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ABSTRACT 

The recent advances in integrated circuits technology 

and the consequent emergence of microprocessors have 

increased interest in developing multi-microprocessor 

systems. Microprocessors and microcomputers are being 

coupled together in increasingly large numbers in a tightly 

or loosely coupled manner as distributed computing 

structures which include complex interconnection mechanisms 

and interfaces to link thesé to an application. Super- 

imposed on this hardware structure, software is written to 

provide the communication protocols, synchronisation 

between sequential processes and application programs and 

so on. A microprocessor or’ a microcomputer, as a process— 

ing element, is a major programmable component in these 

distributed computing systems which share the primary 

advantages over conventional large computer systems of low 

cost, reliability and possibly speed of operation. The 

main task of implementing a distributed computing system 

interfaced to a real-time large-scale complex system is the 

partitioning of the main control problem into smaller sub- 

problems and identifying the interactions between them, so 

that the subproblems and interactions can be programmed 

into the processing elements. 

This thesis is aimed at the study of hierarchical 

computer control using multi-microprocessor systems. In 

particular, it is concerned with the design and practical 

application of microprocessors and a PDP-11/10 minicomputer 
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to on-line distributed and hierarchical control of a 

laboratory-based pilot scale Travelling Load Furnace CRIGE ) 2 

The basic processing module from which the system is con- 

figured is known as a Hierarchical Microprocessor System 

Unit and consists of a number of Fairchild/Mostek F8 

microprocessor system chips, a common block of semi- 

conductor memory and a bidirectional scratchpad memory 

interface. The configuration is designed so that a single. 

HMSU can be used either independently or as a building 

block in an expandable hierarchical environment. The 

hierarchical control scheme involves the use of three 

processing units of the HMSU to implement three term 

control action on the eight zones of the TLF. The eight 

zones of the TLF are divided into 2, 3 and 3 heating zones 

designated as the preheat, heat and soak sections respect- 

ively. Any one section can be assigned to any one of the 

processing units (e.g. a Master processor or either of the 

two slave processors) of the HMSU. Operator communication 

and overall co-ordination of the system is performed by a 

host PDP-11/10 minicomputer. 

The main outcome of the research reveals that it is 

feasible to implement multi-microprocessor systems such as 

the HMSU for reat cite? on-line hierarchical computer 

control of industrial processes such as the TLF. However, 

in order to justify the cost-effectiveness of such systems, 

the need for proper development tools such as Micro- 

processor Development Systems (MDS) with in-circuit— 

emulation capabilities, testing and debugging tools such as 
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Logic Analysers etc. is paramount. The experience gained 

as a result of practical implementation of the HMSU for 

the control of the TLF has been invaluable so far as the 

insight into the problems of developing hardware, software 

and that of partitioning of a control problem into smaller 

subproblems and their interactions is concerned, The work 

reported in this thesis will provide a useful foundation 

for evaluating and extending further possibilities of 

developing multi-microprocessor systems. 
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CHAPTER 1 - INTRODUCTION 
  

The impact of recent advances in Large Scale 

Integrated (LSI) circuit technology towards low-cost 

processors and memory modules has caused increased experi- 

mentation with multiple processors, multi-microprocessors 

and multi-microcomputer organisations. A variety of 

multi-processor and multi-microprocessor systems have been 

described which use similar hardware but which differ in 

the way in which the components are interconnected. The 

spectrum of these Distributed Computing Systems range from 

networks of conventional computers, systems containing sets 

of microprocessors and novel forms of highly parallel 

computer architectures with greater integration of process- 

ing and storage. The motivations and importance of research 

into these distributed computing systems are many and 

varied (SRC 1980). These include: 

1. Performance: eventually it will be impossible to 

increase the speed of a single processor and retain 

commercial viability. Several processors, co-operating on 

a Single task, will be the only way to greatly enhance 

performance. 

2. Reliability: a fully distributed system should be 

able to tolerate faults caused by either software or hard- 

ware. Hardware faults might be tolerated by having more 

than one of each critical element. Software faults might 

be reduced by running different algorithms in parallel and 

checking the validity of results. 
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3. Clarity: many problems are naturally parallel. 

Some problems are inherently simpler if expressed as a set 

of interconnected and communicating processes. If a 

problem's solution is expressed in this way, it might be 

easier to verify the correctness for the whole solution by 

partitioning it into subproblem solutions of individual 

processes and their interactions. This approach inherent- 

ly gives a better insight into a large-scale complex 

problem. 

A=. Distributions... in aneas: such: as: real-time control ,’ 

it is often important that processor power is available 

where it is required in order to minimise the bandwidth 

requirements of data paths. 

5. Cost: ° the, low Gost Of microprocessors and memory 

systems will allow certain tasks to be performed more 

economically on sets of microprocessors than on a single 

mainframe processor. 

In the Department of Systems Science at The City 

University, a research program in computer control of 

Travelling Load Furnaces (TLFs) and their application is 

being carried out, with the object of finding improved and 

more efficient control schemes to be applied in industry. 

To this end, the design and modelling of an experimental 

Travelling Load Furnace for computer control was under- 

taken py. R.. Caffinuaw 1972 and subsequently, further 

experimentation was performed by H. H. Sheena using a 

digital Ferranti ARGUS 500 ‘computer in 1977.. Based on this 
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research, a project entitled "Microprocessor control of a 

Travelling Load Oven'' was successfully completed by the 

aucrhor in 1977. usine the Pairchild FS microprocessor 

evaluation:kit. This’ work:and.the influence: of the. atove 

motivations has directed this research with the following 

objectives: 

1. To study parallel processing aspect of on-line 

computer control. 

2. To design. a multi-microprocessor system to the on- 

line distributed and hierarchical control of the laboratory- 

based pilot scalé Travelling Load Furnace in the department. 

The options available for designing a distributed 

computing system are enormous. A decision about the 

distribution of hardware and software to go along with it 

depends mainly on the application for which this distrib- 

Utuoneds. Soucht=in the first place... ~The distribution of 

hardware for information processing where it is needed may 

be limited by cost considerations whereas the distribution 

of software to perform the desired processing may be 

limited by storage capacity and software development costs. 

The optimum choice for both the hardware and software 

suggests a modular design approach for the distributed 

computing system. In this approach, a processor is made 

responsible for a particular task which is some fraction of 

the overall distribution of the main problem task. When a 

number of such processors, with their assigned tasks, are 

interconnected as required by the co-ordination of 
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individual tasks, the overall system then accounts for the 

distributed solution of the main problem task. Thus the 

main task of design and implementation of a distributed 

computing system is the partitioning of the main control 

problem into smaller subproblems and identifying the inter- 

actions between econ so that the subproblems and inter- 

actions can be programmed into the individual processors of 

the distributed computing system. 

The modular design approach is used for the develop- 

ment of a multi-microprocessor system for on-line distrib- 

uted and hierarchical control of the TLF. The basic 

processing module from which the system is configured is 

known as a "Hierarchical Microprocessor System Unit" (HMSU). 

The hardware configuration of the HMSU required to control 

the TLF consists of three F8 microprocessor systems, a 

common memory block, analogue input and digital-input- 

output interfaces and a bidirectional scratchpad memory 

interface. Each processor has its own private memory but 

the bulk of the memory is common to all processors. It is 

the task of one particular processor designated the Master 

processor to control access by any other processor (called 

a slave processor) to the common memory. Apart from this 

function, each individual processor acts independently, 

performing a dedicated control function (i.e. three term 

control action on different sections of the TLF) via its 

own Input/Output channels. The three processors operate 

asynchronously, all interprocessor communication being 

conducted through the common memory under control of the 
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Master processor. The Unit as a whole communicates with 

the outside environment, which may be another HMSU, a large 

host computer, or any other processing equipment. In this 

case, the HMSU unit is controlled by a PDP-11/10 mini- 

computer. The master-slave relationship of processors 

within the HMSU and on-line supervision of the HMSU by the 

PDP-11/10 minicomputer accounts for the hierarchical 

structure developed. 

In the fies ters other structures using the HMSU as a 

building block are discussed in Chapter 5. Since the 

application undertaken is related to the control of 

industrial processes, Chapter 2 discusses a role of micro- 

processors in process control and its related instrument- 

ation. Asset of design guidelines for the use of micro- 

processors in process control environment are also given in 

this chapter. The applications which are based on a single 

microprocessor based system are enormous and it is imposs- 

ible to enlist them. However, the applications covered by 

the use of multiple microprocessors in distributed comput- 

ing systems are relatively few but the number of these 

applications have been increasing rapully ww. the. S6lencee 

Research Council of the UK have co-ordinated a research 

programme in distributed computing system and its annual 

report outlines on current state of research on the 

subject. Chapter 3 reports on the study of multiple 

processor system, problems of designing with multi-micro- 

computer system and general aspects of system design with 

respect to distributed computing system. 
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In real-time large-scale complex system environment, 

the use of distributed computing system is highlighted by 

its interfacing issues. A new model of a processing 

element of a distributed computing system suitable for such 

interfacing is proposed in Chapter 4. The application of 

the model in two hypothetical applications is also con- 

sidered. Chapter 6 describes the Travelling Load Furnace, 

the-PID-control algorithm and modifications required for 

the existing interfaces to the department's TLF. 

Chapters 7 and 8 describe the software development for the 

HMSU and the PDP-11/10 minicomputer and Chapter 9 discusses 

methods used for testing the HMSU hardware and its related 

software. 

The full implementation of the complete HMSU system 

for on-line distributed and hierarchical control of the TLF 

was set back by the lack of proper development and debug- 

ging tools. Despite this fact, however, the research 

undertaken demonstrates practical problems of implementing 

a multi-microprocessor system such as the HMSU. As such, 

this thesis will provide a useful basis for evaluating and 

extending further research on multi-microprocessor systems 

and their applications. 
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CHAPTER 2 - MICROPROCESSORS IN PROCESS CONTROL 
  

2 EN ROBUCT TON 

The technology of applying digital computers to process 

control has developed rapidly since the late 1950s. A 

typical computer control system then comprised a centralised 

minicomputer with backing stores (disks) and about 8 k or 

16 k of 16 bit words. Such a system would interface with 

the plant via 'backup' controllers which were essential 

safeguards against computer failures. These safeguards were 

needed because computer hardware was comparatively unreli- 

able and catastrophic effects of the failures of a computer 

which controlled perhaps 100 to 200 loops were intolerable. 

In the 1970s, this centralised configuration has given 

way to smaller computing units. These smaller units 

individually control small sections of the process and 

collectively form a plant-wide control system which is 

interconnected by a digital communication system (Brown, 

1979).. This modern configuration, termed as a distributed 

control system, has resulted,directly due.to the rise’ of 

microprocessers. 

In this chapter, a review of the process control 

problem and control techniques such as supervisory control 

and. diréctdigital.control. is made... The: role’ of micro- 

processors in a distributed control system is investigated 

and some useful design guidelines as to the use of micro- 

processor-based control systems in a process control 

environment are also given. 
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2.2 THE. PROCESS CONTROL PROBLEM 
  

Many industrial processes have been reported to have 

used successful computer control systems. These include 

petroleum and petrochemical plants, blast furnaces, paper 

machines, textile mills and glass industries (Smith, 1972): 

Each has its unique problems but the common feature is that 

the energy is utilised to move and to convert raw materials 

into final products. Control over the final output product 

is achieved by computers which handle information aspects 

regarding the process. In all of these processes, process 

information is obtained or derived from process variables 

which are divided into four categories as illustrated in 

Browne sa od: 

1. Manipulated variables: These are variables such 

as input raw material flow rate, steam pressure in a vessel 

etc. whose values can be adjusted by the control system by 

either analogue (conventional) or digital methods. 

2. .Controlled wariables: The measure of the perform- 

ance of the plant is determined from these variables whose 

values are kept at some predetermined target values (set 

points) by the control system. Examples include production 

rave. product,.quadla tyetc. 

3. Disturbances: These are variables whose values 

affect the operation of the process but which are not sub- 

ject to adjustment by the control system. Examples include 

composition of raw material, change in ambient temperature 

etc. Some disturbances can be measured while others cannot. 
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4. Intermediate variables: These appear at some 

intermediate point in the process. The control system can 

use these advantageously in determining appropriate control 

action. Examples include temperature of the mix, mix 

Composa tions ete. 

The general control problem is to adjust the manipul- 

ated variables so as to maintain the controlled variables 

at their target set values in face of disturbances. The 

control of a typical process plant which has several 

variables in the above categories is no simple task. This 

task is further complicated if a mathematical model is 

required of the process characteristics. The process 

characteristics depend firstly on the level of plant 

operation (the plant is usually highly nonlinear) and, 

secondly, even at a constant operating level, a plant's 

characteristics often change with time (the plant is non- 

Stationary). 

Supplementary to the above process control problem, 

the most common question of primary concern is "How to use 

a computer to generate larger economic returns from the 

process?" The ability of the digital computer. to acquire 

large quantities of data from the process, analyse it and 

make logical decisions based upon the results makes it most 

attractive for.such an: application. 

2.8 COMPUTER CONTROL SYSTEM 
  

The computer control of a process. plant can be 

achieved in numerous ways. The various ways of control 
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depend upon the computer and the process plant configur- 

ation, control techniques and control schemes. These are 

summarised in Table 2.1. 

In general, the control schemes are of a more theoret- 

ical nature, whereas control techniques are more practic-— 

ally oriented. However, the choice of control scheme 

depends upon the process to be controlled and this, in 

turn, determines the control technique to be adopted. 

Before looking into digital. control systems, the 

appreciation of the conventional approach to a process 

eontro!l proplem is a.helpful. background... The basic control 

loop in a conventional (analog) system is the simple feed- 

back loop illustrated dn Figure’ 2.2...The“eontrol law 

generates a change in manipulated variable so as to drive 

the error between the set point and measured control 

variable to zero, This: controller. oupput is dmposed upon 

the process by an actuator, which is an automatic position- 

ing valve in many process control cases. The control law 

commonly used is the proportional-integral-derivative (PID) 

relationship or some simplification thereof. 

In a typical plant, there may be anywhere from a few 

of these controllers to upwards of a hundred or more. 

Until the late 1950s, these controller. devices were 

invariably pneumatic. Most of these controllers and later 

their counterparts, initially vacuum-tube and then solid 

state electronic controllers,. basically suffered from 

inflexibility. This inflexibility imposed several burdens 

upon the control system designer:. 
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NTROL T IQUES CONTROL SCHEMES 
PLANT CONFIGURATIONS ete aide mats 

1. Of£ line - manual data collection 1. Data logging 1. Sequence control 

- automatic data collection 2. Regulatory control 

2. In line (real time) 2. Supervisory control - Feedback control 

3. On line (real time) Feedforward control 

- open loop mode 3. Direct digital control - Ratio control 

- closed loop mode Cascade control 

4. Time sharing 4. Distributed control 3. Multivariable control 

_ 4. Optimising control       
TABLE .202 <—. PROCESS. CONTROL 

TECHNIQUES AND SCHEMES 

 



_.. the control stratesyemust “be. such that it can be 

implemented with analog hardware. 

2. <Any subsequent modification to control strategy 

requires modifications of the analog hardware. 

In the mid-1950s, the digital computers began to play 

a Significant role in process control. Thais was due to the 

fact that any control strategy is programmable and most 

modifications in the strategy require simply program 

changes and not hardware changes. 

It is not the subject matter of this Chapter to dis- 

cuss the control schemes outlined in Table 2.1, because 

these are well documented elsewhere in textbooks (e.g. Lowe 

and Hidden, 1971; Smith, 1972; Savas, 1965). The following 

sections review some of the important features of control 

techniques currently practised in process control 

industries. 

2ve.l. Data Loggers 

To record a large amount of process data manually is 

slow, tedious and inaccurate, and may involve considerable 

manpower expenditure. This suggests the value of automatic 

on-line data collection and computer control. However, as 

illustrated in Figure 2.3, the data logger is not directly 

active in the. control. or réguilation:of, the process. It 

simply records the values of important process variables at 

regular intervals of time. During process modelling, care- 

fully devised process tests generate a lot of necessary 

data for which a data logger is vital; however, data 
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logging in itself is not adequate. In a few exceptions, 

such as nuclear power plants, where the records must be 

maintained, and laboratory automation systems, data logging 

is of primary importance. 

2.3.2 Supervisory control 
  

Supervisory control systems are usually based on pro- 

cess models where the basic objective is to optimise the 

financial returns on investment. Typical input information 

needed for a process model might include: 

1. ‘Cost: of:Taw -materigls and utalities 

2... Value Of: pRoGgucus 

3. Composition of raw materials and products 

4. Current values of process variables 

5. Constraints. on the process operation (e.g. safety 

limitations, preventive maintenance etc. ) 

6. Specifications on products 

7. Demands and market fluctuations for the products. 

The operating strategies based upon these inputs and 

the process models which are generated by the computer are 

usually too complex to be handled by operating personnel. 

Thus, in many cases, the control computer simply provides 

the set points for the analog controllers, as illustrated 

in Figure 2.4. In this configuration, a single centralised 

computer is used which does not replace analog hardware. 

The backup problem: is noteas eritical, -for.in case of 

computer failure the set points simply remain at their last 

setting or can be manually adjusted. 
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The problems of supervisory control fall mainly into a 

software category, and the main obstacle to the instal- 

lation of supervisory system is that mathematical models of 

plants are seldom available beforehand. Thus, the econ- 

omics of supervisory systems are based on the prospect of 

the system producing sufficient improvements in process 

operation to justify the financial investment in the 

computer control system. 

0.3,5° Divreer Vierege, Control. (DDC) 
  

The most basic form of Direct Digital Control (DDC) 

involves the replacement of individual hardware elements 

(analog controllers) wherever possible with the time shared. 

components of a digital control computer. In the DDC 

technique the computer calculates the values of the 

manipulated variables directly from the values of the set- 

points, measured controlled variables and the control 

algorithm (e.g. discrete equivalent of conventional PID 

relationship). The decisions of the computer are applied 

directly to the process and hence the name DDC. The control 

arrangement is Shown in Figure 2.5. 

Direct digital control has been a fundamental and major 

step towards easy and economical application of modern 

control technology. It introduces the flexibility of a 

choice of specifying any control strategy that can be 

programmed in a control computer system. Addition of 

control loops to the existing ones, feedforward and combin- 

ation systems can be used more widely when the only 

components which must be added to the system are transducers 
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and mathematical expressions. The design of a complex 

process control system employing DDC allows the possibility 

for redesign and "customisation" after installation. 

The economic justification of a process control system 

employing DDC technique depends upon efficient computer 

utilisation, computer down-time costs and the ingenuity of 

operating personnel to make desired program changes. In 

addition, if a supervisory computer is also used, then the 

problems associated with it would be encountered as much as 

with a DDC technique. 

2.4 DESTREBUTED. CONTROL SYSTEM 
  

A distributed control system is mainly a decentralised 

control system where the individual subsystem control units 

are distributed among the physical subsystems of the over- 

all process. These systems have been developed, not 

specifically for process control application, but also for 

more commercial applications, such as banking, inter- 

company, data-base centralisation, airline reservation 

systems, military systems etc. In industrial computer 

process control, the digital process control function is 

distributed among the individual physical units, using 

microprocessors for example, which permit control tasks and 

physical, location to be distributed in the plant} such a 

system has benefits of improved control, reliability, 

flexibility and reduced cabling costs (Roberts, 1979). 

The distributed approach to control system designs can 

be developed to exploit modularity in both the process 
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control units and the structure of the communication net- 

work. These concepts can be pursued in both hardware and 

software, and are key features in the production of reliable 

and manageable systems (Holding and King, LO) ea woe 

flexibility of the resultant control system actually 

increases overall systems integrity. Equally important, it 

provides a system which can be easily implemented, adapted, 

extended, or replaced, either in part or as a whole, The 

characteristic features of such a distributed control 

system can be given in a tree diagram, shown in Figure 2.6. 

Although some of the features are categorised under soft- 

ware in the diagram, they do have a close relationship with 

some of the features of hardware. For example, the 

communication between the processors is very much dependent 

upon how the processors are structured. 

2.4.1 The mtcroprocessor role 
  

Although not impossible, it may not be useful to 

develop a system that has all the features mentioned above. 

This is because the flexibility and low’ cost. of the micro- 

processor allow it to be used in so many applications that 

it 4s difficult to pub any-bolnds. on, the areas: of: applic 

ation. Recent surveys of. application’ to control illustrate 

the wide range (e.g; Aspinall, 1978; Spencer, 1976;. Barker, 

1978). In no way is a particular software or a hardware 

solution appropriate to all applications. That is why it 

is essential to see the role of a microprocessor with some 

distinctions in the type of application. 
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The market for microprocessors in process control will 

be in applications with standard programs with a limited 

variation in functional response (Wilkie, 1979). In this 

type, firstly, there will be replacement for existing units, 

frequently with additional features. Some examples are: 

1. Low-cost replacement for analog controllers 

2. Intelligent alarm and acquisition systems 

3. Intelligent instruments with communication 

capabilities. 

These applications are essentially at a component 

level. The second type of more novel applications might be 

regarded at component level because they depend on the 

flexibility which surrounds the basic equipment, for example: 

1. Sophisticated control strategies, such as self- 

tuning controllers 

2. High reliability systems. 

These applications are important to the process control 

designer and allow a variety of new features to be included 

in the system (e.g. displays). The third type of applic- 

ation, where microprocessors are of significant importance, 

is an area previously covered by minicomputers, although not 

always economically. These applications include: 

1. Distributed control on a unit process basis 

2. Sequence control 

3. Mixed sequence and continuous control. 

For pure sequence control, the existing dedicated PLCs 

(Programmable Logic Controllers) provide an economic 
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solution especially for very high-speed work. However, the 

inclusion of data logging, VDU.display features or of 

continuous control may prove that a microprocessor-based 

system solution is more appropriate. 

2.4.2 The process control requirements 
  

Having considered the role of a microprocessor, it is 

worth looking into the operational requirements of process 

control within the background of distributed control 

systems. A "top down" design approach of a distributed 

system for overall plant control and optimisation can be 

considered to meet these requirements, which can be divided 

into a.number of hierarchical.levels. This is shown in 

Figure 2.7. The lowest level is usually concerned with the 

detailed control. of process plant... The next level is 

associated with the co-ordination of plant controllers to 

produce a unified overall system. The highest level serves 

to provide plant optimisation and management information. 

This hierarchical operational organisation has to be 

implemented within the physical structure of the actual 

distributed system during the design process. 

Very:.of ten...in. process: control:..time..critical real— 

time operations extend throughout all levels and their 

execution is essential to correct plant operation. The 

majority of real-time tasks, which are fundamental to the 

design of a distributed control system, are associated with 

detailed plant control... This may involve sequence or 

continuous control operations with auxiliary monitoring and 

alarm functions. The requirements are serviced in a secure 
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and reliable way. The co-ordination of first-line control- 

lers also needs to be carried out in real-time and this 

imposes stringent requirements on communication handlers, 

network and the various protocols of communication. It 

should also be noted that the supervisory and management 

system may also be involved in real-time scheduling, 

logging and display functions, apart from their normal 

decision-making. 

2.4.3 Advantages of distributed control systems 
  

A distributed control system as described above is 

very similar to that of the team approach taken by 

co-operating humans to solve a problem too large for one 

individual (Bibbero, 1977). The advantages of such a 

distributed control system are many and summarised as 

follows: 

1. It is more economical because of the low cost of 

microprocessors. This makes the first-line controllers 

relatively cheap so that it is economical to consider spare 

controllers for use in the event of failure. Should a 

failure occur, its effect will be limited to only a small 

part of the process and in many cases this part can be 

operated manually until the replacement controller is put 

into’ service: <Hqually, a faijure of;ashigher level com- 

puter would not prevent plant operation but would merely 

reduce efficiency until the failure was corrected. 

2. The distributed control system in its functional 

levels of hierarchical structure, which is very suitable 
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for process control application, has several advantages 

over the use of a large central computer. The process 

control can be built step by step and experiments in 

control in various parts of the process can be made at 

reasonable cost (Edgington, 1979). The advantages of step- 

by-step approach to building up the control hierarchy are: 

A. Sophisticated control: Computer-based control 

leading to improved efficiency. 

B. The implementation rate can be arranged to suit 

subprocess requirements. 

C. Technological: A greater flexibility in develop- 

ing technical ability of process operators because the 

system is implemented gradually. 

Dow Low tisk: | Dhe.ettect.of ‘faalunre, 1s localised toa 

small area. 

E. Future: The system can be expanded and changed to 

meet changing requirements or increased understanding of 

the process to be controlled. 

3. The distributed control system also provides a 

communications medium and processing facility which can be 

used to provide non-critical information processing, data- 

logging or display, using various peripherals distributed 

about the system. Wn. particular, 10 can support facilities 

for the on-line, editing of control programs for’ the various 

units in the system. 
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4. With the recent advances in the theory of hier- 

archical control on the one hand and multi-processor 

technology on the other, the optimal or near-optimal 

regulation of large processes in engineering, socio- 

economics etc. is rapidly becoming a real possibility 

(Billingsley and Singh, 1975)- > This 1s’ an enormous 

advantage, taking into consideration the characteristics 

that the distributed control system exhibits. 

2.5 DESIGN GUIDELINES FOR THE USE OF MICROPROCESSORS IN A 
  

PROCESS CONTROL ENVIRONMENT 
  

Microprocessors are relatively new devices; their 

potential needs to be well understood before being applied 

to any desired application. A variety of questions should 

be answered in the design process of a microprocessor-based 

system. For a process control application, the following 

set of design guidelines have been given for microprocessor 

based systems (Weissberger, 1975). 

1s  Theunatureed: appitestion: .1t- may be 

(A) <A programmable controller 

(B) A dedicated processor 

(C) ‘An element in a distributed control system. 

2. WA) What iis..the number :.of 

(a) functional. tasks involved? 

(b) input/output points? 

(c) points to be controlled? 

(d) loops to.be controlled? 
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(B) What is the processing load? 

(C) Is real-time response required? 

3: <A decision as to the functional task subdivision 

and input/output signals assignments for processing 

elements is needed. The data load and throughput rate for 

processing element also needs to be determined. 

4, Microprocessor selection: This can be very 

critical and depends on several factors. These are: 

Ga) Avail lability 

(b) Supplier reputation 

(c) Software support 

(d) Instruction set, word length 

(e) Speed of operation 

(f) Architecture - interrupt capability, registers 

GG 

(g) Second source 

(h) Memory capability 

(i) Package count 

(j) Number of power rails 

(k) Power consumption 

(1) Development system. 

Also, in the selection processes the software design 

needs careful attention; for example, programming flexibil- 

ity, word size (data/instruction), address capacity, 

addressing modes (indexed, indirect, relative, direct etc. ),, 

instruction set (repertoire and speed), register compliment 
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(arithmetic, 

etc. 

index, status, accumulators, general purpose) 

5. Environmental considerations: These include 

(a) Industrial noise, temperature, electrical 

noise 

(b) Distance between process variables 

(c) Power dissipation, consumption and cooling 

(d) Input/output interfacing 

(e) Future expansion, space etc. 

6. dnterfacine.~ This 1S avery important stage. in 

the design process and this includes: 

(a) 

(b) 

(c) 

(d) 

(e) 

(29 

(g) 

(h) 

C1) 

CH) 

(k) 

eh 

Transducers 

Amplifiers 

A/D converters 

Multiplexers, demultiplexers 

D/A converters 

External event counters for real-time applic- 

ation 

DMA facilities 

Line drivers, line receivers, moderns, UARTs 

Cabling, twisted pairs,. coaxials, ribbon, 

ODULG. Libres etre. 

Displays 

Consoles, telephone links etc. 

Earth loops. 
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7. Distributing: As described earlier, distributing 

can produce a cost-effective solution. This may include: 

(a) Distribution of microprocessor/controllers 

along the peripherals of the plant floor with 

a centralised minicomputer 

(b) Distribution of individual power supply. 

(Ce) Dastributaon of functional task by partation— 

ing and software modularity. 

A lot of cost savings can be made if the above guide- 

lines are followed in the development of microprocessor- 

based systems for process control application. 

2.6 CONCLUSIONS 

In process control, the computer has become one of the 

primary instruments for control. The advent of large-scale 

integrated circuits and microprocessors has radically 

changed the capability and applicability of distributed 

computer control systems. These systems can be applied to 

a wide range of applications and trial installations have 

been established in a number of industries (IEE Conference 

pubiieation,..1977)... The modularity and flexibility of 

these systems make them more reliable and manageable than 

centralised systems. In many situations, they present a 

more att¥factive. and. economic solution..to.the control 

problem. 

The review of the control techniques presented in this 

chapter suggests how the changes have taken place over the 
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last two decades. A lot of further research, however, is 

needed and the scope is enormous in areas such as distrib- 

uted processing, architecture, operational attributes, 

resource management etc. (SRC Annual Report, 1977). It has 

been the experience of several years that the theory is 

always ahead of its practical implementation. This is also 

true in process control and the distributed control systems 

attempt to bridge such a gap. 

Another area which is of interest is that of communic- 

ation between processors and the issues of the development 

of a standard for communication between the intelligent 

subsystems of a process control system (Lee, 1976). The 

development of higher-level languages for distributed 

control systems and the development of different architec- 

tures for multiprocessors have been at the open end of the 

research activities in the universities and industrial 

research centres. The concept of a transputer (Aspinall, 

1978), for example, falls into the category of such archi- 

tectural developments. In general, the pressures for 

change in computer system architecture are: (1) language 

and programming based, (2) applications and systems based, 

(3) reliability and technology based, or combinations of 

these drives for change (Elliott, 1978). 
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CHAPTER 3 - SYSTEM DESIGN 
  

5.1.6 INURODUCT ION 

The process of system design is essentially a process 

of translating the problem specification in a high-level 

natural language into the problem solution in a lower-level 

language notation. The human brain is unable to deal 

completely with more than a certain amount of information 

at any one time (Miller, 1956). Therefore, the only 

natural way in which a large-scale task may be comprehended 

and solved 4s by splitting it.up”“into a,set.of smaller, 

comprehensive subtasks in a logical manner. The trans- 

lation of the problem specification, of a large-scale task 

into the problem solution is usually too complex to be 

performed in one stage (Dowsing, 1978). As such, it is 

normally broken down into a number of smaller translation 

steps, each step lowering the level of the language used 

for the specification and the complexity of the system 

needed to understand it. 

It-is true; in general, that. design. is, an art and the 

object of art is no simple truth but complex beauty and so 

any design usually involves making personal choices and 

trade-offs depending upon cost constraints and time limit- 

ations. So far as designing with computers or micro- 

computers is concerned, the lower-level language notation 

typically ranges in complexity between a high-level 

programming language and a hardware logic design language 

which can readily be used by software and hardware 
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implementation systems respectively. Furthermore, the 

advent of microprocessors has opened up a new design era of 

multi-microprocessors or multi-microcomputers in which the 

designer can think in terms of parallelism or concurrent 

performing of smaller subtasks. A design solution result- 

ing from the use of multi-microprocessors/microcomputers 

may perhaps surpass the human brain capability of dealing 

with only a limited amount of information at any one time! 

In this chapter, the different phases of the system 

design process are examined and the problems of designing 

with microprocessors are outlined. An attempt to classify 

a multiple processor system is made and a review of such a 

system is also given. Finally, the design issues relevant 

to a multi-microcomputer or distributed system are dis- 

cussed. 

3.2 GENERAL ASPECTS OF SYSTEM DESIGN 
  

The process of design in general starts with an effort 

to answer a simple question: "What is it that we want to 

achieve?" The answer usually attempts to establish the 

goals or objectives about a system to be designed. A 

defined set of goals or objectives results from a feasib- 

ility study of the intended system. When such a system is 

envisaged to be feasible under given cost constraints and 

time limitations, the process of system design continues 

with the following subtasks: 

i] Problemsspecitication=. “This first amportant step 

involves an unambiguous, rigorous and detailed specific- 
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ation of the problem. The specification must be detailed 

enough for a correct solution to be produced but not over- 

specified with irrelevant information. 

2. Logical design of the problem solution: The next 

task is to decide on the method, the algorithm and alter- 

natives for solving the problem. A designer has to harness 

his skills to discover which is the “best'' solution for the 

particular problem in hand. The next logical task is to 

produce a formal definition of the chosen problem solution 

which may be implemented with the available implementation - 

tools, either hardware or software or a mixture of the two. 

This task involves a decomposition of the high-level 

problem description into a lower-level description contain- 

ing details which are more implementation dependent. This 

forms a basis for the implementation subtask, 

3. Implementation: A task of the implementation 

phase is to map the logical design onto the implementation 

system. This phase is typically constrained heavily by 

costs, time and available resources. An experienced 

designer may not have to pay any penalty for the constraints 

heavily imposed on the implementation phase if these are 

well anticipated and estimated in the feasibility study of 

the system design. 

4. Testing: The output of the implementation stage 

takes the shape of the intended system but the behaviour of 

such a system needs to be tested in this phase. This phase 

requires testing tools and skills. Any errors, which have 
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occurred in the previous phases of design are revealed in 

such a testing stage. Generally, it is best to mingle 

implementation and testing in order to detect these errors, 

because sooner the error is detected the easier it is to 

correct and less effort is extended. 

5. Optimisation: Optimisation stage is not strictly 

a part of the design phase but is an important technique 

for modifying the design so that the resource requirements 

of the problem solution may be met. This phase also 

avoids the necessity for complete redesign of the system 

using a different approach or algorithm. 

The design process is an iterative procedure based 

around the subtasks outlined above with the specification, 

testing and, if necessary, optimisation taking place at 

each stage of the problem solution. The complexity and 

likelihood of errors is reduced if the designer ensures to 

take smaller steps at any stage of the system design. 

Another important aspect of any system design is the 

quality of its documentation (Fitzgerald and Fitzgerald, 

1973). A full documentation of a system design should 

provide the solution to the problem, the reasons why the 

particular design decisions were taken, the underlying 

strategies and their consequences on the rest of the 

design. 

3.2.1. Déestgntng, with. microprocessors 
  

Although applicable for any systems, the above general 

aspects of system design can be followed for systems 
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incorporating microprocessors as well. However, there are 

some important issues, described here, which make designing 

with microprocessors a special case. 

Microprocessors are a new technology and this technol- 

ogy is revolutionising the way in which new electronics 

based products are designed. It is creating a whole new 

set of problems for designers. Part of this new design 

philosophy results from the fact that in a microprocessor, 

system functions are stored in memory instead of wired 

into discrete logic devices, and the system designer has 

the possibility of making modifications simply by changing 

the program stored in memory instead of redesigning the 

hardware. Hence the software now becomes as important a 

part of the design process as the hardware. The basic 

design task in a microprocessor-based system can be broken 

down into three areas: software, hardware and software/ 

hardware integration. This is shown in Figure 3.1. 

S20. 1.4.e6f ouare.. the: Lirst. step. is to design the 

program, a task which requires knowledge of the design 

objectives and the microprocessor characteristics. The 

design guidelines mentioned in Chapter 2 are very useful 

for this purpose. For many. practical programs, the use of 

an assembler is necessary; this means coding the flowchart 

into a source program and from this assembling into the 

object code which will run on the actual microprocessor. 

There are a number of ways of achieving an object code from 

a source program. These are outlined in Figure 3.2. 
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Coding a source program requires the use of a text 

editor with the ability to enter text, modify, insert and 

delete] plus a‘set of Utilities..for .creating,. loading. and 

manipulating text files and outputting’ to a printer or 

terminal. For assembling into object code, the assembler 

needs to be speedy and it must produce relocatable code so 

that programs can be written in modules which are linked 

together after assembly. A high-level language can be used 

instead of an assembler, and the choice is very much 

dependent on the application. However, with many micro- 

processor systems, high-level language solution is not 

fully available. In general, the high-level language 

approach is best for quick design completion, low-volume 

products and where data manipulation is important. The 

assembler is better for high-volume products or real-time 

control applications where speed is important. 

Debugging of software consists of removing all program 

errors. A certain amount of debugging can be done on an 

emulator, but since the final operation is dependent on the 

actual hardware, most debugging has to be done during the 

critical software/hardware integration phase. 

3.2. 1o2 fordvare: . The first step..is: logic design 

which, like program design, can be done using information 

on devices (data sheets) and a knowledge of the design 

objectives. Breadboarding of the circuit modules is 

G€arried out to obtain a prototype. “This isa very typical 

procedure followed by most electronic design engineers and 

the fools involved are typically an oscilloscope, digital 
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voltmeter and, more frequently nowadays, a logic analyser. 

Using such instruments, major hardware faults can be 

detected but thorough debugging and testing is possible 

only during software/hardware integration. 

Another important point of consideration, while 

designing hardware, is that of deciding the level at. which 

to start: designing with.microprocessors’....There are: three 

basic levels of supply of microprocessor hardware: 

1s, Chip Level:.-Starting trom. chip level can..be 

useful if large production is anticipated, where the design 

costs are spread over many units. However, it does require 

a large outlay in time and money to get started. 

2. Board level: Standard functions available on 

ready-made boards is a very convenient way of implementing 

a system quickly and at reasonable cost, provided the 

restrictions and limitations. of the particular board are 

understood and allowed for. 

3. System level: Standard systems can be bought from 

a number of suppliers. These are self-contained units or 

microcomputers. 

The choice of the level of hardware depends on the 

application and: such. factors as flexibility.,:,expandability 

and maintainability. 

3.2.1.3 Software/Hardware Integration; This is the 
  

critical stage in completing any successful working design. 

It is impossible to tell whether the software is working 
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correctly without using the hardware or vice versa. There- 

fore, the task of debugging the original design becomes a 

dynamic, interactive process; for example, one may overcome 

a hardware problem by modifying the software or vice versa. 

