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Abstract
Smooth backfitting was first introduced in an additive
regression setting via a direct projection alternative to
the classic backfitting method by Buja, Hastie, and Tib-
shirani. This paper translates the original smooth back-
fitting concept to a survival model considering an addi-
tively structured hazard. The model allows for censoring
and truncation patterns occurring in many applications,
such as medical studies or actuarial reserving. Our esti-
mators are shown to be a projection of the data into
the space of multivariate hazard functions with smooth
additive components. Hence, our hazard estimator is
the closest nonparametric additive fit, even if the actual
hazard rate is not additive. This is different from other
additive structure estimators, where it is not clear what
is being estimated if the model is not true. We provide
full asymptotic theory for our estimators. We propose an
implementation of estimators that shows good perfor-
mance in practice.
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2 BISCHOFBERGER et al.

1 INTRODUCTION

This paper introduces a fundamental model and estimator for structured multivariate
marker-dependent hazards: The smooth backfitting of additive hazards. In structured non-
parametric regression, Mammen et al. (1999) modeled and estimated the additive structure by
projecting data onto the appropriate additive subspace. The resulting projection estimator is
known as the smooth backfitting estimator. The name comes from the fact that when calculat-
ing the projection estimator iteratively, one must not only smooth the component that is being
updated, but all components. This is different from classical backfitting (Buja et al., 1989), where
only the component that is being updated is smoothed. It has been shown that smooth backfitting
performs much better than previous comparable smoothing kernel-based backfitting approaches,
in particular in high-dimensional problems and with correlated covariates, see Nielsen and
Sperlich (2005). A theoretical comparison between classical and smooth backfitting for additive
regression models was recently conducted in (Huang & Yu, 2019), explaining why smoothing of
all components leads to better adaptation. Since the initial smooth backfitting paper many varia-
tions and extensions have been developed using smooth backfitting to tackle more sophisticated
problems in mathematical statistics, Mammen and Nielsen (2003), Yu et al. (2008), Mammen and
Yu (2009), Mammen et al. (2014), Han and Park (2018), Mammen and Sperlich (2022), Bissantz
et al. (2016), Han et al. (2020), Jeon and Park (2020), Hiabu, Mammen, et al. (2021) and Gregory
et al. (2021).

The aim of the current paper is to transfer the original approach of additive nonparametric
structures to marker-dependent hazard estimation and to allow for a potentially high number
of covariates with possibly correlated markers. It turns out that when the original estimation
problem is phrased as a minimization problem in the correct way via a counting process formu-
lation, then our smooth backfitting additive hazard approach can be implemented and analyzed
in a very similar way to smooth backfitting in regression. We see this as a necessary step to under-
stand more complicated structures in marker-dependent hazards. The additive subspace is closed,
making analysis more accessible, and the additive structure allows for a more immediate interpre-
tation than more complicated models of structured hazards. One important alternative structure
is the multiplicative or proportional hazard model. Survival analysis practitioners often work with
such multiplicative marker-dependent hazard models, including the Cox model. Smooth backfit-
ting for the multiplicative model was recently analyzed in Hiabu, Mammen, et al. (2021), where
the analysis was challenged by the shape of the multiplicative subspace that is not closed like the
additive subspace is and where some tricks had to be developed, for example, a solution weighted
optimization, to arrive at a tractable estimation method and analysis. The additive approach devel-
oped in this paper does not face these two latter challenges, and it might perhaps have been more
natural to develop this current paper first and then Hiabu, Mammen, et al. (2021) afterwards.
Both this current paper and Hiabu, Mammen, et al. (2021) arrive at the same conclusion for
smooth backfitting of marker-dependent hazard estimators as the authors in Nielsen and Sper-
lich (2005) did for smooth backfitting of nonparametric regression: Smoothing all components in
every iteration step and not only smoothing the component that is being updated is important.
Otherwise, the estimator breaks down in many cases—in particular in high dimensions—where
smooth backfitting still works. Smooth backfitting seems more reliable than classical backfitting
of kernel estimators, and we expect that the additive marker-dependent hazard model and esti-
mator of this paper can be an important starting point for further developments of structured
marker-dependent hazard approaches in survival analysis, just like the many developments we
have seen in nonparametric regression. Code to replicate our simulation and application can be
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BISCHOFBERGER et al. 3

found on github1. In the next section, we provide some insight into the additive model itself and
its role in marker-dependent hazard models as a practical tool for survival analysis.

2 ADDITIVE STRUCTURED HAZARDS AND RELATED
LITERATURE

One well-known model in hazard regression is the proportional hazards model of Cox (1972),
which has been seen as the natural equivalent to additive regression functions in linear and non-
parametric regression. As pointed out in (Martinussen & Scheike, 2006, p. 103), additive hazard
models have been “somewhat overlooked in practice” although they share the same advantages
of additive regression models concerning both theoretical properties and implementation. To the
best of the author’s knowledge, this is still the case, with some exceptions (Aalen et al., 2019;
Dukes et al., 2019; Tchetgen Tchetgen et al., 2015). However, in certain applications, an additive
relationship in the hazard function is indeed more plausible than a proportional one (Beslow &
Day, 1987; Kravdal, 1997; Lin & Ying, 1994; McDaniel et al., 2019). Moreover, (Aalen et al., 2008,
pp. 155f) provides a variety of reasons for additive risk factors.

In the original additive hazards model (Aalen, 1980), the intensity of a counting process
{N(t) ∶ t ∈ [0, 1]}, conditional on the d-dimensional covariate Z(t) = (Z1(t),…,Zd(t))T , satisfies

𝜆(t) = ZT(t)𝛽(t)Y (t) (1)

at time t with a regression coefficient 𝛽(t) = (𝛽1(t),…, 𝛽d(t))T and exposure Y which is equal to
unity when an individual is at risk. An overview about this model is given in Martinussen and
Scheike (2006) in which the authors praise it as a simple nondistributional model that is easy
to implement. Nonparametric estimators of the cumulative regression coefficient B(t) = ∫ t

0 𝛽(s)ds
in model (1) have been examined in McKeague (1988) and Huffer and McKeague (1991) among
others.

Model (1) imposes a linear relationship between the intensity and the value of the covariates
through ZT(t)𝛽(t). We loosen the assumption of linearity. Before introducing the model we investi-
gate in this article, we describe the most general model and its disadvantages, and explain why we
assume certain additive constraints. The completely nonparametric conditional intensity model

𝜆(t) = 𝛼(t|Z)Y (t) (2)

for a conditional hazard function 𝛼 generalizes model (1) making it the most flexible model. As is
common, we assume 𝛼(t|Z) = 𝛼(t,Z(t)) in this paper, that is, that the conditional hazard at time t
given the covariates only depends on the values of the covariates at time t and not on the values
of the past.

Model (2) has first been introduced for time-constant covariates in Beran (1981). Time depen-
dent covariates were considered in McKeague and Utikal (1990) and Nielsen and Linton (1995).
Other examples from the vast literature on nonparametric hazard estimators for this model
include Van Keilegom and Veraverbeke (2001) or Spierdijk (2008). Without further structural
restrictions, estimators of (2) suffer from the curse of dimensionality: The rate of convergence
decreases exponentially. This is a well-known issue for unstructured nonparametric estimators,
making them impractical in many cases, even in dimensions higher than, say, three. That one
can not do better in the unstructured nonparametric case is known at least since Stone (1980)
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4 BISCHOFBERGER et al.

who provided formulas for the best possible rate of convergence for nonparametric estimators.
Accordingly, the aforementioned nonparametric hazard estimators were only illustrated for the
case with one-dimensional covariate Z.

To overcome this issue, one has to focus on a model that is more restrictive than the unstruc-
tured nonparametric hazard model (2). We restrict our assumptions to an additive model, which is
nested within Equation (2). However, instead of the original additive Aalen model (1), we assume
that the hazard rate consists of additive nonparametric components,

𝛼(t, z) = 𝛼∗ + 𝛼0(t) + 𝛼1(z1) + · · · + 𝛼d(zd), (3)

with smooth, but not further restricted, components 𝛼k, k = 1,…, d, depending on covariate values
z1,…, zd. The constant 𝛼∗ is a norming constant making the decomposition unique, as will later
be further specified.

The additive model (3) is both more general but also more restrictive than the additive Aalen
model (1). It is more restrictive because it does not allow the effect of covariates on the hazard
to change with time. It is more general because the effect of the covariates on the hazard does
not need to be linear. A very interesting model that generalizes both models is to replace each
component 𝛼k(zk), k ≥ 1, in Equation (3) by a two-dimensional components 𝛼k(t, zk) capable of
capturing a covariate effect that changes with time. While we do not consider this more general
setting in this paper, we see the work done in this paper as a crucial step towards developing
methods of such a more general kind. Another possible generalization is to consider multiple
time scales, see, for example, Hiabu, Nielsen, and Scheike (2021).

To estimate the components in Equation (3), we propose a local polynomial least squares
minimization under the constraint (3). The solution can be identified with the projection of
the observation into the space of local polynomial additive hazard functions and can be calcu-
lated through a simple iterative procedure. We call the resulting estimator an additive smooth
backfitting hazard estimator.

When estimating the hazard function 𝛼(t, z), by the nature of equation (3), it can happen that
the estimate is negative at certain points. This is especially expected to happen if the underlying
hazard function is far from being additive. However, it is reassuring that the smooth backfitting
components �̂�k will still have a clear interpretation as an approximation of the closest additive fit.
In practice, if probabilities need to be calculated, one ad-hoc solution is to use the non-additive
adjusted hazard

𝛼adj(t, z) = max(𝛼(t, z), 𝜀), 𝜀 ≥ 0.

Indeed, this is also what we do in the application Section 6.1.1 for 𝜀 = 0 with satisfying results.

3 THE ADDITIVE HAZARD MODEL

Let  > 0. We observe n i.i.d. copies of the stochastic processes {(N(t),Y (t),Z(t)) ∶ t ∈ [0,  ]}
where N is a right-continuous counting process which is zero at time zero and which has jumps
of size one. We assume that Y is a left-continuous stochastic process with values in {0, 1} and
which equals unity if the observed individual is at risk. Moreover, let Z be a d-dimensional
left-continuous stochastic process with Z(t) ∈ [0,R]d, t ∈ [0,  ], for some R > 0. The multivariate
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BISCHOFBERGER et al. 5

process ((N1,Y1,Z1),…, (Nn,Yn,Zn)) is assumed to be adapted to the filtration {t ∶ t ∈ [0,  ]}
which satisfies the usual conditions (Andersen et al., 1993, p. 60).

In the following, we assume that for each i = 1,…,n, the process Ni satisfies Aalen’s multi-
plicative intensity model, that is, that its intensity 𝜆i satisfies

𝜆i(t) = lim
h↓0

h−1
E[Ni((t + h)−) − Ni(t−)| t−] = 𝛼(t,Zi(t))Yi(t), (4)

where Yi(t) is indicating if individual i is at risk at time t. The function 𝛼(t,Z(t)) is the conditional
hazard rate given the covariates Z at time t. Furthermore, we assume that 𝛼 satisfies the additive
structure of model (3), which we write as

𝛼(t,Zi(t)) = 𝛼∗ +
d∑

j=0
𝛼j(Xij(t))

with the notation Xi(t) = (t,Zi1(t),…,Zid(t)) ∈  for  = [0,  ] × [0,R]d. In the sequel, we will
also write x = (t, z1,…, zd) ∈  and henceforth 𝛼(x) = 𝛼(t, z) for short.

Each component of the additive hazard 𝛼 is only identifiable up to an additive shift. Later, we
will give conditions under which each component is uniquely identified.

Model (4) allows for different kinds of filtered data, making it very flexible. These filterings
include left-truncation and right-censoring, which occur in many applications of survival anal-
ysis (Martinussen & Scheike, 2006). We now illustrate how to embed left-truncated covariates
and right-censored survival time into model (4). Let T denote the survival time. Left-truncation
means that we observe copies of (T,Z) only on a compact subset  ⊆  with the property that
(t1,Z(t1)) ∈  and t2 ≥ t1 imply (t2,Z(t2)) ∈  almost surely. We allow  to be random but assume
it is independent from T given Z. The survival time T can also be subject to right censoring
with censoring time C as long as C is conditionally independent from T given the covariate
process Z. This condition holds in particular if the censoring time equals one of the compo-
nents of Z. Hence, under this filtering scheme, we observe n i.i.d. copies of (T̃,Z∗,, 𝛿), where
𝛿 = 1(T∗ < C), T̃ = min(T∗,C), and (T∗,Z∗) is the truncated version of (T,Z), that is, (T∗,Z∗)
arises from (T,Z) by conditioning on the event {(T,Z(T)) ∈ }.

We can now define a counting process Ni for each individual i = 1,…,n, via

Ni(t) = 1
{

T̃i ≤ t, 𝛿i = 1
}
,

with respect to the filtrationi,t = 𝜎
({

T̃i ≤ s, Z∗
i (s), i, 𝛿i ∶ s ≤ t

}
∪)

, for a class of null-sets
 , which completes the filtration. In this setting, it can be easily shown that, under the above
assumption of 𝛼(t|Z) = 𝛼(t,Z(t)), Aalen’s multiplicative intensity model (4) is satisfied with
hazard rate

𝛼(t, z) = lim
h↓0

h−1
P(Ti ∈ [t, t + h)| Ti ≥ t, Zi(t) = z),

and exposure

Yi(t) = 1
{
(t,Z∗

i (t)) ∈ i, t ≤ T̃i

}
,

for individual i. The sets i are allowed to be independent random copies of .
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6 BISCHOFBERGER et al.

