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ABSTRACT

For some time optical scanning devices have been 

employed to automatically inspect sheet surface material, 

frequently operating in wholly or semi-empirical fashion. 

Geometrical and physical optics give rise to a MIRROR 

FACET MODEL and a KIRCHHOFF WAVE THEORY MODEL of light 

scattering from a rough surface, respectively. The two 

models represent transfer functions of surface topography 

into polar diagram description of light scatter.

Polar diagram predictions, under the mirror facet and 

wave theory regimes, have been formulated on the basis of 

a variety of periodic and random surfaces, and hence 

compared and constrasted.

A moving sensor rig, operating under computer control, 

automatically recorded the intensity of the back scattered 

field from metal specimens, arising from an incident laser 

beam. Subsequently an appropriate region of the surface 

specimens was mapped, using a talysurf-10 stylus instrument 

and logged as a series of parallel profiles.

On the basis of these data the predictive powers of the 

two models were examined.

For the order of surface roughness examined (0.05 urn

0.5 pm) there was considerable evidence of a dominant 

geometrical component of light scattering, although the 

facet model could not be substantiated directly due to 

metrological difficulties associated with the computation 

of slope statistics. The two-dimensional Kirchhoff model, 

based on area information, however, was validated, and in 

some circumstances the one-dimensional Kirchhoff model, 

derived on a single surface profile, provided valuable 

15



predictive information on surface defects.

Studies into the statistical distributions of light 

scatter, relevant to applications of instrument design, 

surface flaw detection and surface texture parameter 

estimation were conducted.

Utilising the compiled data bases, the project reports 

simple robust procedures for extracting surface information 

in real time, by a non-destructive, non-contacting method 

employing modest technology.

16



INTRODUCTION

working in collaboration with a number of other bodies, 

monitoring industrial processes. One

cation being

continuously moving surfaces, such as

rolling mill At first, interest mainly concerned the

surface texture specification, measurement and control

Optical scanning systems, whereby the surface

(fully catalogued’ in Chapter 2 : The Inspection Problem X i
J

system for the

automatic detection of surface defects

unutilised

information. A key objective of the thesis was to

determine the exact nature of this surface texture infor-

mation, to process and quantify it

an on-line quality assessment and control system. (The

industrial background of the study is set out in full in

Chapter 2j

A necessary step in this process was to investigate

beam/surface

(ii) a complex wave theory of electromagnetic scattering. 

17



One aim of the study was to investigate both theories wit 

the objective of determining to what extent they explain 

observed and measured scattering phenomena, and provide a 

basis for on-line surface roughness assessment algorithms 

Both models are formally introduced in Chapter A, and 

their validation is discussed in Chapter 7. The models 

are not novel but have not been formally validated, 

largely because of problems of excessive data gathering, 

especially with regard to mapping a region of specimen 

surface material. A by-product of the work has been to 

establish a semi-automatic, computer-aided approach to 

the data acquistion of scattered laser beam intensity 

information, and digitised surface roughness topography 

measurement. These procedures are fully described and 

documented in Chapter 5.

Chapter 6 is devoted to the presentation and some 

statistical analysis of these data. The data is pictori-

ally displayed in a variety of ways: one and two- 

dimensional plots of laser scans, isometric and contour 

maps of surface topography, originally preserved on micro 

film and subsequently copied for inclusion within the 

text.

Intensity scatter distributions are the subject of 

Chapter 8.

The design of the data gathering system of optical 

scanning devises is basically of one of two types:- 

type (i) : one or several fixed transducers which 

monitor the varying reflected intensity 

field as the subject surface material is 

physically moved beneath its or their field 

of view,

18



type (ii) ’ a scanning sensor which scans the intensity 

field reflected from stationary or moving 

subject material.

Both types of system have been studied and a number of 

results and effects have demanded attention. Were the 

effects real phenomena of the laser/rough surface interac 

tion or an apparent phenomena, that is to say a conseque-

nce of some design feature of the instrument? The scatte 

distributions, as monitored by both moving and stationary 

scanners, are investigated with, the specific aim of 

resolving such issues and harnessing such acquired 

knowledge to the applications of instrument design, 

defect detection and surface texture definition.

These applications are given due coverage in 

Chapter 9, although where there is a lack of concrete 

data (for instance when the problem has been raised by a 

colleague), of necessity the application methods are only 

outlined.

A prior discussion which puts the work of the thesis 

in context and gives the hitherto state of the art, is 

described in Chapter 3 in the form of a review of optical 

methods of surface inspection. In view of the particular 

industrial amplication of interest to us, greatest atten-

tion is given to methods capabJ.e oi investigating the 

dynamic problem of moving steel sheet. Methods of tack-

ling- the static problem, interferomic methods of examin- 

ing specimens in situ for example, are only touched 

upon.

The main conclusions arising from the investigation 

are reported in full in Chapter 10. However they may be 

summarised briefly as follows:

19



(1) The Kirchhoff wave theory model of light scattering 

has been validated for a variety of metal surfaces - 

copper, brass, steel, surfaces all of the order of 

0.1-0.5pm RMS roughness height.

(2) The electrical properties of the surfaces need not be 

included in the mode, since a model based on the 

assumption of perfect conductivity proved more than 

adequate.

(3) For surfaces of the above order of (Type (C) ) rough-

ness, scattering is believed to be largely geometric, 

although the simple facet model itself proved an in-

adequate predictor.

(4) In the case of isotropic surface material, light 

scattering was demonstrated to be an area property and 

the one-dimensional Kirchhoff model was deficient. In 

view of (3), the two-dimensional Kirchhoff model alone 

has the required transfer function to convert input 

surface topography into a realistic output intensity 

scattering distribution.

(5) For smoother, Type (B) surfaces, the Kirchhoff model 

could not give a point-by-point fit, although the 

scattered field is still capable of explanation in 

terms of the surface statistics.

(6) The project has reaffirmed the ability to extract 

surface parameters from light scattered data, and has 

allowed for more robust algorithms to be implemented.

(7) The theory of scattering for non-Gaussian surface has 

been extended to cover the case of Poisson distributed 

surface heights amongst others.
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(8) Applications in the area of defect detection have been 

furthered by suggesting distribution-based methods of 

thresholding, and in the application of scattering 

models to problems of defect recognition. The feasi-

bility of using polar diagram information has been 

demonstrated in the course of studying scratch and 

indentation defects. Despite theoretical reservations, 

the prediction models show some potential for investi-

gating defect features. The indication is that this 

potential is limited at present by the quality of the 

surface topography data base.
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CHAPTER 2

THE INSPECTION PROBLEM

Abstract

The development of modern technologies has demanded 

improved control of surface texture of industrial com-

ponents, arising principally out of a realisation that 

improvement in surface finish leads to increased perfor-

mance and/or increased life.

How should we in fact determine surface properties 

be they phsio-chemical or topographic? Direct methods,

whereby we measure the characteristic directly may have

serious disadvantages. For instance the action of a

stylus on a fine surface impairs the surface finish. In 

such situations it is desirable to resort to the subter-

fuge of indirect methods, whereby for example an energy 

stream is projected at the surface, and the interaction 

of the steam with the surface is observed. Interpretation 

of the output in terms of surface properties closes the 

loop.

Optical scanning systems is one such class of 

indirect method with proven industrial capability. 

2.1 The Need for Surface Inspection

In the steel industry a fundamental quality control 

task is the detection of defects. Plainly scratches, 

gorges, dents, rust spots, etc. could render a particular 

sheet unfit for a particular function. For example, 

certain gross surface flaws persist and show through 

paint finishes and a particular sheet having such flaws 

would be unacceptable to the car body industry. The 

same sheet however might be suitable for a washing machine
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pressing.

The influence of surface finish on the ability of a 

component to function satisfactorily is still improperly 

understood in many areas of application. Functional 

properties such as fatigue resistance, load-carrying 

capacity, resistance to wear or corrosion etc. depend 

critically upon material properties such as hardness, 

reaction to heat etc., in addition to topographic 

properties. However with increased understanding of the 

influence of surface roughness on functioning, there has 

consequently developed a desire to specify surface finish 

more closely.

For examole, in order to moderate or avoid contact 

with surfaces, lubrication is of prime importance. The 

ability of a surface to hold a lubricating film and to 

channel and distribute the film into the high pressure 

areas during a press forming operation say, is very much 

dependent on the surface texture. In this application 

too smooth a surface finish results in scoring during 

press working.

Again we may wish to mask irrelevant surface blemi-

shes or to enhance the acceptance of a lacquer with a 

matt surface texture. In many applications we wish to 

improve the surface finish: to reduce friction or wear in 

contact, to inhibit corrosion, etc. At all events we 

need to control surface texture which necessitates care-

ful monitoring of surface material in,production.

2.2 Surface Assessment: Requirements and Methods

Assured of a general need for surface inspection, we 

must specify the industrial requirements more closely and 

consider which inspection techniques are appropriate to
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those requirements.

Plainly we must detect surface flaws and classify 

them. Detection alone is not enough, since certain flaws 

are acceptable for some functions but not for others. 

Inspection of unacceptable flaws must be 100%; that is to 

say the whole of the surface material must be scruitinised. 

A practical consequence of 100$ inspection in real time 

is that the inspection system must be automatic.

In general, surface flaws are manifest as gross 

deviations from mean surface material. Rust spots, 

surface pitting of intercrystalline corrosion, mechanical 

handling defects dents, scratches, gouges, etc. would be 

accompanied by macro changes in the surface topography. 

However, there are also low contrast troublesome defects 

such as ”sticker-end-wrench” whose superimposed mechani-

cal profile properties are of the order of the micro 

mechanical structure. To resolve such defects as this 

we would need to focus part of any interrogating system 

upon, the micro-structure., since it is not solely gross 

surface flaws which impinge upon the functional properties 

of a surface.

As we have already indicated, surface texture as a 

whole needs to be considered and closely controlled for 

many areas of application. In fact 100$ inspection of 

surface texture is often required since inconsistency of

texture creates problems in fabrication for instance.

Press .rigs can be set up to accommodate coarsely textured

surfaces but difficulties arise if a surface has a wide 

range of texture, since set-up conditions may not be 

adjusted in the course of a production run. Large 
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variability in material or lubrication frequently leads 

to difficulties in production control and a large scrap 

rate*

We may summarise our remarks as follows:

The requirements of a surface inspection scheme are that

(i) there should be 100$ inspection conducted in real 

time,

(ii) the system should have the ability to sense those 

surface oroperties which re-late to functional 

properties,

(iii) the inspection process should in no way degrade the 

surface.

Concomitant benefits of such an automatic scheme is the 

facility for continuous, feed-back control of the produc-

tion process, the objectivity of assessment and the means 

of providing a guarantee of the functional capability of 

surfaces.

The methods available for measuring surface finish 

are comparative or by direct measurement. Indirect 

methods are attempts to assess the surface texture by 

observation or feel of the surface and include optical, 

capacitance and pneumatic methods*. Direct methods enable 

a numerical value to be placed on the surface finish and 

include stylus probe techniques and interferomic methods.

On-line inspection of fast moving surfaces meeting 

requirements (i) and (iii) dictates that some form of 

optical scanning device be used.

Requirement (ii) is an open question, since for many 

applications it is obscure which surface parameters 

affect functional performance. The transfer behaviour of 

optical instruments with regard to surface topography is 
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a subject of this investigation. We should note in 

passing that a stylus probe instrument, usually taken as 

a reference device, also has a transfer behaviour since 

the output is filtered by the stylus point and we should 

question therefore the wavelengths that a stylus can 

sense. The radius of a stylus tip is usually about 2.5 um, 

whereas optical methods could be thought to have an equi-

valent stylus radius related to the wavelength of the 

incident light.

A simplified systems engineering approach to the 

overall problem is detailed in figure 2.2.1 below:

FIG. 2.2.1. Schematic Diagram of Surface Assessment
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Optical Scarming Devices

The elements of an optical scanning system are 

basically (i) a controlled source of illumination, (ii) 

a set of light sensitive transducers and (iii) a computer 

interface for interpretation of the transducer outputs. 

The usual procedure is that the surface material moves 

continuously beneath a light source whose collimated beam 

scans the width of the material. Light back scattered 

from the surface falls within the field of view of fixed 

sensors.

The SIRA Institute developed a flying field scanner 

system, see Brook [,1971], fox’ inspecting sheet material. 

A fluorescent tube provided the illumination and a rota-

ting drum of lenses and a complex of lenses and mirrors 

accomplished the scanning action. The image was output 

onto a photomultiplier tube by a further system of 

lenses and mirrors. The flying field scanner operated 

successfully on tinplate but has now been superseded by 

a laser scanning device capable of handling faster line 

speeds. The operation mode of the scanner is of a norm-

ally incident laser beam (1 mm diameter) with receiver 

transducers positioned in the specular direction, 

5 degrees off-specular and .30 degrees off-specular.

An empirical method of thresholding for surface 

flaws operated successfully in an industrial environment 

(c.f. Chapter 9.2). Adaptive filtering of the digitised 

specular output, Obray [1973J, allows for thresholding 

on a statistical basis. The problem of classification 

of surface defects on cold-rolled mild steel strip was 

tackled by Hill [1977]. Defect classes were drawn up in 

discussion with industrial users. Hill’s approach was to 
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monitor the delineation, shape and depth of defect signal 

on an optical scan using a matched filter bank, comple-

mented by defect trigger records of successive scans. 

The signal processing involved is not inconsiderable but 

high contrast gross defects were well differentiated. 

However some low contrast defects were net resolved.

Formulating the output from the three SIRA sensors as 

a vector signal V of dimension three, and utilising the 

dispersion matrix of V, Norton-Wayne [1982], constructed a 

weighting function of its elements to maximise the cont-

rast of a particularly troublesome low constrast defect 

namely ’sticker-end-wrench.1. With this algorithm 

!sticker-end-wrench’ could be successfully detected.

2.4 Conclusion

The requirement of real-time inspection of fast 

moving surfaces coupled with the advantages of non-contact 

ing methods has motivated research into optical scanning 

devices. Previous work, carried out by the SIRA institute 

and the Department of Systems Science at the City Univer-

sity has endorsed the feasibility of such devices on-line, 

and has indicated the power of polar diagram information 

in defect classification. Their work further fostered the 

belief that complete polar diagram information would be 

invaluable.
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CHAPTER 3

REVIEW OF LITERATURE ON THE INTERACTION OF
LIGHT WITH ROUGH SURFACES AND OPTICAL METHODS

OF INSPECTION

Abstract

Mindful of the advantages of non-contacting and non-

destructive testing methods, we review the available 

literature on the interaction of light with rough surfaces 

and optical methods of surface inspection. Incidentally, 

Welford [1977] provides an excellent overview of the 

subj ect.

Source papers covering the theoretical background 

physics of the problem are reviewed as well as the litera-

ture concerned with applications. The majority of papers 

dealing with applications are addressed to the problem of 

surface roughness assessment and in many cases are aimed 

at providing an optical alternative to the talysurf. . 

The problem of defect detection and classification does 

not figure so prominantly in the literature but some 

important contributions to this field are noted.

3 • 1 Theoretical

Twersky [1957], Ament [1956], Beckmann [1957], Du 

Castel and Spizzichino [1962] and others developed 

scattering theories on the basis of various model surfaces. 

Twersky’s concept of a rough surface was that of a 

regular or irregular distribution of protuberances on 

a perfectly conducting plane; Aments consisted of randomly 

spaced half-planes, whilst Beckmann described a half-

plane facet model by a Markov chain. Du Castel and Spizzi-

chino ’ s surface has a number of brilliant points/unit area 

from which originated the scattered field. The ideas

29



relevant to both aelucidated in these early papers are 

facet view of scattering as well as to a wave theory 

approach,although the model surfaces in most eases are 

unrealistic.

Beckmann [1963j developed a theory appropriate to 

lase~* li^ht for both strong and weak scatters and is 

recalled in some detail in Chapter 4: the average proper-

ties of the far field distribution are calculated on the 

basis of a Gaussian rough surface and that the Kirchhoff 

approximation, namely that the field at any point of the 

surface is approximately the field that would be present 

on the tangent plane- at that point, is valid. Our 

interest is primarily concerned with reflected light, but 

in passing we note that Chandley and Welford [1975] 

reformulated Beckmann’s results to accommodate transmis-

sive scattering by transparent surfaces such as ground 

glass.

The Beckmann theory also described the nature of the 

distribution of the far field random component about the 

ensemble average (deterministic component). If the phase 

distribution of wavelets arising from the surface is 

uniform, the amplitude of the scattered field hasea 

Rayleigh probability density. In Appendix SB, the assoc-

iated field intensity distribution is shown to be negative 

exponential (although this result may also be found in 

Dainty [1970]). Incoherent phase conditions are met in 

the case of very rough surfaces. The random component is 

given the term speckle and averaging measurements obtained 

with coherent light effectively removes speckle effects 

which carry little relevant information about the surface.
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Beckmann [1963] exhausted the case of scattering from a 

Gaussian height surface with a Gaussian auto-correlation 

function of surface heights.. He extended this in Beckmann 

[1973] to cover the case of scattering from a surface 

possessing a negative exponential height distribution, 

whilst retaining a Gaussian auto-correlation function of 

surface heights. (in Chapter 8 scattering from a surface 

exclusively defined by negative exponential functions is 

considered and the theory of scattering from non-

Gaussian surfaces is further developed by considering the 

case of surface with a gamma height distribution.) Nega-

tive exponential and Lorentzian auto-correlation functions,

in conduction with Gaussian first order statistics, have 

Chandley [1976].been used by

Results for strong scatters are given a comprehensive

treatment in

authors (e.g

Chapter 8 and have been 

Miller et al [197$]).

explored by other

introduces a the phase of the

scattered light and calculates the intensity of the 

speckle pattern in the far and near fields.

Several researchers have investigated further the

theory of speckle: Jakemann and Pusey [1973a],

[1975] , Escamilla [1978] Hariharan [1977] Ross and

Fiddy [1978], Pederson [1976], etc.

it was assumed that there were many

In the Miller theory

scattering centres in

the illuminated area which allowed the central limit

theorem of statistical theory to be invoked. Jakeman and

Pusey, Escamilla extend speckle theory when this is not 

the case. Both the Beckmann and Miller approaches for 

strongly scattering surfaces, lead to the classical result 

for far-field speckle patterns (sometimes referred to as 
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the spatial speckle correlation function) of Gaussian 

statistics of complex amplitude. Jakemann and Pusey show 

that the far-field no longer exhibits Gaussian statistics 

if there are few scattering centres in the illuminated area. 

Ross and Fiddy argue that the classical theory which leads 

to the negative exponential distribution for speckle 

intensity is in fact a limiting case, which although may 

be an adequate approximation in many cases, does not 

describe speckle patterns in general. In Chapter 8 we 

report measurements taken at SIRA on cold rolled steel 

strip which demonstrate negative exponential statistics, 

although experimental verification of first and second 

order speckle pattern statistics was confirmed in 

McKechnie [1974]* The usual description of intensity 

distributions relate to the intensity at a point, as 

distinct from- the laser speckle measured with a finite 

aperture. Assuming Gaussian models for both the far field 

spatial speckle correlation function and for the spatial 

profile of the detector, Stansberg [1981b], shows that a 

Gamma distribution describes the speckle intensity for a 

one-dimensional (slit) aperture. Pederson investigated 

speckle intensity variance arising from various model 

surfaces which suggested limitations as to its usefulness 

in surface roughn.ess studies. However if partially 

coherent illumination is utilised useful information is 

carried in the speckle statistics (see Stansberg [1981a] 

for example).

For laser light the speckle contrast defined as 

^7^’, the ratio of the standard deviation to the mean of 

the speckle intensity, is uni.ty as prescribed by the 

negative exponential distribution. If a surface is 
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simultaneously illuminated by two monochromatic sources 

of wavelengths A and X + <SA say, then for small 61 the 

two speckle patterns have a non-zero correlation. The 

dependence of the far-field speckle correlation on surface 

roughness was first discussed by Goodman [19.63] and later 

investigated by Parry [1975]. The speckle contrast falls 

from unity with increasing surface height variance, 

consistent with experimental results reported by Sprague 

[1972] .

We note in passing that the speckle contrast, tfr/ut 

for a gamma distribution

1 [1] S_1 exp [ _ 1]b [b] P[ bj , I > o

r(B)
is 1//B < 1 , for 3 > 1.

The reduction of speckle contrast as we decrease the 

coherence of the incident beam is as expected. If a 

surface is illuminated with incoherent light then the 

speckle phenomenon disappears entirely, and the variation 

in the far-field is due to surface noise. The series of 

SIRA measurements showed a reduction in the speckle 

contrast by a factor of 2 if incoherent illumination was 

used instead of coherent illumination. Welford [1977] 

presents an approximate theory for partially coherent beam 

scatter.

The variation of speckle contrast was studied from a 

theoretical viewpoint by Esamilla [1978] to explain experi 

mental work by Fujii and Asakura [1977] which showed that 

speckle contrast increases when the radius of the focused 

laser beam is reduced. A maximum contrast is reached when 
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the spot radius is approximately equal to the correlation 

length of* surface heights,, whereupon the contrast starts 

to decrease.. Chandley an.d Escamilla [1979], report 

speckle contrast measurements for a wide range of scatter- 

ers. The indication from their work is that for a fixed 

correlation length., the maximum contrast appears at 

progressively smaller values of the spot radius, as the 

standard deviation of surface rougnness neights increases.

The partial depolarisation of a polarised incident 

laser team by a rough surface also reciuces speckle con-

trast as shown by Hariharan [1977].

We note finally Leader's [1971] contribution to

the theory of scattering from surfaces of finite conduc-

tivity, which represents a more rigourous treatment than 

Beckmann's original work., In subsequent papers [1976],

Leader develops a theory to investigate surfaces 

described by a two-scale roughness model and predicts the 

mutual coherence function lor typical surface parameters.

3.2 Optical Estimation of Surface Roughness

A number of instruments (Glossmeters) measure in one 

or two fixed directions and relate these measurements 

empirically to surface roughness.. An early attempt go 

relate light measurements to surface roughness on a theo-

retical basis was by Bennett and Porteous [1961]. They 

used infra-red radiation to cope with strong scatters as 

indeed did Thwaite [1982] some twenty years later. Their 

measurements of the RMS height (c) agreed witn those 

obtained from stylus profiles within a factor of 2.

(c.f. Chapter 7).

More recently, Mundy and Porter [1981] use the half-

power point for estimating the mean surface roughness 
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slope (o/T) (c.f. Chapter 9.3). Their methodology is 

based on several unstated assumptions,namely a strongly 

scattering Gau.ssian surface.

Berny [1976] studied weak scatters and drew on Beck-

mann ’ s results to obtain estimates of o and correlation 

length (T). Composite model surfaces which included a 

periodic component were also studied. The paper also 

describes an optical profilometer with a spot size of less 

than 1 pm with which to sense the surface. The specular 

intensity of the reflected beam from a specimen, was 

normalised with respect to that using a near optical flat 

of the same material and reflectance. Berny's work echoes 

that of Hildebrand et al [1973] both in concept and instru-

mentation ,

A recent paper by Milana and Rasello [1981] presented 

an optical method for on-line evaluation of machined 

surfaces. Again measurements were normalised with respect 

to a standard surface of the same surface material, with 

known RMS roughness., o^, and correlation, Tp. The under-

lying theory was the one-dimensional Beckmann theory 

applied to grooved periodic surfaces with a superimposed 

random component. Estimation of the RMS height was via a 

calibration curve.

Chandley [1976a] measured the central specular peak 

arising from ground glass material of 0.1 - 1 pm roughness. 

