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ABSTRACT

A comprehensive literature study is devoted to Chapter 1. Start-

ing from the linear analysis approach, the study points out the 

steady progress and development of numerical methods adopted by 

several authors, in the domain on nonlinear static and dynamic 

analysis. With regard to the nonlinear dynamic interaction be-

tween the superstructure and supporting soil mechanism, it is 

observed that researchi in this field is very sparse and inade-

quate, therefore the underlying motivation to dwell in this very 

intersting and complex field of research and investigation becomes 

obvious.

Chapter 2 contains the introduction to the problem concerned, 

and outlines the basic assumption, analytical procedure, and 

the limitations of the method applied in the solution technique. 

In a subsection of this chapter, an introduction to the general 

purpose nonlinear analysis is given. It is pointed out that 

certain design problems, particularly the design of nuclear 

power plants, the realization and reliable testing of the full 

scale structure, are almost prohibitive as far as cost is con-

cerned, and in addition to this, is the problem of reliable 

monitoring and processing of response signals, during testing. 

Appropriate analytical orocedures, if available, will therefore 

reduce the testing significantly and a better understanding of 

the structural behavior can be attained. Therefore it is pointed 

out here that a consistent continuum mechanics formulation and 

effective finite element discretization is the most important 

aspect of non-linear analysis. The other aspect is the use 

of proper material models to account for the nonlinear behavior 

of material which should adequately represent the actual material 

under field conditions.



In the third chapter, a historical development of non-linear 

analysis of static and dynamic problems is presented, which 

goes back as far as 19&0. Since then, numerous papers have 

been published, using these methods, as proposed by the earlier 

authors who actually founded the basic concept of non-linear 

analysis. Continuous researches are going on in this field, to 

understand many problems, contrary to many notions we inherit 

from classical mechanics. As Professor Oden [12] pointed out, 

"No structure or machine ever built behaved linearly. All 

deformation need not be small, nor need they be reversible.

Few materials are truly elastic, and fewer are linear."

In Chapter 4, the concept of continuum mechanics is explained, 

in the light of virtual work principle, and in the subsection, 

the appropriate finite element discretization of the continuum 

is given for the matrix calculation. In this subsection, 

basically the essential tools involved in nonlinear analysis 

are systematically discussed.

Formulation of the governing equation of motion for the structure 

and soil subgrade system due to support motion is explained in 

Chapter 5. The support motion is caused by time varying ground 

acceleration which characterizes the earthquake load.

In Chapter 6, some salient points of temporal integration oper-

ator are illustrated. Understanding of the basic principle of 

temporal integration in one dimensional problems is the key to 

more complex problems dealing with finite element applications.

Chapter 7 is devoted to temporal integration of the assembled 

finite elements. To avoid large integration error, which causes 

the calculated solution to "drift away" from the exact solution, 

as a consequence of linearization, equilibrium iteration is 

introduced [18], [23], to assure convergence to the solution 

within acceptable limits.
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In chapter 8, a refined modelling technique using principle modes 

of vibration is discussed.

Travelling P and S waves in the finite element grid are reflected 

back from the fixed boundary. This can cause serious perturbations 

in the displacement and stress output in the vicinity of the struc-

ture. In chapter 9, a simple but effective way of approach used in 

this study to suppress the unwanted reflection is explained.

In chapter 10 a comparative study was made between the closed form 

solution and finite element solution of soil-structure interaction 

problem. The theoretical formulation is based on one dimensional 

wave propagation in an elastic medium.

In chapter 11 the stress profiles obtained by finite element method 

of one dimensional wave propagation in elastic, and inelastic medium 

are compared with the exact solution. This was done mainly to show 

the convergence of the finite element solution to the exact solution 

using modified NONSAP proarom in vol. 2.

In chapter 12 a case study is presented , and results are analyzed 

to gain an insight in the domain of non-linear soil-structure inter-

action. It is also pointed out the need for further research, and 

experiment in this highly complicated field on engineering, where 

the civil and mechanical engineers with their concerted effort can 

achieve an acceptable, economical and meaningful solution to this 

problem.

In appendix A failure behaviour of soil is discussed. Some experi-

mental data obtained by Swarz (33) in bi and triaxal tests of soil 

were used to determine the Yield function and Yield criteria of soil.

In appendix B proposed experimental study of non-linear soil-structure 

interaction is suggested.



In appendix C, a comparative study between the elastic half space 

solution and solution of the equivalent finite element model of the 

elastic half space was made. The response spectrum obtained from 

the both analyses show fairly good agreement between the two methods.

In vol. 2 of the thesis the modified version of NONSAP program is 

presented . The program organization , the flow chart and the use 

of high speed storage of nodal and element data and the stiffness matrix 

are explained in block diagram.

The subroutine VELCOR, which is used in conjunction with the NONSAP 

is presented separately. This will enable the reader to follow 

the programming technique and ideas behind the program. A flow chart 

is provided so that the readers have a clear understanding of the 

program algorithm.



SUMMARY

Within the last 15 years, rapid developement in the solution of non-

linear static and dynamic problems have taken place. Coupled geometric 

and material problems are not uncommon in practical Engineering problems. 

Exact solutions to these problems are almost non-existent.

Exact continuum mechanics formulation and finite element approximation 

coupled with stable numerical technique appear to be the best method 

of solution to these complex problems.

In this thesis, it is shown how a non-linear dynamic response of a 

deeply embedded structure under transient load such as earthquake can 

be analysed using finite element technique based on exact continuum 

mechanics formulation.



Literature study

Previous work

The previous work which contributes directly to this present study 

may be divided into three categories:

The first category deals with the analysis of several kinds of 

structures subjected to earthquake loading. These studies are 

carried out employing varieties of analytical techniques, and 

help to find out what is important in the analysis of response of 

soil and structure under earthquake load. Housner [1] has shown 

that behavior of buildings during earthquake depends on the size 

and distance of the epicenter of the earthquake, period and damp-

ing of the structure. The analysis of the structural response 

can be performed by means of Housner’s response spectra. The 

analyses are based on lumped-mass and stiffness models of struc-

tures, whose bases are subjected to motions measured in basements 

of actual buildings during earthquake. In this way, the effect 

of interaction on the base motion of the structure is known, and 

thus allows the upper stories to be analysed.

In case the basement response to earthquake loading to surrounding 

soil is not known, the second approach is to apply known earthquake 

records to the base of the building, which implies that the foun-

dation medium is rigid. This has been done by several authors 

for buildings and for earth banks and dams [1, 2]. These reports 

are useful for theoretical insight into motions of buildings and 

stress levels in soil structures. Now the question arises from 

these analyses is whether to take the flexibility of the founda-

tion medium into account or not. If yes, would it change the 

results significantly? Parmalee (3} et al answered to this question 

by utilizing Bycroft's Solution for translation and rotation of 

a rigid plate on the surface of an infinite half space and sub-

jected it to harmonic exciting forces and moments. The results of 

analysis of a multi-story building sitting on top of the found-

ation plate indicate that when the soil medium becomes sufficiently 



soft or flexible, relative to the structure, there is a signi-

ficant interaction. If the soil is relatively stiff, say 

Cg = Ca 300 m/s, a rigid base analysis would provide sufficiently 

accurate results.

Scavuzzo et al. [5] obtained a solution to the main problem of 

a two-dimensional elastic half space subjected to a time-dependent 

uniform shearing stress representing loading by a surface structure. 

The structure is represented by a large base mass and several single- 

degree-of-freedom oscillators representing equipment attached to 

the base. The results have shown that the interaction depends 

largely on soil stiffness and on the relationship between frequency 

of the seismic motion and that of the structure.

The above study was the starting point of Isenberg's [4] more ad-

vanced work using finite element methods because of its ability 

to represent embedded structure and inelastic soil properties.

Chu et al. [5] presented a method of analysis to investigate the 

soil-structure interaction effect by taking into account the strain 

dependent soil moduli and dampings in the first step. The second 

step employs the modal synthesis technique in which soil and struc-

ture are considered as two subsystems having different damping 

values. It was pointed out that it is important to extract suffi-

cient numbers of vibration modes from the soil subsystem to ade-

quately evaluate the building response. Otherwise, some higher 

frequency contents of earthquake motion being transmitted through 

the basement slab to the structure above may be erroneous. Because 

of the lack of ability in this method to account for non-elastic 

soil properties of the layered soil medium, and to avoid time 

consuming modal synthesis of a large number of modes, the present 

study is intended to follow up the work of Isenberg to gain further 

insight into the non-linear soil-structure interaction problem.

In applying the finite element technique to the present problem, 

the major difficulty lies in prescribing adequate boundary con-

ditions for the edges of the finite element grid. The top edge 
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is treated as a free surface which adequately represents the ground 

surface. The remaining edges of the grid, however, do not exactly 

correspond to the physcial boundaries. Inappropriate treatment 

of these boundaries may distort the solution in the vicinity of 

the structure. One way of approach is to move the boundaries a 

considerable distance from the structure, so that the building 

response is not significantly affected. Another alternative 

approach is to regard the motions adjacent to the artifical boun-

daries as being associated with the waves which may be reflected 

back towards the structure. A procedure for absorbing such waves 

at artifical boundaries is outlined in this analysis.

Referring back to Isenberg’s work, it is necessary to point out 

that the plastic flow mode adopted in representing the material 

properties of soil media, the kinematic or orthotropic strain 

hardening effect was not taken into account. The unknown propor-

tionality constant X (which will be discussed later) with its 

work hardening effect has considerable significance in determining 

the value of the plastic strain rate. The present work includes 

the work hardening effect. Another drawback in Isenberg’s work 

is the modelling technique adopted in converting axisymmetric 

nuclear buidings to two dimensional finite element models. Much 

criticism has been made of using filling material with a consid-

erably high E modulus to represent the trench or air gap between 

the outer shield building and the steel containment. In the 

present analysis, a more accurate modal model technique has been 

adopted to represent the superstructure in the two dimensional 

finite element model, with a frequency band width of significant 

interest. Finally, the linear acceleration method of integration 

technique used in inelastic finite element analysis interferes 

with interpreting responses at higher frequencies than 15-16 Hz/ 

Responses at higher frequencies show perturbations superposed on 

the main structural response. In order to represent the true 

picture of the acceleration response, Isenberg attempted to 

separate the true acceleration pulse from the superposed numerical 

8



noise. This separation was beyond the scope of work presented. 

In the present analysis, the numerical integration was the stable 

implicit integration scheme proposed by Newmark and Wilson, and 

spurious numerical oscillation was observed.

Unfortunately, no other previous work in the field of non-linear 

soil structure interaction problems appeared other than that of 

Isenberg's. Since the condensed version of the work incorporated 

in this thesis appeared in the M.I.T. Report [53], a number of 

papers dealing with the non-linear soil structure interaction 

problem were published, which show increasing concern of engineers 

to find more meaningful and truly representative solutions to this 

very complex problem.

9



2. Introduction

This is a theoretical study of the dynamic response of a nuclear 

reactor power structure subjected to earthquake motions. Dynamic 

response of this structure is defined here primarily as the motion 

and frequency response spectra of its foundation.

Due to the inherent complexity and nonlinear behaviour of soil, 

various approaches have been postulated to find more meaningful 

conclusions to this complex problem. The dynamic interrelationship 

between the response of structure and the characteristics of its 

foundation medium is commonly described as the interaction effect. 

The interaction phenomenon is principally attributed to the mecha-

nism of exchange of energy between the soil and the structure, and 

its primary influence on the structure is to modify the mode of 

vibration and response.

Some factors which are considered for the present study are:

1. Soil stiffness and shear-wave velocity

2. Presence of several layers with different meterial properties

3. Assumed yield condition o‘f soil

4. Time history input of earthquake motion at bedrock

Of several candidate methods of analysis for the present study, 

the finite element method seems the most suitable. The geometry 

of the embedded structure can be represented by a two-dimensional 

plane strain section. All contributions to the interaction, from 

the nearly rigid body response of the foundation to the wave effects 

in the soil, are included.

Since the main purpose and goal of this thesis is to gain insight 

into this interaction, the results of this analysis are presented 

in the form of a comparison between structural and free field 

response. For example, the frequency spectra of structural res-

ponses are compared with those of the free field to determine 

whether the presence of a structure supresses free field spectra 
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locally. By comparing stress in the soil adjacent to the structure 

with the stress at the same depth when the structure is absent, 

the influence of the structure on the stress in the soil can be 

examined to see whether the structure tends to promote or retard 

failure in the adjacent soil. Since this is primarily a study of 

interaction, the details of the superstructure and equipment res-

ponse are given little attention here. However, an attempt is 

made to relate the translation and rotation of the foundation to 

the translation of the elevated parts of the structure where, in 

an actual structure, equipment might be attached.

In the present analysis, according to geological tests in the 

field and under laboratory conditions, the boundary and the bot-

tom layers are considered linearly elastic, because of the rock-

like formation of this stratum, while the rest of the layers are 

represented by elastic/perfectly plastic soil medium. In the 

present analysis, the region of soil surrounding the structure 

is defined, and transient earthquake load is applied along one 

side. This method differs from the commonly used one of shaking 

the bottom of the soil and structure system to simulate bedrock 

motion. The reason for choosing this less orthodox method is 

that it makes best use of available techniques to prevent spurious 

reflections from artificial boundaries of the finite element grid. 

Within limits imposed by these assumptions, the present analysis 

appears to represent correctly the interaction between soil and 

structure.

Introduction and formulation of general purpose non-linear analysis

The great importance of investigation of non-linear behavior of 

various types of structures for adequate safety in design is 

rapidly being recognised. It is reported (4, 5] that in some 

cases, the behaviour of the materials is significantly non-linear, 

even at relatively small loading. For other structures, the in-

fluence of geometry changes on the response of the structure cannot 

be neglected [6, 7, 8].



The ultimate load behaviour of the structure which is in effect 

governed by the non-linear effect is a very important aspect of 

analysis [9, 10, 11]. If this ultimate load can be obtained 

accurately, the safety of the structure is increased and in many 

cases costs can be reduced.

In certain design problems found in the nuclear industry, extensive 

testing is carried out in order to assess accurately the response 

of the structure under consideration. However, it should be 

pointed out that the realisation of reliable test data very 

expensive, and the need for parametric studies has increased the 

emphasis on reliable and exact theoretical analyses. If the ap-

propriate analytical method is available, testing can be reduced 

significantly, and a better understanding of the structural beha-

viour can be attained.

Non-linear behaviour in structural systems is usually put in one 

of three categories:

1) Geometric nonlinearity, which arises from non-linear terms 

in the kinematic equations,

2) Material nonlinearities in the constitutive equations, and

3) Combined geometric and material nonlinearity.

Computationally, these categories are somewhat superficial, 

since, except perhaps in problems of stability or cyclic loading 

of inelastic elements, the mathematical techniques that can be 

applied successfully to treat one type of nonlinearity are, with 

some modification, generally applicable to the other types of 

nonlinearity. To provide a basis for further discussion, it is 

necessary to review briefly the basic notions of the finite ele-

ment concept and its appliction to non-linear problems in solid 

mechanics. To start with, we view a continuous body as a collec-

tion of a finite number of elements connected together at various 

nodal points. For application in solid mechanics, it is generally 

more natural to describe the motion of this collection of elements 

relative to some specific reference configuration. Clearly, when 

one is faced with the problem of describing the behavior of a 



structure of a solid body, we generally know its shape, compo-

sition at a certain time, and we wish to trace its motion rela-

tive to a configuration in which its geometry is known. After 

an element has undergone large displacements from its reference 

configuration, all kinematic variables needed to describe its 

motion may be written in terms of either its initial material 

coordinates or the current spatial coordinates.

A fundamental property of finite element models is that typical 

elements can be isolated from the collection and their behaviour 

can be studied independently of th© behaviour of the other elements 

in the collection. The process of connecting individual elements 

to form a complete model is a topological problem, and is indepen-

dent of the physical nature of the problem.

The earliest finite element analyses of non-linear problems have 

been developed for specific application by Oden [12],Fellipa 

[13], Martin and Carey [14J, and Zienkiewicz [15]. These proc-

edures were primarily developed in order to obtain solutions to 

the specific problem considered. However, to provide general 

analysis capabilities, much research is still required to improve 

the stability, accuracy and effectiveness of non-linear solutions.

In non-linear analysis, stability and accuracy are a great deal 

more difficult to obtain than in linear analysis and depend on 

various factors.

An important aspect is the use of a consistent continuum mechanics 

formulation, and effective finite element discretization. During 

recent years, the isoparametric finite element procedure has proven 

to be very effective in both linear and non-linear analysis.

Another aspect, as pointed out before, is the use of a material 

model to account for material nonlinearities, and which accurately 

represents the actual material under field conditions.
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In dynamic analysis, it is further necessary to use numerical 

time integration which introduces additional errors [16, 17]. 

Extensive research is currently being devoted to developing 

stable and accurate integration schemes. However, it should 

be pointed out that a proper evaluation and use of an integra-

tion method is only possible if a consistent non-linear formu-

lation is used [16].



3. Historical development of non-linear static and dynamic analysis

Now after the introduction to general purpose non-linear analysis, 

it is worthwhile to consider some background and interesting develop-

ments directed to the solution of non-linear dynamic problems and 

computer programs.

The earliest examples in the literature of the solution of 

dynamic problems using the finite element method are given by 

Klein and Sylvester (28] and Popov and Chow |30]. Turner [7] for-

mulated the gemoetrical non-linear problem by using the finite 

element method in 1960, and almost ten years later the results 

were obtained for the elastic dynamic problem by Stricklin et al. 

(111. There is an extensive survey made by Fulton [9] covering 

the area of non-linear elastic deformations, which is primarily 

directed to the solution of dynamic shell buckling problems.