4 THE SMOOTH BACKFITTING ESTIMATOR OF
ADDITIVE HAZARDS

4.1 Smooth backfitting hazard estimator as projection

In this and the next section, we illustrate the equivalence of projections and estimators that mini-
mize squared errors following the line of Mammen et al. (1999) where smooth backfitting was first
introduced for nonparametric regression. The idea of describing smoothing estimators as projec-
tions in a regression setting is explained in great detail in Mammen et al. (2001). In the following,
we introduce this projection principle for a counting process framework.

We will introduce our estimators as a projection from a functional space  onto a certain
subspace. The choice of the subspace implies the class of functions that can be estimated and also
the class of estimators to be considered. We now specify these functional spaces as well as (semi-)
norms.

We define the unrestricted functional space as

 = {(f i,j)i=1,…,n,j=0,…,d+1; f i,j ∶ R
d+2 → R},

and subsets LC
full ⊆ LL

full ⊆  via

LL
full = {f ∈  ∶f i,j(s, x) does not depend on i, s},

LC
full = {f ∈  ∶f i,j(s, x) does not depend on i, s;

f i,j(s, x) ≡ 0 for j = 1,…, d + 1}.

Furthermore, for additive hazard functions, we define additive subsets

LL
add =

{
f ∈ LL

full ∶f i,0(s, x) =
d∑

j=0
gj(xj); f i,j(s, x) = hj(xj), j = 1,…, d + 1,

for some functions gj, hj ∶ R → R

}
,

LC
add =

{
f ∈ LC

full ∶f i,0(s, x) =
d∑

j=0
gj(xj) for some functions gj ∶ R → R

}
,

that contain the class of local linear and local constant hazard estimators, respectively. Moreover,
we define a semi-norm || ⋅ || on  through

||f ||2 = ∫ ∫
1
n

n∑
i=1

[
f i,0(s, x) +

d∑
j=0

f i,j+1(s, x)
(xj − Xi,j(s)

h

)]2

× Yi(s)Kh(x − Xi(s))ds d𝜈(x),

for f ∈  and where 𝜈 is a measure with strictly positive density. This semi-norm will be used to
define the projection in the sequel.
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BISCHOFBERGER et al. 7

Next, we will illustrate how  contains both hazard functions and the observations (Ni), i =
1,…,n. For every 𝜀 > 0, the data can be identified with an element Δ𝜀N ∈  via

Δ𝜀Ni,0(s, x) = 1
𝜀∫

s+𝜀

s
dNi(s), Δ𝜀Ni,j(s, x) ≡ 0, j = 1,…, d + 1.

We define the unstructured local constant and local linear hazard estimator as

lim
𝜀→0

arg min
𝜃∈LC

full

||Δ𝜀N − 𝜃||, lim
𝜀→0

arg min
𝜃∈LL

full

||Δ𝜀N − 𝜃||, (5)

respectively. One can easily verify that these estimators coincide with the well-known local
constant and local linear hazard marker dependent hazard estimators introduced in Nielsen
and Linton (1995) and Nielsen (1998). Our estimator could be understood as a projection of
unrestricted local linear smoothing introduced in Nielsen (1998).

For 𝜀 → 0, each element Δ𝜀Ni,0 converges to a Dirac delta function. Hence, we write

min
𝜃∈ ||ΔN − 𝜃|| ∶= lim

𝜀→0
min
𝜃∈ ||Δ𝜀N − 𝜃||,

for  ⊆ .
We define the local constant and local linear nonparametric additive hazard estimator,

respectively, as

arg min
𝜃∈LC

add

||ΔN − 𝜃||, arg min
𝜃∈LL

add

||ΔN − 𝜃||. (6)

For the minimization over all additive hazard functions, we can either use a direct projection
into P

add, P ∈ {LC,LL} which is given by min𝜃∈P
add

||ΔN − 𝜃|| or we use a Pythagorean argu-
ment to project in two steps: For �̂� ∈ P

add, it holds ||ΔN − �̂�||2 = ||ΔN − �̃�||2 + ||�̃� − �̂�||2 with �̃� ∈
P

full. The last identity holds because the elements ΔN − �̃� and �̃� − �̂� are orthogonal (Mammen
et al., 2001). In additive marker-dependent hazard estimation, the unrestricted marker-dependent
hazard estimators can be understood as intermediate in an iterative projection procedure that first
projects to the unrestricted space and then to the additive space.

4.2 Smooth backfitting hazard estimator via least squares

In the previous section, we introduced the local constant estimator as a projection from . In this
section, we show how this connects to the better-known least squares criterion, and thereby also
state the estimator in a way that is more directly mathematically tractable. We first consider the
unstructured local polynomial hazard estimators. For a general understanding, we write down
the general formulation for polynomials of order p, but in this paper we will only consider the
local constant and the local linear case, p = 0, 1.

We will estimate the additive components of the hazard function via kernel smoothers.
Let k ∶ R → R be a symmetric and continuous kernel function such that ∫ k(u)du = 1.
We define K(u0,…,ud) =

∏d
j=0k(uj). For a smoothing parameter h > 0, Kh(u) =

∏d
j=0kh(uj) =∏d

j=0h−1k(h−1uj). In the sequel, we will use a modification of the kernel function to ensure that
the kernel always integrates to unity. We replace kh(u − v) by
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8 BISCHOFBERGER et al.

kh(u, v) = I(u,v∈[0,1])
(
∫ kh(s − v)ds

)−1

kh(u − v) (7)

for every h > 0 to correct for normalization at the boundaries from now on. Furthermore, we
define the multivariate kernel

Kh(u, v) =
d∏

j=0
kh(uj, vj),

for u = (u0,…,ud) and v = (v0,…, vd).
The unstructured pth order local polynomial estimator of the hazard function in x is defined

as the first component of

lim
𝜀→0

arg min
𝜃0 ∶ Rd+1 →R

𝜃j ∶ Rd+1 → Rd+1

j = 1,…, p

n∑
i=1

∫ ∫
{

1
𝜀∫

s+𝜀

s
dNi(u) − 𝜃0(x)

− 𝜃T
1 (x)

(
x0 − Xi0(s)

h
,…,

xd − Xid(s)
h

)T

− · · ·

−𝜃T
p (x)

((
xd − Xid(s)

h

)p

,…,

(
xd − Xid(s)

h

)p)T}2

×Kh(x,Xi(s))Yi(s)ds )d𝜈(x), (8)

The cases p = 0, 1 are exactly the local constant and local linear projection estimator defined
in Equation (5).

For the rest of this paper, we limit ourselves to the same kernel k and bandwidth h for each
dimension to keep the notation simple. Henceforth, if there is no confusion about the boundaries
of the integrals, ∫ denotes integration over the whole support [0,  ] × [0,R]d. The measure 𝜈 has
to have a strictly positive density, but the estimator does not depend on the specific choice of 𝜈 if
we don’t have restrictions on the functions 𝜃j. We will specify a weighting function w such that
d𝜈(x) = w(x)dx. Note that this estimator allows for local polynomial approximation at degree p,
but it is not additive yet.

The nonparametric additive hazard estimator we investigate in this paper is defined by the
minimization in Equation (8) under the following constraints on the structural form of 𝜃. For
p = 0, the constraint 𝜃0(x) = 𝛼

∗ +
∑d

j=0𝛼j(xj) for some functions 𝛼0,…, 𝛼d and a constant 𝛼∗, leads
to the local constant estimator as introduced in Equation (6):

lim
𝜀→0

arg min
𝛼
∗ ∈R,

𝛼j ∶R→R,

j = 0,…, d

n∑
i=1

∫ ∫
{

1
𝜀∫

s+𝜀

s
dNi(u) −

[
𝛼
∗ + 𝛼0(t) + 𝛼1(z1) + · · · 𝛼d(zd)

]}2

× Kh(x,Xi(s))Yi(s)ds d𝜈(x). (9)

For the unique identification of the constant component 𝛼∗ and the components 𝛼j, j = 0,…, d,
we will set further constraints in Equation (13).
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BISCHOFBERGER et al. 9

The local linear additive hazard estimator as defined in Equation (6) arises by setting 𝜃0(x) =
𝛼
∗ +

∑d
j=0𝛼j(xj) and 𝜃1(x) = (𝜕∕𝜕x0𝜃0(x),…, 𝜕∕𝜕xd𝜃0(x)).

lim
𝜀→0

arg min
𝛼
∗ ∈R,

𝛼j ∶R→R,

𝛼
′
j ∶R→R,

j = 0,…, d

n∑
i=1

∫ ∫
{

1
𝜀∫

s+𝜀

s
dNi(u) −

[
𝛼
∗ + 𝛼0(t) + 𝛼1(z1) + · · · 𝛼d(zd)

+ 𝛼
′
0(x0)

(
x0 − Xi0(s)

h

)
+ · · · + 𝛼

′
d(xd)

(
xd − Xid(s)

h

)]}2

× Kh(x,Xi(s))Yi(s)ds d𝜈(x). (10)

Existence and uniqueness of the minimizers of (9) and (10) will be established later.

4.3 The local constant smooth backfitting additive kernel hazard
estimator

The minimization in Equation (8) for p = 0 leads to the unstructured local constant estimator �̂�LC

defined via �̂�LC(x) = Ô(x)∕Ê(x) with

Ô(x) = 1
n

n∑
i=1

∫ Kh(x,Xi(s))dNi(s),

Ê(x) = 1
n

n∑
i=1

∫ Kh(x,Xi(s))Yi(s)ds.

for x ∈  . The estimators Ô and Ê estimate the occurrence and exposure of the observa-
tions. The exposure E is defined via E(x) = ft(z)E[Y (t)] where ft(z) is the conditional density
of (Z1(t),…,Zd(t)) given Y (t) = 1. The occurrence is defined as O(x) = 𝛼(x)E(x) for x = (t, z) ∈
 . The structure of a hazard estimator as an estimator of occurrence divided by an esti-
mator of exposure is in line with piece-wise constant hazard estimators in Martinussen and
Scheike (2002).

To define the local constant smooth backfitting additive hazard estimators, we proceed as
follows. Following the derivation in Section 4.2, the estimator is defined through Equation (9).
The solution 𝛼 = (𝛼∗

, 𝛼0,…, 𝛼d) satisfies the first-order conditions

𝛼
∗ =

∫ [�̂�LC(x) −
∑d

j=0𝛼j(xj)]w(x)dx

∫ w(x)dx
(11)

and

𝛼k(xk) = ∫xk

�̂�LC(x) w(x)
wk(xk)

dx−k −
∑
j≠k

∫xk

𝛼j(xj)
w(x)

wk(xk)
dx−k − 𝛼

∗
, (12)

for k = 0,…, d, where we write wk(xk) = ∫xk
w(x)dx−k for the marginals of w using the notation

xk = {y ∈  ∶ yx = xk} and dx−k denoting integration over all components except for k. For the
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10 BISCHOFBERGER et al.

unique identification of the solution, we also set the conditions

∫k

𝛼k(xk)wk(xk)dxk = 0, k = 0,…, d. (13)

These identification conditions enable us to further get

𝛼
∗ =

∫ �̂�LC(x)w(x)dx
∫ w(x)dx

=
∫ Ô(x)dx
∫ Ê(x)dx

from Equation (11), where the second equality arises from the definition of �̂� and if we set the
weighting to w(x) = Ê(x). One can further reduce the estimator to

𝛼
∗ =

∑n
i=1 ∫ dNi(s)∑n
i=1 ∫ Yi(s)ds

. (14)

This simplification is due to the normalization ∫ Kh(x,Xi(s))dx = 1 of the kernel function Kh
in Equation (7). The estimator 𝛼

∗ is the additive hazard equivalent of the intercept in non-
parametric regression. Note that in backfitting of the regression function m in Mammen
et al. (1999), the estimator for the additive constant m0 of the conditional mean m is given
as m̃0 = Y n. Our result for 𝛼

∗ is the total number of occurrences divided by the average expo-
sure time. In the case of non-filtered data, ∫ dNi(s) equals unity for every i and thus 𝛼

∗ =(
1
n

∑n
i=1 ∫ Yi(s)ds

)−1
. This term is the natural survival analysis equivalent of the empirical mean in

regression.
The constant component 𝛼∗ and all components 𝛼j of the unknown underlying hazard 𝛼 are

uniquely identified through

∫ 𝛼j(xj)Ej(xj)dxj = 0 (15)

with Ej(xj) = ∫ E(x)dx−j for all j. This motivates the choice w(x) = Ê(x) in Equation (13) and the
notation Êk(xk) instead of wk(xk) for this choice of weighting from now on.

For the same data-adaptive weighting, we simplify the terms in Equation (12) with some new
notation. Analogously to the one-dimensional marginals, we write Êk,j(xk, xj) = ∫xk ,xj

Ê(x)dx−(k,j)
for x−(k,j) = (x0,…, xj−1, xj+1,…, xk−1, xk+1,…, xd) and xk ,xj = {(x′0,…, x′d) ∈  ∶ x′k = xk, x′j = xj},
that is, we integrate over all components except for xj and xk which are fixed values. Analogously,
we define the marginal occurrence estimator Ôk(xk) = ∫xk

Ô(x)dx−k.
In the local constant case investigated here, it can be easily shown that it holds

Ôk(xk) =
1
n

n∑
i=1

∫ kh(xk,Xik(s))dNi(s), (16)

Êk(xk) =
1
n

n∑
i=1

∫ kh(xk,Xik(s))Yi(s)ds, (17)

Êj,k(xj, xk) =
1
n

n∑
i=1

∫ kh(xj,Xij(s))kh(xk,Xik(s))Yi(s)ds, (18)
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BISCHOFBERGER et al. 11

for j ≠ k if each pair of covariates has a rectangular support. Thus, these estimators are indeed
just one- and two-dimensional marginal estimators and can be computed efficiently for high
dimensions d > 2.