He used wide angle illumination 0i = 80 degrees to

derive an estimate of o, which compared well with stylus 

measurements, and also sensed the off-specular region to 

obtain an estimate of T. In a subsequent paper Chandley 

[1976b] estimated the autocorrelation of surface heights. 

As in our studies, Chandley found that the Gaussian auto-
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correlation model was inappropriate, but obtained good 

agreement between his derived function and that obtained 

using stylus profiles. See also Elson and Bennett [1979] 

for a similar treatise.

Tanner [1976a], [1976b] investigated lapped and

ground mild steel surfaces. The surface height distribu-

tions of his specimens were significantly non-Gaussian, 

and his paper includes a theoretical model to account for 

such distributions.

Many researchers have investigated the contrast of 

far field speckle : Fuji! et al. [1976], Fujii and Lit 

[19781 , Leger et al [1975], Bitz [1978], Stansberg [1981aJ, 

etc. Fujii et al [1976] measured the contrast of the far 

field as a function of the surface roughness and the 

illuminated area, and in a subsequent paper measured 

surface roughness from dichromatic speckle patterns. 

Leger et al and .Bitz investigations are suitable for on-

line measurement of c since they employed coherent light. 

Both studied the correlation between two speckle patterns 

due to two different angles of incident laser light. The 

supporting theory was based on Gaussian surfaces. Stans-

berg [1981a] used the fact that the correlation between 

two speckle patterns of different wavelengths of incident 

light are equally dependent on the RMS roughness, and 

except for some high contrast values achieved fair agree-

ment with theory.

The potential to extend the range of surface height 

measurement using a suitable bandwidth of polychromatic 

light was exploited by Parry [1974]. The qualitative 

validation of theory contained in this paper was later 

augmented in Parry [1975], in his studies of ground glass 

36



under multiline laser illumination. Fair agreement 

between measurements of first order speckle statistics 

and talysurf profile statistics was achieved.

Interferomic and light scattering results for the 

surface spectral density function (SDF) were compared by 

Stover [1975], whereas Thwaite [1982] compared the SDF 

obtained by optical Fourier transforms with calculations 

from profile measurements. The use of a linear diode 

array transducer set-up, and infra red incident radiation, 

to increase the' sensitivity range to surface roughness, 

were features of Thwaite’s experiments.

A means of estimating the surface profile by comparing 

the phase change between a surface reflected laser beam 

and reference beam was devised by Smolka and Candell 

[1978] . The two beams were scanned by a photodetector 

by a rotating beam splitter. Smolka and Candell conclude 

that the. instrument is suitable for large scale rough 

surfaces of the order 1-50 pm, and describe their methodo-

logy as falling between the more elaborate interferomic 

schemes and mechanical contact schemes.

3.3 Defect Detection and Classification

An analysis of surface flaw detection is given by 

Sawatari [1971] . He used an oblique illumination techni-

que,- and after filtering out the specular reflection 

component, examined the scattered light to detect surface 

flaws (c-f. Chapter 9.2).

The theory of Beckmann, modified by a notational 

change introduced by Horn [1975], has been used by Mundy 

[1979] to provide an image analysis method of computer 

modelling of a metal surface, and for detecting surface 

defects. A scattering ratio, S , was defined as the natural 
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logarithm of the ratio of the scattered intensity at 

grazing and normal incidences as the discriminant function. 

Mundy’s results showed that S provided good contrast to 

defects.

His methodology was pursued in a paper with Porter, 

namely Porter and Mundy [1981], where they considered in 

particular the detection of a scratch on a metal surface. 

The observation angle was taken along the direction of the 

incident light whilst the specimen was rotated through 

5 degree increments and the image intensity was recorded 

at each stage*. The scratch roughness can be related to 

plate roughness by determining the angle of incidence 

for which the contrast is zero.

Mundy’s technique is not suitable for on-line defect 

measurement and neither is Berny’s [1976] device, which in 

addition to measuring surface roughness is reportedly able 

to measure the width and depth of surface defects. Berny’s 

instrument is described as being capable of giving quick 

qualitative examinations in series production.

The work at City University, on defect detection and 

classification algorithms, on data obtained by the SIRA 

laser scanner for on-line use has been reviewed in Chapter

2.3 and will not be reiterated here.
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CHAPTER L,

MATHEMATICAL MODELS OF 
ELECTROMAGNETIC SCATTERING

Abstract

Two mathematical models of electromagnetic scattering 

are postulated:

(1) A simple ray theory model in which the reflecting 

surface is thought of as a composite of optically 

perfect mirror facets, scattering incident rays 

according to the elementary law of physics - ’’angle 

of reflection equals angle of incidence”.

(2) A wave theory model in which the wave nature of the 

incident radiation, together with the electrical 

properties of the metal surface and the consequent 

interaction, are taken into account.

Here a detailed description of the models is given, suf-

ficient for their prediction of the back scattered field 

from a metal surface. Comparisons between the two models 

are drawn on the basis of predicted polar diagrams obtain-

able from deterministic and stochastic profile surfaces.

When the mechanical roughness structure is large 

compared with the wave-length of light, (A<<A, in the case 

of deterministic, periodic profiles, g>>l(=^>A<o ) for 

stochastic profiles), the models converge in some measure. 

The ordered phase characteristics of periodic profiles 

however, ensures only partial convergence in respect of 

preferred directions of scatter. For very rough random 

surfaces, the scattered field is incoherent and is 

modelled purely by the probability density function of 

profile slopes, and the two scattering models are equi-

valent. An elegant proof based on the inversion theorem 
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of characteristic functions is detailed.

4-1 The Mirror Facet Model

4 „ 1.1 The Mirror Facet Concept of a Rough Surface

A surface can be conceived as a composition of 

plane elementary facets, randomly orientated in space. 

The facet shape need not be precisely defined except 

that it will, of necessity, be polygonal, due to the 

planar requirement. Each facet furthermore, func-

tions as an ideal, mirror, reflecting a ray pencil of 

light according to the well-known law: that angle of 

reflection equals the angle of incidence.

We first of all focus our attention upon the 

simple ray theory approach and the so-called MIRROR 

FACET model.

In this approach, the total scattered field is 

the aggregate of n elementary rays scattered from n 

individual facets. The wave nature of the incident 

radiation is ignored so that each ray does not 

possess a phase characteristic. There is, conse-

quently, no mutual interference of individual (waves) 

rays, and reflected rays simply reinforce one 

another.. Additionally, the total scattered field 

is not considered to be a vector field: the inten-

sity of the field scattered in a given direction is 

proportional to the number of rays reflected in that 

direction, and does not include resolved components 

in that direction of otherwise reflected rays. The 

distribution of the scattered radiation is thus 

effectively a scalar rather than a vector field. 

The most elementary rough surface facet model is a 

2-dimensional profile of plane facets:
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Such a profile is defined mathematically by regularly 

spaced ordinates, and the simple geometrical laws of 

reflection provide an easy algorithm for computing 

those rays falling within a one degree (or finer) 

receiver angle. Rays which are reflected downwards 

into the metal surface are '’lost'1, whilst rays which 

suffer a secondary reflection are ’’hidden1’ from the 

sensor and subsequently ignored.

A natural extension to a 3-dimensional surface, 

an important progression if less rigidly anisotropic 

surfaces are to be modelled, is a 3-dimensional ’’grid” 

array of plane mirror facets:

FIG. 4.1.1. Facet Scattering

Surface definition consists of a series of 

parallel profile ordinate data. Computation of the 

scattered field is again relatively straightforward 

apart from determining those rays which have secondary 

reflections.

Before discussing the wave characteristics of 

light and the formulation of an alternative model of 

light scattering, the surface roughness statistics 

immediately accessible from the mirror facet model 

are outlined. This affords a convenient opportunity 
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to introduce the scattering geometry, and to formu-

late many of the geometrical relationships associated 

with algorithms pertaining to simple ray scattering 

theory.

FIG. 1.1.2. Scattering Geometry

91 = angle of incidence of laser beam ;

beam has wavelength A ( = 0.628 pm) ;

laser spot typically, 2 mm in diameter, 

illuminates a portion of surface (-L,L);

92 = angle of observation.

4.1.2. One-Dimensional Profile Facet Model Reflection 

Consider the plane polar diagram of the scatter-

ing of incident light, I,into reflection angles 9:
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FIG. 4.1.3. Polar Diagrams

Here, define Ng = no. of rays reflected into (8,9 + 69)

= no. of facets inclined at the appro-

priate angle.

to the mean plane.by a typical facet inclined at 9/2

The reflected ray, R, is reflected at angle 9 with 

respect to the specular direction, as shown in Fig. 4.1-4

3/2 - inclination of facet 
to horizontal

FIG. 4.1.4. Facet Scattering
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. . . .(1)

Define, also Ng = no. of rays reflected into

(9,9 + 69), measuring 9 w.r.t. the 

specular direction.

= no. of facets inclined at 9/2

Thus mean absolute slope = Z Ng | 9/2 |

N

and standard deviation of slopes

= / jjTJ { E (Ng S/2)2 - ( J Ng S/2)/,}

N = I Ng

A three-dimensional surface analysis can be 

formulated to provide corresponding surface slope 

statistics.

4.1.3.-  Two-Dimensional Surface Facet Model Reflection

where
....(2)

FIG. 4.1.5. 3-D Scattering Geometry

Define, Ng = no. of rays reflected in the direction 

( 9 -> 9 + 69, b b + 61)

= no. of plane facets inclined at the

appropriate angle.



Because of the additional complexity, it is best 

to adopt a vector analysis approach, in order to deter-

mine the distribution of facet slopes.

With respect to the above system of co-ordinate 

axes,
A A . .

I_ = sin0ii_ - cosQik ....(3)
A A A

R = sinQcosbi. + sin0sinqrj_ + cosOk ....(4)

A normal, n, to a facet giving a reflected ray 

in the direction of R,, lies in the plane of I, and R and 

bisects the angle between them.

FIG. 4.1.6. 3-D Reflection

Since I_ and R are both expressed as unit vectors 

we may take,

n = R + (-1)

= (-sin0i + sin0cosb)£

+ sin0sinbj_ + (cos0 + cos0i)k ....(5)

As a check we can verify that n. (-I_) - n.R

(both are equal to 1 + cos0icos0 - sin0isinScosb)

Now the angle between the plane of the facet and 

the reference mean plane, 9, say^equals the angle between 

the normals.

Thus, n..k = ) n |cos9

= cos0 + cos0i ....(6)
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Thus cos 9

As another

Whence cos

9

The

2 22
= (-sin9i +sin9cosb) + sin 9sin b

2
+ cos9 1)+ (cos©

2sin91sin9cosb
2 2

in b + cos 9 +

2
+ sin 9cos

2cos9cosq j

2 + 2cos9cos9i - 2sin9 i sin9cosb

(cos9 + cos9i)
—--- ------------- -------- —----------------------------------------------------------------------------- 1

[2 + 2cos9cos9 ! -2sin91sin9cosb)2

check on the computation, take b = 0.

9 = cos9 + cos9i_____

[2 + 2 cos (9 + 9i.)J5

Cos9 t cos9i

[4 COS
1
2

....(7)

....(8)

....(9)

. . . . (10)

...(11)

analysis has reduced to that of the two-

dimensional profile and the geometry found to be valid.

Here the mean absolute slope

1
N

9 . . . . (12)

where 9 is given by eqn (8) and the sums extend

over all angles which contain reflected rays. N is the

total number of plane facets.
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2 The Wave Theory Model 

4.2.1. One-Dimensional Wave Theory Model

The essential difference between this model and 

the mirror facet model, is that the wave characteris-

tics of the incident electromagnetic radiation are 

taken into account. The wavelength, direction of 

polarisation of the incident beam, together with the 

electrical properties of the surface material, are 

features fully integrated into a comprehensive scat-

tering theory.

Here the resultant scattered field is a vector 

sum of wavefronts arising from elementary scatterers 

(facets). If a wavefront has amplitude A. and phase
J

b., then the resultant field from N individual
J
scatterers is:

FIG. 4.2.1. Resultant field

The wavefronts mutually interfere, and visual 

effects of light and dark speckle images occur.

As in 4.1, if the surface definition is a 2-dim- 

ensional profile, or a series of parallel profiles, 

the scattered field can be calculated according to a 
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KIRCHHOFF WAVE THEORY MODEL, demanding much the same 

computational complexity as did the mirror facet model. 

That is, if the topography of the illuminated surface 

is specified precisely, the scattered radiation can be 

computed. We may either assume that the surface 

material is perfectly conducting, or take into account 

the reflectivity properties of the surface material.

We should be aware however, that in spite of the 

apparent comprehensiveness of the model, certain 

simplifying assumptions were made, so that the accom-

panying mathematics would be tractable, namely:

(i) shadowing and multiple scattering may be 

neglected,

(ii) the incident plane wave is linearly polarised,

(iii) the radius of curvature of the irregularities 

is large compared with the wavelength of the 

incident radiation (i.e. no sharp edges or 

points included in the surface roughness).

Briefly, the scattered field is obtained as a 

solution to the wave equation with the Kirchhoff 

boundary condition, (which approximates the incident 

field at any point on the surface, to the field that 

would be present on the tangent plane at that point). 

The Kirchhoff method is physically reasonable if 

assumption (iii) above is met. The procedure is 

fairly robust however, and solutions may still be 

adequate approximates even though (iii) is violated.

The definitive text on the KIRCHHOFF THEORY MODEL 

is to be found in Beckmann [1963]. In this chapter 

essential results are summarised and pronounced upon, 

since we need to know precisely the mechanism by which 
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surface topography determines polar diagrams, accord-

ing to the Kirchhoff wave theory model.

The scattering coefficient is defined as, the 

ratio of the reflected field, to the field reflected 

in the specular direction, by a smooth perfectly con-

ducting plane of the same dimensions, under the same 

illumination.

With reference to the scattering geometry of Fig. 

4.1.2., the scattering coefficient, p, for a perfect 

conductor with L>>4 and the incident beam horizontally 

or vertically polarised is,

f 2
2L

/ e1—' —dx

-L
....(14)

f 2
2L

/L ei(vxx + vz5(x))dx
....(15)

where F^ is a pure function of the incidence and observer

angles 9i and 92, namely

F2 = s e c 9 1.

v = (sin9i- sin92) 
fC A

+ cos92).

Here- X is the wavelength of the incident radiation, 

taking the source to be coherent and monochromatic. 

Typically the source is a helium neon laser and A = 

628 A0.

From eqn (15), given the profile curve, <;(x), the 

integral may be computed and the scattering coefficient 

p determined for various 92, yielding the complete 

polar diagram.

If the surface material has finite conductivity, 

the expression for p(92) is of the form:
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,/fl ) - 1
f L

b)oiVVX + iV7’dv
f 1 AP(92? - 4L cos0 , J <

1 -L
u / e x z U-X

where the terms a and b are given by

a = (1 - H) sinQi + (1 + R) sin02 ....(17)

b = (1 - R) COS02 - (1 - R) cosQi . ... (18)

The reflectivity coefficient R, depends on the material, 

the local angle of incidence and the direction of the 

plane of polarisation.

4.2.2- Two-Dimensional Wave Theory Model

The extension to the case when the surface is 

defined as a surface sheet £(x,y) is straightforward:

FIG. 4.2.2. 3-D Scattering Geometry

The coefficient of scattering for a perfectly 

conducting surface is:

p(02,93) = 7^-// ei-*-dxdy ....(19)

A A

F 3 f f i(vx+vy+vr),_, . .= -T-J J e x yy z^' dxdy ....(20)
A A

Here, A is the area of the sheet under illumination;
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„ = + CQS01CQS02 - sinO i sinQ?cos63
3 cos0i(cos0i + cos92)

v = -T- (sin9i - sin02cos03) ; v =
x a y

2 77and v = “-r- (cos0i + cos02).
z A

The scattered field for a finitely conducting 

sheet surface may be derived, although we do not state 

it here.

We see from eqns (15) and (20) for p, that the 

exact surface geometries £(x), £(x,y) are involved in 

the computations. Prima facie, the wave theory model 

offers a better prospect of recovering more surface 

geometry information, than appears possible from the 

simple mirror facet model. However, as we shall see, 

for many model and real surfaces the model predictions 

are remarkably similar.

4.3 Model Predictions for Periodic and Random Profile 

Surfaces

In order to gain a limited appreciation of the 

two models, their differences and their similarities, 

we examine the predicted scattering from a few hypo-

thetical surfaces. Where appropriate, the juxsta- 

position of the facet model and the wave theory model 

analyses,, enables comparisons to be seen more readily. 

In all cases, with regard to the wave theory model we 

shall consider the model surfaces to be perfectly 

conducting and L>>1 so that the ’edge’ effects may 

be neglected.

2 77 • A • A
-y sin92sin03
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Inclined Optical Flats

Facet Model Wave Theory Model

FIG, 4.3.1. Scattering from an Optical Flat
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Plainly, since for all 

elementary facets, the
p(q 2) - n?/ L e 1~ “dx

normal is inclined at

(9i + d) to the incident 

ray; they each reflect a 

ray in the specular

i(vxx - vztan<t>x)dx

F
2L

e^-^x " vztan<j))x 

i(v - v tand) ™
x z

directi on

Tv - v tand)L 
x x

i(v - v tand)L i(v - v tand)(-L)
.X. zj X Z

21 }

F sin(v. - v tand)L
~ x ___ z______

v tand)L z

= F sinc(v
x

- v^tandjL . ...(21)

V
X

- e

(sine x = sin x \
x '

I l,v - v tand = 0 
/ z z
I - 0 otherwise if X<<L .

If X<<L, for the wave theory model, the only significant

scatter occurs when vx - v tand = 0.

i.e. when tand = v / v
x z

2tt/X ( sin9 i - sin92 ) 
-2tt/X (cosQi + cos92 )

....(22)

-2 cos(9i + 92 ) sin(9iz- 92)
______ 2 ______ 2
2 cos(9i + 92) cos (fli - fl2)

2 2

. . . . (23)

-d ~

92 =

9i ~ 9 2
2

9i + 2d w.r.t. the co-ordinate axiz z 
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Thus both theories confine scattering to the specular direc 

tion. This agreement can be explained intuitively by a 

simple ray diagram- For reflected wavefronts in the direc-

tion 02 = 81 + 2b, there is zero path difference, and so 

waves reflected from elementary facets are in phase and 

simply reinforce one another.

Parabolic Reflector

- L<x<L

FIG. 4*3.3. Parabolic Reflector
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Facet Model Wave Theory Model

i (v x + v x2 ) j 
e x z dx

_F_
2L

fL

-L

expfiv (x + v /2v )2
Z XX

-ivx2/4vz} dx

exp(-iv 2 /4-v ) .
X z

if L>>1

Consider an elementary 

facet 6s inclined at 92/2 

to a normally incident 

beam. For the facet model 

approach the number of rays 

reflected in direction 92 

will be proportional to 

the facet length

= £ sxp <-ivx/4vz}-

z

F2
4.L2Then I = pp*

F2
4.L2

7T
V 

Z
....(25)

A
2 (cos9 i + cos92 J

For normal incidence, (9i = 0)

(1 + cos92), and

....(27)

amplitude

6 s

1

1

1

. . . . (24.)

. . . . (26)

= /"1 + 4x2 6x

/1 + tan292/2 6x

= sec02/2 6x

/F
2172

.. 2Z
4-L

02« sec . . . .(29)

Using simple ray theory arguments, since a normal beam is 

directed parallel to the principal axis of a parabolic
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mirror, all rays are reflected through the focus (0,i).

FIG.. 1.3.1. Ray Diagram for Parabolic Reflector

In the far field, the amplitude at 92, varies as sec92/2 

according to the wave theory model. From simple geometry, 

(according to the facet theory) tan92 = x/(0F - x2 )

tan92 = x/(0F - x2 )

x _ lx
i - x2 1 - lx2

Thus the amplitude distribution predicted by the wave theory 

model corresponds with the power distribution predicted by 

the facet theory.

To gain some insight into the above results, consider 

■the following disgression:-

If n coherent waves of equal power are all in phase the 

total power is proportional to n2, since the total power
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amplitude

FIG. 4.3,5. Polar diagram for scattering at normal 
incidence from parabolic reflector

density of coherent waves is obtained by summing the indivi-

dual fields vectorially. In contrast, the mean power densi-

ties of incoherent waves may be added algebraically, and the 

mean total power of n incoherent waves is proportional to n. 

The facet model is thus appropriate to the case of incoher-

ent illumination.

We now explore two strictly periodic surfaces

4-3.1 Periodic Profile Surfaces

FIG. 4.3.6. Rectangular Corrugation

h

h+/ V

Suppose that the illumination is directed normal to the 

surface thereby avoiding problems of shadowing.
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Facet Model Wave Theory Model

i ' z

*----A---- *

£ *\ A I l
1 

h
—1-------- >

£
1

h
. . -/t„ ...

We could take the
P ( 62 )

L
Xf eiv
2L <-L

x 
X

+ iv z , 
z dx

number of elementary

facets to be 4L/A ( A

F
2L

2L r
A t dx

is the period of the
T

dx }

surface corrugations).

All facets return a

F
A

( -iv h[A-
e - z ivx

iv x e x LA/2

reflected ray back along , iv h r+ e z 1 e
iv xl

x J
A

A/2
}

the incident path The

facet model cannot dis-
F

Aivx
{ -iv h iv A/2 -j x 
e z (e x -1)

tinguish between surfaces + eivZh(eivxA-eivxA/2)}

(1) and (3) if illumina-

tion is normal.

F
Aiv 

x
(elvxA//2-l)

/ -iv h , iv h iv A/2x 
(e z + e z e x )

In specular direction, (v 0),

1 / iv h , -iv h) 
p ( 0 ) = 2 ( e z + e z

~ cos(v h)7,

= cos
lirh j

l(0) = cos2

. ...(30)

....(31)
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The coefficient of scattering in the specular 

direction varies with lirh/X as a cosine curve, as 

shown originally by Deryugin [19&0] and reproduced 

on p63, Beckmann [1963J. The interaction of the 

beam is therefore summarised by the critical ratio 

h/X. There are four ’edges’ in every profile 

period, and so, strictly, the Kirchhoff wave theory 

approach is invalid. However Deryugin shows the 

Kirchhoff method to be a good approximation of an 

exact evaluation of the scatter.

Intuitively, the path difference of adjacent 

wavefronts reflected from the surface will be 4-h, 

and for the case 4h = X/2, the fronts will totally 

interfere with each other and the intensity falls 

to zero.

Widening the discussion to periodic profiles, 

^(x), in general, we may write ?(x) = £(x + A), 

which implies periodicity of exp (iv x + iv r) 

for v A = 27rm where m is any integer. Since
X
2 TT

v = (sin0i - sin92), in Beckmann’s notation, 

sin92m = sin9 + ~, which defines the directions 

of the side lobes of the scatter distributions of 

polar diagrams.

For A<<X (very smooth surfaces) there is only 

the specular lobe (corresponding to m = 0) and the 

surface reflects specularly, regardless of the 

roughness parameter h; for X<<A there are a multi-

plicity of lobes and the incident wave is scattered 

completely; for X~A there are a few significant 

side lobes and the polar diagram structure is more
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informative. This is the condition of resonance 

where the wavelength of the interrogating beam is 

matched to the wavelength of the surface roughness, 

we shall return to this theme later. (c.,f. Chapter 

9.1.)

FIG. 4.3.7. Saw-Tooth Profile

Suppose there are (2n + 1) periods in 2L, i.e. 

(2n + 1)A = 2L and that shadowing and secondary 

reflection effects may be ignored.