Tools such as in-circuit-emulators, logic analysers are 

very useful at this design phase. 

3.3 THE IMPACT OF MICROPROCESSORS ON USERS 
  

Having seen some of the implications of designing with 

microprocessors, it is worth noticeing the impact of micro- 

processors on users. Microprocessors, as with main-frame 

computers, have same attributes of association with peri- 

pheral devices, the development environment and the user's 

environment. Mainframe computers have been the case of 

bedrock investments for a long time and still will be for 

some time to come but now, it is the user of micro- 

processors who has to make such huge investments in his own 

environment. Furthermore, the user is allured by ever- 

increasing cheapness of available microprocessors and new 

announcements of more and more powerful microprocessor 

architectures and their potential. The peripheral devices 

for use with microprocessors and microcomputers are becom- 

ing a medium-life phenomenon whereas the development 

environment for microprocessors themselves is becoming a 

long-life one. This. is all. depicted. in Table.3.1. 

Carter (1978) has well reported a number of problems 

of using microprocessors in areas such as technical, man- 

power, commercial and sales and marketing. Although these 

are documented from the viewpoint of a company producing 

57



  

  

  

        

‘ ry 

USER'S PROCESSORS 
ENV [RONMENT > TRANSIENT 4 wrcROPROCESSORS 

< me 

DEVELOPMENT MEDIUM { 
ENV IRONMENT f LIFE PERIPHERALS 

< > 

LONG DEVELOPMENT 
ere > LIFE 4 ENVIRONMENT 

PROCESSORS BEDROCK i USER'S 
MAINFRAME COMPUTERS ( INVESTMENT 4 ENVIRONMENT 

ie A     
TABLE 3.1: Impact of microprocessors on user environment 

its first microprocessor-based product, the technical and 

manpower areas of problems are similar for any micro- 

processor development project. Another problem area of 

important consideration:-is that of the cost and the 

benefits of a microprocessor-based project. Micro- 

processor technology is changing rapidly and costs are also 

changing quickly. It is important to repeat cost/benefit 

analyses at regular intervals, especially if the project is 

a longterm one. In the total costs of a microprocessor 

project, the basic cost. of the microprocessor chip is 

indeed the tip of an iceberg as shown in Figure 3.3. 

    
    

“> 72-7 MICROPROCESSOR 

TEST AIDS 

ys SOFTWARE ‘ 

FIGURE 3.3: Total system costs 
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Working with microprocessors is initially expensive, 

although these costs are not repeated for successive pro- 

jects unless the choice of processor is changed. 

Different considerations outlined in this section are 

relevant to system design and should be considered as a 

part of the design process while designing with micro- 

processors. 

3.4. MULTIPLE PROCESSOR SYSTEM 
  

The concept of a multiple processor system is not new 

and has been used in very large EDP (Electronic Data 

Processing) systems for several years. But the use of 

microprocessors in such systems is rather recent. There 

are two basic reasons why a multiple processor system 

should be envisaged using microprocessors. Firstly, the 

microprocessors are very cheap and secondly, since they are 

constrained in computing power by the physical limitations 

of the chip capability, an extension of this power through 

the use of a multiple processor system makes it viable to 

produce large as well as small EDP systems. 

8.4.1 Revtew of multiple processor system 
  

A review of the literature (e.g. Searle and Freberg, 

1975; Weissberger, 1977; Anderson and Jenson, 1975; Flynn, 

1972; Thurber and Wald, 1975) reveals a considerable con- 

fusion in the classification of multiple processor (com- 

puter) system. The same name is given to different 

computer organisations and different names are assigned to - 
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the same computer organisations. For example, Joseph (1976) 

has reported some twenty-four different ways of referring 

to distributed processing which emphasises a particular 

architectural difference. He also further admits consider- 

able confusion that exists as to the meaning of the term 

"distributed processing". However, Flynn (1972) has 

suggested a basic classification scheme which describes the 

method of operation based on the number of instruction 

streams and data streams in the system. A brief mention of 

this was included in the characteristic features of 

distributed control: system (Fig. -2.6,.Chapter 2), but a 

more elaborate tree diagram, shown in Figure 3.4, outlines 

some other features associated with a multiple processor 

system. 

Since different system terms are used today, it is 

important to give some definitions. A good review can be 

found in Searle and Ferberg (1975). 

“A multiple processor system contains more than one 
  

processor. Each processor may be a microprocessor or a 

microcomputer executing a specific task. A microcomputer 

is a microprocessor system with its own memory and peri- 

pherals. Software considerations allow one to discern two 

kinds of multiple processor system: 

1. <A distributed system, also called a multi-micro- 
  

computer system or distributed intelligence microcomputer 

system (DIMS) (Russo, 1977), in which each microcomputer 

performs a dedicated function as part of a single 

partitioned system. This static allocation of tasks allows 
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the partition of software and is an attractive solution for 

microprocessors. In such a multi-microcomputer system, 

there is no integrated operating system as such, but there 

exists some kind of communication protocol, either 

implemented in software or hardware or the combination of 

the two, in order to facilitate communication between a 

number of processors. In a distributed system, individual 

microcomputers may be locally distributed or there can be 

geographical distribution of microcomputers depending upon 

application. 

2. A multiprocessor system implies a single 
  

integrated operating system which is capable of dynamic 

allocation of system tasks. Software is much more complex 

for such a system than for a distributed system, but allows 

balanced processing loads in real time and fail-soft cap- 

BOR TY. 

The Figure 3.4 shows that a distributed system and a 

multiprocessor system are in the same group of multi- 

computer systems which are characterised by multiple 

instruction stream operating on multiple streams of data 

(e.e see, Fig. 880)...°Apart from this,..two. more.-categories 

of multiple processor system need defining. These are as 

tol tows: 

1. An array processor is one in which multiple 
  

streams of data are treated simultaneously by processing 

elements in response to signals from a control unit, 

decoding a single instruction stream. The only 
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qualification that distinguishes an array processor from a 

multiprocessor is that the control of the number of 

processing elements is always associated with one control 

unit e.g. see. Fig, 3.7). 

One example of an array processor is the ILLIAC IV 

system (Feierbach and Stevenson, 1979). The ILLIAC IV has 

a single control unit (CU) to direct the activities of 

64 processing elements; these processing elements execute 

the same instruction in parallel but on different data 

fetched from their local memories. Information is 

exchanged among the processors through a routing network; 

processes are logically arranged in a ring but the 

implementation allows routes of a distance of eight 

processors to take the same time as routes of a distance of 

one processor. All processors are required for array 

operation; programs are written and compiled for execution 

on 64 processors. When a processor fails, the entire 

machine is, unavailable until.it is .fixed.,..There is no run- 

time error detection; failures are detected by periodic 

confidence tests. 

The LLLLAC VY architecture: 16 also partially 

reconfigurable via software so that each 64-bit processing 

element could be partitioned into either two 32-bit or 

eight 8-bit processors. The major application areas for 

this type of array processors are the many large-scale 

scientific problems in mathematics, numerical analysis and — 

engineering in which the nature of data to be processed is 

Mena t rao et Oram). 
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2. A pipeline processor can be regarded as a form of 
  

functional partitioning of CPU microfunctions i.e. a 

multiple instruction stream operating on a single data 

stream fetched from memory (e.g. see Fig. 3.6). 

The CDC STAR-100 system (named from the STring/ARray 

data it is designed to process) is one of the best known 

pipelined systems.(Spencer, 1976). The CDC STAR has a 

computer network consisting of nine computers which 

execute the operating system, handle the files and deal 

with the input/output equipment, and the very large 

central computer which handles the processing on the string 

and array data. 

Multiprocessor systems, array processor systems and 

pipeline processor systems have been well discussed in the 

literature (e.g. Searle and Ferberg, 1975; Thurber and Wald, 

1975; Feierbach and Stevenson, 1979). Most of these 

systems have a clearly established modular nature in their 

architecture. A computer architecture based on LSI modules 

allows for a simple software controlled reconfiguration of 

interconnections among modules. For example, processor 

modules may be switched among several main memory modules, 

I/O modules etc. This concept of reconfiguration of 

architecture by software is not new; the LSI technology, 

however, has enhanced it. The ILLIAC IV (Feierbach and 

Stevenson, 1979), C.mmp (Wulf and Beit. 1972), Cm* {Swan 

Fuller and Siewiorek, 1977) are some of the examples of 

multicomputer system with capabilities of reconfiguration 

of architecture. 
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A class of new multicomputer system which cannot be 

placed under the classification of Figure 3.4 has been 

envisaged by Kartashev and Kartashev (1978). This is a new 

LSI multicomputer system with dynamic architecture which 

allows one to reconfigure via software and in microseconds 

all available hardware resources (widths of processors, 

memories and I/O units), each time forming in the system 

new computers with different sizes. Based upon given cost 

criteria, this -system-with dynamic architecture has. been 

comparatively evaluated for synchronous, asynchronous and 

modular control organisations. 

It is not the object. of ‘this chapter to discuss the 

details of multiprocessor systems and their complex 

operating systems because these research subjects are well © 

treated elsewhere in the literature (e.g. White, 1976) and 

basically there are many software problems associated with 

operating system design and high-level programming language 

design for such systems. As such, the following section 

concentrates on the design issues of multi-microprocessor / 

microcomputer systems or distributed systems. 

58.4.2 Problems. of destgning wtth.multt-mtcrocomputer system 
  

As outlined in Figure 3.4, one of the main features of 

a multi-microcomputer system is a lack of an operating 

system and the static nature of allocation of tasks among a 

number of processors. This means that a system designer has 

to use low-cost microprocessors to design a multi-micro- 

processor system which is oriented towards an application 

such that the application problem is carefully subdivided 
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for parallel processing or concurrent execution. .The main 

advantage of such a subdivided application problem is 

modular software development. However, the design of such 

a distributed system poses several interesting problems and 

these are discussed subsequently. 

6.4.2.1. SGetem anenttecture: The system.architecture 
  

differs from a processor architecture and is usually 

influenced by application requirements. The following 

factors govern the system architecture: 

1. Control and management. of resources: The 

resources, whether hardware or software, which are 

distributed among various processing elements, should be 

efficiently used. If a resource is made common or is 

shared, then due consideration must be given to resolve 

contlicts-tor ats. use. 

2. Load balancing and reliability: The nature of the 

application determines as to how the processing could be 

balanced among various processing elements, This require- 

ment may arise due to failure of any processing element, 

The reliability specification determines whether the system 

component failure is tolerable and, if so, how it degrades 

the overall system performance. 

3.4.2.2 Communteatron, and control... This is an 
  

essential feature of a distributed system and the quality 

of performance of the entire system depends on communic-— 

ation and control of information and the complexity of 

protocol used.for itv The factors: to be: considered are; 
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1. Interconnection of processing elements (e.g. see 

Pie, 3.10).. The: chetee of Interconnection depends upon 

the nature of applicacion, flexibility. reliability, cost 

and complexity of control. A combination of various net- 

works in Figure 3.10 is also possible. 

2. Inter-process communication: The flow of control 

and data information between various processes processed 

in processing elements can be achieved by numerous commun- 

ication protocols. These may be based on the following: 

A. Serial communication using UARTs, Modems etc. 

B. Parallel communication: 

(a) port to port transfer using polling 

techniques 

(db) port to: port.transier. using interrupt 

techniques 

(c) DMA transfer 

(d) transfer using buffer memory. 

C. Synchronous/asynchronous communication. 

So) Tntormation transtér rates /capacity.. «The .transfer 

rate and capacity of a channel determines the number of 

busses required and their bandwidths. 

4. Message handling: If the communication is based 

on messages between various modules, then the following 

considerations are important: 

A. Message format should include information 

about source, destination, priority and error 

checking information. 
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B. Length of message: It could be short or long 

or ot a fixed: leneth. 

Frequency of messages. 

Brror probability. 

Acknowledgement delays. 

By
 

eles
 

a
S
)
 

Channel transmission rate. 

5. System response time requirements: Normally 

several modules use the same data channel and hence 

sufficient data transfer rates should be maintained while 

meeting timing and bus utilisation constraints, and 

reduced queue lengths. Whenever the source generation 

rate is low, techniques of buffering and multiplexing may 

be used. 

3.4.2.3 Distributed. processing: Along with the static 
  

distribution of an application task implemented into 

various processors as individual subtasks, there exists 

interactions between them. Efficient handling of such 

interactions between modules depends on the design of the 

system architecture and the communication and control 

aspects of distributed processing. In addition, although 

the distribution of subtasks into processors is static, the 

actual processing and utilisation of these subtasks may be 

of a dynamic nature. For these reasons, the following 

elements of distributed processing need attention; 

1, Pask allocation; :This.consistsa of specifying 

explicitly, the disjoint. tasks and their interactions 

associated with a given problem. This may be possible only 
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for well-defined application areas where the requirements 

are known in advance. Another method is to determine the 

sets of individual tasks and allocate them in the local 

memories of the individual processors. 

2. Fail-safe capability: One of the motivations for 

a distributed system is to provide a fail-safe system. 

Therefore, distributed processing needs to incorporate a 

detection mechanism for failures in the system and to 

isolate them so that the errors will not be propagated 

throughout the entire system. This feature is very useful 

for maintaining the system. 

3. Data association and synchronisation: In many 

real-time, time-critical applications, the data to be 

processed in various processors needs to keep bmacks Or ts 

source, when it was generated and how far and in which 

processor it has been processed so as to make further 

decisions for processing. it. or discarding it. This is 

clearly a data association problem which depends on 

synchronisation at various stages of distributed process- 

ing. 

4. Resource allocation:. Just as task allocation, 

software control of hardware resource (e.g. memory, data 

bus etc.) allocation and deallocation is another important 

task. Since there is no central scheduler in a distributed 

system, sufficient intelligence should be provided at 

various processors so that they can self-schedule and 

handle resource allocation. This is achieved by providing 
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updated strategic information about the system status, 

thereby allowing a particular processor to decide upon the 

allocation of a resource for a given request at any given 

time. 

Sl 4c 2 4. 00str¢rpuLea daca pace. Ut ws a very common 
  

requirement for a distributed system to have data distrib- 

uted among various processing units as well as a common 

data base which bears a functional relationship between 

various processes residing at various mouldes of the 

distributed system. This requirement is more prominent if 

the system as a whole is working on a single overall 

application problem. However, the structure of a data base, 

whether distributed or common, depends on the application 

at hand and the following points are important in this 

respect: 

1. Memory partitioning: The size of memory for data 

and program should be determined carefully for each 

processing module, allowing for expansion if necessary. 

This basically depends on the application and the access 

time requirements. 

2. Nature of data: The data base may be static or 

dynamic in. nature, A. Statice condition, reters to data 

segments or files that are not modified, while data which 

gets modified and utilised either externally or internally 

during discrete processing steps can be considered as 

dynamic. 
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3. Data access time and throughput: For certain real 

time applications, the data access time may be very critical 

and hence a careful memory system design is needed to 

satisfy the system throughput requirements. Holland (1980) 

has described three ways of improving the system throughput 

by separating the data in, data out and memory address 

busses of the memory system. These are (a) address anticip- 

ation, (b) pipelining, and (c) cache memory. 

4. Access conflicts and deadlocks: When a data base 

is shared between various processing elements, there may 

exist conflicts in accessing certain data items and simul- 

taneous access may not be permitted. Such conflicts should 

be considered in conjunction with the allowable delays, 

priorities for access and the cost associated with the 

duplication of memory system hardware. Hirose a access 

conflicts and/or the unavailability of critical data items 

or control information can lead to a deadlock situation. 

Hence deadlock prevention is important and provision must 

be made to detect and backup in the case of a possible 

deadlock. 

6.4.2.5 System reltabtlity: avatlabtltty and surviv- 
  

ability: It #8 wery difficult to discuss quantitatively 

concept of reliability, availability and survivability of 

distributed systems because basically these systems are 

application-oriented and faults leading to system break- 

down are, in general, intermittent in nature. However, 

these issues are very important if reliable system perform- 

ance is required, which is generally the case. For this 
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reason, it is desirable to implement error detection and 

recovery techniques within the system. If a detected error 

fails to recover, then the system survival depends on the 

operation of the critical processing modules and isolation 

of the failed module. In such cases, it is necessary to 

provide sufficient redundant information about the system 

to be able to recover even after the total failure of some 

subsystem. If the cost constraints allow, extra redundant 

hardware may also be used to backup the system to improve 

reliability. 

5.4.2.6 System development and testing; When a 
  

distributed system has been carefully designed, based upon 

the considerations outlined above, the development and 

testing of such a system can be a major problem. The 

design issues mentioned earlier in Section 3.2.1, as applied 

to the development of a system incorporating a single 

microprocessor, are multiplied by the complexity of the 

number of such systems, their interrelationship and inter- 

connections which make up a single multi-microprocessor / 

microcomputer system. The ease of development and testing 

of such a system depends upon the fine description of the 

détails: of the: lowest level of lanstace notation for system 

architecture, hardware and software, and their integration. 

The development of a single processing element or a 

module which forms a subsystem of a distributed system can 

be performed partially using design techniques outlined in 

Section 3.2.1. However, the functional contribution of such 

a subsystem towards the entire system is very difficult to 
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test because 1t-canionly be" tested if.the rest of the 

system is present. That is why the integration of various 

subsystem modules, developed and partially tested individ- 

ually needs carefully programmed test procedures. This need 

also arises due to the absence of a general purpose system 

which can simulate a multi-microprocessor system environment 

for real-time applications. The only way around this 

problem is to develop and build a desired multi-micro- 

processor system by a step-by-step approach. In this 

aperenen: partially tested developed subsystem modules are 

integrated one by one and testing is carried out with 

modular test programs or built-in test procedures together 

with externally generated signals which simulate the real- 

time application environment. When such a distributed 

system is developed and tested successfully, then the 

simulated environment can be replaced by the actual real- 

time application. 

joe sCONCEUSBONS 

This chapter demonstrates that a trend towards system- 

atic design of multiple processor systems is developing. 

The classification issues. for such systems are vague 

because of their multi-dimensional attributes and complex- 

ity and lack of acceptable common terminology. However, an 

attempt to classify these systems, based upon easily 

identifiable characteristics, have been made. 

The problems of designing with microprocessor and 

multi-microprocessor systems suggest that numerous design 
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issues need utmost attention even prior to undertaking a 

microprocessor-based project. In particular, integrating 

various modules of distributed systems can be a major 

problem. The distinction between a distributed system and 

a multiprocessor system, based upon the operating system, 

is very weak because it is perfectly feasible to intermix 

some powerful features of an operating system with the 

flexibility and variety of characteristics offered by 

distributed systems. For example, it may be possible to 

build modular systems which include such features as 

dynamic taskeallocation, (1.e. reconfisgurability) to suit a 

variety of applications. However, this in itself is a 

research area. 
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CHAPTER 4 - MODEL OF A PROCESSOR WITHIN A DISTRIBUTED 
  

COMPUTING SYSTEM 

4.1 INTRODUCTION 

Distributed computing systems are still at the fore- 

front of their evolutionary process. This evolution is 

taking place at architectural design level, interprocess 

communication design level, intercomputer communication 

design level and application level. Consequently, there 

are many and varied definitions and taxonomies of distrib- 

uted computing systems (Jensen, Thurber and Schneider, 

1979). However, these systems in general refer to the use 

of multiple, quasi-independent processing modules whose 

actions are co-ordinated to accomplish a large task or to 

implement a large system. In general, a designer of these 

systems is concerned with the following agenda: 

1. Distribution of computing power both in hardware 

and software. 

2. Distriburion of=information processing in the ,form 

of top-down distribution of tasks and bottom-up co-ordin- 

abion of tasks: 

32, Distribution, of..datea .«-This has two scatezories: 

(a) data generated as an output from a distributed task, and 

(b) data required as an input to a distributed task. 

A meaningful implementation of the above is usually 

associated with a specific application that characterises a 

distributed computing system. 
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The emphasis of this chapter is on issues, regarding 

the interfacing of a distributed computing system to a 

large-scale real-time complex system. A dual port memory 

utilisation is reviewed on this background, and a realis- 

ation of a hypothetical application is. considered. 

4.2 REAL-TIME DISTRIBUTED COMPUTING SYSTEM 
  

Figure 4.1 shows our description of a distributed 

computing system. The system is employed to serve the 

needs of a large-scale complex real-time system for its 

information processing. It is assumed that the large-scale 

system already exists. This assumption is reasonable with 

most practical systems. For example, one can think of a 

large chemical processing plant, the throughput and perform- 

ance of which needs improvement. A distributed computing 

system can be a cost-effective solution for such a problem. 

In the Figure, P1, P2, P3 etc. are microcomputers with 

normal attributes of a conventional computer system. This 

facilitates a desired task-oriented program development 

environment for any processor to be accomplished independ- 

ently under Phase I. The processors" interconnection inter- 

face and their physical interconnection system bears a 

close relationship which is exclusive to the processors 

only. This relationship can be made adaptable for a variety 

of microcomputer networks and communication protocols that 

link the processors for the co-ordination of their individ- 

ual .funetional tasks: *-A-funetional..task. may, involve 

numerous interactions of a processor with the large-scale 

real-time system or it can be a task of micro-co-ordination 
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of other neighbouring tasks. An overall collective co-ordin- 

ation of tasks executed by the processors is thus dispersed 

amongst the processors, each one being a contributor to it 

to some extent. 

A separation of Phase II and I is quite arbitrary in 

the system shown. The performance evaluation and monitoring 

of the processors' behaviour and the large-scale systems' 

behaviour in Phase II occurs as a result of successive 

developments in Phase I. A gradual hand-over from a then 

existing control scheme of the large-scale real-time system 

to a new implementation of a distributed computing system is 

thus possible with the following major advantages: 

1. A modular development of the system, both at soft- 

ware and hardware level. 

2. <A better insight into the system down to a smallest 

subtask level. 

3. A reduction in down time of the large-scale system. 

4. Improved maintainability due to improved failure 

detection. 

5. Improved performance, throughput and reliability. 

4.38 MODEL OF A PROCESSING ELEMENT 
  

A major element of a distributed computing system is a 

processor. A task programmed into the memory of this 

processor accounts for its information processing capabil- 

ities. A processing task is performed on the input 
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information to produce the resultant output information. A 

detailed description of a model of a processing element for 

a distributed computing system is shown in Figure 4.2. 

One of the main features of this model is that a 

processor is assigned a task which is composed of a "process" 

and “output information data". The process may contain 

several subtasks. The task of a processor is activated by 

one or a number of sets of input information data which is 

contained in the "Information Accumulator Node™ (JAN). The 

output information data from the processor is deposited in 

the "Information Distributer Node" (IDN). The character- 

istics of IAN and IDN are such that a processor avoids 

direct interference with another processor's task and vice 

versa. his facilitates the identification of asprocessor!s 

communication requirements with another processor or 

processors. 

Another interesting feature of the model is that a 

processor receives its input information data without any 

forced interruption’ of its, task.execution:. Similarly,.a 

processor generates its output information data which is 

made available to another processor to read it whenever it 

is. free to: doso.:. Tits, anput intormation data received by 

a processor is transformed into output information data by 

a task. The output information data generated in this way 

can flow through four different kinds of information links. 

These are: 

1. Feedback Information Link; As the name suggests, — 

the. output. data is.fed back as .input..to.the same task. ““For 
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example, recursive type algorithms run in a monoprocessor 

fall under this category. 

2. Interactive Feedback Information Link: In this 

type of link;-the output: data interacts’ with its outside 

world which it is’ controlling, and the’ processor reacts to 

the data presented to it by its controlling environment. 

Direct Digital Control (DDC) of a process is a good example 

toe mlinstrate this. 

Boe) Cascade Information Link: > Usinegthis@link, it may, 

be possible to cascade a number of task processors. This 

Situation may arise if a single processor fails to accomm- 

odate a sintie-larve task oer, «for example. 1t-may, be: that’a 

processor after completing its task wishes to trigger 

another task processor in cascade with it. 

4. Breadcast Information Link: . This: link. is basically 

an extension of the cascade link in which output inform- 

ation data is made available simultaneously to a number of 

other task processors. This link is very useful if a number 

of task processors execute identical tasks. This link may 

also be useful in synchronising different. task processors. 

A physical implementation of IDN and IAN is shown in 

Figure 4.3 and Figure 4.4 respectively. Each module of IDN 

or IAN is made from dual port scratchpad buffer memory. The 

roles. of, IDN and IAN are identical. In.both of then, 

information data is stored from one end and it is made 

available at the other end. However, the way in which the 

modules are grouped and connected makes them either IAN or 
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IDN. For example, in Figure 4.3 IDNi3 represents that the 

Task 1 processor distributes its output information data to 

the: Task 3 processor. sSimiler ly, tn Bigure 4:4 1AN74 

represents that the Task 7 processor accumulates its input 

information data from the Task 4 processor and so on. 

Figure 4.5 shows an example of two cross-coupled processors 

Pile and’ P22. 

4.4 INFORMATION AND TASK HIERARCHY 
  

A task processor may contain one or more information 

links. The feedback and interactive feedback information 

links are mainly associated with a monoprocessor, while 

cascade and broadcast information links account strongly for 

a distributed computing system. However, the smaller the 

number of information links, then the more simple the task 

becomes. 

In order to derive some criteria for quantifying a 

complex task, one can look at the information hierarchy used 

in information theory. *® This d@neludes; 

1. Symbolic Information: At this level, messages are 

transmitted (and data is stored) as a collection of symbols; 

these symbols form basic building blocks from which all 

higher forms. of. information hierarchy are developed. 

24, Syntatic, Intormation:. ‘Thiss1s.contained: in the 

rules limiting the way in which various symbols can be 

combined. 

3... Semantic Information: This’ is contained in-the 

meaning which the recipient can perceive in a message. 
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4. Pragmatic Information:This is concerned with the 

practical use to which the recipient may make of a message. 

5. ‘Aesthetic information: This describes the ability 

of the message to affect the senses and decisions of the 

recipient. 

A processing element of a distributed computing system 

bears an analogous relationship to the above information 

hierarchy. This is shown in Table 4.1. In a distributed 

computing environment, we are mainly concerned with the 

aesthetic level of task hierarchy where a task performed by 

one processing element affects the decision of another or 

several other processing elements. In other words, this is 

concerned with the micro-co-ordination function amongst the 

processing elements. This micro-co-ordination function is 

responsible for minor decision-making based upon the out- 

come from different neighbouring task processors and 

information filtering. Information filtering relates to 

the form in which a distributed computing system presents 

the net quantified information about its controlling 

environment to a human operator to perceive the perform- 

ance of the controlled environment. This task of present- 

ing information by a distributed computing system to human 

perception represents the highest level in the information 

hierarchy. 

4.5 CONTROL SYSTEM PHILOSOPHY 
  

The form in which a model of a processing element of a 

distributed computing system is presented also reminds us 
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of "signal flow diagrams" and "block diagrams" from 

classical control system theory. The terms "feedback" and 

"cascade" have been chosen deliberately to bring about a 

philosophical analogy of a distributed computing system to 

classical control systems theory. 

In a distributed computing system we are concerned 

with informatron: flow. diagrams!) eimitar to.signal* flow 

diacrams*.in=a classical: control system. A’ time».constant’, 

for example, of a processor: to run its task relates to.a 

delay in time after which output information data appears 

when input information data is applied. This delay may not 

be of a fixed duration; usually this will have maximum and 

minimum limits on it depending on the volume, rate and 

nature of input information data. This naturally leads to 

stability consideration for task processors to be deter- 

mined. For example, a stack overflow in task processor 

will be clearly an unstable situation. A deadlock situ- 

ation between two task processors is another unstable 

condition and so on. 

In order to identify such unstable conditions, inform- 

ation flow in a distributed computing system should be 

"observable" and consequently "controllable". This feature 

relates to the fact that each task processor should be 

examinable for its task-handling and information-handling 

attributes. Another possible outcome of this examination 

TS the Wdentifacation, ofa. Meritical path” atone which 

critical tasks are processed, This is analogous to a PERT 

analysis in system design. This critical. path can be very 

important with regard to the "micro-co-ordination" or 

"decision-making"ability of a task processor. 
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4.6 DUAL PORT MEMORY UTILISATION 
  

A dual port scratchpad memory allows a data item to be 

stored (written) into a location from one port and allows 

it to be retrieved (read) from the location at’ another 

port. These read and write operations can be performed 

simultaneously. This type of memory acts as a buffer 

storage medium for the communicating task processors and 

serves to isolate the internal data, control and address 

bus systems of these processors. Input/output information 

data flow occurs through this medium denoted by IAN and 

[DN in the model. 

There are two ways in which the dual port scratchpad 

memory may be connected to a task processor. If the 

volume of information data flow is small, the processor's 

parallel input/output ports may be used. However, this 

means that there will be a smaller number of I/O ports 

available for connecting other peripherals or interfacing 

circuits. Another way is to connect the processor's 

internal address and data bus to either the read or write 

end of the dual port memory. This allows data storage and 

retrieval operations to be the same as RAM. This type of 

connection is suitable for a large volume of data transfer. 

The size of the dual port scratchpad buffer memory 

used in IAN and IDN is a function of the information trans- 

fer needed between task processors. There are three kinds 

of devices available to build IAN or IDN modules. These 

du: Cc. 
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1. SN74LS670 Med. 16-bit “TTL vepister.files.. “These 

files are organised as four words by four bit with on chip 

address decoding for separate write and read functions, 

thus permitting simultaneous reading from one location and 

writing to another. The device is 16 pin DIN packaged. It 

requires a combination of two such devices to implement 

only four word bytes of storage locations (Deshmukh, 1979). 

9.2 AMQ9705 iS o..16 words: by 4: bit’2,..port: RAM... «This 

device has two output ports each with separate output con- 

trol and separate four-bit latches on each output port. 

The device is 28 pin DIN packaged (AMD Data Sheet). 

3. MCT0806. isa. dual access: stack with.'32. x 2. memory., 

two address ports, two 9-bit data input/output ports, two 

9-bit output registers, flipflops in a*single MECL bipolar 

LSI circuit. The device is 48 pin QUIL packaged (Motorola, 

LoTO).: 

The first two devices are simpler to interface with 

most microprocessors while the third has rather special 

characteristics. For the purpose of designing systems with 

these devices, data sheets are available and so no further 

discussion is given here. 

The hardware utilisation of a dual-port scratchpad 

memory module such as IAN or IDN requires additional soft- 

ware protocols for the purpose of information flow between 

task processors. An outline of simple protocol primitives 

that may be used is shown in Table 4.2. This set of 

primitives is derived for two cross-coupled task processors 

Pl and P2, as shown in Figure 4.5. Table 4.2 shows what 
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PROTOCOL PRIMITIVE PROTOCOL PRIMITIVE 

  

NO FOR IDN12 = IAN21 FOR IDN21i1 = IAN12 

(TASK PROCESSOR 1) (TASK PROCESSOR 2) 

1 Stop Read/Start Write Stop Write/Start Read 

2 Number of bytes of information a 

3 Block program Loading/Finish ) 
(a) Starting address (2 bytes) ) Block Read 

(b) Block number ) 

4 Task number ) 

(a) Task trigger/End ) Task Status 
(b) Repetition number 

5 Read time information -- 

6 Data constants -- 

WL Information set number Set accept information         
  

TABLE 4.2: Information Protocol Primitives 
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information data Task Processor 1 intends to distribute to 

Task Processor 2. This information storage is done in 

IDNI2 = IAN2I;> ‘The Task Processor’ 2:on the other hand..may 

acknowledge its input information data via IDN21 = IAN12. 

This coupling of the two processors for their information 

exchange is entirely programmable and task-oriented. 

4.7, APPLICATIONS 

The applications mentioned in this section are hypo- 

thetical and intended to show potential areas where our 

model of a distributed computing element can be employed. 

Two applications are considered: 

1. Mathematical Modelling: Modern control philo- 

sophy suggests that a real-time large-scale complex system 

may be analysed and controlled by utilising its mathemat- 

ical model which resides within a computer system. Any 

interactions between the subsystems of such a large-scale 

real-time system can be accounted for by implementing 

these subsystems within our model of a processing element 

of the distributed computing system. The mathematical 

model performance and the actual system's performance can 

then be compared at a subsystem level. Additionally, 

actual subsystem's parameters can be estimated and con- 

sequently its model parameters can be updated for that 

particular subsystem. Furthermore, different mathematical 

models can be analysed and tested. 

2. Simultaneous Serviceing of Interrupts: In .seme 

situations with ‘a.real-time system, .it may be difficult to 
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FIGURE 4.6: Simultaneous Servicing of Interrupts 

96 

  

 



determine the priority structure of a number of external 

as well as software interrupts. In these circumstances, 

different interrupt service routines can be implemented in 

a processing element of a distributed computing system and 

the overall co-ordination of these interrupt service 

processors can be performed by another processor whose 

task will be to run the main program and take care of any 

static and dynamic data movements to and from the inter- 

rupt service processors via IDNs and IANs. This is shown 

in Figure. 4.6. In the Figure, routines 1 and 3 depend on 

static data from the main task processor whereas routines 2 

and 4 depend on dynamic data. Hence, these two routines 

interact with each other as well as with the main program. 

The structure of the interrupt processors depends upon the 

actual application and how it relates to the main program 

in the co-ordinating processor. 

4.8 CONGLUSIONS 

A new model of a processing element within a distrib- 

uted computing system is presented. The cost-effectiveness 

of this model needs to be evaluated. The model provides 

means by which new possibilities of communication protocols 

may be implemented which are task-oriented. The model also 

facilitates a clear partitioning of subtasks and a defin- 

ition of their interactions. 
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CHAPTER 5 - A HIERARCHICALLY STRUCTURED 
  

' MULTI-MICROPROCESSOR SYSTEM 
  

O.¢ LY TNTRODUCT ION 
  

As computers and processors have become smaller, 

cheaper and more reliable, it is becoming more common to 

design systems with more than one actual processor. A 

large variety of computer interconnection structures has 

been proposed covering the range from tightly to loosely 

coupled networks and multiprocessors to array processors 

(Anderson and Jensen, 1975; Enslow, 1974). The concept of 

distributed. processing had its origins. in the data process- 

ing field before the start of the microprocessor revolution. 

Enslow (1978), in attemptine to clarify the concept of 

distributed data processing, claims that at least four 

physical components of a system might be distributed: 

processing logic, data, the processing itself and the con- 

trol of the operation (e.g. the operating system). Research 

In“ thes sarea iS cCOnvuimuune > 

The advent of microprocessors has helped to enlarge 

the concept of distributed processing beyond the confines 

of data processing applications. Many types of system have 

been described, ranging from a series of unconnected com- 

puters each performing Separate tasks through to a single 

computer system within which a number of computing elements 

are connected. Enslow (1976) has discussed systems class- 

ified as multiprocessors which contain two or more central 

processors of comparable capability. These processors 
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share access to a common memory, common input/output 

channels and common control devices; the entire system is 

controlled by a Single integrated operating system. 

Microprocessor technology, however, is often best 

employed in systems which are constructed of processing 

units each of which is independent in itself but which 

communicates with some or all of a number of other process- 

ing units in the overall system. Each processing unit may 

have a number of dedicated tasks in normal operation; there 

is, however, no integrated operating system, and the con- 

trol of the system may be distributed among the individual 

units. 

This chapter describes such a system in which the units 

are connected in.a hierarchical structure. The basic pro- 

cessing module from which the system is configured is known 

as a "Hierarchical Microprocessor System Unit" (HMSU). The 

system is designed for the control of a pilot-scale 8-zone 

travelling-load furnace, but is sufficiently flexible to 

have a wide variety of process control applications. 

The HMSU structure consists of a number of Fairchild/ 

Mostek F8 family chips, a common block of semiconductor 

memory and a pair of Intermediate Scratchpad Memory Inter- 

face. The configuration is designed so that a single HMSU 

can be used either independently or as a building-block in 

an expandable hierarchical environment. In either case, it 

will normally run dedicated programs which will be held in 

ROMs. 

Similar usescof microcomputers have been described by 

other workers. Harris and Smith (1977) have analysed a 
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number of multiprocessor architectures and have discussed 

a multi-microprocessor architecture having a hierarchical 

structure. Steinhoff (1976) concludes that the comput- 

ational potential of minicomputers and a set of bipolar 

microprocessors can be harnessed for solving some large 

scientific problems that cannot otherwise be solved within 

normal, economic and pradtica® constraints. It is not 

necessary for all the processors within one system to be 

of the same type; for example, Pathak (1977) describes a 

configuration of one Intel 8080 and three SC/MP processors. 

Hughes (1976) incorporates TI 9900 series microprocessors 

and 990 computers for multiprocessor navigation systems. 

Tanaka (1976) introduces a new type of hierarchical multi- 

microprocessor system that includes nine microprocessors 

operating in a system under the overall control of a host 

ECLIPSE 8/200 computer. 

The objective in developing the HMSU is to make use of 

the numerous advantages offered by distributed processing 

in establishing a hardware basis for the implementation of 

optimal control schemes for large-scale system problems. 

o.2. HMSUY PRR OSOPEY, 

The hardware configuration of the HMSU is designed on 

the following basis. The unit. consists essentially of a 

number of individual processors and memory blocks. Each 

processor has its own private memory, but the bulk of the 

memory is common to all processors. It is the task of one 

particular processor, designated the Master Processor, to 
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control access by any other processor to the common memory. 

Apart. from this function, each individual processor acts 

independently, performing designated control functions via 

its own I/O channels. The processors operate asynchronous-— 

ly, all inter-processor communication being via the common 

memory under control of the Master Processor. 

The unit as a whole communicates with the outside 

environment via a special buffer known as the Intermediate 

Scratchpad Memory Interface (ISMI). The outside environ- 

ment may be either another HMSU or a larger host computer, 

or indeed any other processing equipment as required by a 

particular application. 