Now, Equation (12) implies the backfitting equation

𝛼k(xk) = �̂�k(xk) −
∑
j≠k

∫j

𝛼j(xj)
Êk,j(xk, xj)

Êk(xk)
dxj − 𝛼

∗
, (19)

for the notation �̂�k(xk) = Ôk(xk)∕Êk(xk).
Using the last expression, we can get estimators for 𝛼0,…, 𝛼d through iterative backfitting via

m[r+1]
k (xk) = �̂�k(xk) −

∑
j<k

∫ 𝛼
[r+1]
j (xj)

Êk,j(xk, xj)
Êk(xk)

dxj −
∑
j>k

∫ 𝛼
[r]
j (xj)

Êk,j(xk, xj)
Êk(xk)

dxj,

𝛼
[r+1]
k (xk) = m[r+1]

k (xk) −
(
∫ Êk(xk)dxk

)−1

∫ m[r+1]
k (xk)Êk(xk)dxk, (20)

for k = 1,…, d in step r + 1. Recall that �̂�k, k = 0,…, d, are the (non-additive) estimators which
were defined via �̂�k(xk) = Ôk(xk)∕Êk(xk). We suggest to start with the initialization 𝛼

[0]
k (xk) =

�̂�k(xk), that is related to the one-dimensional local linear hazard estimator, see Nielsen and
Tanggaard (2001). However, these pilot estimators can be set to different estimators. The asymp-
totic theory we present here is illustrated for the choice �̂�k. In Section A3 of the appendix,
we illustrate how one can obtain the same estimator 𝛼k by first minimizing (8) without an
additive constraint, yielding the pilot estimator �̂�k and then running an additive minimization
of �̂�k.

The complete smooth backfitting algorithm for the local constant additive hazard estimator 𝛼
is as follows.

1. Compute Ôk, Êk, and Êj,k from Equations (16–18) and set �̂�k(xk) = Ôk(xk)∕Êk(xk) for k, j =
0,…, d.

2. Set r = 0 and 𝛼
[r]
k = �̂�k for k = 0,…, d.

3. For k = 0,…, d, compute 𝛼
[r+1]
k (xk) via Equation (20) for all points xk.

4. If the convergence criterion

∑d
k=0 ∫

(
𝛼
[r+1]
k (xk) − 𝛼

[r]
k (xk)

)2
dxk∑d

k=0 ∫
(
𝛼
[r+1]
k (xk)

)2
dxk + 0.0001

< 0.0001

is fulfilled, stop; otherwise set r to r + 1 and go to step 3.
5. After convergence in step r, set 𝛼k = 𝛼

[r+1]
k for k = 0,…, d, and 𝛼

∗ =∑n
i=1 ∫ dNi(s)∕

∑n
i=1 ∫ Yi(s)ds.

Note that the quantities Êj,k(xj, xk), Êk(xk), �̂�(xk), and 𝛼
∗ can be calculated once in the beginning

and they are not updated during the iteration process. This is a computational advantage. How-
ever, we want to emphasize that the downside of the analogous local linear approach described
in this section is that the local linear pilot estimator does not necessarily exist when there are
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12 BISCHOFBERGER et al.

observations in high dimensions. The local constant estimator, on the other hand, suffers from
bad performance at boundaries.

4.4 Asymptotic properties of the local constant smooth backfitting
additive kernel hazard estimator

We now derive the asymptotic behavior of the local constant estimator under weak assumptions.
Indeed, we don’t assume existence of Ô,Ê but only existence of some one- and two-dimensional
marginal estimators Ôk,Ôk,j,Êk,Êk,j, j, k = 0,…, d, which is satisfied under the conditions illus-
trated below.

The following conditions are sufficient to derive asymptotic normality of the resulting smooth
backfitting estimators 𝛼j, j = 0,…, d.

A1. The exposure satisfies infx∈ E(x) > 0 and its marginals Ej are differentiable for every j.
Moreover, the conditional density ft of Z given Y (t) = 1 is continuous for every t ∈ [0,T]
and it holds supx∈ ft(x) < Cf for some constant Cf .

A2. There exists a function 𝛾 ∈ C2([0,  ]) such that it holds n−1∑n
i=1Yi(t) → 𝛾(t) in probability

as n → ∞ for every t ∈ [0,  ].
A3. The function k is a second-order kernel; that is, it satisfies ∫ k(u)du = 1, ∫ uk(u)du = 0.

Furthermore, k is a symmetric and Lipschitz continuous function with support [−1, 1].
A4. It holds n1∕5h → ch for a constant 0 < ch < ∞ as n → ∞.
A5. The hazard 𝛼 is two times continuously differentiable in every component of x ∈  .

Note that in our notation, 𝛾(t) from A2 and E0(t) are almost surely identical. However, the
definition of E0 does not assure E0 ∈ C2([0,  ]) without A2.

Theorem 1 (Local constant smooth backfitting estimator). Let �̂�j = Ôj∕Êj be the
pilot estimator for j = 0,…, d. Under Assumptions A1–A5, with probability tending to 1,
there exists a unique solution {𝛼∗

, 𝛼j ∶ j = 0,…, d} to (9), and the backfitting algorithm
converges to it:

∫
[
𝛼
[r]
j
(

xj
)
− 𝛼j

(
xj
)]2

Ej
(

xj
)
dxj → 0.

For x0 ∈ (0,  ) and xl ∈ (0,R), l = 1,…, d, the solution satisfies

n2∕5

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝
𝛼0(x0) − 𝛼0(x0)

⋮

𝛼d(xd) − 𝛼d(xd)

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ → 

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

c2
hb0(x0)
⋮

c2
hbd(xd)

⎞⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎝

v0(x0) 0 · · · 0
0 ⋱ ⋮

⋮ ⋱ 0
0 · · · 0 vd(xd)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
,

and in particular 𝛼(x) = 𝛼
∗ +

∑d
j=0𝛼j with 𝛼

∗ from Equation (14) satisfies

n2∕5{𝛼(x) − 𝛼(x)
}
→ 

(
c2

h

d∑
j=0

bj(xj),
d∑

j=0
vj(xj)

)
,
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BISCHOFBERGER et al. 13

for n → ∞, where

vj(xj) = c−1
h ∫ k(u)2du 𝜎2

j (xj)Ej(xj)−1,

𝜎2
j (xj) = 𝛼∗Ej(xj)−1 +

∑
l≠j

∫ 𝛼l(u)Ejl(xj,u)Ej(xj)−1du + 𝛼j(xj).

and where bj is given through

(b0, b1,…, bd) = arg min
 ∫ [𝛽(x) − 𝛽0 − 𝛽1(x1) − · · · − 𝛽d(xd)]2E(x)dx,

for

𝛽(x) =
d∑

j=0
∫ u2k(u)du

[
𝛼′

j (xj)
𝜕 log E(x)

𝜕xj
+ 1

2
𝛼′′

j (xj)
]
,

and  = {𝛽 = (𝛽0, 𝛽1,…, 𝛽d) ∶ ∫ 𝛽j(xj)Ej(xj)dxj = 0; j = 0,…, d}.

The proof of Theorem 1 is given in Appendix A1.

Remark 1. Define the martingale Mi = Ni − Λi where Λi is the compensator of Ni.
The term ∫ k(u)2du 𝜎2

j (xj)Ej(xj) occurs as the asymptotic variance of the martingale
∫ kh(xj,Xij(s))dMi(s). The convergence rate is the same as for a one-dimensional local
constant hazard estimator, see, for example, Nielsen and Tanggaard (2001). In the
nonparametric regression setting Y = m(X) + 𝜀 of Mammen et al. (1999), and in
contrast to our hazard estimator, the asymptotic variance under certain regularity con-
ditions is specified through 𝜎2

j (xj) = Var(Y − m(X)|Xj = xj) without any closed form
expression.

Remark 2. By Lemma 1 in the appendix, �̃�∗ is an unbiased estimator of 𝛼∗ if the
identification conditions ∫ 𝛼j(xj)Ej(xj)dxj = 0 hold for j = 0,…, d.

4.5 The local linear smooth backfitting additive kernel hazard
estimator

The local linear smooth backfitting estimator �̃�j(xj) for j = 0,…, d, can be described by the min-
imization in Equation (10). As described in Section 4.2, this is equivalent to the minimization
in Equation (8) for p = 1 with respect to (�̂�, �̂�(1)) under the constraints 𝜃0(x) = �̂�∗ +

∑d
j=0�̂�j(xj),

𝜃1,j(xj) = �̂�
(1)
j (xj) for a certain weighting function w.

Denoting the estimator of derivatives 𝛼′
j by �̃�j in the following, the first-order conditions for

the minimization in �̃�j(xj) + �̃�∗ and �̃�j(xj) can be written as

[�̃�j(xj) + �̃�∗]V̂ j(xj) + �̃�j(xj)V̂
j
j(xj) =

1
n

n∑
i=1

∫ kh(xj,Xij(s))dNi(s)
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14 BISCHOFBERGER et al.

−
∑
l≠j

∫ �̃�l(xl)V̂
l,j(xl, xj)dxl (21)

−
∑
l≠j

∫ �̃�l(xl)V̂
l,j
l (xl, xj)dxl

[�̃�j(xj) + �̃�∗]V̂ j
j(xj) + �̃�j(xj)V̂

j
j,j(xj) =

1
n

n∑
i=1

∫
(xj − Xi,j(s)

h

)
kh(xj,Xij(s))dNi(s),

−
∑
l≠j

∫ �̃�l(xl)V̂
l,j
j (xl, xj)dxl

−
∑
l≠j

∫ �̃�l(xl)V̂
l,j
l,j(xl, xj)dxl, (22)

with the new notation

V̂ j(xj) =
1
n

n∑
i=1

∫ kh(xj,Xij(s))Yi(s)ds, (23)

V̂ l,j(xl, xj) =
1
n

n∑
i=1

∫ kh(xl,Xil(s))kh(xj,Xij(s))Yi(s)ds,

V̂ j
j(xj) =

1
n

n∑
i=1

∫
(xj − Xi,j(s)

h

)
kh(xj,Xij(s))Yi(s)ds,

V̂ l,j
l (xl, xj) =

1
n

n∑
i=1

∫
(

xl − Xi,l(s)
h

)
kh(xl,Xil(s))kh(xj,Xij(s))Yi(s)ds, (24)

V̂ l,j
j (xl, xj) =

1
n

n∑
i=1

∫
(xj − Xi,j(s)

h

)
kh(xl,Xil(s))kh(xj,Xij(s))Yi(s)ds,

V̂ j
j,j(xj) =

1
n

n∑
i=1

∫
(xj − Xi,j(s)

h

)2

kh(xj,Xij(s))Yi(s)ds,

V̂ l,j
l,j(xl, xj) =

1
n

n∑
i=1

∫
(

xl − Xi,l(s)
h

)(xj − Xi,j(s)
h

)
kh(xl,Xil(s))kh(xj,Xij(s))Yi(s)ds.

Here, x−k denotes (x0,…, xk−1, xk+1,…, xd) and xk denotes the set {(x′0,…, x′d) ∈  ∶ x′k = xk}.
Note that V̂ j(xj) and V̂ l,j(xl, xj) are identical to the one- and two-dimensional local constant

fits Êj(xj) and Êj,k(xj, xk) from the local constant estimator. For simplicity of notation, we relabel
them in the sequel. The terms V̂ j

j(xj), V̂ l,j
l (xl, xj), V̂ l,j

j (xl, xj), V̂ j
j,j(xj) and V̂ l,j

l,j(xl, xj) contain linear and
quadratic components, which distinguish this approach from the one in the last section.

Furthermore, for j = 0,…, d we introduce the same identification condition as Equation (13)
in the local constant case and require

∫ �̃�j(xj)V̂
j(xj)dxj = 0 (25)

to get a unique solution of (21) and (22).
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BISCHOFBERGER et al. 15

We can derive a local constant estimator from the same conditions (21) and (22) for �̂�k(xk) but
with �̂�′

j(xj) set to zero for every j. If we choose w ≡ 1, this local constant estimator coincides with
the one from Section 4.3.

Conditions (21–25) uniquely define our estimator, and for the derivation of asymptotic theory
(21) and (22) can be written in one equation as

M̂j(xj)

(
�̃�j(xj) − �̂�j(xj)
�̃�j(xj) − �̂�j(xj)

)
= −�̃�∗

(
V̂ j(xj)
V̂ j

j(xj)

)
−

∑
l≠j

∫ Ŝl,j(xl, xj)

(
�̃�l(xl)
�̃�l(xl)

)
dxl, (26)

where we have used the matrices

M̂j(xj) =

(
V̂ j(xj) V̂ j

j(xj)
V̂ j

j(xj) V̂ j
j,j(xj)

)
, (27)

Ŝl,j(xl, xj) =

(
V̂ l,j(xl, xj) V̂ l,j

l (xl, xj)
V̂ l,j

j (xl, xj) V̂ l,j
l,j(xl, xj)

)
, (28)

and the one-dimensional local linear fit of the observations(
�̂�j(xj)
�̂�j(xj)

)
= 1

n

n∑
i=1

∫ M̂j(xj)−1

(
1

h−1(xj − Xij(s))

)
kh(xj,Xij(s))dNi(s).

Note, that we would get the same asymptotic result for any estimator which arises from Equation
(26) by replacing V̂ j

0,0, V̂ j
0,0 and (�̂�j, �̂�

j) with asymptotically equivalent estimators that satisfy the
same regularity conditions in Appendix A2.