Facet Model
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Again, all (2n + 1) profile 

teeth are inclined at

(9i + d) to the incident 

beam, so that the scattered 

field is a sum of (2n + 1) 

elementary rays in the 

specular direction

L
_ _ F f iv.r , 
P 2L dx

= {27'T 1) sinc(vx-vztan<i>)A/2

. £ 1 + ncos(v^A)J
....(32) 

(from Appendix AB)

We suppose that (2n + 1)A = 2L

and that A>>A.

Although the wave theory restricts scattering to 

within a small angle of specular direction, for a given 

tilt, b, of the profile teeth, the intensity in this

direction will vary dramatically with the wavelength A 

and in this respect, the model descriptions of the scatter 

remain distinct.

FIG. 4.3.8. Saw-Tooth Profile

The saw-tooth profile above, for normal or near 

normal incidence, should not give rise to the complica-

tions of shadowing or secondary reflections, for suitable 

h and A. For general scattering angles 62, the integration 

is straightforward and may be referred to in Appendix 4B.



(The result for the preferred scattering angles 92m may 

be found in Beckmann [1963] p.58.)

{ I sin (v
• X

XI v tanb)-7 -icos(v + 
z 4 x

.sine(v
x

vz tanb)-

v tanb)-?-
z 4 _

[s in (v - v tanb)-?- -icos(v 
z 4 x

vztar^)A]

x

For A>>4,

ing as on p53,

tilt facets of

.sine(v
x v tan 

z

the sine(.) terms
v 

at _L.
vz 

this leads to the

vanish except the close

Proceed-

in

= ± tanb = ± .

two angles specified by the

the geometrical profile.

By way of generalisation and to bridge sections 4.3.1.

and 4.3.2. we consider a piece-wise linear function profile:

effectively a mirror facet model surface, although possibly 

envisaged as an approximation to a real surface. Ament 

[1956], [i960] studied half-plane model surfaces in depth:

here we will not attempt a formal analysis to relate scatter 

to roughness, but simply to compare the predictions accord-

ing to the facet model and wave model theories.

Linear Function

FIG. 4.3.9. Piece-wise Linear Profile
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be written as

(x) 

^o, i 

Then 

P ( 9 2 •)

facet profile, £(x) can

. + tanb•(x - x^ .) , 
0,1 i o,i

_ = r n + tanb. (x . ,
1 ^o,l 1 o,i +

withX .<X<X . , -]0,1 0,1+1

Xq to ensure continuity.1

n= F “ JXo.i+l eirvxx + vx(?o>. + tan*.(x - xo>.))] 
xC-Lj  •

dx

xo,i+lei(vx + tan4>.vz )xdx
F ~ iv (c . - x . tanb.) 
or Z e zso,i o,i iz

1=1 Jx^ .
x 0,1

F n iff
1=1

iv (r .
z o, 1 

“ i(v + 
e x

x .tanb. )
0,1 i

" XQ,j

v tanb.) 
z 1

r .
.tanb.) i(vi __i' e

1 x

+ tanb.v )x 
x 1 z

o, i+1

o,i

- x . tanb.)
0,1 1

tan<t>.vz)xo>iU _ei(vx + ^n<D.v2)x0j. 

i(vx + vztanbi)
-e

v 
z
tanb.)x

1 o
i+1)-cost( 

+ v tanb. ) 
z 1

+ v tanb.)x . }
z____ 1 0,1

J x

x

+ i sin{(v
x

+ v tanb.)x 
z____ i

i( v
o,i + l 

, vx + z

}-sin{(v
______ _ X
tanb^)

+ v tan 
z

x .tanb.)/
0,1 1 z i (v + v tanb.)

x z i'

v tanb.)(x . <n + x .) 
z 1 oi+l oi

2

,sin(v + v tanb.)(x . . )
x____ z i oi+l____ 01

2

+ i 2 cos + v tanb.
z 1

)(x
o, i+1

(vx + V^and). ) (x01+1 - x0.)
2

2

sin



- x . tanb. )
0,1 i

x cos (v
X

+ v tanb. ) (x • ,-> + x . ) 
z____ 1 0,1+1 o,i

2

- is in (v + v tanb.)(x + x .)
x____ z____ i o^l + 1____ o^_

2

x sin (v + v tanb.)(x . ,, x .)/2
x____ z 1 o-,x+l - o , 17
_ + v tan '

x z 1
....(33)

with . (x^^. - x0^) >>x, the contribution from the i^*1 facet 

vanishes except for v + v tanb. = 0.
r x z i

i.e. the scattering coefficient vanishes except for the 

contributions at specific angles as dictated by the indivi-

dual facets. Thus the angular dispersion of the two scattering 

theories coincide for large roughness structure profiles, but 

the phase information carried by the wave model, maintains 

distinct polar diagram definition in received amplitude or 

intensity.
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4.3.2. Random Profile Surfaces

Beckmann [1963] contains a detailed account of

both periodic and random profile analysis. The case 

of a surface possessing a Gaussian height distribution 

is described in full. We recap on the normal theory 

as necessary to extend the methodology, and examine 

the important special case of a surface possessing a 

negative exponential of heights. (c.f. Fig. 4.3.11.) 

which illustrates a surface profile from a plateau- 

honed surface where typically the profile peaks are 

’shorn flat’, and the associated highly skewed nega-

tive exponential height distribution). This special 

case is treated in more detail, along with other

cases citing surfaces possessing non-Gaussian profile 

statistics, in Chapter 8.3. We conclude the compari-

son of the two scattering models by demonstrating the

convergence of mirror facet and wave theory models, for 

very rough surfaces in general. Tanner [1980 J claims

to have demonstrated this in an earlier paper, Tanner

[1976] , . but on close examination he uses simple ray

facet theory arguments.

The discussion of random profile analysis employ-

ing the Kirchhoff wave theory model now proceeds as 

follows:

For a perfectly conducting, one-dimensionally 

rough surface (with zero mean height), the coefficient 

of scattering is

p(92) = ^/Lei^xx + V(x))dx
—L
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Taking expectations,

e[p(02)]= / eivxXE(eivz^)dx ....(34)

- L

F / \ f iv x ,= 2L x(tZ} 1 Te X “
— 1j

/

= F x(v Jsincv L ....(35)
z x

= F x(v )p » say where p = sine v L
Z 0 0 X

and we have introduced the characteristic function

y(v ) of w(z), the probability density function of 
z

surface heights.

The general result, for the standardised inten-

sity distribution reflected from a surface as defined 

above is

I(92) = e[pp*J

= poX'(vz)x*(vZ) +

^/_^iVxThJvz- ’ VZU) - x(vz)x*(vz).]dT

•...(36)

where x2(v » “ v joint characteristic
z z

function of surface heights zi and z2 separated by a 

distance T. the first term gives a significant contri-

bution only in the specular direction, and then only 

for very smooth surfaces, in which case it is manifest 

by a specular spike, whilst the second term can then 

be thought of as the off-specular component.

(6) Case of Normal Surface Height Distribution

In brief, w(z) ~ ~ e z , with a the

standard deviation of surface heights. The derived 

characteristic function in this case

X(v ) = ...A3VA z
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where, in keeping with Beckmann’s notation,

g = o2v 2 , a useful categorising parameter, 
z

The joint density w(zi,Z2) is bivariate normal

with correlation C say, viz:

w(zi,Z1) = 2^2/1 . C2 exp +2z22) ]

from which, ....(38)

X2(vz> ~ vz) = exP f-vz2cr2(l - C) ] = e-^^ "

....(39)

Thus, for a Gaussian surface,

I(e2) = po e'S + £JLeivxT [e-st1 ‘ C(T)ke-g]dT
’L ....(40)

The usual procedure is to assume a Gaussian form of 
_t2 /m2

autocorrelation function : C(r) = e where T is

defined as the correlation length. Under this

assumption,

i(e2)
/LeivxTe-S{eSC(T)-l) dz

-L
(41)

2 ~ \- poe ° +

co
F2 [Liv T -g S 
ot " j e x e _n 2L J m=l

m
—T -mT2/T2 
m I e dr

For type (A) surfaces g<<l, i.e.
. . . . ( 42 )

very smooth surfaces,

only take the first term of the series : for type (B)

surfaces g~l, i.e. moderately smooth, take as many 

terms as necessary : for type (C) surfaces g>>l, i.e. 

rough surfaces, use ’’saddle point” integration.

(Type (A) surfaces are;discussed later in Chapter 

8.2.2and Type (B) in Chapter 8.2.1 and 8.3).

Let us consider for the moment the case g>>l

the first term above is negligible, and only near
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t = 0 do we have any significant contribution to the 

-t2/T2integral. In which case C(t) = e 7 ~1-t2/T2.

. • . I(92) = g. />/ e'Hl - (1 - T2/TUJdT (44)

TF2 /t Qx
L /g exp

TF2 /ir
l V ~ exp

T2v 2 
( x
”4cj2v 2

z

(c.f. Ryzhik and
Gradstein [1957] )

)

(45)

rn 2
TF2/tf exp (-7-7T tan23/2) 9 = 9i - 02 
Lv a

z

TF2/7
Lv a 

z

t T2 92
exP (46)

FIG. 4.3.10. Scattering from Rough Type (C) Surface 
having Gaussian Height Distribution

If we '’normalise” the intensity curve the

’’variance” = 8o2/T2..

expected intensity at

N.B.. the curve represents the

angle 9 away from specular, and 
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must not be confused with the usual interpretation as

a random variable frequency curve.]

For a Gaussian height surface, N(0,o2) and C(t) =
_ -T- 2 / m 2

e 7 , the distribution of slopes is N(0,2o2/T2)

(c..f. Appendix 81 or Beckmann [1963] p.193 for full 

justification) and furthermore the distribution of 

inclinations (ip) of roughness facets, will be approxi-

mately N(0,2o2/T2). Since facets inclined at 9/2 will 

reflect into 9, we can interpret the above results 

according to the mirror facet view of scattering, 

namely, that the intensity at angle 9, is directly pro-

portional to the number of facets inclined at the 

appropriate angle 9/2.

© Case of Negative Exponential Distribution

1 Xe
Take w ( z ) =

Then = X +

and x(vz)x*(vz)

i. e. X(vz)x*(vz)

-(1 ' lZ>
z > 1/ X .

X_____

lv.
-iv /X 

e z

V_____

+ v 2 
z

1 1 = 1
1 + 6 2 V T 1 + g

z °

The full treatment for this

height distribution is found in Chapter 8.3, where

= V

1 + v 2/V z

the above and following results are described in detail.
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FIG. 4.3.11. Surface Profile, Height and Slope 
Distributions from a Plateau - 
Honed Surface
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The author’s heuristic procedure is to replace g in

) by g L- - c(t) ] as a postulatedx(vz)x*(vz

X2(VZ, - VZ>'T')> bivariate characteri-atic function.

We suggest, therefore that

X2(vz. - vz
.T> _ 1 ....(47)
’ ; 1 + g[l - C(T)]

As possible auto-correlation functions, we could use
_ — 2 t rp 2

C(t) = e~ 7 - Gaussian, as previously, or C(r) =

[1 + T2/a2]m Lorenzian.

1" ....(48)

or * 1 +'gmT27aT

Proceeding with the Lorenzian,

i(e2)

ttF2 a

COSV TdT
______ X
1 + gmr2 

a2

....(49)

....(50)

ttF2 a

(c.f. Gradshteyn and Ryzhik’s Tables of Integrals 

Series and Products 3.723(2) p.406.)

| 9 / 2 |
~ a -/ma 1

4c^/mv e
z

i.e., a Laplacian scatter distribution curve.
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Scattering from Rough Type (C) Surface 
with Negative Exponential Height Distribution

The difference of two negative exponentials in

Laplacian (c.f. p.272 Kendall and Stuart fl969] Ex.11.15 

a = 1) and we may conclude that this is the case for the 

distribution of slopes. The geometric interpretation 

therefore, is exactly the same as for the normal case, 

and so the facet model applies under these conditions 

also.

® General Type C Surface

We formally generalise these results for Type (C) 

surfaces, with the aid of the inversion theorem of 

characteristic functions:

”If f(x) and b(t) are p.d.f. and characteristic 

functions of a random variable X i.e. by definition 

<t> (t) = J f(x) e^x^dx then f(x) = J b(t)e”^x^dt.
— CO _ 00

(p.95 Kendall and Stuart [1969].)

For a Type (C) surface,

f°°
iOa) = |rJ elvxTxs(v -V ;T)dT.

— 00
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Recall, X2=
ivjzi - z2)l

E[e z J

characteristic function

and in the region of

of slopes.

Suppose

as <t>( v T).
z

supposition

Xz(vz, -

= e^2/T2].

vz;T)

The

now that we can express

N.B. for normal b(v t)
L Z

ensures that the slope distribution has

— 00

expressed as b(v 2t2) as all odd moments 
x z

zero.

of slopes are

Then, I(e2) =
[•co
' e17xTb(v t)1t

z
....(52)

• co

Write t = v t : dt = v dm
z z

Tp 2K0*) = fc J

v 
z

INVERT I(e2)

F2
2Lv 

z

F2
2Lv

z

r ei(tan9/2)S(t)dt

— co

f e^/2^p(t)dt

— CO

F2
2Lv

z
2tt f (£5/2) where f ( . ) ....(54)

....(53)

is the p.,d.f. of slopes and thus SCATTERING IS GEOMET- 

RICAL FOR ANY TYPE (C) g>>l ROUGH SURFACE FOR WHICH THE 

ABOVE CONDITIONS ARE MET.

4.3.3. Mixed Roughness Models

Both beam scattering models are relevant to the 

following two illustrations of mixed rough surface 

models. Firstly, consider a model surface where a 

random Gaussian component is superimposed on a deter- 

ministric grooved component, to give the model profile 

shown:

73



A

FIG, 1.3.13. Mixed Roughness Model Profile

Milana and Ras.ello [1981] introduced such a model, 

and suggested that the deterministic component is due 

to the shape of the tool forming the surface, whilst 

the random component is attributable to the cutting

action.

Then If eivx^xi ‘ Xz'1 +
- C2) + ni - nzJ

dxidx2

....(55)

where ni,n2 are Gaussian variates.

Taking mean values, and using the saddle point

method:

+f iv T 
Jex
- co

ivzTT.E(eivz(ni ’ nJ)dT

co
iv T e x

co

2hT . / \lvzV ,E(elvz(ni - n2 )dt)

....(56)

°° i(v
e x

v 2£)t .a 2t2/T2, 
z A e n z dr

+
— 00

- co

V

0

-a 2 v 2t2/T2-, 
e n z dr



F2 T/7t
2Lo v n z

e-^x + + Vz A—)2/4a 2v 2/T2
n z }

F2 T/7
2Lo v n z

F2 T/F
2La v 

n z

Thus

T2 /2h
exP -7^-t  (T

L n

exp[- T2 /2h

n

v
x

V 
z

2]
) I + exp

rp 2

. “4a”7
n

( 2h 
A

tan^- ; + exp
[ T2

L-437
( £h 
' A

the mean scattered field in approximately the sum

of two Gaussians. In particular, the specular intensity

at (9 = 0) is

{

(

(

F2T/tt-----  exp
Lavn z

+

+

n
- (v 

e x

+

+

V 2 1
1

z

....(57)

T2h2
a z hT
n J 

....(58)

a result utilised by Milana and Rasello [1981] .

FIG. 1.3.14. Mean Total Intensity for Grooved Surfaces

If we set h = 0 in (57) we have the case of inco-

herent scattering from a Gaussian surface, as discussed 

previously.

We see that the deterministic component governs 

the location of the scattering modes, whilst the spread 

of the scatter is dictated by the random term.

Secondly, consider the modelling of a large struc-
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ture defect on a rough surface, that is, a deterministic

defect component with superimposed random surface rough

nes s.

2L

FIG. 4.3.15. Semi-Circular Defect with Surface Noise

Clearly, 6s = L6b and thus by simple ray arguments, 

the scatter distribution arising from the defect compon-

ent is uniform. However, the random component disturbs 

this ideal state and injects a Gaussian element into the 

scatter pattern.

FIG. 4.3.16. Mean Total Intensity from Semi-Circular
Indentati on



4.4 Conclusions

Although- differing fundamentally in several 

important mathematical respects, the MIRROR FACET and 

the WAVE THEORY models substantially agree when applied 

to important model surfaces. The models predict signi-

ficantly different responses from (a) profile surfaces 

possessing a marked periodic component or (b) from 

profiles where the magnitude of the surface roughness 

is comparable with, or less than the wavelength of 

light.

The '’in-phase” characteristics of reflected wave-

fronts associated with type (a) and the beam interaction 

with the fine structure of (b) are plainly dominant in 

the case of the wave theory model.

For surface profiles possessing a large mechanical 

roughness structure the models exhibit close agreement. 

For very rough purely random surfaces (type (c) surfaces 

with g>>l as defined earlier : in practical terms this 

means surfaces with o>0.2um for normal incidence), the 

general result that the incoherent scattered field is 

consequent upon the probability density function of 

surface slopes, whatever form this distribution might 

take, is of fundamental importance. This result is in 

keeping with our intuition, that wave properties are 

important only when the surface roughness is small in 

comparison with the wave length of light. It is of 

immense practical interest, since the vast majority of 

engineered surfaces are optically rough in the above 

sense.
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APPENDIX 4A

Glossary of Terms and Symbols

Refer to Chapter 4.1. p42 for the scattering geometry.

v = (sin0i - sin02) (v
x

V 
z

(cos0i + COS02)

F
sec0 i(l + cos (9i + 02 ))

COS01 + cos02
; F = 1 in specular direction

N.B. F 1 for normal incidence.

sin2 c v L-A.
sincv L

x

S(x) profile equation

variance of height distribution

w( z) p.d^f. of surface height

2
%

v L
X

x( ) characteristic function of surface height

C(t)

X<vz) = I w(z)

— co

autocorrelation

eivzZ dz

function of surface height

i. e.

T correlation length

i. e.

W(zi,Z2) = joint distribution of surface height

y2(v ,-v ) = joint characteristic function of surface height 
z z

00

i.e. Xs(vz, -vz) = I I W(zi,-Z2) e^vz^Z1 Z2^dzidz2

— CO -00

g = V 202 .
& Z

The magnitude of g characterises the surface:

Type (A) g<<l : Type (B) g~l : Type (C) g>>l
very smooth moderately rough rough
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APPENDIX IB

(£) Saw-Tooth Profiles

(i) Consider firstly a surface waveform consisting of 

just three inclined optical flats. (The methodology will 

then be generalised to consider 2n+l such flats.)

F
2L

i (v x + 
e x

i ( v x + 
e x

i ( v x + 
e x

vz(-2h - xtanb)dx

v tanb) , 
z dx

vz(2h - xtanb)dx y

F
3A

~i2hv f”A/2 fA/2
e z J G(x)dx + J G(x)dx +

-3A/2 -A/2

i2hv
e z.

vztan0)x as Q(x)
on expressing the integrand

- v tanb)x \

- vztanb) / then

e"12hvz (H(-A/2) - H(-3A/2)} + H(A/2) - H(-A/2)

+ei?hvz (H(3A/2) - H(A/2) }
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Rearranging and pairing appropriate terms,

p = 3A(v - v { sin(vx ' Van*)A/2 +
X z

sin P(v - v tanb)3A/2 + 2hv 1- sinf(v - v tanb) A/2 + 2hv 1}
X Z z4 X z z 1

2Fp = 3A'Cv" - v sin(vx ’ vz^n<t>)A/2
X z

+ 2cos(v A)sin(v - v tanb)A/2}
X X z

(2h/A = tanb remember)

F= -q . sinc(v - v tanb)A/2 . (1 + 2cos(v A)}
U X Z X

N.B. b -> 0 p ■* Fsinc(v ) A/2 : solution for optical flat at

normal incidence.

Only non-zero contribution is in direction specified by

v - v tanb - 0 i.e. 92 = 9i + 2b, the specular direction.X z

Again, considering simple ray principles,

Path difference of reflected rays

= Asin(9i + 2b) - Asin9i

= A (■ s in ( 9 i + 2b) - s in 9 i)

= Avx . for m an integer => Av^. = 2Trm
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i.e. in phase condition for reinforcement

(ii)

p(e2) = p 1°
A -A/2

„irv x
e t x

+ vz(h + xtan<D)}dx f

y A/2

o

irv x 
e t x

+ vz(h - xtan<t>)}dx

F iv h
A e 2 (

[° it v
J e x 
-A/2

fA/2 . ,
it VJex

o

+ vztan<i>)xdx +

- xtan4))x dx j

F iv h r ~ A e 2 {
i ~i(v
1 - e____ x

it v + v tan<t>) 
x z

+ v tancf)) A/2 
-- z— +

ei(vx ” vztan4)) A/2_1 

T (v i v tand)
x z

Felvxh

Ai

1 - cos(v + v tan<t>)A/2 - i sin (v 
{ —7—Tv + v tand)

x z

x
+ v tan<j>) A/2

i cost v - v tancj)) A/2 - 1 + i sin (v -v tan$)A/2 
_____ £___ ±_____ _ ______________ x z_  j

Tv - v tan4)) 
x z
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Write (v + v tan<t)A = a and (v - v tan<t>)A, = 3 to shorten 
X Z 4 x z T

the expressions.

a _ Feivzh rsin2a-2i sinacosa 2sin23+2i sin3cos3 n 
p(02)---- I------------ ------- --------------- ---------- }

= Fe-'2-£X (( sina-icosa) S'~-a - ( sin3-icos3)^^- }

Feiv h z
2i

{(sina-icosa)sinca-(sin3-icos3)sine3}

For A>>X». the sinc(.) terms vanish except in the close 

proximity of (.) = 0.
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CHAPTER 5

DATA ACQUISITION BY EXPERIMENTAL RIGS

Abstract

The experimental work for this study was conducted 

in two parts:

(i) The back scatter radiation from a rough surface 

arising from an interrogating source of electro-

magnetic radiation was recorded. A number of metal 

surfaces was studied for which polar diagrams were 

obtained. The experimental methods involved in the 

recording of three-dimensional polar diagrams are 

described, and the associated hardware and software 

of a semi-automated system of data gathering is 

fully documented.

(ii) Three-dimensional surface topography data was 

collected and collated. The design, construction 

and interfacing of a semi-automatic system for 

mapping a metal surface is described. The system 

incorporated a standard talysurf-10 stylus probe 

instrument to record data as a series of profile 

traces, (parallel if desired - manual set up

allows for any configuration of traces to be recorded). 

On-line digitisation and recording were achieved.

The talysurf-10 is capable of mapping any region 

with a defining dimension of up to 50 mm, whilst 

transference of data to magnetic tape virtually 

places no limit on the number of height samples 

which may be acquired.

5.1 Recording Back Scatter Intensity Data

5.1.1 Introduction
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The distribution of the field of the back scatter 

radiation from a rough surface, depends intimately 

on the surface properties. The two models described 

in Chapter 4 attempt to quantify this relationship. 

With the long-term aim of investigating the validity 

of both models, a sequence of experiments was 

conducted on various specimens of different material: 

brass, copper, mild steel, etc., whose surface had 

been ground or rolled flat. Various grades of 

finish were investigated and in some instances 

’defects' were deliberately introduced : scratch 

marks were made by scoring the surface and in others, 

circular indentations of controlled depth and dia-

meter were made using appropriate bits.