5.6 INFORMATION FLOW 

In designing multi-microprocessor systems such as HMSU, 

it is important to consider the basic principles ‘of inform- 

ation flow. Microprocessors. are intelligent devices capable 

ef acting-as a, source -of.as..assink. of information. 

Figure 5.1 shows an example of three units acting as sources 

and: sinks’ of. information /anda’ the’ arrows’ indicate.alY the 

possible ways of: information flow that may occur.” Lf these 

three units are to communicate sensibly with each other, 

then at any one time one unit must be transmitting inform- 

ation and: the other two. receiving IU.) at will. greatly help 

the synchronisation problem if the data is transmitted by 

the source to a temporary intermediate store, from which it 

may be received by the sink or sinks when they are ready to 

“0°ao. This-aveids.the difficulty that ‘can. oecur with 

"handshake" systems when two processors may each be waiting 

for the sother : 
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FIGURE 5,1 : Information Flow 

The Intermediate Scratchpad Memory Interface (ISMI) 

that forms such a temporary store for the HMSU allows two 

processors to use it to deposit or retrieve data or control 

information. Asynchronous reading or writing of data can 

be performed by the two processors simultaneously. In the 

case of dedicated applications, the form of interprocessor 

information flow is completely known and some simple 

synchronisation schemes may be adequate. In our case, 

where a pair of ISMIs is employed as intermediate inform- 

ation storage media, simple software controlled synchronis-— 

ation primitives for. block ‘data transfer can be utilised. 

For example, in Figure 5.2 two processors, Pl and P2, are 
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FIGURE 5.2 ; Bidirectional Communication between processors via a 
pair of ISMIs 
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1igked by & paix ot POMIs.. Avatid’ A; are: the lecatzens” in 

this pair which are periodically monitored by processors 

P2 and Pl respectively. These locations can be used as 

flags or codes fom, various sets of ‘block data... .The foblow-— 

ing Table 5.1 shows how A and Ai are used as flags for a 

block data transfer between the two processors Pl and P2. 

The only constraint on the software programmer is in the 

assignment of individual ISMI locations to particular items 

ot data. ti the functioning ofa task.residing. with P2 

depends upon the data generated by Pl, deadlock can occur. 

However, in a dedicated system such as a HMSU, where 

applications can be either homogeneous or heterogeneous 

(Siewiorek, 1975), deadlock problems are certainly anticip- 

ated by the very nature of hierarchy. The frequency of 

deadlocks in a multi-microprocessor structure is an 

important question open to experimentation. 

The*volumesof data flow in the two directions. need 

not, of course, be the same. This is a necessary feature 

for use in a hierarchical structure, where one processor 

al bigh. level may beé- receiving a.preat deal of ‘data: from’ a 

lower-level processor but sending to it only a few command 

Signals at frequent intervals. 

6.4 - SRUCTURE ORAITHE =f SME 
  

The Intermediate Scratchpad Memory Interface is built 

from SN74LS670 MSI 16-bit TTL register files, These files 

are organised as four 4-bit words: on-chip address decod- 

ing is provided separately for reading and writing, thus 

permitting simultaneous reading from one location and 
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A MONITORED BY P2 aA’ MONITORED BY Pl COMMENTS 

  

  
mi   

Pl 

Pl 

P2 

P2 

P2 

P2 

Pl 

Pi 

starts writing for P2 .. P2 

completes writing .°, P2 can 

starts reading.’, Pi should 

completes reading.”. Pi can 

starts writing for Pll) Pl 

completes writing .°, Pl can 

starts reading ,, P2 should 

completes reading ,.°, P2 can 

should not read 

read 

not write 

write 

should not read 

read 

not write 

write 

    X signifies don't care condition 

  

TABLE 5.1 : Communication protocol for processors of FIGURE 5.2 

 



writing to another. The SN74LS670 components can be organ- 

ised into a memory of up to 512 words of any number of 

multiples of 4=bits. The fast access time (typically 

20 ns) and tri-state output makes this type of component 

ideal for use in intermediate memories. The organisation 

of an ISMI of 256 x 8-—bit words. is Shown in, Figure 5.3. 

The scratchpad of this size requires 128 chips of 

SN74LS670, ten multiplexers and four driver chips. For 

communication in both directions between two processors, a 

pair of ISMIs is required. 

Several reasons can be numerated for the choice of an 

ISMI to couple two processors. Although the use of DMA 

channels can be envisaged for communication between two 

processors, we find that DMA transfer requires extra 

complex interface circuitry with synchronisation logic. 

‘Compared to this, the use of ISMI avoids the need for such 

a complex interface and also has the advantage of asynchron- 

ous communication. The use of ISMI also frees the DMA 

channels of the processors to be connected to peripheral 

doves for which they are more suitable. The use of ISMI 

gives much more flexibility especially when designing multi- 

microprocessor systems. 

5.5 COMMON MEMORY 

A Common Memory (CM) providing a data store which is 

accessible by several processors at the same hierarchical 

level is an important feature of the HMSU. Because the 

processors are operating asynchronously, it is necessary to 

ensure that only one processor attempts to access the 
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memory at a time. This is achieved by a master-slave organ- 

isation, the master processor having the task of allocating 

access tothe CM. to slave processors as required. This type 

of organisation is quite common; see, for example, Russo 

(1976) and Witten and Jenkins (1978), although other poss- 

ible structures have been described (Hnstow, 1976). The 

master-slave structure has been chosen for the HMSU because 

of the simplicity of both hardware and software required, 

and because of its applicability to asymmetric systems in 

which the workloads of master and slave processors are 

appreciably different. 

Figure 5.4 illustrates a master-slave configuration in 

which eight. processors are used. In this particular design, 

the processors are Fairchild/Mostek F8 chips, chosen 

largely because of locally available software. The con- 

figuration allows the master processor always to have 

access to the CM by setting up its own address code on its 

address port. When the master processor decides to grant 

access to any of the slave processors, it will output the 

address code for the particular slave processor on the 

address port ..:This. address code will. dink the:.GPU.READ and 

R/W lines of the slave to the CM via a multiplexer. At the 

same time, the demultiplexer unit opens the appropriate 

buffers to link the internal address and data buses of the 

Slave to the external address and data buses’ of the CM. 

The demultiplexer unit also sets up an external interrupt 

for the slave which will activate its common memory access 

program. 
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At the end of the CM access routine, the slave process- 

OY Will sienal«to thesmaster: via the masterts external 

interrupt line, As “an. addi.pional- check): it“1s.possible Tox 

the slave to send an adentification codé to one of the 

Hosters -./0. ports. Wiis will enable’ the mastem.t6 reedg- 

nise which slave has finished a CM data transfer, which may 

be useful if there is. a queue’ of CM access requests.” This 

additional check is not necessary to the system, however. 

The HMSU architecture is arranged so that all CM 

access requests are generated by the master processor; the 

slaves do not need to generate such requests themselves. 

This avoids the problem of concatenation. When the master 

does hot: need to.ask: for any slave to transfer. data,to or 

from the CM, it can treat the CM as its own private memory, 

transferring ‘data in and out..at. any such time. 

5.6 AMSU ARCHITECTURE 
  

The hardware of the HMSU is very simple, It consists 

of a master. processor, a pair of ISMIs. serving as a bi- 

directional data transfer interface, a common memory as 

described above, and a number of slave processors. The 

organisation of the HMSU is shown in Figure 5.5. 

The master processor performs the following sytem 

functions: 

1. Receiving of data from. the supremal level host 

computer via the ISMI and transfer of that data to the 

Common Memory. 
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FIGURE 5.5 : Hierarchical Microprocessor 

System Unit (HMSU) 
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2. Generating CM access requests to allow the slave 

processors both to receive data from the CM and to transmit 

data gathered or generated by each slave to the CM. 

3. Transmitting slave-generated data from the CM back 

to the supremal computer, again via the ISMI. 

In addition to these system tasks, the master process- 

or may be assigned some user tasks if the processing load 

allows. It is desirable, however, to share the total 

processing load as equally as possible between all the 

processors, otherwise the overall system performance may 

become degraded. 

The slave processors perform individual user tasks, 

gathering process data and implementing control functions 

via their own individual interfaces and I/O ports. The 

proposed structure of the HMSU incorporates up to seven 

slave processors. However, more than seven slave processors 

can be used if desired, or alternatively, more than one HMSU 

can be employed. This distributed processing structure 

makes the system very flexible and easily expandable. 

A further possibility offered by the HMSU architecture 

is that the supremal computer may be used to change the 

allocation of tasks amongst the slave processors in the 

event of a hardware failure, a facility which makes the 

system of very high integrity. 

def  sAMSU STRUCTURE 

A variety of structures can be developed using HMSUs. 

Since a pair of ISMIs may be used to link any two process- 

ors operating asynchronously, we may use this interface to 

link two HMSUs together via their master processors, or to 
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link a master processor to a particular slave processor 

either “within the same: EMSU ‘or.in a different .one. This 

gives very great flexibility in the design of multi- 

processor structures. 

Figures 5.6, 527 and.5.8 -show three different “systems 

constructed from HMSUs each of which has a master and 

three slave processors. Figure 5.6 shows a hierarchical 

structure using three HMSUs and a supremal host computer. 

Figure 5.7 has four HMSUs in a star formation around the 

host computer and Figure 5.8 shows five HMSUs and a host 

computer in a ring formation. There are endless permut-— 

ations on these three structures: the decision as to what 

type of structure to use is dependent entirely on the 

application. 

528% CONCLUSIONS 

A hierarchical organisation of microprocessors, known 

as the HMSU, has been described. This sytem may be con- 

structed at low cost from standard LSI components. The use 

of private memories for each processor combined with inter- 

mediate memory for interprocess communication avoids the 

synchronisation problems often associated with multi- 

processor systems and allows great flexibility in designing 

large-scale systems based on a number of basic HMSU blocks. 

The main disadvantage of the system at present is a 

rather high chip count. This would be considerably reduced 

if the ISMI were implemented on a single LSI or VLSI chip, 

which is technologically, if not economically, possible. 
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With the present trends of new technologies, increas- 

ing reliability and falling costs, system integrity may be 

enhanced. by the use of multiple hardware, and the HMSU is 

fully capable of providing a high integrity system once the 

necessary diagnostic software has been developed. A 

further advantage of the HMSU structure is that it allows 

modular development of software for each individual pro- 

cessor within the strueture. « The “HMSU: structure “is 

specially useful for large-scale systems where a large 

system problem can be subdivided into smaller subsystem 

problems. Individual processors in the HMSU can be 

employed to these smaller subsystem problems and co-ordin- 

ation for these problems can be achieved by a host computer. 

Other potential applications for HMSU can be homogeneous or 

heterogeneous. 

There are several further research issues to be pur- 

sued such as employing a hardware arbiter for allocating 

common memory rather than total access control of common 

memory by a master processor, deadlock problems associated 

with the hierarchical systems and overall system perform- 

ance, 
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CHAPTER 6 - CONTROL OF A TRAVELLING LOAD FURNACE 

6.1. INGRODUCT RON 

The HMSU, as discussed in Chapter 5, was designed in 

the first instance.as part ofa: programme of work’ on the 

control of an 8-zone travelling load electrical billet 

reheating furnace. A travelling load furnace (TLF) con- 

structed in the Department of Systems Science of The City 

University is basically a.laboratory version of industrial 

TLFs designed to carry out computer control experiments 

(Catiim, “1972>Sheeng, -1977.). 

Various schemes exist which may be used to control the 

TLF. Some are simple to implement and require minimal 

amounts of information about the properties of the plant, 

while some are sophisticated and optimal in performance but 

require detailed knowledge of the process and the plant, 

its inputs and disturbances. A simplified empirical model 

was developed and tested for the heating of slabs of metal 

in a multizone TLF (Caffin, 1972), whereas Sheena (1977) 

implemented and tested the PID algorithm and the on-line 

least square identification and control schemes. 

This chapter briefly describes the TLF and discusses 

an incremental form of PID control scheme with reference to 

the control requirements needed to interface the HMSU to 

the TLF. The design details of the electronic interface 

and modifications to the existing interface needed for this 

purpose are also given. 
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6.2 FURNACE DESCRIPTION 
  

The TLF consists of a 2.7 metre long tunnel with a 

number of separately controlled electrical heaters distrib- 

uted along its length and a conveyor carrying blocks of 

metal (loads) through it. The furnace is designed to heat 

loads to temperatures up to 500°C. The conveyor is driven 

by a DC motor. Each ofthe weight heating zones is powered 

by two banks of three 1 kw electric fire elements, giving a 

total furnace power of 48 kw. The zone lining walls are 

made of aluminium reflectors which are air-cooled and the 

sections near the heaters (top and bottom surfaces) are 

water-cooled. Detailed specification of the furnace and the 

interface with the computer may be found in Caffin Glo): 

A schematic diagram of the furnace interfaced with the 

HMSU and the PDP-11/10 minicomputer is shown in Fasure 6.1). 

The hierarchical computer control strategy using HMSU and 

the PDP-11/10 minicomputer is explained later in the chapter. 

The normal operation of the furnace consists of the loads 

travelling through the heating zones and recycling them 

after suitable cooling. (A water shower is built outside 

the furnace if forced cooling is required.) The positions 

of the loads in the furnace are tracked using a set of six 

microswitches that are closed by appropriately placed bolts 

on the conveyor. The interrupt signal generated by the 

closure of microswitches is processed by the computer. 

The electric power input to each of the heating 

elements in the eight zones or to the speed of the DE movor 

is adjustable in small discrete steps from zero power to 
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full power or zero speed to maximum speed using silicon 

eontrolééed rectifier power units... The: control signals. to 

these nine power units are generated by the computer and 

transmitted .via DAC units. 

The temperatures of the loads are measured using 

Chromal Alumel, stainless steel sheathed and magnesia 

insulated thermocouples inserted inside each individual 

load. However, this kind of arrangement for measuring 

temperatures is rather uncommon as compared with industrial 

practice. The analogue signals from the thermocouples are 

multiplexed, amplified and sent to the computer via an A to 

D converter. 

6.5 BID CONRROL SCHEME 
  

The most conventional form of controller used in the 

process industry is the three-term controller with the con- 

stituent terms: Proportional-Integral-Derivative action 

control (PID). Although PID is the. most tried-out method 

of control, it was chosen for implementation within the 

processors of the HMSU because of its simplicity and as an 

experimental example. 

The basic concept:.of. PID feedback’ control is to use 

the error, ‘the integral of the.error.and.its rate’ of: change 

between a measured variable and a set-point to generate a 

signal that actuates the control devices to influence the 

process..s0*as to reduce’ this: error to.zero. ~The set-point 

may be truly constant or it may be a programmed profile 

generated by hardware or software. In the TLF, the zone 
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setpoints. along the. length of the furnace definesthe 

temperature profile required for the loads. A typical 

control loop for the measurement and control of temperature 

within a process plant (or equivalent representative of the 

TLF) is shown in Figure 6.2. The Figure shows that a set- 

point setting, sampling of error signal, its filtering and 

the PID algorithm implementation is performed in a digital 

computer. 

The discrete PID algorithm is derived from the contin- 

uous form of the three-term control algorithm. For a con- 

tinuously controlled process variable, the analogue control 

Signal is given by: 

t 
pAeils 1 de (t) p(t) = K(e(t) + uJ e(t) dt + Td ) 

dt 
  

Il where p(t) Control signal at time t 

e(t) = Error between measured and set-point values 

hit = Integral time constant or reset time 

Tiel = Derivative time constant or rate time 

and K = Proportional gain. 

Taking Laplace transform of the above equation becomes: 

  

  

E(S) p(s) = K(E(S) + 5 + Ta(s E(S) - e(0))) Gvsye 

ASSuminee dit. £20), e(Q) = 0, equation 6.3.2 becomes: 

nfs) = K(1'+ —— + va s}x(s) 6.3.3 
Ti s ae 

If the error signal is filtered before the control 

signal is applied, the effects of noise originating from 

the process or instrumentation are reduced. However, 
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filtering will reduce to some extent the effectiveness of 

the derivative. action. Using’ a simple first order filter 

Witha transter function as: 

tee ‘E(s) 
E(S) = cfs 6.3.4 

where E(S) = Laplace transform of actual error signal 

E(S) =» Laplace transform. of.filtered error signal 

and Ti. =. Filter.time constant. 

Combining equations 6.3.3 and 6.3.4, we get 

  

  

ok 1 Bee eet. or bee (a) G.3.6 

J Cy 

: 1 p(s) + TESP(S) = K{1 + —-—= + Ta s}E(S) 673.46 

The inverse Laplace transform of equation 6.3.6 gives; 

ita d 1 d pit TE so ptt) = ele (el + ui J e(tjedt + Ta e(t)} » 6.3.7 

For digital implementation, a discrete form of 

equation 6.3.7 is: 

Pk + TE AL TRL = K(ex + 35 y er + Td 2k Skil) 6B '3 
r=0 

where kK = Sampling instant 

e, = Error Signal at the Kth sample interval 

Pk = Control signal at the Kth sample interval 

tT = Time interval between samples. 

Equation 6.3.8 for the (K-1)th sample interval is: 

refi UE 7" k=2 = K(ex-1 + = } er + Td os G3 io 
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Subtracting equation 6.3.9 from equation 6.3.8 and simplify- 

ing gives: 

  
  

  

  

  

  

iv Td A 
APk = in ( (ex-e-1) ti oe (e,-2e,_1 +eK-2) ) har AP, of 6.3719 

where 

AP HPP Peay 6.3.11 

Equation 6.3.10 may be written as: 

APy..= Kyey tR2 e124 + Ke Gea 2 Kas APic..4 6.3.12 

where 

_ Xt ee 
Kl = pet (1 TL 

) a Kt 2Td 
KQ ha oe TE+T ( ) ) 

6.3.13 
ogee 

X3 eet ; 

nd K gee et 4 * pet 

Equation 6.3.12 is*simpler: in arithmetic form than 

equation 6.3:10 but a selection of the values of 

Ki€ies 12,3 .and.4) whieh will "suit: the ‘process plant, for 

tuning ofthe PID algorithm is very difiicult... However, 

since these values of Ki are determined by equations 6.3.13, 

the: operator shas .a convenient choice *fer the values of ’K, tT, 

Ti, Td and Tie with whieh he is much more’ famibiar in térms 

of .a‘feelsfor: process control. .Mquations 6.3.11, ° 6.3.12 and 

6.3.13 are used for implementation in the software. It is 

worth noting that all the control loops of the furnace share 

the same PID algorithm but each control loop has its own set 

of parameters, past errors and control signals. 
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6.3.1 Control requtrements for the HMSU 

One of the main objectives of implementing the HMSU to 

interface with the TLF is achieved by splitting up the con= 

trol task into smaller tasks so as to allow parallel process- 

ing and distributed control. For this purpose, the furnace 

has been considered as being divided into three areas having 

2, 3 and 3 heating zones respectively and referred to as the 

preheat, heat and. soak. sections. This is shown in 

Figure 6.3. Initially, the master processor of the HMSU is 

assigned to the preheat section which controls two control 

loops for the zones 7 and 6, whereas the slave I and 

Slave II processors are assigned to the following heat and 

soak sections which control each of the three control loops 

for. the, Zones 9;.°4,7 3. and.2, 1, 0 respeetivaly. A.temper- 

ature profile is defined by the set-point temperatures for 

each of the three sections. 

The divisiom of the control.tasks. for each’ of. the ‘pro- 

cessors in the HMSU and the PDP-11/10 minicomputer are set 

out as follows: 

1. Equations 6.3.11 .and.6.3.12 are used for implement- 

ation in each of the processors of the HMSU, so that each 

processor behaves.as. a PID. controller: for the TLF. 

2. An individual processor of the HMSU is responsible 

for measuring the load temperature by sampling at regular 

intervals via its ADC interface channel and sending appro- 

priate control signals to the zone heaters via its DAC inter- 

face channel. 
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3. °The Master processor, additionally, is made 

responsible for data distribution to the slave processors 

via the common memory module, while the data collection 

(e.g. set-points, controller constants, sampling intervals, 

motor speed etc.) is performed from the PDP-11 computer via 

the ISMI module. The master processor also collects inform- 

ation data on the current measured temperatures of each 

billet and the powercoutput to each zone of the furnace and 

returns it to the PDP-11 host computer again via the common 

memory and the ISMI. The master processor controls the 

speed of the conveyor which is maintained constant. 

4. The PDP-11 computer implements equations 6.3.13 

with a check on the suitability of the steady-state gain 

value which is derived from equation 6.3.12. Under the 

steady-state condition AP, = APy_; and e, * ex-1 * ex.2- There- 

fore the equation 6.3.12 may be written as; 

APE =, (Kt. + .Ko'+ K3) ex + K4AP_ 

The steady-state gain is defined as ee as t > © 

AP Ki, + Ko + K Kgg = SR - LTR 3 
k - K4 

From equations 6.3.13, it can. be shown that Koo = Kr. 

For steady-state. value. of the error to be“zero, Ko. “is 

required to be positive. This control requirement for the 

value of K is verified by the operator before the con- 
SG 

troller constants K1, K2, K3 and K4 are passed onto the 

HMSU . 
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Another task of the PDP-11 computer is to communicate 

with the operator and manipulate the input information data 

in a suitable form and present it to the master processor 

of the HMSU for its distribution. The display of process 

generated data from the TLF is also performed by the PDP-11 

computer via its GT42 display processor. More details of 

the PDP-11 tasks are covered in Chapter 8. 

5. One important feature of a control requirement for 

the HMSU is the operation of the controllers by selection 

of a control mode from a set of three control modes. The 

three control modes are outlined in Table 6.1. The oper- 

ator sets up a desired control mode which allocates 

specific groups of zones of the TLF to be under the control 

of specific processors of the HMSU. For example, under a 

control mode (v), the master processor controls zones 2,1,0; 

the slave I controls zones 7,6 and the slave II controls 

zones 5,4,3 and so on. Thus the three groups of zones of 

the TLF are transparent to control action from the pro- 

cessors. The importance of this feature is recognised when 

a switching of a control mode may be necessary in the event 

ef aitaiiure ofa processor. controlling. a critical : sreup of 

zones (e.g. a soak zone). 

  

  

  

  

              

CONTROL MASTER SLAVE I SLAVE II 

Pirae ee _ ZONES ZONES ZONES 

U 7,6 5,4,3 277 0 

rey, 2A O IAS bee, 3 

W 5,473 2 pan, O) 7,6 

TABLE 6.1 : Control modes 
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6. As the loadsttravel through from one Zone to ah- 

other zone, the corresponding zone controllers need to 

update the load addresses. A load update signal provided 

by the closure of a microswitch is passed simultaneously 

onto each of the processors of the HMSU as an interrupt 

signal. <A software routine implemented in each processor 

of the HMSU accounts for updating the load address simul- 

taneously. 

6.4 ELECTRONIC INTERFACE REQUIREMENTS 
  

In order to interface the hardware of the HMSU to the 

TIf,<a suitable electronic interface .is required for each 

processor: so that it/can transfer. data to*’and from .the 

furnace. The data transfer is concerned with addressing 

zones, addressing thermocouples for temperature measure- 

ments and digital data representation of temperature 

Signals: This is achieved by the-input/output interface 

shown in Figure 6.4.. It may be‘ noted that. since each 

processor of the HMSU behaves as a controller for the TLF, 

its#input/outputsinterface as identical. to that.shown in the 

Figure. 

As mentioned earlier in Section 5.5 of Chapter 5, the 

processors of the HMSU are designed around the Fairchild/ 

Mostek F8 microprocessor chips set. The input/output inter- 

face in Figure 6.4 uses three eight-bit bidirectional ports 

(Ports: 0; 1. and. 8), of :the: PS microprocessor, ‘The port:.O71s 

used to input an 8-bit equivalent of a temperature measure- 

ment, obtained via ADC82, unipolar analogue to digital 

converter. The same port is also uSed..to*output an 8<-bit 
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equivalent of a control signal (PK) to the TLF. A processor 

acquires a temperature measurement by setting up a thermo- 

Couplesaddress: at Port .1-(bits;0.to 5). This: causes. 74121 

(monostable multivibrator with Schmitt-trigger input) and 

74123 (retriggerable monostable multivibrator). circuits to 

generate a conversion command input for the ADC82. When the 

ADC82 completes the conversion of analogue signal, it 

generates a status signal which is input to 7474 (dual 

D-type positive-edge-triggered flip-flop with preset and 

clear inputs) via a 7406 (inverter). A change in the state 

at bit 1 of Port *& caused by 7474 accounts:for informing, the 

processor to read the 8-bit equivalent of temperature via 

its Port 1 by opening, the */7403.eates via ats Port -8. A 

processor sends out 8-bit equivalent of a control signal 

OP) via its Port .0:prior.to.closing the 7403 gates and also 

after addressing the appropriate zone via its Port 1 (using 

bees. 0 tO os And bite o):. 

6.5 MODIFICATION REQUIREMENTS TO EXISTING INTERFACE 
  

The existing electronic interface allows for a single 

computer connection to be made to control the TLF, irrespect- 

ive of any control scheme implementation. An ARGUS-500 

process control computer was used by Caffin (1972) and 

Sheena (1977). This interface restricts the use of a multi- 

microprocessor system such as the HMSU to implement a 

distributed control scheme. Hence there is a need for inter- 

face modification. There are two main areas where these 

modifications are essential. 
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1. Firstly, since we want all the three microprocessors 

of the HMSU to make simultaneous temperature measurements of 

the amas a Single ADC channel fails to satisfy this require- 

ment. Hence, as pointed out in Section 6.4, three independ- 

ent ADC channels are needed. In all 30 thermocouples, 

signals are multiplexed and the output analogue signal is 

passed onto the ADC unit (of the input/output interface) 

before its necessary amplification. Thus, for the three ADC 

channels, three analogue signals are required from three 

independent multiplexer units. This requirement is quite 

unique for this particular TLF because of the unconventional 

way in which the temperatures are measured. 

2. Secondly, since the three microprocessors of the 

HMSU compute the actual power (control signal P,) required 

for the zones they are assigned to control, no two micro- 

processors should be allowed to control a single zone via 

its DAC channel. However, although the assignment of which 

microprocessor will control which zone is done beforehand 

Cbyan, operator's choice)*a*flexibility ‘of a*control “of any 

of the eight zones by any of the three microprocessors is 

desirable. This requirement leads to a major modification 

in the existing interface. 

Figure 6.5 shows some relevant details of the existing 

computer/furnace interface. Address lines 0 to 4 are used 

for either thermocouple addressing or zone addressing. When 

measuring a temperature, a thermocouple address and strobe 

(on address line 5) is latched by 9308 8-bit latch and is 

decoded by 9311 decoder (4 line to 16 line decoder/demulti- 
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plexer). The output lines of the decoder trip the appro- 

priate reed relay for the temperature measurement. When an 

8-bit equivalent of appropriate power (control signal P,) is 

to be sent to a desired zone, that zone address and strobe 

(on address line 6) are decoded to enable the 9308 data 

lateh of the DAC. channel. 

The reed relays used in the multiplexer -unit*are bulky 

devices and introduce noise in temperature measurement. The 

size of the multiplexer unit can be considerably reduced 

when a set of four, 4051 (single 8 channel) analogue multi- 

plexers are used for multiplexing thermocouple signals. The 

proposed arrangement using these devices is shown in 

Figure’ 6.6. ‘The thermocouple: (T/C) address and the T/C 

strobe is latched by. 74116 (Dual 4 bit) latch and is decoded 

further to activate the appropriate 4051 analogue multi- 

plexer. The analogue signal is further amplified by a 

Single stage 741 amplifier and passed onto the ADC. Three 

such analogue multiplexer units are needed for the three 

microprocessors. 

Figure 6.7 shows a proposed (major) modification for 

the DAC channels of the zone controlling interface that 

would satisfy the second requirement. The Figure shows 

three data bus channels from the three microprocessors and 

the fourth data bus channel for the ARGUS 500 computer. All 

bus channels are buffered by 74LS241 octal tristate buffers. 

For every DAC channel there are four buffers, only one of 

which is enabled when a zone address appears on 74154 

decoder (4 line to 16 line) from the corresponding processor. 

The output from the 7440 (NAND buffers) also enable the 9308 
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8-bit latches at the same time so that.the buffered data is 

latched for that particular DAG channel... Hach DAC unit 

converts the latched digital data into analogue signal 

which is amplified by 741 operational amplifier and is 

responsible for controlling the level of heating inside the 

zone. 

6.6 CONCLUSIONS 

The TLF He aeribed in this chapter is a typical example 

of the kind of application selected for employing hierarch- 

ical computer control using a multi-microprocessor system 

such as the HMSU. The application clearly establishes the 

control requirements both at software level and hardware 

interface level. The implementation of the control require- 

ments for the HMSU is a subject matter for Chapters 7 and 8. 

The overall control strategy used for the HMSU to control 

the TLF requires a major modification of the existing inter- 

face. This has remained in the proposal stage mainly 

because of the lack of suitable development and testing 

environment for the HMSU and hence is a topic of further 

investigation. 
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CHAPTER 7 - SOFTWARE DEVELOPMENT FOR THE HMSU SYSTEM 
  

aol NTR ODUCT RON. 

The software for the HMSU mainly consists of independ- 

ently stored programs, residing in PROMs of individual 

processors. For the purpose of this project, these programs 

are designed such that each processor within the HMSU 

behaves as a controller for the Travelling Load Furnace 

(TLF) described in the previous chapter. The processors of 

the HMSU execute their stored programs simultaneously. This 

accounts for various interactions between (1) the processors 

of the HMSU and the TLF, (2) the master and the slave pro- 

cessors and (3) the master and the host PDP-11/10 mini- 

computer. The software development for the HMSU to resolve 

these interactions is indeed a complex task. Other features 

of this software development task include: 

1. the use of a low level programming language for the 

Fairchild F8 microprocessor. 

2. programming for real-time operation 

3. programming with due care for software dependency 

on hardware. architecture 

4. programming for a multi-level interrupt structure. 

With reference to the above features, this chapter 

describes a program for the master processor of the HMSU. 

The program design is based upon the three major interactions 

outlined above. The entry and exit points for the flow- 

charts given in this chapter include, for ready reference, 
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the line numbers of the corresponding listing given in 

Appendix C. Furthermore, some details of programming 

features unique to the F8 microprocessor, and hardware 

details of the master processor, are covered in Append- 

ices B and A respectively. 

7.2 SOFTWARE DEVELOPMENT AID 
  

In order to develop an object code program from a 

source code program, a need for a software development aid 

is of vital importance. A general program development 

procedure has been already outlined in Chapter 3. The 

program described in this chapter was initially developed 

on time-sharing, MAXI-MOP operating system for the 

ICL 1905E mainframe computer system. The F8 cross- 

assembler (Mk 3 version) made available by Davies (1977) 

was used to produce an object code program. The cross- 

assembler is a two-pass assembler and Figure 7.1 shows its 

general structure for producing TAPE and STOR subfiles from 

a source program subfile called PROG. The TAPE subfile may 

be used to produce a paper-tape version of the object code 

for loading into the target F8 microprocessor or for load- 

ing and, testing it on a-~simulator. ThesSTOR file contains 

the listing of the source subfile PROG and its correspond- 

ing object code. 

During the course. of. development. of software Lor .the 

master processor of the HMSU system, the MAXI-MOP operating 

system and the ICL 1905E mainframe computer system were 

both withdrawn from service and, for this reason, a need 

arose to transfer and create new files onto another 
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machine. The MOSTEK Z80 disk system (MDS Z80 system) was 

made available in the Electrical and Electronic Engineering 

Department and the F8 Assembler (F8XASM) available on this 

system was finally used for the program development 

described in this chapter. The program development was 

found to be more efficient than the MAXI-MOP system because 

the MDS Z80 system (1979) is a single-user system with 

facilities such as Editor, F8 assembler (F8XASM), linker 

etc. and a versatile operating system (OS). As the MDS Z80 

system description and how to use it are given in the 

reference manual, no further discussion is made here. The 

object code of the master program called HMSU-SRC 

(Hierarchical Microprocessor System Unit-SouRCe) is pro- 

duced in Intel format which is intended for loading into 

2708 PROMs. The HMSU-LST contains the F8 assembly language 

source program and the corresponding object code generation, 

an alphabetical list of labels and their cross-references 

and the number of errors occurring during the assembly. 

7.8 ASSUMPTIONS. AND DEFINITIONS 
  

Before continuing the discussion of the master program, 

it is worth mentioning various assumptions and definitions 

governing the program. The assumptions are as follows: 

1. The hexadecimal number system is used to represent 

temperatures, digital control«signal* output.,, constants etc. 

2. Arithmetic calculations are performed using two's 

complement so that H'00' to H'7F' represent the positive 

integers from 0.to 127 and ‘H'FF'"’ to. H'80" represent the 

negative integers from -1 to -128. 
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3. Fixed point arithmetic is used. 

4, The hexadecimal representation of temperatures is 

such that for every byte change, a change of 2°C in temper- 

ature is obtained. Thus, for example, H'19' represents 

50°C, H'32' represents 100°C and so on. 

The definitions used are as follows: 

1. The PROM and RAM address ranges are defined as 

shown in Figure 7.2. The memory map for the slave process- 

oss is identical to that of the master while the memory map 

of the common memory iS common to all three processors of 

the HMSU. 

2. The 64 bytes of scratchpad registers available on 

the’ CPUL(i.c...the F8:microprocessor chip),. for: each’ of..the 

processors: are defined to store transient. data... The signif- 

icance of this data carries-specific interpretation and 

this is shown in Figure 7.3. For example, the control 

loop-1 in the Figure shows the use of eight registers (0'70' 

to 0'77') for storing temperature measurements, error 

Signals, control signals etc. of the PID algorithm 

described in the previous chapter. 

3. Each of the master and slave processors provides 

14 ports, out of which six are input/output and the remain- 

der are write only. The ports assignment is defined as 

shown in, Dable 7.1. 

4. The zone addresses in term of hexadecimal numbers 

rangesfroméH' 40° to Hta7™ ter Zone”'d" to’ Zone "7" respect— 
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0000 
1K 

03FF 0400 2K PROM 

1K 
O7TFF 
0800 > 

js BYTES ( COPY OF ISMI INPUT CHANNEL ) 
083F 
0840 

hea BYTES ( AUXILARY DATA ) 
O87F 
0880 

fos BYTES (COPY OF SLAVE-1 DATA ) 1K 
O8BF > PRIVATE 
08¢co RAM 

jo BYTES (COPY OF SLAVE-2 DATA ) 
O8FF 
0900 

768 BYTES (RAM STACK AREA) 
OBFF 

ocoo 
be BYTES ( COPY OF ISMI ) 

0C3F 
0¢40 

Ma wom (SPARE ) 
— 1K 
0c80 

Jo BYTES (SLAVE-1 WRITTEN DATA) Ms ie. 
OCBF la MEMORY 

jo BYTES (SLAVE-2 WRITTEN DATA) 
OCFF 
ODO0 

768 BYTES (SPARE ) 
OFFF 

1000 
1K SPARE COMMON RAM MEMORY 

13FF 

FIGURE 7.2 : Memory map of the master processor and common memory 
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2 02 1134 | 42 SPARE 

3 | 03 GENERAL ! 35 | 43 | b REGISTERS 

4 | 04 | > PURPOSE (6 

5 | 05 REGISTERS ! 37 | 45 

G1 06 1|38 | 46 

T (oT) i139 | a7 [J 
8 | 10 '}4o | 50 | APk-1 

J. 19 eee | Lae tsi Pk a], 

wy | 16) 12 SPECIAL i|42 | 52 | AAPk Upper 
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71 et SOFTWARE 49 | 61 Pk = 1 
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19 | 23 SPACE || 5d 63 A\Pk Lower 

20 | 24 152 | 64 ek~2 

2% 125 | Bak 65 ek—1 

22 | 26 ‘154 | 66 ek 

23 ee) ! 55 | 67 Temperature 

24 | 30 | TIMER COUNTER (253) 56 | 70 APk = 1 

25 | 31 |30 sec COUNTER FOR PID |'|57 | 72 Pk - 1 

26 | 32 |10 sec COUNTER FOR ISMI}'|/58 | 72 | A\Pk Upper 

ei | 35 '|59 | 73 | ZAPk Lower 

28 | 34 160 | 74 ek~2 

29 | 35 ‘161 | 75 ek-1 
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331.37 1|63 | 77 Temperature 
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FIGURE 7.3 ; Scratchpad memory map 
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CHIP PORT SLAVE I SLAVE If 

TYPE NO Deere PROCESSOr PROCESSOR | PROCESSOR 

3850 0 Input from ADC and output Same as Same as 

CPU data to the TLF (ref. Fig. 6.4) master master 

1 Zone and T/C addresses ) ae. ea. 

plus strobes (ref. Fig. 6.4) ) 

3861 8 Bits O and 1 for I/O interface Same as Same as 
PIO (ref. Fig. 6.4) master master 

(MK90002) 
3 Used for setting up slave Not used | Not used 

addresses 

A Interrupt control port ) ) 
(write only) )Same as )Same as 

) master ) master 

B | Timer control port (write only) | ) ) 

3861 20 ISMI interface ) ) 

PIO ) ) 
(MK90003) )Not used} )Not used 

21 ISMI interface ) ) 
) ) 

22 Interrupt control port ) ) 

(write only) )Same as )Same as 

) master ) master 

23 Timer control port (write only) | ) ) 

88538 c Interrupt vector address upper Same as Same as 

SMI byte (write only) master master 

D Interrupt vector address lower se, 5 

byte (write only) 

E see dee control, port a oe aes 

(write only) 

F Timer control port (write only) -do- -—do- 

TABLE 7.1 : Ports assignment 
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ively. Similarly, the loads which travel through the TLF 

have address range from H'20' to H'3D' for Load O to 

Load 29. The motor which controls the speed of the convey- 

Or hasan address of H¥50... 