For the implementation as an iterative algorithm, step r + 1 of the backfitting algorithm is
given by: (

m̂j(xj)
�̃�[r+1],j(xj)

)
=

(
�̂�j(xj)
�̂�j(xj)

)
− M̂j(xj)−1

∑
l≠j

∫ Ŝl,j(xl, xj)

(
�̃�[r]

l (xl)
�̃�[r],l(xl)

)
dxl, (29)

�̃�[r+1]
j (xj) = m̂j(xj) −

(
∫ V̂ j(uj)duj

)−1

∫ m̂j(uj)V̂
j(uj)duj, (30)

for r = 0, 1, 2,….
Note that �̃�∗ from Equation (26) vanishes in the component 𝛼[r+1],j(xj) and it is made redundant

in the other component by the norming condition (30). Theorem 2 assures the convergence of
this estimator.

We recommend avoiding the inverse of the matrices M̂j in the implementation for computa-
tional stability. Solving Equations (21) and (22) for �̃�j(xj) and �̃�j(xj), respectively, and first replacing
�̃�j(xj) in Equation (21) by its latest fit �̃�[r],j(xj) and then �̃�j(xj) in Equation (22) by �̃�[r+1]

j (xj) in step
r + 1, we get the asymptotically equivalent, more stable backfitting equations

�̃�[r+1]
j (xj) = V̂ j(xj)−1

(
Ûj(xj) − �̃�[r],j(xj)V̂

j
j(xj) − �̃�∗V̂ j(xj),

−
∑
l≠j

∫ �̃�[r]
l (xl)V̂

l,j(xl, xj)dxl −
∑
l≠j

∫ �̃�[r],l(xl)V̂
l,j
l (xl, xj)dxl

)
, (31)
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16 BISCHOFBERGER et al.

�̃�[r+1],j(xj) = V̂ j
j,j(xj)−1

(
Ûj

j(xj) − �̃�[r]
j (xj)V̂

j
j(xj) − �̃�∗V̂ j

j(xj)

−
∑
l≠j

∫ �̃�r+1]
l (xl)V̂

l,j
j (xl, xj)dxl −

∑
l≠j

∫ �̃�[r],l(xl)V̂
l,j
l,j(xl, xj)dxl

)
, (32)

for step r + 1 with the notation

Ûj(xj) =
1
n

n∑
i=1

∫ kh(xj,Xij(s))dNi(s), (33)

Ûj
j(xj) =

1
n

n∑
i=1

∫
(xj − Xij(s)

h

)
kh(xj,Xij(s))dNi(s). (34)

Note that Ûj(xj) is identical to Ôj(xj), the local constant occurrence estimator described in
Section 4.3. We set the initialization in step r = 0 to (�̃�[0]

j (xj), �̃�[0],j(xj)) = (0, 0).
The complete smooth backfitting algorithm for the local linear additive hazard estimator �̃� is

as follows.

1. Compute V̂ j, V̂ l,j, V̂ j
j, V̂ l,j

l , V̂ l,j
j , V̂ j

j,j, and V̂ l,j
l,j from Equations (23) and (24) and set �̂�(xk) =

Ôk(xk)∕Êk(xk) for k, j = 0,…, d.
2. Set r = 0 and 𝛼

[r]
k = �̂�k for k, j = 0,…, d.

3. For k = 0,…, d, calculate for all points xk Set r = 1, compute �̃�[r+1]
k (xk) via Equations (31) and

(32). Then replace �̃�[r+1]
j by

�̃�[r+1]
j −

(
∫ V̂ j(uj)duj

)−1

∫ �̃�[r∗]
j (uj)V̂

j(uj)duj.

4. If the convergence criterion

∑d
k=0 ∫ (

�̃�[r+1]
k (xk) − �̃�[r]

k (xk)
)2dxk∑d

k=0 ∫ (
�̃�[r+1]

k (xk)
)2dxk + 0.0001

< 0.0001

is fulfilled, stop; otherwise set r to r + 1 and go to step 3.
5. After convergence in step r, set �̃�k = �̃�[r+1]

k for k = 0,…, d, and �̃�∗ =∑n
i=1 ∫ dNi(s)∕

∑n
i=1 ∫ Yi(s)ds.

4.6 Asymptotic properties of the local linear smooth backfitting
additive kernel hazard estimator

For the asymptotic behavior of �̃�j, we assume the same Assumptions A1–A5 as for the local
constant estimator.

Theorem 2 (Local linear smooth backfitting estimator). Under Assumptions A1–A5,
with probability tending to 1, there exists a unique solution {�̃�j, �̃�

j ∶ j = 0,…, d} to (10)
and the backfitting algorithm (29) converges to it:
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BISCHOFBERGER et al. 17

∫
[
�̃�[r]

j

(
xj
)
− �̃�j

(
xj
)]2

Ej
(

xj
)
dxj → 0,

∫
[
�̃�j,[r](xj

)
− �̃�j(xj

)]2Ej
(

xj
)
dxj → 0.

For x0 ∈ (0,  ) and xl ∈ (0,R), l = 1,…, d, the solution satisfies

n2∕5

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝
�̃�0(x0) − 𝛼0(x0) + 𝜈n,0

⋮

�̃�d(xd) − 𝛼d(xd) + 𝜈n,d

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ → 

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

c2
hb0(x0)
⋮

c2
hbd(xd)

⎞⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎝

v0(x0) 0 · · · 0
0 ⋱ ⋮

⋮ ⋱ 0
0 · · · 0 vd(xd)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
,

for n → ∞, where

𝜈n,j = ∫ ∫ 𝛼j(xj)kh(xj,u)Ej(u)du dxj,

bj(xj) =
1
2 ∫ u2k(u)du

[
𝛼′′

j (xj) − ∫ 𝛼′′
j (xj)Ej(xj)dxj

]
,

vj(xj) = c−1
h ∫ k(u)2du 𝜎2

j (xj)Ej(xj)−1,

𝜎2
j (xj) = 𝛼∗Ej(xj)−1 +

∑
l≠j

∫ 𝛼l(u)Ejl(xj,u)Ej(xj)−1du + 𝛼j(xj).

This result yields in particular

n2∕5{�̃�(x) − 𝛼(x)} → 
(

c2
h

d∑
j=0

bj(xj),
d∑

j=0
vj(xj)

)
,

for �̃�(x) = �̃�∗ +
∑d

j=0�̃�j(xj) with �̃�∗ =
∑n

i=1 ∫ dNi(s)∕
∑n

i=1 ∫ Yi(s)ds.

The proof of Theorem 2 is given in Appendix A2.

Remark 3. Note that the convergence rate is the same as for a one-dimensional local
linear hazard estimator, see, for example, Nielsen and Tanggaard (2001). Further-
more, �̃�j(xj) estimates 𝛼j(xj) − ∫ 𝛼j(xj)V̂

j(xj)dxj instead of 𝛼j(xj). The terms 𝜈n,j correct
for this shift in the estimation of each component. The sum

∑d
j=0𝜈n,j vanishes as the

additive adjustments cancel each other off.
The component �̃�∗ of the estimator �̃�, which estimates 𝛼∗, is identical to 𝛼

∗ from
the local constant case. Its asymptotic behavior is explained in Remark 2.

5 SIMULATION STUDY

5.1 Simulation setting

We assume that the survival times Ti follow a Gompertz–Makeham distribution, with hazard
function given by
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18 BISCHOFBERGER et al.

𝛼(t,Zi) = 𝛼0(t) +
d∑

k=1
𝛼k(Zik) = e0.01t + 4√

d

d∑
k=1

(−1)k+1 sin(𝜋Zik),

(i = 1,…,n). We add right censoring with censoring variables Ci that follow the same distribu-
tion as Ti, except with the scale parameter divided by 1.75. The factor 4d−1∕2 is chosen so that
the distribution of Ti doesn’t vary too much in the number of covariates d. Note that, for conve-
nience, the components are identified differently than in Equations (25), (15). We now describe
how the covariates (Zi1,…,Zid) are generated. We first simulate (Z̃i1,…, Z̃id) from a d-dimensional
multi-normal distribution with mean equal 0 and Corr(Zij,Zil) = 𝜌 if j ≠ l, else 1. Afterwards
we set

Zik = 2.5𝜋−1 arctan(Z̃ik).

We repeat the procedure and take the first i = 1,…,n observations such that
4d−1∕2∑d

k=1(−1)k+1 sin(𝜋Zik) is positive. Technically, the values of the covariates are conditioned
such that the resulting hazard is positive and hence well defined.

As kernel function k, we used the Epanechnikov kernel. Performance is measured via the
integrated squared error:

MISEk = n−1
∑

i

(
𝜂k(Zik) − 𝜂k(Zik )

)2
.

5.2 Simulation results

We compare the performance of the local linear smooth backfitting estimator to the local con-
stant smooth backfitting estimator. We also compare these proposed estimators to a version of
the classical backfitting equivalent where only the updated component is smoothed, see Buja
et al. (1989).

Figure 1 shows the estimation results for the first component from 100 simulations in a set-
ting with sample size n = 5,000, dimension d = 3, and correlation 𝜌 = 0.5, calculated with a MISE
optimal bandwidth. We find that the classical backfitting estimators produce more noise than
their smooth backfitting counterparts. The local constant smooth backfitting estimator is less
smooth (more “wiggly”) than the local linear version. This first impression can be further verified
in Table 1: Classical backfitting estimators perform significantly worse than the smooth alter-
natives. The local linear classical backfitting estimator only gives sensible results in the easiest
settings, that is, when n = 5,000 and or d = 3, while breaking down in all other cases. Another
observation is that the local linear smooth backfitting estimator is almost always to be preferred
over the local constant smooth backfitting estimator. Only in the most challenging setting, that is,
n = 500, d = 30, did the local constant smooth backfitting estimator outperform the local linear
version. But even in that case, the advantage is only by a small margin.

6 DATA APPLICATION: THE TRACE STUDY

The TRACE study group (see, e.g., Jensen et al. (1997)) has collected information on more than
4,000 consecutive patients with acute myocardial infarction (AMI) with the aim of studying the
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BISCHOFBERGER et al. 19
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F I G U R E 1 Simulation results for k = 1 comparing four different estimators: Local constant smooth
backfitting, local linear smooth backfitting, local constant backfitting, and local linear backfitting. The gray lines
represent 100 Monte Carlo simulations with MISE-optimal bandwidth estimating the true curve (black).

prognostic importance of ventricular fibrillation (vf) on mortality. We here consider a subset of
these patients that are available in the timereg R package. We furthermore only consider those
patients with more than 40 years of age, and only consider the first five years of follow-up time
after the diagnosis. This results in n = 1799 observations. At entry, that is, time of AMI occur-
rence, the patients had various risk factors recorded. Here, additionally to duration, that is, time
since AMI occurrence, we will consider age at AMI occurrence of the patient, ai, and wall motion
index (heart pumping effect based on ultrasound measurements where 2 is normal and 0 is worst
(Scheike, 2009)), wmii. We will ignore additional binary covariates that have been recorded, as
our framework only covers continuous covariates. With that regard, this section should be seen as
a simple illustration of our theoretical work rather than a serious attempt to answer a real-world
question. In summary, we consider the model

𝜆i(t) = Yi(t){𝛼0(t) + 𝛼2(ai) + 𝛼3(wmii)},

under the identifiability condition ∫ 𝛼j(xj)dxj = 0 for j = 1, 2. The initially estimated curve for
𝛼0 can be seen in Figure 2. We find that the duration effect has two distinct periods with an
increased risk in the beginning that flattens after approximately three months. This suggests that
it might be beneficial to apply different amounts of smoothing to those two periods. We there-
fore generate two different data sets from our original data set: The first data set covers the risk
in the first three months (this can be achieved by censoring all patients who survived beyond
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20 BISCHOFBERGER et al.

T A B L E 1 Simulation results comparing four different estimators: Local constant smooth backfitting, local
linear smooth backfitting, local constant backfitting, and local linear backfitting.

n = 500 n = 5000

MISE Bias2 Variance MISE Bias2 Variance

d = 3

LL-SBF 0.25 0.07 0.17 0.031 0.007 0.024

LC-SBF 0.30 0.05 0.25 0.051 0.011 0.041

LL-BF 43.14 0.69 42.46 0.779 0.041 0.737

LC-BF 1.44 0.48 0.96 0.077 0.020 0.058

d = 10

LL-SBF 0.22 0.05 0.17 0.020 0.005 0.015

LC-SBF 0.24 0.08 0.17 0.030 0.006 0.025

LL-BF 1118.80 10.88 1107.91 0.135 0.057 0.078

LC-BF 1.02 0.03 0.99 0.031 0.005 0.026

d = 30

LL-SBF 0.18 0.03 0.15 0.014 0.0007 0.0133

LC-SBF 0.16 0.05 0.10 0.029 0.0172 0.0114

LL-BF NA NA NA 0.171 0.1494 0.0217

LC-BF NA NA NA 0.033 0.0227 0.0105

Note: Values are calculated from 500 Monte Carlo simulations with MISE-optimal bandwidth.

three months) and the second data set covers the risk conditional on surviving the first three
months (i.e., omits all patients in the data set with failure or censoring in the first three months).
The results with our local linear estimator for the two different cohorts, that is, those with ven-
tricular fibrillation (vf= 1) and those without ventricular fibrillation (vf= 0) can is depicted in
Figures 3 and 4.