5.1.2 The Laser Rig

For a number of reasons a laser beam was used as the 

interrogating signal: a laser beam is easily control-

led as a fine pencil of parallel rays to be focused 

upon a clearly definable region of surface, as well 

as being the tool of several investigations into the 

general area of surface inspection, some of which 

were reported in Chapters 2 and 3. A helium-neon 

laser of 628A0 was used, being both safe to operate 

and cheap in terms of its capital cost and use of 

power. The laser projected a circular beam of 2 mm 

diameter coherent light. Such a coherent source of 

monochromatic light, as opposed to a source of white 

light, gives rise to ’speckle’ phenomena due to 

interference effects. The illuminated region appears 

to.be composed of alternate light and dark areas as 

the consequence of the wavefronts interfering with 
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one another. Transducers measuring the scattered 

field need to average the intensity of the reflected 

beam over a sufficient number of speckles.

The experimental rig shown in the diagram below 

5.1.1 was adapted from previous users' rigs (this 

study formed part of a continuing programme of work 

conducted at the City University), and consequently 

some limiting features of the design follow from the 

fact that the rig was not entirely purpose built.

The apparatus was mounted on an optical bench with 

the laser at one end. Once various alignment proce-

dures had been pursued the laser was locked into 

position. It would have been highly advantageous to 

be able to rotate the laser beam to achieve greater 

flexibility.

PlateHalf-wave

Optical Bench

Laser

Ref erence 
Diode

FIG. 5.1.1. THE LASER RIG : Illustrative layout of 

apparatus. (Not to scale.)
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However this would have been an extremely diffi-

cult design feature to incorporate. The full set-up 

operations are described later in the form of an 

operations manual; for the moment we shall concern our-

selves purely with the essential hardware constituting 

the rig.

A parallel beam of plane polarised light was split: 

one half provided a reference beam of the laser output 

and wa.s monitored by a photo diode, the other half 

encountered a half-wave plate which could rotate the 

plane of polarisation. A 9° rotation of the plate 

resulted in- a 29° rotation of the plane of polarisation. 

The- polarised beam incident upon the specimen was back 

scattered and the scattered field recorded by a second 

photo diode sensor. Care needed to be taken when 

mounting the specimen within its housing to ensure 

that the vertical axis of rotation of the mounting was 

in the plane of the test piece.

Rotation about this axis effectively determined 

the angle of incidence of the laser beam upon the 

surface. Additionally, the test piece could be rotated 

about a horizontal axis: set up procedures in this 

instance needed to ensure that the laser beam was coin-

cident with this axis. This allowed for the lay of the 

surface texture to be presented at various angles to 

the laser beam, and enabled a three-dimensional polar 

diagram to be built up. The essential geometry as 

described is illustrated in Fig. 5.1.2.

5.1.3. The Semi-Automated System

A semi-automated system of data gathering was 

devised to remove, in large measure, the tedium of data
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(i) Horizontal, configuration

(ii) Vertical configuration

FIG., 5.1.2» Incident Geometry of the Laser 
beam on the test piece
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gathering. With the laser and test piece correctly- 

adjusted, i.e. the appropriate angles of incidence and 

orientation of the specimen selected and set up, the 

intensity of the scattered field was surveyed by a 

photo diode transducer. The movement of this sensor 

was controlled by a stepping motor. (A clutch mecha-

nism enabled the motor to be disengaged and allowed 

manual set-up of the sensor to some initial position.) 

A PDP-11 mini computer was interfaced with the laser 

rig in such a way that the stepping motor could be 

driven automatically by the computer, stepping the 

sensor through appropriate sampling intervals. The 

sensor information was digitised, automatically at the 

ADC board and thence recorded into core. At the same 

sample instants, the reference sensor information was 

recorded for immediate comparison. Computer graphics 

enabled a plot of the digitised signal to be plotted 

for diagnosis and if desired the full scan information 

could be dumped to a floppy disc. The sensor was 

returned automatically by software control over the 

tracking direction of the stepping motor. Permanent 

records were created on 7 track industrial magnetic 

tape, to be subsequently analysed and processed either 

on the PDP-11 or on the mainframe ULCC computers.

The semi-automated system showing the computer 

interface is presented in terms of the following 

schematic diagram before the operating procedure is 

described in more detail.

5.1.4. Laser Rig Operation, Data Acqusition and 
Recording

A sample worksheet of operations is provided in

88



Fig. 5.1.4. whilst a flow chart of the total system 

operational procedure is given in Fig. 5.1.5.

We now examine the utilisation of the laser rig 

and the technical details of the experimentation.

Full program documentation is listed in Appendix 

5A.

FIG. 5.1.3. Schematic Diagram of the Semi-Automatic
Recording System

89



A• F^eliniinary Checks Completed?

(i) Alignment of laser spot

(ii) Test piece flat and in axial plane

(iii) Sensors adjusted for maximum response 
with appropriate gain settings.

(iv) Channels correctly selected.

B. Laser Rig Set-up Sheet

(i)

(ii)

Specimen Identifier Label

Choice of graphics scale parameters 
(run information only)

Graph Scale

(iii) Rig

Gain Channel 0 Gain Channel 1

Biff. Magnifi-
cation

Set-up variables

(a)

Angle of incidence 
mounting locked in

selected and 
position.

(b) 03

Set-up initial orientat 
and corresponding setting

2 X-plate

Set up new 0i etc.

FIG. 5.1.4. Laser Rig Worksheet
90
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Rig set up operations: 
Align laser beam.

Position specimen within 
correct vertical plane

Set up angle of incidence 9i. 
Orientate specimen to 
appropriate angle 03.

I
Input run information:

Set angles 0i03;n, no. of steps; 
Initial observation angle, 02.

Rotate plane of polarisation 
as appropriate

GO
Automatic scanning and 
digitisation of beam 

scatter signal

Collect more 
data

v

Display profile on tektronix 
VDU panel

Reorientate specimen and collect
another data record

I

FIG. 5.1.5. Flow Chart of Operations of the Laser Rig
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Manual of Operations for the Laser Rig

Content s

1. Alignment of the laser beam.

2. Specimen identification and location of the region 

under investigation.

3. Specimen set-up.

Computer run procedure.

1• Alignment of the laser beam

The laser beam needed to be aligned parallel to 

the optical, bench, and at the correct height so that 

the laser spot was directed along the axis of rotation 

of the specimen housing. The housing carried a circu-

lar scale graduated in degrees.

Preliminary investigation, later substantiated by 

checking with a plumbline, indicated that the reference 

point of the scale was 1 degree off the true vertical 

as shown.

vertical

FIG. 5.1.6. Rotation Axes of Specimen Housing
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HeNe Laser Beam

djustment here 
allows the laser 
to be tilted 
upwards or down-
wards

Adjustment _ 
here allows 
the laser to 
be moved in 
horizontal 
plane left 
or right

FIG. 5.1.7.The Helium-Neon Laser
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Adjustment of the laser was made so that the 

spot was centred on the true horizontal line and par-

allel with the optical bench, using the ’’pin-hole” 

plate and adjustment screws on the front and back 

columns of the laser.

Locking rings were then secured in position. 

(Once aligned the beam ought to be set up for all 

time - however continuous monitoring was necessary.)

2. Specimen identification and location of the region of 

material surface interrogated by the laser 

2.1 Specimen identification code

M(nM) T(nT) N(nN)

M = material; T = type; N = serial no. of data file.

The surface material and topographical type of a 

specimen were awarded the following numeric codes.

M = material code

f 1
2

nM

/■ 1 - mild steel

2 = copper

3 = brass

4 = stainless steel

< 5 = tin plate

nT

= super smooth

= smooth

= hemispherical 
indentation

= single scratch

= parallel scratches

4

5

Additionally, a serial code nN was provided since the

data acquisition for a particular specimen was lengthy,

and the data volume needed to be broken up into ’blocks’.

The serial, number nN identified a particular data file

but in practice frequently corresponded to a given

angle of incidence.

Laser scatter files created and held on floppy discs

are addressed in the following manner:

M(nM)T(nT)N(nN).LST
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2.2 Location of the region to be scrutinised by the 

laser beam

Location marks were made and numbered so as to 

define the orientation of the specimen in the manner 

shown. The marks locate the 'centre' of the region 

of interest. As described in 5.2, a square region, 

(dimensions 3mm x 3mm), was mapped by a talysurf-10 

machine. Parallel profiles were traced over the metal 

surface in the direction 270° -> 90°, and it was 

necessary to relocate, as precisely as possible, the 

area covered by the laser spot.

FIG. 5.1.S Location of the Laser Spot

3. Specimen Set-up

Four spring-loaded screws were adjusted so that 

the surface of the test piece included the fixed 

vertical axis of rotation of the housing. (We recall 

that this mode of rotation governs variation of the 

angle of incidence.) A micrometer depth gauge was 

employed to facilitate the adjustment.
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As a check, once the adjustment has been made, 

the incident laser spot should not appear to drift to 

and fro as 0i varies (see diagram).

FIG. 5.1.9. Rotation and Specimen Planes

When the plane of the specimen is correctly 

sited and the laser beam correctly aligned, the laser 

spot should fall on a region which remains illuminated 

notwithstanding variation of 9i and/or 93.

1. Computer Run Procedure

The computer software is fully described in the 

Appendix 5A with a detailed operations manual for 

running the data acquisition and data recording 

program LASDAT.FOR. Here we describe the tuning of 

the sensors and the formulations of certain transfor-

mations for converting scale readings or settings 

taken at the rig, to incident or scatter geometry 

configurations.
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The two photo-diode sensors had fine adjustment 

screws which could raise or lower them vertically, as 

well as being mounted on horizontal arms which allowed 

for rotation in the horizontal plane. (See Fig. 5.1.12)

The output of each sensor could be monitored by 

an AVoltmeter and compared with values recorded via 

the input channels at the ADC board. A computer sub-

routine reconverted a 12-bit word (an integer in the 

range 0-4095), to an electrical input value in the 

range 0-10 volts.

The reference sensor, once set-up, remained 

stationary. The other sensor was likewise tuned manu-

ally after the angle of incidence had been chosen and 

the housing had been appropriately rotated and secured. 

(A pointer, rigidly attached to the housing, traversed 

a horizontal scale graduated in degrees, and thus 0i 

was selected.)

The monitoring sensor was moved manually to an 

off-specular position 02 and the clutch engaged. The 

initial setting of 02 was read off from the horizontal 

circular scale and was such that the forwards (clockwise) 

action of the stepping motor drove 92 through the 

specular 02 = 0i angle. (incidently 100 steps of the 

stepping motor propelled the sensor through 4 degrees.)

For the rig, normal incidence coincided with the 

pointer reading 343 degrees. On this basis, LASDAT.FOR 

automatically converted pointer readings to the appro-

priate 0i, 02 angles.
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9i = 343°

9 = 163°
n

- 9
P

- 9i

e2 = 9n - 9 s

where 9 and 9 are
P s

pointer and sensor 

angles as read directly 

from the scale, and 9 
n 

defines the direction

of the normal.

FIG... 5.1.10. Incident and Scatter Angles...... ......................... , .... ...... .. . -----------------

A half-wave plate was employed to govern the 

plane of polarisation of the laser beam. A circular 

scale mounted with the plate ensured precise control 

over this aspect of the incident radiation.

When set-up with the reference set at 72 degrees 

the half-wave plate provided for an emergent laser 

beam which was vertically polarised. The fast and 

slow directions were then mutually orientated at 

45 degrees to the vertical.

If desired, the plane of polarisation could be 

rotated in sympathy with the 93 rotation of the speci-

men (the plane of polarisation rotating with the rota-

tion of the surface texture. The necessary rotation 

of the half-wave plate for this to be accomplished 

was displayed during the computer run. For other 

than normal incidence, the computation is non-trivial 

and the geometrical background supporting this portion 

of program software is included in Appendix 5A.
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Monitoring
sensor

Rotatable mounting 
circular scale

Spring loaded screws

el

Clutch engagement 
mechanism

Horizontal 
circular scale

Securing 
nut

FIG. 5.1.13. Specimen mounting with the stepping 
motor interface
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5. Data Presentation and Display

A hard copy listing of a disc file of laser beam

scattering data, created by LASDAT.FOR, is presented

below (Table 5-1.1.). The file is headed by an inden-

tifier label and carries essential run set-up infor-

mation :

n - photo diode intensity readings

SPN M( )T( )M( ) ; identifier label

6i ; angle of incidence

6 3 ; angle of orientation

n ; number of readings in scan

92 ; initial angle of observation

but consists in essence of beam scatter intensity

; file terminator symbol

minitor.

values (referenced by the laser output), recorded

during a single sweep of the scanning photo diode

SCATGH.FOR computes the angles of observation

at which the scatter intensity distribution was 

sampled, and provides a hard copy listing of the same. 

The distribution is displayed as a polar diagram plot 

and also as a graph of intensity against angle. A 

typical output of SCATGH.FOR is provided (Table 5.1.2. 

and Fig. 5.1.14.). The range of 82 is only 4 degrees 

and so the picture presented by a broad gaussian-type

curve is misleading. The polar plot appears virtually

to consist of a single ray. Only by a severe distor-

tion, whereby adjacent angles would be grossly magni-

fied, would such a plot appear otherwise on a VDU 

display.
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SPN M3T1N1
10.0
0.0
100

12.2

-v 2'. _v _y.

0.0194 0.0199 0.0194 0.0201 0.0198 0.0199
0.0202 0.0201 0.0196 0.0201 0.0202 0.0202
0.0202 0.0203 0.0201 0.0203 0.0205 0.0213
0.0217 0.0212 0.0178 0.0173 0.0181 0.0188
0.0194 0.0202 0.0207 0.0216 0.0195 0.0173
0.0188 0.0197 0.0208 0.0191 0.0182 0.0207
0.0285 0.0431 0.0 42 2 0.0438 0.0422 0.0422
0.0423 0.0411 0.0422 0.0433 0.0416 0.0416
0.0432 0.0419 0.0426 0.0422 0.0411 0.0426
0.0439 0.0442 0.0484 0.0657 0.0658 0.0893
Q.1115 0.1575 0.2244 0.3088 0.4282 0.6207
0.8691 1.1671 1.5171 1.8490 2.1378 2.3925
2.5082 2.5470 2.4223 2.1425 1.8281 1.3861
1.0916 0.7932 0.5943 0.4250 0.3282 0.2111
0.1531 0.1110 0.0671 0.0431 0.0423 0.0185
0.0208 0.0181 0.0177 0.0216 0.0202 0.0203
0.0201 0.0189 0.0188 0.0177

TABLE 5.1.1. Beam Scatter Data File created by LASDAT.FOR

FIG. 5.1.14. Graphical output of the above scan from SCATGH.FOR
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SPN M3T1N1
10.0
0.0
100

12.2

INTENSITY ANGLE INTENSITY ANGLE

0.0194 12.200 0.0199 12.160
Q.O194 12.120 0.0201 12.080
0.0198 12.040 0.0199 12.000
0.0202 11.960 0.0201 11.920
0.0196 11.880 0.0201 11.840
0.0202 11.800 0.0202 11.760
0.0202 11.720 0.0203 11.680
0.0201 11.640 0.0203 11.600
0.0205 11.560 0.0213 11.520
0.0217 11.480 0.0213 11.440
0.0178 11.400 0.0173 11.360
0.0181 11.320 0.0188 11.280
0.0194 11.240 0.0202 11.200
0.0207 11.160 0.0216 11.120
0.0195 11.080 0.0173 11.040
0.0188 11.000 0.0197 10.960
0.0208 10.920 0.0191 10.880
0.0182 10.840 0.0207 10.800
0.0385 10.760 0.0431 10.720
0.0422 10.680 0.0438 10.640
0.0422 10.600 0.0422 10.560
0.0423 10.520 0.0411 10.480
0.0422 10.440 0.0433 10.400
0.0416 10.360 0.0416 10.320
0.0432 10.280 0.0419 10.240
0.0426 10.200 0.0422 10.160
0.0411 10.120 0.0426 10.080
0.0439 10.040 0.0442 10.000
0.0484 9.960 0.0657 9.920
0.0658 9.880 0.0893 9.840
0.1115 9.800 0.1575 9.760
0.2244 9.720 0.3088 9.680
0.4282 9.640 0.6207 9.600
0.8691 9.560 1.1671 9.520
1.5172 9.480 1.8490 9.440
2.1378 9.400 2.3925 9.360
2.5082 9.320 2.5470 9.280
2.4223 9.240 2.1425 9.200
1.8281 9.160 1.3861 9.120
1.0916 9.080 0.7932 9.040
0.5943 9.000. 0.4250 8.960
0.3282 8.920 0.2111 8.880
0.1531 8.840 0.1110 8.800
0.0671 8.760 0.0431 8.720
0.0423 8.680 0.0185 8.640
0.0208 8.600 0.0181 8.560
0.0177 8.520 0.0216 8.480
0.0202 8.440 0.0203 8.400
0.0201 8.360 0.0189 8.320
0.0188 8.280 0.0177 8.240

TABLE 5.1.2. Intensity versus angle: 
scan data from program 
SCATGH.FOR.
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5,2 Mapping a Small Area of a Metal Surface

5-2.1. Introduction

In recent years a number of workers (such 

as R. S. Sayles and T. R. Thomas, 1976) have 

given attention to the problem of recording a 

three-dimensional map of a small area of a 

surface in real time. For many applications, 

when the surface topography is anisotropic, it 

is unreal to suppose that the three-dimensional 

geometry of a surface can be adequately expressed 

in terms of a single profile, or indeed in terms 

of a few profiles taken in a number of oblique 

directions. In o.ur study, the mapping of a 

specimen surface was a necessary concomitant 

towards predicting the polar diagrams obtained 

when a particular surface is illuminated by a 

source of electromagnetic radiation.

It was necessary, since a finite area of 

surface was illuminated, (in reality an ellipti-

cal region of the order of 2 mm by 2.5 mm minor 

and major axes), to know precisely the three- 

dimensional surface geometry of the illuminated 

region. The signal processing of height data, 

reduced in terms of surface statistics, is 

discussed in Chapter 6.

5.2.2. The Semi-automated System

The measuring system consisted fundamentally 

of a Talysurf-10 (Rank Taylor Hobson Ltd., 

Leicester): a machine which has the feature of a 

portable traverse unit.
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The system was semi-automatic in that at the 

end of each trace traverse, the stylus was returned 

manually, and set to the start position for the 

next trace. However the digitisation of the pro-

file trace record was done automatically, via the 

ADC interface. It was recorded in core of a PDP-11 

minicomputer, and thence intermediately transferred 

to a floppy disc. A permanent record was then 

created on a 7-track industrial tape for subsequent 

processing at leisure on the PDP-11 or, if more 

sophisticated analysis were required, on a large 

scale digital computer.

A sample worksheet is reproduced in Fig. 5.2.2 

whilst a flowchart of the full operational proce-

dure is given in Fig. 5.2.3.

The semi-automated system is presented in 

terms of the following schematic diagram before 

the operating procedure is described in more 

detail.

FIG. 5.2.1 Schematic Diagram of the Semi-Automated
Mapping System’'- •
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5.23. Operating Procedure, Data Acquisition

and Recording

The test piece was marked with four scratch 

marks which located the centre of the area of the 

region previously illuminated by the incident laser 

beam. The specimen mounter block was placed in 

position. Micrometer screw gauges allowed for move-

ment in two mutually perpendicular directions of the 

block head. The block aligned such that one 

direction was parallel to the direction of the stylus 

traverse; the other direction was thus perpendicular 

to the direction of traverse. The test piece was 

was orientated until the stylus traverse was paral-

lel to the requisite scratch marker direction. A 

traverse length of 3 mm was appropriate for coverage 

of the formerly illuminated region although 50 mm is 

the maximum traverse length permitted by the Taly- 

surf-10.

N.B. If a test piece is to be mapped in the 

context of surface roughness assessment or some such 

application, then the factors governing the orienta-

tion of the test piece would be, for example, the 

direction of the lay of the surface texture, or the 

direction of rolling if the sample were a piece of 

rolled sheet material. The problem of relocation 

would not normally apply in such investigations.

A worksheet of the surface mapping operations, 

together with a flow chart of the data gathering 

and file creation procedures (prior to describing 

the computer hardware interface) are reproduced.
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A. Preliminary Checks Completed?

(i) Specimen held in horizontal plane

(ii) Specimen orientated in requisite direction

(iii) Talysurf-10 set up for trace length and 

stylus point at map ’’origin position"

(iv) Clock-pulse generator set up correctly

B. Surface Map Set Up Information

(i) Specimen Identifier label

(ii) Choice of graphic scale parameter

(run information only) Scale:

(iii) No. of samples/trace

(iv) No. of traces

(v) Length of each trace

(vi) Separation of parallel traces

Surface Map Run Sheet

Mag. factors

Run No. Data Trans. Run No.

1 15

2 16

3 17

4 18

5 19

6 20

7 21

8 22

9 23

10 24

11 25

12 26

13 27

14 28

Data Trans

Map Completed

FIG. 5.2.2. Surface Mapping Sample Worksheet
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STAR

FIG. 5,2.3. Flowchart of Data Gathering and File Creation 
Procedures
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Appropriate profile magnification factors were 

selected with the talysurf set to automatically record 

a profile trace. Output was linked via an ADC board 

from the accessories socket to be automatically recor-

ded into the memory core of a PDP-11 mini-computer. 

The recorded trace could be displayed on a VDU Tek-

tronix display panel, and compared with that obtained 

simultaneously on the customary paper trace output of 

the talysurf.. An example of a corresponding pair of 

such traces is presented in Figs. 5.2.6.(a), 5.2.6.(b).

A pulse generator was wired to the ADC board, 

and set up such that trigger pulses were emitted with 

predetermined frequency, so as to record data with the 

requisite sampling interval. Similarly, appropriate 

hardware and software (explained in detail later) 

ensured that the first data sample was gathered at 

the instant that the traverse unit started to move.

The profile scan data could be dumped onto a 

floppy disc file and written over to magnetic tape 

if desired. This latter facility was essential in 

view of the data mountain rapidly accumulating whilst 

recording a series of parallel traces. The specimen 

was manually advanced with a micrometer screw gauge, 

and the stylus repositioned if a parallel scan were 

wanted. The procedure was repeated as often as 

necessary until an appropriate coverage of the speci-

men surface had been obtained.

Computer Software and Control

Full computer documentation is supplied in Appen-

dix 5B. In brief, an interactive fortran control program 

SRRMPP.FOR allowed for the input of run set-up infor-
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mation, in particular the length of the trace, the 

number of samples to be collected, and the horizontal 

magnification factor of the profile. Such information 

enabled the sampling rate to be determined, given 

prior knowledge of the speed of traverse obtained from 

previous timing experiments).

A pulse generator could now be hitched up to the 

ADC board to transmit a rectangular wave pulse, with 

frequency equal to that of the sampling rate.

Executive now passed to an assembler subroutine 

of SRRMPP.FOR namely TALI.MAC.. The subroutine awaited 

notification, for data collection which was given when 

the start button of the talysurf was pressed. Thus the 

origin point of the digitised profile was synchronised 

with the start of the surface to be scanned. For 

completeness this interface is given below.

+ 5V

ACTIVE
HIGH

OV

Interfacing to Talysurf 10 

A signal indicating the 

start of a traverse was 

available on the accessory 

socket (Pin 10). This 

output was active low and 

drove a high gain transis-

tor by a MC671 high output 

voltage gate.

Diode and Transistor can be any general purpose or 

switching device.

FIG. 5.2.1. Talysurf 10 Interface
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Suitable logic circuitry enabled sampling to be 

organised in the manner as described.

Signal from Talysurf 
interface set high

Pulse train from 
generator

Logic:
both signals high => sample 

otherwise loop

FIG. 5.2.5. Sampling logic diagram

The output voltage from the accessories socket 

of the talysurf-10 was fed to the analogue-to-digital 

board (ADC), whereupon a voltage range of -lOv to +10v 

was converted into discrete sets, and was passed via 

the MTDRIN interface as a 12-bit machine word. This 

allowed for 1096 levels to be represented. The number 

of samples per scan was at the discretion of the oper-

ator, although 1000 samples over a 3 mm length (3 um 

interval) was typical.

