PARAMETERS FOR CONTROLLER NO’sIi+s’..//)
GOTO 1016

WRITE (6939)
FORMAT CIXALH: 92 RI’ 98X2" K2¢s8Xs’) KS? 28X>% KAT)
DO 10035 T=193

WRITE (Sy409XK C1 eT)» XKC 29D) eXKC3e TD) »XK C491)
FORMATCLX/1LH 9F74324X9F 7.32 4XoF 7639 4XeF 7-3)
CONTINUE :
DO 1006 T=193
Z=XKCLisT)+XKC29T)4+XKC321)
YHL+O0-XK(49T)
SG(IdD=Z/Y
IF (SG¢(1) 82282283
TRCSGCID LTA) GOTO 262

WRITE (S84) 1 »SG¢(1)
GOTO 1006
Call PRINTG +. UNSTABLE STEADY STATE “GAIN. +> ++ se ese cee eee
Cale SPRINT (4 es GELEGY GNEWOUALUES FORK ToT ses «oe siee ot vee eo)
WRITE CS »85)7

FORMATCIH »’..+.0F CONTROLLER NO ’,12)
CALL FRINT(’PRESS BREAK KEY AND USE "CHA" COMMANII)
GOTO 25

FORMATCIH +’ STEALY STATE GAIN SG’ »I2)’='s1X9F7.3)
CONTINUE
DO 1007 T=1+3

WRITE (6984) 1+SG(1T)
CONTINUE
TRUN=O

BIG=AMAXI (Tis T2sT3)

TE CRHe LE +O) GOTO: 31
TIM=FLOAT (RH) 3606.0
GOTO 20014

IFCNS.EQ.0)GOTO 999
TIM=FLOAT (ONS) XBIG

SAM=TIM/BIG

IF (SAM.GE.240.0)G0TO 100
S=INTCSAM)

TRUN=0

274

100

431

On

102

103

Poo

298

L000

90

22
92

2000

GOTO 331
NS=240

RUNNO=SAM/240.0
IRUN=INT (RUNNO)
RNS=FLOAT (NS)
TM=(RNSXBIG)/34600.0

REP=FLOAT CIRUN)
ATIM=TMK(1.O0+REF)

THRS=INTCATIM)
FATIM=ATIMN-FLOAT(IHRS >
AMIN=FATIMK40.0

IMIN=INTCAMIN)

WRITE (42 101)NS
FORMATCLH » “NUMBER OF SAMPLES=/ +14)

WRITE (6s102) IRUN
FORMAT (CLH»y “RUN NUMBER-ITRUN=/ »T4)
WRITE (62103) THRS»IMIN
FORMATCLH » “ACTUAL RUN TIME OF THE FURNACE WILL BE=’rT2»’HRS?/»

iegi2'y (MINS. ©)
GOTO 998
CALL PRINT(’ ..eERROR- NS=0 IS INVALID... %)
CALL FPRINT(’ USE "CHA" COMMAND’ >
GOTO 700
CALL SUBIR
CALL SENT
STOF
ENT

SUBROUTINE Q¢A»T)
REAL N»NC

DATA Y/LHY/»N/LHN/ » NC/2HNC/

BAlCOPRENT Co, 7)
CALL FRINTCA)D
READS: L000) ANS
FORMAT (A4)
I=90
IF CANS.EQ.NC)GOTO 92
IF CANS.EQ.Y)GOTO 90
IF CANS-EQ.N)GOTO 91
GOTO 92

I=1
GOTO 92
I=-1
CONTINUE
RETURN

END

SUBROUTINE CONST(GR:T+ Tis Toy TF)
CALL FRINT(’ GAIN’)
REAINCS »2000)GK
CALL PRINTC’ SAMPLING INTERVAL’ >
REAICS »2000)T
CALL FRINT(’ INTEGRAL ACTION TIME’ >
READCS»2000 TI
CALL FRINT(’ DERIVATIVE ACTION TIME’ >
READCS:2000)TI

CALL FRINEG @FILTER TIME CONSTANT? >
READCS» 2000) TF
FORMAT (F7.3)