The smoothing parameter was chosen manually: For the cohort with vf = 0 we have n = 1655
patients when considering the first three months and chose the bandwidths for (t, a,wmi) as
(0.1, 15, 0.8); for the data set after surviving the first three months, we have n = 1482 and chose
a bandwidth of (1, 15, 0.8). For the cohort with vf = 1 we have n = 132 patients for the first
three months and chose a bandwidth of (t, a,wmi) as (0.1, 20, 0.8); for the data set, after surviv-
ing the first three months, we have n = 75 and chose a bandwidth of (t, a,wmi) as (1, 20, 0.8).
The dashed lines show a point-wise asymptotic 95% confidence interval based on Theorem 2.
Note that it is hereby in particular assumed that (a) the bias can be neglected and (b) that the
true underlying model is indeed additive. Therefore, the confidence intervals should be seen as
rather optimistic. They nevertheless give an impression of the uncertainty under optimal con-
ditions. Looking at Figure 3, we find that in the first three months, vf = 1 leads to a significant
increase in mortality risk. We also find that the risk increase is more severe for older patients.
Figure 4 does not provide evidence that vf = 1 leads to an increased risk after surviving the first
three months. In the next section, we want to look at how confident we can be with the model
results.
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BISCHOFBERGER et al. 21

F I G U R E 2 Local linear additive smooth backfitting fit of 𝛼0 on the full data.

F I G U R E 3 Local linear fit of (𝛼0, 𝛼1, 𝛼2) for the first three months for two different strata, depending on the
value of vf. The dashed line indicates the asymptotic 95% point-wise confidence interval.

6.1 Model robustness

6.1.1 CRPS score

We transform our estimated hazard function 𝛼 = 𝛼0 + 𝛼1 + 𝛼2 into a plug-in estimator of the sur-
vival function via the relationship S(t|z) = ∏

s≤t(1 − 𝛼(s, z)ds). We then split our data randomly
into an 80% training set and a 20% test set. We train our model on the training set and evalu-
ate the CPRS score (Avati et al., 2020) on the test set (note that a lower score indicates better
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22 BISCHOFBERGER et al.

F I G U R E 4 Local linear fit of (𝛼1, 𝛼2, 𝛼3) conditional on surviving the first three months for two different
strata, depending on the value of vf. The dashed line indicates the asymptotic 95% point-wise confidence interval.

performance):

CRPS = m−1
m∑

i=1
∫

Ti

0
(1 − Ŝ(s|zi))2ds + 𝛿i∫

∞

Ti

Ŝ(s|zi)2ds,

where m is the size of the test set. Due to the additive structure, our survival prediction—although
consistent—can still be negative. We therefore consider a simple adjustment where we numeri-
cally calculate

Ŝadj(s|z) = ∏
s≤t

(1 − �̂�adj(s, z)ds), �̂�adj(s, z) = max(�̂�(s, z), 0).

Lastly, we compare our local linear additive fit with the local constant multiplicative smooth back-
fitting estimator from Hiabu, Mammen, et al. (2021). The results from 200 simulation runs can
be seen in Figure 5. We have two main observations. Firstly, the model choice does not seem to
have a big impact when considering survival conditional on surviving the first three months. Sec-
ondly, for survival during the first three months, using the adjusted survival probability estimates
improves the performance, but even better performance can be achieved by using a multiplica-
tive model. Nevertheless, we want to emphasize that our smooth backfitting additive estimators
have the desirable projection property that, if the additive model assumption is violated, the esti-
mators converge to the closest additive fit, making the results still interpretable. We investigate
this property in the next subsection.
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BISCHOFBERGER et al. 23

F I G U R E 5 CPRS scores from 200 simulations of an 80/20 training-test-split. Boxplots are given for the four
different data sets as described on top of the plots and each time for three different models: Smooth backfitting
additive model, smooth backfitting additive model using the adjusted survival estimates Ŝadj(s) and the smooth
backfitting multiplicative model from Hiabu, Nielsen, and Scheike (2021).
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F I G U R E 6 200 simulations from a multiplicative hazard model, see Figure B1. Gray curves are fitted local
linear smooth backfitting estimators. Yellow curves are approximately optimal additive fits derived from a
smooth backfitting additive regression fit with the true hazard as response and an inflated sample size of 10,000.

6.1.2 Stability under model misspecification

We take the estimated multiplicative smooth backfitting model from the previous subsection,
see also Figures B1 and B2 in the Appendix, as a true model and investigate how, in this case,
our additive estimator would look. When generating the four data sets (vf = 0, 1; risk in the first
three months, risk conditional on surviving the first three months), we keep the same number of
samples as in the original data sets while sampling (a, wmi) with replacement from the original
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F I G U R E 7 200 simulations from a multiplicative hazard model, see Figure A2. Gray curves are fitted local
linear additive smooth backfitting estimates. Yellow curves are approximately optimal additive fits derived from a
smooth backfitting additive regression estimator with the true hazard as response and an inflated sample size of
10,000.

data sets. Afterwards, for each row, we draw a survival time from the multiplicative smooth back-
fitting model. The survival time is considered censored if it is greater than 0.25 when considering
the first three months, and it is considered censored if it is greater than 5 when considering the
period after the first three months.

We compare our additive smooth backfitting estimator to a somewhat optimal fit. Note that
it is not clear how to derive an optimal fit analytically or even numerically, as it depends on the
joint distribution of duration, age, and wmi; which is not known. Therefore, we approximate the
optimal fit by estimating an additive smooth backfitting regression function (Hiabu et al., 2023;
Mammen et al., 1999) based on 10,000 observations where the response is the known hazard. We
consider 200 simulations and the fact that the regression estimator does not vary much as a good
indicator, giving us confidence that it is a good approximation of the optimal additive fit. The
results are given in Figures 6 and 7. We find that our proposed estimators (grey lines)—despite the
limited sample sizes—are reasonably close to the regression fit, such that we can conclude that
our approach is working reasonably well in estimating the optimal additive fit. Lastly, it should be
noted that we also tried a classical backfitting approach with kernel smoothers, with the result that
the estimators for all components diverged in every simulation run and did not provide any result.
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APPENDIX A
A1 Asymptotic theory for the local constant estimator
For the proof of Theorem 1, we apply the general theory for smooth backfitting estimators. We
split the estimator into a stochastic part and a part consisting of its bias plus a function that van-
ishes. For counting processes martingales, these two parts are usually referred to as the variable
and the stable part, respectively. One has to show three things: The convergence of the backfitting
algorithm, the asymptotic normality of the stochastic part, and that the bias part vanishes asymp-
totically. In Mammen et al. (1999), conditions for these three properties have been stated for a
nonparametric regression setup. The main part of our proof is to verify these conditions under
Assumptions A1–A5. For completeness, we restate the modified conditions in our notation.

We also state propositions from Mammen et al. (1999), adapted to our notation, which imply
the properties we need if the following assumptions hold. The difference to Mammen et al. (1999)
is that we make use of martingale properties and counting process theory instead of the usual
arguments for kernel density estimators.

We start with assumptions about the marginal exposures and convergence of marginal expo-
sure estimators. Note that we don’t assume any particular definition of Êj and Êj,k, j, k = 0,…, d,
for the following propositions.

B1. For all j ≠ k it holds

∫
Ej,k(xj, xk)2

Ej(xj)Ek(xk)
dxj dxk < ∞.

B2. It holds

∫
[Êj(xj) − Ej(xj)

Ej(xj)

]2

Ej(xj)dxj = oP(1),

∫
[ Êj,k(xj, xk)

Ej(xj)Ek(xk)
−

Ej,k(xj, xk)
Ej(xj)Ek(xk)

]2

Ej(xj)Ek(xk)dxj dxk = oP(1),

∫
[ Êj,k(xj, xk)

Êj(xj)Ek(xk)
−

Ej,k(xj, xk)
Ej(xj)Ek(xk)

]2

Ej(xj)Ek(xk)dxj dxk = oP(1).

Moreover, Êj vanishes outside the support of Ej, Êj,k vanishes outside the support of Ej,k
and Ê is symmetric, that is, Êj,k(xj, xk) = Êk,j(xk, xj).

We assume that the marginal pilot estimator and proportions of the marginal exposure
estimators are somehow bounded in probability:

B3. There exists a constant C such that with probability tending to 1 for all j,

∫ �̂�j(xj)2Ej(xj)dxj ≤ C.

B4. For some finite intervals Sj ⊂ R that are contained in the support of Ej, j = 1,…, d, we
suppose that there exists a finite constant C such that with probability tending to 1 for all
j ≠ k,

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70004 by C

ity U
niversity O

f L
ondon, W

iley O
nline L

ibrary on [29/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



28 BISCHOFBERGER et al.

sup
xj∈Sj

∫
Êj,k(xj, xk)

Ej(xj)Êk(xk)2
dxk ≤ C.

We now introduce the notation �̂�j = �̂�A
j + �̂�B

j for the one-dimensional smoother with

�̂�A
j = Êj(xj)−1 1

n

n∑
i=1

∫ kh(xj,Xij(s))dMi(s),

the variable part and

�̂�B
j = Êj(xj)−1 1

n

n∑
i=1

∫ kh(xj,Xij(s))dΛi(s),

the stable part of �̂�j. Here, the compensator Λi of Ni is defined such that Mi is a martingale and
Ni = Mi + Λi. The definition of Mi will be given later. Now we define the stochastic and stable com-
ponents of the local constant smooth backfitting estimator, 𝛼s

0,j, 𝛼
s
j , for s ∈ {A,B}, as the solution of

𝛼
s
k(xk) = �̂�s

k(xk) − �̂�s
0,k −

∑
j≠k

∫j

𝛼
s
j (xj)

[Êj,k(xj, xk)
Êk(xk)

− Êj,[k+](xj)
]

dxj, (A1)

where �̂�s
0,k = ∫ �̂�s

k(xk)Êk(xk)dxk∕ ∫ Êk(xk)dxk. Existence and uniqueness of �̂�A
k , �̂�

B
k is stated in

Proposition 1 under the following assumptions. Assumption B6 assures convergence of the
variable part, whereas Assumption B7 is used to describe the structure of the bias part.

B5. There exists a constant C such that with probability tending to 1 for all j, it holds

∫ �̂�A
j (xj)2Ej(xj)dxj ≤ C,

∫ �̂�B
j (xj)2Ej(xj)dxj ≤ C.

B6. We assume that there is a sequence Δn → 0 such that

sup
xk∈Sk

|||||∫ Êj,k(xj, xk)
Êk(xk)

�̂�A
j (xj)dxj

||||| = oP(Δn),‖‖‖‖‖∫ Êj,k(xj, xk)
Êk(xk)

�̂�A
j (xj)dxj

‖‖‖‖‖2,k
= oP(Δn),

where || ⋅ ||2,k denotes norm defined via ||g||2,k = ∫ g(u)2Ek(u)du. The sets Sk have been
introduced in Assumption B4.

B7. There exist deterministic functions 𝜇n,j such that

sup
xj∈Sj

|||𝛼B
j (xj) − 𝜇n,j(xj)

||| = op(Δn),

where Sk has been introduced in Assumption B4.
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The following two propositions are results from Mammen et al. (1999), adapted to our set-
ting and notation. Under Assumptions B1–B3 and B5, Proposition 1 ensures that the backfitting
algorithm converges, and Propositions 2 and 3 give the asymptotic behavior of the backfitting
estimator under Assumptions B1–B9.

Proposition 1 (Convergence of backfitting). Under Assumptions B1–B3, with prob-
ability tending to 1, there exists a unique solution {𝛼j ∶ j = 0,…, d} to (19). Moreover,
there exist constants 0 < 𝛾 < 1 and c > 0 such that, with probability tending to 1, it holds:

∫
[
𝛼
[r]
j (xj) − 𝛼j(xj)

]2
Ej(xj)dxj ≤ c𝛾2r

(
1 +

d∑
l=0

∫
[
𝛼
[0]
l (xl)

]2
El(xl)dxl

)
,

for j = 0,…, d. The functions 𝛼[0]
l are the starting values of the backfitting algorithm. For

r > 0 the functions 𝛼[r]
0 ,…, 𝛼

[r]
d are defined by Equation (20).

Moreover, under the additional Assumption B5, with probability tending to 1, there
exists a solution {𝛼s

j ∶ j = 0,…, d} of (A1) that is unique for s = A,B, respectively.

Proposition 2 (Asymptotic behavior of stochastic part). Suppose that Assumptions
B1–B6 hold for a sequence Δn and intervals Sj, j = 0,…, d. Then it holds that

sup
xj∈Sj

|||𝛼A
j (xj) − [�̂�A

j (xj) − 𝛼
A
0,j]

||| = oP(Δn).

Under the additional Assumption B7, it holds

sup
xj∈Sj

|||𝛼A
j (xj) − [�̂�A

j (xj) − 𝛼
A
0,j + 𝜇n,j(xj)]

||| = oP(Δn).

For the convergence of the bias term, we need the following.

B8. For all j ≠ k, it holds

sup
xj∈Sj

∫
||||| Êj,k(xj, xk)
Êj(xj)Êk(xk)

−
Ej,k(xj, xk)

Ej(xj)Ek(xk)

|||||Ek(xk)dxk = op(1).

At last, Assumption B9 is about the structure of the bias term of the estimators.

B9. There exist deterministic functions an,0(x0),…, an,d(xd) and constants a∗
n, 𝛾n,0,…, 𝛾n,d and a

function 𝛽 ∶ R → R (not depending on n), such that

∫ an,j(xj)2Ej(xj)dxj < ∞,

∫ 𝛽(x)2E(x)dx < ∞,

sup
x1∈S1,…,xd∈Sd

|𝛽(x)| < ∞,

𝛾n,j − ∫ an,j(xj)Êj(xj)dxj = oP(Δn),
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30 BISCHOFBERGER et al.

sup
xj∈Sj

|||�̂�B
j (xj) − �̂�n,0 − �̂�n,j(xj)

||| = oP(Δn),

∫ |||�̂�B
j (xj) − �̂�n,0 − �̂�n,j(xj)

|||2
Ej(xj)dxj = oP(Δ2

n),

for random variables �̂�n,0 and where

�̂�n,j(xj) = a∗
n + an,j(xj) +

∑
k≠j

∫ an,k(xk)
Êj,k(xj, xk)

Êj(xj)
dxk + Δn ∫ 𝛽(x) E(x)

Ej(xj)
dx−j.