Computer graphics enabled the digitised output 

to be displayed as a profile plot. A semi-permanent 

record could be kept on transference to a floppy disc 

from which a hard copy record could be obtained if the 

file were listed at. the printer.
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Subsequent scans could be processed similarly.

However, the limitations on disc storage dictates 

that records be dumped on to magnetic tape. To cover 

a region of 3cm2, 100 parallel scans were deployed, 

during the course of which several transfers to tape 

had to be made. To secure a tape transfer a fortran 

program MTMAP.FOR. was employed. This program could 

either open a new magnetic tape file if a new specimen 

were being mapped, or augment an existing file by 

butting in successive data scans and performing the 

necessary tape editing manipulations. In practice, 

100 scans of 1000 samples per scan could be gathered 

and recorded to magnetic tape in about three hours. 

The limitations to greater efficiency, were the manual 

set-up interventions necessary in advancing the speci-

men and returning the stylus prior to each talysurf 

sweep, and also the relative slowness of somewhat 

cumbersome magnetic tape handling procedures. However, 

if the operator chose to bypass graphical and tabular 

data display options, the rate of data gathering could 

be enhanced by the order of 30% or so.

The interfacing of the PDP-11 and the magnetic 

tape drives was such that assembler subroutines needed 

to be employed.. This naturally complicated associated 

software, but had the advantage of greater flexibility 

(even allowing for a modest amount of file editing of 

the tape in situ).

An associated hybrid program MAPMT.FOR was avail-

able to read tape files and perspective plots could be 

plotted on the tektronix panel. However, the resolu-

tion of the plot was sufficient for the projection to 
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be of general interest only. This, added to the fact 

that the PDP-11 is ill-equipped to process some 100 x 

1000 samples, dictates that statistical analysis and 

pictorial projections fixed on microfilm are more 

appropriately handled by the ULCC main frame computers. 

VDU Data Display

A plot of a digitised profile record is provided, 

together with the paper trace record output of the 

talysurf. Differences in their respective magnifica-

tion factors normally distort the images when trying 

to draw comparisons. The paper tape trace has been 

enlarged^ the broad similarities of the plots are 

self-evident. On close examination, the fine detail 

also corresponds well. The discretisation process of 

the ADC clearly filtered the electrical signal output 

of the talysurf-10. However, damping characteristics 

of the pen recorder also imposed its own filtering, 

and so neither plot should be regarded as definitive.
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FIG. 5.2.6(a) Plot of Digitised Profile Trace
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FIG. 5.2.6(b) Talysurf-IQ Paper Tape Trace
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APPENDIX 5A

5A. 1 Rotation of Specimen with Respect to the Plane of
Polarisation

Consider the movement of point P to P’, or the rota-

tion of the lay of the surface texture from direction OP 

to OP’, as the specimen is rotated through 63 in the plane 

of the specimen housing.

115



Set up i, j_, k coordinate system. What are the 

coordinates of P’ w.r.t. this system?

A

OP1 = OP sin 0 3 sin 0i i.

A A

+ OP sin 03 cos 0i j + OP cos 03 k

Then from simple geometry,

Here 6 is the apparent rotation of OP to OP’ when vi

along the direction of the laser beam.

tan x sin03 cos0
0 = ---- -—x----- 1

COS 0 3

tan 6 = tan03 cos0 i

check • • Si = 90° => b = 0 3 - normal incidence

e3 = o° => <t> = 0° V 0i

e3 = iso0 => 6 = 180 0 V 01

5A..2 Laser Rig Program Documentation

This appendix provides hard copy listings of all 

programs concerned with all aspects of data gathering via 

the laser rig. The interactive features of the fortran 

programs are documented in the form of operations manuals. 

Full details of the DR11C and magnetic tape drive inter-

faces with the PDP-11 minicomputer are fully described. 

The assembler subroutines IADCIN and STEP of the macro 

116



program RIG.MAC, which control the data input and step-

ping motor, require brief exposition.

Program Directory

(a) beam scatter data collection

LASDAT:FOR

Operations manual for LASDAT.FOR

RIG.MAC.

General Purpose Interface: DR11C

RIG.MAC program commentary

(b) data display and graphics:

SCATGH.FOR

Operations manual for SCATGH.FOR

(c) transfer (write/read) to magnetic tape

MTSCAT.FOR

Operations manual for MTSCAT.FOR

MTCRE.MAC.

Magnetic tape interface

MTCRE.MAC program commentary
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Program  listings
p.119-122
p.131-133
p.136-139
p.154-156
p.161-164
p.168-169

removed for
copyright reasons



PROGRAM

FILENAME LASDAT FOR

ASSOCIATED FILES(S) (1) RIG MAC

DESCRIPTION

The program allows for the automatic recording of b.eam 

scatter intensity information as obtained from the 

experimental rig. Assembler routines IADCIN and STEP, 

gather data via the ADC board and drive the stepping 

motor, respectively. Operator interaction allows for the 

adjustment of the half-wave plate and for the transfer of 

set-up configuration description information. Repeat 

scans are displayed graphically and compared for error 

differences. Validated scans of reflected beam intensity 

are transferred to a floppy discfile.
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LASDAT,FOR Operations Manual

Stage Operation or Display- Action

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Run program . RU LASDAT

’IDENTIFIER LABEL>’

’SCALE FACTOR>’ •

’DIFFERENCE MAGNIFICATION
FACTOR>’

Q( ’SET THETA?’)

’THETA3>’

’RATE OF DRIVE>’

’NUMBER OF STEPS (NO. OF
THETA2S)>’

’THETA2>’

Q(’TRANSFER SET-UP
INFORMATION? ’ )

’HALF-WAVE PLATE SETTING>’b

’ADJUST HALF-WAVE PLATE’

’FIRST SCAN’

’CHECK ON MIRROR/SENSOR
OUTPUT’

Type in M,T,N- identi-
fier tags (311) (Disc 
file opened)

Type in graphics 
display factor

Type in separate mag. 
factors for examina-
tion of differences 
of replicate scans.
(Any missed pulses?)

Type in angle of 
incidence

Type in orientation 
angle of specimen 
(F.6.1)

Type in stepping speed 
of stepping motor (l6)

Type in number of 
samples to be recorded 
in .the scan

Type in initial posi-
tion of scanning diode

Type Y -> Transfer set up 
information to disc.
Otherwise return to 
stage 5

Information only see 
stage 12

Program hangs up allow-
ing operator to adjust 
half-wave plate to 
angle b stipulated at 
stage 11

Information only. Scan 
ning motion of stepping 
motor is initiated

Reference sensor output 
is displayed as a check 
on rig set-up. Tune 
sensor as required
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Stage Operation or Display

15 ’NOTE THETA2 ANGLE’

16 ’FIRST REWIND’

17 Q(’SECOND SCAN OPTION?’)

18 ’SECOND SCAN’

19 ’SECOND REWIND’

20 Q(’ACCEPT DATA?’)

21 Q(’RESCAN?’)

22 Q('TERMINATE RUN?’)

Action

Final position of 
scanning diode may be 
recorded

Information only rewinds 
stepping moto-r to” initial 
position

A replicate scan may be 
run if desired (Type Y)

Information only. Dup-
licate scan is collected

Information only. Step-
ping motor rewinds to 
start position

Type Y data is trans-
ferred to floppy disc 
file. Go to 22

If data queried, type Y 
and return to stage 13

If yes, type Y ->STOP. 
Otherwise return to 
stage 5 and continue

23 STOP
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NLIST BEX,SEQ

TITLE LASER RIG TEST PROGRAM

GLOBL IADCIN,STEP

MCALL REGDEF

REGDEF

DRCSR=164020
DROUT=DRCSR+2
DRIN=DR0UT+2

IADCIN : CLR DRCSR

TST DRIN

MOVB @2(R5),DROUT ;START ADC

CLR RO ;WASTE SOME TIME

2$: TST DRCSR

BPL 2$

MOV DRIN,RO ;RETURN RESULT

BIC #17000,RO ;CLEAR OFF NOISE

RTS PC

STEP: MOV #2,R3 jCLKWISE
MOV @4(R5),R2 jNUMBER OF PULSES
BEQ 4$
BPL 1$ ;BRANCH IF ANTICLK

NEG R2 ;MAKE POSITIVE
CLR R3 ;ANTICLKWISE

1$: MOV @2(R5),R1 ;GET PULSE LENGTH
2$: MOVB R3,DROUT+1 9

3$: DEC R1 ;LOOP FOR DURATION
BPL 3$ ;0F PULSE

DEC R2
ENE 1$

4$-’ RTS PC ;EXIT

END IADCIN
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General Purpose Interface: DR11C

DR11C provides us with three registers on the unibus, thes

being:

(i) DRCSR: Control and Status register. w

(ii) DRIN: A 16 bit input register whose value is

determined by user hardware.

(iii) DROUT: A 16 bit read/write output register which

can drive user hardware.

The requisite addresses are as follows:

DRCSR = 164020

DROUT = 164022

DRIN = 164024

DRCSR

REQB REQA

15

request B request A

ADC end of conversion line sets REQB

DROUT

ADC is started whenever the DROUT low order byte 
(bits 0->7) is addressed.

DRIN 12 bits take 37ps

Reading DRIN buffer (either byte) causes the DT 
(data transmitted) pulse to be sent
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ADC is started whenever the DROUT low order byte (bits 

0-7) is addressed.

DROUT 9 8 0-

direction bit clock bit

Selects
^analogue
input 
channel
0 or 1 for
ADC

ADC end of conversion line sets REQB.

REQB

This rising edge sets REQB line flip flop which is cleared 

by DT pulse from computer.
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RIG.MAC program commentary

The assembler program comprises two subroutines, 

namely IADCIN and STEP. A typical application of the first 

is I = IADCIN(O) where I is an integer corresponding to the 

output of the ADC and (0) is a parameter defining the input 

channel (0 or 1 only). 0 corresponds to the reflectivity 

intensity sensor monitor and 1 to the reference sensor out-

put.

MOVB @2(R5),DROUT, selects input channel and initiates 

ADC action.

ADC end of conversion line sets REQB

2$: TST DRCSR )
) wait for data ready

BPL 2$ )

MOV DRIN, R0 returns data to R0 register

and also clears REQB line,

whilst

BIC =J170000,R0 clears of any noise, noting

that data is a 12-bit word

STEP is a subroutine with 2 parameters to control the step-

ping motion.

Subroutine call: CALL STEP(IRATE,IPULSES). IRATE 

determines the speed of the stepping motor

duration of pulse is proportional to IRATE. IPULSES is the 

number of complete pulses sent to the motor whilst the sign
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of IPULSES determines the stepping action of the motor.

More precisely IPULSES = positive, steps motor forwards: 

IPULSES = negative, steps motor backwards.

MOVB R3, DROUT+1

Sets direction bit 9 of DROUT register and initiates step 

ping motor action.
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PROGRAM

FILENAME : SCATGH.FOR

DESCRIPTION

Program reads beam scatter file(s) from disc(s) and displays 

the intensity distribution, (graph of intensity against 

receiver angle, and a polar representation), on the Tektronix 

panel, for cursory examination or for photographic purposes. 

Hard copy listing of the intensity distribution is also 

provided.
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SCATGH. FOR Operations Manual

Stage

1

2

3

4

5

6

7

8

9

10

Operation or Display

Run program

Type in filename for file 
recall from floppy disc

’CHECK SPECIMEN LABEL'
♦

’SCALE FACTOR>'

Q('GRAPH SCALE SATISFACTORY? 
Graphical display of polar 
diagram - may be photo-
graphed.

Hard copy listing of 
intensity versus angle is 
output from the line printer

Q(’GET NEXT DATA RUN?')

Q('CALL another  DISCFILE?')

Action

.RU SCATGH

Type VSPNVM(ll)T(I1)N(I1)

Type return if file 
recalled. Otherwise abort

Type in polar diagram 
plot magnification factor

')Type Y if representation 
is satisfactory, other-
wise return to stage 4

Nil

Q('ANGLE OF INCIDENCE 
INCLUDED IN SET-UP INF?')

Type Y to continue. 
Otherwise exit to STOP.

Type Y -> current disc 
file is closed and 
programme re-enters 
stage 2.

Type Y if yes. Program 
returns to stage 2 
regardless.

STOP
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PROGRAM

FILENAME : MTSCAT.FOR

ASSOCIATED FILE(S) (1) MTCRE.MAC

DESCRIPTION

The program creates a beam scatter data file on magnetic 

tape. The program allows for disc files to be read and 

concatenated into a single tape file. The tape has a 

header label, format

SPN M(NM)T(NT)N(NN)

where NM,NT,NN are all II numeric codes,

NM-Material Code (Brass, Copper etc.)

NT-Type Code (Smooth, single scratch, etc.)

NN-Serial Number, usually corresponding to 

particular angle of incidence.
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MTSCAT.FOR Operations Manual

Stage

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Operation.or Display

Run Program

Q('BYPASS EXISTING FILE(S)?’)

Q('DISPLAY FILE DATA?’)

FILEMARK DETECTED

Q(’FILEMARK DETECTED?’)

Q( ’LAST FILE?’)

’CHECK SPECIMEN LABEL’

Q( ’MODIFY LABEL DESCRIPTION,?

’MODIFICATION(NN) ’

’LABEL UNPACKED'

Q(’TRANSFER LABEL?’)

Q(’TRANSFER ANGLE OF INCI-
DENCE? ’ )

’CHECK ANGLE SET-UP INF.'

'CHECK INTENSITY DATA FOR 
TRANSFER’

Q(’FILE EXHAUSTED?’)

Q(’ANGLE OF INCIDENCE IN 
SET-UP INF?’)

Action

.RU MTSCAT

Type Y to protect-exist-
ing mag. tape file(s). 
Otherwise, type in floppy 
disc filename identifier
SPN M(Il)T(Il)N(Il)

Go to read mag. tape 
program segment - stage 5 
Otherwise file is skipped 
over ,

Display indicates that 
EOF marker has been read.

If no, continue to skip 
over data blocks.

If no, continue to skip 
files. If yes, return 
ready for new data 
transfer (stage 2).

Check discfile header 
label

’)Type Y if yes, otherwise 
go to stage 10.

Type in new N(ll) run 
file identifier.

Information only.

Type Y to pass over 
header label to mag. tap.

As above. 0i information 
is transferred.

Check preliminary run 
set-up details.

Further pause to examine 
file data prior to trans-
fer. Go.

If yes, type Y and go to 
option at Stage 14.

Return to 9 or 10 as 
appropriate.
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Stage Operation or Display

17 Q(’OPEN ANOTHER DISCFILE?’)

18 Q(’FILEMARK DETECTED?’)

19 ’SET-UP INF.’

20 Q(’CONTINUE MT CHECK?’)

21 Q(’ANGLE OF INCIDENCE IN
SET-UP INF?’)

Action

If no, type return.
Mag. tape .is rewound 
and read back if 
desired.
If yes, type Y - tape 
file is closed with a 
filemark and program 
returns to stage 4.

If EOF encountered, 
return to stage 2.

Survey set-up informa-
tion as read over from 
tape. Continue.

Exit is desired.

Respond as appropriate 
Tape file read opera-
tion is re-entered.

22 STOP
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NLIST BEX,SEQ
TITLE MAG. TAPE CREATE
GLOBL INITMT,MTWRT,MTRD,UNPLAB,PACLAB,CLOMT
GLOBL MTEOF

.MCALL REGDEF, PRINT, 

.REGDEF
EXIT

;COMMANDS TO MT
;TEST DFU
;BACK IF BUSY
',SET COMMAND A
J START EXECUTION

.MACRO MTOP A
TSTB @#MTIN
BPL . -4
MOVB *A,@4tMT0UT+l
BISB *GOIN, @#MTOUT+1
.ENDM MTOP

.MACRO REWIND
MTOP RWND
‘BIT tTRRWL , @tMTIN
BEQ . -6
MTINIT
. ENDM REWIND

.MACRO MTINIT
MTOP RESET
TSTB @#MTIN
BPL . -4
. ENDM MTINIT

;REWINDS MT
iREWIND
;test  if  rewi nding  
;back  if  so  
UNITIALISE MT

UNITIALISE MT
JABORT CURRENT COMMAND
;TEST IF DFU BUSY
', BACK IF SO

.MACRO MESS TEST,?A,?B

. PRINT' 
BR

+A
B

A: ,ASCIZ TEXT
.EVEN

B:
ENDM MESS

;PRINT TEST MESSAGE

MTCSR=164000
MT0UT=MTCSE+2
MTIN=MT0UT+2
PSW=177776
P7=34O

READY=40000
RESET=200
G0IN=100
WRT=4O
RWND=20
RD=O
FOEN=1
LWD=200
TRRWL=20000
PARITY=400
FLMARK=2000
EOT=100000
WFLMK=42
ILLCOMUOOO

,'BIT 14 AT MTIN(TAPE LOADED ETC)
;BIT 15 AT MTOUT(RESET DFU)
;bit  14 at  mtout (go )
;BIT 13 AT MTOUT(WRITE)
;BIT 12 AT MTOUT(REWIND)
;GO BIT ON ITS OWN=READ FORWARDS
;ENABLES DFU(SELECTS) AT MTCSR
;BIT 7 AT MTOUT(LAST BYTE)
;TEST BIT 13 AT MTIN( REWIND IN OP?' 
JTEST BIT 8 AT MTIN(READ/WRITE ERROR' 
; TEST BIT 10 AT MTIN(FILEMARK DET?' 
;BIT 15 AT MTIN(END-OF-TAPE)
;BIT 9 AT MTOUT(WRITE FILEMARK)
;BIT 9 AT MTIN(lLLEGAL CMD)

INITMT: BIS
BIT

+FOEN,@#MTCSR
4READY,@#MTIN

;SELECT TAPE DRIVE 
;DECK READY?
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1$:

beq
JMP
MTINIT 
REWIND 
RTS

1$
ERRNRD

PC

;FATAL ERROR, IF NOT

MTWRT: CMP (R5)+,*2 ;CHECK FOR LEGAL NO.
BEQ 1$ ;0F PARAMETERS
RTS PC

1$: MOV (R5),RO ;BUFFER ARRAY POINTER TO RO
MOV @2(R5),R1 ;N0. OF ’SAMPLES’ TO R1
CMP frlD.RO ,-WRITE LABLE?
beq LKOUT ;JUMP,IF SO

UNPACK: BIC #170000,(RO) ,’12-BIT DATA
ASL (RO) ;UNPACK DATA INTO
ASL (RO) ;TW06-BIT BYTES
ASRB (RO) ,-LEAST SIG. BIT IS
ASRB (RO) ' ;TRANSFERRED FIRST
BICB #300,(RO) J CLEAR OFF SIGN BIT
BIC #14-0000, ( RO ) + ;CLEAR OFF SIGN BIT
BIC #140000,(R0)+
DEC R1
BNE UNPACK ;BRANCH, IF NOT FINISHED
BISB #LWD,-l(RO) ;SET UP LAST BYTE
MOV (R5),RO ;RESTORE PARAMETERS
MOV ®2(R5),R1 ;TO REGISTERS RO AND R1

LKOUT: MOV PSW,-(SP) *,LOCK OUT SYSTEM
MOV #P7,PSW
BIT *FOEN,@#MTCSR ,’DECK STILL ON-LINE?
BNE 2$
JMP ERROFF ,-FATAL ERROR, IF NOT

2$: MOVB (RO)+,@*MTOUT ,’1ST. DATA WORD
BPL 8$
MOV (3P)+,PSW
MESS </lST BITE NEGATIVE.’/>
BR 6 $

8$: MTOP WRT ;START BLOCK WRITE
BIT >illco m ,@#mtin ;test  for  illeg al  cmd
ENE 3$
JMP ILL

4$: MOVB (RO)+,@*MTOUT
BMI 5$ ;end  of  writ e

3$: TST @#MTCSR ;WAIT FOR DATA IN STROBE
BPL 3$
BR 4$

5$: TSTB @#MTIN ;f .u . still  busy
BPL 5$
MOV (SP)+,PSW ,'UNLOCK SYSTEM
BIT ^PARITY,@#MTIN ,‘PARITY ERROR?
BNE 6 $
MESS </MT WRITE ERR0R/>

6 $: RTS PC

MTRD; CMP (R5) + 3*2 ,'CHECK FOR LEGAL NO.
BEQ 1$ ;0F PARAMETERS
RTS PC ,'RETURN, IF NOT

1$: MOV (R5),R0 ,'BUFFER ARRAY POINTER TO RO
MOV @2(R5),H1 ;N0. OF ’SAMPLES’ TO R1
CMP <D,RO ;LABEL READ?
BEQ 7$
ASL R1 ; BYTES TO R1
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7$: MOV PSW,-(SP) ;lock  out  system
MOV #P7,PSW JRT-11 OFF
BIT #FOEN,@ MTCSR J DECK STILL ONLINE?
BNE 2$
JMP ERROFF *,FATAL ERROR, IF NOT

2$: MTOP RD ;START BLOCK READ
BIT #ILLCOM,@tMTIN ;ILLEGAL COMMAND?
BNE 3$
JMP ILL

3$: TSTB @ MTCSR JWAIT FOR DATA OUT STROBE
BPL 3$
MOVE @#MTIN,(RO) JREAD DATA
BICB #*300, (RO) + ;CLEAR OFF NOISE
DEC R1
BNE 3$ ,'END OF READ

5$: TSTB @*MTIN ,’F.U. STILL BUSY?
BPL 5$
MOV (SP)+,PSW ;UNLOCK SYSTEM
BIT 4PARITY,@#MTIN ,'READ PARITY ERROR?
BNE 8$
MESS </MT READ ERROR/>

8$: BIT #FLMARK,@#MTIN ;filema rk  detected ?
BNE 6 $
MESS </FILEMARK DETECTED/>

6 $ : MOV (R5),R0 ,'RES TO RE DATA
MOV @2(R-5) ,R1 ;PARAMETERS
CMP #ID,RO ;LABEL READ?
BNE PACK
RTS PC ;RETURN,IF SO

PACK: ASLB (RO) ; TWO 6-BIT BYTES ARE PACKED
ASLB (RO) ;AND ONE
ASR (RO) ,’12-BIT DATA
ASR (RO) ^NUMBER IS FORMED
BIC #=170000, ( RO ) +
DEC R1
BNE PACK
RTS PC

MTEOF: MTOP WFLMK ;WRITE FILEMARK TO TAPE
RTS PC

CLOMT: MTOP WFLMK ;WRITE TILEMARKS TO TAPE
MTOP WFLMK ,’TAPE MUST BE CLOSED BY
REWIND ;2 EOF.MARKS (EVEN PARITY)
RTS PC

UNPLAB: CMP (R5)+,*2 CHECK FOR LEGAL NO.
BEQ 1$ ;0F PARAMETERS '
RTS PC ;RETURN, IF NOT

1$: MOV (R5),R0 INPUT ARRAY POINTER TO RO
MOV @2(R5),R1 ;no . of  label  cha rs  to  ri
MOV (R5),R4 ;OUTPUT ARRAY BUFFER TO R4

2$’. MOV (RO)+,R3 ;CHARACTER TO R3
^BIC *177700,R3 ;GET L.S. 6-BITS
MOVB R3,(R4)+ ,*WRITE AWAY
DEC R1 ;COUNT ON NO. OF CHARS.
BNE 2$
BISB *LWD,-1(R4) ;SET UP LAST BYTE
RTS PC
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PACLAB: CMP (R5)+,*3 ;CHECH FOR LEGAL
BEQ 1$ ;0F PARAMETERS
RTS PC ;RETURN, IF NOT

1$: MOV (R5),RO ;INPUT ARRAY POINTER TO RO
MOV @2(R5),R1 ;N0. OF LABEL CHARS TO R1
MOV 4(R5),R4 ;OUTPUT ARRAY POINTER TO R4

3$: CLRB (R4) ; CLEAR LOWER BYTE
CMPB #40 , ( RO) ;dig it ?
BLE 2$ j BRANCH, IF SO
BISB *100,(RO) ;ADD BIT 7 BACE

2$: MOVE (R0)+,R4)+ ;MOVE INTO LOWER BYTE
CLRB (R4) + ;CLEAR UPPER BYTE
DEC R1 ;COUNT ON LABEL CHARS
BNE 3$ ;GET NEXT CHARACTER
RTS PC

ERRNRD: MESS 
.EXIT

</MT ERROR—DICK NOT READY/>

ERROFF: MESS 
.EXIT

</MT ERROR--DECK OFF-LINE/>

ILL: MESS </lLLEGAL COMMAND/>
REWIND
.EXIT

• CSECT BUFF

ID: .BLEW 11
ID2: .BLEW 20
IBUFF: .BLEW 6
IBUFFI: .BLEW 6
IBUFF2: .BLEW 200
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Magnetic Tape Interface

Three registers on the unibus function in much the

same way as the DR11C interface.