RETURN
ENT

SUBROUTINE CALCUCGRs Ts Tl» Tity TF eXK1eXK29XK39XK4)

FL=GRKRT
P2=TF+T

ASCE LAR KCL, OTC Tit (T/T) >
XK CCRT /P29KCL. OFC (2,0KTE)D/T) >)
XKRS=CGRETIN /P2

AR4=TE/ PS

275

3000

RETURN
ENT

SUBROUTINE LIST

WRITE (423000)
FORMATCLH »’THE SYMBOLIC FARAMETERS TO BE USED IN THE CHANGE
1
L
1
4
i}
1
1

1
1
a

1
1

SUBROUTINE ARES’ /»
“CM - CONTROL MODE’/»
“LA ~ INITIAL LOAD ADDRESS IN ZONE 0/7»

ENS — NUMBER GE SAMPLES 29
“MS —- CONVEYOR MOTOR SPEEIY 7»
‘Ci»C2°C3 ~ CONTROLLER STATUS FOR CONTROLLERS 12223//»
“ISP1l,ISP2,sISF3 - SET FOINTS FOR CONTROLLERS 1:2%3//»

“GRirsGR2,GR3 - GAIN CINSTANTS FOR CONTROLLERS 1s293//>»
*TisT2sT3 ~ SAMPLING INTERVALS FOR CONTROLLERS 12293/’/>s
‘TIL»TI2>TI3 — INTEGRAL ACTION TIMES...+-%/»

‘TDs Ti2,TIS —- DERIVATIVE ACTION TIMES... //»
CIEL Tees seo FT ETER. Wine CONSTANT O+ss «67)

CALL CLOSE(4)
RETURN
ENT

276

400

10

2i
300

301

302

SUBROUTINE CHANGE

INTEGER RH
DIMENSION $1¢6499S2¢15)*S307)2S4(2)9S1104)»S22¢015) pIS83(7)sICC3)
COMMON /BLEL/SCM Cie C2°CS
COMMON /BLK2/NOLC + NO2C»NOSC
COMMON /BLAS/GK1»GR2*GRS32TleT2sT3rTIiisTi2sTIi3sThisTo2,ToHS»

PVR sth 2s 3
COMMON /BLK4/LArNS»MS*RHe ISP1 se ISP2, ISPS
EQUIVALENCE (CM»S11¢1))

EQUIVALENCE CIC(1)»NO1C)»(IC(2) sNO2C) + (IC(3) »NO3C)
EQUIVALENCE (GKi»S22¢1))
EQUIVALENCE (LAxTIS3(1))

HATA<SI77OM Ss [62s “C2 es “CSCS

HATA+S2e/ OWL (9 GNhe oe CNS oe Tee oe a Sais Th! ys CTP sl Paes
to es Pee eS ee s. PE s? BES 7
DATA: S37 “EAs NS @s ONS 9 CRY Gs CI SPL s 7 ISP27s (ISPS. 7
DATA S4/°ON’ ‘OFF’ /
CALL FPRINT(’ SPECIFY THE FARAMETER YOU WANT TO CHANGE’ >
READ CS »400) PARA
FORMAT (A4)
IF CFARA-EQ.CM)GOTO 20
nO 10 K=294

IF CPARA-EQ.S1iCKI>OGOTO 2
CONTINUE

HO 11 T1915
IFCFARA-EQ.S2¢1)>GOTO 2
CONTINUE
TO 12 J=1l+?
IF CPARA-EQ.«S3¢J)9GOTO 23
CONTINUE
WRITE (Ss 300)FARAsS11¢1)
WRITE (CS: 3010 FARA
REALCS» 30291101)
GOTO 310
WRITE CS» 300) FPARA2S11 6K)
FORMAT(’ THE CURRENT VALUE OF ’+A49’ =’ 9A4)
WRITE (Ss 301) FARA
FORMAT(’ SPECIFY THE NEW VALUE OF /’»A4)
READS: 302) S110K)
FORMAT (A4)
IF (S11 (KR) .EQ.S4¢133960TO 30
TFC(SL1¢(K)-EQ.9S4(02))G60TO 31
GOTO 316