The following Proposition is taken from Mammen et al. (1999) and we have adapted it to our
notation. It implies in particular that the bias term of the smooth backfitting estimators equals
the projections of the bias of the full-dimensional estimator of Linton et al. (2003).

Proposition 3 (Asymptotic behavior of bias part). Under Assumptions B1–B6, B8,
B9, for j = 0,…, d, it holds

sup
xj∈Sj

|||𝛼B
j (xj) − 𝜇n,j(Xj)

||| = oP(Δn),

for 𝜇n,j(xj) = an,j(xj) − 𝛾n,j + Δn𝛽j(xj) with

(𝛽0, 𝛽1,…, 𝛽d) = arg min
 ∫ [𝛽(x) − 𝛽0 − 𝛽1(x1) − · · · − 𝛽d(xd)]2E(x)dx,

and  = {𝛽 = (𝛽0, 𝛽1,…, 𝛽d) ∶ ∫ 𝛽j(xj)Ej(xj)dxj = 0; j = 0,…, d}. In particular, does
Assumption B7 hold with this choice of 𝜇n,j(xj)?

With the next lemma, we ensure that the constant 𝛼∗ is estimated at a parametric rate in the
local constant setting. This standard result will also be needed in the proof of Theorem 1.

Lemma 1. Let 𝛼
∗ =

(∑n
i=1 ∫ dNi(s)

)
∕
(∑n

i=1 ∫ Yi(s)ds
)

as defined in Equation (14).
Under the condition ∫ 𝛼j(xj)Ej(xj)dxj = 0, for j = 0,…, d together with Assumption A2,
it holds

n1∕2(𝛼∗ − 𝛼∗) →  (
0, 𝜎2

𝛼∗

)
,

as n → ∞ and for 𝜎2
𝛼∗ = 𝛼∗(1 − 𝛼∗). This implies in particular 𝛼∗ − 𝛼∗ = Op(n−1∕2).

Proof. We first note that it holds E0(t) = ∫ E(x)dx−0 = 𝛾(t) for x = (t, z) and with 𝛾

from Assumption A2. Using 1
n

∑n
i=1Yi(s) = 𝛾(s) + oP(1) in the denominator and the

usual martingale decomposition for counting processes in the numerator, we get

E
[
n1∕2𝛼

∗] = n1∕2𝛼∗ + o(1),
Var

(
n1∕2𝛼

∗) = 𝛼∗(1 − 𝛼∗) + o(1),

because of the identification ∫ 𝛼0(s)𝛾(s)ds = 0. The terms E
[∫ 𝛼j(Zi,j(s))𝛾(s)ds

]
in the

stable part of the martingale vanish because of 𝛾(t) = ∫ E(x)dx−0 and the identification
criterion. The Central Limit Theorem for i.i.d. observations then yields the result. ▪
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BISCHOFBERGER et al. 31

Moreover, we will make use of the following counting process martingale central limit
theorem, which is a direct application of Rebolledo’s Theorem (Theorem II.5.1 in Andersen
et al. (1993)). It is a multivariate extension of the central limit theorem for martingales in
Ramlau-Hansen (1983).

Lemma 2 (Multivariate Ramlau-Hansen). Let {Mi ∶ i = 1,…,n} be a sequence of
i.i.d. martingales and let g(n)i,j be predictable functions for j = 1,…, d. Furthermore,
suppose it holds for j, k = 1,…, d,

n∑
i=1

∫ g(n)i,j (s)g
(n)
i,k (s)d⟨Mi⟩(s) → 𝜎2

j,k, (A2)

n∑
i=1

∫
[

g(n)i,j (s)
]2

I{|g(n)i,j (s)|>𝜀}d⟨Mi⟩(s) → 0, (A3)

in probability for n → ∞ with 𝜎2
j,k > 0 and for every 𝜀 > 0. Then

n∑
i=1

⎛⎜⎜⎜⎝
∫ g(n)i,1 (s)dMi(s)

⋮

∫ g(n)i,d (s)dMi(s)

⎞⎟⎟⎟⎠ →  (0,Σ),

in distribution for n → ∞, where 𝜎2
j,k, j, k = 1,…, d are the entries of the covariance

matrix Σ.

To show Theorem 1, we apply Propositions 1–3 and Lemmas 1 and 2. According to the propo-
sitions, it is sufficient to verify Assumptions B1–B9. In the proof of Theorem 1 we will show that
our Assumptions A1–A5 imply Assumptions B1–B9 for the right choices of Δn, an,j, 𝛽, 𝛾n,j.

Proof of Theorem 1. In the following, we show how Assumptions A1–A5 imply
B1–B6, B8–B9 with our choice of marginal pilot estimators. Assumption B7 is estab-
lished through Proposition 3 once the other assumptions are verified.

Without loss of generality, the proofs are done for  = R = 1, that is, for survival
time and covariates with support [0, 1] and we will show that Assumptions B1–B9 are
satisfied on closed subsets S0 ⊂ (0,  ) and Sj ⊂ (0,R), j = 1,…, d.

We first note that Assumption B1 follows directly from A1.
For the remaining stochastic statements, we start with the derivation of con-

vergence rates for the marginal exposure estimators. Moreover, we will show all
statements for the rate Δn = h2. With Ih = [2h, 1 − 2h], it holds for j = 0,…, d,

sup
xj∈Ih

|Êj(xj) − Ej(xj)| = OP
(
(log n)1∕2n−2∕5), (A4)

sup
xj,xk∈Ih

|Êj,k(xj, xk) − Ej,k(xj, xk)| = OP
(
(log n)1∕2n−3∕10), (A5)

sup
0≤xj≤1

|Êj(xj) − ∫
1

0
kh(xj,u)du Ej(xj)| = OP

(
n−1∕5), (A6)

sup
0≤xj,xk≤1

|Êj,k(xj, xk) − ∫
1

0
kh(xj,u)du∫

1

0
kh(xk, v)dv Ej,k(xj, xk)| = OP

(
n−1∕5). (A7)
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32 BISCHOFBERGER et al.

Before proving Equations (A4–A7) we emphasize that they imply in particular

sup
xj∈[0,1]

|Êj(xj)| = OP(1), (A8)

sup
xj∈[0,1]

|Êj(xj)−1| = OP(1), (A9)

sup
xj,xk∈[0,1]

|Êj,k(xj, xk)| = OP(1). (A10)

Condition (A4) follows with standard arguments (chaining, Bernstein inequality,
c.f. Mammen et al. (1999) for the regression case) from

E[Êj(xj)] − Ej(xj) = O
(

n−2∕5), (A11)|Êj(xj)| ≤ C1 a.s., (A12)|Êj(u1) − Êj(u2)| ≤ C2|u1 − u2|nmOP(1), (A13)

Var(Êj(xj)) = O(n−4∕5), (A14)

for constants 0 < C1,C2 < ∞, m > 0 and all u1 ≠ u2, xj ∈ [0, 1]. This can be seen with
Taylor expansions and using the Lipschitz continuity of K. Condition (A5–A7) can be
shown in the same way. For Equations (A6) and (A7) note that ∫ 1

0 kh(xj,u)du corrects
the kernel at the boundaries where it does not integrate to unity.

We now show (A11–A14). Condition (A12) follows directly from A3 with K being
bounded and the covariates having compact support. With usual kernel estimator
arguments and a Taylor expansion of fs around xj we get

E[Êj(xj)] − Ej(xj) = o(h2), (A15)

which implies condition (A11) immediately. Condition (A14) can be derived analo-
gously. Eventually, the Lipschitz continuity of K in A3 yields (A13).

Since the kernel k is cut off outside [0, 1], Assumption B2 follows directly from
Equations (A8–A10).

For the remaining assumptions we split the marginal estimator �̂�j(xj) as described
for B5 into the variable part

�̂�A
j (xj) =

1
n

∑n
i=1 ∫ kh(xj,Xij(s))dMi(s)

Êj(xj)
,

and the stable part

�̂�B
j (xj) =

1
n

∑n
i=1 ∫ kh(xj,Xij(s))dΛi(s)

Êj(xj)
,

via �̂�j(xj) = �̂�A
j (xj) + �̂�B

j (xj). With the choice Λi(t) = ∫ t
0 𝜆i(s)ds for the intensity 𝜆i that

was introduced in Equation (4), we get that Mi = Ni − Λi defines a unique square
integrable martingale arising from the counting process Ni.
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BISCHOFBERGER et al. 33

Next we derive the asymptotic behavior of �̂�A
j (xj) and �̂�B

j (xj) separately. With Mi
being a martingale and kh(xj,Xij(s)) being predictable, the integral ∫ kh(xj,Xij(s))dMi(s)
is a martingale as well. Using the multivariate Ramlau-Hansen martingale central
limit theorem in Lemma 2, we will show that �̂�A

j (xj) is asymptotically normally dis-
tributed whereas the difference between the stable part �̂�B

j (xj) and 𝛼j(xj) asymptotically
behaves like the bias term bj(xj).

For xj ∈ Ih, we now show conditions (A2) and (A3) of Lemma 2 for g(n)ij (s) =
n−3∕5kh(xj − Xij(s)). Note that withΛi being the compensator of Mi, we get in particular
d⟨Mi⟩(s) = dΛi(s) =

[
𝛼∗ +

∑d
k=0𝛼k(Xik(s))

]
Yi(s)ds.

For cross-terms with j ≠ l in Equation (A2), it holds with this choice of g(n)ij that

E

[ n∑
i=1

∫ g(n)i,j (s)g
(n)
i,k (s)d⟨Mi⟩(s)]

= E

[( 1
n

n2∕5
)2 n∑

i=1
∫ kh(xj − Xij(s))kh(xl − Xil(s))dΛi(s)

]

= n−1∕5 ∫ ∫ kh(xj − uj)kh(xl − ul)

[
𝛼∗ + 𝛼0(s) +

d∑
k=1

𝛼k(uk)

]
× 𝛾(s)fs(u1,…,ud)d(u1,…,ud)ds

= O(h), (A16)

because of the bounded support of the covariates and with the hazard rates being
continuous. We write fs(u1,…,ud) for the conditional density of (Xi1(s),…,Xid(s)) at
(u1,…,ud) given Yi(s) = 1. Moreover, it can be shown easily with similar arguments
that the variance of these terms satisfies

Var

( n∑
i=1

∫ g(n)i,j (s)g
(n)
i,k (s)d⟨Mi⟩(s)) = O(h6), (A17)

and hence 𝜎2
k,l = 0 for j ≠ l is assured for (A2). For the diagonal of the asymptotic

covariance matrix Σ̃, we start with the following preliminary results. For xj ∈ Ih it
holds

n4∕5
E

[
n−2

n∑
i=1

∫ kh(xj − Xij(s))2𝛼j(Xij(s))Yi(s)ds

]

= n4∕5n−1 ∫ ∫ kh(xj − u)2𝛼j(u)fs(u)𝛾(s)du ds

= n−1∕5h−1 ∫ ∫ k(v)2𝛼j(xj + vh)fs(xj + vh)𝛾(s)dv ds

= (nh5)−1∕5 ∫ k(v)2𝛼j(xj)dvEj(xj) + o(1)

= c−1
h ∫ k(v)2dv 𝛼j(xj)Ej(xj) + o(1), (A18)
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34 BISCHOFBERGER et al.

with usual kernel estimator arguments. Analogously, we get for l ≠ j that

n4∕5
E

[
n−2

n∑
i=1

∫ kh(xj − Xij(s))2𝛼l(Xil(s))Yi(s)ds

]
= c−1

h ∫ k(v)2dv∫ ∫ 𝛼k(ul)fs(xj,ul)𝛾(s)dul ds + o(1). (A19)

For the variance of the diagonal terms, one can derive

Var

( n∑
i=1

∫
(

g(n)i,j (s)
)2

d⟨Mi⟩(s)) = O(h5), (A20)

which yields the stochastic convergence of diagonal variance terms together with
(A18) and (A19).

Summarizing, Equations (A16–A20) imply condition (A2) of Lemma 2 with 𝜎2
j,j =

�̃�2
j (xj) for

�̃�2
j (xj) = c−1

h ∫ k2(v)dv

(
𝛼∗ +

∑
l≠j

∫ ∫ 𝛼k(ul)fs(xj,ul)𝛾(s)dul ds + 𝛼j(xj)Ej(xj)

)
,

and 𝜎2
j,k = 0, j ≠ k.

The Lindeberg condition (A3) is satisfied under Assumption A3 since we assume
bounded support for all covariates.

Hence, Lemma 2 implies

n2∕5

⎛⎜⎜⎜⎝
�̂�A

0 (x0)Ê0(x0)
⋮

�̂�A
d (xd)Êd(xd)

⎞⎟⎟⎟⎠ →  (0, Σ̃), (A21)

where Σ is a diagonal matrix with the entries �̃�2
j (xj), j = 0,…, d.

Equations (A14) and (A15) imply convergence in probability of Êj(xj) to Ej(xj) at a
fast enough rate and hence, we get

n2∕5

⎛⎜⎜⎜⎝
�̂�A

0 (x0)
⋮

�̂�A
d (xd)

⎞⎟⎟⎟⎠ →  (0,Σ), (A22)

from Equation (A21) with Σ being a diagonal matrix with the entries 𝜎2
j (xj) =

�̃�2
j (xj)Ej(xj)−2, j = 0,…, d.