(i) MTCSR: magnetic tape control and status register,

(ii) MTIN: a 16 bit input register providing read/

write etc. status indications.

(iii) MTOUT: a 16 bit output register, the upper byte 

of which is used for issuing commands to 

the tape unit.

The requisite address locations are as follows:

MTCSR = 16/000

MTIN = 16/002

MTOUT = 16/00/

MTCSR

REQB

15 7 0

REQB Enable tape 
formater unit

REQA - read;

REQB - write.

MTIN

Data

15 6 5 0

inverted, i.e. 0 when 
giving indication

normal sense
(ie not inverted)

BITS 0-5 6 bit data

1/6



Status Indicators:

Bit 6 - transport file protected (file write protected)

7 - DFU busy (DFU busy for all operations except

rewind); useful to see if previous command is 

finished.

8 - parity error; check after reading/writing a

block.

9 - illegal command state; check after issueing a

command.

10 - file mark detected (set after a read operation

has found a file mark

11 - BOT (beginning of tape)

12 - data busy (not found useful)

13 - rewind in progress; use this instead of DFU (bit

7) to test if a rewind operation is complete.

transport ready (says that tape is loaded and 

door shut, etc.).

15 - EOT (end of tape).

N.B. None of these status indications can be tested success-

fully whilst a READ operation is in progress without 

losing or risking to lose data. Checking a status 

indication causes a DT pulse to be transmitted, 

resetting the REQA latch.

MTOUT

BITS 0-5 6 bit data

BIT 6 not used
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Commands

BIT 7 - last byte indication (see below)

8 - erase*

9 - write file mark*

10 - edit; same as write bit but does not generate a

full inter-block gap. Used when overwriting 

a block with new data, but the block must be of

the same length as the one overwritten.

11 - reverse

12 - rewind (rewinds to BOT)

13 - write (write a block forwards)

14 - go (start the command set up by bits 8-13)

13 - reset or INIT - CLR; reset DFU abort current

command

■''‘Must be set together with write bit. Write bit permits 

all write operations.

Either read or write depending on state of the bit.

Read a block forwards is Go bit on its own.

To issue a command set the appropriate bits (excluding 

the GO bit). No bits are set for a read forward operation. 

Command will commence operation when go bit is set. Clear 

go bit before attempting to issue another command. Any 

command can be aborted by setting tape reset bit. Again 

this must be cleared before attempting another reset. Go 

is not required by the reset bit.
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Read and write request (REQA, REQB) are set by data 

strobe pulses (transfer data from/to DFU) and are not requests 

(from DFU) .for data to be transferred. The implications of 

this are that when writing a block the first data byte must 

be in the data register before issuing the write command.

Write operations (except file mark) cease when the last 

byte bit is set with the last byte. No more strobe pulses 

occur after this and the DFU busy bit must be tested to 

determine when another command can be given. The request 

lines are set by the strobe pulses and are cleared when 

either more data is placed in the output register (NDR pulse) 

or data is read (DT pulse).

If two strobe pulses occur without a response from the 

computer a ’led’ on the back of the tap drive is latched on 

to indicate data lost. There are two indicators, one for 

read data lost, one for write data lost. The indicators 

remain on until the next reset pulse.

When a read is in progress it is necessary to know in 

advance how many bytes are in the block. After the expected 

number of bytes have been received a check is made for DFU 

busy to indicate when another command can be issued.

If a block is shorter than expected most programs will 

”hang-up” waiting for a REQA interrupt or status indication 

that will never be given. Blocks longer than expected cause 

no special problems except that data is lost after the 

expected quantity.

Always issue a reset instruction at the start of 

operations. BIT 0 of the MTCSR sets the DFU ’’on-line”. 

The tape drive will not respond to computer instructions if 

this bit is not set; manual operations can only be performed 

if it is unset (clear).
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The read routine exits on encountering a filemark. Succes-

sive read calls CALL MTRD( , ), read successive data blocks 

from tape.

Subroutine MTWRT writes data to magnetic tape. 

Register 5 passes over the data array buffer pointer from 

control program MTMAP.FOR. The subroutine also includes a 

tape edit facility for modifying (updating) the count of 

the number of parallel traces held in a magnetic tape file.

Each call to MTWRT writes over a data set as a separate 

block with a preceding inter-block gap (unless the Edit 

modification is being employed).

The macros of MTCRE.MAC are self-explanatory. .MACRO 

MTOP A moves a command bit to the MTOUT upper byte of the 

register, etc. These macros, together with the set up of 

command and test bits, need no further description given 

the magnetic tape interface document supplied as part of 

this appendix^-'

MTREAD.MAC is the assembler routine used in conduction 

with MAPMT.FOR. Since this only involves reading from tape, 

the write operations of MTCRE.MAC have been omitted. In all 

other respects the program commentary for MTCRE.MAC is 

sufficient for MTREAD.MAC.
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MTCRE.MAC Program Commentary

Subroutine INITMT initialises the magnetic tape unit 

at commencement of operations.

MTEOF and CLOMT are routines to write a filemark to 

tape and to close the magnetic tape with 2 filemarks res-

pectively. N.B. The 2 closure filemarks are requested 

by the ULCC computer facility when reading magnetic tapes.

PACLAB and UNPLAB are routines for packing and unpacking 

the identifier label VSPNVM(ll)T(ll)N(ll) post to read and 

prior to write tape operations respectively. N.B. (i) The 

last data byte to be transferred to any write operation is 

flagged as follows:

BISB #LWD, - 1(R4)

i.e. the last word bit is set in the last byte; here regi-

ster 1 holds the output array buffer pointer. (ii) Only 

the least significant 6 bits are written over PACLAB adds 

back the necessary bit 7 of the ASC 11 code for non-digit 

characters.

DATPRP and DATPK prepare data for an MTWRT operation 

and pack data following an MTRD operation respectively.

DATPRP unpacks a 12-bit words into 2 6-bit bytes the 

M.S. part is transferred first. Register 5 passes over the 

data buffer array pointer together with the number of words 

in the data transfer. Again the LWD bit is automatically 

set. DATPK’s function, is merely to reconstitute a pair of 

6-bit bytes into a single 12-bit word when data is read 

over from magnetic tape.

MTRD reads a data block from tape. The correct number 

of words to be read is passed over. The system remains 

locked out if the block size is smaller than that stated 

by the number of bytes parameter of the read routine.
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APPENDIX 5B

Mapping Program Documentation

This appendix provides hard copy listings of all 

programs concerned with the various aspects of mapping and 

recording operations. The fortran programs are virtually 

self-explanatory, however, the interactive features of 

these programs are again elucidated in the form of 

operations manuals of the surface mapping procedures. 

Program directory

(a) profile data gathering:

SRRMPP.FOR

Operations manual for SRRMPP.FOR

TALY.MAC

TALY.MAC program commentary

(b) transfer (write) to magnetic tape;

MTMAP.FOR

Operations manual for MTMAP.FOR

(c) perspective plots and magnetic tape (read:

MAP.MT.FOR

Operations manual for MAP.MT.FOR
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PROGRAM

FILENAME: SRRMPP.FOR

ASSOCIATED FILE(S) (1) TALE.MAC

DESCRIPTION

The program allows for the automatic mapping of surface 

by a Talysurf-10 machine. The output signal from the 

Talysurf is electronically recorded into core and 

displayed on the tektronix panel. Valid data may be 

subsequently transferred to a floppy disc file. Operator 

interaction allows for several traces (assumed parallel) 

to be taken and recorded.
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SRRMPP.FOR Operations Manual

Stage Operation or Display Action

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Run program

’IDENTIFIER LABEL’

’NUMBER OF PARALLEL TRACES’

’NUMBER OF SAMPLES PER TRACE’

’LENGTH OF TRACE’

’HORIZONTAL MAGNIFICATIONS’

’CLOCK PULSE FREQUENCY=’HZ

’SEPARATION OF PARALLEL
TRACES’

’MAGNIFICATION FACTOR’

’FIRST TRACE’

’SET TALYSURF-10 AND GO’

’LOOK AT DATA TABLE’

’FIRST TRACE COMPLETED’

’SECOND TRACE’

Q(’SECOND TRACE OPTION?’)

Q( ’ACCEPT DATA?’)

’STEP TEST-PIECE BY H2 IF
DATA ACCEPTED’

’END OF MAP?’

STOP

. RU SRRMPP

Type in M,T,N .identi-
fier tags (311)

Type in no. of traces 
(14)

Type in no. of samples 
(14)

Type in range (mm) 
(F3.1)

Type in V^r setting of
Talysurf

Set up pulse generator 
with the display 
frequency setting

Type in inter-trace 
gap (H2) (F6.4)

Type in graphics display 
-> magnification factor

(information only)

Set up talysurf run and 
press start button

Type return 
(information only)

t Type Y reset talysurf 
and gather second trace

Type return -> continue

Type Y -> data to disc
Type return -> stage 11

Advance specimen by 
inter trace gap (H2)

Program counts on no. 
of traces.
Goes to stage 10 if 
mapping continuing
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REGDEF

NLIST BEX,SEQ

TITLE TALYSURF MAP DATA GATHER

GLOBL GETDAT

MCALL REGDEF

DRCSR=164020
DR0UT=DRCSR+2
DRIN=DR0UT+2

PSW=177776
P7=3A0

GETDAT: CMP

beq
RTS

(R5)+,#3

11
PC

;CHECK FOR LEGAL NO. OF
,-PARAMETERS

,-RETURN IF ILLEGAL NO. 
;0F PARAMETERS

1$: MOV (R5),RO ,-ARRAY POINTER TO RO
MOV @2(R5),R1 ,-NO. OF SAMPLES TO R1

MOV PSW,-(SP)
MOV #P7,PSW

REST: TSTB @#DRCSR ;WAIT FOR FIRST CLOCK PULSE
BPL REST ;TALYSURF RUNNING?
JMP GO :YES»

LOOP: TSTB @#DRCSR ;NEW DATA REQUEST?
BPL LOOP ;N0

GO: MOV @4(R5),@#DROUT jSTART ADC CYCLE

LOOP1: TST @#DRCSR ,-CONVERSION COMPLETE?
BPL LOOP1 ,-NO

MOV @#DRIN,(RO) ,-RESULT INTO ISCAN ARRAY
BIC #170000,(RO)+ ,-CLEAR OFF NOISE

DEC R1 jDECREMENT COUNTER
BNE LOOP jBRANCH IF NOT FINISHED

CLR Hdrcsr
MOV (SP)+,PSW

RTS PC

END GETDAT
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TALY.MAC program commentary

Register five passes over parameters from SRRMPP.FOR 

control program: subroutine call is

CALL GETDAT(ISCAN,ISPLES,3)

Here, ISCAN is the matrix to hold profile data samples, 

ISPLES is the number of samples to be gathered during the 

trace, whilst 3 refers to channel 3 input at ADC board.

The RT-11 system is locked out during the data gather-

ing process this is achieved by moving priority 7 to the 

processor status word (PSW).

The clock pulse is linked, together with the talysurf- 

10 interface circuit, to request A (REQA) line of DRCSR.

When talysurf is activated the circuit logic allows the 

data request pulses to select REQA.

TSTB @#DRCSR

ADC is started whenever DROUT low order byte is 
addressed

MOV @4(R5),@#DR0UT starts ADC conversion cycle

TST @#DRCSR recall ADC sets REQB line when data 
conversion is complete

DRIN buffer holds 12 bit data word which is passed 
to ISCAN array

MOV @#DRIN,(R0)

When data gathering is complete the RT-11 control 

system is restored.
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PROGRAM

FILENAME : MTMAP.FOR

ASSOCIATED FILE(S) (1) MTMAP.MAC

DESCRIPTION

The program transfers surface data acquired via the

Talysurf-10 and recorded on floppy discs to magnetic 

tape. Existing mag. tape files can be read and checked 

or merely bypassed before transferring more data.

The last file can be augmented with further profile scans 

if desired.
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MTMAP.FOR Operations Manual

Stage Operation or Display Action

1 Run program . RU MTMAP

2 Q( ’MT FILE EXTEND?’) Type Y add further 
scans to an existing 
mag. tape file.

3 Q(’BYPASS EXISTING FILES?’) Type Y ■* to read exist-
ing files.
Type return ■* initialise 
new tape ready for recor-
ding scan data.
Type in new filename, 
format as given in 5.

4 Q(’DISPLAY EXISTING FILE(S)?’ ) Type Y + read mag. tape 
file and display data. 
Type return -> read to 
end of recorded mag. tape 
data.

5 Q(’MODIFY LABEL?’) Type Y -> Type in
VSPNVM(Il)T(Il)N(Il) i.e. 
new file name.

6 Q('TRANSFER LABEL?') Type Y Label written
to tape.

7 Q(’DISPLAY TRANS.FILES?’) Type Y for data to be 
displayed.

8 Q(’OPEN ANOTHER DISCFILE?’) Type Y for further files 
to be transferred from 
floppy disc, or Type 
return ■* stage 10.

9 Q('WRITE FLMK TO CLOSE 
MTFILE?')

Type Y to close mag. 
tape file.

10 Q(’MT FILE EXTEND?’) Type Y to augment current 
mag. tape file.
Type return ■> end.

11 Q(’MODIFY ITRACE?’) Type Y to update number 
of traces in mag. tape 
file. Type in update 
trace count.

12 Q(’READ TO END OF RILE?’) Type Y to read file and 
forego data display 
option. Go to stage 14.
Type return •> display mag 
tape file information.

13 Q(’CONTINUE READ CHECK.?’) Type return -> end.
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Stage

14

Operation or Display Action

Q( 'READ/WRITE ANOTHER FILE?') Type Y -> continue file 
transf ers.
Go to stage 4. 
Otherwise, type return 
-> end.

15 STOP
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PROGRAM

FILENAME: MAPMT.FOR

ASSOCIATED FILE(S) (1) MTREAD.MAC

DESCRIPTION

The program transfers successive profile traces from 

magnetic tape into core to be graphed as an isometric 

surface projection on the tektronix screen.
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MAPMT.FOR OPERATIONS MANUAL

Stage Operation or Display

1 Run program

2 'MAGNIFICATION FACTOR’

3 ’NO. OF PARALLEL TRACES’

4 Q(’REQUIRED FILE?’)

5 Q('LAST FILE?')

6

• 7 Q( 'END OF MAP? ’ )

STOP

Action

. RU MAPMT

Type in profile trace 
display magnification.

Type in number of 
parallel traces con-
stituting the perspec-
tive plot.

Type Y is displayed file 
name is the required 
file. Go to stage 6.

Type Y to abort.
Type return and re-
enter stage 4.

Type return (informa-
tion only).

Type Y mapping complete 
Type return go to stage 
4 to search for further 
profile data plots to 
augment perspective plot.

PRINT/GRAPH OUT FIRST TRACE’
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CHAPTER 6

DATA PRESENTATION AND STATISTICAL ANALYSIS

Abstract

Following the discussion of the data acquisition methods 

of Chapter 5, the initial data processing routines are 

described, and typical examples of graphical and statistical 

output are provided.

Williamson [1968] first achieved a three-dimensional map 

of a surface. His initial work has been extended by Thomas 

[1975], Sayles and Thomas [1976], Sayles and Thomas et al 

[1977], contemporary with our own work, whereby the data 

gathering procedure has been automated and controlled by a 

minicomputer, in a manner similar to that described in the 

previous chapter. The topicality of this research is 

further evidenced by the recent papers by Teague et al [1982], 

and George and Radcliffe [1982], presented recently at the 

International Conference on ’’Metrology and Properties of 

Engineering Surfaces”.

Attention is given to certain metrological problems, 

particularly with those associated with the accepted routines 

for computing the statistics of surface slopes.

The relationship between the derived statistics of surface 

roughness and beam scatter collated and presented here, forms 

part of the treatment of Chapter 7, where the ’cause and 

effect’ of surface roughness/laser beam interaction is 

investigated fully.

6.1 Graphical Presentation of Intensity Data

6.1.1. Two and Three Dimensional Polar Diagrams

The natural form of graphical presentation of 

intensity data is the polar diagram. This best provides
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the directional description of the scattered radiation. 

Figures 6.1.1, 6.1.2 and 6.1.3 are polar plots of the

scanning sensor output, later to be given cartesian 

form in Figs. 6.1.10, 6.1.11 and 6.1.12. They have 

been widened by a factor of 10, so that the fine detail 

is discernable. The specular direction is indicated on 

the plot, and the secondary lobe is manifested by the 

presence of a gross defect on surface material. Exami-

nation of defect-free specimens produces polar diagrams 

with a strong specular lobe and only minor fine detail 

variations as in Figure 6.1.4 for example.

It is of course desirable to obtain polar diagrams 

with clear meaningful features, capable of unambiguous 

interpretation. Simulation studies, computing polar 

scatter diagrams from model geometrical surfaces on the 

basis of the scattering theory models of Chapter 4, were 

conducted. Figure 6.1.5 shows the two-dimensional polar 

diagram obtained from an elliptical protuberance on a 

profile flat. The major and minor axes., as well as _ 

the overall dimensions of the flat, are of the order of 

the wavelength of the incident radiation. The end-

correction term for this profile geometry is zero and in 

this sense the solution is exact. The many-lobed polar 

diagram supports the work of Wirgin [1975] using a 

different formulation of the wave theory equation: that 

for maximum polar diagram contrast, the wavelength of 

the incident light should be of the same order as the 

size of the defect protuberances. He terms this a so- 

called 'resonance' effect. We shall take up this point 

again in Chapter 9.1 when discussing instrument design.
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FIG. 6.1.6. Two-dimensional plot of scattering 
from a hemispherical protuberance 
(Kirchhoff model)

FIG. 6;'1.71 Three-dimensional ray plot of 
scattering from a hemispherical 
protuberance (facet model)
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Again Figure 6.1.6 shows the scattering from a 

hemispherical protuberance on a flat plane from a 2-D 

scan, computed on the basis of the Kirchhoff model. 

Computed output from scans at various orientations, 

enables a three-dimensional polar diagram to be built 

up with or without hidden line removal. A three- 

dimensional ray plot is featured in Figure 6.1.7, which 

shows rays scattering according to the facet model from 

the same hemispherical protuberance. The angle of 

incidence was taken as normal to the plane in both 

computations.

6.1.2.. Intensity Versus Angle Plots

Cartesian plots of intensity versus angle are 

frequently exploited, although their visual impact is 

enhanced or dimished when distorted by changes of 

scale. Figures 6.1.8 and 6.1.9 were produced from the 

tektronix screen output copied onto light sensitive 

paper. Juxtaposed on Figure 6.1.9 is a polar plot 

indicating that the scatter is confined to at most one 

or two degrees which corrects the false impression of 

the cartesian graph output. The deficiencies of the 

over-simple graphics routines utilised on the PDP are 

readily apparent if we compare both Figures 6.1.8 and 

6.1.9 with Figure 6.1.10. Figure 6.1.10 is a microfilm 

plot of the same intensity scan, and reveals just how 

much of the fine detail was suppressed.

The scan was from a metal specimen bearing a 

scratch defect. We also include a sequence of three 

plots from the same specimen, featured earlier as a 

sequence of polar diagrams (Figures 6.1.1-6.1.3), and 

we observe the bimodal nature of the plot at certain
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FIG. 6.1.8, Cartesian plot of intensity versus angle obtainable 
on Tektronix screen

FIG. 6.1.9. Polar diagram and cartesian plot of intensity 
scatter (Tektronix screen output)
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BEAM SCATTER FILE i SPN MlT4N2 ORIENTATION ANGLE = 180.0

FIG. 6,1.10. Cartesian plot of intensity: defect 
specimen M1T4 scan 180°

BEAM SCATTER FILE . SPN MIT4N3 ORIENTATION ANGLE = 190.0

FIG. 6.1.11. Cartesian plot of intensity: defect 
specimen M1T4 scan 190°
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BEAM SCATTER FILE . SPN MIT4N3 ORIENTATION ANGLE -■ 200.0

FIG. 6.1.12. Cartesian plot of intensity: defect specimen 
~ M1T^ scan 200° ----- -

BEAM SCATTER FILE . SPN M1T4NI ORIENTATION ANGLE = 10.0

FIG. 6.1.13. Cartesian plot of intensity: defect specimen
M1T4 scan lO7^
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orientations. Figures 6.1.11 and 6.1.13 are 180° 

orientations with respect to one another, which in 

effect exchanges the incident and observation angles, 

but as we would expect the diagrams are not pure ’re-

flections’ about the mode. Included throughout the text 

are several examples of intensity plots from defect 

free specimens. Figure 6.1.14- illustrates one such 

plot as well as a Gaussian curve fitted to the distri-

bution. We recall in passing, that the theories of 

Chapter 4- predict a Gaussian form for specimens of 

Type (C) roughness with Gaussian height distributions. 

However, in 6.1.3 we find that many plots on close 

examination are significantly non-Gaussian.

6.1.3. Moment Description of Intensity Distributions

To quantify an intensity plot, albeit in a rather 

limited manner, the low order moments of the intensity 

about the specular modal direction were calculated. 

Prior to the moment computation, the background radia-

tion was removed and the graph area was normalised to 

unity. The shape parameters of skewness and kurtosis, 

being simple moment functions were computed in addition 

and for typical sample intensity scans are logged in 

Table 6.1.1,.