The material nonlinearity and the combined problems of non-linear 

material and geometric behaviour have been extensively discussed 

by Marcal (29 J . MacNamara and Marcal developed a base on which 

a general purprose finite element program could be built for 

analysing non-linear dynamic problems (23 J. Two general methods 

for incorporating the elastic-plastic behaviour into a finite 

element analysis have been developed, and they are known as the 

Initial Strain Method and Tangent Modulus Method (22j> (23 ] • 

Bathe et al. (17 ] and Wilson et al. [28 ] presented a general 

step-by-step solution technique for the evaluation of the dynamic 

response of structural systems with physical and geometrical 

nonlinearities. The algorithm is effective in non-linear analysis 

and in the analysis of linear systems introduces a predictable 

amount of errors for a specified time step. Guide-lines are 

given for the selection of time step size for different types of 

dynamic loadings. The method can be applied to the static and 

dynamic analysis of both discrete structural systems and continuous 

solids idealised as an assemblage of finite elements. Results 

of several non-linear analyses are presented and compared with 

results obtained by other methods and from experiments.



The following table of comparison shows some of the computer 

programs commonly used for non-linear, transient dynamic analysis. 

The contents of this table are obtained from a well-documented 

study and comparative evaluation of numerical methods for dynamic 

structural analysis [31].
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4. Continuum mechanics

In non-linear dynamic finite element analysis involving large 

dpfnrmprions and material nonlinearities, it is necessary to use 

an incremental formulation oi the equation of motion. It is 

assumed that the continuum can experience large displacements, 

large strains, and the media are described by general constitu-

tive laws. The formulations given herein include all non-linear 

effects.

Let us now consider the motion of a body [Figure f]. It is now 

required to evaluate the equilibrium positions of the body at the 

discrete time points 0, At, 2At - etc., where At is an increment 

in time. We now assume that the static and kinematic variables 

for all time steps 0 to t have been solved, and that the solution 

for time t + At is required.

, the coordinates describing the configuration of 

time 0 are 0 , 0^, 0^ at time t are txl,tX2,and tX3>

, , t + At , t + At , where the
X]_

In Figure 1

this body at

and at a time t + At are t + At , u ,
X1 x2 x3

left subscript denotes the time related configuration of the body,

and subscripts refer to the coordinates. The notation for the'

displacement variable u is similar, such as t + At , i 
ui

We can now describe the configuration at time t in the

= 1,2,3. 

following

manner:

L. O
X; +

fc-Ml- o fc-hal- 
XI - XV +

(4.1)
i = 1, 2, 3

(4.2)

The increment in the displacements from time t to t + are

denoted as follows

All; - i = 1, 2, 3 (4.3)

During the time the body is in motion, its mass density, surface 

area, and volume stresses and strains are changing continuously.



f ♦ At
» i

FIG.l



We now denote these quantities at a time 0, t, t + At as 

0,t, t + At , 0 . , t. and 0„, t_. and t + At,r.p p p A A v V V

Since the configuration of the body at time t + At is not known, 

we will refer applied forces, stresses and strains to a known 

equilibrium configuration. Analogous to the notation already 

mentioned, the surface and body force components per unit mass 

at time t + At, but measured in the configuration at time t, are

u
x = surface force per unit area (t)

referred to the configuration at time t.

body force per unit mass

referred to the configuration at time t, K = 1, 2, 3.

Considering now the stresses, the cartesian stress components 

of the Cauchy stress tensor at time t + At is

t + At 
ij '

Since the Cauchy stresses (engineering stresses) are always 

referred to the configuration in which they do occur,

t + At w t + At 
ij " t + AtTij

The cartesian components of the second Piola-Kirchhoff stress 

tensor corresponding to the configuration at time t + At but 

measured in configuration at time t by

t + At
t8ij

Considerting the strains, the cartesian components of Cauchy’s 

infinitesimal strain tensor refered to the configuration at time 

<10



t + At are denoted by t + Ate^. The reference configurations 

for the Kirchhoff stresses, Green-Lagrange strains are those which 

are referred to at times 0 and t.

In the formulation of the governing equilibrium equations, it is 

necessary to consider derivatives of displacement and coordinates. 

In the notation adopted, a comma denotes differentiation with res-

pect to coordinates following, and the left subscripts indicate 

the configuration in which this coordinate is measured. Thus we 

have, for example

t + At
0Ui,j

~t+Atd u^
-0d x.

J

(4.4)

0 d X nr
(4.5)t t  At m,n .t+At d xn

4 ’1 Principle of virtual displacements

Since the isoparametric displacement based finite element proce-

dure shall be employed for the numerical solution, we shall use 

the principle of virtual displacement to express the equilibrium 

of the body in the configuration at time t + £t. Assuming that 

the direction and magnitude of the body and surface loading is 

independent of the configuration, the principle of virtual dis-

placement requires that [18]

t+^t
C+itR (4.6)

v

, t+At
where R » external virtual work and is expressed as 
follows

t+A t
R = t+At 0\ iUK°da + / % t+%fK 6u K %V (4.7)



6u , is a virtual variation in the current displacement components 
K

t + At , and 6 . e_, . are the virtual corresponding variations
uK t+At ij x

in strains or - «2(t+atui,J + t+ituj,i) (4’8)

Equation 4.6 cannot be solved directly since the configuration 

at time t + At is unknown. An approximate solution can be obtained 

byreferring all variables to a known previously calculated equi-

librium configuration, and the solution is improved by iteration 

[17, 20].

For the purpose of obtaining a first approximation solution, a 

formulation called the total Lagrangian formulation or just the 

Lagrangian formulation is adopted. In this solution, all static 

and kinematic variables are referred to the initial configuration 

at time t = 0 [18]. In the other approximate solution, all static 

and kinematic variables are referred to the configuration at time 

t. This is commonly known as the updated Lagrangian formulation. 

Both formulations include all the non-linear effects such as 

large displacement, large strains and material nonlinearities. 

The only advantage of using one or the other is the numerical 

efficiency which largely depends on the definition of the material 

law.

The first step in the formulation is to obtain an approximate 

solution to equation 4,5 by linearizing the equation about the 

last calculated equilibrium configuration at time t. The approxi-

mate solution is then improved by iteration [19].

Using the notations outlined before, the TL formulation is trans-

formed to [20]:

t+At «t+4t t+itR (4.9)

Similarly, in the UL formulation, equation 4.6 becomes

t+AtRt+At 6t+at (4.10)



where

(4.17 )

and n n
i ui. 1[ k
2l 0 

ax

Uk 
3°X.

j

0nij (4.18)

Using the above decompositions and linearising the equations of 

motion, as well as using the approximations

0$ij O^ijrs Oeij (4.19)

(4.20)

we obtain the approximate equations of motion in total Lagrangian 

formulation

f (A, ne <5ne Otfv +
Q 0 ijrs 0 rs 0 ij

V

' osij6onij °dv 

°v

In a similar

of motion in

C+AtR f

°v
t„ r 0.nS.. o e.. dv 
01] 0 1J (4.21)

way, we can derive 

updated Lagrangian
the approximate linearised equations 

formulation as below:

CV tC1J e o e,. dv rs t rs t ij
+ f c t  .. 6. rj. . cdv 

t t 'lj
V

T..6 e. Cdv 
t ij

f
cv

(4.22)



4.2 The finite element discretization

The finite element discretization of equations of motion 4.21 and

4.22 including the nonlinear material effects can be written in 

the following form as shown by Bathe et al. [19].

T.L. Formulation

f
°v

0 t+At.. r 0 ,
0 uk5uk dv + f

°V
-C., _e 6_e., 0 ijrs 0 rs 0 ij

°dv

+ f
°v

osij 5onij °dv t+AtR „ / ts. . <5ne. .
0v ij 0 IJ

°dv (4.1.1)

U.L. Formulation

r0 t+At- x0 f p uk5uk
uv

°dv + f
°V

C. . e 6.e.. ^dv
t ljrs t rs t ij

+ ft x t,A J T. .O^n . . dv 
0v lj C ij

t+AtR / T..6 e. . Cdv 
tv ij t ij

(4.1.2)

In the isoparametric finite element solution, the coordinates 

displacement of an

N
E

i=k

element are interpolated using

and

°x 
xj

h °Yk 
\ Xj j ’ 1,2,3

xj
N 
E 

k=l

cxk

J

t4At
xj

N 
E 

k=l
hk

t+At k
Xj

t
UJ E 

k=l
hk

t k
UJ;

S h, uk 
k=l k J

The following 

formulation to the equivalent

table shows the transformation of the finite element

matrix evaluation.

N N
u. 
j
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The following notations are used for the calculation of the element 

matrices:

= surface and volume displacement transformation matrix

t+At t+At_ 
o'’ of

0BNL* tBNL

vectors of surface and body forces defined per 

unit area and per unit mass of the body at time 0 

linear strain displacement matrix 

nonlinear strain displacement matrix

C = stress-strain material properties (incremental or

total)

= matrix and vector of Cauchy stresses

= matrix and vector of second Piola-Kirchnoff

stress

= vector of stress in nonlinear material only



Table 4.1

Finite element matrices

Analysis 
type

Integral Matrix Calculation

A.
in all 
analysis

„ 0 t+At- . 0
o( p M'V dv

Mt+atii

°p( / HTH °dv)

°v

C+aCR -

o/ "W* C+atR - f H* c+i‘t °da 

°A

+ / °PC+4ofk Suk °dv 0 T t+At^ 0+ 0 f H f dv
°v

B.
Material 
nonlinearity 
only

C e (5 °dv
ljrs rs lj

CKu - ( f ,T 0. ,
ov b l cb l dv ) u

_ t 0 ,
o/ cij5eij dv

t T t~ 0F = / B.1 °dv
v L

C.
Total
Lagrangian 
formulation

0^ OCijrs Oers^Oeij dV oV - ( / ££ o c ‘b l  °dv)u 

°v

ofv osu6onij °dv tv , . t T tc t_ 0, .
o k nl u “ o bnl  o s o bnl  dv )u

f OSlj6Oelj dv
t t T t^ 0
oF ^o bnl  o s dv



Table 4; 1 (continued)

Analysis
Type

Integral Matrix Evaluation

D.
Updated 
Lagrangian 
formulation •

f C.. e 6 e.. Cdv
v t ijrs t rs t ij

Xu ■ /CX tcXtdv)u

t
f T..6 n dv

tv Ij t ij
Xl  ■ XX S Xl  tdv )"

t t
f r 6 e dv

tv ij t ij
t_. r t T t2 t ,F = J B T dvC tZ JL



5. Formulation of Basic Equation of Motion Due to Earthquake Excitation

In order to derive the equations of motion due to arbitrary motion 

at the base of the soil-structure system, it will be necessary to 

include support in the nodal point displacement vector. We therefore 

partition the total displacement vector (ujj- into support displace- 

ments {ul^ and the displacements {u} for the other nodes. In matrix 

form the above displacements could be written as follows [21]:

{u}„ - (5.1)
<uJb

Now the nodal point displacements are made up of quasi-static dis-

placements tuJg and displacements due to the dynamic effect {u} 

for other nodes and supports respectively.

In matrix form:

(u}_ {u}
{ —- } + {: —} (5.2)

{u>sb (u}b

Introducing (5.2) in the following general equation of motion

[M] {u} + [C] {u} + [K] {u} = {Pj (5.3)

Now by expanding the structural property matrices, to account for 

support displacements, the equation of motion of the nodes not 

attached to the support can be stated as follows:

{ } + Tc]|[c]b- ( <»$ + 1K]| (K]b ’

L 1 J {u}b _ 1 . {u,b _ 1 ..
As there are no external loads applied at the nodal points, the right 

hand side of equation (5.3) vanishes.

Therefore, equation (5.3) can be stated as follows:
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[M] {u} + [C] {u} + [K] (u) (5.5)

where

rpc ) = -
1 effJ

[M] (mJ TO, - 
{ —-}

1c] [CbT'

<a’sb _ M •
(5.6)

If the damping term in the effective load vector is neglected, which 

is considerably smaller than the inertial term, the pseudo-static 

displacements may be computed most conveniently from the static 

relationships.

[K] {u}s + rK)b {u}sb = 0 (5.7)

In which the only loading specified is the support displacement 

vector {u} , or base motion.
SD

Solving for nodal displacements gives:

{u}s = - [K] 1 [KJb (u}sb (5.8)

Substituting ( 5.8) in ( 5.6 ) yields:

} (MJ (K]_1 [K)b - [M]b [u<C\
sb (5.9)

For a lumped mass system, the effective load vector in ( 5.6) 

can be written as follows:

{Peff} - [Ml [R] Gi(t)}sb
(5.10)

Because 

and (5.11)

f^^b the stiffness coupling matrix between the superstructure 

and the base support.
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The influence matrix [R] depends on the type of support displacement

as well as on the structural configuration. When a unit static

translation of the base of a structure produces directly a unit dis-

placement of all degrees of freedom, then the matrix [R] is a column

vector. In other words

[M] (5.12)

If we now define ..(t)
u u sb as ground acceleration, then

(5.13)

<Peff>

Therefore, the equation of motion at any time t due to a given 

base acceleration may be written as

[M] (ii(t)} + [C] (u(t)} + [K] (u(t)} = [M] {1} U(t) 
g

= [p L }
v effJ (5.14)

In equation (5.14), it should be emphasized that the forces developed 

during an earthquake are not applied to the structure, but are 

applied as inertia forces resulting from the motions of the struc-

ture. Equation (5.14) is identical with that which would apply to 

a sationary structure subjected to an effective force

{Peff} “ (M] "g(t) (5-15)

01



6 Methods of Temporal Integration

Since the subject matter of this thesis is the non-linear 

dynamic analysis, it is essential and appropriate, to 

take a good look at some of the most commonly used 

numerical integration scheme in engineering problems. 

Question is often asked which is the most powerful inte-

gration scheme, that will solve almost every kind of

no n - linear problem static o r dynamic. The author of

this thesis feels that there is no unique answer to

this question. Researches i n this area are still con -

tinuing in various institutions, and the answer is yet 

to be found, that is to say an universal integration 

scheme suitable for all kinds of non linear problems. 

In this section essential factures of some commonly 

used integration scheme will be discussed, and recom-

mendation of their proper usage will be made, which may 

help practicing engineers and researchers in selecting 

suitable numerical scheme.

It is necessary to be pointed out that the discussion 

will be limited within the scope of this thesis.

The methodswhich are to be discussed here are as 

follows:

1. Houbolt method

2. Newmark method

3. Load extrapolation method

4. Central difference method



1 Houbolt Method

The nonlinear system of ordinary differential 

equations that represent the structural dynamic model are

Mu + Cu + K (u ) u = F( t) (6.1)

where M is the mass matrix, C is the damping matrix, 

K is the stiffness matrix, and F(t) is the generalized 

force vector. Note that the stiffness term is nonlinear 

through the dependence of the stiffness matrix K on the 

displacement vektor u.

We develop step by step solution algorithms

by defining a partition of the time axis into discrete

points. We call this partition P.

P = O, A t, 2 At , . .. , n41 (6.2)

We denote the vector of displacements u evaluated at the

points of partition P by

O At .2a  t n<jt
u , u u , . . . , u (6.3)

Similary the velocity and acceleration are given by

,0 .At . 2*.t , nr*tu , u u , . . . , u (6.4)

and

..0 ~.At 2At ..nitu , u u , . . . » u (6.5)

The Houbolt method (47) is obtained by 

fitting a cubic polynomial of the current value of dis-

placement and the three previous values. Then we get 

at a typical time poirit t = iAt
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. i^tu = “ ! 11 u
6At I

iA.t (i-l)At (i-2)At _ (i-3)Atl
18u +9u -2u J

(6.6)

and

-»id t
1

r , iA t c (i-l)At . (i-2)Al- (i-3)Atl
5u + 4u - u J (6.7)u =

A J I 2 u

Evaluating 6.1 at t = i At and introducing (6.6] and (6.7),

we get

11 . . _ 1 . .2. , iAt.l—-AtC + -At k ( u ) )
iA t

u

J-A . 2_i&t = —At F + ’ ( 2N ^tc)u(i-2)4t

(n i \ 
V +

(i-3)At u

(6.6)

+

( i - 1 ) A t u

r

This is the Houbolt olgorithm. must be started by a11

special procedure which will not be discussed here.

Eq. (6.8) is a system of nonlinear algebraic equations. 

It can be solved for example by the Newton-Raphson method. 

Thus for each time point in the partition P we must 

iteratively solve a system of nonlinear algebraic 

equations .

2 Newmark Method

In the method developed by Newmark (46) the velo-

city vector u and the displacement vector u

are assumed to have the following form

. 14t . .(i-l)At t (

u 1At - --(i-lUt

•<At? (6.9)
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where ((and^are constants. The constant, acceleration

-7- and S= in (6.9) Eva-

(i-l)At and using (6.9),

case is the case in whichc(= \-------- 4
luating (6.1) at t = iAt and t 

for & =we get

f 
(

M A t z x. 2. , i A t. 1 iAt♦ 7-C +/A t k ( u ) j u

4 t2^F16t * . fi-2)*t+ X F

+ 2(lM-At2(|-K)K(u(1_1]At/J ( i- 1 )A t 
u

At n ,Aj 2, f (i-2)At I (i-2)At 
C k U J U

(6.10)

This is the Newmark method. Equation (6.10) represents 

a system of nonlinear algebraic equations. For each step in 

thestep by step time integration process (6.10) must be 

solved by an iterative process such as Newton-Raphson.

3 Load Extrapolation

In the load extrapolation schemes we simpli-

fy (6.8) and (6.10) and for that matter any implicit scheme 

by carrying out the following procedure: We place all 

nonlinear terms on the right-hand side of the equation, 

consider these terms as applied loads , and use a back-

wards difference approximation to express the applied 

loads in terms of Values at previous time points. This 

approach has been used by Weeks (48 ) and Stricklin (11). 

Suppose in (6.8) and (6.10) we denote all the nonlinear 

terms plus the applied loads when transposed to the right 

hand side of the equation and iAt evaluated at time point 

t = iAt by H(t,u ) .

We let

iAt (i-l)At (i-l)At
H(t,u) = H(t,u) + At — H(t,u) (6.11)
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Then using the backwards difference approximation

(i-1 )At

(6.12)

We get

iAt H(t,u)
( i - 1 )A t (i-2)At

(6.13)

t
H (t, u )

H (t, u )

£> t

H (11 u ) 2 H (t, u )

As an illustration of the application of

this type algorithm let

H ( t, u )
ifc t - k (u

iAt (6.14)i&t, 
u )

Using (6.14) and (6.13) in conjunction with (6.8)

(The Hou.bolt algorithm), we get a Houbolt algorithm with 

load extrapolation.