Note that condition (A22), implies in particular Var
(
�̂�A

j (xj)
)
= O(n−4∕5). Following

the line of argumentation we used to prove (A4) for Êj(xj), this leads to

sup
xj∈Ih

|�̂�A
j (xj)| = OP

(
(log n)1∕2n−2∕5). (A23)
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BISCHOFBERGER et al. 35

Analogously, one can get a similar result at the boundary and thus

sup
xj∈[0,1]

|�̂�A
j (xj)| = OP(1) (A24)

on the whole, this provides support.
For the stable part, we refer to Nielsen and Linton (1995) who have shown for

Bj(xj) =
1
n

n∑
i=1

∫ kh(xj,Xij(s))dΛi(s)

that

sup
xj∈[0,1]

|Bj(xj) − E[Bj(xj)]| = oP(1), (A25)

sup
xj∈[0,1]

|E[Bj(xj)]| = o(1), (A26)

making use of the Lipschitz continuity of K from Assumption A3 and of Assumption
A1. Together with (A9), Equations (A25) and (A26) imply

sup
xj∈[0,1]

|�̂�B
j (xj)| = OP(1). (A27)

One can get Assumptions B3 and B5 immediately from Equations (A24) and (A27).
Assumptions B2, B4 and B8 follow from Equations (A4–A7).

We illustrate the derivation of Assumption B6 for xj ∈ Ih. First note that
∫ Ej,k(xj, xk)(Ej(xj))−1kh(xj − Xi,j(s))dxj is a bounded function g(h, xk,Xi,j(s)) of argu-
ments h, xk, and Xi,j(s) and hence predictable. This leads to

Var
(
∫ g(h, xk,Xi,j(s))dMi(s)

)
= O(1),

due to Mi being a square integral martingale and a similar derivation to (A16–A20).
Thus, it holds that

n1∕2

(
1
n

n∑
i=1

∫ ∫
Ej,k(xj, xk)

Ej(xj)
kh(xj,Xi,j(s))dxj dMi(s)

)

is asymptotically normally distributed and in particular

1
n

n∑
i=1

∫ ∫
Ej,k(xj, xk)

Ej(xj)
kh(xj,Xi,j(s))dxj dMi(s) = OP

(
n−1∕2).

Note that by integrating over xk, we achieve the parametric rate n1∕2 making the usual
rate h−1 vanish. Together with (A4) and (A5), the last equation yields

∫
Êj,k(xj, xk)

Êk(xk)
�̂�A

j (xj)dxj = ∫
Ej,k(xj, xk)

Ek(xk)
�̂�A

j (xj)dxj + OP(n−3∕10n−2∕5 log n)
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36 BISCHOFBERGER et al.

= Ek(xk)−1 1
n

n∑
i=1

∫ ∫
Ej,k(xj, xk)

Ej(xj)
kh(xj,Xi,j(s))dxj dMi(s) + OP(n−3∕10n−2∕5 log n)

= OP
(

n−1∕2),
since (A4) further implies �̂�A

j (xj) = Ej(xj)−1
h (xj − Xi,j(s))dMi(s) + OP

(
n−2∕5(log n)1∕2).

The last equation proves Assumption B6.
We prove Assumption B9 for the following choices for j = 0,…, d.

a∗
n = 𝛼∗,

an,j(xj) = 𝛼j(xj) + 𝛼′
j (xj)∫ kh(xj,u)(u − xj)

[
∫ kh(xj, v)dv

]−1

du,

𝛽(x) =
d∑

j=0

[
𝛼′

j (xj)
𝜕 log E(x)

𝜕xj
+ 1

2
𝛼′′

j (xj)
]
∫ u2k(u)du,

𝛾n,j = 0.

The first three statements of B9 hold immediately with this choice of an,j and Assump-
tions A1 and A3.

For the fourth statement, it holds

∫ an,j(xj)Êj(xj)dxj = ∫ 𝛼j(xj)Êj(xj)dxj + ∫ 𝛼′
j (xj)Êj(xj)

∫ kh(xj,u)(u − xj)
∫ kh(xj, v)dv

dxj, (A28)

and we investigate the two summands separately. For the first one, it holds

∫ 𝛼j(xj)Êj(xj)dxj =
1
n

n∑
i=1

∫ ∫ 𝛼j(xj)kh(xj,Xij(s))dxjYi(s)ds

= 1
n

n∑
i=1

∫ gh(Xi,j(s))Yi(s)ds

= E

[
∫ 𝛼j(xj)Êj(xj)dxj

]
+ oP

(
n−1∕2)

= ∫ ∫ ∫ 𝛼j(xj)kh(xj − u)𝛾(s)fs(u)du ds dxj + oP
(

n−1∕2)
= ∫ ∫ 𝛼j(xj)kh(xj − u)Ej(u)du dxj + oP

(
n−1∕2)

= ∫ 𝛼j(xj)Ej(xu)dxj + oP
(

n−1∕2),
since ∫ gh(Xi,j(s))Yi(s)ds are i.i.d. random variables with the definition gh(Xi,j(s)) =∫ 𝛼j(xj)kh(xj − Xij(s))dxj and the Central Limit Theorem applies as for B6. The last
equation follows from a substitution, a Taylor expansion of Ej and the fact that k is a
kernel of order one.
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BISCHOFBERGER et al. 37

The second summand can be treated analogously, yielding

∫ 𝛼′
j (xj)Êj(xj)

∫ kh(xj,u)(u − xj)
∫ kh(xj, v)dv

dxj

= ∫ ∫ 𝛼′
j (xj)kh(xj − u)(u − xj)Ej(u)du dxj + oP

(
n−1∕2),

= oP
(

n−1∕2),
and hence in total

∫ aj(xj)Êj(xj)dxj = oP
(

n−1∕2). (A29)

because of the identification ∫ 𝛼j(xj)Ej(xu)dxj = 0. This verifies the fourth statement
of B9 with 𝛾n,j = 0.

To prove B9, we start with two preliminary results:

sup
xj∈Ih

|�̂�B
j (xj) − �̂�n,j(xj)| = oP

(
h2), (A30)

sup
xj∈Ic

h

|�̂�B
j (xj) − �̂�n,j(xj)| = oP(h). (A31)

Recall that by definition, it holds

�̂�B
j (xj) =

1
n

n∑
i=1

∫ kh(xj − Xij(s))dΛi(s)
(

Êj(xj)
)−1

= 1
n

n∑
i=1

∫ kh(xj − Xij(s))

[
𝛼∗ +

d∑
l=0

𝛼l(Xil(s))

]
Yi(s)ds

(
Êj(xj)

)−1
,

and

�̂�n,j(xj) = an,0 + an,j(xj) +
∑
k≠j

∫ an,k(xk)
Êj,k(xj, xk)

Êj(xj)
dxk − Δn ∫ 𝛽(x) E(x)

Ej(xj)
dx−j

= 𝛼∗ + 𝛼j(xj) + 𝛼′
j (xj)∫ kh(xj,u)(u − xj)

[
∫ kh(xj, v)dv

]−1

du

+
∑
k≠j

∫
(
𝛼k(xk) + 𝛼′

k(xk)∫ kh(xk,u)(u − xk)
[
∫ kh(xk, v)dv

]−1

du

)

×
Êj,k(xj, xk)

Êj(xj)
dxk

+ Δn ∫ u2k(u)du∫
d∑

j=0

[
𝛼′

j (xj)
𝜕 log E(x)

𝜕xj
+ 1

2
𝛼′′

j (xj)
]

E(x)
Ej(xj)

dx−j.
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38 BISCHOFBERGER et al.

Next, it holds for j = 0,…, d,

1
n

n∑
i=1

∫ kh(xj,Xij(s))𝛼j(Xij(s))Yi(s)ds
(

Êj(xj)
)−1

= 𝛼j(xj) + 𝛼′
j (xj)∫ kh(xj,u)(u − xj)du

(
∫ kh(xj,u)du

)−1

(A32)

+ h2 ∫ u2k(u)du
[

E′
j (xj)𝛼′

j (xj) +
1
2

Ej(xj)𝛼′′
j (xj)

]
Ej(xj)−1 + Rn,j(xj), (A33)

with supxj∈Ih
|Rn,j(xj)| = op(h2) and supxj∈[0,1]⧵Ih

|Rn,j(xj)| = Op(h2). Similarly, for k ≠ j,
we get

1
n

n∑
i=1

∫ kh(xj,Xij(s))𝛼k(Xik(s))Yi(s)ds
(

Êj(xj)
)−1

= ∫ 𝛼k(xk)
Êj,k(xj, xk)

Êj(xj)
dxk

+ ∫ 𝛼′
k(xk)

Êj,k(xj, xk)
Êj(xj)

kh(xk,u)(u − xk)du
(
∫ kh(xj,u)du

)−1

+ h2 ∫ u2k(u)du∫
[
𝜕Ej,k(xj, xk)

𝜕xk
𝛼′

k(xk) +
1
2

Ej,k(xj, xk)𝛼′′
j (xj)

]
Ej(xj)−1

+ Rn,j,j(xj), (A34)

with supxj∈Ih
|Rn,j,k(xj)| = op(h2) and supxj∈[0,1]⧵Ih

|Rn,j,k(xj)| = Op(h2). Equation (A33)
follows straightforward with a Taylor expansion of each 𝛼j and Ej and for the deriva-
tion of (A34) we refer to the proof of Theorem 4 in Mammen et al. (1999), where the
analogue is shown for the nonparametric regression case. Equations (A33) and (A34)
imply (A30) and (A31) with above choices of an,j, 𝛽 and 𝛾n,j. Eventually, together with
(A29), conditions (A30) and (A31) imply A9.

For the last statement of the theorem, we note that the constant component 𝛼∗

in the conditional hazard can be estimated at a parametric rate n−1∕2 by 𝛼
∗ due to

Lemma 1. ▪

A2 Asymptotic theory for the local linear estimator
For the local linear estimator, we follow the same procedure as in Section A. We first introduce
general assumptions as well as a set of results from Mammen et al. (1999) which we will apply to
prove Theorem 2. Then we verify the new assumptions under Assumptions A1–A5.

Let E ∶  → [0, 1] be the exposure as defined earlier and let W be a (deterministic) positive
definite (d + 1) × (d + 1)-matrix with elements Wr,s such that W0,0 = 1. We set

Mj(xj) =

(
W0,0 Wj,0

Wj,0 Wj,j

)
Ej(xj), (A35)

Sl,j(xl, xj) =

(
W0,0 Wl,0

Wj,0 Wl,j

)
El,j(xl, xj). (A36)

These will later be the fixed but unknown matrices to which M̂j and Ŝj, respectively, converge.
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BISCHOFBERGER et al. 39

Now we make the following assumptions, which are all of similar nature to B1–B9. Note that
these are assumptions on V̂ j(xj), V̂ j

j(xj), V̂ j
j(xj), V̂ j

j,j(xj), V̂ l,j(xl, xj), V̂ l,j
l (xl, xj), V̂ l,j

j (xl, xj), V̂ l,j
l,j(xl, xj)

and �̂�j(xj), �̂�j(xj), and all xj, xl, j, l = 0,…, d and we don’t assume any particular definition of these
terms for the following propositions.

B1’. For all j ≠ k it holds

∫
Ej,k(xj, xk)2

Ej(xj)Ek(xk)
dxjdxk < ∞.

B2’. For M̂j and Ŝl,j as in Equations (27) and (28) it holds

∫
[

V̂ j(xj) − Ej(xj)
Ej(xj)

]2

Ej(xj)dxj = oP(1),

∫
[

V̂ j,k(xj, xk)
Ej(xj)Ek(xk)

−
Ej,k(xj, xk)

Ej(xj)Ek(xk)

]2

Ej(xj)Ek(xk)dxj dxk = oP(1),

∫
[
M̂j(xj)−1Ŝk,j(xk, xj) − Mj(xj)−1Sk,j(xk, xj)

]2
r,sEj(xj)E−1

k (xk)dxj dxk = oP(1),

for r, s = 1, 2. Here [A]r,s denotes the element (r, s) of a matrix A. Moreover, M̂j vanishes
outside the support of Ej, Ŝj,k vanishes outside the support of Ej,k and Ŝ is symmetric, that
is, Ŝj,k(xj, xk)T = Ŝk,j(xk, xj).

B3’. There exists a constant C such that with probability tending to 1 for all j,

∫ �̂�j(xj)2Ej(xj)dxj ≤ C,

and

∫ �̂�j(xj)2Ej(xj)dxj ≤ C.

B4’. For some finite intervals Sj ⊂ R that are contained in the support of Ej, j = 0,…, d, we
suppose that there exists a finite constant C such that with probability tending to 1 for all
j ≠ k,

sup
xj∈Sj

∫ trace
[
Ŝk,j(xk, xj)M̂j(xj)−2Ŝk,j(xk, xj)

]
Ek(xk)−1dxk ≤ C.

We now introduce the notation �̂�j = �̂�A
j + �̂�B

j and �̂�j = �̂�j,A + �̂�j,B. Where (�̂�A
j , �̂�

j,A) is the
variable part and (�̂�B

j , �̂�
j,B) is the stable part of the initialization (�̂�j, �̂�

j). The terms are given by

�̂�A
j (xj) =

{
(V̂ j

j(xj))2 − V̂ j
j,j(xj)V̂

j(xj)
}−1 1

n

n∑
i=1

∫ gi,j(xj)dMi(s),
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40 BISCHOFBERGER et al.