Clearly the observed anti-symmetry of some plots 

is indicated by their skewness values, and others 

show remarkable peakedness. (N.B. Gaussian curves 

have zero skewness and a kurtosis of three.) As we 

shall see this behaviour is strikingly echoed in the 

skewness and kurtosis of the distribution of height 

slopes of the particular specimens.
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Specimen 
Labels

Specimen 
Description

Summary Statistics 
of Intensity Plots

M0T2 Stainless 
Steel 
Rolled

Scan 190 Scan 270

SD* 0.18 SD 0.20
SK -0.53 SK -2.53
KU 5.94 KU 15.71

MOT3 Stainless 
Steel 
Rolled

Scan 10 Scan 4-0

SD 0.46 SD 0.58
SK -1.06 SK -1.89
KU 3.74 KU 4.06

M1T1 Steel 
Ground

Scan 180 Scan 90

SD 0.21 SD 0.20
SK 1.01 SK 0.60
KU 12.51 KU 9.8

M1T2 Steel 
Ground

Scan 180 Scan 90

SD 0.20 SD 0.24
SK -0.23 SK -2.00
KU 4-14 KU 12.99

M3T1 Brass 
Ground

Scan 160 Scan 270

SD 0.22 SD 0.19
SK 0.42 SK 0.60
KU 5.37 KU 8.08

M3T2 Brass 
Ground

Scan 0.0 Scan 90

SD 0.21 SD 0.30
SK 0.31 SK 1.8
KU 6.99 KU 8.50

M2T4 Copper
Ground

SD 0.58 SD 0.34
SK 1.58 SK -0.94
KU 3.11 KU 8.07

M2T2 Copper
Ground

SD 0.23 SD 0.25
SK -0.80 SK 1.40
KU 12.27 KU 18.66

*SD = standard deviation

SK = skewness

KU = kurtosis

TABLE 6.1.1. Description of Intensity Plot 
in terms of Moments 
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6.1.4. Fitting a Pearson Type VII Frequency Function 

Pearson [1914] developed a system for fitting 

frequency curves. He defined seven different types 

each determined by specified ranges of skewness and 

kurtosis. For the Sheffield samples of stainless 

steel for instance: the specimen MOT3 yielded plots 

which were more adequately Gaussian, with or across 

the rolling direction, which contrasted markedly with 

specimen M0T2, for which the plots are either Pearson 

type IV, if we treat the skewness as significant, or 

else are modelled according to the symmetric Pearson 

type VII.

It was deemed more appropriate to fit Pearson VII 

curves as the skewness was likely to be attributable 

in part to sampling variations of the surface roughness, 

and to surface defect effects, rather than according 

to a systematic effect of real interest. This latter 

interpretation however demands its retention as an 

information statistic.

The type VII Pearson curve is of the form:- 

y = yo(l + x2/c2) m, containing two parameters 

m and c. This family includes the well known Cauchy 

and t-distributions of statistical theory. Relation-

ships between the moments of the Pearson VII are phrased 

in terms of gamma functions and we may deduce (c.f. 

Appendix 6).

....(1)2m -

. ...(2)
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The parameter m is stated entirely in terms of 

the kurtosis via (2), whilst the parameter c clearly 

influences the spread of the distribution. For those 

intensity distributions with high peakedness the

Pearson VII provided an adequate fit.

Specimen M0T2 - scan 270

St. dev. of intensity scatter = 0.199
Skewness of intensity scatter = -2.54
Kurtosis of intensity scatter = 15.72

Pearson VII parameters m = 2. 736
c2 = 0. 980

degrees

Observed 
Intensity

Pearson VII 
Fitted Frequency

0.0013 0.0084
0.0030 0.0118
0.0240 0.0167
0.0236 0.0234
0.0469 0.0334
0.0589 0.0463
0.0754 0.0626
0.1070 0.0812
0.1159 0.0994
0.1181 0.1131
0.1182 0.1182
0.1163 0.1131
0.1158 0.0994
0.0930 0.0812
0.0820 0.0626
0.0696 0.0463
0.0470 0.0334
0.0240 0.0237
0.0240 0.0167
0.0012 0.0117
0.0006 0.0008

Sum of Squared errors = 0.0034

TABLE 6.1.2. Pearson VII fit to highly
Kurtosed intensity curve
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6.2 Graphical Presentation and Statistical Analysis of 
Surface Topography Data

6.2.1 Perspective and Contour Plots

A perspective plot, namely an oblique projection 

of the data base, is a powerful visual display of the 

surface topography. The resolution bias, lent by the 

manner of the data acquisition (c.f. Chapter 5), can 

be removed by sampling ten times less often, along a 

particular trace, before invoking the graphical 

procedures.

The refinement of removing hidden lines is avail-

able. Maintaining an up-to-date view of the horizon 

as each profile is sketched, is virtually the only 

additional complication afforded to the program soft-

ware. Such an image, whereby what is graphed is what 

is seen, is more consistent with our usual conception 

of reality. However, as a representation of the surface 

the full information might be of more value. Another 

representation, would be to graph out those portions 

of a profile trace, hidden on a particular perspective 

plot, at reduced intensity.

Examples of perspective plots are reproduced in 

Figures 6.2.1 to 6.2.4. Figure 6.2.1 and 6.2.2 show 

plots of a ground steel specimen, with and without 

hidden line removal. Surface defects are plainly 

visible. Figure 6.2.3 shows another steel specimen 

ground to a less smooth finish. Deliberate parallel 

scratches were made on the specimen illustrated in 

Figure 6.2.4; the material has been literally gouged 

out and forms a rim on either side of each scratch.
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MAP FILE • 5PN MIT2NI

TALYSURF CONTOUR MAP

FIG. 6.2.7. Contour plot of specimen M1T2 (equal 
resolution in x and y directions)
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MAP FILES • SPN MOTS

TALYSURF CONTOUR MAP

FIG. 6.2,8. Contour plot of cold-rolled stainless 
steel specimen M0T2
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An alternative image to the perspective plot, 

much used by the cartographer, is a contour map. This 

form of representation would be of interest to the 

tribologist concerned with problems of wear. The 

contour plot shows how the load bearing area varies 

as the surface wears, or complementarily, illustrates 

the oil-carrying capacity of the surface. The DIMFILM 

package available at ULCC has contour plotting sub-

routines already available. Figures 6.2.5 .to 6.2.8 

illustrate contour plots of talysurf-10 data.

Figures 6.2.5 and 6.2.6. correspond to the steel 

specimens projected in 6.2.1 and 6.2.3. The visual 

distortion of the different sampling resolutions in 

the along trace and across trace directions has been 

removed in figures 6.2.7 and 6.2.8. Figure 6.2.6 and

6.2.7 may be directly compared in this regard. Figure

6.2.8 corresponds to a specimen of cold-rolled stain-

less steel strip. The coordinate axes are taken across 

and along the direction of rolling respectively.

There is visual evidence that extreme surface 

asperities, formed from the grits of the shot blasted 

rollers, are rolled out in the rolling direction in 

successive rolling operations. This visual impression 

of anisotropy is borne out later in the chapter, by 

autocorrelations computed along and across the trace 

directions, as well as by intensity plots taken in 

these directions.

6.2.2. Fitting a Mean Plane to 3-D Tonography Data

Firstly, to remove possible trends etc., a mean 

plane: z = a+ 6x+yy is fitted to the data.
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FIG. 6.2.9. Least Squares Plane

The model E(z..) = a + 0x. + yy. vi,j 
ij 1 J

In vector form, E(z_) = X £ ....(3)

parameter vector 0_ = (a,|3,y) and X is the

is proposed.

where the

so-called

design matrix.

parallel 
traces

The grid of sampling points is as follows:

FIG. 6.2.10 Sampling Grid

Thus, 0, ±1, ±2, . . . ± 500

= 0, ±1, ±2, ... ±47
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With the origin chosen as shown:

The normal equations for the least squares

estimates of a,(3,y are X'XQ = X’Z • • • • ()

Because of the choice of origin^and the equal

spacing and symmetry of the sampling grid, the normal

equations read,

Ex.2
1

Ey .2

A

a
A

3
A

Y

E z. . 
ij

E x. z . 
1

I E y . z . . I
(5)

and n = 95 1001, the total number of samples.

n o o

o o

o o

x

/

A

Solving a
Ezi • • 
___ ij 

n
Ex.z. .
- i ij

Ex. z
1

(6)

Ey . z . .J .1 i .1
Ey?2

A

3

A

Y

9

9

9

where the sums are taken

above

to be

over all sample points.
A

+ 0x^

This plane

A A

mean plane,z.. = a

fitted at the typical point (x.,y.).
J

has the dual function of fixing the reference surface

estimates enable a

The

*’yr

height at zero, as well as removing any trends in the

data, due to the surface of. the metal - specimen not

being held flat during the data gathering operations.
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z. . - z. . = profile height - fitted value

= surface height residual

The residuals, obtained from the profile height 

variation about the mean plane, enable the variance 

of surface height to be estimated, viz

1 Z
” i,j

A

....(7)

or, computationally much simpler, from the ANOVA table

below.

Source of variation S. of Sqs d.f.

Regression (fitting 
of plane)

A A A
a( Zz . .) +0 ( Zx.z . .) +y ( Zy . z . .) 

ij 1 ij JJ ij 3

Residual By difference n-3

Total ^ij2 n

A 1whence, o2 = —y x R 
n-3

esidual Sum of Squares.

In performing the above we have restricted the 

linear model such that:

= a + 3x. + yy . + e . .

with the errors e.. taken to be independent with con-

stant variance a2. Subsequent residual analysis could

investigate the validity of such assumptions. Such a 

statistical model would seem appropriate if the surface 

were isotropic, in the case of a specially prepared 

ground surface for instance. However, it could be 

quite inappropriate if the surface texture had a 

preferred lay. Specimens cut from a piece of rolled 

steel do have different height distributions along and 

across the rolling direction.

thIf we consider the i scan only we could fit the
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variance of heights taken in the x- direction.

Expanding to the full quota of m(=95) scans say, the

model E(z..)=
ij

a + (3x. + e. . where the e. . are taken 
J ij

as zero mean, independent with var ( e _ ) = °XZ > ^^e

ANOVA table would read:

Source of Variation S of Sqs d. f. Mean Sq

Regression (fitting
A
3 ( Ex. z ) 1

3 term) 1

Residual By difference n-2 o 2 
X

Total Ezy2 - G2/n n-1

where G, the grand total = E z. ..

could consider the fitting of the

Alternatively, we

across scans’ with

+ e. . with var(e. .) = o2,
ij y

the y-direction. Comparing 

the three situations, we have, remembering the ortho-

gonality of the design:

S of Sqs M. Sq S of Sqs M Sq S of Sqs M Sq

Regression 
(linear)

Residual

A
BEx.z. .

1 iJ
A
(J 2
X

A
Y^y

J
z . .

A
0 2
y

A
BEx . z .

+ yEy.z. .
A
o2

Total Ez2j-j-G2/n Ez2 rG2/n E z 2 -G2 /n

From which we can deduce 2o2<o 2 + 6 2. ....(8)
x y

However the usual practice is to estimate o^2 and

o 2 from single traces taken in their respective direc- 
y

tions, after fitting a least squares datum to the out-

put profile records. This must inevitably lead to very 

much reduced estimates of a 2 and a 2. The model for
x y

a2 fitted an overall regression plane to the entire 

3-dimensional surface topography data. For an indivi-

dual trace o 2 to be comparable with o 2 we effectively
X X 
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hypothesise that the overall regression plane fits all 

scans, and given the large number of degrees of freedom 

involved the statistical test reduces to comparison 

with F
1 ,00

Brownlee [1965] Chapter 11 discusses the analogous 

statistical problem.

From tables we find Fi (5$) = 3.84 and

F (1%) = 6.63. The interpretation is that the 

overall plane model may be taken as an adequate fit to 

all the individual profiles if o2/o 2 < 3.84, and even
X

a variance ratio of 6, would be observable 1 time in 

100.

6.2.3. Profile Height and Slope Analysis

Surface Heights

As a check on the fidelity of the talysurf-10 

measurements, and on certain of the derived statistical 

papameters, advantage was taken on the surface metrology 

routines developed initially at Leicester Polytechnic, 

by Stout, King and Spedding, and currently being 

exploited at Lanchester Polytechnic. Figures 6.2.9- 

6.2.14 pages are outputs from their graph plotter

which economically depict a variety of computed surface 

distributions and surface roughness measures. The data 

was obtained by a Talysurf-5 stylus instrument and 

processed by a Data General minicomputer.

The most commonly quoted measure of surface rough-

ness, certainly by industrial users, is the GLA or 

value of roughness heights. This measure in statistical 

parlance is the MAD (mean absolute deviation) and for 

the normal distribution is related to the variance o2 

(or standard deviation o) by o2 = tt/2(CLA)2.
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The variance of surface heights obtained from a 

variety of metal specimens, measured by various 

instruments and computed on the basis of single or 

multiple scans etc., is set out in Table 6.2.1. 

below.

Specimen 
Label

Specimen 
Description

Estimates of 
variance and St. Dev.
3-D

Surface 
a2

Map
Single Scan

Talysurf 
-10

Talysurf 
-5

M0T2 Austenitic 
Stainless

Steel 
(cold 

Rolled)

(Micron)2

0.18

Trans

0 =0.20 X

Rolled 
0 =0.12X
Trans 
o =0.18
y

M1T2 Steel
(Ground)

0.06 a =0.11 
X

0 =0.08 
X

M1T1 Steel
(Ground)

0.34 0 =0.19 X

0 =0.11
X

0 =0.08 
y

M3T2 Brass
(Ground)

0.08 o = 0.09 X
0 =0.09 X
0 =0.10 
y

TABLE 6.2.1. Height Statistics

As anticipated, following the discussion of 6.2.2,

o2 > 0 2
X but the variance ratios of the specimens M0T2,

M1T2 and M3T2 are such that a mean plane is tolerably 

fitted to these data bases and thus o2 gives the 

variance of heights for an AREA. This is perhaps a 

more meaningful statistic than the more restrictive
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sidering the steel specimens M1T1 and M1T2, M1T1 

although ground to a finer finish than M1T2 the presence 

of defects, clearly visible in the perspective plots of 

Figures 6.2.1 and 6.2.2, gives rise to the much enhanced

o2 value of 0.34. The single scan o^2 values 0.04

0.01 of talysurfs 10 and 5 respectively vouch for the 

super smooth microgeometry of the underlying texture. 

Surface Slopes

The surface slope at any point is described in 

terms of the two principal profile slopes:

....(9)

For an isotropic surface a slope parameter p may be 

further defined, namely

n
s

where a 2 =-C"(0). 
s

Longuet-Higgins [1957] showed that p was Rayleigh 

distributed. (This result is important, as it is con-

sistent with the facet view of scattering if we link 

this result to the amplitude distribution of the reflec-

ted field scattered by a very rough surface, (c.f. 

Chapter 8.1). Moreover, we can easily see that, since 

for an isotropic surface c,1 = /2 , the variance of

facet slopes over an AREA is twice the variance of a 

profile slope.

For an anisotropic surface the distribution of 

slopes is Hoyt distributed. (The Rayleigh and Hoyt 

distributions are discussed in detail in Appendices 8A- 

8D).

However, as has been pointed out by Whitehouse and
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Archard [1970], and reiterated by Thomas and Sayles 

fl978], not all calculated parameters should be taken 

at their face value. Estimates of the slope parameter, 

a parameter of crucial interest to this study, can 

yield widely different numerical values depending on 

the sampling interval (c.f. Thomas and Sayles [1978]).

In the first instance which formula should we use 

to compute a numerical value of slope? We can view the 

problem as one of numerical analysis and base a formula 

on a Taylor expansion at the point of interest t, say

S' = [Zt + T- zt-r] ....(10)

- £’(t) + 0(t3)

or = ^l-[Zt + 3T - 9Zt + 2T + ^Zf + T - ^Zt_T + 9zt-2T -^-31]

.... (11)

- £’(t) + 0(t7), where the weights are so designed 

that the ’error’ term is of the order t1* and t7 respec-

tively .

The slope histograms and slope moments routines of Watson 

[1979], and presented in Figures 6.2.9-6.2.11, employed 

the second formula for C’(t) above, which is referenced 

in Whitehouse [1971]. Whitehouse expresses a preference 

for (11) and states that (10) can lead to large or small 

angles which are not physically realistic. Alternatively

(10) and (11) are obtained if we fit:

(i) a quadratic polynomial to the points z^

and Zt+T’

(11) a polynomial of degree 6 through the 7 points 

zt_3T’ Zt-2V Zt-z’ Zt’ Zt+T’ zt+2t’ Zt+3T’

and evaluate the polynomial derivative at the point in 

question t.
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If we view the problem in statistical terms, 

regarding a single profile as one realisation of a 

stochastic process ensemble, we might consider

S' = Zt+T~ Zt ....(12)
T

The above could be regarded as a representative value 

in the interval (t,t+r) since at some point § the 

profile slope takes the value £ ’ by the mean value 

theorem.

In terms of expected values,

E[e-] = i E[zt+T-zt] = 0

E.[(£')2] = Y’2E[(zt + T - zt)2J = pS(t) ....(13)

for a stationary process, where S(t) is the so-called 

structure function i.e.

V[;'] = p S(t).

Or, in terms of the auto-correlation function, C(t)

v[C] = p 2a2 [1 - C(t)J ....(14)

whichever approach is adopted, the formal estimator is 

a linear combination of sample heights. Thus, if we 

consider a Gaussian surface, the estimators above all 

give rise to sample values which are normally distributed 

with zero mean. For the simple chord estimator, White-

house and Archard’s [1970] theory has been used to 

investigate the variation of mean absolute slope and 

peak radius of curvature for a negative exponential 

autocorrelation function.

Vp'J = 2<J2/t2 (1 - e’T/T) ....(15)

(2o2/t2)t/T for small t and is

meaningless as t->0 (c.f. Chapter 8.3).
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For the autocorrelation function postulated in 

equation (19) of 8.2 :

2a2 (l-e~ ■ )

“F" £T <

k T > £
.... (16)

For the Gaussian autocorrelation function:

v[e>] 2a2/T2(l-e"T2/T2)

->

In this

estimator in

2o2/t2(t2/T2

2o2/T2 as t +0

t Vt 1*
2!

instance we can

the statistical

regard as a consistent

sense, since true

+ . . . )

theoretical value as the sampling interval is reduced.

For the composite autocorrelation function with

we have:
theoretical value 2o2 /T2 _ t_

2<j2/tT Texpected value
....(17)

Thus for

is TUo x
of slopes is

typical t = 2pm,

measured value.

T = 200pm, theoretical value

That is the standard deviation

estimated ten times too high!

For the 7-point estimator of (11)

vR'J = E[zt+3 T_9zt+2t + i5zt+T * 45zt-T + 9zt-2t ■ Zt-3t] 2

Writing out the variances and covariance terms:

11 - 9C(t) + 45C(2r) - 45C(4t) + 9C(5t) - C(6t)

92 - 9.45C(t) + 9.4-5C(3t) - 81C(4t) + 9C(5t) c2,

452 - 152C(2t) + 15.9C(3t) - 45C(4t) 

152 - 45.9C(t) + 45C(2t)
9

92 - 9C(t)

I1
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which leads to

Vfe»J = 5^l7-{2(l+92 + 452 )-4 (9+9.45)C(t) + 2(2.45-452 )C(2t)

+4(9.45)C(3t)+2 (-2.45-81)C(4t)

+ 2(2.9)C(5t) - 2C(6t)}

For a Gaussian autocorrelation function we have:

2 2
V f? ’ ] = 2 ^2 . + 4.9 + 4.9.45 - 8(2.45 - 452 )

- 36.9.45 - 32(-2.45 - 81) 

-25.4.9 + 2.36} + 0(t2)

= 2o2/T2 + 0(t2), which is again consistent. In 

fact Vf^’J 2o2/T2 + 0(t4).

The simple chord estimator has a slight negative 

bias and is asympototically less efficient than the 

_7-point estimator.

The following tables, compiled on the basis of both 

types of slope estimator with various underlying surface 

autocorrelations, illustrate these and other points. 

We can see, for example, that when the autocorrelation 

is pure negative exponential, the variance the simple 

chord estimate is approximately 5/4 times the variance 

of the 7-point estimate.

Theoretically, we have

chord estimate: V + 0(t)

seven-pt estimate: V [t ’] = (1 + + °(T)

For the composite autocorrelation the simple chord 

estimate provides a superior estimate of the true slope 

variance, since the longer lags involved in the 7-point 

estimate sense the misleading negative exponential portion 

of the autocorrelation function. Table 6.2.3. details 

computed slope statistics in a similar manner to the

214



Surface Parameters:

RMS Surface heights, a: 0.2pm

Correlation length, T: 50pm

=*> true theoretical slope variance:

3.2 x 10”5

Autocorrelation 
function

Sample 
spacing

Estimate of slope variance 
Chord 7-point

Gaussian

0.5
1.0
1.5
2.0
2.5
3.0
3.5

3.1998 x IO'5 3.2000 x 10'5 
3.1994 x 10'5 3.2000 x 10'5 
3.1986 x 10'5 3.2000 x 10'5 
3.1974 x 10's 3.2000 x IO-5 
3.1960 x 1O'S 3.2000 x 10'5 
3.1942 x 10'5 3.2000 x 10'5 
3.1922 x IO’5 3.2000 x 10'5

Negative 
Exponential

0.5
1.0
1.5
2.0
2.5
3.0
3.5

3.184 x IO"3 2.533 x IO'3 
1.584 x 10'3 1.259 x 10'3 
1.051 x 10‘3 8.339 x 10'* 
7.842 x 10'* 6.215 x 10'* 
6.242 x 10'* 4.941 x 10'* 
5.176 x 10'* 4.092 x 10'* 
4.415 x 10'* 3.485 x 10'5

Composite model
£ = 5
m = 2

(c.f. Chapter 8)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

2.381 x 10'* 2.518 x 10'*
3.339 x 10'* 3.795 x 10'*
3.893 x 10'* 4.622 x 10'*
4.159 x 10'* 4.972 x 10'*
4.213 x 10'* 4.474 x 10'*
4.118 x 10'* 3.849 x 10'*
3.922 x 10'* 3.372 x 10'*

TABLE 6.2.2. Chord and 7-pt estimates of slope variance 
for various autocorrelation functions of 
surface height
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height statistics portrayed in Table 6.2.1. Both chord 

and 7-point estimators have been employed on actual 

surface profile data. The chord variance exceeds that 

of the 7-point estimate in much the same proportion as 

suggested by the negative exponential autocorrelation 

model. Corresponding autocorrelation plots, some of 

which are presented below, do exhibit exponential decay.

TABLE 6.2.3. Slope Statistics

Estimates of Slope Variance

Specimen 
Label

Specimen 
Description

3-0
Surface Map

Single
Talysurf-10

Scan
Talysurf 5

M0T2 Stainless 
Steel 

Cold Rolled

0.0074 Chd. 0.0064
7-pt 0.0036

Chd 0.0070
7pt 0.0048

M1T2 Steel 
Ground

0.00046 Chd. 0.00040
7-pt 0.00032

Chd 0.00016
7pt 0.00009

M1T1 Steel 
Ground

0.00050 Chd. 0.00025
7-pt 0.00020

Chd 0.00011
7pt 0.00004

M3T2 Brass 
Ground

0.00064 Chd. 0.00057
7-pt 0.00013

Chd 0.00028
7pt 0.00017

6.2.4. Autocorrelations of Surface and Profile Heights

Autocorrelation plots of single scans obtained by a 

talysurf-5 were included within the complex of statistical 

functions shown in Figures 6.2.9-6.2.14. Autocorrelation 

plots based on parallel profile scans, thereby further 

smoothing out surface noise are shown in Figures 6.2.15- 

6.2.18. The plots reflect the same information and are 

broadly described by negative exponential functions.

Figure 6.2.16 shows some evidence of underlying periodicity. 

The anisotropy of M0T2, the cold rolled steel strip speci-

men, is plainly evident whichever processing is utilised.
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FIG. 6.2.15. Autocorrelation function of surface 
height: M3T2

SPN MIT2NI-IN DIRECTION Of TRACES

-*>

FIG. 6.2.16. Autocorrelation function of surface 
height: M1T2
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LAG MM

FIG. 6.2.17. Autocorrelation function of surface 
heights: M0T2 with and across the 
rolling direction (Talysurf-5 system)
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5PN M0T2N9 ACROSS DIRtCIiON OF TUACrS

SRN HOT2N/ IN UlWtCIION Of IRACtS

FIG, 6.2.18. Autocorrelation function of surface 
heights: MQT2 across and with the 
rolling direction (talysurf-10 area 
processing)
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6.3 Conclusions

From the discretation of a continuous output signal it 

is delusory to believe that we can obtain a definitive value 

of the mean absolute slope, or the standard deviation of 

slopes, except in the exceptional case of a surface posses-

sing a Gaussian form of autocorrelation function.