5. The input and output channels of the HMSU which 

consist of ISMI memory modules account for data collection 

from and by the PDP-11 respectively. The 64 locations of 

each of the ISMI memory modules have write and read 

addresses. The read addresses range from H'40' to H'7F' 

and the write addresses range from H'80' to H'BF'. The 

memory locations of these modules are defined to store 

particular items of data. The labels of these data items 

and their storage locations are depicted in the matrix form 

shown in Figures 7.4 and 7.5. The significance of the 

labels used in these Figures and those used in the program, 

given in Appendix C, is given at the end of this chapter. 

7.4 PROGRAM DESCRIPTION 
  

The master program is only a one-third part of the 

overall software required for the three processors of the 

HMSU. However, its development is critical because the 

master processor behaves as a communicator with the slave 

processors, via common memory, and with the PDP-11/10 mini- 

computer, via ISMI memory modules. Thus, as far as the 

slave processors are concerned, their communication with 

the master via common memory is initiated by the master 

processor using external interrupts, whereas the master 

communicates with the PDP-11 at regular intervals using 
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WRITE ADDRESS 
(ane 

BF BE BD BC BB ea), BO BB 

Cl C2 C3 LA NS MS CM TRUN 

TF 7E 7D 7¢ 7B TA 19 78 

BT B6 B5 B4 B3 Be Bl BO 

ISP1 K11 K12 K13 K14 STl 

TT 76 15 74 13 4 4 71 70 

AF AE AD AC AB AK AQ 48 

ISP2 K21 K22 K23 K24 SI2 

6F 65 6D 6C 6B 6A 69 68 

AT AG A5 AA A3 A2 Al AO 

ISP3 K31 K32 K33 K34 ST3 

67 66 65 64 63 62 61 60 

oF 9E 9D 9¢ 9B 9A es 98 

oF 5E 5D 5c 5B 5A 59 58 

97 96 95 94 ps G2 91 90 

57 56 55 54 53 52 51 50 

oF 8B 8D 8C 8B 8A 89 88 

4F 45 4D 4c 4B 4A 49 48 

87 86 85 84 83 82 81 80 

RCPS  |RFPS WFPC WFPS 

4T 46 45 44 43 42 41 40 

ae —“N pean anmess 

DATA COLLECTION BY THE 

MASTER 

FIGURE 7.4 : ISMI memory map - input channel of the HMSU 
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DATA COLLECTION BY THE PDP=11 

x READ ADDRESS 
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40 41 42 43 44 46 AT 

RFMS RFCMS WFMS WFCMS 

80 81 82 83 84 85 86 87 

48 49 4A 4B 4c 4D 4% 4F 

LAS23 POWS23 TEMPS23 |} ZONAS23] SNOS23 LAS22 POWS22 

88 89 8A 8B 8¢ 8D 8E 8F 

50 51 52 53 54 55 56 57 

TEMPS22 | ZONAS22 SNO0S22 LAS21 POWS21 TEMPS21 | ZONAS21 | SNOS21 

90 91 92 93 94 93 96 97 

58 OY 5A 5B 5C 5D 5E a 

LAS13 POWS13 | TEMPS13 | ZONAS13 | SNOS13 LAS12 POWS12 

98 99 9A 9B 9¢ gD gE oF 

60 61 62 63 64 65 66 67 

TEMPS12 | ZONAS12 SNOS12 LASL1 POWS11 TEMPS11 |} ZONASI1 | SNOS11 

AO Al A2 A3 AA AS A6 AT 
68 69 6A 6B 6C 6D 6B 6F 

LAM3 POWM3 TEMPM3 | ZONAM3 SNOM3 LAM2 POWM2 

A8 AQ AA AB AC AD AE AF 

70 TA 72 5 74 15 76 74 

TEMPM2 ZONAM2 SNOM2 LAML POWML TEMPM1 ZONAM1 SNOM1 

BO Bl B2 B3 B4 B5 B6 B7 

78 9 7A 7B 7¢ 7D TE x i 

B8 BY BA BB BC ~~ BE BF 

“Swnrme ‘ibis 

DATA ENTRY FROM THE 

MASTER 

FIGURE 7.5 : ISMI memory map - output channel of the HMSU 

148 

«
M
A
S
T
E
R
 

DA
T 
A
—
—
>
+
—
—
S
L
A
V
E
 

1 
D
A
T
A
—
—
*
—
—
 

S
L
A
V
E
 

2 
D
A
T
A
—
—
>
|



real-time software interrupts. Thus the structure of the 

master program is based on the processing of various 

interrupts. Numerous routines are described in the follow- 

ing sections which handle interrupts, communication aspects 

of the master processor, its controller actions etc. 

7.4.1 Interrupt Structure   

The hardware architecture of the F8 processor provides 

interrupt handling capability using a serial priority net- 

work known as a "daisy-chain". The details of this are 

described in Appendix B. An interrupt structure with 

assigned priorities used in the master program is shown in 

Figure 7.6. The priorities are assigned as follows: 

i... First priority; A timer available on the first 

PIO chip runs continuously and is used to count real time. 

The timer port of this chip is loaded with a maximum count 

OL 253 {60 that this PIO chip: pulls: the In, REQ: Vine low; 

every 3.953 milliseconds. Using this timer, a PID algo- 

rithm is entered after counting a time equal to the 

sampling interval, required for the measurement of temper- 

ature of the loads. The master processor also makes use of 

this timer to see if the PDP-11 has sent any new inform- 

ation for the controllers. This viewing process is per- 

formed at regular intervals, using the timer, say every 

10 seconds for example. 

2. Second priority: .An external interrupt line 

available on the second PIO chip is used to inform the 

processor the load position within the zone which is under 
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3850 CPU ang PIO ee! PIO POs 3853 SMI 

= [MK 90002] [MK 90003] 

Re A ae 

INT IRQ INT IRQ INT IRQ INT IRQ 

y 1 

FIGURE 7.6 : Interrupt structure with priority 

 



control. “A signal coming froma miecroswitch. indicataine 

the position of the load, pulls this line low to generate 

the external interrupt. A microswitch interrupt routine 

which is then entered allows the load addresses to be up- 

dated as the loads travel through from one zone of the TLF 

to the next. 

3. Third priority: This priority Levels. whaich: aliso 

uses the external interrupt line available on the SMI chip, 

is used for signalling the master processor that a partic-— 

ular slave processor has finished with the access of the 

common memory. The master processor, having received this 

interrupt, allows the next slave processor or itself to 

have access to common memory. 

The interrupts generated by the PIO and SMI chips with 

the above-mentioned priorities need to be processed one at 

a time by the CPU. However, a possible occurrence of a 

higher priority interrupt causing a lower priority program 

execution to be interrupted needs careful handling. This 

issue is further complicated by the uncertainty with which 

these multi-level interrupts occur. Although serviceing a 

large number of interrupts with one CPU having a single 

hardware stack is inefficient (Fairchild, F8 users' guide, 

1976), this problem can be overcome by using entry and exit 

protocols during interrupt serviceing. 

In order to handle these multi-level interrupts, two 

routines are implemented which use a RAM memory area. This 

area is used as a stack to store contents of the accumul- 

ator, ISAR (Indirect Scratchpad Address Register), status 
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register, and registers: DCO, DC1, KU and KL, when a 

current program execution is interrupted by a higher prior- 

ity interrupt. This storing process. 1s werformed by 7a 

routine called CALL. When the execution of the higher 

priority interrupt routine is complete, the contents of the 

accumulator, ISAR, status register. and registers: DCO, DCl, 

KU and KL are restored by using the RETN routine, so that 

the current program execution is resumed. A pointer is 

maintagned in the seratchpad .butfer’ area.of*the CRU, to 

point to the next empty stack area of the RAM memory. This 

pointer is incremented by nine locations at the end of the 

CALL routine and is decremented by nine locations at the 

end of the RETN routine. Furthermore, interrupts are 

enabled at the CPU after the CALL routine and disabled at 

the beginning of the RETN routine, and re-enabled according 

to the program execution which immediately follows. An 

example of a two-level priority interrupt structure is 

shown in Figure 7.7. The flow charts for the CALL and RETN 

routines are, shown dn Figure 7219. 

7.4.2 Intittaltsatton 

The master program 1S initialised at the beginning of 

the main program execution. The initialisation procedure 

is entered when the HMSU is switched on or by reset action. 

The following list shows the actions performed during the 

initialisation procedure: 

1. Disable all interrupts 

A. Meat ALi the aipute output ports 
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Main program 

      

  

     

  

  

lst vectored interrupt 

CALL ROUTINE: 
ASSUME SP = 
ACC, ISAR, STATUS, KU & KL 
LOADED AT SSA+SP ie SSA+0 
THEN SP=SP+5 = 0+5 

0 

ROUTINE 1 EXECUTION 

—_» 2nd vectored interrupt 

  

| 
| 
| 
| 
\ 
| 
| 
| 
| 

| 
1 
1 
1 
| 
| 
| 
I 
| 
1 
\ 
\ 
' 

1 

1 

SP = 5 
ACC, ISAR, 

      
Main program 

NOTE: 1) SSA = 
> ACC = 

ISAR. = 

   

  

> CALL ROUTINE: 

‘Now SP = 5 

ACC, ISAR, STATUS, KU & KL 
LOADED AT SSA+SP ie SSA+5 

| THEN SP=SP+5 = 5+5 = 10   
ROUTINE 2 EXECUTION 

(say without interruption) 

RETN ROUTINE: 
SP = 10 
ACC, ISAR, STATUS, KU & KL 
RESTORED FROM SSA+SP-5 
[THEN SET SP=SP-5 = 10-5 = 5   

ROUTINE 1 EXECUTION 

RETN ROUTINE: 

STATUS, KU & KL 
RESTORED FROM SSA+SP—5 
THEN SET SP=SP - 5 = 5-5 = 0 

Starting Stack Address 
Accumulator 
Indirect Scratchpad Address Register 

KU = Upper byte of K Register 
KL = Lower byte of K Register 

2) ROUTINE 2 is of higher priority 
than ROUTINE 1 

FIGURE 7.7 : Example of two-level priority interrupt structure 

153



3..Clear the eontrol ‘loop buffers. 

4. Switch off all the heaters of the TLF and switch 

off the motor of the conveyor by using the SHUT routine. 

5. Clear 256 bytes of the private RAM where the input 

channel ISMI memory contents are to be copied. 

6. Close the timer port and enable the external inter- 

rupt port of the second priority PIO chip. 

(eo. LOedeoet tl HOB “OL ethe first priority PlO witha 

253 count and enable timer interrupts at this chip. 

8. Load the SMI vector address ports H'OC' and H'OD' 

With H'OL! and H!kO' (1.e.. vector address. H'OLFO”) “and 

enable external interrupts at the SMI chip. 

9. 2 Koad [SAR@ SO. 31. and, 32 withecounts 293° 30° and: 10 

respectively. These are the timer count, sampling interval 

count of 30 seconds and ISMI sean. count. of 10 seconds. 

10. The PIDFLG (i.e. PID flag) and SNO (sample number ) 

are cleared and ISMIFG (i.e. ISMI flag) is set. 

7.4.3 The matin program 

The main program is basically a very short program in 

which the master processor loops around, checking if either 

the -PIDFIG flac or the [SMiInG flas ore the TRE. flac is’ set. 

This program is executed at the lowest priority. The 

following tree structure shows how the main program is 

related to other subroutines implemented in Appendix C. 

the. flow charts of. some specific routines.;such as INPU; 

OUTPU, COPY etc. are shown in the corresponding Figure 

numbers shown in brackets. In addition, the main program 
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PIDR 
(Fig. 7.9) 

      

Subroutines: 

iL.  DNPU (Figs.7.10) 

2aOUTRU: (Figa.7.1b) 

3. BSUBT - Binary 

subtraction 

4. BMPY - Binary 

multiplication 

5. TRAN - Register 

transfer 

6. BADD - Binary 

addition 

7. RECORD - Record 

  

Initialisation 

Subroutine SHUT 

| 
Main Program 

      

  

      

    

    
  

  

      

(rags 7.8) 

ISMI TRMIT 
(Fa. 7 seek 9513) (rioe 7215) 

Subroutines: Subroutines: 

1. CLEAR - Clear Ports 1. 

2. CORT (Figache 14) as 

is mainly interrupted by the following: 

control loop parameters 

--o1Or —.. Stop: OF: end? OF 

TLF run 

. MODLZA - Modify Load- 

zone addresses 

CLEAR - Clear Ports 

WRITE - Write into 

output channel of 

ISMI 

i, ¢ Tamer interrupt routine (hickr7. 16): This routine 

as described earlier in the priority structure is respons- 

able for counting real time and setting PIDFLG and ISMIFG 
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when the corresponding sampling intervals and ISMI scanning 

periods are completed. 

2. External interrupt caused by the microswitch 

(Fie. .7.b7):°. This routine.1s* responsible..for: updating ‘each 

load address as the loads travel through the TLF. 

3. External interrupt caused by the other slave 

processors: (figs, 7.18): =.This routine, .as,.mentioned, carlier., 

facilitates access to the common memory by the processors 

of the HMSU under the supervision of the master processor. 

In support of the above three interrupt routines, the 

interrupt structure demands the use of CALL and RETN sub- 

routines, the flow-charts of which are shown in Figure 7.19. 

7.0 CONCLUSTONVS 

The program described in this chapter applies to the 

master processor only. Similar program development is 

necessary for the Slave I and II processors except for the 

inclusion of the ISMI routines. Although the master pro- 

gram described here is produced with no assembly errors, 

the logical testing and debugging of the program on the 

actual hardware could not be performed due to lack of test- 

ing and debugging facilities. The cross-software develop- 

ment aid, such as using cross-assembler on the MAXIMOP 

system, for program development has its limitations and is 

inefficient for program development of multi-microprocessors. 

The scope for: further. development of the program is enormous; 

for example, performance evaluation, self-diagnosis of 
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hardware, failure detection and alarm condition signalling 

(i.e. fault-tolerance mechanisms) etc. requires further 

research. 

LIST OF LABELS 

FIGURE 7.4 

Ci, C2, C3 = Status of controllers 1, 2 & 3. It may he either ON or OFF. 

LA = Load address. 

NS = Number of samples. 

MS = Motor speed of the conveyor. 

CM = Control Mode. It may be UUU, VVV or WWW, 

IRUN = Integer run number for the TLF. 

ISP1, ISP2) 

ISP3 ) 

Ki, Ki2 es, eld 

K21, K22, K23, K24 = Four " " t" no. 2. 

Integer set point temperature for controllers 1, 2 & 3. 

Four controller constants for controller no, i. 

K32, 2K32,,.K33, K34.= Four i ; a u NO ~3.. 

SIi, SI2, SI3 = Sampling intervals for controller'no. 1, .2:°& 3. 

RCPS = Read count PDP set. 

RFPS = Read flag PDP set. 

WECPS = Write flag count PDP set. 

WFPS = Write flage PDP set. 

FIGURE 7.5 

RFMS = Read flage master set. 

RE'CMS = Read flage count master set. 

WEMS = Write flage master set. 

WECMS = Write flage count master set. 

SNOM1, SNOM2, SNOM3 = Sample number in control loop 1, 2 & 3 of the master. 

SNOSIM:, _SNOS#2 = SNOSI3 Sample number in control loop 1, 2 & 3 of the 

Slave I. 

i SNOS21, SNOS22, SNOS23 Sample number in control loop 1, 2 & 3 of the 

Slave II. 

ZONAM1, ZONAM2, ZONAM3 Zone address in control loop i, 2 & 3 of the 

master. 

ZONAS11, ZONAS12, ZONAS13 = Zone address in control loop 1, 2 & 3 of the 

Slave I. 
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ZONAS21, ZONAS22, ZONAS23 = Zone address in control loop 1, 2 & 3 of the 

Slave II. 

TEMPM1, TEMPM2, TEMPM3 = Temperature measurement in control loop 1, 2 & 3 

for the master. 

TEMPS11, TEMPS12, TEMPS13 = Temperature measurement in control loop 1, 2 

& 3 for the Slave I. 

TEMPS21, TEMPS22, TEMPS23 = Temperature measurement in control loop 1, 2 

& 3 for the Slave II. 

LAMI, LAM2, LAM3 = Load address in control loop 1, 2 & 3 for the master. 

TASC, @ HASL2 a LAGI S Load address in control loop 1, 2°& 3, for. the 

Slave I. 

LAS2 © GAS22 LASZ3¢— Moadeaddress ain control, loco! , 2.6 3 stor the 

Slave II. 

FIGURE 7.8 

PIDFIG = PID control algorithm flag. 

ISMIFG = ISMI memory (input channel) scan flag. 

TRE = Transmit flage for data transmission to output channel 

of the ISMI. 

PIDR = PID routine entry point. 

ISMI = ISMI routine entry point. 

TRMITT, TRMIT = Transmit routine entry point. 

FIGURE.’7 .9 

TSLA = Temporary starting load address. 

SLA = Starting load address. 

TSZONA = Temporary starting zone address, 

SZONA = Starting zone address. 

LZAC = Load-zone address counter. 

eet, aS — HneELy., pOlmcsmtor, CONtLOLL,, loop, Ilia 2) 836 

CALCU = Calculation of control signal using PID algorithm 

(entry point) . 

RECORD = Record routine that records the values of control loop 

calculations and measurements. 

MODLZA = Modify load and zone addresses. 
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FIGURE 7.18 

SPAO = Store of port address for the master. 

SPA1 = Store of port address for the Slave I. 

SPA2 = Store of port address for the Slave II. 

CMAR = Entry point for the common memory access routine. 

UUU = Entry point for control mode UUU. 

VVV = Entry point for control mode VVV. 

www = Entry point for control mode WWW. 

FIGURE 7.19 

ISAR = Indirect scratchpad address register, 

CALL = Entry point of CALL subroutine. 

DCO = 16 bit data counter register. 

bel = 16 bit data counter stack register. 

SP = Stack pointer. 

SSA = Starting stack address in RAM memory area. 

KU = Upper byte of K reguster. 

KL = Lower yboy.te of Ky register. 

FIGURE 7.15 

MTRF = Master transmit flag. 

SITRF = slave L transmit flag-< 

S2TRF = Slave II transmit flag. 

TREC = Transmit flage count. 

FIGURE 7.17 

MSCNT = Microswitch counter. 

NOTE 

It is important that the critical parts of the various programs 

(eg. Figure 7.12) are made interrupt proof. For instance, important 

flags should be tested before interrupts are enabled, 
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FIGURE 7.8 : Main program of the master processor 
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0X6 ono 
OUTPUT Pk TO ZONE 
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AT _ISAR ar: CALCULATE UPDATE INCREMENT 
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AT ISAR TKISeEk 2 Ek TO Ek-1 RECORD VALUES] | [RECORD VALUES ae +K13%Ek - OF CONTROL OF CONTROL 

LOOP-1 ee 

i CALCULATE 
CONTROL APk =K148Ek -K12¥Ek-1 MODIFY ein 

LOOP BEGINS +K 13KEk -2 MODLZA MODLZ 

AT ISAR a +K14*APk ~4 

\               

( ENDRUN ) 

FIGURE 7.9: PID Routine
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ENTER 
INPU ROUTINE 

(932) 

  

READ 
PORT 8       

  
Y 

  

OUTPUT 1 

AT PORT 8 

TO OPEN GATES       
  

— 
  

  

STORE 0 IN ANSWER 

AND OUTPUT 0 Pk 
VIA PORT 0     

    

OUT PUT 
TSZONA VIA 

PORT 1 
Y 

      

  

  
STORE CALCULATED 

Pk IN ISAR OX? 

  
    

  

READ TEMPERATURE 

AT PORT 0 AND 

SPOR 11-2IN 

ISAR OX7       

y 
CLEAR 

PORTS 1,880 

RE TURN 

(944) 

  

      

  

ENTER OUTPU 
ROUTINE (8 93) 

LOAD DELAY 
COUNT H50 

IN REG 0 
’ 

  

  

  

CLEAR 
PORT 0       

  

, dpe ee 
  

STORE CALCULATED 

Pk IN , 
ISAR OX1       

'   
SHIFT LEFT AND 

INCREMENT CALCULATED 

PK FOR =<FULL 

RESOLUTION OF HEATER 
SIGNAL         

Y   
STORE IT IN ANSWER 

AND OUTPUT VIA 
PORT 0   

FIGURE 7.10 : INPU subroutine to read in 
temperature of a load 

  

  

FIGURE 7.11 

    
DECREMENT 

REG 0       

am
. 

ry, 

CLEAR 

PORTS 0&1 

RETURN (929) 

  

      

      

| 
OUTPUT 

TSZONA VIA 
PORT 1 

  

        | 4 

: OUTPU subroutine to output power to a zone



ENTER 
ISMI ROUTINE 

147 
<   

    
READ INPUT 

ISMI 
LOCATION 40 

1E. WFEPS       

  

  

  

COPY ISMI 
INTO PRIVATE 

AND COMMON 
MEMORY   

    

LOAD SI1 
INTO ISAR 

0°31" 

     
      

      

    

    

  

      
  

    

              

  
      

LOAD 
SPAO WITH 

: SET 
PIDFLG = 1 

hs LOAD 
SPA1. WITH CLEAR 

1 | ISMIFG TO 0 

\ 

LOAD RETURN 
SPA2 WITH 

(298)             

FIGURE 7.12 : ISMI Routine 
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ENTER UUU 
(209) 

  

SET 

LZAG =2 
  

  
\ 
  

SET 

SLA=LA 
  

{   
SET 

SZONA= ZONO 

  

  

    
SET. 

PIDFLG = 1 

  

    
CLEAR 

ISMIFG TO 0       

ENTER WWW 
(222) 

    
SET 

LZACs3 
  

  1 
  

SEF 

SLA=LA+2       

  

  

eet: 
SLA = H20   

    

  

  

ae, 
SLA =H21           

  

  

SET. 

SZONA=ZON2 
      

    

  
RETURN 

(298) 

FIGURE. 7.13: 

WY     
ISMI Routine (continued) 

  

ENTER. VVV 
(251) 

  

SE. 
LZAC =3 
  

|   
SET 

SLA =LA+5       

  

Shia 
SLA =H20 
  

  

SET 
SLA = H21 
  

  

Sti. 
SLA=H22     
  

SET 
SLA=H23 
  

  

SET 
| SLA =H24     
  

  

SZONA=ZON5 
  

  
  

  

y 

  

  

    
  

  

  

   



    
   

  

ENTER: COPY. 

ROUTINE (301)    
  

DISABLE 
INTERRUPTS 

AT CPU 
  

  

Sty 

REMS 1] 
  | 
OUTPUT HOO 

AT 

      PORT 9 
  

  
  
SET DCO POINTER 

TO PRIVATE MEMORY 

ADDRESS H0800 
  | 
  

  
SET DC1 POINTER 

TO COMMON MEMORY   ADDRESS HO0CO00 
  | 

SET COUNT 64 

IN REG 0 

  

    
  

  
  

  
SET I/P ISMI START 

ADDRESS IN REG 1   
  

    

  

  

  
FIGURE 7.14 : 

READ I/P_ ISMI 

LOCATION AND STORE 

IN PM AND CM AS 

POINTED BY DCO &DC1   
  

  
  DECREMENT 

REG 1 
! 

DECREMENT 

REG 0 
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CLEAR 

RFMS FLAG 

100 
  

  
  

SET: 

RFCMS=WFCPS 

  

  
  

ENABLE 
INTERRUPTS 
AT CPU           RETURN 

(344) 

Subroutine to copy ISMI data into PM and CM



ENTER TRMIT 

ROUTIE (406) 

  

  

  

  

  

  

  

  Y 

SEs 

TRFC =TRFC+1 

COPY PM LOCATIONS 
7 H0870 TO HO87F 

TO O/P ISMI SET 
HB7 TO HAs’ WECHS 

N =TRFC 

COPY PM LOCATION CLEAR 
. HO8BO TO HOS8BF’ 

TO O/P SMI WEIS 
HA7' TO H'98' 

N 

  

    
  

    

  
  

  

    
  

    

  
  

  

  

      
  

  
    

      
  

    
  

      
    

CLEAR 

COPY PM LOCATIONS TRF 
Y HO8FO TO HO8FF iS 

TO O/P ISMI < 
H97' TO H88 

N 

(475) 

FIGURE 7.15 : TRMIT routine for data transfer from the master to 

o/p ISMI channel 
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ENTER TIMER 
INTE RRUBT) ROUTINE 

        

        

    

  

    
        

  

    

      

  

        

    

      

    

  

  

    

    

  

    

        

  

  

    

SAVE DECREMENT 
ACC—ISAR4 10 SEC 

Wiad 
ISe5 ISMI COUNT 

EXECUTE : 
CALL 

ROUTINE 

Here 

DECREMENT RELOAD 
TIMER COUNT 

ISAR 030° COUNT 

SET 

ISMIFG = 1 

RELOAD x S 
TIMER COUNT 
BY HFD’ 
IE 253 CALL 

RETN 
ROUTINE 

DECREMENT S11 
(SAMPLING INTERVAL) 

COUNT RESTORE 
AT -ISAR. 037 oe air 

4, ~ ACC 

N 
ENABLE 

INTERRUPTS 
Y AT CP 

RESET 
ST) BY SITS 

ORIGINAL RETURN 
ae (533) 

SET 

PIDFG =1             

FIGURE 7.16 : TIMER Interrupt Routine 
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ENTER MICROSW 
EXTERNAL INTERRUPT 

BIGURE 7.1%. : 

ROUTINE(537) 

    
SAVE 

ACC > 4 
W> J 
TSse5 
  

    

EXECUTE 
CALL 

ROUTINE 
  

    

ENABLE 

INTERRUPTS 

AT CPU   

    

DECREMENT 

MSCNT       

  

RESET 

MSCNT 

TO 6 
  

    

INCREMENT 

SLA       

  

  

SET 

SLA H20 i> 

    

  

    
EXECUTE 

RETN 

ROUTINE 
  

    
RESTORE 
BmlS 
J>Ww 
4—>ACC   

    

  ENABLE 

INTERRUPTS 

AT CPU 
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RETURN 

(573) 

load address update 

 



ENTER 
CMR ROUTINE 

(348 

SAVE 
ACC+>4 

Wie) 
IS a5 

    

  

    

EXECUTE 

CALL 

ROUTINE 
  

    
ENABLE 

INTERRUPTS 

AT CPU       

  

SET OUTPUT H02 

SPA2=0 AT PORT 9 
  

  

  

SET OUTPUT H0O1 

SPA1=0 AT PORT 9 
          

  

  

SET OUTPUT H00 

SPAO = 0 AT PORT 9 
  

  

          

        
  

EXECUTE 

RETN 

ROUTINE 

SET 
TRF =1 

    

  

    
  

  

COPY COMMON MEMORY RESTOR 
ee LOCATIONS 
joo W H0C80' TO HOCFF To 
4—>ACC PRIVATE MEMORY 

LOCATIONS 

RE TURN 

(40 3) 

H0880' TO HO8FF' 

FIGURE 7.18 Common memory routine 
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ENTER 
CALL ROUTINE 

(623) 

    
SAVE DCO 

IN ISAR 
40 & 44 
  

  
  

SAVE DC1 

IN ISAR 
42 &43 
  

  
  

SSA 

=SSAtSP     
  

  
  

ISAR4 ~<<SSA>> 

9 a» << SSAt te 

5 << SSA+ 22>   
  

  
  

ISARW> << SSA+3 >> 

4j><<SSAt4>> 

42+<< SSA+5>> 

43+2<< SSA+6>>   
  

  
  

KU +<<SSAt7>> 

KL »~<<SSAt8>> 
  

  
  

NEXT EMPTY STACK 

(SPs=*SP479) 

IS STORED IN ISAR3     
  

RETURN 

(662) 

FIGURE 7.19 : 

ENTER 
RETN ROUTINE 

  
  

DISABLE 

INTERRUPTS 

AT CPU 
  

  
  

ps ae 

SSA= SSA+ SP     
  

  
  

<<SSA>> —ISAR 4 

<<S SAH 

<<SSA+2>> —-5     
  

  
  

<< SSA+3>>-—ISAR 40 

<<SSA+t4>> 74) 
<< SSAt5 >> 42 

<<SSA+6>> 743   
  

  
  

<< SSA+#7>> —>KU 

A SSAC > KL 
  
  

  

  

  
  

RESTORE 

DC1 FROM ISAR 42& 43 

AND 

DCO FROM ISAR 41 & 40     
  

  \ 

RETURN 

(701) 

CALL and RETN routine 

170



CHAPTER 8 - SOFTWARE DEVELOPMENT 

FOR THE PDP-11/10 MINICOMPUTER 

Goi= INTRODUCTION 

This chapter covers the software development carried 

out on the PDP-11/10 minicomputer, which forms the 

supremal control level of the Hierarchical Microprocessor 

System Unit (HMSU), intended for controlling the Travel- 

ling Load Furnace (TLF). The processors of the HMSU are 

required to be activated by feeding them with the necess- 

ary <anput. information data (e.g. controller. constants, set 

pointe, control modecetc.).for’ controlling the TLF. This 

function is performed by the PDP-11/10 minicomputer in 

conjunction with the operator of the TLF. For this 

purpose, the PDP-11/10 is programmed to accomplish the 

following functional objectives: 

1. To communicate with the operator in a suitable 

language with which he is familiar concerning the control 

process of the TLF. 

2... To check on the validity. of the operator set 

information data. 

3. To allow the operator to change any data which is 

set cither by default: or by himself, 

4. To display the operator set information data. 

5. To convert the operator set information data in a 

suitable form in order to pass it onto the master process- 

or of the HMSU. 
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6. To display the process variables and control 

Signals in a graphical representation. 

The implementation of the above objectives is based on 

the following software development features: 

1. Use of the RT-11 operating system for the PDP-11 

/10 minicomputer system. 

2. Use of the high-level programming language, 

FORTRAN IV. 

3. Use of a DRI1I-C input-output interface which 

provides 16 output lines and 16 input lines. 

4. Use of the assembly language of the PDP-11/10, to 

write routines which handle data-flow through the DR11-C 

interface. 

With reference to the above implementation, this 

chapter describes the program called 'DCHMSU". The listing 

of this program is given in Appendix D. 

8.2 SOFTWARE DEVELOPMENT AID 
  

The software development aid provided under the 

PDP-11/10 minicomputer system consists of the RT-11 single- 

user programming and operating system with either single- 

job operation or powerful Foreground/Background (F/B) 

capabilities. The system also provides basic program 

development aids such as Editor, Assembler, Linker, 

Debugger, a librarian etc. <A: detailed description of these 

is well documented in the manuals. A general layout of the 

software development environment is shown in Figure 8.1. 
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PDP 11/10 

MINICOMPUTER 

OPERATING 
SYSTEM fRT11   

PRINTER 
  
  

          

  

GT 42 

DISPLAY 

PROCESSOR 

  

  

  
  
  

  

  
4     

TEKTRONIX 

TERMINAL 

FLOPPY 

DISK DRIVE SYSTEM 
      
    

KEYBOARD 
  

| a | jeesaness 
          

  

          

SY:0 Syl 

  

FIGURE 8.1 : Software development environment for the PDP 11/10 minicomputer 

  

 



For the purpose of this project, single-job operation 

is chosen for simplicity. A general development procedure 

for generating an executable object code module from a 

FORTRAN source program is outlined in Figure 8.2. Ifa 

modification to the FORTRAN source program: is, required, «it 

is made using the Editor and subsequent compilation and 

linking operations are performed on the modified version of 

the source program. The process of modification is repeat- 

ed until the desired objectives are achieved when running 

the final version of the object module. 

8.3 PROGRAM STRUCTURE 
  

The structure of the “DCHMSU" program is modular. 

Each module is written in the form of a subroutine. These 

subroutines implement the functional objectives outlined in 

the introduetion...’.The program execution guides the operat-— 

or to set the following information as required by the 

processors of the HMSU: 

1. The gain (k), sampling interval (1), integral 

action time (Tj), derivative action time (Td) and the filter 

time constant (Tp), which are the main parameters which 

determine the values of controller constants K1, K2, K3 and 

K4 as given by the equations 6.3.13 of Chapter 6. The 

program allows the operator to set these parameters 

independently for each of the three controllers of the HMSU. 

2. Additionally, the program asks the operator to set 

the control mode (refer to Section 6.3.1), the address of a 

load in 'zone 0', the conveyor speed, the status of a 
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  FORTRAN ire y 

, 

  

  

PROGRAM INPUT J 

SL
L 

SYSTEM 

LIBRARY 

OTHER 
OBJECT 

MODULES 

  
EDITED FORTRAN 

SOURCE PROGRAM 
EDITOR 

    

  

  
FORTRAN 

COMPILER     

FORTRAN 

COMPILATION 
+ ERRORS? 

DIGNOSTICS 

ERRORS 

N 

  

      
LINKER 

        

  

EXECUTABLE OBJECT 

MODULE READY FOR 

RUNNING THE PROGRAM 

FIGURE 8.2 : A general FORTRAN source program development procedure



controller (i.e. either ON or OFF), the number of hours the 

TLF should run or the number of samples required to measure 

and control the temperature of the loads and the set point 

temperatures for the controllers. 

Having set the above information, the program checks 

on the validity of the parameters. For example, it solves 

equations 6.3.13 and checks whether the steady state gain, 

computed from the values of K1, K2, K3 and K4 is positive. 

If it works out to be -ve, the program requests the operat- 

or to change the values of the appropriate parameters for 

that particular controller. The operator is also able to 

alter the value of any wrongly set parameter. If no 

information is set by the operator, the program assumes 

normal operating conditions for the controllers and sets 

the values of the various parameters by default determined 

at the initialisation of the DCHMSU program. 

Finally, the program works out thevalues of the para- 

meters in integers, each integer being one byte (8 bits) 

wide. This calculation is essential as these bytes, which 

represent the values of the parameters, are passed onto the 

master processors of the HMSU via the Intermediate Scratch- 

pad Memory Interface (ISMI). Noting that the storage 

locations in the ISMI can only store a byte per location, 

the program also generates the appropriate addresses of 

these locations where each parameter gets stored. In other 

words, the program prepares the data for transmission as 

requred by the ISMI memory map shown in Figure 7.4 of the 

previous chapter. 
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Since the 'DCHMSU" program is written in a high-level 

language such as FORTRAN IV, it is easier to comprehend it 

from its listing given in Appendix D. However, instead of 

presenting flowcharts for the various subroutines, the next 

section demonstrates a session run which describes the 

actions taken by an operator and their countereffects as 

produced by the program execution. Table 8.1 shows the 

description of the various subroutines developed for the 

program as a whole. 

8.8.1 Command Structure 
  

Communication between the operator and the PDP-11/10 

minicomputer, when the DCHMSU program is executed, is per- 

formed by different types of commands that are available to 

the operator. In all five commands have been developed. 

The information about these commands is depicted to the 

operator at the console when the DCHMSU program is run. 

This is.shown in. figure«3.3....When. the, operator, selects, 

say a "PAR" command, more information about the parameters 

of the controllers is printed out. Thus the effect of the 

first command is shown in Figure Set 

When a particular input command and its action is 

complete, the operator is required to press a “BREAK" key 

on the console. This brings him to the command mode and 

all the input commands available to him are displayed at 

the console. An object code module called IBREAK.OBJ is 

used during the linking procedure of all the object modules 

required by the DCHMSU program. This IBREAK.OBJ module 

accounts for the action of pressing a "BREAK" key. 
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NAME DESCRIPTION 

  

  

PROGRAM 

"DCHMSU' 

SUBROUTINE 

OP INFO 

SUBROUTINE 

CHANGE 

SUBROUTINE 

CALCU   

Under this title the following subroutines are compiled 

- 1. System library routine: "PRINT" 

- 2. Subroutine: "Q" - A question-answer subroutine 

that requires passing of two parameters: 

lst parameter - A question in quotes 

2nd parameter - An answer as integer 

- 3. Subroutine: "CONST" - Requires passing of five 

parameters: 

(a) Gain - GKX 

(ob) Sampling interval - TX 

(c)integral action time — TIX 

(d) Derivative acting time - TDX 

(e) Filter time constant - TFX 

(where x = either 1 or 2 or 3) 

- 4, Subroutine: "LIST" - This subroutine lists the 

descriptions of the parameters and requires no 

passing of any parameter. 

This subroutine prints out the operator set inform- 

ation. Makes use of the following common blocks; 

cule eBhock d. — Gl. (C2 7634 CM 

=(2) Block 3..-.GK1.,. GK2¥ GK3; .T1,“f2,, 8a, Til; Tr2, 
TI3, TDIVSTD2, TD3; TF1,,. RZ, TFS 

= 3, Blog. 4, — LA,’ NS,.MS,. Ri) aSPl',. ESh2,.1SP3 

And it uses a system library routine: "CLOSE" for 

closing output buffer for the printer. 

This subroutine allows the operator to change the 

value of any parameter described by the "LIST" sub- 

routine. It uses the following common hlocks; 

- 1. Block 1 as described above 

= 2. BLOCK 2.—,NOC1, “NOG2;. NOCS 

3. Block 3 as described above 

4, Block 4 as described above 

Makes use of EQUIVALENCE statement. 

This subroutine calculates the values of controller 

constants given by equations 6.3.13. Requires input 

parameters: GK, T, TI, TD and TF.and output parameters; 

XKI eRKZ), MSs anduxXK4 | 

(Note: This subroutine is compiled along with the 

Program DCHMSU) 

CONTINUED/,.. 
  