-At2 fr(i-2)At „ , (i-2)At. (i-2)At
•••— If  -K(u  )u  !

+|atc)u (i-l)At (2M + yAtC)u
(i-2)At

+

<■ 7-AtC)
6

(i - 3 )A t u (6.15)

4 Central Difference Method

Let us evaluate (6.1) at time point

t = (1-1 LA t

(6.16)

Now in the central difference approximation we let
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.. (1- 1 )$tu
iAt „ (i-l)At (i-2)At

u - 2 u + u (6.17)

and we let

. (i-1 )At u
(1-lUt (i-2)Atu - u (6.18)

A t

Introducing (6.17) and (6.18) into (6.16) we get 

the central difference algorithm.

i Atu = 2M u (i-l)AtM
M (i-2)At (i-l)At
M u -AtCu

+ A tCu
(i-2)At (i-1)At (i-l)At 

uAt“K (u

c(i"l)At+ F (6.19)

This scheme is explicit for the case when the mass 

matrix is lumped. This implies that no iteration 

during a time step is required with the central dif-

ference algorithm. This is its main benefit. Its 

draw backsare that it is only conditionally stable. 

The time step must be less than a certain critical 

value.

At ^^^CRIT (ca. 1/10 of lowest eigen period) 

to obtain a stable approximation. In addition the 

scheme is not self starti ng.

We do not discuss the starting scheme here because 

it is normally the same as is used in the linear 

analysis. However we do make this comment: The star-

ting scheme for the central difference approximation 

pollutes the solution with error because it is nor-

mally very inaccurate. (24)
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5 Numerical Experiments (Weeks (48))

Weeks (48) has performed numerical 

experiments to determine the relative efficiency 

of the following schemes:

( Newton-Raphson
Houbo1t I Load Extrapolation

Newmark .
(x4> 1

4

Newton-Raphson

Load Extrapolation

. Central Difference

The sample problem is shown in Figure 6.1

Displacement, in inches
Fig. 6.1

ao



Two finite elements are used to model the system 

giving it one degree of freedom. In Figure 6.2 the 

solution to the undamped problem using the three 

methods with Newton-Raphson iteration is shown.

Conclusion:

. Houbolt too damped to be of use

. Central difference has amplitude error

. Newmark has a phase error

Time, in seconds

Fig. 6.2 
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In Figure 6.3 the solution to the damped problem using 

load extrapolation is compared to the results using 

Newton-Raphson both using the Houbolt scheme.

Note that Weeks tried the Newmark load extrapolation 

scheme for these time step sizes but the scheme was

unstable.

Conclusions:

• Newmark load extrapolation scheme 

is unstable at large time steps.

• Houbolt load extrapolation scheme 

does not have this problem.

• Houbolt load extrapolation scheme 

attenuates the amplitude of the response.

• Houbolt Newton-Raphson is always

stab le

. In this case load extrapolation is 

actually better than Newton-Raphson

Recommendation: Use Newmark method with small step 

size. This contradicts Stricklin's recommendation to 

use Houbolt’s method ( h igh 1 y d issipat ive ) . (u)
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Temporal integration of assembled finite elements

In the previous section, the method of temporal integration of a 

simplified damped system has been explained. In this section, 

the temporal integration of the equilibrium equation in matrix 

form will be explained.

Using the matrix evaluation given in Table4.1we have, for linear 

analysis at a time t + At

Mt+At.. „t+At M u + K u t+At„ R (7.1)

In nonlinear analysis including nonlinear material effects only

„t+At.. , t„ t+At„ t_M u + Ku = R - F (7.2)

Using the TL formulation

M . t+At.. , zt„M u + (0Kl + oSt)u - C+ACr - oF
(7.3)

Using the UL formulation

M u + (^ + tV" ■ C+At* - t’
(7.4)

M = time independent mass matrix; either a lumped

mass matrix Mo or a consistent mass matrix M
* c

can be used.

K = time independent linear elastic, small displace-

ment stiffness matrix

= linear strain incremental stiffness matrices

= nonlinear strain (geometric or initial stress) 

incremental stiffness matrices

- linear strain incremental stiffness matrix, not 

including the initial displacement effect
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vectors of externally applied element nodal 

loads
vectors of nodal point forces equivalent to the 

element stresses at time t

vector of nodal point forces equivalent to the 

element stresses at time t, not including the

u

t+At u

t+Atu

initial displacement effect

incremental nodal displacements, 
c kfrom u
total nodal displacements at time

* ,, , r t+At kt+At, assembled from u^

point accelerations

vector of

assembled

vector of

vector of nodal

7.1 Equilibrium iteration

It is important to note that in nonlinear analysis Equation 7,2 

is only an approximation to the actual equation to be solved in 

each time step, which is Equation 4.6 • Equation 7.2 was ob-

tained by linearising the equations of motion as shown in Tables

4.1 and 7.1 Depending on the nonlinearities in the system and 

the magnitude of the time step At, the linearisation may introduce 

serious errors and, indeed, solution instability. It should also 

be noted that the step-by-step solution may become unstable al-

though’ an integration operator is used which is unconditionally 

stable in linear analysis [6, 7, 23].

A common observation is that the errors introduced as a consequence 

of the linearisation cause the calculated solution to "drift away" 

from the exact solution. This is much more serious in dynamic 

analysis than in static analysis, since, in dynamic analysis, the 

solution for any prescribed load at a specific time is always 

dependent on the history of the solution [10, 11, 23].

In order to avoid large integration errors, we may choose to iterate 

in each load step until, within the necessary assumptions on the 

variation of the material constants and the numerical time integration 
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scheme used, Equation 4.6 is satisfied within a required tolerance[10]. 

The equations solved in the iteration depend on the nonlinear finite 

element formulation used, and are extensions of the incremental

equations. Considering, as before, a single element, in the T.L. 

formulation the equation used for the iteration is obtained from 

Equation 7.3 and is written as

t-fttR _t+Atp(i-l) t+At„(i)
(7.1.1 )

1 = 1, 2, 3...

where
e+Atu(i) _ + iu(i)

It should be noted that for i = 1, Equation 7.1.1 corresponds to

Equation 7.3 , i.e.

t+At-’(l) t+A t..AAu = u, u = u. (7.1.2 )

t+At (0) tu = u, and t+^F(0) .
0F

The calculation of the acceleration approximation t+At (i)u is the
finite element evaluation of

t+At_(i) t+At (i) 0
osij 6 0eij dv (7.1.3)

where the superscript (i) shows that stresses and strains are 
evaluated using t+ ^tu^^ . Since

t+At 1 f x
0£ij 2 ( 50 i,_ x , t+At -

j 0j,i 0 k,i 0 k,j
t+At .

ouk,j

we have
(7.1.4)

t+At-,(i) 
oF t+At (i)T t+At2(i) 0.

/ o b l  0s  dv

v

(7.1.5)

where the matrices and c+i‘s(i) correspond to the

matrices ^B^ and in Table 4.1 respectively.
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In the U.L. formulation, the equation used for a single element 

with equilibrium iteration is

t+At_ t+At_(i-l) „ t+At..(l)R - - M (7.1.6 )

i = 1, 2, 3...

in which the i’th displacement and acceleration approximations are 
calculated as above and C+Atp(i) t^e f£n£te eiement evaluation 

t+At
of

t+Aty(i)

r
t+Atv(i)

t+At (i)
Tlj 5t+At ij

t+At, (i); i.e. dv (7.1.7 )

t+At 
t+At

t+At (i)T
t+At L

t+At'(i) t+At, (i) dv (7.1.8 )

where the matrices
t t t+At L

and t in Table 4,1

and c+At;<i) correspond to the matrices

respectively.

The equation used in the analysis with material nonlinearities only 

is obtained from Equation 7.1.1 or Equation 7.1.6, by assuming 

that the configuration of the element does not change and that all 

strains are small, i.e. products of displacement derivatives in the 

strain calculations can be neglected. In this case, we obtain, 

with the previously used notation

t (i) _ t+At t+At (i-1) t+At..(i)K Au = R - F -M u
(7.1.9 )

i = 1, 2, 3....

where t+Atp(i) the finite element evaluation of

f t+At (i) . (i) C.. oe.. ^dv, i.e.
0 ij ij

V

t+AtF(i)
' a 7 L t+^(i) odv P.1.10 )
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For an assemblage of elements which are described as linear, 

materially nonlinear only, by the T.L. or the U.L. formulations, 

we have corresponding to Equation 5.14 the following equilibrium 

iteration,

LK Au
t+AtR _ t+AtF(i-l)_ M t+At~(i) r t+Af(i) (7.1.11)C u

i = 1, 2, 3...

in which the iteration vectors are now defined for the element 

assemblage, and an appropriate convergence measure need be employed 

[12], Equation 7.1.11 is used in the Newmark integration scheme, 

whereas using the Wilson 0-method, the equilibrium iteration is 

performed for time t + T [17, 18].

The equilibrium iteration in Equation 7.1.11 (and Equations

7.1.1 and 7.1.6) corresponds to a Newton iteration with a constant 

stiffness matrix [19]. It should be noted that, provided convergence 

occurs, and the material description used is not path dependent, i.e. 

the material is elastic or hyperelastic, the "exact" solution within 

the assumption of the time integration operator and the convergence 

tolerance is obtained. It follows also that in the dynamic analysis 

of geometrically nonlinear systems with elastic or hyperelastic 

materials, we do not need to form a new stiffness matrix in each 

time step, but can assure solution accuracy by using equilibrium 

iteration. In the analysis of systems with path dependent material 

properties, however, the solution path is determined by the tangent 

stiffness matrix and sufficiently small load steps are required for 

solution accuracy .•'The above ^procedure is illustrated in the revised 

flow chart made by the author of the NONSAP program vol 2 of the thesis. 

In the computer program NONSAP, one can specify an interval of time steps 
for formation of a new tangent stiffness matrix, and a second 

interval of time steps in which equilibrium iterations are to be 

performed. Table 7.1gives the step-by-step time integration scheme 

used in the program. It is noted that the same constants are defined 

for the Wilson 9-method and the Newmark method in order to have one 

computer algorithm for both integration schemes. In the iteration



p

Uq = Assured Initial Displacement.



the convergence tolerance used is the ratio of the Euclidean norms 

of incremental displacements and total displacements [16, 17].

The importance of equilibrium iteration depends on the problem 

considered and is more pronounced in problems which allow relatively 

large load steps, i.e. the solution is not highly path dependent
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8. Modal equivalence of super-structure

In earthquake engineering the dynamic analysis of structures is 

carried out using generalized coordinates in such a way that the 

equation of motion for the system will be decoupled. Each equa-

tion represents a mode of the system. The response is found for 

each mode and the final result is obtained by superimposing the 

results. This method is known as the modal analysis.

When a lumped mass model has been set up for a complex structure 

containing more than one component (or branches), it can be use-

ful to select the significant modes for each component or branch 

before they are coupled to build the total structure.

This section shows how an approximate model can be set up using 

component mode substitution. This model is more accurate, es-

pecially in the higher modes, than a reduced lumped mass model 

with the same number of degrees of freedom.

The concept of modal equivalence is described in references 

(25) through (26). We will use an independent formulation 

applied to the systems involved; a reactor power station.

The modelling technique described below was used to model the 

superstructure in this case study.

8.1 Equations of Equilibrium:

Considering horizontal accelerations only, we find that a 

necessary condition for a modal equivalent system to replace 

the subsystem is that the reactions from R , R , M and M in
ABA B

Figure (8) shall be the same for the same mode in the subsystem 

and its equivalent system.

With the reactions from the two systems equal, we have

N
£ F. . >

1J
= f : 

J (8.1.1)
i=l

F. . is 
lj

the dynamic force of the .th .thi mass in the j mode
in the subsystem

5^





Figure 8 a. Unmodified Two - Degree - o f - Freedom Model

Figure 8 b. Fixed Base Two - Degree - of - Freedom Model

Figure 8 c. Fixed Base Modal Equivalent Model

Figure 8 d. Complete Modal Equivalent Model
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Fj is the dynamic force of the single mass of the equivalent 

system in the mode

N is the number of modes in the subsystem

Neglecting the rotational inertia, and taking the moment about A 

in both systems, we have:

E
i=l (8.1.2)

The equation determined by the moment about B is linearly depen-

dent on Equations 8.1.1 and 8.1.2-

8.2 Modal Mass ;

The name "modal mass" is introduced for the mass m of the modal 
j

equivalent system shown by Figures (8c) (8d) We have

rai (8.2.1)

is the mass of the i 1 nodal point
Tis the normalized modal matrix (<p Mtfc = I)

is the normalized displacement of the iC^ nodal point 

in the mode
ch his the j generalized response of the jL mode with

frequency 0)^

The generalized response is given by

q + 2Xwq T
+ [w2]q - -<+> M ii

g (8.2.2)

u 
g 

T M

is the ground acceleration

= S is the participation vector
X ■ the modal damping factor

J J 0
(8.2.3)
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The right side of 8.1.1 is

F’ 
j

(8.2.4)

where m’ modal mass j

.. -Aw(t-t')u e
g

sin[aL (t-t’)] dt’ (8.2.5)

Equation 8.2.3 and 8.2.5, we obtain

S, x. 
j J

(8.2.6)

in 8.2.1 and furtherwhich, when inserted

will give the modal mass as the square of 

factor.

in 8.2.4 and 8.2.1

the participation

N
£ 

i-1
m. d>. . • S
i ij j

(8.2.7)

(8.2.8)

x.
j

'4j

t 
f

0

m ’ » S .
j J

8.3 Modal Elevation :

An elevation of the modal mass can be easily determined once the 

modal mass is known.

For the subsystem

N N
F • I

. . ij i "i»l J
(8.3.1)

For the modal equivalent system

Fj,hj ■ <8-3-2)

5?



Therefore on using Equations 8.2.1 and 8.2.8, and equating the 

right hand sides of the two equations above, we have

Mu *i]/sj (8.3.4)

Modal Damping

Modal damping is defined by the strain energy weighted damping:

M 
£ 

i=i
M 
£ 

i=l

(8.3.5)

Sample problem:

Two degrees of freedom of Super Structure.

Input to problem:

m^ = 2 m3 = Basemat mass = 20

m^ = 5 = Basemat Rotary Intertia 10*15

5Base Translational spring = 2 x 10
6

Base Rotational spring = 1.0 x 10

4
Beam 1 El = 10 x 10

4
Beam 2 El = 10 x 10

Any consistent set of units may be used.

Eigen value analysis of fixed base model gives dynamic properties ;

w^ = 5.11 rad/sec

= (0.538, 0.290)

= 33.22 rad/sec

= (-0.459, 0.340)
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Table 8.1

DYNAMIC PROPERTIES OF THE ORIGINAL MODEL

MA1W1X A ' (MASS)

2.00OOOOUE+OO 0. 0. i 0.

0. b.00000006+00 0. 0.

0. 0. 2.OOOOUOUt+O1 .0,

o. u. 0. 1 .01600006+0

• MA1R1X (J (SlIrFJeSS)

9 . co I 4 0006+02

I .0oU3200E+U3

2.4QIu3OU6fO3

7.30 I300UE+U2

- I.odO320Oc+OJ

3.24072OOE+O3

7 .20236OOE+O3

-I . b6u4000t+03

-2.4J IOdOOE+OJ

7.2023o00E+03

I.3600/bOE+Ob

-4.dU129006+03

7.20 I dOOOE h02

I.66940006+03

4.60129006+03 

2.0Od4O2OE*Ob

EIGENVALUE I 2.09 43 994c*01
h = 4.5 7o4o03E+0JRAL)/SEC
F = 7.2 J J 5o 9o E-0 1 HZ

VECTOR 1 . OOUoOOOt+OO 6.6413oO46-01
El JENVECTOR FACTOR = b.2144/b4c-01

-1.2242601E-02 5.9 53 6 4 bo 6-0 4

EIGENVALUE 2 9.9 1 43397E+O2
<i= 3. 14o 7044u+J IHAU/SEC
F = 5.011323JtT0UHZ

VECTOR 1.00090006+00 -7.03422226-0 1
ElUENVtCTOR FACTOR = -4.6647o9dE-O1

6.394/623E-02 -7.9 19O2b3E-O3

EIGENVALUE j 6 .90290296+03
k = 3.3063/IOE+OIRAU/SEC
F~ 1 . 324 3 1 94 6+0 1; IZ

VcCTOR -4.Iouu932c-Ol 2 . J96/21dE-01
c1JEdVECTOR FACTOR = 2.2 I 41o21c-01

1 . OUQUOOQUtOO 4 . J /<jb6 1 96-02

EIGENVALUE 4 1.9600517E+04
n= 1.40/1431E+02RAD/SEC
F= 2.23903906+0 IIiZ

VECTOR 2.Ool□1/9E-02 - 1.6097213E-02
eue hvc ctor  fac tor  = *3. i3 73oo4E-oi

-1.91q/9d 76-92 1 . OOOOOOOE+Ou



Table 8.2

DYNAMIC PROPERTIES OF THE MODAL EQUIVALENT MODEL

Hix A (MASS)

0.369 1 4l3b*(X) 0. 0. u.
o. 6.1JdJd6Ut-01 0. u.