IC (KR) =2546
GOTO 310
IC(K)=0
GOTLO> SUC
WRITE (Ss 303) FARA+S22¢1)
FORMAT(’ THE CURRENT VALUE OF ‘A429’ =’sF?7.3)
WRITE (CS: 301) FARA

READCS +304) 52201)
FORMATCF?.3)
GOTO 316
WRITE (CS: S05 PARA» TS3(4)
FORMAT(’ THE CURRENT VALUE OF “sA4>» 7%

WRITE (Ss 301) FARA
REANCSs S06) 1530.1)
FORMAT (14>
CONTINUE

RETURN
ENT

aa

ha

Hi “»T4)

2/7

149

160

161

to

163

164

SUBROUTINE OF INFO

INTEGER RH
COMMON /BLRI/C1i»C2»C3>CM
COMMON /BLKS/GK1»GR2°GK32T1sT2T3sTIisTI2sTiS> This Ties TDSy

LTE Theat Ss
COMMON /BLKR4/LA»NS»MSyRH os ISF1»ISF2,ISr3

WRITE (42149)
FORMAT (7 OOOO OOO IO CCC OK ICR OK CR KK
DOOR AOR OR AOKK KKK / 4 DISPLAY OF OFERATOR SET INFORMAT LONKXKAKKKK
KOR KK OR RK KOR KKK KK RRR K 7)

WRITE (6:150)CM
PORMAICIX7Z# = CONTROLS MO bo as rer i eee 37 r4XxAL)

WRITE CG21510LA
FORMAT(1X/’ INITIAL LOAD ADDRESS IN ZONE O--~-$’»2X»T4)
WRITE (462152)NS
FORMAT CIxX7 (NUMBER: OF SAMPLE Soe eo aoa a oa oe $/2X9T4)

WRITE (49153)MS
FORMAT CIX/ © MOTOR (SPEER Soe eo ee oe a $4 92XrT4)
WRITE (6*165)RH
FORMAT(C1X/’ RUN TIME FOR THE FURNACE IN HOURS? ’»2X+T4)
WRITE (62154)
FORMAT CIX/ “CONTROLLER: NO=---ae>- $4 9BXe/NO-1/ 2 9Xe“NO-2’ 9 PXy

i NO-3 2)
WRITE (62155)C1»C22C3
FORMATCIX/’ CONTROLLER STATUS---~— $/99X2AS2 1LOX2AS21OXr AS)

WRITE (69156) 1SP1/ISP2rISF3
FORMAT (CLX/*. SEL POINT S-——-=2- 34 r9XeT3rx10XeT3x10X»T3>)

WRITE (467157)
FORMAT(1X/’ CONTROLLER CONSTANTS’ >
WRITE (62158) G6K1>GK296K3
FORMAT CIX72 GAL Ne occa ee $49 GX9F743¥6X9F 7437 6X9F 7-3)

WRITE (462159) Tis T2973
FORMAT(1X// SAMPLING INTERVAL--~-~ $4 96X9F7+3xGX9F 7.59 G6X9F 743)

WRITE (42160)
FORMAT(’ IN SECONTIIS’ >
WRITE (62161) TI1L»TI2:°TI3
FORMATCAX/’ INTEGRAL ACTION TIME--$’+6X9F7.396X9F7.3x4XeF 7.3)

WRITE (462162) TDL» TI2,THS
FORMATCAX/’ DERIVATIVE ACTION TIME?’ +6X9F7.396X9F7.326X9F743)

WRITE (CG7163) TFL TF22TFS
FORMATCAX/’ FILTER TIME CONSTANT~-~-2/96X9F7+376X2F743746X9F 743)
WRITE (62164)
FORMAT (1X7 OOOO OOOO OOK CORK KOK
TOKO KK KKK // END OF INFORMAT I ONXKKKKKAKKKKKR KK KK KKK KKK
OOOO OOK OOOO OOK OK OK 4)
CALL CLOSE(6?)