TABLE 8.1 : Subroutine modules for the DCHMSU program. 
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TABLE 8.1 (continued from previous page) 

  

NAME DESCRIPTIO, 

  

SUBROUTINE 

SUBIR 

SUBROUTINE 

SEND 

    

1, This is a number crunching subroutine. It uses 

common block 5 —- XK, IXK, makes use of equivalence 

statements. It converts fractional values of con- 

troller constants into binary (byte) fractions, 
their octal equivalents and integer equivalents and 

prints them out. This subroutine is exclusively 

used during development only. 

2. This subroutine calls an assembly language sub- 

routine called NUMB. This NUMB subroutine is mainly 

used for assembling the decimal equivalent of a 

binary iracttongas: ‘O's and ‘its: 

3. This subroutine also calls a system library routine 

called "CLOSE" to close the output buffer for the 

printer. 

This subroutine assembles various values of parameters 

and their corresponding addresses (required by the 

ISMI) into two integer arrays of 64 dimension (note: 

the input channel of the HMSU i.e. ISMI has 64 memory 

locations). The routine also prints out these integer 

arrays. This feature is used only during the develop- 

ment phase. 

It uses the following common blocks: 

- 1. Block 2 as described previously 

2. Billocks sa. x a 

Sy Bloek'4: i! u ¥ 

= 42 Blocks) —" " E 

5. Block 6 —' KEM, IRCPS, IRFPS,. IWCPS, LWFPS 

6 7 BLOCK /.—=3LSA,20SD, PRUN 

It also makes use of EQUIVALENCE statements. 
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The second command in Figure 8.3 displays the default 

values of the parameters as shown by its effect in 

Figure 8.7. These default values may not necessarily match 

with actual values required at run time. For example, the 

load, address im Zone, 0; may~not.be. 'O%.2 tence, a VSETY 

command is required which enables the operator to set the 

different parameters. The effect of the “SET" command is 

demonstrated in Figures 8.3 and 8.4. To check and compare 

the new values of the parameters with their default values, 

the operator makes use of "DIS" (fourth command in the run 

sequence) comnand. Thus, changes made in the parameter 

values may be-compared from Figure 8.7 (i.e. effect of 

second command) and Figure 8.8 (i.e. effect of fourth 

command). Note that the status of controller no. 2 has 

been changed to "OFF". However.,, its "Set point and default 

constants are not altered. 

In order, to: change: an: undesired value; of..a parameter, 

the operator can make use of "CHA" command. This command 

allows the atc tor ce directly specify a particular para- 

meter. When such a parameter is specified by its name, its 

current value is displayed on the console and the operator 

is asked tosspecify its new value... The operator is also 

asked if he wants to change any more parameters; a "Yes" 

answer sets him in the "CHA" command loop and a "No" answer 

brings him back into the general input command mode. The 

effect of a "CHA" command (the fifth command in the run 

sequence) is shown in Figure 8.5. 

The sixth command used by the operator in the run 

sequence is again a "DIS" command, the effect of which is 
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shown in Figure 8.9. This may again be compared with the 

effects of fourth and second "DIS" commands. 

Finally, the seventh command in the run sequence is a 

"CON'' command which continues the rest of the program. 

This command is mainly included for development purposes, 

in order to display the number-crunching process described 

in daple &.1. Ihe ¢iieect*of* this. tommand is to: point 

various computed values of controller constants (i.e. K1, 

K2, K3 and K4), the steady state gain of the controllers 

etc. ‘This éffect is shown in Figures 8.9.and: 8.10. 

624. CONCELUSTON S 

This chapter illustrates the state of the program 

developed onthe PDP-11/10 minicomputer. There is plenty of 

scope for further developments on this program. For 

example, the functional objective no. 6 mentioned in the 

introduction needs implementation, the "CON" command needs 

modification so that the communication between the HMSU and 

the PDP-11 is established via the ISMI Interfaces and the 

DR11-C interface. The program development is not complete 

for the reasons mentioned in the conclusion sections of the 

previous two chapters. It may be possible to use the 

Foreground/Background capabilities of the PDP-11 minicomputer 

so that the operator's communteation program is run as a 

foreground job and the graphic display of process variables 

and their control as a background job, with facilities for 

displaying any desired zone-temperature profile in real time 

operation. However, this requires further work. 
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» 

*RUN DCHMSU 
SOR RO OR ARO ORO OOO a kok kok kak ak 

THE FOLLOWING INPUT COMMANDS ARE AVAILABLE 

Clo: "DIS" > "PRINTS. OUT: OPERATOR SET: INFORMATION 

C2] “SET"- OPERATOR CAN SET THE PARAMETERS 

C3] “CON’- PROGRAM CONTINUES 

C4] "CHA'- OPERATOR CAN CHANGE THE PARAMETERS 

Eo] “PAR - PRINTS OUT THE LIST: OF PARAMETERS 

- PRESS RETURN KEY AFTER ANY INPUT COMMAND 

FRICKE RK KK OK 

ae Sy 

  

  

  

  

  

  

f __ PAR <—————— —— —— 2 <1st Command 
DIS ~« —"Pnd Command 

a oo oe —_ ———— 3rd Command 
a SELECT THE CONTROLLER NO - €1-E* 1 OR 2 OR 3) oe 

. | en 

N DO YOU WANT CONTROLLER-1 TO BE ON ? 
. 
SPECIFY CONTROLLER-1 SET POINT 

| 120 
SPECIFY CONTROLLER-1 CONSTANTS 
GAIN 

0-93 
SAMPLING INTERVAL ‘ 
oar. Effect of 3rd 
INTEGRAL ACTION TIME 

90-9 Command 
DERIVATIVE ACTION TIME a 

32-2 
FILTER TIME CONSTANT 

33-2 } 

DO YOU WANT CONTROLLER-2 TO BE ON ? 
N 
SELECT THE CONTROLLER NO - C(I-E- 1 OR 2 OR 3) a 
3 ey, 

DO YOU WANT CONTROLLER-3 TO BE ON ? y Ay 
SPECIFY CONTROLLER-3 SET POINT j 

202 i. V's 

FIGURE 8.3 : Session run of the DCHMSU program (Input/output 

appearing on the console) 
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SPECIFY CONTROLLER-3 CONSTANTS 
GAIN 

B.875 | 
SAMPLING INTERVAL | 

32-0 
INTEGRAL ACTION TIME | 

94-2 | 
DERIVATIVE ACTION TIME 

30-0 
FILTER TIME CONSTANT 

32 -@ c 
Wht C Wk t DE FO! N r 2 y ae 1S THE CONTROL MODE FOR CONTROLLRRS? Eredar ges 

WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-@? Command 
2 
SPECIFY THE NUMBER OF SAMPLES Continued 

12g 
SPECIFY THE MOTOR SPEER 

o 
SPECIFY THE RUN TIME FOR THE (RURNACE 
IN HOURS - CINTEGER VALUED 

2 
PRESS BREAK KEY NOW 
RK A AK A A A OR ROKR RK ROK ROR ROR ROK OR ORK ROK KK ORK K 
THE FOLLOWING INPUT COMMANDS ARE AVAILABLE | Effect of 
Cl] “DIS"- PRINTS OUT OPERATOR SET INFORMATION | pressing 
[2] "SET'- OPERATOR CAN SET THE PARAMETERS _ Break Key     ES). "CON" = -PROGRAM. CONTINUES 

C4] "CHA'- OPERATOR CAN CHANGE THE PARAMETERS 

[5] "PAR" = PRINTS OUT PAE LIST OF. PARAMETERS 

- PRESS RETURN KEY AFTER ANY INPUT COMMAND 

SRO ROOK GOI RA a Ka a a a KK KK ok kk 
DIS << ‘4th Command   

FIGURE 8.4 : Session run of the DCHMSU program (continued) 
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  CHA ~€ Sth Command — 
SPECIFY THE PARAMETER YOU WANT TO CHANGE A : 

RH 

THE CURRENT VALUE OF RH = 

SPECIFY THE NEW VALUE OF RH 

4 

ul
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FIGURE 8.5 : Session run of the DCHMSU program (continued) 
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SEO OR OOOO AIK | : 

THE FOLLOWING INPUT COMMANDS ARE AVAILABLE : 

Cl] "DIS"=- PRINTS OUT OPERATOR SET INFORMATION Effect of 
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STEADY STATE GAIN SG 1= 3-831 Partial effect 
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FIGURE 8.6 : Session run of the DCHMSU program (continued) - 
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CHAPTER 9 - DISCUSSION 
  

Gee, SINE ROD Cal LOM 

In a modular multi-microprocessor system development , 

it is desirable to develop a piece of hardware and/or soft- 

ware, which forms a small subsystem of the whole and to 

test it: for its behaviour. and performance. The’ tests 

generally reveal the correctness of the design of such a 

small subsystem and any modifications necessary to improve 

its design and performance. These individually tested sub- 

system modules, when assembled to produce a complete 

system, tend to create less problems during their 

integration phase of the development. 

This chapter is aimed specifically at this aspect of 

testing: In particular, it discusses. the testing of hard- 

ware and software modules for the HMSU and the software 

modules for the PDP-11 minicomputer. Each module under 

test is described with the following common features: 

1: ‘The object.of: testing arparticular:module. 

2. The experimental. or test arrangement, circuit 

diagram, program listing etc. 

37> The, outcome of the test. 

The following sections describe various modules under 

test with the above features. 

9.2 SIMULATION OF MICROSWITCH INTERRUPTS 
  

This simulation is carried out with the following 

objectives: 
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1. To test for a parallel data transfer between the 

two F8 processors via their bidirectional Input/Output 

Pporus. 

2. To test a sequence of F8 assembly language instruc-— 

tions that handle external interrupts. 

3. To test a sequence of F8 assembly language instruc- 

tions that handle the updating of load addresses as the 

loads travel through the Travelling Load Furnace from one 

zone to the next. A load address is changed after six 

microswitch interrupts. 

In order to achieve the above objectives, two identical 

"F8 Evaluation Kits" were employed and the simulation set-up 

using these. kits is. shown’ in Figure 9.1.:-A brief descrip- 

tion of the F8 Evaluation Kit is given in Appendix B. The 

F8 cross-assembler available on the MAXIMOP system, mention- 

ed in Chapter 7, is used to develop assembly language 

programs shown in Figures 9.2 and 9.3. The paper tape 

versions of the object code generated for these two programs 

is. loaded, into: the RAM. memory of each processor:....That is; 

PROGRAM 1 is loaded in Processor 1 and PROGRAM 2 in Pro- 

cessor 2 respectively. 

The "PROGRAM 1" shown in Figure 9.2 makes use of the 

external interrupt line available onthe SMI (Static Memory 

Interface)..chip. . Tre program initialises the interrupt 

control ports on this chip and loops: into an idle loop, 

enabling interrupts at the CPU. When an external inter- 

rupt is received from Processor 2, the program reads in a 
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“LIST STOR” Tycnuiew eRe 
FIELD TRIAL: PLEASE INFORM DR.A.C.DAVIES OF ANY ERRORS 

DATE 08/06/78 TIME 14.47.02 

MOSTEK F8 CROSS ASSEMBLER THE CITY UNIVERSITY 

LONDON» EXPERIMENTAL VERSION MK3 

ORG H*O404° 
PUNCH ON 

as TTYOUT EQU H'O35D* 
** ADVICE: REPLACE LI BY LIS 
O404 20 OF Ee ' H'OF! 
0406 53 LR [CBs6 
O407 67 LISU 4 
0408 6F : LISL 7 
0409 54 LR AsA 
O40A 1F ee INC 
O40B 56 oN 6A 
0400 75 LIs 5 
O40D BC OUTS H'*'OC' 
O4OE 20 80 LI H'so? 
0410 BD OUTS H'toD?t 
0411°71 LIS 1 
0412 BE. OUTS H'OE? 
0413 1B LOOP EI a 
O414 90 FE BR LOOP 

_ ORG H'0580' 
0580 70 es 0 ; 
0581 BE OUTS H'OE!' 
0582 73 : iS 3 
0583 B6 OUTS. 6 
0584 AO INS O° 
0585 50 LR OsA 
O586 14 SR A 
0587 24 30 al H'30° 
0589 52 LR 2yA 
O58A 28 04 AO PI CHK 
O58D ‘42 LR “Ay 2 
O58E 58 LR O BsA 
O58F 40 LR AsO 
0590 15 SL a 
0591 14 SR oe 
0592 24 30 Al H*30° 
0594 52 LR 2,4 
0595 28 04 40 “BT CHK 
0598 48 LR As8 
0599 5¢ : LR SsA 
059A 1B ee 
O59R 28 03 5D PI TTVOUT 
O59E 42 LR As2 
O59F 5¢ te SoA 
0580 1B . FI. 
O5A1 28 03 5D PI TTYOUT 
O5A44 20 20 - it Hteor 
OSA6 5C | ee LR SsA 
O547 1B EI 
0588 28 038 5D | PI Tour 
O5AB 33 DS 3 
OSAC 64°03. . oe LOAD 

OSAE 90 12 | BR STOP FIGURE 9.2 : PROGRAM-1 for 

ee Se es ae a ee icc O5B2 SC’ LR SA processor of Figure 9.1 

O5B3 1B EI a i 
O5B4 28 93 5D. : PI cS TyOuT 
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O5B7 20 OD | TT a 
05B9 5c ales Sn 
O5BA 1B “ EI 
OSBB 28 03 5D: . PI TTYOUT 
**ADVICE: REPLACE LI BY LIS 
‘OS5BE 20 oF ao H'OF® 
0500 53 | Rao) 3,8 
O5C1 70 STOP) si hs 0 
o5c2 BS’ NUTS 5 
6503 86: — P OUTS 6 
O5C4 BO ouTS Oo 
050571 - LIS 1 55 
O5C6 BE OUTS, HtOn* 
0507 29 04 13 : JMP LOOP 

ORG  H'0440' 
*CHK SUBROUTINE FOR CHECKING A TO F HEX NUMBER 

N440 08 Pe re a ae K,P 
O441 42° ' ie As2. : 
0442 23 °3Aa Xt tant 
0444 84 1C _ BZ A ; 
O446 42 LR As2 é ce 
0447 23 3B XI H'*3Bt 
0449 64 1c > BZ B 
O44B 42 LR A,2 
O440 23 3¢C XT H'3C" 
O44E 84 1C BZ Cc 
0450 42 Le As2 
0451 28 3D XI H'3p* 
04538 84 1C BZ D 
0455 42 LR As2 
0456 23 3E XI H'3E* 
0458 84 ic BZ E 
O45A 42 LR As2- 
O045B 23 3F XI H'SF? 
O45D 84 1C Blo Ee 
O45F 90 1D. BR cout 
0461 20 41 = A KI Hai 
0463 52 LR 2,8 
0464 90 18 BR COUT 
0466. 20 42. B Lr H'4e2" 
0468 52 ; LR 25A 
0469 90 13. BR COUT 
046B 20 43 ‘Ct LI H*age 

O46D 52 LR 2,8 
O46E 90 OF BR COUT 
0470 20 44. D Gi Haat. 
0472 52 LR By h : 
0473 90 09 BR ‘COUT ‘ ee 0475 20 45 E LI H'45° “| 
0477 52 LR 254 
0478 90 04 BR COUT 
.O47A 20 46 F Ly H'46" 

_ 047C Se LR 22A - 
O47D OC COUT PK . RETURN. 

END OF ASSEMBLY 
NUMBER OF ERRORS= 0 

A 0461 B 0466 C 046B CHK 0440 COUT 9047D D 90470 E 0475 F 047A LOAD O5B0 LOOP 0413 STOP 05C1 TTYOUT=035D 

TIME ELAPSED 1.05 MINUTES —° = FIGURE.9.2 (continued) | 
CHANNEL 2 Now 40 BUCKETS 
CHANNEL 7 NOW 10 BUCKETS 
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28-288+5e- LIST stue 
FIELD TRIAL: PLEASE INFORM DR As Cs DAVIES oF! ANY ERRORS | 

DATE 08/06/78 TIME 14.0061 4 
_ MOSTEK F8 CROSS ASSEMBLER THE CITY UNIVERSITY 
LON DON» EXPERIMENTAL VERSION MK3 

one #0500! 
| ' PUNCH ON. i Se 

0500 2A O7 00 C DCI H*0700! , - 
0503 76 LIS 6 : 
0504 17 . "BT | 
0505 BC . OUTS. .H* OC’ 
0506 20 3 a: Hiss) 
0508 17 | S 
0509.70 | Li 

“P50A BS ~ 8 
Be20.60, ¢ i 

E71 LIS 
OF RE DUES HIDE! 
10 18 LOOP . EI 

511 90 FE 

y
O
 3 

LOD 
mt

 

5 
e
e
 
U
O
 

LOOP “}
 

(=I
 

o
 a 

2 ORG” H'0680! 
0680 2A 07 00 DCI H'0O700° 
0683 16. LM 
0684 50 . LR 02 A 

0685 30 DS: 0 
0686 B84 08 BS LOAD: 

0 688 AO LR AsO 
. 39, BA 07 OD Des H*0700" 

OE Se 
Ip 90 20 RR SEND 
sF 76 1 LOAD Lis 6 

590. 2A 07 00. PCI H'O700" 
+ <r 

RB 

   
   

  

eG Ba 
90 04 BR MOD 
29 05° 10 NOMOD 

  
JMP:. LOOP 

iV é MO”? LM : 

50 : LR gers 

30 ps 

C 40 es LE 
D69D Poe at Cr 

O69F 84 08: RY, 
O6AlL 2A O07. O1 pel 
0684 AO as Lo 
U6A5< 27) or 

  

0686 90 07 Cee BR 
06A3 20 3F RECT Lt 

2A 07 01 DCI H*O701" 
a a. 

OG6AE 70, SEN D LIS 0 : 
QO6AF Bl ‘OUTS, % wes 50) 
O6R0-.2A 07 O01 DCI H*O701" 
O6BS. 16°" i LM . 
O6RB4 RI OUTS 1 
O6B5 71 ae at 
O6R6 BO BUTS. ~26 
OGET CB NOP 
0688 2B NOF 

-O6R9 70 Lic 0 
O6BA BO BUTS 0 : 
O6BB 90 DA BR NOMOD 

END OF ASSEMBLY 
NUMBER OF ERRORS= 0 

LOAD O68F LOOP 0510 MOD 0699 NOMOD 0696 RECT 0688 SEND Q6AE 

  

“t
h 

TIME ELAPSED 1260 MINUTES 
CHANNEL 2& NOW AO BUCKETS 
CHANNEL 7 NOW lO -BUCKETS 

i“ ; a 

FIGURE 9.3 : PROGRAM-2 for the F8 Evaluation Kit Processor 2 of Figure 9.1 
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0K 404 

toon 36 356 37 ST O37 27 37°37 66 36 86 36: 36 

ae so 3S. So 00 35-34-34 34 34' 94 34-938 33°33 

we 6 on. oe Ge 3o 92 38, 32:31 °31 S1..31 3) 21 

90 30°30 39 30 OF SF 2F OF eF OF SE OE 2b er 

eh 20 2D ep 2D:2D 2D BC aC SC ec SC SC Bk a8 

2B 2B 2B 2B 2A 2A 2A 2A 2A 2A 29 29 29 29 29 

a4 86: 26 28 88 2828 27-27 27 27 B/ A026 26 

26 26 26 26 25 25.25 25 25 25 24 24 24 24 24 

24°23 238 26. 23-23 23 22 28, e8-Be ao ae aecae 

Sf OF SFO Sr GE 3E SE SE 3B.3E oD 3D 4D Gn an 

3D 3C 3C 3C 3C 3C 3C 3B 3B 3B 3B 3B 3B 3A 3A 

3A 3A 3A 3A 39 39 39 39 39 39 38 38 38 
« 38 38 

WO Oh ot 3737 37.37.36 36" 3636 35.35 Gavac 

Os 34°44 34 34 34 34 33 35 3a 33 33°93 @2.762 

$2.80. Ga Sa, 31-31 31 31 30.3030 30 2k 2h en 

ob 2P 2h en OF 2k 2 Sk RE 2D 2) ep el) 2.2. 

eC 2C 20 @C eC @C 2B 2B 2B QB 2B 2B 2A 2A oA 

°E 404 

"ch. BA 2A 29 29.29 29 29 29/28 86:28 25 2h oe 

e7°ay 87 87: 27 827 26 26 26 26.26 26 25 25 25 | 

-25 25 24 24 24 24 BA 24 23 23°23. 2g-23-93. 20 

22 omcee a2 82 OF. OF OF SF. SF SF SE Se gGraae 

[oe Se SD 3D 6D 30 SD Sb. SC 3C.-30 SE So 201 se 

“3B 3B 3B 3B 3B 3A 3A 3A 3A 3A 3A 39 39 39 39 

39.39 

FIGURE 9.4 : Simulation output for the set-up shown in Figure 9.1 
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byte pattern on Port O and converts its lower and upper 

four bits into ASCII. characters,.: corresponding to the hexa- 

decimal numbers and prints them out onto the TTY using a 

TTYOUT routine available on the 3851 PSU (Program Storage 

Unit). chip of Processor 1.. The program execution thus 

prints a hexadecimal number corresponding to each byte 

received on Port O, per external interrupt received from 

Processor 2 . 

The PROGRAM 2, shown in Figure 9.3, also makes use of 

the external,interrupt line available on: the. SMI chip of 

Processor 2. After initialising the interrupt control 

Ports ONwinis Gain, thesprogram loops: into an Ide loop, 

enabling interrupts at the CPU. When a manually generated 

external interrupt occurs, simulating an interrupt due to 

the closure of a microswitch, the program generates a load 

address and outputs it on Port 1 and also ouputs a 

Sequence, “H.O1' followed by H'00": on Port, 0. The*output 

sequence on Port O causes an external interrupt generation 

which is linked to the external interrupt line of Pro- 

cessor 1. The output load address is changed only when 

Processor 2 receives six external interrupts. This is 

because a load is assumed to pass through a heating zone 

Of, the, FLPowith ‘six discrete positions *(Catiin, 1072). 

During. @he testing procedure; PROGRAM 2 1s initially 

loaded into Processor 2 and set into execution using the 

Execute command available on the F8 Evaluation Kit's DDT-1 

(Designers. Development: Tool-—l) program... Then the TTY is 

switched to Processor 1 and its PROGRAM 1 is loaded and set 
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into execution. Then a manually generated external inter- 

rupt.at Processor. 2 causes. Processor 1 to print the load 

address. The resulting output of the simulation set-up is 

shown in Figure 9.4. Since there are only 30 loads, it may 

be noted that the load address changes from H'30' to H'2F' 

to account for the recirculation of the loads. 

9.35 TESTING OF INTERMEDIATE SCRATCHPAD MEMORY INTERFACE 
  

The Intermediate Scratchpad Memory Interfaces (ISMI) 

used as a buffered communication medium between the HMSU 

and the PDP-11/10 minicomputer are initially tested using 

two identical F8 Evaluation Kits. The objective was to 

test the hardware of the ISMI circuit boards. The test 

arrangement is shown in Figure 9.5. In the Figure, 

Processor 1 is used as a transmitter and Processor 2 is 

used as a receiver. A teletype (TTY) is used to load and 

execute the programs loaded into the RAM memory of each 

processor. 

During the testing procedure, a program shown in 

Figure 9.8 is executed on Processor 2. This program clears 

64 RAM locations (with address from H'0500' to H'0540"') of 

Processor 2. This clearing operation is performed because 

the receiver program, Shown in Figure 9.7, when executed 

uses these locations to store data it receives from Pro- 

eessor 1. via’ the: ISMI interface.“ The TTY is then switched 

over to Processor 1 and the transmitter program shown in 

Figure 9.6 is executed. This program sends arbitrary data 

via Port 1 ‘to the ISMI. ‘The 64 locations: of the, ISMI, 

where this data is stored, are addressed via Port 0. The 
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CLEAR PoRTS 
tor 

tyt 

tat 

tht, 

RETURN TO DDT — 1. 

"Transmitter" program for Processor 1 of Rrcuce: 3925 
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CLEAR ACCUMULATOR. 

LOAD DATA COUNTER WITH 0500. 

64 COUNTS STORED IN 

REG 0. 

ISMI ADDRESS STORED IN 

REG 1. 

CLEAR PORTS 

10? 

yt 

AND '4'. 

STROBE TO OPEN 

BUFFERS OF ISMI. 

MAKE ADDRESS AVAILABLE 

AP PORTE TLS, 

INPUT DATA AND 

STORE AWAY. 

DECREMENT ADDRESS. 

DECREMENT COUNTER. 

IF NOT ZERO, RETURN TO LOOP. 

CLEAR PORTS 

tor 

he 

‘gt 

15, 

RETURN TO DDT—1. 

: "Receiver" program for Processor 2 of Figure 9.5 

64 COUNTS STORED IN 

REG 0. 

POINTER AT 0500. 

CLEAR ACCUMULATOR. 

H'00' STORED IN 1ST LOCATION 

DECREMENT COUNTER. 

IF NOT ZERO, RETURN TO LOOP. 

RETURN TO DDT-1, 

: Program to clear 64 locations of RAM of Processor 2 of



TEY:is* then switched: over to’ Processor 2 and. the,receiver 

program is executed. This program reads the 64 locations 

of the ISMI and writes them into locations from H'0500' to 

H'0540'. Since the data generated by the transmitter pro- 

gram is known, the same data should be output if the con- 

tents of* locations H!0500"-46-H"0540" are printed out using 

the DDT-1. program. All the programs (i.e. Figures 9.6,.9.7 

and 9.8) were fairly short. They were hand-assembled and 

the paper tape versions of these were produced for testing 

another identical ISMI circuit board... The test was success-— 

ful for both the ISMI circuit boards which proved the 

correctness of the same. Since the test was fairly simple, 

the results of the test are not included. 

9.4 TESTING OF PRIVATE MEMORY AND COMMON MEMORY MODULES 
  

Since the master and the slave processors of the HMSU 

are built using the F8 microprocessor chip set, any applic- 

ation software required for these processors is required to 

be embedded into PROMs. Indeed it is difficult. to test the 

hardware of such a processor without any software. The 

availability of the DDT-1 program on 3851 PSU ROM chip 

allows some testing of the hardware of the processor. For 

example, the read and write capabilities of a RAM memory may 

be tested. 

In case of the F8 microprocessor system, the CPU 

executes its first anstrietaon, which is:stored.at H‘O000° , 

after the reset action. Hence, any application program 

must begin at this address. The DDT-1 program on the 3851 

PSU ROM chip does start at H'0000'. However, this means 
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that this chip cannot be used in the final system as the 

controller program stored in PROMs should also start at 

H'0000'. This requirement makes the testing of the hard- 

ware of the processor a complex task. However, this prob- 

lem is overcome by using a PROM simulator. A test setup 

using a PROM simulator for the master processor and the 

DDT-1 program for one slave processor of the HMSU system is 

shown in Figure 9.9. The objectives of the test are as 

follows: 

i. To vest the chip select, (Gs) ‘logic. for the PROMS, 

the Private RAM memory and the Common RAM memory. 

2. Tottest the master I/O interface which controls 

the connection of external address and data buses of the 

common memory to a particular processor's internal address 

and-data “bus: 

3. To test the read/write operation of the Private 

RAM memory and the Common RAM memory modules. 

The chip select (GS) logic that selects the PROMS for 

read operation and the Private Memory and the Common Memory 

for read and write operation is shown in Figure 9.10. This 

logic is built on each processor board of the HMSU. The 

Common Memory module, which contains its chip select 

decoding logic, requires address bus, data bus, R/W signal 

and CPUREAD signal of a particular processor that requires 

the access of it. In Figure 9.10 the address bus, R/W 

Signal and the CPUREAD signal are the output signals of the 

F8 processor and hence are buffered using the 80C97 hex 
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COM 
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ST 

XDC 

DS 

BNZ 
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OUTS 
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NOP 

BR 

: Hand assembled program for the PROM simulator 
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FIGURE 9.12 : Slave processor's output for the test set-up Of Figure 9.9 
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tri-state buffers. The data bus of the F8 processor is 

bidirectional and hence is buffered using the 74LS245 octal 

bus tranceivers. The direction-control signal for the tran- 

ceivers is derived from the CPUREAD signal and the 74LS139 

decoder logic. The master processor controls the access of 

the Common Memory by a particular processor by lowering the 

enable signal to these buffers and tranceivers via its 

Input/Output interface. 

im-order, to.test the.chip: select’ logic..of the processor. , 

the following procedure is used. The PROM simulator's RAM 

memory is loaded with a small hand-assembled program shown 

in Figure 9.11. The PROM compatible plug—attthe end of a 

flat ribbon cable from the PROM simulator is placed in the 

socket of the PROM-1 position of the master processor. The 

processors of the HMSU, as shown in the arrangement of 

Figure 9.9, are powered up and manually reset. The master 

processor immediately executes its PROM simulator program. 

The test program performs the following operations in 

sequence: 

1. It writes into 128 locations of the Private Memory 

RAM with starting address: H'0800' and Common Memory RAM 

with starting address: H'0C00'. The beginning pattern 

written is H'7F' which is decremented from one location to 

the next. 

oe It reads. from the written patterns’ (128 locations) 

of the Private Memory RAM (locations H'0800* to H'087F*), 

complements each pattern and writes into the Common Memory 

RAM with starting address: H'ODOO'. 
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3. Then it reads 128 locations from the Common 

Memory RAM with starting address H'ODOO' and writes into 

the Common Memory RAM with starting address H'OEOO'. 

4 urine liv, «14. sends H'O1l" at. ite Port O<and. performs 

an idle “l6op?.: Sending H' 01" at. Pert, 9-causes the Slave. tf 

processor to have the access of the Common Memory. 

When the fourth operation of the above program is 

complete, the DDT-1 program on the 3851 PSU chip of the 

slave processor can be used to type out the contents of the 

Common Memory. The teletype output of the above test is 

shown in Figure 9.12. As expected, the Common Memory con- 

tents ‘of.locations H0€00' to. H'0C 7k. sehow: the +correct 

write operation to the Common Memory, the locations H'0ODOO’ 

to H'OD7F' show the correct read operation and the contents’ 

inversion from the Private Memory and hence the write 

operation performed in the first sequence for the Private 

Memory, and finally locations H'OEOO'.to H'OE7F' show the 

correct’ read operation from H'ODOO' to H'OD7E!, the 

inversion of the contents read and the correct write oper- 

ation to the Common Memory. The test thus proves that the 

chip select. logie, shown in Figure’: 9.10 performs its 

required function correctly. 

2.5 ADVANCED TEST FOR THE. AMSU 
  

Based on the success of the previous tests, it was 

decided that some means for testing the hardware of the 

HMSU as a whole was necessary. The design of this test is 

based on the same resources available as used for previous 
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tests. A schematic diagram with data and address paths 

between various modules of the HMSU is shown in the test 

setup of Figure 9.13. A sequence of steps in which various 

modules are involved in data transfer for this test are as 

follows: 

Step 1 

1. To begin with, a program execution in Slave 1 pro- 

cessor causes some arbitrary data to bé written into ISMI 

(Module 1). Then this processor waits for an interrupt to 

come from the master processor. 

2. When the interrupt comes from the master processor, 

the Slave 1 processor copies the Common Memory data into its 

private memory, inverts this data and writes back into the 

Common Memory in -a different memory space and signals the 

master. processor that. it has finished with its access to 

the Common Memory. 

3... Lhe. Slave: laprogram. énds* its execution, by. return— 

ing its control to the DDT-1 program. 

Step 2 

1. While the above events are taking place in Slave 1 

processor, a program in the PROM simulator for the master 

processor causes the master processor to wait until data 

has been written into ISMI (Module 1) by the Slave 1 pro- 

cessor. 

2. When the data in ISMI (Module 1) is completely 

written, the master copies this data from the ISMI,into its 

Private Memory and Common Memory and sends Slave 1 address 
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to its I/O interface so that Slave 1 processor can have 

access to Common Memory. 

3. The-master processor then waits for an interrupt 

to be received from Slave 1 processor. 

4, When this interrupt is received, the master pro- 

cessor then sends the Slave 2 address to its I/O interface 

so that the Slave 2 processor can have access to Common 

Memory, 

5. The master processor then waits for an interrupt 

to be received from the Slave 2 processor. 

6. When this interrupt is received, the master pro- 

cessor sends the master address to its I/O interface so 

that. it itself can have the access to the Common Memory. 

7. The master processor then copies the Slave 1 

written data from the Common Memory and writes it into the 

ISMI (Module 2). 

8. The master processor then performs an idle loop. 

Step 3 

1. .While the events in the first two steps are taking 

place in the master and Slave 1 processor, a program exec- 

ution in the Slave 2 processor causes it to wait for an 

interrupt to come from the master processor, 

2. When this interrupt is received, the Slave 2 pro- 

cessor copies the master written data from the Common 

Memory into its Private Memory and signals the master pro- 

cessor that it has finished with access to the Common 

Memory. 
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3. The Slave 2 processor then waits until data has 

been written into ISMI (Module 2) by the fneter processor. 

4. When the data in ISMI (Module 2) is completely 

written, the Slave 2 processor then copies this data from 

the ISMI (Module 2) into its Private Memory. 

5. The Slave 2 program ends its execution by returning 

its control to the DDT-1 program. 

The above steps explicitly define the tasks required 

to be performed by each processor, The arbitrary data 

reférred in Step 1 corresponds to 64 bytes as a block of 

data. Since all the block data movements are through ISMI 

modules, Common Memory module and the master processor, 

these are recorded by Slave 1 and Slave 2 processors 

indirectly in their respective Private Memories. The con- 

tents of these Private Memories can be output to a TTY using 

the DDT-1 program. The implementation of the tasks in the 

form of programs required for the three processors in this 

test are not given here. The reason for this was that 

another test of ISMI modules, not mentioned in this chapter, 

indicated. a hardware fault..on: one: of the:.ISMI modules. , This 

particular ISMI module showed an error on the most signific-— 

ant bit of alternate locations of its 64 memory locations. 

The investigation of this fault with limited testing 

resources caused this test to becsuspended. However, this 

test clearly shows the complex nature of hardware and soft- 

ware integration design phase as related to a multi-micro- 

processor system development. 
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9.6 ASSEMBLY LANGUAGE SUBROUTINE TESTS ON PDP-i1 
  

In this section, two assembly language subroutines, 

which are called by the high-level language program written 

in FORTRAN IV, are discussed. The assembly language sub- 

routines are developed using the MACRO assembler of the 

PDP-11 minicomputer. The object modules produced as an 

output from the MACRO assembler are linked with the object 

modules of their main FORTRAN IV programs. The subroutines 

and their main programs are as follows: 

9.6.1 Program IR and the WUMB macro subroutine 
  

The program IR reads ten real numbers from the console 

and stores them in a real array A(I). The integer part of 

the real number is removed and the fractional part of the 

number is converted into a binary fraction, that is, using 

278 where n #.1,8....Thus, for example, 0.04.is ‘represented 

as 00000001 and 0.999 is represented approximately as 

11111111. The binary point. (equivalent bt6 a decimal point) 

before the binary fraction is assumed. The NUMB subroutine 

converts the binary fraction into its corresponding integer 

value which is required to be sent to the HMSU via the ISMI 

memory modules. The objective of testing this IR program 

is thus twofold: 

1. To test the calling of the assembly language pro- 

gram such as NUMB by correctly passing the required para- 

meters from the high-level language program, such as program 

TRE anid, 
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2. To test the correctness of the NUMB macro sub- 

routine: which, ¢onvyerts a string of ‘0's. and.'1‘s of eight 

bits width into the equivalent integer number. 

The listing of the NUMB macro subroutine is shown in 

Figure 9.14. The register R5, as used in any autodecrement 

deferred mode, contains the address of an argument list 

having the format shown in Figure 9.15. The register R1 is 

used as-a>temporary register and after its initialisation, 

the argument contents are added to it and an arithmetic 

shift left operation is performed on it until all the argu- 

ments are added. Thus an integer is formed in R1 from a 

Strineeone' O'S and: "I's of ecicht bits width. . The LR. pro- 

gram listing is shown in Figure 9.16 and the corresponding 

output result of the program execution is shown in 

Figure 9.17. It may be noted that the NUMB subroutine is 

used in the DCHMSU program described in the previous chap- 

Ger. 

9.6.2. Program TRIAL and. the SUB2.macro subrouttne 
  

In the DCHMSU program, the operator set information in 

its final form is assembled by the SEND subroutine. Each 

element of the address array and the corresponding element 

of the data array needs packing into a 16 bit word which 

can be’-output to .vhe Input ISM channel. of the..HMSU, «via 

the DR11-C interface. The necessary connection arrangement 

between the DR11-C interface and the ISMI modules is shown 

in Figure 9.18. The packing process of two independently 

stored bytes *to form a “16 bit’ word. is performed by the SUB2 
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ERIGURE 9°14: 

PIGURE 9.15 

  

    

  

MACRO Assembly of the NUMB subroutine 

REGISTER 5 (R5) cay 
  

  
UNDIFINED 4+ OF ARGUMENTS 
  

ADDRESS OF ARGUMENT # 1 
  

ADDRESS OF ARGUMENT + 2 
  

' 
| 

‘ 
! 
! 

  

ADDRESS OF ARGUMENT + WI     
  

: Format of argument list used by Register 5 (R5) during 
FORTRAN subroutine linkage 
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macro subroutine. The.objective of a-test program called 

TRIAL is to test the correctness. of the SUB2 macro sub- 

routine which performs the packing of.two bytes into a 

16 bit word. The TRIAL program, the SUB2 ‘program and the 

output result of the TRIAL program is shown in Figure 9.19. 