0. 2. OOOOOOOu+O | Q,
u. 0. 0. 1,01600LI0E+0

MaTHIX 3 (SHrFdbSS)

1.6/ 00dJOe+02 0. 2.0^62/90E+03 -1,6/ 00 'JdOu + 02

0. o. / 32 1 23Oc+O2 2. 7/6OJ9UE+O3 -6 t / 3d } 23Uqt O2

2.0262/9OL+O3 2. //o0090t+0J 1.3600/60c+J6 -4,do 1 2dd0i;+03

*1.0/ ^JOdduc+02 -O./32 I230E+02 -4.6012 SdOd+OJ 2,0Jd4>j20l;+0d

eigenvalu e 1 2.0944 IO/c+OI
<1= 4.6/o4/32 c*OOi< AL)/Si:C
r= 7.2ddoa9jL-0I < i Z

VcCfJrt 1 . CX)ou000c+0O 6.934041/E-02
HlUciWbCfJW rACUR = 3.9bdo44ot-0 1

-1 .6332/2dfc«O2 6,/422q6Qc -04

Eigenv alu e  / 9.91434boe+02
n= 3 . 1 4o/J64c+J 1 KAl)/Sl:C
b = □ . 0 1 1 3Z 44 li+UJi tZ

VcClJi? -7.64 1 1d19c-o3 I . OOiXJOOOb+OO
elJbiWcCfUH r’ACfJH = 1.2o/43611 + 00

-2 .dud 66 2/t-02 2,92 /Uq22 F—03

Eigen valu e^ j o .902903iq +oo
r<= 3.30J3 / I It+0I WAD/3cC
F- I .32zdI 941+0 hIZ

VcCfOH 4.d940dI4E-U2 / ./d66 / I Ob’-U 1
Hl JEh /uC l’OH FAUTJH s 2.2141d21c-01

I .0000000b+ 00 4.0 7o 66ddti-02

Eigenva lue  4 1.96 0061dE+04
/<= 1 .40/ 1 431 F+02H AL)/SbC
F = Z .239d39/E+0 IliZ

VcCl Wi? - 1 . O2b9690c-03 -6 . do96666c-02
H1 JcdVECi’Jrt FACTOH = 3 . 1 J/3u66t--0 1

-1.916/9/9E-02 1 . JOOOvXJOb + OO
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The computer output in table 8.1 shows that A is a diagonal mass matrix 

having three horizontal degrees of freedom and one rotational degree of 

freedom due to rotational motion of the basemat. Matrix B is the result-

ant stiffiness matrix. From the eigenvalue analysis of the original model in 

fig. 8a, we obtained four modes of vibrations, three horizontal modes 

and one rotational mode.

The modal equivalent comprehensive model is obtained by using Cantilevers 

from fig. 8c and the basemat and spring properties from fig. 8a. Computer 

out-puts in table 8.1. and 8.2. show the agreement between the original 

model and the modal equivalent model to more significant figures.



prevention of unwanted reflected wave from the Finite element 

boundary of the soil model

Introduction

It is a recognised fact, that in soil-structure interaction 

problem, the effect of seismic waves reflecting from the ar-

tificial boundary (Finite element representation of infinite 

continuum) causes much of the difficulties in evaluating cor-

rect structural response. Thus in order to obtain adequate 

evaluation of response it has been necessary to assume neces-

sary boundary conditions in the finite element model of soil 

mass supporting the structure, which would adequately repre-

sent infinite media. Clearly the main limitation of this ap-

proach is that not all boundary conditions can be applied sa-

tisfactorily.

For the simple reason is that seismic waves are not one dimen-

sional or plane waves but spherical waves consisting various 

components such as ’P’ waves, ’S' waves, Rayleigh waves and 

not necessarily the incident waves are normal to the surface. 

In short, the problem of preventing unwanted reflected wave 

from the finite element boundary is very complex.

However in recognition of these facts and associated difficul-

ties, Lysmer (49) proposed that boundaries of the finite ele-

ment model should be removed far away from the structure, so 

that full effects of radiation damping are correctly represen-

ted. Alternatively Kausel (50) proposed, that analytical model 

may be provided with transmitting boundaries which absorb 

any wave effects emanating from the structure and thus simula-

tes the effects of an extensive soil deposit.



Huang (51) proposed another alternative method which involves 

the use of viscous boundaries along the planar surfaces of a 

slice of soil on which one or more structures are located. 

Tzung and Lee (52) proposed improved transmitting boundaries 

for time domain analysis to account for highly non-linear foun-

dation medium. Authors in ref. (2) and (4) used forced boundary 

conditions to eliminate the effect of wave reflection.

These can achieved by imposing zero displacement (fixed) or 

zero stress (free) boundary conditions for sides of the grid 

and to apply earthquake shaking at the bottom of the grid. The 

bottom behaves as a rigid boundary with respect to waves. This 

appears to be satisfactory as long as the period of the wave 

motions are long enough that waves effects are negligible. To 

use the above method, authors in ref. (2) and (3), proposed, 

that the critical depth of soil mass measured from the bedrock 

to the bottom of the Basemat should be determined first. If 

the critical depth is sufficiently larger than the distance from the

structure then the wave effect can be neglected. To determine the critical 
length, the authors proposed that if the minimum rise time of

the periods of interest t is known r
holds

than the following relation

Lcritical t r Cg = Shearwave velocity

This approach appears to be too idealized.Because sub soil la-

yers are not homogenious. Each soil layer has its own physical 

properties, such as shear modulus, mass density and poisson’s ra-

tio. Therefore propagation velocity of shear wave is not con-

stant through the layers. Furthermore at the interface between 

the layers, the effects of multiple reflections and dissipations 

of waves cannot be ruled out.

€3



Kunar and Rodrigues-Ovejero (57) proposed non-reflecting boundaries 

at the base and vertical faces of a two dimensional finite element 

or finite different soil mesh by introducing viscous dashpots as 

energy absorbers at the base of the model where the seismic excitation 

is applied. For the lateral boundaries a superposition non-reflecting 

boundary formulation is recommended. To simulate non-reflecting boundary 

on the lateral surfaces, the authors introduced two overlapping but 

independent boundaries A and B,.connected to the main grid. The wave 

that propagate into the boundary zones will be reflected off the 

boundaries of region A and B, which are then constrained. Using con-

strained conditions the reflections are eliminated by averaging the 

stresses and velocities in two boundary regions.

Basically, the idea of prevention of reflection of waves from the 

finite element boundary is similar to the one proposed by the author 

of this thesis, but the present technique used in the analysis is 

different. The quiet boundary technique incorporated in the computer 

program for the purpose of reducing unwanted reflection from the 

boundaries is based on the theory of one dimensional wave propagation. 

The underlying idea is to compute the motion which a nodal point 

on the boundary of the finite element grid whould have if there 

were no boundary, that is the motion which the same point would have 

in an infinite continuum and to force the point to have that velocity. 

It may be easier for the reader to conceive of this as anticipating 

a reflection and cancelling it as it occurs by superposing signal 

of equal in magnitude but opposite in sign. The technique is exact 

for one dimensional wave propagation problem and has given satisfac-

tory results in the type of two dimensional calculation performed 

in the present and previous study (53) as well as in three dimensional 

problem (54).

The advantages of the present method over the one proposed in ref

(57) are as follows:



1) Simplicity of solution algorithim

2) Use of virgin input (acceleration, or velocity time history from 

the seismograph. Whereas the method described in ref. (57) re-

quires deconvolution process using a program similar to SHAKE 

to generate stress on force time history at the base from the 

acceleration time history. This can polute the prescribed accelera-

tion time history input. The reason for using force time history 

is that the input acceleration time history implies prescribed 

velocities and displacements, along the base nodes, to which the 

dashpots are connected. This renders the dashpots ineffective as 

they are no longer free to move to respond to the radiation waves 

caused by interaction between the structure and soil.

3) In the present method P and S waves can be treated equally effecti-

vely .

4) The present method is a one step process, where as the method 

proposed in ref. (57) requires two steps namely deconvolution 

and elimination of reflection.
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5.1 Method of preventing unwanted reflections from artifical boundaries

The present quiet boundary technique is most clearly illustrated 
in the one-dimensional propagation case. This is shown in Figure 
9-1 with the aid of the common conception of real and "phantom" 
waves. A dilatation wave (p-wave) is shown travelling in a finite 
element rod from the left toward a fixed boundary. This wave has 
a partner "phantom" wave travelling from the right. As these waves 
meet each other at the boundary, they superpose to produce zero 
particle velocity at the boundary. At later times, the incident 
wave has travelled out of the finite element grid and has become 
a "phantom" wave, while the original "phantom" wave has entered 
the grid and has become a reflected wave which may interfere with 
the response calculations within the grid. The aim of the quiet 
boundary technique is to minimize or prevent boundary reflections. 
The analytical technique used is to calculate the motion of the 
boundary surface as it would occur if the rod were continuous [32]. 
The computer then imposes this motion on the boundary. Inputs to 
the calculation are the velocity- or acce 1 eration-1ime history 
of the incoming wave and the material properties of the rod. The 
calculation is based on the solution to the wave equation in one-di-
mension.

The effect of the quiet boundary technique is illustrated in Figure 
9-2. It may be considered that the reflection occurs, but that 
it is exactly cancelled by a wave of equal magnitude and opposite 
sign. Hence, the problem in the quiet boundary technique becomes 
one of defining the amplitude of the correction wave and its phasing 
relative to the reflected wave.

To illustrate the application of the quiet boundary technique, 
let us first consider the problem of representing an infinitely 
long one-dimensiona1 continuum by an elastic rod of finite length. 
In this, it is desired to determine the boundary conditions at 
the far end of the rod, such that the response in the interior 
of the rod corresponds to that for the infinitely long continuum.

In this problem, it is assumed that at a time t = tn, the particle 
velocity at point i and i-l are known. i is a point far away at 
the boundary, and point i-l is located adjacent to it. The distance 
between the two points is A. x.

tg = particle velocity at point i-l, at time t = tg
vi-l

= particle velocity at point i, at time t = t g



The solution of the one dimensional wave equation gives 

timeparticle velocity at i at a

t = t_ + Ax/C
0 P

as

(co +
r 1

C0
vi -1

the

(9.1)

(9.2)

isC
P

the speed of propagation of the pressure wave.

Through linear interpolation, the velocity v at a time 

t = tQ + 2 At is found as follows:

<C0 + 2At)v
i

C0 (Ax/C - 2At} + (tn + Ax/C
vi P 0

p’v.
1

(2 At}

Ax/C
P

(9.3)

For this to be the solution of the

2zJt < Ax/C
“ P

wave equation

(9.4)

At every time step, (t + 2At) is computed and applied to the 
Vi

nodal points, where it is regarded as the prescribed velocity at 

time t = tg + 2At. In Figure C9.2J is shown the effectiveness 

of this method when treating one dimensional wave propagation in 

a rod of finite length. In this example, the motion at the 

center of the rod is compared when the quiet boundary technique 

is applied with the motion when the technique is not applied.

One more point that also needs to be discussed is the motion 

arising due to the interaction with the structure in the middle 

of the grid, which must be cancelled to avoid unwanted reflection, 

The term "scattered velocity" will now represent such motion.

The term "boundary velocity" will represent input motion, which 

is computed prior to finite element analysis.
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At the node i-1 in Figure C9-1], the particle velocity at time

t = is composed of boundary velocity and scattered velocity.

This is indicated below

( 9.5 )

xt 0 b . , e (tn - x/C ) INow v i is found from 0 p v

expressed as follows:

(tQ - Ax/C ) b 
v.

1

for all time and is

( 9.6 )

Thus, the scattered motion propagating toward the boundary at 

point i-1 and time t = tg is

C0 s C0 (t0 ’ 4x/cp) b (9-7 )
Vi-1 ’ Vi-1 * vi

Now using the wave equation to find the scattered wave velocity

iat point and at a time t 3 ftU kl-Q + Ax/C^) gives the following:

or

(co Ax/C ) s
P Vi

L0 s
Vi-1

(9.8

(t0 Ax/C )
D S
■ vi

co
vi-l

(tn - Ax/C ) b 
0 P v. ( 9.9

The correction to be made to the

at time t

scattered
■ co
wave

+ 2At in order to

prescribed boundary velocity 

prevent reflection of the

is

co + 2&t s
vi

C0 s (cn + Ax/C )
v. x (Ax/C - 2At) + p vS x 2At

1 2 i
Ax/C

P
( 9.10)

+

+

)

)

Then the adjusted boundary condition at time t = t + 2At thus
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becomes

<C0 + 24t) b (t0 + 2At) b (tQ + 2At) s (9.11)
V. =

1
V. +

1
v.

1

In the discussion above, the quiet boundary technique is applied 

to incoming pressure waves. The above method is equally effective

when dealing with incoming shearwaves. This can be done just

by merely changing C to C
s

in equation (9.10).

Based on the theory of one dimensional wave propagation, and the 

derived formula to suppress the unwanted wave from the finite element 

of the soil model a computor program VELCOR (vol. 2) was written, 

and used with the modified version of NONSAP, to analyse non-

linear soil-structure interaction problem. The computer program 

VELCOR in its present form (submitted for thesis) can be used in 

one and two dimensional problems quite effectively, and will be 

demonstrated in the actual problem dealing with the non-linear res-

ponse of embedded structure.

VELCOR is written in such a way, that the program can be used as 

a subroutine with any other program dealing with structural dynamics. 

The interface with VELCOR and other program having dynamic capabili-

ties, can be formed without any difficulty, by using a lebelled 

common, with the variables that are already in use in the program 

which is to be coupled with VELCOR. Guidance to implementation, and 

additional input data are explained in VELCOR.

VELCOR can be used in non-linear problem such as elasto-plastic 

deformation of material such as soil. We especially mentioned soil 

as material because the problem under investigation in this thesis 

makes the use of soil sublayer as supporting medium of the embedded 

structure, and non-linear response of structure is mainly due to 

non-linear (elasto-plastic) behaviour of soil unter earthquake 

loading.

Most commonly used criteria for yielding of soil, is the generalised 

Drucker-Prager yield criteria. For two dimensional problems such

6 9



as the case we are investigating in this thesis, this is reduced 

to Mohr-Coulomb yield criteria, and the yield function is calcu-

lated accordingly. Subroutine "STRESS" computes the present 

Stress level, which in turn calls subroutine CANDE, which com-

putes the incremental corner displacements and Strains and pre-

pare to enter into Elastic-Plastic analysis, by setting up Stress 

and Strain vectors, and form the material matrix using the consti-

tutive laws by calling "ELPAL". The subroutine YLDFUN is called 

in ELPAL, which adjusts the Stress deviators so that Stresses 

exactly satisfy the yield condition. A flow chart for VELCOR 

is included in the V0L2 of the thesis.

For two or three dimensional problem (x) and (y), (z) to

account for boundary velocities at any grid point in x, y and z 

direction. Similar notation can be applied to scattered wave velo- 
s s s

city V. (x), V. (y) and V£ (z) in three orthogonal directions. The 

equations (9, 10) and (9, 11) are solved simultaneously for two 

or three dimensional cases (53, 54).

We monitored Element No. 41. and computed the vertical Stress 

time-history response. For the check problem utilising two dimen-

sional quiet boundary technique, we used the soil model (without 

structure) in Fig. 12.2 A. The element 41 is located at a distance 

of 105.0 m from the left hand end of the boundary.
. . 2An arbitrary triangular Stress pulse of 6000 *Vm was assumed. The 

duration of pulse including rise and decay time was assumed to be 
°*°1 Sec. The pulse is assumed moving at a constant speed over the 

surface of the plane.

The integration time step was selected according to the following 

formula:

Cp « Velocity of pressure wave propagation 1373.0 m/s. 

f = Highest response frequencey under consideration = 15 Hz 

X Wave length or element-length = 15.0 m

Maximum time step “ At 1
10

n
■ Cp

or At = 1
10

15.0
1373.0 = 0.001 Sec.

7o



Number of integration steps 300 (0.3 Sec.)

In Fig. (9.3) it shows that the initial Stress peak remains virtually 

unaffected by incomplete canceling of reflection. Reflections of
2

about 25 Z (150 Kp/m ) of the peak signal appears in the finite 

element solution. These reflections are complicated signals con-

taining P and S waves. Maximum amplitude of any one of these waves is 

governed by the maximum amplitude of the incident P wave which is
2 2600 Kp/m (6000 N/m ). Therefore it is not surprising to see sig-

nificant Stress oscillations in the free field Stress time-history. 

The solution obtained by finite element method is then compared with 

the analytical solution given by Cole-Huth (45). Authors in ref.

(45) postulated that if the motion of line load producing pressure 

(Stress) on the surface of an elastic half plane is known, then 

the resulting Stresses and displacements can be estimated.

To use the solution technique given by Cole-Huth, we must assume 

the velocity of the pressure pulse, or moving load and Mach numbers 

M^ & M,j, with respect to longitudinal and transversal elastic waves 

must be known. We assume a supersonic case in which M^>- 1 and M^,^> 1. 

For example we assume the velocity of pressure pulse as 1500.0 m/sec. 

The velocity of longitudinal wave in the middle layer is 1373 m/s, 

and the transversal wave is 800 m/s. (See 12 table 12)

Therefore “l = 1500 > 1
1373
2000

and mt 800 1

Once our assumptions are fixed we use the equations 51, 52 and

53, of ref. (45) to derive the resultant vertical, shear and hori-

zontal Stresses. In Fig. 9.3 and 9.4 only the resultant vertical and 

horizontal stress time-histories are plotted.

As far as the drawback of this method, it was found that there is 

impedence mismatch at the interface between plastic element and 

elastic element near the boundary when the computation was extended 

beyond 10 seconds of earthquake input. This is because the boundary 

elements were forced to remain elastic, while ajdacent to the boundary

7 4



elements were allowed plastic deformation.

However in the vicinity of the Basemat, no such restriction was 

made and therefore, no significant error was allowed to occur.

72.
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10.

O

Comparison of Finite element solution with closed form solution

of soil-structure interaction problem

Two attempts, identified as cases 1 and 2 were made to compare the 

present methods of computing interaction effects with those of previ-

ous investigators. We consider a canteliver structure embeded in a 

strip of soil fig. (10.1) and is reported by Scavuzzo in Ref. (34). 

The present results are compared with those of Ref. (34) in fig.

(10.3).

Comparison is made in Fig. 10.4 between present results and those 

reported in Ref. (35). The comparison is qualitatively favourable. The 

quantitative differences are partly due to distortion of input in 

the analysis of Ref. (35). Where as the input is 5*c/s harmonic mo-

tion and the present analysis faithfully preserve this. The analysis 

of Ref. (35) distorts the input to predominantely 4 CPS motion by using 

excessively large element in the soil. This data is also presented 

in Table 10.2.

* Note:

Dominant exciting frequencies of input of cases 1 and 2 are found 

by plotting spectral density against frequency. This was done by 

authors Program SEMON (Simulated earthquake motion) BBC Programm No 

HT2192/79.

A second comparison is made with Scavuzzo's closed form method in Ref. 