�̂�j,A(xj) =
{
(V̂ j

j(xj))2 − V̂ j
j,j(xj)V̂

j(xj)
}−1 1

n

n∑
i=1

∫ gj
i(xj)dMi(s),

�̂�B
j (xj) =

{
(V̂ j

j(xj))2 − V̂ j
j,j(xj)V̂

j
0,0(xj)

}−1 1
n

n∑
i=1

∫ gi,j(xj)dΛi(s),

�̂�j,B(xj) =
{
(V̂ j

j(xj))2 − V̂ j
j,j(xj)V̂

j
0,0(xj)

}−1 1
n

n∑
i=1

∫ gj
i(xj)dΛi(s),

with

gi,j(xj) =
[

V̂ j
j(xj)

(xj − Xij(s)
h

)
− V̂ j

j,j(xj)
]

kh(xj − Xij(s)),

gj
i(xj) =

[
V̂ j

j(xj) − V̂ j(xj)
(xj − Xij(s)

h

)]
kh(xj − Xij(s)).

Equivalently, we can write(
�̂�A

j (xj)
�̂�j,A(xj)

)
= 1

n

n∑
i=1

∫
(

1
h−1(xj − Xij(s))

)
kh(xj,Xij(s))dMi(s),(

�̂�B
j (xj)

�̂�j,B(xj)

)
= 1

n

n∑
i=1

∫ M̂j(xj)−1

(
1

h−1(xj − Xij(s))

)
kh(xj,Xij(s))dΛi(s),

As in Assumption B4, Mi is the martingale arising from Ni, and Λi is its compensator. Later on, we
will verify the following assumptions on (�̂�A

j , �̂�
j,A) and (�̂�B

j , �̂�
j,B). Moreover, for the whole estimator

we define, for s ∈ {A,B}, �̃�s
0,j, �̃�

s
j and �̃�j,s as the solution of the equations

M̂j(xj)

(
�̃�s

j (xj) − �̂�s
j (xj)

�̃�j,s(xj) − �̂�j,s(xj)

)
= �̃�s

0,j

(
V̂ j(xj)
V̂ j

j(xj)

)
−

∑
l≠j

∫ Ŝl,j(xl, xj)

(
�̃�s

l (xl)
�̃�l,s(xl)

)
dxl, (A37)

∫ �̃�s
j (xj)V̂

j(xj)dxj = 0. (A38)

Existence and uniqueness of �̃�A
j , �̃�

B
j , �̃�

j,A, �̃�j,B is stated in Proposition 4. We make further assump-
tions

B5’ There exists a constant C such that with probability tending to 1 for all j, it holds

∫ �̂�s
j (xj)2Ej(xj)dxj ≤ C,

and

∫ �̂�j,s(xj)2Ej(xj)dxj ≤ C,

for s = A,B.
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BISCHOFBERGER et al. 41

B6’. We assume that there is a sequence Δn such that

sup
xk∈Sk

‖‖‖‖‖‖∫ M̂k(xk)−1Ŝk,j(xk, xj)

(
�̂�A

j (xj)
�̂�j,A(xj)

)
dxj

‖‖‖‖‖‖2

= oP(Δn),

‖‖‖‖‖‖∫ M̂k(xk)−1Ŝk,j(xk, xj)

(
�̂�A

j (xj)
�̂�j,A(xj)

)
dxj

‖‖‖‖‖‖Mk ,2

= oP(Δn),

where || ⋅ ||2 denotes the L2 norm in R2 and where for functions g ∶ R → R2 we define||g||2
Mk ,2

= ∫ g(u)Mk(u)g(u)du. The sets Sk have been introduced in Assumption B4’.
B7’. There exist deterministic functions 𝜇n,j such that

sup
xj∈Sj

|||�̃�B
j (xj) − 𝜇n,j(xj)

||| = op(Δn),

where Sk has been introduced in Assumption B4’.
The local linear equivalents to Propositions 1 and 2 are the following results from Mam-

men et al. (1999), adapted to our setting. The following two propositions assure convergence of
the backfitting algorithm and asymptotic normality of the stochastic part of the estimator under
Assumptions B1’–B7’.

Proposition 4 (Convergence of backfitting). Under Assumptions B1’–B3’, with prob-
ability tending to 1, there exists a unique solution {m̃0,l, m̃l, m̃l ∶ l = 0,…, d} to (26–28).
Moreover, there exist constants 0 < 𝛾 < 1 and c > 0 such that, with probability tending
to 1, it holds:

∫
[
�̃�[r]

j (xj) − �̃�j(xj)
]2

Ej(xj)dxj ≤ c𝛾2rΓ,

∫
[
�̃�j,[r](xj) − �̃�j(xj)

]2Ej(xj)dxj ≤ c𝛾2rΓ,

where

Γ = 1 +
d∑

l=0
∫

[
�̃�[0]

l (xl)
]2El(xl)dxl + ∫

[
�̃�l,[0](xl)

]2El(xl)dxl.

The functions �̃�[0]
0,l , �̃�[0]

l and �̃�l,[0] are the starting values of the backfitting algorithm. For
r > 0 the functions �̃�[r]

l and �̃�l,[r] are defined by Equations (29) and (30).
Moreover, under the additional Assumption B5’, with probability tending to 1, there

exists a solution {�̃�s
0, �̃�

s
j , �̃�

j,s ∶ j = 0,…, d} of (A37), (A38) that is unique for s = A,B,
respectively.

Proposition 5 (Asymptotic behavior of stochastic part). Suppose that Assumptions
B1’–B6’ hold for a sequence Δn and intervals Sj, j = 0,…,n. Then it holds that

sup
xj∈Sj

|||�̃�A
j (xj) − [�̂�A

j (xj) − �̃�A
0,j]

||| = oP(Δn).
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42 BISCHOFBERGER et al.

Under the additional Assumption B7’, it holds

sup
xj∈Sj

|||�̃�j(xj) − [�̂�A
j (xj) − �̃�A

0,j + 𝜇n,j(xj)]
||| = oP(Δn).

Before stating a result for the bias part, we assume the following.

B8’. For all j ≠ k, it holds

sup
xj∈Sj

∫
||||[M̂j(xj)−1Ŝk,j(sk, xj) − M−1

j (xj)Sk,j(xk, xj)
]

r,s

||||Ek(xk)dxk = op(1),

for r, s = 1, 2.
B9’. There exist deterministic functions an,0(x0),…, an,d(xd), a0

n(x0),…, ad
n(xd) and constants a∗

n,
𝛾n,0,…, 𝛾n,d such that

∫ an,j(xj)2Ej(xj)dxj < ∞,

∫ aj
n(xj)2Ej(xj)dxj < ∞,

𝛾n,j − ∫ an,j(xj)V̂
j(xj)dxj = oP(Δn),

sup
xj∈Sj

|||�̃�B
j (xj) − �̂�n,0 − �̂�n,j(xj)

||| = oP(Δn),

∫ |||�̂�B
j (xj) − �̂�n,0 − �̂�n,j(xj)

|||2
Ej(xj)dxj = oP(Δ2

n)

sup
xj∈Sj

|||�̂�j,B(xj) − �̂�n,0 − �̂�
j
n(xj)

||| = oP(Δn),

∫ |||�̂�j,B(xj) − �̂�
j
n(xj)

|||2
Ej(xj)dxj = oP(Δ2

n),

for random variables �̂�n,0 and where(
�̂�n,j(xj)
�̂�

j
n(xj)

)
=

(
an,0 + an,j(xj)

aj
n(xj)

)
+

∑
k≠j

∫ M̂j(xj)−1Ŝk,j(xk, xj)

(
an,k(xk)
ak

n(xk)

)
dxk.

The next proposition appears in Mammen et al. (1999) with different notation for the
nonparametric regression case. It assures convergence of the deterministic part of the estimator.

Proposition 6 (Asymptotic behavior of bias part). Under Assumptions B1’–B6’, B8’,
B9’, it holds

sup
xj∈Sj

|||�̃�B
j (xj) − 𝜇n,j(Xj)

||| = oP(Δn),

sup
xj∈Sj

|||�̃�j,B(xj) − 𝜇
j
n(Xj)

||| = oP(Δn),

for 𝜇n,j(xj) = an,j(xj) − 𝛾n,j and 𝜇
j
n(xj) = aj

n(xj). Assumption B7’ holds with this choice of
𝜇n,j(xj).
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BISCHOFBERGER et al. 43

Proof of Theorem 2. To apply Propositions 4–6, we have to prove that Assumptions
A1–A5 imply B1–B6, B8, B9. The proof is analogous to the proof of Theorem 1, and
the assumptions can be shown in a similar way.

We now focus on the variance and bias part(
�̂�A

j (xj)
�̂�j,A(xj)

)
= M̂j(xj)−1 1

n

n∑
i=1

∫
(

1
h−1(xj − Xij(s))

)
kh(xj,Xij(s))dMi(s),(

�̂�B
j (xj)

�̂�j,B(xj)

)
= M̂j(xj)−1 1

n

n∑
i=1

∫
(

1
h−1(xj − Xij(s))

)
kh(xj,Xij(s))dΛi(s).

Analogously to (A4–A7), we show uniform convergence of M̂j(xj) and Ŝl,j(xl, xj) to
Mj(xj) and Sl,j(xl, xj), respectively, and then focus on

1
n

n∑
i=1

∫
(

1
h−1(xj − Xij(s))

)
kh(xj,Xij(s))dMi(s)

for asymptotic normality and on

1
n

n∑
i=1

∫
(

1
h−1(xj − Xij(s))

)
kh(xj,Xij(s))dΛi(s)

for a bias term.
With Mi being the same martingale as in the proof of Theorem 1 occurring in

the stochastic part, we get the same asymptotic variance 𝜎2
j . Moreover, Assumptions

A6–A9 can be verified with the choices

Δn = h2,

a∗
n = 𝛼∗,

an,j(xj) = 𝛼j(xj) +
1
2

h2𝛼′′
j (xj)∫ u2k(u)du,

aj
n(xj) = h𝛼′

j (xj),

𝛽(x) =
d∑

j=1

1
2 ∫ u2k(u)du

[
𝛼′′

j (xj) − ∫ 𝛼′′
j (xj)Ej(xj)dxj

]
,

𝛾n,j = 𝜈n,j +
h2

2 ∫ u2k(u)du∫ 𝛼′′
j (xj)Ej(xj)dxj,

𝜈n,j = ∫ ∫ 𝛼j(xj)kh(xj,u)Ej(u)du dxj.

▪

A3 Two-step smooth backfitting estimator
The interpretation as a projection motivates two different ways to compute the smooth backfitting
hazard estimator. For the minimization over all additive hazard functions, we can either minimize
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directly or we first minimize over the subspace of all (unstructured) local polynomial functions of
degree p obtaining a solution �̂�pilot from Equation (8) which is a non-additive estimator and then
minimize the integrated squared errors between �̂�pilot and all additive local polynomial functions
of degree p:

arg min
𝛼∗ ∈R,

𝛼
(l)
j ∶R→R,

j = 0,…, d
l = 0,…, p

n∑
i=1

∫ ∫
{
�̂�pilot(x) −

[
𝛼∗ + 𝛼0(t) + 𝛼1(z1) + · · · 𝛼d(zd)

+ 𝛼
(p)
0 (x0)

(
x0 − Xi0(s)

h

)p

+ · · · + 𝛼
(p)
d (xd)

(
xd − Xid(s)

h

)p]}2

× Kh(x − Xi(s))Yi(s)ds d𝜈(x). (A39)

We want to emphasize that the estimator we obtain via direct minimization (9) or (10), respec-
tively, and the one obtained through the two-step minimization (A39) are identical.

In the following, we want to illustrate how the estimator can be obtained from an unstruc-
tured hazard estimator. Although we don’t make use of it, this representation enables us
to derive the asymptotic theory for the final estimator, making use of the known asymp-
totic behavior of the established unstructured local constant which is defined below. More-
over, the derivation is less technical and easier to follow, and the implementation is more
straightforward.

Let �̂� be the unstructured local constant pilot estimator, �̂�LC defined in Section 4.3. Then, for
a weighting w, the local constant smooth backfitting estimator 𝛼 can be equivalently defined as

min
𝛼 ∫

(
�̂�(x) − [𝛼∗ +

d∑
j=0

𝛼j(xj)]

)2

w(x)dx.

Analogously, for p = 1 we get the local linear estimator �̂�LL(x) = ÔLL(x)∕ÊLL(x) for x ∈  from
Equation (8), which is defined through

ÔLL(x) = 1
n

n∑
i=1

∫ {1 − (x − Xi(s))D(x)−1c1(x)}Kh(x,Xi(s))dNi(s),

ÊLL(x) = 1
n

n∑
i=1

∫ {1 − (x − Xi(s))D(x)−1c1(x)}Kh(x,Xi(s))Yi(s)ds,

where cj(x) = n−1∑n
i=1 ∫ Kh(x,Xi(s))(xj − Xij(s))Yi(s)ds and for the (d + 1) × (d + 1)-matrix D(x) =

[djk(x)]jk with djk(x) = 1
n

∑n
i=1 ∫ Kh(x,Xi(s))(xj − Xij(s))(xk − Xik(s))Yi(s)ds.

Note that the matrix D is not necessarily regular for d > 2 and hence the existence of D−1 and
the existence of �̂�LL are not guaranteed for d > 2.

In contrast to the local linear estimator, the local constant estimator �̂�LC is always well defined,
independent of the dimension d.
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APPENDIX B

B1 Fitted values from the multiplicative model
In this section, we show the fitted values from the local constant multiplicative smooth backfitting
model Hiabu, Mammen, et al. (2021) applied to the TRACE study data application from Section 6.
The fit for the risk in the first three months is given in Figure B1, and the fit for the risk conditional
on surviving the first three months is given in Figure B2.

F I G U R E B1 Local constant multiplicative smooth backfitting fit of (𝛼0, 𝛼1, 𝛼2) conditional on surviving the
first three months for two different strata depending on the value of vf.

F I G U R E B2 Local constant multiplicative smooth backfitting fit of (𝛼0, 𝛼1, 𝛼2) conditional on surviving the
first three months for two different strata depending on the value of vf.
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