The TRIAL program reads two sets of four integers and 

stores them into arrays K and L. The corresponding elem- 

ents of these arrays are packed side by side and the result- 

ing integer is storéd in Array N. Array K, corresponds ‘to 

the data byte and Array L corresponds to the address byte. 

Thus, when a packed element of Array N is sent out via the 

DROUT output register, the upper byte will contain the data 

and the lower byte will contain the address. The output 

result of the TRIAL program shows the correct packing 

process. 

9.7. * SIMULATION OF. DISPLAY OF PROCESS VARIABLES ON GT42 
  

DISPLAY PROCESSOR 
  

The main objective of this simulation exercise is to 

indicate to the operator. of .the TEF, the process variables 

such as set point temperature, actual temperature profile, 

level of controlled power output. to the heaters in a 

particular. zone. etc. in. a..graphical: representation. The 

program called DISPLY which performs this simulation is 

shown in Figure 9.20. The program uses a variety of sub- 

routines, described’in.thesyI-ll Grapiic.Support manual, and 

the real-time TIMR subroutine. A file containing sample 

numbers, sampling times, measured temperatures and normal- 

ised power levels for the heaters is produced and called as 
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a DATA file. Each sample from the DATA file is fed as an 

mnput to the DISPLY program and the: DISPLY program displays 

graphically the data..contained in each, sample. in real. tine. 

Thus it simulates the real-time process variable changes 

influenced by the control algorithm. The results of the 

simulation output are shown in Figure 9.21 and simulated 

test samples of a set of data are shown in the DATA file of 

Figure 9.22. The dash-dotted line in Figure 9.21 shows a 

set point temperature of 200°C, the bottom rectangular 

curve shows the level of power required and the smooth 

curve which meets the set-point line shows the variation of 

temperatures. It should be noted that the simulation pro- 

gram DISPLY is not implemented into the DCHMSU program. 

9.8 CONCLUSION 

This chapter indicates one of the transient states of 

a typical experimental environment under which the project 

was performed. This phase of experimentation was found to 

be very important in order to investigate capabilities of 

the hardware and software developed. The methods of testing 

and simulations outlined in this chapter point to areas 

where improvements and further testing is needed. For 

example, one critical area might be located in the third 

test (i.e. Section 9.4) where a failure of tristate buffers 

or 74L8245 tranceivers could create unpredictable problems 

such as a data bus contention during the memory access. 

The hardware fault found before an advanced test on the 

HMSU as a whole could be performed, needs further investig- 

ation. In such circumstances, what measures or diagnostic 
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FIGURE 9.21 : Simulation output of DISPLY program on GT42 Display 

processor 

FIGURE 9.22 : Data file showing process variables. 
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procedures or failure detection methods or devices should 

be used must be carefully considered. Furthermore, the 

actual application program testing in the integration phase 

certainly needs sophisticated tools which are available on 

the Microprocessor Development Systems (MDS). The PROM 

simulator used for the tests, allows the simulation of a 

PROM for only one processor. The need of hardware and 

software testing tools required in a multi-microprocessor 

environment may surpass the cost-effectiveness hoped to be 

achieved by a multi-microprocessor system. These are just 

a few areas where further investigations are needed. 
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CHAPTER 10. - CONCLUSIONS 
  

The research has shown that it is feasible to apply 

microprocessors for on-line parallel processing of inform- 

ation. Any application involved in using a multi-micro- 

processor system requires analysing the application so that 

the overall control problem is subdivided into smaller sub- 

problems which are suitable for parallel execution on indiv- 

idual microprocessor-based systems, and any interactions 

between these subproblems are handled by communication 

links. The organisations of such systems range from locally 

distributed to geographically distributed microprocessor and 

microcomputer systems and a variety of applications range 

from homogenous to heterogenous applications, The communic-— 

ation links range from serial links to parallel links and 

man—-machine to interprocess communications. It should be 

emphasised that a designer of such systems is required to 

balance, firstly, the distribution of hardware and software 

tor the chosen application... Secondly, the, application is 

required to be broken down into its information processing 

needs in the form of a top-down distribution of tasks and a 

bottom-up co-ordination of these tasks. Finally, since the 

hardware, software and tasks are distributed, the distrib- 

ution..Ob. data, and Jts.<£ low “uo and: trom yarious. tasks is of 

paramount importance. 

A model of a processor within a distributed computing 

system which is proposed in this thesis specifically dis- 

cusses its interfacing issues within a large-scale, real- 
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time complex system environment. It outlines the import- 

ance of application program development and its performance 

evaluation and monitoring. The four information links 

described in the model account for a variety of ways of 

data“and control: anfermation distribution amongsttthe pro- 

cessors of the distributed computing system. The usecof 

dual port memory modules as IANs and IDNs for data and 

control information distribution serve also as a buffered 

communication medium and provides new possibilities for 

communication protocols to be designed which are task- 

oriented. 

The design of the Hierarchical Multi-microprocessor 

System Unit (HMSU) combines the IAN/IDN concept developed 

in the model and the resource sharing concept in the form 

of a master-slave relationship with respect to the access 

of common memory. A modular structure of the HMSU and its 

use as a building block allow other structures such as 

hierarchical, star, ring and combinations of these to be 

configured. The hardware design of the HMSU presented in 

the thesis is particularly organised using a Fairchild/ 

Mostek F8 microprocessor chips set mainly because of local 

software development facilities, such as a F8 cross- 

assembler on the MAXIMOP system, and F8 Evaluation Kits 

were available. However, since software development 

facilities are not included or superimposed on the process- 

ors of the HMSU, the task of application program develop- 

ment, its performance evaluation, monitoring and testing 

hecomes particularly. difficult.« These; proiems are ‘very 

vivid in the thesis when the HMSU is employed to implement 
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hierarchical control of the department's Travelling Load 

Furnace (TLF). If the luxury of providing a highly inte- 

grated and fault-tolerant system is to be envisaged, for 

example one processor taking control over the other in case 

of the failure of the second, the interfacing issues of the 

controlled process by the processors of a distributed pro- 

cessing system, such as the HMSU, requires special atten- 

tion. «The ability ‘of a master processor: or either. of..the 

slave processors to control any one section of the TLF not 

only requires modifications to the existing interfaces but 

also requires software diagnostic procedures or failure 

detection mechanisms to be implemented. A design proposal 

for modifying existing interfaces of the TLF and a simple 

mechanism of control mode selection procedure have been 

described for this purpose. 

The research as a whole encompasses design of electronic 

circuits for input/output interfacing, design of F8 process- 

ors of the HMSU and the HMSU. architecture, programming of 

control. tasks for the processors of the HMSU in the F8 

assembly language, programming of man-machine communication 

with respect to the control of the Travelling Load Furnace 

in a high-level language using the PDP-11/10 minicomputer 

and testing integration aspects of hardware and software 

developed. The last phase, namely the testing for 

integration of hardware and software closes a loop of the 

overall design cycles and the outcome begins to emerge in 

the form of problems encountered during practical implement- 

ation. These problems are highlighted and discussed in the 

thesis. In particular, the need for proper development 
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tools both at software and hardware level are vital to the 

development of the project. The suitability of the F8 pro- 

cessors for the HMSU, for example, can be questioned. The 

high chip count used in the design of ISMI could be mini- 

mised by thesuse,of VLSI: technology. Although the. costs of 

CPUs and memory components are reducing the cost of putting 

these together in a multi-microprocessor system and the 

cost of writing software for such systems really brings up 

the cost-effectiveness issue, especially when the applic- 

ation involved is just one-off. These are some of the 

areas which may be in the realms of research for some time 

tOmcome. “AS@such® "1601S daifticultetvorestablash. a direct 

relationship of the work undertaken to immediate industrial 

usage. However, this research will provide a useful 

benchmark for developing multi-microprocessor systems for 

hierarchical control of industrial processes. 

FOOTNOTE: Further consideration is needed within the programs of the 

HMSU and the PDP11/10 minicomputer to ensure that critical parts are 
made interrupt proof, possibly through the implementation of Dijkstra's 

semaphore techniques ( Dijkstra, 1968 ). 
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APPENDIX A - HARDWARE DETAILS OF THE F8 MICROPROCESSOR 

The three F8 microprocessor boards built for the HMSU 

are.rdentical: “Hach: beard: ‘consists. of: the ‘following: 

1. One - 3850 CPU (Central Processing Unit) 

2. Two - 3861 PIO (Peripheral Input/Output) Chips 

(i.e. versions MK 90002 and MK 90003) 

3. One - 3851 PSU (Program Storage Unit) 

4. One - 3853 SMI (Static Memory Interface) 

5. Two - 2708 EPROM chips (i.e. 2 kilobytes of PROM 

memory ) 

Oe “Mreht = 2102 Static RAM chips (i.e. :1. kilebyte of 

static RAM memory). 

A detailed circuit diagram for the F8 microprocessor 

board is shown in Figure Al. The inclusion of 3851 PSU in 

which the DDT-1 (Designer's Development Tool 1) program 

resides, allows the testing of the F8 microprocessor circuit 

board. However, this PSU chip cannot be used when EPROM 

chips containing the HMSU control program are used. The 

reason for this is that the DDT-1 program and the HMSU 

control program both start at H'0000' address. Thus, only 

one. program can, be run at a time... Additionally, when the 

HMSU control program is to be used, the PRIORITY OUT line 

from the 3861 PIO (MK 900038 aes oh) chip is directly con- 

nected to the. PRIORITY. IN.. tine of, the. 3853 SMI Ghip. “The 

3850 CPU chip is provided with manual reset (switch S1) and 

automatic "Power ON'' reset inputs. These input lines are 

connected to EXT RESET input of the CPU through 7432 OR 
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gate. The F8 microprocessor board mainly provides six 

8-bit Input/Output ports, three external interrupt lines, 

sixteen external address lines (i.e. address bus) and eight 

bidirectional external data lines (i.e. data bus). All the 

IC chips use wire-wrap sockets which are mounted on the DIP 

vero board (No. 10-0154L). One of the F8 microprocessor 

circuit boards 1s shown in Hisure A2s hicure As) illustrates 

the two sides of ISMI circuit board and Figure A4 shows the 

HMSU on the background of the Travelling Load Furnace (TLF). 
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FIGURE A2 : The F8 microprocessor circuit board 

  

  

  

  

  

  

  
  

FIGURE A3 : The ISMI circuit boards 
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FIGURE A4 : The HMSU on the background of the TLF 

 



APPENDIX B - THE F8 PROGRAMMING FEATURES 
  

This appendix covers a brief description of the F8 

Evaluation Kit, some important programming features unique 

to the F8 microprocessor and the F8 instruction set. 

Bl THEE Gs EVA LUA TL ON Rie   

The F8 Evaluation Kit built by MOSTEK consists of mini- 

mum hardware system containing 3850 CPU, 3851 PSU, 3853 SMI 

and 1 kilobyte of static memory RAM and a Teletype inter- 

face (20 mA loop). The Designer's Development Tool 1 (DDT-1) 

program resides in the 3851 PSU which is located in the low 

order 1 kilobyte of memory space (i.e. H'0000' to H'O3FF'). 

The RAM address space range from H'0400' to H'O7FF'. All 

eight bits of Port 0, Port 1 and Port 4 are available to 

the user, providing 24 I/O lines, A selection.110 or 300 

baud Teletype rate is available from Port 5. 

The DDT-1 program serves a convenient means for evalu- 

ating the F8 and the debugging of application programs. A 

summary of the commands accepted by the DDT-1 is as follows: 

1. B - Breakpoint (software) address. 

Format: B aaaa, where aaaa is a breakpoint address. 

2. C - Copy memory arrays. 

Il Format: C ssss, ffff, dddd, where ssss start 

i address, ffff = finish address and dddd destin- 

ation address 

3. D - Dump memory onto paper tape. 

Format: D ssss, ffff, where ssss = start address 

and-fiti.= finish address, 
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4. E - Execute at specific address. 

Format: E ssss, where ssss = start address. 

>. H - Hexadecimal arithmetic eperations: 

Format: Hwa + b= result or H aaaa.t-bbbb:— ecee 

result. 

6. L- Load memory from paper tape. 

7. M - Memory content display and modify. 

Format: M aaaa, where aaaa = address of memory 

location. 

8. P - Port content display and modify. 

Format: P pp, where pp is the port address to be 

examined: or modified. 

9. T - Type memory content array. 

Format: T ssss, ffff, where ssss = start address 

and ffff = finish address of the memory block to 

be printed. 

B2 IMPORTANT PROGRAMMING FEATURES   

1. When power is turned on, all PCO (program counter 

registers) in the F8 microprocessor system are set to 0. 

Therefore, the first instruction executed is located at 

memory byte 0. Thus, the first program to be executed must 

be originated at H'0000". 

2. A subroutine linkage is associated with calling 

from: and returning to: thé, main, program. © There’ are two 

instructions used to call a subroutine into execution: 

(a) Instruction PK saves the contents of the program 

counter (PCO) in the stack register (PC1), then loads the 
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Subroutine starting address from the K register into the 

program counter. 

(b) Instruction PI saves the contents of the program 

counter in the stack register. It then loads the subroutine 

Starting address (which is in the two bytes of object 

program following the PI op code byte) into the program 

counter. 

Similarly, there are two ways to return from sub- 

routines: 

(a) Instruction POP moves the contents of the stack 

register back to PCO. 

(b) Instruction Pk may also be used to return from a sub- 

routine by having the return address in the k registers. 

et , for example, subroutines are nested two deep, the 

following steps show the call and return sequence: 

Initially., outer routine start address ie pus.in ks. <Kk> =p 

Outer Call Pk <PEO2z 7 PEL ave. PCL 

SK 2a PCO be. PCO 

Save PC1l in k in preparation for inner call: 

LR K,P SPGCL eek Gyo k 

Inner Call PI <PCO> > PCI C.> PCL 

Cor) Gata aeRO e + PCO 

Inner Return POP <PGi> =~. PCO G2, PCO 

Outer’ Return Pk <PCO> <>. PCI a. >. PGL 

4K = PCO a.* PCO 

wheme:a, b, ¢, ad and. eC ‘are 16 bit addresses. 

For: nesting to greater. depth, a stack for return 

addresses is required to be set up. 
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S,. The basic interrupt handling capacity 1s*a micro— 

programmed function of the 3850 CPU. The sequence of 

events surrounding an interrupt is as follows: 

(a) For interrupts to be processed, interrupts must be 

enabled within the 3850 CPU and at the chip receiving the 

Imterruptl request srenai 1 6.73661 0r 8551 -0r “S854 chips). 

(b) When more than one device simultaneously request to 

interrupt the 3850 CPU, priorities are determined on the 

basis of 'daisy-chaining'. The daisy-chain sequence is a 

hardware feature of an F8-microprocessor system. 

(c) When a valid interrupt request signal is detected by 

the 3850 CPU, it ceases current program execution at the 

conclusion of the instruction currently being executed. 

However, an interrupt will not be acknowledged at the con- 

clusion of the following privileged instructions: 

Pk 

PI 

POP 

JMP 

OUTS (except 0,1) 

OUT 

EI 

LR W,J 

(d) The 3850 CPU SENDS out an interrupt acknowledge signal. 

It is the way in which this signal is trapped that imple- 

ments interrupt priority, when more than one interrupt 

request’ line, is. truc,.as described..in.step Cb). 

(e) When the 3850 CPU sends out an interrupt acknowledge 

signal, it clears the interrupt enable status within the 

3850 CPU thus disabling all subsequent interrupts. 
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(f) The chip that traps the interrupt acknowledge signal 

output in step (e) responds by transmitting the contents of 

its interrupt address register as the next contents of PCO 

register. These interrupt addresses are as follows for 

different chips: 

  

  

  

INTERRUPT ADDRESSES 
CHIP 

TIMER EXTERNAL 

3854 PSU Non-programmable mask option 

3861 PIO (MK 90002) H'0340' H'03CO' 

3861 PIO (MK 90003) H'0320' H'03A0' 

3853 SMI Programmable option       
  

(zg) * The. PSU‘or. SMI: logic moves the. contents*of PCO. to PCL 

and. ‘then...loads ‘the address from stép (f). into».PCO;7 Thus, 4 

program dedicated to the acknowledged interrupt request 

line is executed. 

Bom lake HO TN Sk UCL PON ee 

The following pages describe the F8 instruction set. 
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The F8 instruction set 
(p.245-247) 
has been removed 
for copyright reasons



APPENDIX C_ - THE HMSU PROGRAM LISTING 

The following HMSU program is for the master processor 

of the HMSU: 

ADDR OBJECT FLAG ST # 

OCESSOR 
20800 

208014 
29802 

  

70804 
+0805 
20806 
>0807 
0808 
+0809 
>OBOA 
>O80R 
+O80C 
>OB0n 
+OB10 
P0811 
20812 
+0813 
70814 
>0815 
>0818 
>0B819 
>OB1A 
>OB1E 
>oBic 
>OBin 
>OB3C 
>083D 
>OB3E 

2O83F 

20040 
70041 
70042 

20043 
20044 
20045 

20046 
20047 
20050 

20840 
NTER 
2OB41 

20842 
ESS 
20843 

R SET 
20844 
20845 

20846 
70847 
70848 
2OB49 

ESS 
20844 

UNTER 

SO87F 
TER 

*OBRF 
VE1 
SOBFF 

VE2 
2O84C 
2O84F 

=0850 
2OB7E 

0001 

0002 

0003 
0004 
0005 

0006 
0007 
0008 
0009 
0010 
oo11 
0012 
0013 
0014 
0015 
0016 
0017 

0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 

0030 

0031 
0032 
0033 
0034 

0035 
0036 
0037 
0038 
0039 
0040 

0041 

0042 

0043 

0044 

0045 
0046 
0047 
0048 
0049 

0050 

0057 
0058 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0001 
SOURCE STATEMENT 

sTITLE-HMSU-AN ASSEMBLY 

C1 EQU H’0800’ 

C2 EQu H‘O8017 
C3 EQU H‘O0802¢ 
LA EQU H’O803° 
NS EQU H‘0804’ 
MS EQU H‘0805’ 
CM EQU H‘0806° 
RUNNO EQU H‘0807° 
ISFi EQU H’0808° 
Kid EQU H‘08097 
Ki2 EQu H‘O80A‘ 
Ki3 EQU H’‘O80B’ 
K14 EQU H‘O80C’ 
STi EQU H’O8on’ 
ISP2 EQU H‘0810° 
K21 EQU HoOslis 

K22 EQU H‘08127 
K23 EQU H‘0813’ 
K24 EQu H‘08147’ 

SI2 EQU H‘0815’ 
ISF3 EQU H’‘0818° 
K31 EQU H‘ 0819’ 
K32 EQU H‘O81A’ 
K33 EQU H‘O81B‘ 
K34 EQU H*7 087" 
$13 EQU H‘OSiL’ 
RCFS EQU H‘O83C’ 
RFPS EQU H’OS3n’ 

WFCFS EQU H’ OB3E ¢ 

WFFS EQU H’O83F 
ZONO EQU H’ 40’ 
ZON1 EQU H’ 41° 
ZON2 EQU H’ 42° 

ZONS EQU H‘ 43’ 
ZON4 EQU H’ 44° 
ZONS EQU H’ 45’ 

ZONG EQU H’46/ 
ZON? EQU H’47° 
MOTA EQU Bigo.04 

LZAC EQU H‘0840° 

SZONA EQu H’O841° 

TSZONA EQU H‘0842° 

RFCMS EQU H‘0843/ 

PIDFLG EQU H‘0844’ 
ISMIFG EQU H‘0845° 

MSFLG EQU H‘08467 
CMFLG EQU H‘0847’ 
SLA EQU H’0848’ 

TSLA EQU H’0849’ 

TLZAC EQU H‘ 084A‘ 

SFAO EQU H‘O87F ’ 

SFAL EQU H’ OSBF ’ 

SFPA2 EQU HOSE ES 

RFMS EQU H’O84C’ 
WCMS EQu H’OS4F’ 

WFMS EQU H‘0850’ 
WTRF EQU Hee O77. EZ 
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: DKOZHMSU SRC 

LANGUAGE PROGRAMME FOR MASTER PR 

*READ COUNTER FOP SET 
sREAD FLAG FOF SET 

+WRITE FLAG COUNTER POP 

sWRITE FLAG FDF SET 
sHEATING ZONE ADDRESSES? 

sCONVEYOR MOTOR ADDRESS 
*LOAD & ZONE ADDRESS Cou 

sSTARTING ZONE ADDRESS 

STEMP STARTING ZONE ADDR 

sREAD FLAG COUNTER MASTE 

sPIT FLAG 
sISMI FLAG 
sMICRO SWITCH FLAG 
5COMMON MEMORY FLAG 
s;STARTING LOAD ADDRESS 

s;TEMP STARTING LOAD AnnR 

sTEMF LOAD & ZONE ADD co 

sSTORED FORT AND FOR MAS 

sSTOREL FORT ADL FOR SLA 

ISTORED FORT ADD FOR SLA 

jREAD FLAG MASTER SET 
sWRITE COUNTER MASTER SE 

*WRITE FLAG MASTER SET 
*MASTER YRANSMITT FLAG



OBJECT FLAG ST # ALIR 

2 OB8BE 
SO8FE 
2OBS1 

20852 
ER 
=OA00 
20853 
20854 
20855 

Et FOWER 
20856 
20870 
20875 
2OB7A 

=0000 
0000 
‘0000 if 

AT CFU 
COOOL. 70 
‘0002 BO 
£00038). Bi 
‘0004 8 
‘0005 B89 
‘0006 BA 
‘0007 2720 
“9009 2721 
‘O0O0B 2722 
‘ooon 67 
ER 

‘OOOE 280407° 
“OO11 6S 
‘0012 280407/ 

£0045. 60 
‘0016 280407’ 
‘0019 28040E’ 
TINE 
‘001C 240800 
“OOLR. 20RE 

,00215.: 39 
(9022. a0) 
“O028- 2-17 

‘0024 30 
“0025 94FIt 
“0027-. 2O0FE 
“0029. 27235 
“O02 = 71 
2 

“0020 “2722 
COOZE.-20F) 
DEL IN 
‘0030 BE 
COOS1 = 73 
Ged 
‘0032 BA 
60033. o 7a 
OC! Hi ORF 
‘0034 BC 
‘0035 20F0 
“0087. Bi 

‘0038s AL 
SOO C9 BE: 
‘003A 63 

‘003R 68 
‘003C 20FI 
*OOSE)@350 
CO0SF e201 E 
‘0041 St 

0059 
00460 
0061 
0062 

0063 
0064 
0065 
0066 

0067 
0068 
0069 
00790 
0071 

0072 

0073 

0074 
0075 

S1TRF 
S2TRF 
TRF 

TREC 

SSA 
MSCNT 
SNO 
ANSWER 

TRUNNO 
RECOL 

RECO2 
RECO3 

9 INITIALIZATION 

AGA 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0002 
SOURCE STATEMENT 

EQU H‘OSBE’ 
EQu He OSF be 
EQU A. O852 4 
EQU He 0832" 

EQU H’O0A00’ 
EQu H’O833" 
EQU H‘0854’ 
EQU H’0855° 

EQU H‘0856' 
EQU H‘0870° 
EQU HeOsrs 
EQU H‘OB7A‘ 

ORG H‘0000’ 

nl 

CLR 
OUTS 0 

OUTS 1 
ouTSs 8 
OUTS 9 
OUTS H‘OA’ 
OUT Ho20)7 
OUT Hoel. 
OUT HZ 
LISu 7. 

FI ZERO 
LISU 6 
Ri ZERO 

LISU a 
Pa ZERO 
Ea SHUT 

DCI Gt 
ET Hk Bi 
LR OrA 
brs 9 
Su 

ns 9 
BNZ AGA 
EE Hare 
OUT HO 2a 
Lis 1 

ouT Hie 
Ey Fite ee 

ouTS H‘ OB’ 
aS) x 

OUTS H‘OA’ 
ETS i 

oUuTS HOOC? 
a Ho EO. 
OUTS H‘ On’ 

ELS d 
QuTSs HOR 
EISu 3 

Erste 0 
eT HPD 
LR IvA 

Er 30 
LR IvA 

249 

DROSHMSU «SRC 

*SLAVEL TRANSMITT FLAG 
*SLAVE2 TRANSMITT FLAG 
+ TRANSMISSION FLAG 
s TRANSMISSION FLAG COUNT 

sSTARTING STACK ADDRESS 
sMICRO SWITCH COUNTER 
sSAMPLE NUMBER STORE 
sTEMP STORE FOR CALCULAT 

sTEMP STORE FOR RUNNO 
sLOOF1 RECORD ADDRESS 

sLOOF2 RECORD ADDRESS 
sLOOF3 RECORD ADDRESS 

PROCESURE STARTS HERE. + ceca ccdeteeeres 

sFROGRAM-HMSU STARTS AT 

sDISABLE ALL INTERRUPTS 

sCLEAR 1/70 FORTS 
+NO-O 
sNO~-1 
+NO-8 
+NO-9 
3NO-A 
+NO-20 
§NO-21 
sNO-22 
sCLEAR CONTROL LOOP BUFF 

$0577 0.70" 
40°67 5-0 7607 

90° 975-0750" 

sJUMF TO SHUTDOWN SUBROU 

$CLOSE TIMER AT FIO-2 

$EXT INT ENABLED AY PIO-~ 

$253 TIMER MAX COUNT LOA 

+PORT-B OF FIO-1 
sTIMER INT ENABLED AT PI 

sSMI VECTOR ADD FORTS H’ 

sARE LOADED WITH H’0280’ 

sEXT INT ENABLED AT SMI



ADR 

°0042 

*0044 
‘0045 
£0046 
“0049 
“0044 
‘oo04t 
‘OO4E 
‘O0S1 
£0052 

‘0053 
‘0054 

‘0057 
0058 
‘OOSA 

‘O0SC 
“OOSF 
°0060 
°0062 
°0064 
“0067 
‘0068 
“OO6A 
°006C 
“OO6E 
‘OO71 
0073 

‘0076 

"0078 

‘007A 
“007C 
TOO7E 
*0080 
°0082 
‘0085 
*0088 
“OOBA 
“008C 

‘OO8E 
‘OO8F 
‘0091 
“0094 
9095 
‘0096 

“0099 
“009A 
“OO9R 
‘Ooon 
“O0OA0 
‘OOAS 
‘OOA4 
“OOAS 
‘OOAS 

‘OOAA 
“OOAD 

“OORE 

OBJECT FLAG ST # SOURCE STATEMENT 

200A 0117 

0118 
O11? 
0120 
O121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 

0130 
0131 
0132 

0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
O141 
0142 
0143 
0144 

0145 
0146 
0147 

0148 
0149 
0150 
0151 
0152 
0153 

0154 
o155 
0156 

0157 
0158 
0159 
0160 
0161 
0162 

0163 
01464 
0165 
0146 
0167 
0168 
0169 
0170 
O171 

0172 
0173 
O174 

BUY 

PID 

TRMITT 

sISMI 
ISMI 

STAY 

RULE 

SAME 
TES TL 

SEEL 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0003 

DATASET = DKOSHMSU .SRC 

Lt H’OA‘ 

LR SrA 
tis o 
nel PIDFLG 
Si 

nel SNO 
oi 

NCI ISMIFG 
LIs 1 
on 

*MAIN FROGRAM - LOWEST FRIORITY ROUTINE STARTS HERE..... 
EX 

nctI FIDFILG 
LM 

Cy 1 
BZ PID 

DCI ISMIFG 
LM 
CT 1 

BZ ISMI 
nel TRF 
LM 

CT 1 
BZ TRMITT 
BR BUY 
JMF PIDOR 
BR BUY 
JMF TRMIT 
BR BUY 

ROUTINE LOOKS FOR NEW DATA INPUT FROM PIP-11...- 
er H’ 40° 

ouT H*°20° 
IN He21* 
Gr 1 
BZ STAY 
DCI WFCFS 
PI CLEAR 

Ler H‘41/ 

OUT He20< 
IN Het? 

CM 
BZ SAME 
Ba COFY 
LIsu 3 

LISE 1 

ncrI S11 

LM 

LR SxA 
BR feohs 
JMF BUYOT 
ucrI Ci 
LM 

Cr eee 
BZ Ser. 
BR Xi 
nel SFAO 
LIS 1 
oi 
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ALI 

“OOAF 
‘OOK2 
‘OOB3 

“OORS 
‘OOB7 
“OOR? 

“OORC 
“OORD 
“OORE 
“ooci 
“o0C2 
‘00C4 
°00CE 
“O0C9 
‘o0cc 
‘oocn 
“QOOCE 
‘oon 

‘oon 
‘Oon4 
‘oons 

“Oon9 
*oonc 
‘oonn 

‘OODF 
“OOEL 
‘QOE4 
“OOES 
“QOE7 
“QOE? 
“OOEC 
‘OOED 
*QOEF 
“OGEL 
‘OOF4 
(OOR7 

‘OOFS 
COORD: 
“OOFC 

‘OOFD 
“0100 
SOL OF 
‘0102 
‘0103 
°0106 
‘0108 
21 09 
*010C 
“O1L0F 
‘0110 
COUTt 

“0114 
POLLS 
‘o1i8 

POaLS 
‘O11B 
a9 ELE 
OAL E: 

OBJECT FLAG ST # 

2A0801 
16 
2S5FF 
8403 
9006 
2A08RF 

71 
17 
2A0802 
16 
25FF 
8404 

290184’ A 
2AOSFF 

16 
2501 
8414 
2A0806 
16 

2502 
8455 
2A0806 
16 
2503 
841C 
290184' A 
2A0840 
72 

7 
2A0848 
2c 
2A0803 

2c 
2A0803 
16 
2402 
50 

0175 
0176 
0177 

0178 
O172 
0180 

0181 
0182 
0183 

0184 
0185 
0186 
0187 
0188 
0189 

0190 
0191 
0192 
0193 
0194 
0195 

0196 
0197 
0198 
0199 
0200 
o201 

0202 
0203 
0204 
0205 
0206 
0207 

0208 
0209 
0210 

O211 
O212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 

0226 
0227 
0228 
0229 
02390 
O231 
0232 

X1 

SET2 

SETS 

TEST2 

ON 

UUU 

Wu 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 

SOURCE STATEMENT DATASET = DKOSHMSU .SRC 

c2 

H’FF’ 
SET2 
x2 
SPAL 

c3 

H‘FF’ 
SET3 
BUYOUT 
SPA2 

mt 

H/FF’ 

CMAR 

CM 

Heol? 

UUuU 

neO2 
VVUV 
CM 

H‘03° 
Wu 
BUYOUT 
LZAC 

SLA 

LA 

SZONA 
ZONO 

BUYOUT 
LZAC 
iS 

SLA 

LA 

Hz O22 
OrA 
Hes 
LAO 

29! 

0004



ADIR 

10120 
“O24 

£0123 
Oto 
0126 
“OL 27 
*0128 
“O13A 
“O12 
0120 

op vals 
0130 

‘0132 

"O133 

‘0134 
“OLS7 
(OT39 

‘O13A 
OTs 
70140 
‘o141 

‘0142 

“0145 
“0146 

“0149 

“0144 

*O14C 
‘O14 
“OL4F 

LOUS4 
‘Olle 

“O154 
COTS 
*O1s7 
‘G1S9 

‘O15B 
‘O1SC 

ZO 1 oe 
“0160 
‘O161 
“0163 
70165 
0166 
LOLG7T 

°0168 

‘O16A 

£OPECE 

“O16E 
SOV70, 

“O172 

“O174 
70176 

"O176 

“OL74A 
“OL 7G 

‘O170 

“OL7E 
SOUS I 

ORJECT FLAG ST # 

0233 
0234 
0235 

0245 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 
SOURCE STATEMENT DATASET = DKO?HMSU .SRC 

LR Ard 
oh Woo 

BZ LAN 
xne 
LR Ar0 
ST, 
BR BUY 

LAQ EL Hie OF 

xnec 
St 
BR BUY1 

LAN er Hy at 
xne 
ST 

BUY1 nel SZONA 
LI ZON2 
ST 
JMF BUY 

VVUV nel LZAC 
LIs So 
ST 
nel SLA 
xnc 
nel LA 
LM 
Al nH’ OS’ 
LR OrA 

lea HSE 
BZ LAO 

LR A709 
cI HDF * 
BZ LAL 

LR A290 

CT H‘ 40° 
BZ LA2 

LR Ar9 
Ct H‘41° 
BZ LA3 
LR OVA 

cI H‘42¢ 
RZ LA4 

xre 
LR Ax0 
Sat 
BR BUY2 

LAO Er Hoe Os 
BR BUYS 

LAL er He 2d 
BR BUYS 

LA2 LI Higa es 
BR BUYS 

LAS Lt Hees < 
BR BUYS 

LA4 ter H’24’ 
BUY3 xnc 

ST 

BUY2 nel SZONA 
fer ZONS 
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AUDR OBJECT FLAG ST # 

CO Lae. 17 0291 
0184 2A0844 0292 
"OLS 73/7 % 0293 
SOLS oe) 17 0294 

‘0189 2A0845 0295 
Ons GH70: 0296 
COPB O17 0297 
SOLBES 2900532" A 0298 

0299 
ry; 

0300 
SOLO T2208 0301 
O19 2" tA 0302 
OO sce al 0303 
“0494 32721 0304 
“0196 2080 0305 

*O198 2720 0306 
‘O19A 70 0307 
POTS Bs Be 0308 
“OTGE - 2720 0309 
‘O19E 2A0C00 0310 
“0 TALS 26 O311 

‘O1A2 2A0800 0312 
“OLAS 2040 0313 
° 

LOLA 4 59 0314 
‘O1A8 207F 0315 
‘O1AA 41 0316 
‘O1AB 2720 0317 
‘O1AD 2621 0318 
SOLAR 17 0319 
“OIRO. 2C 0320 
“OLRT) 17 0321 
“OTR2. (2C 0322 

COLBS: 70 0323 
“OLB4): 2720 0324 
FOLBGS 2728 0325 
POLES. 231 0326 
“OLB? 50 0327 
‘O1BA 94EF 0328 
‘O1BC 2A083E 0329 
“OLRE 70 0330 
COLEOR 272% 0331 
‘01C2 2080 0332 
“01C4 2720 0333 
FOLGS6 70 0334 
*O1E72 2720 0335 
LOLEP 16 0336 
“OQ1CA. 2721 0337 

‘O1CC 2081 0338 
ZOLCE 2720 0339 
LOLDOO +70 0340 
*OTRL -2720 0341 
A Odiseh S272 4 0342 
“O1N5 2B 0343 
SO Lue. Ol 0344 

0345 
HER SLAVE 

0346 

>O1FO 0347 
LOTEO = 08 9348 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0006 
SOURCE STATEMENT DATASET = DRKOSHMSU .SRC 

ST 

BUYOUT [CI FIDFLG 
LIS i 
ST 

BUYOT pct ISMIFG 

Eas) 0 

St 

JMP BUY 
sCOFY SUBROUTINE COPIES ISMI INTO MASTER’S FRIVATE MEMOR 

SANIT COMMON MEMORY OF THE HMSU SYSTEM. 
COPY LR RerP 

rl 
LIS 1 
OUT hoe’ 
Ey HY’ BO. 
OUT 720° 
LIS 0 
OUTS o 

OUT H“20° 
DCI H’0OC00’ 
xXnCc 

DCI H‘O800° 
cI H’ 40° sCOUNT 64 LOADED IN REG 

LR OvA 

EL Hee7Re sREAD ADD LOADEDIN REG 1 
REPT LR Avl 

OUT HoO2O’ 
IN H’ 2)’ 
ot 
XC 
ST 

XC 

LIS 0 
OUT He 20" 
OUT Hie 105 

ns 1 
ns ° 

BNZ REPT 
DCI WFCFRS 

1S Qo 

OUT He2t? 