(34). Scavuzzo's analysis represents the horizontal translation degree of 

freedom of the base mass and of the 4 CPS and 5 CPS oscillators. His 

analysis differs from the present case 2 in that he omits rocking motion 

of the foundation. The rocking motion is produced by differential 

vertical motion of nodal points 27 and 28 (Fig. 10.1).

The input to Scavuzzo's analysis was 5 CPS harmonic defined in table 

(10.1). Now when the strip foundation was analysed without the 

structure (free field) it was found that the peak acceleration at 
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nodal points 11, 27, 28, 31 (on the surface) was in average 1.29 

times greater than that computed by Finite element analysis. Now 

what causes such descripency? One possible argument is that the 

boundary reflection could not be efficiently eliminated due to the 

size of the FE Grid.which distorts the results. Furthermore Scavuzzo 

considered the Strip foundation infinitely long, so as to allow the 

wave train pass without reflection. Secondly momentum being changed 

from all horizontal to part horizontal and part vertical as the 

input motion propagates through the grid. To compare the two methods 

the scaling factor should be taken into account as mentioned before, 

when output is evaluated. This is done by scaling upward the foun-

dation response of the present case (2) by 1.29 Fig. (10.2) and table 

(10.3), which include scaling factor. These shows that the two methods 

give similar results especially at 5 C/s which is the fixed base 

fundamental mode of the structure alone.

The input to our present problem is shown in the following table:

Table 10.1 Case Elastic soil

Case 1

VH = (60,5)

0,6t

{ 1- —1 1 2tt (0,6 sin + 0,2 cosflt) }

inch/sec
Case 2

0 < t < 0,8 sec

(16J (- t
cos 10 fit + (7^7) sin 1071t]

0,8 < t < 2 sec
inch'/sec

VH [- cos 10 Tit + 0,5 (t cos 10 fit) - (77^)] sin 1° H t.

t > 2 VH = 0.
inch/sec



10.1 CLOSED FORM SOLUTION OF SOIL-STRUCTURE INTERACTION

During shock motion, inertia forces of large structures will influence the 

foundation motion locally. Scavuzzo [34 has presented an analytical solution 

to the problem by coupling a N-Mass structure with a one-dimensional wave, the 

resulting solution is formulated as a Vol terra integral equation. By using an 

input wave similar to those encountered in earthquake motions, the significance 

of this interaction was investigated. Results show that the reduction in 

spectrum acceleration is significant and depends both on structure frequency 

and weight for a given foundation input.

The theoretical formulation is based on the propagation of one dimensional wave 

in the elastic medium, Fig.0o.7j The interaction between the structure and 

elastic wave is taken into account in a one-dimensional manner. Thus the spectrum 

curves of the free ground motion Up and the motion at the base of the structure 

U can be analysed and compared.

The assumptions made in this mathematical model however are significant. It is 

well known that surface waves from the earthquake force are not one dimensional, 

and there are three types of waves associated with the earthquake wave 

propagation, namely pressure waves (P), shearwave (S) and Ra/leigh wave (R). 

The structure may also excite all three of these waves in its response.

However, these simplifications enable us to form a closed form solution and 

thereby leading us towards a step forward to the solution of more complex 

problems.

l0-2 9NE_piMENSI0NAL_WAVEJ0LUTI0N

The one dimensional wave solution is divided into two portions. The solution 

to the free wave and the solution to an infinitely long bar subjected to a 

transient force at the origin. Since one half of the total force will act on 

each half of the infinite bar, a semi-infinite bar was used in the derivation.

The governing differential equation with the following intitial and boundary 

condi tions

(10.2.1)
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the boundary conditions are

U (x, o) = 0.0

9U (x, o) _ a

at

U (°°, t) =0

FA 3U (°»
9x " 2

where

a = wave velocity in bar

A = bar cross section

E = elastic modulus

U = displacement

U (x,t) = displacement in function of space (co-ordinate) and time

F (t) = inertia force at the structure foundation

By making use of Laplace transform the solution can be shown as:
t - (x)

U (x, t) = 2Ea J F(X) lx- t > J (10.2.3)

U (x, t) « 0 t < - (10.2.3)a

Where X is a parameter, and is defined as follows:

2Xj = (a mj wj / 2 EA) and has unit

1/sec., where

mj = ithmass of a multi-mass system

wj = ith frequency

superimposing this result onto a wave travelling in the bar the following

is obtained for t > x/a

t-(x/a)

U (x.t) = 2Ea >' F (X) dA + Up (x - at) (10.2.4)
0

where Up is free ground displacement.

3o



The forces acting at the base of a structure caused by Jth mode of Jth multi- 

mass structure can be written

FJ

where

t ,,
(t) = - Mj Wj f ’ll (0,T ) sin wj (t - t ) dr 

o

Mj is the modal mass of the Jth mode

. (Vi Xij)3

L

(10.2.5)

where x. . mode shape of 1th mass and Jth mode. 
J

Therefore the total base force from all modes is .

F (t) = M. W. ? U (o,T ) sin W. (t -r ) d?
j J J o

(10.2.6)

Now substituting eqn 10.2.6 into eqn 10.2.4 the following integro- 

differential equation is obtained for t - -a

t-(x/a) r

J / U (0, T ) sin Wj (r - t) dr dr + Up (/.-at) (10.2.7) 

o o

The above equation can be changed into standard form of the volterr^ integral 

equation by taking the second derivative with respect to time. Furthermore 

the base acceleration is obtained from the resulting equation. This 

acceleration can be directly used to determine the shock spectrum. Thus, 

by taking the second derivative with respect to time, the following is obtained 

t-(x/a)
U (x,t) = -Xx. ( U (0,T) cos w. (t - 7 - t ) df+ U (x-at) (10.2.8)

j J J J a p

0
At the base of the multi mass system the equation 10.2.8 becomes (x = 0)

t
U (0,t) • U (0,7) cos Wj (t-T) +’ilp (t) (10.2.9)

J 0

The equation used to represent Up(t) = Free ground motion, see table 10.1 ,case 1.



Velocity response spectra using case 2 input

Comparison of results of author's computed value with those given 

in Ref. (35).

Velocity response spectra (Foundation/Freef  ield surface response)

Table 10.2

Frequency Horizontal Vertical

CPS Author Ref. (35) Author Ref. (35)

1 0,24 0.70 0.30 0.45

2 0,38 0.63 0.22 0.39

3 0.30 0.4 0.21 0.28

4 0.30 0.4 0.19 0.44

5 0.22 0.16 0.20 0.44

6 0.19 0.22 0.18 0.36

The results of the comparative analysis are shown in the following

table:

Table10.3

Case 2 Elastic soil

Frequency Spectral velocity (cm/S)

Author

Spectral veleocity (cm/s)

Scavuzzo

1 0.84 3.0

2 2.84 6.0

3 5.4 7.32

4 12.19 12.24

5 45.03 47.02

6 9 22.40

8 3.6 5.31

a 7



10.3 CALCULATIONS

By making use of the free wave motion in equation (10.2.9) the response 

spectrum was calculated. The resulting curve is shown in Fig. (10.3) and then 

compared with the present finite element solution technique. As seen 

from fig. (10.3) the amount of reduction in free wave passage response 

depends both on the natural frequency and lambda value. The values used 

in the calculation of lambda, assuming the building to be represented by 

first mode.

?S3





2 O» co r- <0 o o ao f"" <o io ’**■

Ch CO r* <D



uoi4Dja]3DJv



•O
l 6 

8

L°
O

ar
- DM

si
o9

n )
 1-10

0 u
nd

 1-
10

00
 

85
,3

3 m
m

 
A

er
n.

-L
.u

ch
 A

G
 B

er
n N

r. 
55

2 
T



11 • ISON_BETWEEN_ELASTIC_AND_INELASTIC FINITE_ELEMENT_SOLUTION AND

clos ed  form  sol ution

In the previous section (sec. 9) we demonstrated the importance of 

suppression of reflected wave from the finite element boundary, when 

the soil mass is subjected to transient disturbance. In section 10, 

we demonstrated how the response analyses by finite element method 

of a hypothetical structure on a strip foundation agree with the 

results obtained by closed form solution technique of soil struc-

ture interaction problem. In the finite element analysis we used 

quiet boundary technique described in sec. 9 and obtained results 

which agree fairly well with those given by closed form solution. 

So far the investigations are mainly concerned with the elastic 

deformation of material and response analysis in elastic domain.

As we will see later on that soil sublayers can be subjected to plastic 

deformation, due to earthquake shaking, and thereby influence the soil - 

structure interaction analysis considerably. Basically this means 

that due to localised plastic deformations and spreading of plastic 

zones within the soil sublayers affect the propagation velocities of 

stress waves, and consiquently the degree of response. In fig. 12.3 

the interaction response spectra shows the difference between the 

linear and non-linear analysis. A close look at the fig. 12.3., will 

reveal the frequency shift of peak responses and suppression of peak 

responses in non-linear soil-structure interaction analysis.

Therefore in this section we would like to demonstrate the capabilities 

of modified NONSAP program using finite element method to solve the 

wave propagation problem in elastic and elastic-plastic medium.

Our aim therefore is to study the convergence of solution obtained by 

finite element method to true solution using exact theory.

The term convergence is used here to denote the tendency for a solution 

by present finite element method to approach the exact solution.



The problems used to illustrate convergence are as follows:

1. Plane, one dimensional wave propagation in an elastic rod.

2. Plane, one dimensional wave propagation in an inelastic rod.

The case of a plane, one dimensional wave propagating in an elastic 

bar is illustrated in fig. (11.1).

The governing equation used in the exact solution is as follows:

>2U = (k/p ) }2U
—o~ k ‘o' —y

where the wave velocity a

For longitudinal wave K equals Young's modulus E. If the rod is clamped 

rigidly or otherwise forms part of an infinite medium then K = K + 4 G/3 

where K is the bulk modulus of the solid, and G is the modulus of 

rigidi ty.

The stress profiles calculated by the present finite element method at 

various times are compared with the exact solution. The quiet boundary 

procedure mentioned in seen (9) is used to absorb the waves at the 

bottom boundary. Its effectiveness is demonstrated by the apparent 

absence of reflection at 0.03 sec.

11.1 PROPAGATION_OF_ELASTIC:PLASTIC_WAyES_IN_ROD

In order to make a convergence study on the propagation of elastic-plastic 

wave, a general solution technique due to Kachanow (40) will be used in 

this study. The solution technique is modified, and applied to a specified 

problem, and the results are then compared with present finite element 

solution method.



General Remark

At the end of the second world war great interest developed in problems of 

propagation of distrubances through the elastic-plastic media. Real media 

are not completely elastic (for example in Seismology) and it is necessary 

to take into account plastic properties . Finally, dynamical problems can be 

of great significance in the analysis of high speed technological process.

The first problems in the propagation of compressive elastic-plastic waves 

in rod were considered by Rakhmatulin fry] von Karman and Duwez W and 

Taylor [y?] . Various generalisations of this problem exist.

.2 BASIC.ASSUMPTION

We consider the problem of waves propagating in a thin prismatic rod whose 

longitudinal axis coincides with the global X axis, and make the following 

fundamental assumption.

1) The cross section of the rod remains plane and normal to X axis.

2) Deformation is small, so that we can neglect the change in dimension of 

rod, and therefore the geometric stiffness property.

3) Inertia forces corresponding to the motion of particles of the rod in the 

transverse direction as a result of expansion and contraction of section 

can be neglected.

4) The influence of strain rates on the relationship between CTX and cx can 

be neglected.

Now within the elastic limit, the material obeys Hooke's law:

T = E.e for |e| < e0

We shall assume that the compression curve is similar to the tension curve 

unloading proceeds along a straight line. A classical example of stress-strain 

curve, in keeping with the experimental data is reproduced in fig (11)



In dynamical problems the strain rates are large, and their influence on the 

deformation curve can be substantial. This influence is therefore neglected 

here in order to obtain a closeform solution to elastic-plastic wave propagation. 

Therefore, the assumed relationship a =a (e) is only a first approximation, 

and relates to average strain rate in the given interval. To calculate the 

influence of the strain rate it is necessary to consider elastic viscoplastic 

model of the medium (see appendix A ).

11.3 EQUATION OF MOTION

The differential equation of motion for a continuous medium

ax
^2i i 

° at? (11.3.1)

Because deformation is small; P = constant, since

cG
oX

ao t Je
as. ax

a2u

’ 3x 2 (11.3.2)

We obtain
a2u _

-
2 a2u

3x2
(11.3.3)

where the constant a is the wave velocity = ' de (11.3.4)

In the elastic region the propagation speed is constant.

In the plastic region the propagation speed decreases with increasing defor-

mation Fig (11.2).

The second order differential eqn (11.3.3) can be conveniently replaced by a

system of two first order equations.

av 2 3e 9e ay (11.3.6)at = a ax ’ at ax
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We now suppose the function and £ are prescribed along L, thereby combining 

the relations

de = dt + dx (11.3.7)

dv = dt + dx (11.3.8)

We obtain along L a system of four linear algebraic equations with respect 

to the first derivatives.

3c 9c
at * ax *

We then find

_ A_L
at ’ a ’

A is the determinant of the system and A] .... A4 are the approximate 

co-factors. It is easy to see

A = dx2 - a2 dt2 (11.3.10)

If L is a characteristic curve then the derivatives are intermediate along it, 

i .e.

A = 0, A] = A2 = &3 = A4 = 0 (11.3.11)

Consequently

dx t a dt = 0 (11.3.12)

The condition that Co-factors are zero, now leads to the relationship

a de t dv = 0 (11.3.13)
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We now introduce the following function

(e) = | a (e) d£

0

(11.3.14)

Then

d [V t ip (e)l = o (11.3.15)

Thus the 

distinct

system of differential equations under consideration has 

real families of characteristics

two

dx - a dt = 0 (11.3.16)

V - ilf (e ) = const = C (11.3.17)

dx + a dt = 0 (11.3.18)

V + •I* (e ) = const = n (11.3.19)

The relation (11.3.16-17) refer to forward wave propagation and (11.3.18-1?) 

refer to backward wave.

If the quantities e , v are continuous but the derivatives are discontinuous 

then the wave part is said to have weak discontinuity. If these functions e 

and v are discontinuous themselves then the waves are called shock waves £*3].

11.4 IMPACT_LOAD_ON_A _SEMI_I NFINITE _ ROD

We now consider a semi infinite rod x > 0 which is at rest at t = 0. At the 

end x = o we prescribe the velocity v = v (t)

or the stress o = a (t)

If a body of mass m impinges on the end of the rod with the initial velocity

Vo then

m • ~ s (T. S when x = 0 (11.4.1)

Where S = cross-sectional area and v = v0 at t = o. 
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We consider now that at t = o the rod experiences a tension or equivalently 

some strain

The initial and boundary conditions are

t = 0 u (x, t) =0 (x >>0)

s ■ ° (X > 0)

x = 0 o = Constant = ox (0 t < t])

o=0 (t >, tl)

PROPAGATION OF ELASTIC WAVES

We now first consider the propagation of elastic waves.

The solution of wave equation given by d'Alembert is

U = f (x - aot) + ? (x + aot) (11.5.1)

Where f, y are arbitrary function determined by boundary conditions.

When a* < aQ the deformation of the rod is elastic, the wave speed is constant 

(a = a0) the eqn (11.3.3) becomes the classical wave equation. This solution, 

in the form given by D,Alembert

x - aot = const, x + aot = const (11.5.2)

since the displacement is continuous on the wave front. The solution then has 

the form U = e* (x - aot) (UoJ . (11.5.3)

0^



11,5 BB9PAGATI0N_0F.ELAST0.PLASTIC.WAyE

We turn now to the propagation of elasto plastic waves when a* > a0 . The 

system of non-linear differential equations (11.3.6) is reduceable and can 

be transformed analogously to the equations of the plane problem

Changing to the new variables C, n we obtain

21 + d21 - o -HU - a — = 0 (115 4)at ax at ax u u

The system can be 1 inea.rizeqby an inversion of the variables if the Jacobian

A (5. n) = D (E> n) _
(x, t) 3x

an 
at

ac
at

3n , 
ax F 0 (11.5.5)

We can now obtain the canonical system

3t
3n an

0 6 + a3 3E = 0 (11.5.6)

It should be pointed out that this canonical system is not equivalent to the 

original system.

With the aid of eqn. (11.5.4) we can obtain the solution for which the

Jacobian A (£, n) = 0

Therefore

n) = 2a 21 an 2 ac an = 0
ax ax a at at

n) = |J| = 2a ac .
ax

3n 
ax = 0 (11.5.7)

(C, n) = PI = - *a ft an 
at = 0 (11.5.8)

The above solutions were lost in the process of inverting the variables. 

Hence it follows that the lost solutions have the form:

1. C = const = 50 n = const = nQ

2. n = const ■ n0 ■

3. € = const = ?o
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In the first case it follows from (11.5.4) that \> = constant, c = constant 

i.e. a state of constant strain (a state of rest).

In the second case one of the equations in (11.5.4) is satisfied since 

n = no while the other after substitution of £ = n0 - 2 0 (e) takes the form

9c 9c
9t 9x (11.5.9)0

The differential equation of the characteristics

dt _ dx _ de
1 " a “ o

The integrals are

c = q x - at = C£

C] and C2 are arbitrary constants. The solution of the original system of 

equation is

n = 0(c) + v = n0

X - at = 0 (e)

where 0 is an arbitrary function. Hence the characteristics are straight lines.

The third case (£ - constant) is analogous to second except that here the waves

move in the opposite direction.

11.7 prop agat ion _of _an _ela sto :plas tic _loa din g _wave

When the end of the rod is subjected to suddenly applied load, a simple 

extension wave v + ? (c) = n0 begins to propagate, ahead of the wave there is 

state of rest, hence n0 = 0 and v + ? (£) = 0

Different deformations will propagate with different speeds: elastic deformations 

with maximum speed (a0), deformations beyond the elastic limit with least 

speed.
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At the wave front X - aQt = 0 the strain experiences a jump from zero to co 

and the particle velocity from zero to v = - f (e0) = - aoco immediately 

after this a central expansion wave passes:

v + ? (e) = 0, x - at = 0

This can be characterised in x - t plane. A pencil of .straight characteristics 

emanating from the coordinate origin . The speed of propagation of strain 

is constant along each ray fig (11.2). The speed obviously decreases for the 

characteristic with large slope. At any fixed point x = x' we have a state 

of rest the wave front arrives at the instant t = x'/a0.