RETURN
END

278

29

3
+
ae

wo

300

SUBROUTINE SUBIR

DIMENSION XK(423)2AC12) 2AR (C12) 9SF (8) sNAACL2) 2, TACL298)»

1 IXK(493)
COMMON /BLKS/XKsTXK

EQUIVALENCE (XK(CLrl)2AC1))
EQUIVALENCE CIXK¢C 191) 2NAACI)?

DATA SF/0. 520.25 70.12570-062520.0312570,015625»

1 0.007812570.00390625/
DO 2 I=1:12
FCT)=ABS(CACT))

IP=IFIX(FPCI) >
ARCLI=FCI)-FLOAT CIP)

BA=ARCT)
nO 3 N=l+8
TACN)=BA-SF ON)
TF CTACN) 252292729

TACIT »N)=0
GOTO 3
TACT» NFL
BA=TACN)
CONTINUE
CONTINUE
NO SO I=1°12
CALL NUMB (IACI yi) rIACL +2) 2TACI 23) 2 TACIT 4)sTACIT 5S) TACT 6)»

1 TACIT »7) TACT »8) »NAACT))

CONTINUE
WRITE (462300)

FORMATCIH »4X»’AC1)/74X* “FRACTION OF ACI)‘’24X»’BINARY FRACTION’ »

1 4X%*/OCTAL EQU’s4X*’INTEGER EQU’)

DO 20 [=lrl1l2

WRITE (62112) ACT) 2ARCI) » (IACI oN) yN=128) sNAACT) »NAACT)

FORMATCLH + 2X9F7+326X9F 6.391 2X28(11) 2 BX2032 8X13)

CONTINUE
WRITE (62200)
FORMATCLH » “FINISH? >
CALL CLOSE(4)
RETURN

ENT

210

SUBROUTINE SENT

INTEGER RH
DIMENSION 1SA(64)+1SD(44) »N1(4)9N2(4) »N3C4) 92012)

QIMENSION XKC423)9TXK (493)
COMMON /BLK2/NO1C»NO2C»NOSC
COMMON /BLK3/GRLisGR2°GR3sTLsT2>T3eTiieTI22TISsTh1y Toe, TOS»

Lome’ yh 2s Tk S
COMMON /BLA4/LAsNS MS RHe ISF1l» ISP2, ISPS
COMMON /BLAKS/XRe TKK
COMMON /BLAG/KCM+ IRCPS: IRFFS» TWCFPS: IWFFS
COMMON /BLK7/TSArISily TRUN
EQUIVALENCE (XK(C171)22¢1))
EQUIVALENCE ¢IXKC1s1)eNIC1))
EQUIVALENCE CIXK(1s2)eN2C1)>
EQUIVALENCE (CIXK¢1:s3)»N3¢C1))

ISA(64)=128
KCM=1
IRCFS=10
IRFFS=11
IWCFPS=12
IWFFS=13
nO 1 N=1"63

ISA(64-N)=ISACG4) +N
CONTINUE

ISN¢1>=NO1C
ISh¢(2>=NO02C
ISh¢3)=NO3C
ISH(4)=LA
ISh(S)=NS
ISh(4)=M8

ISD(7)=KCM

ISh(8)=TRUN
ISD(9)=ISPF1i
ISh¢(14 .=INTCTI1)

ISh(17)=ISP2
ISIC 22.=INT(T2)
ISU(25)=ISF3

ISD(30)=INTC(T3)
NO 4 J#Ly2
ISN(14+J)=0
ISh(224+J)=0
ISH 30+.) =0
CONTINUE
NO S K=is28
ISN(S2+K)=0
CONTINUE
tO 7 M=194
ISOC 9+M)=N1¢M)
ISNCL7+M)=N2¢M)
TSl¢(25+M)=N3 CM)
CONTINUE
su¢41)=IRCP

TS0(62)2. RFF

nO 3 N=1964
WRITE (G22) 1S5ACN) » TSDCN)D
FORMAT (C2¢74%3X))

CONTINUE
RETURN
ENT

280

oe

	Blank Page