ES Hoso7 
OUT Ho204 

LIS ° 

OUT H* 20" 
LM 
OUT Hel’ 
Ls Hee 14 

OUT HH’ 20% 
Lis 9 
OUT H“20° 
OUT Hott 
Ed 

PK sRETURN 
+>COMMON MEMORY ROUTINE MAKES COMMON TATA AVAILABLE TO OT 

sFROCESSORS, 
ORG HLOLRGs 

CMAR LR KoF 
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MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0007 
ADDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC 

SOAR 1. 5A 0349 LR 4A 
COLES. (LE 0350 LR Joi 
‘O1F3 OA 0351 LR ArIS 
COLE As Sa 0352 LR SA 
“OLE S" = 280435". A> 203535 PL CALL 
COLES: DR 0354 Er 
COLE? <- 2h08FF 0355 nel SFA2 
COUPE 216 0356 LM 
SOTRD 2504 0357 CI 1 

COLEF -8413 0358 BZ SLV2 
‘0201 2A08BF 0359 NCI SFAL 
‘0204 16 0360 LM 

‘0205 2501 0361 cI 1. 
‘0207 8414 0362 BZ SLV1 
‘0209 2A087F 0363 DCI SFAO 

fO200 16 0364 LM 
(O2Z0D.: 2501 0365 cI 1 
‘QO20F 8413 0366 BZ SLVO 
SO21T 9021 0367 BR OuTT 
‘0213 2A08FF 0368 SLV2 NCI SPA2 
“O216 70 0369 Lis 9 
SOLU AAT 0370 ST 
CORA B27 2 0371 Lis 2 
S021 a. BS 0372 OUTS 2 

‘O21A 97024 0373 BR OUuTT 
‘O021C 2A08RF 0374 SLV1 DCI SPAL 
“OCT 3270 0375 LIS 0 
“O220. 17 0376 ST 
GO2215 °71 0377 LTS 1 
£O2 22-389. 0378 OUTS 9 

°0223 2A087F 0379 SLVO DCI SFAO 

‘0226 70 0380 LIs 0 
"C227. he O381 ST 
‘0228 &B9 0382 ouTS o 
‘0229 2A0851 0383 ncrI ERE: 
“0220. “71 0384 Lis i. 
“O22 a7 0385 ST 
‘022E 2080 0386 Et Hes oe 
“0230 S50 0387 LR OrA 
‘0231 2A0880 0388 LCI H‘0880’ 
20234, .2€ 0389 xnC 
‘0235 2A0C80 0390 ncr H‘0C80’ 
0238 16 OSI REP LM 
"0239 2C 0392 Xe 
‘023A 17 0393 ST 
AQ23E 26 0394 XBC 
fO23C 220 0395 nS 9 
‘O23D 94FA 0396 BENZ REF 
“O23k. 280460" &) 0397 0UTT Fad RETN 
0242 45 0398 LR Ar 
‘0243 OB 0399 LR ISvA 
0244 10 0400 LR WoJ 
0245 44 0401 LR Ar4 
“O246 15 0402 EL 
0247 OC 9403 PK sRETURN 

0404 sTRAIT-THIS SUBROUTINE TRANSMITS MASTER*SLAVE1 & 
0405 #SLAVE2 GENERATED DATA TO FOF-11 YIA ISMI 

0248 2042 0406 TRHIT tr H’ 42° 

204



ATI 

“O24A 
“o24C 

“O24E 
‘0250 
0252 

‘0255 
‘0257 
‘9259 

‘O258 
‘O25C 
“O25E 
0261 
“0264 
0265 
°0267 
°0269 
“O26B 

‘O26E 
‘O26F 
‘O272 

0273 
0276 
‘0277 

°0279 
‘O278 
“O27E 
“0278 
0281 
0283 
0285 
‘0287 
‘0288 
“O28A 
‘QO288 
‘O28E 

£0297 
70293 
0295 

“0296 
“0298 
i O27 7. 
°029C 
L027 F 
‘QO2Al 
‘O2A3 
“Q2A4 
“O2A6 
‘O2A7 
“O2AA 
“O2An 

°Q2B0 
"O2k3 
‘QO2B4 

fO257 
‘O288 
‘O2R9 
‘O2RA 
‘O2RR 

OBJECT FLAG 

2720 
Boot 

2501 
84FER 
2A0B4F 

2043 
2720 
Boo) 

8h 
8404 
270053" A 
280400’ 4 
a 

2721 
2082 

2720 
2A0B7E 

16 

2501 
8413 
2AOBBE 
16 
2501 

8419 
2AOBFE 
16 
2501 
841F 
9029 

2010 
50 
2087 

51 
2A087F 
280203’ A 

9OE1 
2010 
50 

20A7 
Oh 
2A0S8BF 
280203’ A 
FOR 
2010 

50 
2097 
ay 
2A0BFF 

280203’ A 
280400 A 
2A08S2 

ot 
2A0BS2 

16 
ay. 

2c 

t7 
2721 

ST # SOURCE STATEMENT 

0407 
0408 
0409 
0410 
o411 

0412 
0413 
o414 

o415 
0416 
0417 
0418 
0419 
0420 

0421 
0422 
0423 

0424 
0425 
0426 
0427 
0428 
0429 

0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
0444 

0445 
0446 
0447 
0448 
0449 
0450 
O451 
0452 
0453 
0454 
0455 
0456 

0457 
0458 
0459 

0460 
0461 
0462 
0463 
0464 

TRY 

SEND 

TRO 

TRI 

TR2 

MTR 

Suk 

NEW 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0008 
DATASET = DKOSHMSU .SRC 

e207 
Hee 

1 
TRY 
WCOMS 

H’ 43’ 
H‘20’ 
Hie 2% 

SEND 

a° 10° 
OrA 
HeB 77 
1sA 
HaOS Zee 
WRITE 
TRI 
£07 
OrA 
H‘A7’ 
1A 
H’‘OSEF’ 
WRITE 
TR2 
HAOe 

OrA 
ing a 
1vA 
HOOSFE “ 
WRITE 
CLEAR 

TREC 

TREC 

£90



ADIR 

‘O2BD 

‘O2BF 
“02C1 
“O2C4 
°02C5 
°02C7 
"0209 
‘O2CE 
°Q02CE 
°O2CF 

‘O20 

‘0203 
‘0204 
‘0205 

“O207 
‘0209 
“O2TA 
“O20C 
‘o2nn 
‘O20F 

‘O02E0 
‘O2E2 

20340 
‘0340 

°O341 
‘0342 
‘0343 

‘0344 
0345 
‘0348 
‘0349 
‘O34A 
‘O34E 
0340 
‘O34F 
“0351 
‘0352 
‘0353 
0355 
‘0357 
‘0358 
0359 
‘O35K 
‘O35r 
‘O3SF 
03690 
0363 
0364 
0365 
0368 
‘0369 
“O36A 
°036C 
‘O36L 

MOSTEK 
OBJECT FLAG ST # SOURCE STATEMENT 

2083 0465 ET Hoa. 
2720 “0466 OUT H220% 
280400 A 0467 PBI CLEAR 
70 0468 LIS 0 
2721 0469 ouT He2t7 
2082 0470 LY HH’ 827 
2720 0471 ouT e204 
2A08S51 0472 net TRF 
70 0473 LIs o 
17 0474 ST 

290053’ A 0475 JMP BUY 
0476 
0477 sISMI WHICH IS USED BY 

08 0478 WRITE LR KoF 
79 0479 Wi LIs 9 
2720 0480 ouT H‘20° 

2721 0481 OUT He2a © 
16 0482 LM 
2721 0483 OUT He2ts 
41 0484 LR Ast 
2720 0485 ouT Hy20¢ 
30 0486 nS 0 
9AFS 0487 BNZ Wi 
oc 0488 PK 

0489 
0490 

0491 ORG H’0340 
os 0492 LR KoP 

34 0493 LR 4A 

TE 0494 LR Jo 
OA 0495 LR AvIS 

55 0496 LR oA 
280435’ A 0497 PI CALL 
63 0498 LISU 3 
68 0499 LISL 9 
4c 0500 LR AsS 
24FF OS01 Al HER’ 
9427 0502 BNZ EXE 
20Fr 0503 ex Aan 
on 0504 LR Ivf 

4c 0505 LR ArS 
24FF 0506 al al Tale 
8409 0507 BZ SE. 

6A 0508 XP LISL 2 
4c 0509 LR Ass 
24FF 0510 Al Hae Rs 
8410 OS11 BZ SETI 
9017 0512 BR EXT: 
69 OS13 (SETP List i 
2A08on 0514 ncI STi 
16 0515 LM 
sc OS16 LR SyA 
2A0844 0517 ncl ELOELG 
7s 0518 LIS 1 
17 0519 ST 

SOEC 0520 BR XF 
6A Oaz1 SELL Let 2 
200A 0522 Ee H’OA’ 
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3870/F8 CROSS ASSEMBLER PAGE 0009 

DATASET = DKOSHMSU .SRC 

+WRITE-SUBROUTINE COPIES FM DATA INTO 

POP-11 FOR DISPLAY 

RETURN 
#TIMER INTERRUPT ROUTINE STARTS HEREsescesrerseeorere 

9TOP FRIORITY ROUTINE - PIO-1-90002 - VECT ADD H’0340' 
’



ADDR 

‘O36F 
‘0370 
‘0373 
“0374 
‘0375 
‘0378 

‘0379 
‘O37A 
‘O378 

“037C 
“O37D 

>O3A0 
“O3A0 
“OSA1 
“O3A2 
‘03A3 

“O3A4 
“O3AS 
‘O3A8 

“OSAP 
“O3AC 
“O3AN 

“O3BO0 
‘OSB1i 
‘O3R3 
‘O3B4 
‘O3BS 
“OSB7 
“O3R9 
‘OSBC 
‘O3BR 
“OSBE 
‘O3C1 
°03C2 

‘03C3 
“03C6 
‘0307 

“O3C9 
“O3CE 
7O3Cn 
“O3CF 
‘O3n2 
‘O3D3 
‘O36 
‘0307 
‘O308 

‘OSn9 
‘O3DA 
‘O3DK 

70400 
“0400 
‘0401 
‘0402 
°0404 
‘0406 

OBJECT FLAG ST # 

A 

0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0531 

0532 
0533 
0534 
0535 
0536 
0537 

0538 
0539 
9540 

0541 
0542 
0543 

0544 
03545 
0546 

0547 
0548 
0549 
0550 
O351 
0552 
0553 
0554 
OSS5 

0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
0548 
0569 
0570 
0371 
0572 
0373 

0574 
0575 
0576 

0377 
0378 
0379 
03580 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0010 

SOURCE STATEMENT DATASET = DKO?HMSU «SRC 

LR SxA 
nCc.I ISMIFG 

ELS i 

oy 
EXLiy PI RETN 

LR Ars 
LR ISvA 

LR Wed 
LR Axr4 

Et 
PRK +RETURN 

SEXTERNAL MICROSWITCH INTERRUFT ROUTINE STARTS HERE+ +++ 

sFIO-2-VECT ALD H’O3A0’ 
ORG H‘O3A0’ 
LR KeP 

LR 49A 
LR JoW 
LR AvIS 

LR SA 
PI CALL 
EI 
DCI MSCNT 
xne 
nel MSCNT 

LM 
Al HER 
xXuCc 

ol 
BZ SETS 
BR QUIT 

SELo DCI MSCNT 
ES 6 
ST 
HG SLA 
LM 
INC 
ner SLA 
ST 
CI Hie SER 

BZ NVAL 
BR QUIT 

NVAL LI H’20’ 
ner SLA 

oT 
Fi RETN 

LR Ars 

LR ISeA 
LR We J 

LR Ar4 

QUIT Et 

PRK sRETURN 

;CLEAR-SUBROUTINE CLEARS 1/0 FORTS 20 &21 

ORG H’0400% 

CLEAR LR KoP 

ees 0 

OUT His 207 
ouT Heet? 
PR sRETURN 

for



ALLR 

“0407 

“0408 
“0409 
‘OAOA 
‘O40B 
‘o40n 

‘O40E 
“O40F 

“O411 
‘0412 
0413 
“O414 
‘0415 
‘0416 
‘0417 
“O419 
‘O41B 
'O41C 
‘O410 
“O41E 
‘O41F 
*0420 
“90422 

0423 

‘0424 
°0425 

0426 
0427 
°0428 

‘042A 
‘0428 
°042C 
‘0420 
°042F 
“0430 

0431 
°0432 
‘0434 

“0435 
“0436 
“0437 
“0438 
"0439 
“O4ZA 
“O43B 
“O43C 
“O43n 
“O43E 
“OA3F 
“0440 
“0441 
“0442 
“0445 
“0446 

OBJECT FLAG ST # 

64 
68 
OE 
02 
ot 
03 
ot 
2C 
OE 
02 
on 
o3 
3c 
2A0A00 

43 
BE 

ose 
- 0582 

0583 
0584 
o38s 
0586 
0587 
0588 
OS89 

0590 
O591 
OS92 
0593 
0594 

OS9S 
0596 
0597 

0598 
0599 
0600 

0601 
0602 
0603 
0604 

0605 
0606 

9607 

0608 
0609 
0610 
0611 
0612 

0613 
0614 
0615 
0616 
0617 
0618 
0619 
0620 
0621 
0622 
0623 
0624 
9625 
0626 
0627 
0628 

0629 
0630 
0631 
0632 
0633 
0634 
0635 
0636 

0637 
0638 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0011 

SOURCE STATEMENT DATASET = DKO?HMSU «SRC 

+ZERO SUBROUTINE CLEARS THE CONTROL LOOF BUFFERS 

ZERO 

EURT 

LR 

LISL 
LIs 
LR 
BR7 
FR 

KyP 

7 
0 
DeAé 
LUFL 

¢SHUT SUBROUTINE STOFS THE CONVEYOR AND 
sSWITCHES OFF ALL THE HEATERS OF THE FURNACE 

SHUT 

WAIT 

CLOSE 

WAIT 

CALL 

LR KoF 
LI MH? S30” 

LR OrA 
LTS 0 
OUTS 9° 
LR Ard 
OUTS 1 
nS Qo 

BNZ WAITI 
LI H‘30’ 
LR OrA 

Lio 8 
LR 1sA 
LR Ar0 

OUTS 1 

Let H‘ 47° 
LR 292A 

Lis ° 

OUTS 0 
LR Ar2 
CUTS 1 
nS 0 
BENZ WAIT 

£38 0 
OUTS 1 
OUTS 9 
vat H‘30’ 
LR OvA 

ns 2 
ns { 
BNZ CLOSE 
PR sRETURN 

sCALL SUBROUTINE STORES WORKING REGISTORS IN RAM STACK 
LIsu 4 
Lisl Qo 
LR QTC 
LR A»QU 
LR IvA 

LR Ar Qe 
LR IvA 
xnCc 
LR Qc 
LR Ar QU 
LR IvA 

LR Av Qab 
LR SA 
ner SSA 

LR Ars 
AnC 
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ADDR 

“0447 
‘0448 
“0449 
“044A 

‘O44E 
“O044C 
“0440 

“O44E 
‘O44F 
°Q450 

‘0451 
‘0452 
‘0453 
“0454 
“0455 
°0456 
*0457 
‘0458 
‘0459 
‘O45A 
“O45B 
‘045C 
‘O4S5E 
‘O4ASF 

STACK 
“0460 
70461 
“O464 
‘0465 
“0467 
“0468 
“0469 
‘046A 
“O46B 
°046C 
‘0460 
“O4GE 
“O46F 
‘0470 

“0471 
0472 
‘0473 
“0474 
‘0475 
“0476 
‘0477 
“0478 
‘0479 
“O47A 
“O47B 
“047C 
‘0470 
“OA7E 
“O47F 

“0480 
“O481 
“0482 
‘0483 

ORJECT FLAG ST # SOURCE STATEMENT 

0639 
0640 

“0641 
0642 

0643 
0644 
0645 

0646 
0647 
0648 

9649 
0650 
0651 

0652 
0653 
0654 

0655 
0656 
0657 

04658 
0659 
0660 

0661 
0662 
0663 

0664 
0665 
0666 
0667 
0668 
0669 
0670 
0671 

0672 
0673 
0674 
0675 
0676 
0677 

0678 
0679 
0680 
0681 
0682 
0683 
0684 
0685 
0686 
0687 
0688 
9689 

0690 
Oé691 
0692 
0693 
0694 
0695 
0696 

RETN 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0012 
DATASET = DKOSHMSU «SRC 

LR Ax4 

St. 
LR Ar? 
ST 
LR Avs 
ST 
LISU 4 

LIS 0 
LR Ayl 
ST 
LR AvI 
ST 
LR Arr 

ST 
LR Ars 
ST 
LR AryKU 
Sk 
LR ArKL 

ST 
LR Ar3 
Al BOP! 
LR 3rA 
BOG 

sRETN SUBROUTINE RETURNS THE WORKING REGISTERS FROM RAM 

nt 
ncl SSA 
LR Ass 
Al HOR? * 
LR 3A 
ADC 
LM 
LR 4A 

LM 
LR 999A 

LM 
LR SrA 
LISU 4 
Ci¢ge 9 

LM 
LR IvA 
LM 
LR IvA 
LM 
LR IvA 

LM 
LR SrA 
LM 
LR KUsA 
LM 
LR KL+A 
LR AsT 
LR QLrA 
LR Ay 
LR QUrA 
LR nc» 
Xn 
LR Art 

259



ALDR 

‘0484 
‘0485 

“0486 
‘0487 
“0488 

“0489 
“048A 
8 
“o4sn 
“Q4B8E 
“O49l 
“0492 
“0493 
“0494 
S 
"0497 
“0498 
“O49R 
“O49C 
“0490 
“OA9E 
“O4A1 
“O4A2 
“O4A4 
“O4A6 
“0409 
“O4AA 
“O4AC 
“O4AE 
“OAAF 
“0480 
“O4R2 
“O4B3 
“O4R4 
“O4B6 
“O4B7 
“O4R8 
‘O4BE 
“O4BC 
‘O4BL 
“04C0 
“O4C3 
“044 
“O4C5 
“0406 
“O4C7 
“048 
“O4C9 
TURE 
“OACTA 
“o4cn 
“O4CE 
“O4CF 
“O4TI0 
“O4ti 
“o4n4 
“O45 
“O4L6 
“O4ng 
“OATIA 

OBJECT FLAG 

07 
4E 

06 
OF 
1c 

1A 
2A0849 

2c 
200848 
16 
2c 
7 

2A0842 

BoOGL 9. sR 
6E 
46 
sc 
a2 
2A0809 

16 
si 
28063A’ A 

46 
SA 

ST # 

0697 
0698 

0699 
“0700 
0701 
0702 
0703 
0704 

0705 
0706 
0707 
0708 
0709 

0710 

O711 

O7.12 
0713 
0714 

O715 
0716 
O7 47, 

0718 

9719 
0720 

0721 
0722 
0723 

0724 
0725 
0726 

0727 
0728 
0729 
0730 
0731 
0732 
0733 
0734 
0735 
0736 
0737 
0738 

0739 
0740 
O741 

0742 
0743 

0744 
0745 
0746 
974? 
0748 
0749 

0759 
O751 
07352 

0753 
0754 

sFID - ROUTINE STARTS 

PIDR 

Loe 

L3 

CALCU 

LR 
LR 
LR 
LR 
POF 

nr 
nel 

xc 
DCI 

LM 
xnec 
ST 

ner 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0013 
SOURCE STATEMENT 

QL +A 
Art 

QU:A 
ncra 

TSLA 

SLA 

TSZONA 

SZONA 

LZAC 

bi
 

rc
 

N
 

D>
 

2
 

bh 

ALCU 

ALCU 

N
U
 

O
N
G
&
 
O
N
N
 

T
h
o
 

+
 

wo
 

rc
 

D>
 

INPU 
ISP1 

10%A 

119A 

OrA 

107A 

260 

DATASET = DKOSHMSU .SRC 

HERE s occ cicee 

sTETERMINES STARTING LOAD ADDRES 

sDETERMINES STARTING ZONE ADDRES 

#REG 11 CONTAINS ZERO 
sREG 1 CONTAINS ZERO 

sREG O CONTAINS MEASURED TEMPERA 

+STORE AWAYERROR EK 
sLOAD EK IN REG 2 
¢K1i1 IS LOADED IN REG 1 

dKILXER



ALDR 

‘O40R 70 
‘o4nc SE 
‘o4nn 60 
‘O4DE 4C 

‘O4DF 52 
“04E0 2A080A 
‘O4E3 16 

‘O4E4 Si 
‘O4ES 280463A’ 
‘O4E8B 280695° 

‘O4ER 2806197 
HL. 
‘O4EE 4C 
‘O4EF - 4C 
‘O4FO S2 
‘O4Fi1 2A080B 
‘O4F4 16 
‘O4FS Sil 
‘O4F& 28063A’% 
“O4F9 280695’ 
“O4FC  2805FD’ 
HU.HL 
‘O4FF 68 

“0500 «64C 
‘0501 S2 
‘0502 2A080C 
£05039 216 
£0506) Oo. 
‘0507 28063A’ 
‘OSOA 280695 
‘OSOn 2805FD’ 

KI44xDEL(PK-1) 
‘0510 6A 
‘0511 4A 

(O5t2 SC 
‘0513 68 
‘0514 Sc 
‘0515 4B 
‘0516 4B 
FOS1L7. 38 
"OSTS (69 
“OS19°= 46 
‘OS1A 50 
LOSE == 7.0 
FOSLeE 94 
fOSTH “2805F DY 
‘0520 2805BR’ 

‘0523 60 
‘0524 4E 
“0525 SC 
COB2a. GE. 
{0927.2 /4E 
‘9528 Sc 
‘0529 OA 
‘OS2A 18 
‘OS2R 2138 
‘OS2n 843F 
“OO2ZF 2 OR 
“0530.18 
“0S31 2130 
‘0533 8445 

D
p
P
r
P
D
 

p
P
D
r
D
D
 

D
D
D
 

A 

A 

0755 

0756 
0757 
0758 
0759 
07690 
0761 

0762 
0763 
0764 

0765 

0766 

Lis 

LR 
ETSI 
LR 

LR 
ner 
LM 

LR 
EE 
FI 

Ex 

LISL 
LR 
LR 
ncl 
LM 
LR 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0014 

ORJECT FLAG ST # SOURCE STATEMENT 

0 

1ivA 
3 
ArS 
278 

Kae 

1:A 
BMFY 
TRAN 

BSUBT 

Ars 
29A 
K13 

1:A 
BMPY 

TRAN 

BADD 

9 
Avs 

2A 
K1i4 

1:A 
BMF Y 
TRAN 
BALL 

= 
Arv19 

SrA 
0 
S9A 

> 
Avil 
SA 
t 
ArS 
OrA 

0 
ivA 

BADD 
QUTFU 

3 
Art 
SrA 
6 
Ast 

SA 

AvIS 

He332 
CL2 
ArIS 

H23.07 
CL3 

26 1 

DATASET = DKOSHMSU «SRC 

sPOINTER AT EK~1 

7EK-1 IN REG 2 
¢Ki2 IS LOADED IN REGI 

sKL2KEK-1 

$KLI*XEK-K1I2KXEK-1 = RESULT IN HU. 

sFOINTER AT EK-2 

SER-2 IN REG 2 
§K13 IN REG 1 

sKISKEK-2 

sKIAKEK - KI2KEK-1 + KI3*EK-2 = 

sDEKCPK-1)U IS MOVED TO REG 2 
$K14 IN REG 1 

SKI4KDEL (CP K-1)U 

IRUEPRER —ARL2KER-1 + ORLGAERS 2 ot 

§ FOINTER AT DELCPR)U 

sPFOINTER AT DEL CPRK-1) 

sFOINTER AT DEL CPRIL 

sPOINTER AT PR-1 

sFPK=DELCPR) + FK-1 = HU-HL 

sPOWER IS OUTPUT TO HEATERS 

SUR DRE Rad TO ENS 

sUPDATE EK TO EK-1



ADDR 

‘0S35 
0538 
‘0538 
“OSSE 
“OS3SF 
0540 
‘0543 
“0544 
‘0545 

‘0548 
'OS49 
“OS4C 
‘os4n 
‘OS4F 
‘0552 

‘0555 
0556 
‘0359 

“OSSA 
“OSSC 
‘OSSF 

0560 
‘OS61 
‘0564 

‘0565 
‘0568 
‘OS6B 

‘OS60 
“0570 
“0573 
‘0576 
‘0579 
“0S7C 
‘OS7F 
‘0582 

0585 
‘0586 
‘0589 
‘OS8A 
‘OS8B 

‘OS8E 
‘OS8F 
"0592 
“O0S93 
“O5S94 
‘0597 

0598 

OS??? 
OS9A 

‘OSOR 

“OSE 
OS9F 

‘OSAO 

“OSAL 

ORJECT FLAG 

2A087A 
280599" A 
2A0844 

2A0870 
280599" 
280585’ 
2904B2’ 
2A0875 
280599 ° 
280585’ 
2904B6‘ 

p
D
D
d
 

D
>
D
D
D
 

. 0813 
0814 
oB15 
0816 
0817 
0818 
0819 
0820 
0821 

0822 
0823 
0824 

0825 

0826 
0827 

0828 
0829 
0830 

Ossi 
0832 
0833 

0834 
0835 
0836 

0837 
0838 
0839 

0840 
oO84i 
0842 
0843 
0844 
0845 
0846 
0847 
0848 
0849 
0850 
Ossi 
9852 
0853 
0854 

0855 
0856 
0857 
0858 
oss? 
0860 
0861 
0862 
0863 

0864 
0865 
0866 

0867 
0868 
OB49 

;RECORD SUBROUTINE RECORDS SAMPLE NUMBER» 
FOWER TO THE ZONE & LOAD ADDRESS 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0015 
DATASET = DKOSHMSU  .SRC 

& ZONE ADDRESS FOR THE 

OF THE FID ALGORITHM 

sRETURN 
ZONE ADDRESS» 

ST # SOURCE STATEMENT 

ncr RECQ3 
By RECORD 
nct FIDFLG 
LIS 9 
ST 
nel SNO 

LM 
INC 
nel SNO 

ST 
ncl NS 
CM 
BZ TSTRUN 

JMP RUY 
TSTRUN [DCI TRUNNO 

LM 
NCI RUNNO 
cM 

BZ ENDRUN 
ncr TRUNNO 
LM 

INC 
ncI TRUNNO 
Si 

JMP BUY 
ENDRUN PI STOP 

BR ENDRUN 

CL2 ner RECOIL 
Ce RECORD 
PI MODLZA 
JMP C2 

CL3 net RECO2 
Pr RECORD 
PI MODLZA 
JMF L3 

;MODLZA SUBROUTINE MODIFIES LOAD 

sNEXT CONTROL LOOF 
MODLZA LR KyP 

nCI TSLA 
LM 
INC 
ncr TSLA 

ST 
Hcl TSZONA 
LM 
INC 
ne! TSZONA 
ST 
FR 

sLOAD TEMPERATURE» 

RECORDS: Ek KoF 
XDC 
ner SNO 

LM 
XnC 
ST 

XC 0870 
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ALOR 

“OSA2 
‘OSAS 
“OSA6 
“OSA? 
‘OSAB 
“OSAP 
‘OSAA 
‘OSAB 
“OSAC 

‘OSAF 
‘OSBO 
‘OSE1 
‘OSE2 
“OSB3 

‘OSB6 
‘OSE? 

‘OSB8 
‘OSB? 
“OSBA 

‘OSEB 

“OSBC 
‘OSBE 
‘OSBF 
“O5SCO0 
‘OSC 
‘QSC2 
“oSC4 
“OSCS 
“0SC8 
‘OSC? 
“oscc 
‘OSch 
“OSCE 

“OS01 
‘oSn2 

OSnS 
‘OSTA 
‘OSDS 
‘OSn6 
‘OSn8 
‘OSD9 
“OSTA 
‘OSD0B 
OSnC 
“OSDgn 
‘OSEO 

‘OSEL 
OSE2 
OSES 
10 SEG 
7OSE7 
/OSt3 

‘OBER 
“Ogre 
*OSEE 

ORJECT 

2A0842 
16 
2c 
G7 
éF 
4c 
id 

2c 
2A08S5 

16 
ac 
17 

2c 
2AQEAD 

16 
2c 
17 

oc 
2B 

FLAG 

MOSTEK 3870/7F8 CROSS 

ST # SOURCE STATEMENT 

Os71 
0872 
0873 
0874 
0875 
0876 
0877 

0878 
0879 

0880 
Ossi 
0882 
0883 
0884 

0885 
0886 

0887 

0888 
0889 
0890 
OB9L 

0892 
0893 

0894 
O89s 
0896 
0897 
0898 
OB99 
0900 
O901 
0902 
0903 
0904 
0905 
09046 

0907 
0908 
0909 
OF10 
O9Ld 
O9Ne 
O913 
OPF14 
OO1s 
O916 
0917 
0918 
OFT 
0920 
OF 24 

  

sOUTFU 

ner 

Ba 

Kn 

St 
List 
CE 

ol 

Xn 

Ler 

LM 
xo 
St 
Ie, 
UCI 

Li 
Olle 

or 

PR 
NOF 

SUBROUTINE OUTFUTS A BYTE 
*VIA FORT O FOLLOWED 

TSZONA 

7 

AyS 

ANSWER 

ASSEMBLER FAGE 

DATASET = TKOTHMSU «SRC 

*RETURN 

OF ABSOLUTE FOWER 
BY 150 MICRO SECONDS DELAY ANE 

*THEN THE ZONE ADDRESS IS SET UF ON FORT 1 

OUTFU 

NIL 

CONT 

TS1 

LR 
Ly 
LR 
LES 
OUTS 
LR 

XI 

EF 
BR 

Lis 

ner 
Si 
OUTS 

ncr 

uM 
OUTS 

ETS 
LR 

GR 
BR 
ELS 
LR 

LR 

St 
INC 

Ko F 

HS" 
OvA 

0 
9% 
Av190 

H* 30" 
NIL 
CONT 
OQ 

ANSWER 

9 
TSZONA 

a 

ih 

Arild 

SyvA 

eae 

a 

Ay id 

Saf 

1 

ANSWER 

0 

TSZONA 

1 
0 
a 

9 
1 

263 

0016



ADIR 

‘OSED 

‘OSEE 
‘OSEF 
“OSFO 
‘OSF2 
“OSF4 

“OSES 
‘OSFS6 
‘OSF7 

‘OSF8 
LOSh? 
‘OSFA 
‘OSFB 
‘OSFC 

‘OSFD 
‘OSFE 

“OSFF 
“0600 
‘0601 

‘0602 
°0603 
ANS 

°0604 
“0606 
°0607 

“0608 
H 

"0609 
“O60R 
*060C 
‘O60E 

“0610 
‘0612 
‘0613 

‘0615 
°0617 
°0618 

‘0619 
‘OS1A 
‘O61E 
“O61C 
“O06i0 
“O61E 
“O61F 
°0620 
‘0621 
‘0623 
ORDER 

°0624 
£0625 

°0626 
°0627 
‘0628 
°0629 
‘062A 

OBJECT FLAG ST # 

oc 

8102 
TF 
co 

SA 

980E 

2380 
8106 

207F 
SA 
9004 

2080 

oc 

0929 
0930 
0931 
0932 

* 0933 
0934 
0935 
0936 

0937 
0938 
0939 
0940 
0941 
0942 
0943 
0944 
0945 
0946 
0947 
0948 

O94? 
0950 
o951 

0952 
0953 

0954 
o9ss 
0956 

0957 

0958 
0959 
0960 
O961 

0962 
0963 
0964 
0965 
0966 
0967 
0968 
0969 
0970 
o971 
0972 
0973 
0974 
0975 
0976 
O977 

0978 
0979 

0980 
o981 

0982 
0983 
0984 
o98S 
0986 

MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0017 
SOURCE STATEMENT DATASET = DKOZSHMSU .SRC 

PK s RETURN 
sINFU SUBROUTINE INPUTS A BYTE OF DATA VIA FORT 0 
sFOLLING ON STATUS BIT 1 OF FORT 8 
INFU LR KoF 
LOOF2 INS 8 

NI He 02” *MASK BIT 1 
BZ LOOF2 
LIs 2 sOPEN GATE 

OUTS 8 sVIA FORT 8 
INS 0 sREAD DATA VIA FORT O 
LR SrA sAND STORE IN 0°77’ 

LIS o 
OUTS 1 
ouTS 8 sCLOSE GATE 
OUTS 9 
PR sRETURN 

sBADD SUBROUTINE-i6 BIT BINARY ADDITION IN 

sREGCHU).REGCHL)+REG(0O). REGC1)=HU.HL 
RAD LR KoF 

LR DC+H sMOVE AUGEND TO NCO 

LR Asli sLOAD LOWER ORDER BYTE OF ADDEND 
Alc sADLR TO AUGEND 
NS i 

LR He DC sRESTORE PARTIAL SUM TO H 
LR A109 sLOAD HIGH ORDER BYTE OF PARTIAL 

BP BAQ 

INC 
RAQ As 9 sADD HIGH ORDER BYTE OF ADDEND 

LR 109A sRESTORE TO GIVE COMPLETE ANS IN 

BNO FINISH 

LR AO 
xI H‘80’ 
BP NEGT 

Et Bees 
LR 109A 
BR FINISH 

NEGT EY H’80’ 
LR 10%A 

FINISH PK sRETURN 

#BSUBT SUBROUTINE-16 BIT BINARY SUBTRACTION IN 
sREGCHU).REGCHL)-REG(O). REG(1)=HU.HL 
ESUBT LR KeP 

LR Av10 
LR BrA 
LR DCyH sMOVE SUBTRAHEND TO DCO 
LR Asi sLOAD LOW ORDER BYTE OF MINUEND 
COM sCOMPLEMENT IT 
INC sINCREMENT IT 

Alc sADD TO SUBTRAHEND 
BP BSO SIRS RIT 7201. ts 
nS 9 sCOMPENSATE BY DECREMENTING HIGH 

RSO LR Hel sRESTORE FARTIAL SUM TO H 
LR A290 sLOAD HIGH ORDER BYTE OF MINUEND 

COM § COMPLEMENT 
INC 5 INCREMENT 
As 10 
LR 109A #STORE ANSWER IN REG(10) 
ENO DONE 
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OBJECT FLAG ST # ADIN 

°062C 48 

‘0620 2380 
‘Q62F 8106 
‘0631 207F 

‘0633 SA- 
“0634 9004 
0636 2080 
‘0638 SA 
"0639 OC 

TIPLICAND) 

‘063A 08 

‘O63B 41 
°063C E2 
‘063 58 

R 
‘O63E 41 
‘063F 2380 
‘0641 8108 
0643 42 
0644 2380 

‘0646 8109 
‘0648 9O00R 
‘064A 41 
‘O64B 18 
‘064C IF 
‘0640 Sil 
‘064E %90F4 
‘0650 42 
(N6S1 13 

‘0652 IF 
‘0653 52 
‘0654 78 
‘0655 SS 
‘0656 70 
‘0657 56 
‘0658 57 
“0659: *7.0 
‘065A Ci 
‘O60E- 3107 
‘065D 42 
‘O6SE Cé 
“Q65R 36 
“0660 47 
(O66) 39 

0662 57 
‘0663 41 
‘0664 13 
PO6Oq 151 
‘0666 35 
‘0667 840C 
°0669 46 
‘066A C6 
‘O66R 56 

20G6(%, TE 
‘0660 47 
COG6E 3:13 

SO66E o-Ep 
996705 219 

0987 

MOSTEK 

SOURCE STATEMENT 

NPOS 

TONE 

LR 

XI 

PR 

Ar8 

H‘ 80’ 
NFOS 
Heer 

107A 
DONE 
H’*S0* 
109A 

3870/F8 CROSS ASSEMBLER PAGE 0018 

DATASET = DROSHMSU .SRC 

sRETURN 
sBMFY SUBROUTINE - 8 BITCREGIS MULTIPLIER) *8 BITCREG2¢ MUL 

#=16 BIT FRODUCT IN REG7(CINT).REGS(FRA) 
BMFY 

NEXT 

NEG1 

NEG2 

MULT 

BMF i 

BMF2 

LR 

LR 
XS 
LR 

LR 
XI 
BF 

KyP 

Avil 
~ 

BrA 

Avi 
H’80’ 
NEG1 
Ar2 
H‘80’ 
NEG2 
MULT 
Avi 

1A 

NEXT 
Ar2 

2A 

oA 

6A 
79A 

BMF 2 
Ar2 

69A 
Ar? 

79A 
Ast 

1sA 

BMPS 
Aré 

9A 

JoW 

Ar? 