Next, in the interval x'/a0 < t < x'/a(£*) plastic deformation appears and 
gradually increases at the moment t = x'/a (£*). This deformation reaches 

maximum value and does not change subsequently.

11.8 ^LOADING-WAVE

'At instant t = t] a new wave begins to propagate in the positive x direction. 

This is unloading wave. In the unloading region the differences in stresses and 

strains are related by Hooke's law.

- am = E ( e - cm)

Where am and em are the values of stresses and strain attained in a given 

section of the rod at the instant when the unloading begins fig. (11)

These values are unknown functions of x. Substituting in the equation of motion

we have

2a U 2 2 
a u Ip (X) (11.8.1)~2 = ao Z.___ +

2ar ax

Where

t (X) . 1 9 / 
ax ■ E-em) (11.8.2)

is known.
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We now consider that the unloading wave moves with the velocity a0 of the 

elastic waves. With passage of the front the stress and strain experience 

discontinuities CUO. ,

1 cz

e - e = [el M
+ - . v_ i

------ **v
Where (T+, c. , <7 , £ are values of stresses and strain in front of and behind 

the front. Which is moving with some velocity V. Applying Hooke's law

[a] = E [e] (11.3.3)

At the wave front the condition of continuity of displacement must be satisfied. 

Now consider an element of length Ax after passage of this wave the length of 

the element is Ax = Ax-(e+ - e_) Ax

on the other hand Ax = Ax + (v+ - ) • Ax/v (11.8.4)

Thus the discontinuities in strain and velocity are connected by the relation

- [v] = v [e] (11.8.5)

Next, the change in momentum of the element Ax on passage of the unloading wave 

must obey a dynamical law by conservation of momentum theorem.

- p Ax [v] = [a] Ax/v (11.8.6)

Eliminating the discontinuities with the aid of (11.8.3) and (11.8.5) we find that 

unloading wave propagates with the elastic wave

v = J~E/o = a0

We shall now present a FE solution of a selected problem, in which a rod is sub-

jected to a triangular load. The results: of the analyses are then compared with 

.tha. elastic and with the help of. method of characteristics the plastic wave 

propagation problems (Fig. 11.1,11.2,11.3)



The stress profiles calculated by using quiet boundary condition for 

the elastic case fig. 11.1 are compared at various times with the exact 

solution. The quiet boundary procedure is used to absorb the waves at 

the bottom of the boundary. Absence of reflections at 0.03 sec. shows 

the effectiveness of the procedure.

For the problem involving inelastic deformation is illustrated in fig. 

11.3. The solution for the triangular pulse represents reasonably well 

the loading phase of the pulse, including the elastic precursor. The 

unloading phase is represented less well . The quiet boundary procedure 

was not used in this calculation, which was stopped before the reflection 

reached the stations on the horizontal scale. To reduce or eliminate 

solution oscillation there are two possibilities, namely reduce the time 

step or reduce the element size. The time step used in this analysis 

was 1 x 10 sec. which is sufficiently small. A further reduction of
~5

time step &t = 0.5 x 10 did not help much. Therefore it was tentative-

ly concluded that the element size will have to be reduced in order to 

improve agreement with the exact solution.
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The Constitutive relation used in elastic and elasto-plastic 

wave propagation Problem.

Elastic problem ( ret. to Fig. 11.1)

N/m^

Elasto-plastic problem ( ref. to Fig. 11.3)

Fig. 11
‘' b<€>O
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12-. Modelling of Soil-Structure System

The soil structure interaction calculations have been performed in terms 

of the following parameters:

a) Finite element representations of free field and structures sur-

rounded by soil.

b) Soil and structural properties.

c) Input and boundary conditions.

a+b'} The containment and support structures are represented by a canti-

lever fastened to the upper surface of the basemat using two-dimen-

sional 4-node isoparametric plane strain elements. The main purpose 

of the structural model is to respresent only the lower modes of vib-

rations from 2 c/s up to 6 c/s are generally found to contribute to 

the maximum response of nuclear structures due to earthquake loading 

with dominant frequency content of 2.5 to 5 c/s.

The basemat is considered flexible and the depth of embedment was taken 

to be 10 m. The soil media is divided into three layers. The bottom 

layer is the bedrock, two layers above are of hard soil, and the layers 

below the foundation and around the structure are soft. The shear wave 

velocities and moduli of elasticity used for this study are given below.
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Table 12

u m/s N / J7kg/m^ >>

Structure 2422
10

3.5x10
10

2550 0.17

Soil bottom layer 1190 1.086x10 2650 0.45

Soil middle layer 800 5.OX1O9 2650 0.47

Soi1 top 1ayer 400 9.1X1O8 I960 0.45

In order to study the extent of inelastic deformation of the soil due to 

earthquake loading, non-linear material properties are assuned. The forma-

tion of plasticity and its growth over the extended region of the soil mass 

were observed by using Drucker-Prager Yield Criteria.

c) The earthquake motion in the form of acceleration Time-history with a 

peak acceleration of 0,25 g is prescribed at the bedrock level, (fig. 12.2) 

The method of input and boundary conditions follow from the present assump-

tion that earthquake loading may be regarded as a train of waves which pro-

pagate through soil and engulf a structure. The input is applied as horizon-

tal acceleration or velocity time history to cane edge of the mesh and the 

waves which encounter other artificial boundaries of the finite element 

mesh are transmitted through the boundary by the quiet boundary procedure 

in sec 9.

Due to rather coarse finite element model of the soil media, a significant 

part of the response of the foundation and structure beyond 10 c/s could 

not be accurately represented. However, it is well known that the high fre-

quency part in structural response due to earthquake loading is considera-

bly less than the low frequency response, and therefore no serious error 

would be expected in the response calculation.
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Table 12.1

Following numerical values are used to evaluate the Yield coefficients 

see appendix A.

1 PSI = 6895 N/m2

1 PSI = 712 kg/m2

0 C ot K

Top layer 0 16.7 PSI 0 2,77 PSI

Middle layer 16.1 8.68 PSI 0.118 1,53 PSI

Bottom layer Does not yield



No parametric studies have been done to show the influences of yield 

parameters on Yield criteria, and consequently their effects on response 

analysis. However, an attempt is made here to show the significance of 

the variations of yield parameter in terms of invariant Jj which affects 

the yield criteria (Fig. 12). Therefore changes in yeild parameter means 

changes in soil strength which affect the predicted response.

Yield Criteria

Drucker Prager = a Jj + K =

Mohr- Cou 1 omb = a + C - a

J <0 (Compression)

Fig. 12

J1 = °1 + °2 + °3 1

Second invariant of deviatoric stress

a and a2 = Coeficients of frictions

C and C2 = Cohesion
/

(Jj) = Mean stressMean stress at which the yield criteria changes from

'V Cl> Kl’ tO <a2’ c2’ K2>
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12.1 Case Study

A hypothetical nuclear power plant has been considered for this 

particular case study. A description of the model and assumptions 

are given in previous sections. Information on soil properties in 

Tableil.i.s obtained from actual cross-hole testing of a site for 

a proposed nuclear power plant.

12. 2 Discussion

The results of the investigation are presented in the form of 

response spectra, to show and to gain further insight into the 

non-linear material behaviour of soil and its effect upon the 

interaction between soil and structure.

In Figure 12Jt.he free-field response spectra at the soil surface 

and at the boundary layer (rock surface) are given, and compared 

with the interaction response spectra at a point near the reactor 

building and under the basemat.

The study shows that there is a shift in peak acceleration response 

towards higher frequency from 5 c/s to 8.3 c/s. The response above 

10 c/s is anomalous, and this is due to the fact that rather coarse 

finite element model of the soil and structure system is unable to 

produce a high frequency response accurately. In the lower fre-

quency range, the case study shows a strong deamplification of 

acceleration response. This could be contributed to the absorp-

tion of kinetic energy by the soil due to the progressive forma-

tion of a plastic region under the basemat and in the surrounding 

soil media. Chu and others [ 6 ] reported that deamplification or 

amplification could be expected depending on soil properties. 

Isenberg [ 4 ] also made a similar observation, but the deampli-

fication was not so large as it is reported here. Isenberg used 

constant G module and shear wave velocities in all the layers 

to account for the inelastic properties of the soil.
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Figures 12.2 A & B show the beginning of plasticity in the soil (shaded 

elements) and the spreading of plasticity in an extended region under the 

basemat respectively. The duration of earthquake motion at the bedrock 

was only 10 seconds, which was considered sufficient for this study. It 

has been reported by Trifunae (55) that strong motion part of the earth-

quake (high peak acceleration, low frequency) occurs within 10 seconds of 

the time history record. As most of the Nuclear Structures have frequences 

within the band width of 2 - 6 c/s, the peak response of these structures 

have been found to occur within 10 seconds. For this reason 10 seconds 

earthquake input was considered sufficient. For the case of structure-

equipment response it is advisable to consider a duration of 20 seconds, 

to include the high frequency components of earthquake record, because 

most items of equipment have fundamental frequencies of 15 c/s above.

We now focus our attention to the time history responses under the basemat 

for an extended period up to 3. sec. Now let us have a close look a the 

time history input in fig. 12.1. It will be observed that the rise time of 

peak acceleration input 0.25 g is about 2.5 sec. The next highest peak 

acceleration 0.24 g is noticeable at about 13 sec. Therefore we expect that 

the peak time history responses must occur within 2.5 sec. Figures 12.11A, 

12.10A and 12.12.A and 12.10 confirm this observation. Furthermore, earth-

quake time-history records beyond 10.0 sec. have almost invariably high 

frequency content • (55). In practice it was observed that any structure which 

is expected to reach its maximum response values beyond 10.0 sec time

- history input has in general fundamental frequency equal to or higher than 

10 c/sec. In this particular case we are now investigating,the structure and 

soil model has a fundamental frequency of about 5 c/s. To summarize, it can 

be said that we are not expecting higher response values beyond 2.5 sec. for 

this particular case.
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Some explanations to fig. 12.11A and 12.10A are necessary. Notice that in 

fig. 12.10A, at the on set of plastic deformation (0.3 sec.) of the soil 

under the basemat, the structure makes a steplike motion up to about 0.6 

sec. and from then on, makes a steady rigid body like motion (sliding motion) 

up about 0.9 sec. After a few load reversal, the soil regains its strength 

(strain-hardening), and from then on familiar sawtooth like response curve 

becomes apparent. Similar observations could be made in fig. 12.11A. At 

the on set of plastic deformation of soil beneath the basemat, and for 

about 0.6 sec., the structure does not respond to earthquake input, and 

has practically no vertical motion (Loss of contact?) After the soil re-

gains it strength vertical time-history response is again restored.

12.3 Results

The present analytical results are used to study three main subjects. The 

first is the relation between motion of the foundation and that of the free 

field. Also included in the study are the influence of soil stiffness, 

including plasticity and frequency content of the earthquake input relative 

to frequency of the structure. The second object is the relation between 

stresses in the soil adjacent to the structure and those corresponding to 

points in the free field. The third major finding is the influence of 

plasticity of soil on the response of the superstructure, and comparison 

with the response using linear elastic theory of soil.

12.4 Relation between motions of the foundation and the free field

The ratios of acceleration spectra at the foundation to the sprectra of 

the free field are shown for the embedded structure. These results clearly 

indicate that the horizontal response of
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12.5

the foundation is less than that of the free field. The influence 

of plasticity on the interaction forces seems to be important, 

relative to energy dissipation, for vertical displacement more 

than for horizontal displacement. This is illustrated in Figures

12.4 and 12.5. The main interaction forces at t = 0.3 seconds 

is provided by shear stresses, acting along the edge of the super-

structure. If the soil adjacent to the edge is allowed to be 

elastic, as shown in Figure 12.4, larger vertical displacements 

are expected. The amount of supression is greatest in the region 

of 5 c/s in the interaction spectra, when the free field response 

is defined at the surface. It may also be observed that at higher 

frequency near 10 c/s, the free field response is lower, and that 

is so to say an amplification of response. This may be attributed 

to the fact that, due to overburden pressure, the soil mass 

becomes comparatively stiffer, and the response of the soil-struc-

ture system behaves as if the superstructure is sitting on a rock-

like formation of soil, i.e. so-called hard soil condition. It 

is well known from linear analysis, that the response due to hard 

soil conditions is always higher than soft-soil conditions.

Relation between stress in free fields and stress adjacent to the 

structure

The study presented in this thesis indicates that stresses in 

the soil adjacent to the structure in general differ from stress 

which would develop at the same point if the structure were not 

present. One general finding for this particular case (due to 

typical formation and physical characteristics of the soil mass 

below the basemat) is that stresses in the soil beneath the foun-

dation at the early stage of shaking due to earthquake, remain 

compressive. After several cycles of stress reversal due to the 

vertical motion of the soil and structure complex, the sign of 

instability of the soil (plasticity) was observed at 0.6 seconds. 

Where as in the next layer of soil, the instability was observed 

at 0.3 seconds. The reason is that due to overburden pressure, 

the strength of the soil layer immediately beneath the basemat is

/ x y



increased and therefore the instability was observed much later. 
One general finding is that there is a unique relation between 
the vertical motion of the basemat and the vertical stress history. 
A similar unique relation was found in the case of the shear stress 

time history and the horizontal motion of the basemat.

As far as the free field stress—history and the free field motion 
are concerned, Fig. 12.8 and 12.9 show that no apparent correlation 
could be found between these two results. It is probably due to 

l\l the fact that unwanted scattered wave due to reflection at the arti-
ficial boundary was not allowed to travel back and distort (the 
motion of the elements (nodal points), and therefore fairly smooth 
velocity time histories could be computed. On the other hand, the 
resultant stresses (vertical stress and shear stress) due to the 

motion of the elements near the boundarywere not corrected when 
the unwanted scattered velocity was suppressed.
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12.6 Conclusions

1) Necessity of correct modelling technique for soil and structure 

system

2) Awareness of the problem of wave reflections from the finite element 

boundary which contribute to false or unuseable results in response 

analysis. Necessary and adequate measures are required to counter-

act these effects.

3) Choice of suitable integration scheme and time step, so as to allow 

the solution not to "drift away". In nonlinear analysis, no integra-

tion scheme is unconditionally stable.

4) Behaviour of soil is nonlinear in general, and its loss of strength 

and strain hardening during the strong motion earthquake is consi-

dered essential in predicting dynamic responses of super-structure.

5) Minimum duration of 10.0 sec. of the time-history input must

be provided in order to obtain peak structural responses whose funda-

mental frequency lies within the frequency band width of 2-6 HZ

6) Peak acceleration response at the top layer of the horizontal 

response spectra is suppressed by 16 % compared to the free field 

response spectra

7) Substantial deamplification of response in the lower frequency range

8) Considering the interaction , the peak response under the basemat 

is suppressed by 2.3%.



The conclusions drawn here are subject to a single study made for 

this thesis. These may be modified for earthquake inputs having 

different frequency contents, duration, and peak accelerations. The 

soil properties, the structure, as well as the depth of embedment 

would influence the results, and different conclusions would be possi-

ble. However, the study has covered a wide enough range of parameters 

such as artificially generated earthquake input containing a wide 

range of frequencies up to 30 HZ, a number of soil layers with different 

soil properties, dominant modes of vibration of the superstructure, 

the flexibility of the basemat and embedment. Although no generalisation 

could be made based on a single study such as reported here, but 

it can be concluded that under similar site conditions, and struc-

tural configuration, the response quantities as found in this investi-

gation will not be much different, elsewhere.
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TIME HISTORY

Displacement (NP 40)

TABLE 12.1

Time 
s

Horizontal Displacement 
m

Vertical Displacement 
m

0.01 0.17 X io"5 0.13 X t-*
 o 1

-4 , ^-6
0.02 0.12 X 10 0.13 X 10

0.03 0.36 X io’4 0.48 X io"6

0.04 0.67 X io"4 0.81 X 10“6

0.05 0.98 X io"4 0.513 X io"6

0.06 0.122 X io"3 -0.68 X 10"6

0.07 0.137 X io"3 -0.265 X io"5

0.08 0.135 X io~3 -0.526 X 10“5

0.09 0.128 X io‘3 -0.86 X IO’5
-3 -4

0.10 0.102 X 10 -0.129 X 10

0.11 0.634 X io"4 -0.182 X io-4
—4

0.12 0.11 X 10 -0.23 X 10
-4

0.13 -0.52 X 10 -0.286 X 10
-3 -4

0.14 -0.125 X 10 -0.318 X 10
-3

0.15 -0.206 X 10 -0.33 X 10
-3 -4

0.16 -0.296 X 10 -0.24 X 10
-3

0.17 -0.398 X 10 -0.24 X 10
-3

0.18 -0.51 X 10 -0.16 X 10 4

0.19 -0.63 X io"3 -0.41 X IO"5
-3

0.20 -0.77 X 10 0.105 X 10
-3 -40.21 -0.907 X 10 0.286 X 10 Q
-2 -40.22 -0.102 X 10 0.506 X 10
-2 -40.23 -0.11 X 10 0.76 X 10 Q

0.24 -0.120 X io"2 0.108 X IO’3

0.25 -0.125 X io“2 0.142 X 10‘3

0.26 -0.128 X io'2 0.182 X io-3

0.27 -0.129 X io'2 0.223 X io“3

0.28 -0.128 X io"2 0.265 X IO’3 .

0.29 -0.126 X io’2 0.306 X io"3

0.30 -0.124
.----------------

X io'2 0.343 X io"3
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TIME HISTORY
VERTICAL DISPLACEMENT
OF BASEMAT

Fig. 12.4
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Fig. 12.5
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TIME HISTORY
VERTICAL STRESS - FREE FIELD 
SAME LEVEL AS FOUNDATION

CORRESPONDS TO TABLE 12.2



TABLE 12.2

VERTICAL STRESS

Element

TIME HISTORY
FREE FIELD - SAME LEVEL AS FOUNDATION

Time Vertical stress
N/m2

sec

o.ol -0.1539 x lo4

o.o2 0.374 x lo4

o.o3 0.494 x lo4

o.o4 0.958 x lo4

o.o5 o.lo3 x lo5

0.06 0.717 X lo4

o.o7 0.185 x lo4

0.08 -0.337 X lo4

o.o9 -o.55o x lo4

o.lo -0.286 x lo4

o.ll
4.0,262 x lo

0.12 o.lo3 x lo4

0.13 -0.232 X lo4

o.l4 -0.823 x lo4

0.15
4

-0.I66 x lo

0.16 -0.273 x lo4

0.17 -o.33o x lo4 1
0.18 -0.479 x lo4

0.19 -o.54o x lo4

| o.2o 4
-o.7o7 x lo |I

0.21 -0.673 x lo4 1

0.22 -0.429 x 10^

0.23
4

-0.494 x lo

0.24
„ 4 ’

-0.376 x lo

o,25 -0.267 x lo4

0.26 -0.156 x lo4

0.27 -0.215 x lo'

0.28 , 4
0.177 x lo 1

o.29
40.294 x lo I

o.3o -o.Soo x lo4

........—.. .... ........ ...... . - 1
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TABLE 12.3
TIME HISTORY

VERTICAL VELOCITY - FREE FIELD - SAME LEVEL AS
FOUNDATION ( NP 4 0 ’)

Time 
s Vertica^velocity

0.01 0.201 x 10“5

0.02 0.137 x 10“5

0.03 -0.286 x 10“4

0.04 -0.580 x 10“4

0.05 -0.166 x 10“3

0.06 -0.214 x 10“3

0.07 -0.294 x 10"3

0.08 -0.457 x 10”3

0.09 -0.723 x 10“3

0.10 -0.973 x 10“3

0.11 -0.109 x 10”2

0.12 -0.890 x 10“3

0.13 -0.646 x 10 3

0.14 -0.195 x IO”3

0.15 0.261 x 10“3

0.16 0.700 x 10”3

0.17 0.119 x 10“2

0.18 0.183 x 10“2

0.19 0.264 x IO"2

0.20 0.357 x 10“2

0.21 0.448 x 10“2

0.22 0.533 x IO”2

0.23 0.609 x IO”2

0.24 0.679 x IO’2

0.25 0.740 x IO"2

0.26 0.786 x 10“2

0.27 0.800 x 10“2

0.28 0.776 x 10“2

0.29 0.712 x 10“2

0.30 0.617 x 10“2
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TIME HISTORY
SHEAR STRESS - HORIZONTAL VELOCITY FREE FIELD 

(Same level as foundation, nodal point 7 0, element 52 )

TABLE 12. 4

Time y horizontal velocity 2 shear stress cr Id'* /m yz ’

0.01 0.546 x 10“3 -0.147 x 102

0.02 0.179 x 10"2 -0.750 x 102

0.03 0.278 x 10“2 -0.580 x 102

0.04 0.296 x 10’2 0.146 x 103

0.05 0.252 x 10"2 0.438 x IO*3

0.06 0.176 x 10”2 0.590 x 10‘3

0.07 0.830 x 10"3 0.426 x IO3

0.08 -0.235 x 10~3 -0.836 x IO3

0.09 -0.145 x 10"2 -0.531 x IO3

0.10 -0.280 x 10~2 -0.637 x IO3

0.11i
-0.419 x 10~2 -0.637 x 103

0.12 -0.546 x 10“2 -0.564 x 103

0.13 -0.650 x IO"2 -0.568 x 103

0.14 -0.738 x 10‘2 -0.683 x IO3

0.15 -0.831 x 10”2 -0.781 x 103

0.16 -0.949 x 10“2 -0.689 x IO3

0.17 -0.108 x 10”1 -0.376 x 103

0.18 -0.121 x IO”1 -0.766 x IO1

0.19 -0.129 x 10“L -0.230 x IO3

0.20 -0.130 x 10"1 0.303 x IO3

0.21 -0.124 x 10“^ 0.308 x IO3

0.22 -0.111 x 10"1 0.394 x 103

0.23 -0.927 x 10”2 0.655 x 103

0.24 -0.702 x 10“2 0.100 X 10^

0.25 -0.473 x 10~2 0.127 x 10^

0.26 -0.266 x 10-2 0.136 x 10^

0.27 -0.945 x 10“3 0.132 x 10^

0.28 0.422 x 10’3 0.121 x IO4

0.29 0.142 x 10"2 0.102 x 10^

0.30 0.194 x 10“2 0.627 x 103
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TABLE 12.5

TRIE HISTORY

ELEMENT 21 NODAL POINT 24 SAME LEVEL AS FOUNDATION

Time 
s

y velocity m/s 
horizontal

Z velocity m/s 
vertical

shear stress 0
N /m2 *7

0.01 0.519 x 10’3 0.395 x 10’5 -0.86500 ?
0.02 0.175 x 10“2 0.237 x 10’4 0.5204x 10\.
0.03 0.2845x 10“ 2 0.426 x 10’*

J
0.521 x. 10 „

0.04 0.3197x 10“2 O.lOllx 10’4
4

0.167 x 10
A

0.05 0.105 x 10“ 2 -0.787 x 10^6
*t

0.307 x 10
0.07 0.203 x 10"2 -0.161 x 10’3 0.389 x 10’ 4

0.08 -0.450 x 10“2 -0.295 x IO’3 0.343 x 10'4

0.09 -0.185 x 10"3 -0.383 x IO’3 0.250 x IO'4

0.10 -0.325 x 10“ 2 -0.484 x IO’3 0.122 x 10 4

0.11 -0.461 x 10“2 -0.553 x 10’3 -0.698 x 10
0.12 -0.582 x IO"2 -0.540 x 10’3 -0.300 x IO'5

0.13 -0.684 x 10“2 -0.419 x 10’3 -0.557 x 10'
0.14 -0.770 x 10“2 -0.202 x 10’3 -0.828 x 10'4

0.15 -0.854 x 10“2 0.839 x 10’4 -0.109 x 10' 5

0.16 -0.955 x 10“2 0.411 x 10’3 -0.133 x 10 5

0.17 -0.108 x 10"1 0.693 x 10’3 -0.153 x 10'
0.18 -0.1209x IO"1 0.101 x 10’2 -0.172 x 10' ‘

0.19 -O.13O5x 10"1 0.133 x 10’2 -0.190 x 10' 5

0.20 -0.133 x 10"1 0.163 x 10*2 -0.205 x 10 5

0.21 -0.127 x 10"1 0.200 x 10’2 -0.205 x 10 "

0.22 -0.113 x lO'l 0.238 x 10’2 -0.209 x 10'5

0.23 -0.913 x 10“2 0.289 x 10’2 -0.1900x 10
0.24 -0.652 x 10“2 0.324 x 10’2 -0.154 x 10
0.25 -0.392 x 10“2 0.375 x 10’2 -0.105 x 10 4

0.26 -0.171 x 10”2 0.410 x 10’2 -0.305 x 10
0.27 0.1086x 10“3 0.4169x 10’2 0.304 x 10 4

0.28 0.149 x 10“2 0.422 x 10’2 0.6716x 10 5

0.29 0.232 x 10“2 0.392 x 10’2 0.1817x 10' 4
0.30 0.278 x IO"2 0.346 x 10’2 0.254 x 10' 4
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Appendix A

Failure behaviour of soil.



A. 1 Failure Behavior of the Soil and Yield Surface

Since yielding has such a major influence on soil behavior under 

the basemat and since it is more difficult to understand than purely 

elastic behavior, some investigation of the failure mechanisms 

in the soil is desirable. A simplified example of the stress 

conditions that could lead to ground failure is illustrated in 

Figure A.1. The elastic stresses on typical crown and springline 

elements are shown.

The axial stress is a^, while the lateral confining pressure 

is O3. If increases and cr^ decreases, at some point 

becomes so large that the failure strength of the material is 

exceeded.

After failure occurs in the ground mass, it becomes difficult 

to qualitatively predict the changes in and The overall

stress distributions in the yielded ground mass are largely 

dependent upon its post-failure constitutive behavior.

If the material is strain hardening (Figure A.lb), it can 

continue to sustain an additional stress differential after 

failure. A further reduction in the lateral stress will be 

balanced by an increase in shear resistance along the failure 

plane. However, in this post-failure range large shear strains 

are required to mobilize this additional shear resistance. As 

a result, the lateral displacement, u, of the "triaxial sample" 

will be much greater for a given decrement of lateral stress 

after failure has occurred than before. The lateral stress 

can, however, eventually be reduced to zero without causing 

instability.

In strain softening material, on the other hand, the shear 

stresses in the material will reach a peak at failure and then 

decrease with additional shear strains (Figure A.lc). A 

reduction in the applied lateral stresses cannot now be counter-

acted by increased shear resistance along the failure plane 

£ven after very large strains have occurred; in fact, additional



Equilibrium of 
of Triaxial

Upper Part
Sample

a) CONCEPTUAL TRIAXIAL EXPERIMENT

b) STRAIN HARDENING FIG A1 c) STRAIN SOFTENING

POST-FAILURE BEHAVIOR, OF SOIL (According to Swarz.Ref 33) 



post-failure shear strains result in a decrease in the shear 

resistance along the failure plane. Therefore, the applied 

stress differential must be reduced by increasing the lateral 

stress (if the axial stress is held constant) in order to 

compensate for this reduction in shear strength. This increase 

in the lateral stress results in the upward sloping segment 

of the stress-displacement curve (Figure A.lc).

A. 2 The difference between strain hardening and strain softening 

behavior can be viewed in another way if the ground material 

is assumed to follow a Mohr-Coulomb failure criterion, as 

illustrated in Figure A.2. The quantities and ci are the 

initial friction angle and cohesion of the ground, while ? 

and c^ are the corresponding ultimate strength parameters.

In a strain hardening material (Figure A.2a), these ultimate 

strength properties are larger than the initial values; there-

fore, the Mohr’s circle at initial failure must expand to 

reach the ultimate condition. The principal stresses, and 

can be adjusted in an infinite number of ways to satisfy 

this ultimate failure criterion. However, if it is again 

assumed that a (the axial stress in our conceptual triaxial 

experiment) remains constant, it is clear that (the lateral 

stress) can be reduced in the ultimate condition.

The analogous case for a strain softening material is shown in 

Figure A.2b. Here, the ultimate strength parameters are less 

than the initial values; now the Mohr’s circle for initial 

failure must shrink to the ultimate condition. If is again 

assumed to remain unchanged, must be increased in the ultimate 

state.

The conceptual reasoning outlined in this section can still 

aid in the qualitative assessment of different types of behavior, 

even if the stresses in the yielded soil mass are not precisely 

known.



a) STRAIN HARDENING

b) STRAIN SOFTENING
FIG. A2

POST-FAILURE BEHAVIOR, MOHR-COULOMB FAILURE
CRITERION



A. 3 An elastic-perfectly plastic constitutive model for the ground 

behavior was usedin all of the analyses. Yielding is governed 

by the Drucker-Prager yield criterion for three-dimensional

stress states:

FDP(ora2,Cr3) “ J2/2 - OJL - k - 0 (A.3.1)

in which 33 first invariant of the deviatoric stress tensor

3 + a3 (A.3.2)

J2 ■3 second invariant of the deviatoric stress tensor

, 2 2 .2
J2 ’3 1/6 [ (aL-a9) + (ax-aJ + (oJ j

a,k =3 yield parameters

princioal stresses

The Drucker-Prager yield criterion can be thought of as the 

three-dimensional generalization of the two dimensional Mohr-

Coulomb yield function. The yield parameters a and k can be

related to the more familiar Mohr-Coulomb strength parameters 

c and <p in certain special cases. For example, for c and 

determined from conventional triaxial compression tests

(al “ °axial’ a2 “ J3 

given by Swarz ( 33 )

’ '’axial* ’ the values of a and k are

biaxial extension tests - a2 - acon£inlng. a3 = a 

generally give values for c and $ different from those 

triaxial compression test; the relation between a and 

between k and c for the extension test can be shown to

axiaP

in the

0 and 

equal:

a • 2sin0//3 (3+sin0) (A.3.4)

k ■ (6c)cos0//3 (3+sin0) (A.3.5)

c,<f> from triaxial extension tests.
*

The values for a and k should be the same for both types of tests 

if the tested material really does follow the Drucker-Prager yield

law.



a

k »

2sin<|)//3 (3-sin0) 

(6c)cos<£//3 (3-sin$)

(A.3.6)

(A.3.7)

The values of a and k calculated from these equations, using 

the values for and c given in Table A.l, are summarized in 

Table A.2. For purely cohesive or $ - 0 strength properties, 

the Drucker-Prager yield criterion in Eq. A.3.1 ) is equivalent 

to the Von Mises yield function:

FVM(°rCT2’a3) ’ J2 ’ C0/3 ‘ ° (A-3’8)

in which ■ yield stress in simple compression - 2c. 

The associated flow rule is used to calculate the plastic 

strain increment in all cases.

Table: A. 1 . Tablt A. 1

Case

Mohr-Coulomb
Yield Parameters

I c

Drucker-Prager 
Yield Parameters

a k

1 35 0.1 psi 0.273 0.0168 psi
2A 0 16.7 0 2.77
2B 25 0.1 0.189 0.175
4A 16.1 8.68 0.118 1.53
4B 19.1 10.4 0.141 1.84
4C 16.1 40.9 0.118 7.20
4D 30 17.4 0.231 3.00
4E 40.9 26.0 0.322 4.19

Drucker-Prager Yield Parameters for the Finite Element Analysis

A.4 Yield Surface;

It is quite generally postulated as an experimental fact that 

yielding can occur only if the stresses o satisfy the general 

yield criterion [15]

F(a,<) - 0 (A.4.1)

where k is a 'hardening' parameter. This yield condition can 

be visualized as a surface in n-dimensional space of stress 

with the*-position of the surface dependent on the instantaneous 

value of the parameter K (Figure A.4.1).



Flow Rule. (Normality Principle). Von Mises first suggested 

the basic constitutive relation defining the plastic strain 

increments in relation to the yield surface. At the present 

time, the following hypothesis appears to be generally accepted: 

If de denotes the increment of plastic strain, then
P

de = X (A.4.2)
p oO

Figure A.4.1 Yield surface and normality criterion in two

dimensional stress space

or for any component n

de
»P

Tn this, X is a proportionality constant, as yet undetermined. 

The rule is known as the normality principle because relation 

(A.4.2) can be interpreted as requiring the normality of the 

plastic strain increment ’vector’ to the yield surface in the 

space of n stress dimensions.



A reduction of the restriction of the above rule can be 

obtained by specifying a plastic potential

Q ’ Q(o, k ) (A.4.3)

and

de = (A. 4.4)
p d(J

The particular case Q = F is known as associated plasticity. 

When this relation is not satisfied the plasticity is non-

associated. In what follows, the more general form will be 

considered.

Total stress-strain relations. During an infinitesimal 

increment of stress, changes of stress are assumed to be 

divisible into elastic and plastic parts. Thus

de = (A.4.5)

The elastic strain increments are related to stress increments 

by a symmetric matrix of constants C. Incorporating the plastic 

relation, we can write

de » C 1 do + X (A.4.6)

When plastic yield is occurring, the stresses are on the yield 

surface given by Eq. (A.4.1). Differentiating this, we can 

write therefore

or

dF - = 0 (A.4.7)

0

+

in which we make the substitution

(A.4.8)



Equations (A.4.6) and (A.4.7) can be written in a single

symmetric matrix form as suggested by Zienkiewicz [15]:

9Q "
do

3o

-A X

_ —

(A.4.9)

The indeterminate constant X can be eliminated (taking care

not to multiply or divide by A which may be zero in general).

This results in an explicit expansion which determines the 

stress changes in terms of imposed strain changes with [ *5]

dg = C* de (A.4.10)
ep

c2p “ c " C[A + 'if' (A-4-11)
The elasto-plasic matrix C*^ takes the place of the elasticity 

matrix in incremental analysis.

This matrix is symmetric only when the plasticity is associated. 

The non-associated material will present special difficulties 

if tangent modulus procedures other than the modified Newton- 

Raphson method are used.

The matrix is defined for ideal plasticity when A « 0.

Significance of the parameter 'A'. For ideal plasticity with 

no hardening, A is simply zero. If hardening is considered, 

attention must be given to the nature of the parameter (or 

parameters) < on which the shifts of the yield surface depend.

With a 'work hardening' material < is taken to be represented 

by the amount of plastic work done during plastic deformation. 

Thus,



d< - cr^de^ + a2 d£2 + • • • • T »= a de
P

(A.4.12)

Substituting the flow rule equation, we have simply

dK (A.4.13)

By Eq. (A.4.8) we now see that A disappears and we can write

3a (A.4.14)

a strictly determinate form if explicit relationship between

F and tc is known.

A.5 Non-linear constitutive problems in solid mechanics ;

Returning to the basic problem of solid mechanics formulations 

in terms of displacement, we note that the equilibrium equations 

state that (Table 4.IB)

£ + V BLC3L dv> “ ■ 0 (A.5.1)

This derivation, based on the virtual work (and not energy) 

principles, is valid for any material behaviour. If now, for 

instance, we assume a non-linear elastic behaviour

a = cr (e) (A.5.2)

then, relation (A.5.1) defines completely the form given as

P(a) + f - 0 (A.5.3)

and any of the technqiues of solution discussed in section 7 

can be used. As relationship (A.5.2) is unique, i.e. for any



given strain a unique stress is given, P(a) is also uniquely 

def ined.

is known as the tangential elasticity matrix.

We note that the tangential matrix CK is given by

‘K- T-
du

- / b t
J L dce

V

£ °dV
dcu

= f
0 V

BT Cc B °dv
Lu L

where
CC - da/de (A.5.4)



Appendix B

Proposed experimental study.



B.l INTRODUCTION

A proposal for the experimental study is made to understand the fundamental 

nature of dynamic structure-soi1 interaction problem. This can be realised by 

performing an experiment with the aid of a model of single degree of freedom 

structure attached to a shaker table either directly or through a layer or 

rubber material and assumed to represent the ground layer. Unlike most 

experiments of this type, the shaker table is excited in such a way, that the 

specified free field motion would be reproduced on the rubber surface regardless 

of the thickness of the layer, if the structure were absent.