We J 
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sSET MARK IN REG 8 FOR -VE ANSWE 

sTEST FOR -VE NUMBER IN REG 1 

sTEST FOR -VE NUMBER IN REG 2 

sBRANCH TO MULTIPLICATION 

sREGI NUMBER IS +VE NOW 

sREG2 NUMBER IS +VE NOW 
sINITIALISE COUNTER TO 8 

sINITIALISE PARTIAL PRODUCT 

$#I1S SIGN BIT OF MULTIPLIER SET ? 

sNO! THEN SHIFT FARTIAL PRODUCT 

sYES! ADD MULTIFLICAND TO 
sPARTIAL PRODUCT 

7SHIPT THE MUETIPCIER CERT. 

sNECREMENT THE COUNTER 
s5EXIT IF DONE 

sSAVE STATUS FOR CARRY



MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0019 
ALDR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC 

“QVevt. 9-37 1045 LR 79A 

‘0672 90E46 1046 BR BMF 1 5GO BACK FOR NEXT 
‘0674 47 1047 BMPS LR As7 
0675 2300 . 1048 XI H‘00¢ STEST FOR ALL ZEROS IN REG 7 

‘0677 8406 1049 BZ TEST 
£0679 72078 1050 er HeZE * 
‘O067B 56 1051 LR ésA 
°067C + 900C 1052 ER ANS 
‘O67E 46 1053 TEST LR Ass 
CO67F 2380 1054 XI H’80’ 

“0681 8103 1035 BF Twos 
‘0683 9005 1056 BR ANS 
‘0685 46 1057 Twos LR Ard 

0686 18 1058 COM 
{0607 se 1059 INC 
‘0688 56 1060 LR 69A 
‘0689 48 1061 ANS LR Av8 
‘O68A 2380 1062 XI H’80° sCHECK FOR -VE ANSWER 
‘O068C 8103 1063 BP NEGA 

‘O68E 9005 1064 BR EXIT 
“0690 46 1065 NEGA LR Axré 
“O691>. 13 1066 com 

"069.2. 1F 1067 INC 
“0693 36 1068 LR 6rA 
“0694 OC 1069 EXIT PK #RETURN 

1070 sTRAN SUBROUTINE TRANSFERS THE CONTENTS OF REG 6 TO 0 & 
REG1=0 

‘0695 08 1071 TRAN LR KoP 
"0696 46 1072 LR Ad 
(0697-50 1073 LR OA 
70698. 70 1074 irs 9 
SO699. soa 1075 LR isA 
“069A OC 1076 PR s RETURN 

1077 $STOP SUBROUTINE STOPS THE CONVEYOR ANI) CLOSES ALL THE H 
EATING 

1078 sZONES ASSOCIATED WITH CONTROLLER NO-1 
°O69R 08 1079 (STOR LR KoP 

°069C 2050 1080 Et H’S0’ 
LOGIE ea 1081 LR OrA 
CO6PF 20 1082 LIS 9 
‘O6A0 BO 1083 OUTS 0 
‘O6A1 40 1084 LR Ad 
‘O6A2 Bi 1085 OUTS 1 
‘06A3 30 1086 TST2 ns 9 
°O6A4 Q9AFE 1087 BNZ TST2 
‘06AG 2050 1088 tt H‘S0O’ 

‘06A8 50 1089 LR OrA 
“O6A9 2A0840 1090 UCI LZAC 
‘O6AC 16 1091 LM 
‘O6AD Si 1092 LR 1A 
‘O6AE 2A0841 1093 ucrI SZONA 
SO6RI = t6 1094 LM 

“O6B2>. 32 1095 LR 27 
‘O6B3 70 1096 TURN ETS 9 
‘O6B4 &0 1097 OUTS o 

‘O6B5 42 1098 LR Ax2 
“U6GEG. “BI 1099 OUTS 1 
“0687 30 1100 TSTi ns 0 
‘O6B8 FA4FE 1101 BNZ TSht 
‘O6BA 2050 1102 tI H*S0/ 
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MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0020 

ALDR ORJECT FLAG ST # SOURCE STATEMENT DATASET = DIKOtHMSU  .SRC 

‘O6BC 50 1103 LR OvA 
“O6ERD 32 1104 ns 2 
“O6BE 31 1105 Ls 1 
“O6BF 94F3 1106 BNZ TURN 
2066100 06 ‘1107 PK sRETURN 

“>06C2 1108 END 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0021 

ADOR OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU «SRC 

AGA 0023 ANS 0689 ANSWER o8S5 BALN OSFD 

BAQ 0607 BMFP1L 0659 BMP2 0663 BMF3 0674 

BMPY 063A BSO 0624 RSUBT 0619 BUY 0053 

BUY1 0134 BUY2 O17E BUYS 017C BUYOT 0189 

BUYOUT 0184 C1 0800 C2 oso1 C3 0802 

CALCU O4B8 CALL 0435 CL2 O56n CLS 0579 

CLEAR 0400 CLOSE 0423 CM 0806 CMAR O1FO 

CMFLG 0847 CONT oSne CORY 0191 DONE 0639 

END 06C2 ENDRUN 0568 EXIIT 0375 EXIT 0694 

FINISH 0618 FULL 0082 INFU OSEE ISMI 0078 

ISMIFG 0845 ISF1 0808s ISF2 0810 ISF3 0818 

Kit 0809 Ki2 OB80A K13 O80BR Ki4 osoc 

K2i 0811 K22 0812 K23 0813 K24 0814 

K31 0819 K32 OB1A K33 O81B KS4 osic 

eal O4AE L2 O4B2 L3 O4B4 LA 0803 

LAO 016A LAL O16E LA2 0172 LAS 0176 

LA4 017A LAN 0130 LAO 012A LOOP2 OSEF 

LUFI 040A LZAC 0840 MODLZA 0585 MOTA 0050 

MS 0805 MSCNT 0853 MSFLG 0846 MTR 0285 

MTRF O87E MULT 0654 NEG1I 064A NEG2 0650 

NEGA 0690 NEGT 0615 NEW O2AT NEXT 0643 

NIL O5C8 NFOS 0636 NS 0804 NVAL o3cn 

ON oong OUTFU OSBB OUTT O23F PID Q06E 

FIDFLG 0844 FIDIR 0489 QUIT O3DA RCFS 083C 

RECOL 0870 RECO2 0875 RECOS3 087A RECORD 0599 

REF 0238 REPT O1AA RETN 0460 RFCMS 0843 

RFMS O84C RFFS O83 RUNNO 0807 SITR 0293 

SITRF OB8BE S2TR O2A1 S2TRF OSFE SAME oo9n 

SEND 0261 SEai OOAA SET2 OOB9 SETS ooc9? 

SET4 O3B9 SETI O36C SETP O35F SHUT O40E 

STi oson Si2 Osis siz osil SLA 0848 

SLVO 0223, SLV1 o21C SLV2 0213 SNO 0854 

SFAO O87F SFAL OBEF SPAZ O8FF SSA OA00 

STAY 007C STOF O069R SZONA 0841 TEST O67E 

TEST 1 00AO TEST2 OOCE TLZAC 084A TRO 0268 

TR1 0273. TR2 0278 TRAN 0695 TRF ossi 

TREC 0852 TRMIT 0248 TRMITT 0073 TRUNNO 0856 

TRY 024C TSLA 0849 TST O5E/ 1S) 06B7 

TST2 06A3 TSTRUN O3552 TSZONA 0842 TURN 0683 

TWOS 0685 UUU OOF4 VYY 0130 Wi o2n4 

WAIT 0427 WAIT 0416 WCMS OB84F WFCFS O83E 

WFMS 0850 WFFS OB83F WRITE " O203 WWW 010C 

X1 OOAF X2 OORE XF 0357 ZERO 0407 

ZONO 0040 ZON1 0041 ZON2 0042 ZON3 0043 

ZON4 0044 ZONS 0045 ZON6 0046 ZON7 0047 
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ADDR 

CROSS REFERENCE LISTING 
SYMBOL VALUE 

AGA 
ANS 
ANSWER 
BADD 
RAO 
BMF IL 
BMF 2 
BMF 3 
BMFY 
BSO 

BSUBT 
BUY 
BUY1 
BUY2 
BUY3 
BUYOT 
BUYOUT 

ENTIRUN 
EXIIT 
EXIT 
FINISH 
RUE 
INFU 

ISMI 
ISMIFG 
ISP1 
ISF2 
ISF3 
Kil 

Ki2 
Kis 
K14 
K2i 
K22 
K23 
K24 
K31 
K32 

K33 
K34 

0023 
0689 
osss 
OSFI 

0607 
0659 
0663 
0674 
063A 
0624 

0619 
0053 

0134 
O17E 
017C 
0189 
0184 
0800 
osol 
0802 
0488 
0435 
OSé60 
0579 
0400 
0423 
0806 
O1FO 
0847 
OSr8 

0191 
0639 
06C2 
0568 
0375 
0694 
0618 

0082 
OSEE 
0078 
0845 
0808 
0810 
0818 
0809 

MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0022 
OBJECT FLAG ST # SOURCE STATEMENT DATASET = DKOSHMSU .SRC 

STMT STATEMENT REFERENCES 

0094 0096 
1061 10546 1052 
0066 0918 0903 0879 
0947 0797 0783 0774 
0956 0954 
1023 1046 
1032 1025 
1047 1036 
0998 0781 0772 0763 0752 
0980 0978 

0970 0765 0744 

0128 0837 0826 0475 0417 0298 0250 0145 0143 0141 
0247 0243 0239 
0289 0277 
0287 0285 0283 0281 0279 
0295 0166 
0292 0221 0208 0187 
0002 0191 0167 0090 
0003 0175 
0004 0183 
9732 0729 0726 
0623 0542 0497 0353 
0840 0808 
0844 0812 

0576 0467 0456 0418 0153 
0607 0620 

0008 0204 0200 0196 
0348 0195 
0048 
9913 o9701 

O301 0159 
0995 0992 0986 
1108 
0838 0839 O831 
0527 0512 0502 
1069 1064 

0967 0964 0958 
0152 
0932 0735 
0147 0136 

0046 0524 0295 0133 0124 
0010 07364 
0016 
0022 
9011 0749 
0012 07690 
0013 0769 
0014 0778 
9017 
0018 
0019 
0020 

0023 ~ 
0024 

0025 
0026 
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MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0023 

ALR ORJECT FLAG ST # SOURCE STATEMENT DATASET = IKOSHMSU .SRC 

EL O4AE ; 0724 Odeo) 

2 O4B2 0727 0843 0723 
Ss O4B6 0730 0847 

LA 0803 0005 0256 0227 0214 

LAQ O16A 0278 O261 
LAL O16E 0280 0264 
LA2 0172 0282 0267 
LAS 0176 0284 9270 
LA4 017A 0286 0273 
LAN 0130 0244 0235 

LAQ 012A 0240 0232 
LOOF2 OSEF 0933 0935 
LUF 1 040A O58S 0586 
LZAC 0840 0041 1090 0720 0716 0251 0222 0209 

MODLZA 0585 0850 0846 0842 
MOTA 0050 0040 
MS 0805 0007 
MSCNT 0853 0064 O3553 0546 0544 
MSFLG 0846 0047 

NTR 0285 0436 0426 
MTRF O87E 0058 0423 
MULT 0654 1018 1008 

NEG 064A 1009 1004 
NEG2 0650 1014 1007 
NEGA 0690 1065 1063 

NEGT 0615 0965 O961 
NEW o2An 0456 0435 
NEXT 0643 1005 1013 
NIL 05C8 0902 0900 
NFOS 0636 0993 0989 
NS 0804 0006 0823 
NVAL o3ch 03564 0562 
ON OoOng 9196 0194 
QOUTFU OSBR 0893 0798 
OUTT O23F 0397 0373 0367 
Pitt OO06E 0142 0132 

PIDFLG 0844 0045 0815 0517 0292 0129 0120 

FIDR 0489 0703 0142 
QUIT O3DA 0372 0563 0552 
RCFS 083Cc 0028 
RECOIL 0870 0068 0840 
RECO2 0875 0069 0844 
RECOS 087A 0070 0813 

RECORD 0599 0864 0845 0841 0814 

REP 0238 O391 0396 
REFT O1AA 0316 0328 
RETN 0460 0664 0567 0527 0397 

RFCMS 0843 0044 
RFMS oB4c 0055 
RFPS os3t 0029 
RUNNO 0807 0009 0829 
SiTR 0293 0443 0430 
SPUERF  .OSHE 0059 0427 
S2TR O2Al 0450 0434 
S20 RE OSE 0060 0431 

SAME ooon 0166 0158 
SEND 0261 0418 0416 
SETI OOAA 0172 9170 
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MOSTEK 3870/F8 CROSS ASSEMBLER PAGE 0024 
ALUR ORJECT FLAG ST # SOURCE STATEMENT DATASET = DROSHMSU .SRC 

SEE2 OOB9? 0180 0178 
SETS 00Cc? ' 0188 0186 
SENG O3B9 0353 Os5st 

SETI 036C OS21 o511 
SEP O35F O51%3 0507 
SHUT O40E 0590 0089 
STi oson 0015 0514 0162 
sit2 Osis 0021 
Sis osin 0027 

SLA 0848 0049 0706 05465 O559 0556 0254 0225 0212 
SLYVO 0223 0379 0366 
SLV1 021C 0374 0362 
SLV2 0213 0368 0358 
SNO 0854 0065 0866 0821 0818 0122 
SFAO O87F 0052 0379 0363 0172 

SPA1L OSEF 0053 0574 O359 0180 
SFA2 O8FF 0054 0368 0355 0188 
SSA OA00 0063 0665 0636 

STAY 007C 0149 0151 
STOF 0698 1079 0838 
SZONA 0841 0042 1093 0712 0289 0247 0218 
TEST O67E 1053 1049 
TESTi OOAO 0167 0165 
TEST 2  OCOCE O191 
TLZAC O84A ooS1 
TRO O26B 0423 
TRI 0273 0427 0442 

TR2 0278 0431 0449 
TRAN 0695 1071 0782 0773 0764 
TRE 0851 oo0é1 0472 0383 0137 
TRFC 0852 0062 0459 0457 
TRMIT 0248 0406 0144 
TRMITT 0073 0144 0140 

TRUNNO 0856 0067 0835 0832 0827 
TRY O24C 0408 0410 
TSLA 0849 0050 0884 0854 0851 0732 0704 
TST OSE7 0924 0925 0912 
TST1 O&6B7 1100 1101 
TST2 06A3 1086 1087 
TSTRUN OSS2 0827 0825 
TSZONA 0842 0043 0921 0906 0871 0859 0854 0710 
TURN 0683 1096 1106 

TWOS 0685 1057 1055 
YUU OOF 4 0209 0199 
VUYV O13n 0251 0203 

Wi o2n4 0479 0487 
WAIT 0427 0611 0612 
WAITI 0416 0597 0598 

WOMS OB84F 0056 O411 
WFCFS O83E 0030 0329 0152 
WFMS 0850 0057 

WFFS O83F 0031 
WRITE O203 0478 0455 0448 0441 
WWW 010C 0222 0207 

X1 OOAF 0175 O171 
X2 OOBE 0183 0179 
XF 0357 0508 0520 
ZERO 0407 0582 0088 00846 0084 
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MOSTEK 3870/F8 CROSS ASSEMBLER FAGE 0025 

ALOR OBJECT FLAG ST # SOURCE STATEMENT DATASET = IIKOSHMSU «SRC 

ZONO 0040 ; 0032 0219 
ZON1 0041 0033 

ZON2 0042 0034 0248 
ZON3 0043 0035 
ZON4 0044 0036 

ZONS 0045 0037 0290 
ZONS 0046 0038 
ZON7 0047 0039 

ERRORS=0000 
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APPENDIX D - THE DCHMSU PROGRAM LISTING 

The following DCHMSU program listing for the PDP-11/10 

minicomputer system: 

C
r
)
 
O
F
T
 
C
i
e
 

C3
 

Cc 

50 

FROGRAM DICHMSU 

THIS IS A COMMUNICATION FROGRAM BETWEEN A OPERATOR ANDI THE 
SUFREMAL LEVEL FIOF-11/10 MINICOMFUTER. THE INFIMAL LEVEL 
CONSISTS OF THREE CONTROLLERS USED FOR CONTROLLING THE 
TRAVELLING LOAD FURNACE IN THE DEFT OF SYSTEMS SCIENCE. 

THE THREE CONTROLLERS ARE IMPLEMENTED IN THE HIERARCHICAL 
MICROPROCESSOR SYSTEM UNIT (HMSU) USING THREE F8 MICROPROCESSORS, 

DIMENSION XK(423)2AC12) 9ARC12)9SF (8) »NAACI2) »TACL 298)» 
1 IXK(423)sSG(3)»ISAC64) »ISH(64) 
INTEGER RH» TRUN 
DIMENSION $164) 292015) 9S3(7)9S4(2)»S11(04) »S22(15) »1S3(7) ICS) 

COMMON /BLKI/C1i:sC22C3>CM 
COMMON /BLK2/NO1C»NO2C»NO3C 
COMMON /BLK3/GRLisGR2rGK39T1isT29T3eTIisTIi2sTiSs Thy Tes Thy 

TTR thes Ths 
COMMON /BLK4/LAsNS»MS*RH» ISPisISF2,1SF3 
COMMON /BLKS/XKsITXK 
COMMON /BLAG/KCM? IRCPS? IT RFPS» IWCFS»s IWFPS 
COMMON /BLK7/ISA,rISIy IRUN 
DATA ON/’ON’/,OFF/‘OFF’/sDIS/’DIS’/»SET/’ SET’ /»CON/’ CON’ / 

TATA CHA/’ CHA’ /sFAR/’ PAR’ / 
DATA FX/O0,004/ 9 US SUS 9 VSI So WS IWS 

THE DEFAULT VALUES OF THE CONTROLLER FARAMETERS ARE ¢ 

CM=U 
LA=0 
NS=100 

MS=0 
RH=0 
Ci=ON 

C2=0N 
C3=O0N 
ISF1=50.0 
ISF2=50.0 
ISF3=50,.0 
GK1=0,.05 

GR2=0,05 
GR3=0.05 

T1=30-.0 

T2=30.0 
T3=30.0 

TI1=90.0 
TIZ=90.0 
TISZ=90.0 
THA=30.0 
TH2=30.0 
THS=30+0 
TF1=30.0 
TF2=30.0 

  

    
GOTQ 700 
CALL: PRINT (SELECT (THE GONTROLLER NOW (1.E.01, ORS2 OR 4).7 ) 
REALICS» 1001) TCN0 

LOOL FORMAT (T2) 

IFCICNQ,EQ.1)G0TO 40 
IF CICNO.EQ,.2)GOTO 2 
IF CICNO.EQ.3)60TO & 

aie



wd. GOTO So 
HO CALL Q@¢°DO YOU WANT CONTROLLER-1 TO BE ON ?’y*INOIC) 

IFCINOIC) 1,293 

iL NOIC=0 
C1l=0FF 
GOTO Sti 

3 NOIC=255 
C1. =0N 
CALE PRINT Ce SPECTRY CONTROLEER] I Seq FO ine > 
REALDCS*s LiL). 1SP4 
CALL PRINT(’ SPECIFY CONTROLLER-1 CONSTANTS’ > 

CALL CONST(GRisTisTIi>TiisTFi> 
2 CALL Q¢’TO YOU WANT CONTROLLER-2 TO BE ON ?’sINO2C) 

IF CINO2C} 49596 

4 NO2C=0 
C2=0FF 
GOTO Si 

& NO2C=255 
C2=O0N 
CALL PRINEC’. SPECIFY. CONTROLLER=2) SE RAPOIN® % > 
READCS»1111) 1SP2 
CALL FRINT(’ SPECIFY CONTROLLER-2 CONSTANTS’ ) 
CALL CONST(GK2,T2*TI2sTD2,TF2) 
CALL Q@¢’TO YOU WANT CONTROLLER-3 TO BE ON ?/’,INO3C) 

IF CINOSC)7+899 
a NO3C=0 

C3=O0FF 

GOTO Si 
o NO3C=255 

C3=0N 
CARLAER INE SREEGIFY CONTROLLER=27 SE) POINT.) 
READCSs 1111) ISPS 

fol FORMAT(14) 
CALL PRINT(’ SPECIFY CONTROLLER-3 CONSTANTS’ > 
CALL CONST(GR3sT3rTI3s TIS» TFS) 

B CALL. FRINT(’ WHAT IS THE CONTROL MODE FOR CONTROLLRRS?? > 

READCS2500)CM 
500 FORMAT CAL? 

CALL FRINT(’ WHAT IS THE INITIAL LOAD ADDRESS IN ZONE-O?? > 
REAICSsS01)LA 

Ol FORMAT(1I2) 
CALL PRINT(’ SFECIFY THE NUMBER OF SAMPLES’) 

READS sS02)NS 
HOR FORMAT (CT 4) 

CALE PRINT(* SPECIFY THE MOTOR SPEED 2) 

READCS 2503 )MS 
503 FORMAT (14) 

CALE PRINT(’ SPECIFY THE RUN: TINE ROR ST HEE URNACE) 
CALL FRINT(’ IN HOURS ~- CINTEGER VALUE)’ > 
REATICS 503 )RH 
CALL FRINT(’ PRESS BREAK KEY NOW’) 

IFCTBREAK().NE.O)GOTO 700 
GOTO 25 

709 CALL PRINT (7 GOO OOOO OOO COR KOK K “> 
CALL FRINT(C’ THE FOLLOWING INFUT COMMANIIS ARE AVAILABLE’ > 
GALL PRINT@* [ij "§DIS'- PRINS OU; OPERAIGk SET TNEORMA TION, ) 
CALL FPRINT(’ C2] “SET"~- OPERATOR CAN SET THE FARAMETERS > 

CALL FRING 0S) “CONS ocRROGRAM CUNT TINUE S. > 
CALL FRINT(’ £42 "CHA" OFERATOR CAN CHANGE THE FARAMETERS% ) 
CALL. PRINTC? ES “PARS= PRINTS OUR HE sino? GF MPARAME TERS“) 

CALL FRINT(’ ~ FRESS RETURN KEY AFTER ANY INFUT COMMANI!’ > 
CALL PRINT (% OOOO OOOO OK KOK “> 

ear REALS» 600) COME 

HOO FORMAT CA4) 
TF (COMD.EQ. 1. 
IF CCOMD.EQ.¢ 

  

    $)GOTO 701 

GOTO 702 
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705 

“OL 

702 
704 

703 

1011 
1010 

1012 

1013 

LOLS 
39 

40 

1005 

85 
1LO16 

84 
1006 

L007 

31 

2001 

TF CCOMD.LEQ,CONIGOTO 703 
TF CCOMELEQ.CHAIGOTO 704 

TF¢ COMED. EQ. FARIGOTO 705 
CALL PRINT(’ “ERROR'-INVALID COMMAND, TYPE COMMAND AGAIN?) 
GOTO S99 
CALL Eley 

GOTO 25 
CALL OF INFO 
GOTO 25 

GOTO So 
CALL CHANGE 
CONTINUE 
CALL Q¢’ [0 YOU WANT TO CHANGE ANY MORE FARAMETERS?’»IR) 
IF CIR 3119311704 

CALL PRINT(’ FRESS BREAK KEY’) 
GOTO 25 
CONTINUE 
CALL CALCUCGKLsTisTIis Tid eTFiyXK C191) eXK C291) oXK C391) XK C4e1)) 
CALL CALCUCGK2»T2sTI2yTI22TF22XK (192) »XK( 292) »XK (392) XK 0492)) 
CALL CALCUCGK3+T3sTIS»TISsTF3sXK C193) »XK (223) eXK (393) XK 493)) 
[10 1010 T=193 

OO 1011 J=1+4 
IF CXK(Je1T).GT.1.0.0R.XK(Je1),EQ.1.0)G0TO 1012 
CONTINUE 

CONTINUE 
GOTO 1015 
CALL PRINT(C’..+ INVALID CONTROLLER CONSTANTS. coccsecceeeeccces”) 
WRITE (S 210131 
FORMATCIH +’.+,SELECT NEW PARAMETERS FOR CONTROLLER NO’sIi+s’..//) 
GOTO 1016 

WRITE (6939) 
FORMAT CIXALH: 92 RI’ 98X2" K2¢s8Xs’) KS? 28X>% KAT) 
DO 10035 T=193 

WRITE (Sy409XK C1 eT)» XKC 29D) eXKC3e TD) »XK C491) 
FORMATCLX/1LH 9F74324X9F 7.32 4XoF 7639 4XeF 7-3) 
CONTINUE : 
DO 1006 T=193 
Z=XKCLisT)+XKC29T)4+XKC321) 
YHL+O0-XK(49T) 
SG(IdD=Z/Y 
IF (SG¢(1) 82282283 
TRCSGCID LTA) GOTO 262 

WRITE (S84) 1 »SG¢(1) 
GOTO 1006 
Call PRINTG +. UNSTABLE STEADY STATE “GAIN. +> ++ se ese cee eee 
Cale SPRINT (4 es GELEGY GNEWOUALUES FORK ToT ses «oe siee ot vee eo) 
WRITE CS »85)7 

FORMATCIH »’..+.0F CONTROLLER NO ’,12) 
CALL FRINT(’PRESS BREAK KEY AND USE "CHA" COMMANII ) 
GOTO 25 

FORMATCIH +’ STEALY STATE GAIN SG’ »I2)’='s1X9F7.3) 
CONTINUE 
DO 1007 T=1+3 

WRITE (6984) 1+SG(1T) 
CONTINUE 
TRUN=O 

BIG=AMAXI (Tis T2sT3) 

TE CRHe LE +O) GOTO: 31 
TIM=FLOAT (RH) 3606.0 
GOTO 20014 

IFCNS.EQ.0)GOTO 999 
TIM=FLOAT (ONS) XBIG 

SAM=TIM/BIG 

IF (SAM.GE.240.0)G0TO 100 
S=INTCSAM) 

TRUN=0 
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100 

431 

On 

102 

103 

Poo 

298 

L000 

90 

22 
92 

2000 

GOTO 331 
NS=240 

RUNNO=SAM/240.0 
IRUN=INT (RUNNO) 
RNS=FLOAT (NS) 
TM=(RNSXBIG)/34600.0 

REP=FLOAT CIRUN) 
ATIM=TMK(1.O0+REF) 

THRS=INTCATIM) 
FATIM=ATIMN-FLOAT(IHRS > 
AMIN=FATIMK40.0 

IMIN=INTCAMIN) 

WRITE (42 101)NS 
FORMATCLH » “NUMBER OF SAMPLES=/ +14) 

WRITE (6s102) IRUN 
FORMAT (CLH»y “RUN NUMBER-ITRUN=/ »T4) 
WRITE (62103) THRS»IMIN 
FORMATCLH » “ACTUAL RUN TIME OF THE FURNACE WILL BE=’rT2»’HRS?/» 

iegi2'y (MINS. ©) 
GOTO 998 
CALL PRINT(’ ..eERROR- NS=0 IS INVALID... %) 
CALL FPRINT(’ USE "CHA" COMMAND’ > 
GOTO 700 
CALL SUBIR 
CALL SENT 
STOF 
ENT 

SUBROUTINE Q¢A»T) 
REAL N»NC 

DATA Y/LHY/»N/LHN/ » NC/2HNC/ 

BAlCOPRENT Co, 7) 
CALL FRINTCA)D 
READS: L000) ANS 
FORMAT (A4) 
I=90 
IF CANS.EQ.NC)GOTO 92 
IF CANS.EQ.Y)GOTO 90 
IF CANS-EQ.N)GOTO 91 
GOTO 92 

I=1 
GOTO 92 
I=-1 
CONTINUE 
RETURN 

END 

SUBROUTINE CONST(GR:T+ Tis Toy TF) 
CALL FRINT(’ GAIN’) 
REAINCS »2000)GK 
CALL PRINTC’ SAMPLING INTERVAL’ > 
REAICS »2000)T 
CALL FRINT(’ INTEGRAL ACTION TIME’ > 
READCS»2000 TI 
CALL FRINT(’ DERIVATIVE ACTION TIME’ > 
READCS:2000)TI 

CALL FRINEG @FILTER TIME CONSTANT? > 
READCS» 2000) TF 
FORMAT (F7.3) 

RETURN 
ENT 

SUBROUTINE CALCUCGRs Ts Tl» Tity TF eXK1eXK29XK39XK4) 

FL=GRKRT 
P2=TF+T 

ASCE LAR KCL, OTC Tit (T/T) > 
XK CCRT /P29KCL. OFC (2,0KTE)D/T) >) 
XKRS=CGRETIN /P2 

AR4=TE/ PS 
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3000 

RETURN 
ENT 

SUBROUTINE LIST 

WRITE (423000) 
FORMATCLH »’THE SYMBOLIC FARAMETERS TO BE USED IN THE CHANGE 
1 
L 
1 
4 
i} 
1 
1 

1 
1 
a 

1 
1 

SUBROUTINE ARES’ /» 
“CM - CONTROL MODE’/» 
“LA ~ INITIAL LOAD ADDRESS IN ZONE 0/7» 

ENS — NUMBER GE SAMPLES 29 
“MS —- CONVEYOR MOTOR  SPEEIY 7» 
‘Ci»C2°C3 ~ CONTROLLER STATUS FOR CONTROLLERS 12223//» 
“ISP1l,ISP2,sISF3 - SET FOINTS FOR CONTROLLERS 1:2%3//» 

“GRirsGR2,GR3 - GAIN CINSTANTS FOR CONTROLLERS 1s293//>» 
*TisT2sT3 ~ SAMPLING INTERVALS FOR CONTROLLERS 12293/’/>s 
‘TIL»TI2>TI3 — INTEGRAL ACTION TIMES...+-%/» 

‘TDs Ti2,TIS —- DERIVATIVE ACTION TIMES... //» 
CIEL Tees seo FT ETER. Wine CONSTANT O+ss «67 ) 

CALL CLOSE(4) 
RETURN 
ENT 
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400 

10 

2i 
300 

301 

302 

  

SUBROUTINE CHANGE 

INTEGER RH 
DIMENSION $1¢6499S2¢15)*S307)2S4(2)9S1104)»S22¢015) pIS83(7)sICC3) 
COMMON /BLEL/SCM Cie C2°CS 
COMMON /BLK2/NOLC + NO2C»NOSC 
COMMON /BLAS/GK1»GR2*GRS32TleT2sT3rTIiisTi2sTIi3sThisTo2,ToHS» 

PVR sth 2s 3 
COMMON /BLK4/LArNS»MS*RHe ISP1 se ISP2, ISPS 
EQUIVALENCE (CM»S11¢1)) 

EQUIVALENCE CIC(1)»NO1C)»(IC(2) sNO2C) + (IC(3) »NO3C) 
EQUIVALENCE (GKi»S22¢1)) 
EQUIVALENCE (LAxTIS3(1)) 

HATA<SI77OM Ss [62s “C2 es “CSCS 

HATA+S2e/ OWL (9 GNhe oe CNS oe Tee oe a Sais Th! ys CTP sl Paes 
to es Pee eS ee s. PE s? BES 7 
DATA: S37 “EAs NS @s ONS 9 CRY Gs CI SPL s 7 ISP27s (ISPS. 7 
DATA S4/°ON’ ‘OFF’ / 
CALL FPRINT(’ SPECIFY THE FARAMETER YOU WANT TO CHANGE’ > 
READ CS »400) PARA 
FORMAT (A4) 
IF CFARA-EQ.CM)GOTO 20 
nO 10 K=294 

IF CPARA-EQ.S1iCKI>OGOTO 2 
CONTINUE 

HO 11 T1915 
IFCFARA-EQ.S2¢1)>GOTO 2 
CONTINUE 
TO 12 J=1l+? 
IF CPARA-EQ.«S3¢J)9GOTO 23 
CONTINUE 
WRITE (Ss 300)FARAsS11¢1) 
WRITE (CS: 3010 FARA 
REALCS» 30291101) 
GOTO 310 
WRITE CS» 300) FPARA2S11 6K) 
FORMAT(’ THE CURRENT VALUE OF ’+A49’ =’ 9A4) 
WRITE (Ss 301) FARA 
FORMAT(’ SPECIFY THE NEW VALUE OF /’»A4) 
READS: 302) S110K) 
FORMAT (A4) 
IF (S11 (KR) .EQ.S4¢133960TO 30 
TFC(SL1¢(K)-EQ.9S4(02))G60TO 31 
GOTO 316 

IC (KR) =2546 
GOTO 310 
IC(K)=0 
GOTLO> SUC 
WRITE (Ss 303) FARA+S22¢1) 
FORMAT(’ THE CURRENT VALUE OF ‘A429’ =’sF?7.3) 
WRITE (CS: 301) FARA 

READCS +304) 52201) 
FORMATCF?.3) 
GOTO 316 
WRITE (CS: S05 PARA» TS3(4) 
FORMAT(’ THE CURRENT VALUE OF “sA4>» 7% 

WRITE (Ss 301) FARA 
REANCSs S06) 1530.1) 
FORMAT (14> 
CONTINUE 

RETURN 
ENT 

aa
 

ha
 

Hi “»T4) 
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149 

160 

161 

to 

163 

164 

SUBROUTINE OF INFO 

INTEGER RH 
COMMON /BLRI/C1i»C2»C3>CM 
COMMON /BLKS/GK1»GR2°GK32T1sT2T3sTIisTI2sTiS> This Ties TDSy 

LTE Theat Ss 
COMMON /BLKR4/LA»NS»MSyRH os ISF1»ISF2,ISr3 

WRITE (42149) 
FORMAT (7 OOOO OOO IO CCC OK ICR OK CR KK 
DOOR AOR OR AOKK KKK / 4 DISPLAY OF OFERATOR SET INFORMAT LONKXKAKKKK 
KOR KK OR RK KOR KKK KK RRR K 7) 

WRITE (6:150)CM 
PORMAICIX7Z# = CONTROLS MO bo as rer i eee 37 r4XxAL) 

WRITE CG21510LA 
FORMAT(1X/’ INITIAL LOAD ADDRESS IN ZONE O--~-$’»2X»T4) 
WRITE (462152)NS 
FORMAT CIxX7 ( NUMBER: OF SAMPLE Soe eo aoa a oa oe $/2X9T4) 

WRITE (49153)MS 
FORMAT CIX/ © MOTOR (SPEER Soe eo ee oe a $4 92XrT4) 
WRITE (6*165)RH 
FORMAT(C1X/’ RUN TIME FOR THE FURNACE IN HOURS? ’»2X+T4) 
WRITE (62154) 
FORMAT CIX/ “CONTROLLER: NO=---ae>- $4 9BXe/NO-1/ 2 9Xe“NO-2’ 9 PXy 

i NO-3 2) 
WRITE (62155)C1»C22C3 
FORMATCIX/’ CONTROLLER STATUS---~— $/99X2AS2 1LOX2AS21OXr AS) 

WRITE (69156) 1SP1/ISP2rISF3 
FORMAT (CLX/*. SEL POINT S-——-=2- 34 r9XeT3rx10XeT3x10X»T3>) 

WRITE (467157) 
FORMAT(1X/’ CONTROLLER CONSTANTS’ > 
WRITE (62158) G6K1>GK296K3 
FORMAT CIX72 GAL Ne occa ee $49 GX9F743¥6X9F 7437 6X9F 7-3) 

WRITE (462159) Tis T2973 
FORMAT(1X// SAMPLING INTERVAL--~-~ $4 96X9F7+3xGX9F 7.59 G6X9F 743) 

WRITE (42160) 
FORMAT(’ IN SECONTIIS’ > 
WRITE (62161) TI1L»TI2:°TI3 
FORMATCAX/’ INTEGRAL ACTION TIME--$’+6X9F7.396X9F7.3x4XeF 7.3) 

WRITE (462162) TDL» TI2,THS 
FORMATCAX/’ DERIVATIVE ACTION TIME?’ +6X9F7.396X9F7.326X9F743) 

WRITE (CG7163) TFL TF22TFS 
FORMATCAX/’ FILTER TIME CONSTANT~-~-2/96X9F7+376X2F743746X9F 743) 
WRITE (62164) 
FORMAT (1X7 OOOO OOOO OOK CORK KOK 
TOKO KK KKK // END OF INFORMAT I ONXKKKKKAKKKKKR KK KK KKK KKK 
OOOO OOK OOOO OOK OK OK 4) 
CALL CLOSE(6?) 

RETURN 
END 
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29 

3 
+ 
ae 

wo 

300 

SUBROUTINE SUBIR 

DIMENSION XK(423)2AC12) 2AR (C12) 9SF (8) sNAACL2) 2, TACL298)» 

1 IXK(493) 
COMMON /BLKS/XKsTXK 

EQUIVALENCE (XK(CLrl)2AC1)) 
EQUIVALENCE CIXK¢C 191) 2NAACI)? 

DATA SF/0. 520.25 70.12570-062520.0312570,015625» 

1 0.007812570.00390625/ 
DO 2 I=1:12 
FCT)=ABS(CACT)) 

IP=IFIX(FPCI) > 
ARCLI=FCI)-FLOAT CIP) 

BA=ARCT) 
nO 3 N=l+8 
TACN)=BA-SF ON) 
TF CTACN) 252292729 

TACIT »N)=0 
GOTO 3 
TACT» NFL 
BA=TACN) 
CONTINUE 
CONTINUE 
NO SO I=1°12 
CALL NUMB (IACI yi) rIACL +2) 2TACI 23) 2 TACIT 4)sTACIT 5S) TACT 6)» 

1 TACIT »7) TACT »8) »NAACT)) 

CONTINUE 
WRITE (462300) 

FORMATCIH »4X»’AC1)/74X* “FRACTION OF ACI)‘’24X»’BINARY FRACTION’ » 

1 4X%*/OCTAL EQU’s4X*’INTEGER EQU’) 

DO 20 [=lrl1l2 

WRITE (62112) ACT) 2ARCI) » (IACI oN) yN=128) sNAACT) »NAACT) 

FORMATCLH + 2X9F7+326X9F 6.391 2X28(11) 2 BX2032 8X13) 

CONTINUE 
WRITE (62200) 
FORMATCLH » “FINISH? > 
CALL CLOSE(4) 
RETURN 

ENT 
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SUBROUTINE SENT 

INTEGER RH 
DIMENSION 1SA(64)+1SD(44) »N1(4)9N2(4) »N3C4) 92012) 

QIMENSION XKC423)9TXK (493) 
COMMON /BLK2/NO1C»NO2C»NOSC 
COMMON /BLK3/GRLisGR2°GR3sTLsT2>T3eTiieTI22TISsTh1y Toe, TOS» 

Lome’ yh 2s Tk S 
COMMON /BLA4/LAsNS MS RHe ISF1l» ISP2, ISPS 
COMMON /BLAKS/XRe TKK 
COMMON /BLAG/KCM+ IRCPS: IRFFS» TWCFPS: IWFFS 
COMMON /BLK7/TSArISily TRUN 
EQUIVALENCE (XK(C171)22¢1)) 
EQUIVALENCE ¢IXKC1s1)eNIC1)) 
EQUIVALENCE CIXK(1s2)eN2C1)> 
EQUIVALENCE (CIXK¢1:s3)»N3¢C1)) 

ISA(64)=128 
KCM=1 
IRCFS=10 
IRFFS=11 
IWCFPS=12 
IWFFS=13 
nO 1 N=1"63 

ISA(64-N)=ISACG4) +N 
CONTINUE 

ISN¢1>=NO1C 
ISh¢(2>=NO02C 
ISh¢3)=NO3C 
ISH(4)=LA 
ISh(S)=NS 
ISh(4)=M8 

ISD(7)=KCM 

ISh(8)=TRUN 
ISD(9)=ISPF1i 
ISh¢(14 .=INTCTI1) 

ISh(17)=ISP2 
ISIC 22.=INT(T2) 
ISU(25)=ISF3 

ISD(30)=INTC(T3) 
NO 4 J#Ly2 
ISN(14+J)=0 
ISh(224+J)=0 
ISH 30+.) =0 
CONTINUE 
NO S K=is28 
ISN(S2+K)=0 
CONTINUE 
tO 7 M=194 
ISOC 9+M)=N1¢M) 
ISNCL7+M)=N2¢M) 
TSl¢(25+M)=N3 CM) 
CONTINUE 
su¢41)=IRCP 

TS0(62)2. RFF 

  

      

  

  

  

nO 3 N=1964 
WRITE (G22) 1S5ACN) » TSDCN)D 
FORMAT (C2¢74%3X)) 

CONTINUE 
RETURN 
ENT 
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