This will essentially permit us to assess the effect of the structure soil 

interaction when a structure is placed on ground layers with identical free 

field surface motion but of different thickness. An experiment of this nature 

has been carried out in Japan under the grant of N. Science foundation but 

details of experimental studies are not adequately available.

B.2 §SSENTIAL_FEATURES_OF_EXPERIMENT

The essential feature of the proposed experiment is to excite the shaker table 

in such a way in the absence of the structure, the horizontal motion of the sur-

face of the rubberlayer at the point where the footing is to be clamped or glued 

would be identical to the specified signal regardless of the thickness of the 

rubber layer, including when thickness d = 0. This can be accomplished with 

the aid of analogue tape recorder, recording the motion of the table 

corresponding to the specified surface motion before the structure is glued. 

This record then can be played back to excite the table through a servo-control 

system after the structure is glued to the rubber, and among other quantities, 

the acceleration of the Ms could be measured and recorded. Different values 

of natural frequencies fs of the structure can be achieved by changing the 

height L of mass Ms. A mechanical viscous damping can be added to the structure 

to provide a reasonable amount of damping (approximately 2*).



B.3 ANALYTICAL MODEL

The analytical model employed in this study is a widely accepted model for the 

layer in terms of equivalent translational mass and rotational moment of 

inertia, with corresponding linear viscous damping as shown in fig (B.3.1). 

Referring to fig (3.2) and (3.3) for rotations, the equation of motion can 

be written as follows.

Mr°l +Ms°l +Crt°l +KrtUl + Vz = fl (B 3.1)

MsUl + Ms°Z + Cs'U2 + 7T UZ ’ 7T ST - V 02 ’ 0 (8 3.2)

Jr0l + Cro0l + Kre9l + T ®1 + ¥ 02 = 0

91 + Js§2 + e2 « 0

(B 3.3)

(B 3.4)

Whereby it is noted that Mr and Jr represent the combined effect of mass and 

moment of inertia of the footing and the "ground layer" (rubber layer) 

respecti vely.

The above equations of motion can be written in the equilibrium form i.e. 

stiffness x displacement = force.

Contrary to the usual matrix form the modified equations of motions in the 

force displacement form will be enable us to compute the parameters such as 

Jr, Mr and Cr^ from the measured values of the Kr^. and the transtational 

and rotational stiffness of the rubber layer respectively.

Let us now regroup the equations of motions and write in the force-

displacement form.

1 2
all O + Crt £() + Krt()

a22 " ms Jj-J 0 + cs 3T 0 + ()

2
“33 = 0 + Cro £ 0 * MM «J_ ()

L



®44 " Js dt*^ + L

d*
“12 = Ms ^2 () ’• “21

2EJ
L

0

0

0

Therefore writing in the matrix form

“11 a12 0

a21 a22 a23

0 0 a33

0 0 0

ro 7i ‘

*24 u2 0

a34 91 0

*44 02 0

(B 3.5)

Where f, = (Krt + Crt ) UQ

The equation (6.3.5) is the familiar matrix form of static equilibrium equation.

As mentioned before Jr and Mf can be computed from Kft and KrQ. However a value 

can be chosen for Cr^ the translational damoing of the rubber layer. It is proposed

that a value of Crt may be so chosen, so that the theoretical and experimental

frequency response agree closely.

. B.4 the oret ica l _ana lys is _of _the _frequ enc y _res pons e

The equations (1-4) can be rewritten in the familiar matrix form of equations

of motions as follows

[MJ {ij} + [C] {U} + [K] (I)} » (Q) (B 4.1)

^9



Where Q is externally applied time varying force such that Q ->Q(t).

Now [C] is considered as structural damping matrix. Equation B 4.1 can 

also be written.
[M] {U} + [K] {U} + ig [K] {U} = Q (t)

By using Laplace transform technique, and defining the impedance function

[Z (s)]

[Z (s)] = S2 [MJ + (1 + ig) [K] (B 4.2)

we obtain the transform of response [271

(U (s)} = [Z (s)J ■’ (Q (s)} • (B 4.3)

’ TTW IC (s)] {Q (s)}
Where |Z (s)| is the determinant of the impedance matrix and [C (s)] is the 

adjoint of [Z (s)]. The elements of the impedance matrix are complex number 

and elements of {C (i Q j)} are also complex (S = iQ ). The steady state 

response can be written as follows:

(U (t)} = Z
J=i

Qoj 
z(isy) |

( C(iOj) } e1 ’ ’"j) (B 4.4)

In the presence of damping, the vibration components of the natural frequencies 

will disappear, on the other hand those components having frequencies of the 

impressed force will persist.

The complex frequency response H (Q) of the system can be obtained by taking

Fourier transform of the steady state response

U (t) = H (8) e ,nt (B 4.5)

or H (Q)



The relationship between the structural response (translational acceleration 

(Ms) and the table excitation in the frequency domain is indicated in the 

block diagram (Fig. B.4).

Where Uo (Q), Vo (2), Wo (Q) and W (Q) are Fourier transform of signals 

as indicated, and Go (Q), Ho (Q) and I (Q) are frequency response functions 

of assumedly linear system. The interaction ratio I (fi) as defined in 

Fig. (B.4) in the ratio between the response amplitudes with and without 

interaction.



L
E, I

ro

2.

M = mass
J = Moment of Inertia
K = Spring constant
C = Damping

Subscripts
S = Structure 
r = rubber 
o = rotation 
t = translation

3
Fig. B. 3
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Appendix_C

Comparison between the Elastic Half Space and F E 

method of the dynamic response of footings to vertical 

loading.



Introduction

The objective of this section is to describe the dynamic 

behaviour of footings, by means of well established method of 

dynamic analysis due to Bycroft [421, Lysmer [441, and Richart [431. 

This investigation is limited to the case of circular footing 

resting on a plane soil surface and excited by a vertical 

time dependent force in the axis of symmetry.

To arrive at a model that can be analysed mathematically it is 

assumed that the subsoil can be considered as a perfectly elastic, 

isotropic and homogeneous half space and that only normal stresses 

are transferred at the interface between footing and soil.

Half-space models have been used by severel investigators, notably 

E. Reissner(56). Who developed a method for finding the steady-

state surface displacements of an elastic half space for any given 

surface pressure distribution with axial symmetry.

The elastic half-space model differes from most classical dynamic 

systems, because its dimensions are infinite. This Geometrical 

peculiarity causes an apparent loss of energy by wave propagation 

in to half space. It can be shown, that the effect of energy loss 

is comparable to that of the dashpot of a simple damped oscillator 

[44]. This observation has led to the adoption of a simplified 

spring-dashpot-analog for practical calculation. Finally a simple 

example is chosen, and the analytical results are then compared 

with the Finite element solution of the same problem.

C.l §teady_state_motion

Before we focus our attention to the elastic half-space model, 

we may study a larger class of dynamic system. It consits of 

a linear system S, excited by a perodiG vertical force P(t). 

The system may or may not exhibit viscous damping and it may 

be finite or infinite dimension.



The force P = Poe^ut is assumed to act at a point o, such 

that the displacement of the point o is vertical at all 

times.

In the case of steady state motion it is known that all 

forces and displacements are harmonic with circular 

frequency cJ and proportional to the amplitude po of the 

exciting force. The displacement can be written in the form

The quantity k is referred to as "spring constant" and 

is usually equal to the static spring constant of the system S_.

The time-independent complex function F = Fi + i F2 is 

generally a function of the frequency w and the properties of 

the systems F is also referred as displacement function by 

some authors. If k is a static spring constant then

F = Fi = 1, for w = 0.

We now consider a mass less system as shown in Fig (C.l)» 

and write down the equation of motion for system S in fig. (C.10

C $ + K i = Poe1<Jt (C.1.2)

C and K are real. Substituting eqn (C.1.1) into (C.1.2),

i ejCF + K F = k (C.1.3)

Bv means of separation of Variable we obtain the followinq 

pair of equation.

- w F2C + FXK = k (C.1.4)

FiC + F2K = 0

which have the solution



With

F2/U

respect to Fj_ and F2

F1
k K

2 2„2 
K + cj C

(C.l.6)

C „ 2 „ 2
F + F
1 2

k

F2
- a) k C
2 2 2 

K + *>C

Next, we consider a dynamic system s+m as shown in fig (C.l.) 

This system is formed by supplementing the system S by a 

rigid mass m at point o. Let the system be excited by a 

harmonic force

Q = Qoe1Mt (C.l.7)

acting on the mass m. We define the displacement function of 

this system by F, where

F = Fx + 1F2

the displacement of the mass m is 6 and is equal to

$ = (C.l.8)

By introducing the reaction P acting on m at point 0, the 

equation of motion for the mass m is as follows

x* 1 iwtm 6 = (Qo - Po) e (C.l.9)

Differenting eqn (C.1.1) and (C.1.8)



using eqn (C.1.9) yields

(C.1.12)

and

F = ---- ----
1- F

k

(C.1.13)

Substitung (C.1.13) in (C.1.8) we obtain the displacement

of point o in s+m system.

c Qo „ i»ut
Fe

(C.1.14)6 = "k 2
l-T F 

k

The response magnification factor: M = | F] =

/ Fl2 + f 22
(C.1.15)2 2

. , mu5 
ti_ k Fxl2 + F2 ]2

C.2 Elastic_Half-space_with_uniform_perodic loading

In the previous section we treated a very generel concept of 

a linear system, and obtained an expression for displacement 

of s+m system in terms of displacement function F which is 

frequency dependent. We will use this basic analytical 

technique, in another field of interest known as elastic 

half-space. In the present problem shown in Fig. (C.2) 

we focus our attention on a perfectly elastic half space with 

the mass density P and the elastic constant G and p.

The half space in excited by a verifical, uniform surface 
itOtloading P = Po e per unit area, and the displacement 6 

of the free surface is to be evaluated. Because no horizontal 

displacement occur we can assume a column of unit-area, and 

this column will be have like a rod with zero lateral 

displacement- and its elastic modulus is therefore

Ep = s2 (C.2.1)

in which 2^
2(1-p)



(C.2.2)

Vs = the velocity of shear wave. As the "rod” is infinitely 

long, no reflection will occur. The displacements of the 

rod is therefore

A eiut (t-Z/Vp) (C.2.3)

which is an expression for a sinusoidal wave with amplitude 

A propagating down-wards with a constant velocity Vp.

The tensile stress on a horizontal plane is

6-(Z) = Ep

Gi«j(t-z/Vp)
(C.2.4)

On the surface Z = 0, and the stress boundary condition

yields

r> i*>t . _ _ to iut0 (0) = - Po e = - i A Ep —- e
r vp

(C.2.5)

which implies

A _ - i Po _ i s pQ (C.2.6)
w /p Ep P / pg

Hence the displacement 6 at the surface is

iDt
$ = —1 S Po e---  (C.2.7)u ^pu

This is the steady state solution of the differential

equation of motion

fb-q



If we are only concerned with the vertical displacement, 

we can use the above analogy for the uniformly loaded 

half-space.

The above analogy between energy dissipation caused by 

wave propagation and that resulting from viscous damping 

is of considerable interest, because it allows the study 

of the behaviour of an infinite system by considering a 

simple finite system.

C.3 Ri21S_S:iEcular_footin2

We will consider an idealised half-space model for the 

footing-soil system. This model is shown in fig. (C.3.1), 

and consists of a circular rigid footing of mass m resting 

on a homogeneous, isotropic and perfectly elastic half 

space with physical constants G, M, p.

For a simple damped oscillator m = 0.

If the Poisson’s ratio is given then F can at the most, 

depend on the parameters w, ro, G and p. The only dimen-

sion less ratio that can be formed by these is the frequency 

ratio

(C.3.1)

and because F is dimensionless , it is seen to be a function 

of M and ao only.

The expression for the displacement of the massless footing 

is according to eqn (C.1.1).

6 (C.3.2)

where the static spring constant

(C.3.3)

ao 



The analytical solution and determination of function F 

involves the solution of the wave equation for an elastic 

solid with a mixed boundary condition, namely a zero stress 

condition on the free surface of a half space, and uniform 

displacement condition under footing. This difficult- 

mathematical problem has not yet been solved exactly, but 

J. Lysmer [441 has evaluated an approximate solution for a 

special case of Poissons's ratio equal to 1/3. The solution 

is shown with dotted curve in fig (C.4.1), which can actually 

be used for all values of Poisson's ratio because the 

variation of F with M is insignificant for practical calculation. 

Bycroft [42] , and most other authors use a slightly different 

displacement function f = fi + i f2 which is related to F 

through the simple relationship f = - 1/4 (1-u) F. This 

function depends markedly on Poisson's ratio. Which makes 

the use of the function f more inconvinient.

C.4 Eguation_of_motion_of_footing2soil_system

The equation of motion (C.1.2) was extended by Lysmer u44 , 

and gave the following equation of the footing-soil system.

C1 i.v.. (C.4.1)

The equation has a steady state solution of the form

(C.4.2)

which on substitution in (C.4.1) yields

2
(ki-B ao ) + i ci ao

where ki =
Fl2 + F22

ci
- F2/ag
p 2 + p 2

2

where the mass ratio B is defined by

m ,vs. 2 
: k (ro} 4

m (C.4 .4)
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The response magnification factor M of (C.l.15) is 

consequently

M =|f | -/--------------x-i------- - (C.4.5)

(k]_-Bao ) +(ciao)

As it has been already pointed out that F is practically 

independent of Poisson ratio/Hi. Lysmer has shown that the 

variation of F with M is also relatively small. The steady 

state spectra due to Lysmer is given in Fig (C.4.2).

C Qo
Hence a = — M cos (u)t + 0) (C.4.6)

the phase shift 0 = tan 1 —1 (C.4.7)
ki-Bao2

which is the complete steady state solution for the elastic 

half-space.

The velocity and acceleration responses are:

•
5 = Qo

k
MW sin (oxt + 0) (C.4.8)

X Qo 2s =
k cos (at + 0) (C.4.9)

C.5 Numerical_Example

A numerical example is considered in this section. This

example represents the elastic half space problem

The footing-soil system defined by the physical constants:

ro

G

m =
P

A1

1,50m
1,72 • 107 N/m2

2,195 • 105 kg

2062 kg/m^

1/3

The velocity of the wave in the half space

vs = /- =
s y

1,72•107 _
2062 91,33 m/s.

-J 62



Mass ratio:

B 1 -y
4

m
FFF

1 - 1/3
4

2,195-10$

2062-1,53 + 5,283 5

The natural frequency (damped)

(given 

analog

by Lysmer using simplied

M ) .

„ _ 91,33
i r 5

5 - 0,18 
B

26,25 sec-^

Corresponding period
«d

0,24 sec.

Assuming now 
of 1 • 106 N

time-varying

that the system

for a period of 1 

of footing-soil systemresponse

is excited by a constant force 

sec. We find the static and

$ static
Qo
k

1 - 1G6 
k

where k = static spring constant

4. - 1.72 • 107 - 1,5

1 - 0,33

1 • 10^
Therefore «static = 1,54^08 =

4G.ro

1,54 • 108 N/m

0,65 Cm.

C.5.1 Dynamic_response

In this section our aim is to compare the dynamic response 

due to a steady sinusoidal load P (t) = Po Sin wt where Po 

= 1.0 x 106 N and w= 27.6/sec,acting on a footing soil sys-

tem in terms of elastic half space model and equivalent fini-

te element model of the system. Now theoretically if we in-

clude damping effect, it is extremely doubtful that we will 

have a common basis to compare the results of the elastic 

half space model and finite element representation of the 

elastic half space. The reasons are as follows:



1) Damping term used in elastic half space model is frequen-

cy dependent (factors Cl and KI in fig. C 4.3.)

2) Response magnification factor is a function of factors

Cl and Kl,

3) Finite element model of the elastic half space is arbitra-

ry. Although the model is large enough, it does not 

truely represent the elastic half space.

4) The damping matrix is proportional to mass matrix and 

stiffness coeficient matrix, and therefore, the effect 

of damping in the response evaluation does not have a 

common basis with the halfspace theory.

However from fig. C4.2 with a = 0,45 and B = 5.0 we
o 

obtained the value of M.

Equation C.4.6. and C4.9 were used to find the Steady 

State time history responses in fig. 5.1. and 5.2.

For the finite element model of the elastic half space 

in fig. 6.1. we used proportional damping

C x a K + B M

Following values are obtained from the free vibration 

analysis of the soil model.

Mode Frequency Participation Modal damping

C/S factor

1 2.15 - 9.08 0.084

3 2.27 1.01 0.051

5 3.10 3.07 0.071

The frequencies and modal damping velues are used to 

evaluate the damping constants e^and/3.

16 4-



We used Newmark’s step by step method for about 1.0 se-

conds duration with a time step t = 0.01 sec. The time 

history responses thus obtained in the elastic half 

space and finite element analysis were used to plot the 

response spectrum curves in fig. 6.2 and 6.3 to show 

the comparison between the two different approaches. 

It will be observed that there is a small difference 

in peak response on the frequency scale of the response 

spectrum curve, and the peak responses are not exactly 

the same. The differences thus appeared between the two 

methods, are not significant and can be considered within 

the acceptable limits. It should be pointed out that 

non reflecting boundary condition was used to prevent 

reflection from the bottom nodes using subroutine VELCOR 

in conjunction with main program NONSAP.

1(5



Q « Q, e

P » P.ei{ul Q«Q,e*u,f

(a ) System S (b) System S*m

Fig. C.1: Simple damped oscillators
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p.p.*1®*

(b) Analog

T
5

Fig. C.2: Uniformly loaded half space 
and its analog

VERTICAL LOADING

Jf
0 • 0^’“*

~r rr~^—i* I i______
fz^/z^^Z^^z^zZ/.^ZzZzZzZzZz^z^vZ/zZ

Fig. C.3.1: Footing-soil system
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Fig. C.4.1: Displacement function for rigid 
circular footing on elastic half 
space (3)

Fig. C.4.2: Steady state spectra
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