Whitehouse [1971] has pointed out the necessity of 

qualifying any computed slope parameter with a statement 

of the sampling interval. The practical sampling interval 

for stylus instruments is of the order of 2-3um and it is 

unrealistic to markedly reduce this. Any attempt to 

increase the resolution simply increases the filtering of 

the output signal by the stylus geometry.

Our conclusion is that the preference for the 7-point 

estimator is somewhat academic, since there can be no 

objective experiment to arbitrate between this and the 

simple chord estimator, and regardless of the relative merits 

of each, the numerical values may be anything between 4 and 

100 times too large.. Whilst computed ’slope’ statistics 

provide useful comparative surface texture information, the 

theoretical evidence suggests they are overtly pessimistic 

and the interrogated surfaces will be much smoother, with 

regard to slopes, than that portrayed in the assessment.

We argue next that optical measurements of light 

scatter provides some practical evidence in support of this 

assertion.
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APPENDIX 6A

A normalised Pearson VII curve is synonoymous with

the t-distribution. We take therefore:

p/ 1 _ r(m) f(x' c/iiT(m-4)

The second moment
/ x2 f(x)dx

r(m) c2 f°° 1 + x2/c2 - 1 dx
c/TTr(m - i) J (1 + x2/cz)m

c2r(m) r f _____ 1_________dx f______ 1_____ dx ’ ■>
c/ttI (m - i) J (1 + xz/cz)m--L "' (1 + x2/cz)ni ' 

c2r(m) r(m-3/2) 
f(m-i) f(m-l) 

c 2(m-1)
= m-3/2

c2(2m-2) z
2m-3 "G

o2 _ c2 . . . . (1)
° ’ 2m-3

Also we have the identity :

xu = C4(l + x2/c2)2 - cu - 2x2 c2

c“(l + x2/c2)2 - 2c*(l + x2/c2) + c\

Therefore the fourth moment, ]_i 4

c4T(m)T(m-5/g) 2cur(m)r(m-3/2) . 4
T ( m-1/2) f ( m-2)' r ( m-1/2) T ( m-1). c

cu(m-1) (m-2) 2cu m-1 ,
(m-3/2)(m-512) m-3/2

_ (m-1) { 4(m-2) - l(2m-5) } + 1
c(2m-3) (2m-5)

3
(2m-3) (2m-5.)
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3(2m-3) 
2m-5

i. e.

$2

6m-9
2m-5

....(2)
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CHAPTER 7

VALIDATION OF LIGHT SCATTERING MODELS

Abstract

Theory suggests that the back scattering of light from 

very rough surfaces is geometric. At first sight actual 

intensity plots support this, in so far as the skewness 

of the distribution is reversed, and indeed the distribution 

as a whole transposes, if the incident and specular direc-

tions are interchanged.

A Kir-chhoff scattering model, for Gaussian surfaces, 

is derived and investigated to anticipate the extent to 

which a geometric view of scattering is upheld, for the 

specimen material investigated.

The facet model and Kirchhoff theory model predictions 

are compared with intensity scatter data to resolve the 

issue objectively.

7.1 Modelling Intensity Scatter Distributions

Chapter 8 discusses scattering from various forms of 

non-Gaussian surfaces. Here we assume a Gaussian surface 

and attempt to model the intensity for known o and C(t). 

The modelling is performed for two reasons. Firstly, the 

reverse procedure in effect is to estimate surface roughness 

parameters, and secondly to provide useful comment on the 

formal model validations of sections 7.2.1 and 7.2.2.

We postulate an autocorrelation function

C(t)

o<T<ki

ki<T<k2

T>k2,

. . . .(1)

where the constants Ai and A2 preserve the continuity of
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the function at lags ki and k2 respectively (continuity 

of the derivative cannot however be maintained at these 

points). Such a function reasonably models observed aut- 

correlation data, and leads to tractable mathematics, 

although may not strictly possess all the requirements of 

being a semi-definite function (c.f. Chapter 8 for full 

discussion of properties of ACF’s in general). We view 

the function for the time being as an improper autocorrela-

tion function and proceed regardless. Diagrammatically we 

distort the lag-scale to illustrate C(t) in the figure, and 

model the characteristics of many measured autocorrelation 

functions by two negative exponential functions - one apper 

taining to small lags (micro-structure) and the other to 

large lags (macro-structure).

The terms ’micro-structure’ and ’macro structure’ 

refer to the structure of the autocorrelation function, and 

not to the mechanical profile structure, and will do so 

throughout 7.1.. Whatever the separation lag t, however 

small, profile heights ^(x+t) and ?(x) are a composite of 

macro and micro mechanical components: only by appropriate 

filtering could they be separated.

Ast*0 the ratio approaches the facet

slope in which the macro component is dominant.

The micro-structure itself is conceived as having a 

two part structure: a ’mini-micro’ component which allows for 

the mathematical cusp to be erroded to a form e 73 (to 

allow for realistic scattering behaviour for very rough 

surfaces) and a ’maxi-micro’ component Aie” 7 *. Here ki

and k2 are small ki^0.5pm and k2^0.6pm.
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FIG. 7,1,1, Model Autocorrelation Function

The intensity of the reflected field from a surface 

having such a C(t) function is proportional to 

e^VxT e g T) ] ....(2)

-L

= 2 / cos(v r)e g^”^^T^dT

o x

°fkl _Ft  _P“t 2/T3 2]
= 2{ J cos(v r)e g *• dr

o x

+ / ~cos(v T)e'g^1"Aie ^dT

ki x

/L a -t/T21
+ / cos(v " 2e -Gt } ....(3)

k2 x

= 2 { Ii + I2 + 13 } say, provided g is sufficiently 

large (if not there is an additional term e~gsin(cv L) to
X 

consider). The integrals Ii and I2 represent the individual 

contributions of the mini-micro and maxi-micro components 
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of the micro-structure, whilst I3 is the macro-structure 

contribution to the total field.

We now evaluate Ii, 12 and 13 separately, making 

whatever simplifying approximations as we deem necessary 

or convenient.

Evaluation of Ii.

Ii

(t is small)

0

= A( /kle-S/T’2 ^-ivx/2/g/T32 } .
0

e-T32/4g/vx2 £( /kle-g/l32(T-ivx/2g/T32)2dT)

0

1

2g

andon writing z =
-ivxT2/2g

T3//?g

a x 3 and^2g"

b = k1/2g/T 3 + a.

The integral has a Gaussian form but has a complex 

argument and is evaluated between complex limits. Taking 

the real part however,ensures that
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where 2 is the cumulative distribution function for the 

normal. As a check on our calculations if g->°° (surface 

becoming very rough),

Ii " e’TjZ V ig T3//L? ....(6)

In particular for vx = 0 (specular direction).

Ii = /? T3//g ($(/2gki/T3) - 0.5). ....(7)

Evaluation of I2

fk2 / x -g [1-Ai+Ait/Ti] ,
I cos v T)e SL 11/ 
kl x ’

again t small

gi = g(l-Ai)

= e’gl g2Ai27Tx2+vx2 A((ivx+gAi/Ti) [ giv^^-CgAi/Ti )kj

.eiV2e-(gA1/T1 )k* ]}

= e"gl 1+v zTiz/gzAiz { gA i ’(e'gAlkly/T1cos(kiv )-e"gA lk2/T1

X X

.cos(k2v ) )
X

- T i2 v / -gAiki/Ti . / i \ -gAik2/Ti 
x(e & xsm(vki)-e&g A i x

.sin(vxk2))j ....(a)
In particular v =0 (specular direction)

X
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12 = e”gl { Ti/gAi ( e"gAlkiy/T1-e“gAlk2?/T1) }

= e"gl (k2 - ki)

with ki = 0 12 k2 .

Evaluation of I3.

The evaluation of 13 is very similar to that of I2

and so much of the detailed working is omitted.

Is = /Lcos(v T)e‘S^-A2e‘T/TddT

k2 x

a, / cos(v T) e~g 2 +A 2 2hr and here
J1 X
k2

A2e”k2//^2 = Aie~kl//^1* The approximation* is still accept-

able and relies on large g values but this is not over 

critical as T2 is large (slow decay phase). We shall return 

to this point later for the sake of completeness in develop-

ing a more general theory.

13 = e”g2J^(/k^e^ivx"sAz^T2)Tdr) g2 = g(l-A2)

-T22 v ( e “feA 2 / T 2)k 2 sin( k2 v ) 
g2A22 x x

-e’ T2 sin(v^L))} ---- (9)

Again, in the specular direction,

I3 = e”g2 T2/gA2 (e"feA2yZ^2 )k2_e“feA2/T^L) an(j smaii

and L very large,
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The intensity amplitudes in the specular direction namely:

/n_T 3(§(/2gki/T3) - 0.5);

e’^Tj/gA! .

e'g2T2/gA2 (e-gA2k2/T2_e-gA2L/T2) 

give the relative contributions of the individual structure 

components to the total field.

We shall explore these amplitudes a little before 

interpreting the total field.

1/ TT

(1) y 3 (i(/2gki/T3 - 0.5), for small ki and moderately 
o

large, T3 (for /2gki/T2 <0.05), the function

£(/2gki/T3 - 0.5) is linear and we may write

4^- (^/Tgkx/Ta) - 0.5) = . /~gk! . 0.0200
7S t 3 0.05

(the last fraction is taken from tables of the Normal

distribution) = /2~iF. j kj. ....(11)

(2) -gi Ti/ -gAiki/Ti -gAik2/T2x 
e gA i "e }

T1 e-g[l-A1+A1k1/T1]_e-g[l-A1+A1k2/T1] 

gA?

Let us write k2 = ki+d, then we have

(2)=  TigAi e’g [1“A i+A iki/Ti] Q_e~gA id/Ti

in general and for small d

= gAi e_§k‘A1+Alkl/T1^{1-1+gAid/TiJ

- ^~g [1-Ai+Aiki/Ti] , . ... , _
- e & u J . d , m either event ->0 as g-><®.
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(3) e‘g2. ft? (e’SA2k2/T2-e‘gA2L/T2)

= Tz {e-g [1-A2+A2k2/T2] _e-g [1-A2+A2L/Tj } 
gA2

n T 2 - g Fl-A 2 1A 2 k 2 / T 2 J n t u • u •
% gAT e &L tor large L which again -> 0

as g^°°.

Depending on the magnitudes of the parameters g, ki, 

k2, Ti, T2, T3 either of (1), (2) or (3) could dominate.

Before discussing the fit of such a three part scat-

tering model to actual scatter data, we review the computa-

tion of 13 when g and T2 are not especially large, and the 

approximation of e 7 2 by 1 - t/T2 may not be justified.

Recomputation of I3j

Is = LLcos(v T)e-gb-A2e-T/T2]dT

J k2 x

;L / \ -g gA2eT^T2j
= | cos(v Tje s es .dr
'k2 x

= e"^ E — f cos(v t) e~mT/^2dT , ....(12)
m=0 m’ k2

switching the order of integration and summation

Is = e-g E Lzlpi /L e( ivx-m/T2 ) rdT)>

Om • k o
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{ m (e-mk2/T2
T2

cos(v k
X 2

cos( V

1 f T2 t -mk2/T2 _f t x -mL/T2 /i+v^T^m2, I — (e cos(vxk2)-e cos(vxD)

-fr22/m2)v ( e"mk2/T2 sin( v k2 )-e”mL//T2 sin( v L))}
X X X

Recombining,

-r -g r (ffA2)m 1 r i , -g . t

13 = e I mJ- l+v~^2W + e sincvxL
m=l x

....(14)

For a modestly rough surface g^lO say the series is rapidly

convergent. In particular in the specular direction (v=0)

and if we allow

13(spec)

oo
f

00

Z

m=l

t
mJ

e-mk2/T2
m

....(13)

L ->

form,

00

e_gT2 2
m=l

I k2/T2^ , which is of the

m.’ m

m 
x
mm.’ ....(15)

m
cannot be obtained in closed form andm m 1mm;

oo

V
(The series n

m=l

can only be expressed in terms of the exponential integral

rX t 00 m
E. (x) = J —7— dt where explicitly E. (x) = y + I r and y
1 3 t > j / r , mmJ '

-00 m=i

is Euler’s constant. This however, although mathematically 

precise, is not particularly useful and the series itself 

provides a means of numerically evaluating E^(x)).

But I3(spec) < e”^T2 I (—
m=l m’

= e gf2 I e^2 -1 I by comparison with the

exponential series.

231



Alternatively,

r . -k2/T2.m
I3(spec) > e-§T2 E % 2^^+1)} 

m=l

Z 6 (m+1)!

. -k2/T2
e-ST2 1 (egA^e

2 gA2e-k^^

T A “k 2/T 2 \
- 1 -gA2e z/ z)

•...(16)

We thus have bounds on I3(spec).

Returning to 7.1.12 we see that

up by a sequence of 1 + ~ .27y
x 2 7 

harmonic’ is weighted by (

I3 is basically built

curves where this ’mth 

-k2/T2 mT
) Ta-

We now discuss the fitting of the 3-part intensity model to 

real life data.

For large scale roughness both facet and wave theory 

scattering models converge upon a Gaussian-form of intensity 

distribution,and we would require of our model that this is 

permitted to happen. In short the facet theory explains the 

scatter entirely in terms of the autocorrelation micro 

structure. The necessary prerequisites are that (i) C”(0) 

is finite (accommodated by e” 7 3 ), (ii) ki is sufficiently

large (fitting a range of scatter distributions arising from 

a variety of rough surfaces suggests that k~ 0.5pm).

Autocorrelation functions obtained mechanically plainly 

demonstrate that ki<<2p.. Furthermore, the exceedingly rapid 

transition in all cases to the slow decay A2e” 7 2 phase 

implies that Ti is small, possibly as low as 0.6pm in some 

cases,and in consequence I2 is a near constant uniform 

distribution, of low magnitude. Diagnostic checking of the 

model fit suggests that with ki relatively large k2 can 
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only be slightly larger. To summarise ki O.fpm,

k2^ 0.6pm seem to be universally acceptable values. Thus 

our model is effectively almost reduced to (1) and (3), 

(2) provides about 1$ of the scatter.

For large and moderate roughness, the following 

composite patterns of the scatter distribution are drawn, 

together with some explanation.

(A) Large scale surface roughness - large g

FIG. 7.1.2. Components of Scatter from very rough 
surface

As described previously, the micro-structure component 

dominates, and is the major contributor to the near specular 

scatter but a minor, though significant role is played by 

the macro structure which contributes a disperse scatter 

distribution of small amplitude. For the micro structure 

alone, unless the surface is exceedingly rough, cannot by 

itself explain the scatter to fit the tail intensity 

distributions. Unrealistically large values of T3 would 

be required, resulting in a marked lack of fit in the 
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neighbourhood of the specular direction.

(B) Moderate surface roughness ( e . g. g%20)

FIG. 7*1*3. Scattering components for a moderately
” - • - , rough surface

With decreasing roughness g<> , the relative influence 

of the structure components changes - the micro-structure 

effect gives way to the macro-structure effect as shown in 

(A) and (B).

Summary

At the outset a model of typically observed auto-

correlation functions was proposed. Later certain ranges 

of the parameters were deduced as necessary concomitants 

of understood scattering phenomena, remembering that any 

derived scattering model should be flexible to the extent 

that, on ranging the magnitudes of the surface roughness 

parameters, the scatter model should freely adapt and 

smoothly conform to model the current governing scatter 

distribution.

The precise nature of the micro-structure cannot be 

confirmed by stylus instruments, as they are not capable 

of the resolution required, but is in part conjecture, based 
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on physical scattering phenomena. Values of ki and k2 

cannot be uniquely determined from auto-correlation plots, 

and feasible C(t) functions are fitted to the known auto-

correlation data, and subsequently modified in the light of 

their predicted fit to the intensity scatter distribution. 

The composite model, is validated in as much that for surfaces 

having known gi T2 and area statistics, and ’macro-structure 

autocorrelation (t>3), the scattering distribution are 

consistent with independently gathered scatter data. Further 

more for laboratory samples of both categories (A) and (B) 

prepared under the same conditions, (the (A) specimen was 

ground and polished to a smoother condition), the structure 

boundaries ki and k2 could be taken as invariant, with the 

scatter model predicting a satisfactory explanation of each 

observed scatter distribution.

However for many specimens the micro-structure compon-

ent was not as dominant as anticipated. The reason for this 

was the non-Gaussian nature of the specimen surfaces. Theory 

for a negative exponential surface for instance would be 

modified by replacing (2) by

fL .

J_L s x {T+ip -(-t TD d T

and proceeding as before. The theme of non-normality is now 

taken up in 7.2.

7.2. Model Prediction of Intensity Scatter

The metal specimens interrogated, whether of the labora-

tory prepared ground variety or specimens of commercial cold- 

rolled stainless steel, were mainly of the Type (C) very 

rough category, according to the order of the g parameter. 

(Provided the incidence of the illumination was not oblique.)
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In consequence, the facet and Kirchhoff predictions for 

such specimens ought to be in close agreement (c.f. 

Chapter 4), and the information on slopes is likely to be 

paramount:

FIG, 7.2.1. Scattering theory appropriate to
the value of g

A striking feature of the statistical analyse of 

surface profiles discussed in the previous chapter, was 

the marked difference in the histograms of surface heights 

and surface slopes of some specimens (c.f. Fig. 6.2.10. etc.) 

Since a surface of Gaussian heights would generate Gaussian 

slopes, this phenomenon requires some investigation:

Quoting some results derived in the next chapter, we 

propose the following mechanism:
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Distribution

Joint Characteristic
Function of 
independent 
variables

Joint Characteristic 
Function of 
dependent 
variables

Laplace
1 1

1 + g 1 + g(l-p)

Symmetric
Gamma

1 1
(i + g/e)^ (1 + g(l-p))H 

e

Normal exp(-g) exp(-g(l-p) )

Suppose that the joint characteristic function of two

profile heights with correlation p is

1
fj(p)X2 :vz’-vz5p) = Fl+gd-p) ■

L 3(p) J
....(17),

such that 0(p) 1 as p->l and RCp)-*00 as p->0. Thus as the

separation lag t tends to zero, we have the double negative 

exponential (Laplace) distribution of slopes. As t tends 

to infinity on the other hand, the heights are independent 

samples, and we have a Gaussian charactersitic function so 

that the height distribution appears normal. That is, 

treating the sample heights as independent random variables, 

we obtain an apparent normal distribution. For chords of 

fixed lag t, the characteristic function is the intermediate 

case, and the distribution of chord slopes is characterised 

by the difference of two identical gamma variates.

A simple function would be say,

______ 1
X2(vz,-vz;p) = {1+g(1.p)p}l/p • ....(18)

If we further take p(t) = e'T'/T, then for a rough surface 

and t small, the characteristic function virtually becomes
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1
{1 + gT/T}1+T/T .

Thus the distribution of chord samples is symmetric, 

with zero odd moments and with even moments defined by the 

gamma density function. Hence, under these hypotheses, the 

shape of the chord distribution closely approximates the 

actual distribution of slopes. Although no great reliance 

can be placed upon the numerical values of variance esti-

mates, descaled parameters such as kurtosis might be rea-

sonably valid.

7.2.1. One-Dimensional Models
Facet Model Prediction

Feature Fitting

Although mostly of Type (C), the specimens were 

nevertheless weak scatterers, and as we have seen in 

Chapter 6, by far the most dominant feature of the 

intensity plots is a strong specular lobe. However, 

on closer examination, there are small details which 

disturb the apparent lobe symmetry at the peak and 

the foot of the lobe. The facet model slope predic-

tion may be compared in Figures 7.2.2.-7.2.4. There 

are obvious difficulties of interpretation, since we 

are trying to compare a bar-chart of profile slopes 

with a continuous 5 degree polynomial fit to intensity 

data, compounded with distortions of scale. Despite 

the subjectivity of the exercise, the significant lobe 

features of the intensity plots can be matched with 

bar chart features of profile slopediagrams. This 

is true of the ground steel specimens M1T1 and M1T2, 

portrayed in Figures 7.2.2. and 7.2.3. as well as the 

defect specimen M2T4. The magnitude of the defect was
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such that talysurf lost much of its sensitivity and 

could only record gross variations. These gross varia-

tions are seen without difficulty on the accompanying 

intensity graph.

This visual agreement is supported quantitatively, 

if we collate and compare the moment statistics of 

allied diagrams. The standard deviation, skewness and 

kurtosis measures are given in the following Table 7.2.1. 

Scatter diagrams of the same are presented in Figures 

7.2.5.-7.2.7.

For a valid model the points should lie close to 

the line passing through the origin of unit slope for 

each separate scatter diagram. In each case correla-

tion coefficients have beeri calculated and show that 

some 45% of the variation is explained. This low 

figure reflects the disperse distribution of the 

scatter about their respective regression lines.
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Specimen
Slope

Statistics
Intensity-
Statistics

Comment

SD 0.54 Degrees SD 0.20 Degrees• For perp.
SCAN 180 SK -0.66 SK -0.23 scans wide

KU 4.49 KU 4.14 difference

M1T2 in kurto-
SD 0.36 Degrees SD 0.25 Degrees sis is

SCAN 90 SK -0.34 SK -1.98 picked
KU 10.69 KU 12.99 up

SD 0.38 Degrees SD 0.21 Degrees Very smooth
SCAN 180 - SK 0.053 SK 1.01 underlying

KU 14.36 KU 12.51 surface

M1T1 texture
SD 0.38 Degrees SD 0.21 Degrees but large

SCAN 90 SK -0.21 SK -1.78 defect pits
KU 13.82 KU 13.94 present

SD 0.46 Degrees SD 0.21 Degrees
SCAN 0 SK 0.534 SK 0.31

KU 11.66 KU 6.99
M3T2

SD 0.75 Degrees SD 0.30 Degrees
SCAN 90 SK 0.37 SK 1.8

KU 10.45 KU 8.50

SD 0.215 Degrees SD 0.19 Degrees This spe-
SCAN 190 SK -0.045 SK -1.15 cimen is

M3T1
KU 4.30 KU 8.47 particular-

ly smooth
SD 0.22 Degrees SD 0.19 Degrees and of

SCAN 270 SK 0.42 SK 0.60 Type (B)
KU 5.37 KU 8.08 roughness

SD 0.75 Degrees 'SD 0.23 Degrees For perp.
SCAN 90 SK -0.56 SK -0.80 scans wide

KU 6.61 KU 4.32 difference
M2T2

SCAN 0 SD 0.53 Degrees SD 0.59 Degrees
in kurto- 
sis is

SK -0.48 SK -3.62 picked up
KU 16.56 KU 16.07

TABLE 7.2.1. Moments of Slopes and Intensity Plots for 
corresponding specimens
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FIG. 7.2.5. Scatter diagram of st. dev, of intensity 
and st. dev, of surface profile slopes
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SKEWNESS OF INTENSITY SCATTER. AGAINST SKEWNESS OF SLOPE HEIGHTS
a

X

1 .5 -

1 - X
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1 1
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- X -o

SKEW. SLOPE

FIG. 7.2.6. Scatter diagram of skewness of intensity 
distribution and skewness of surface profile 
slopes
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FIG. 7.2.7. Scatter diagram of kurtosis of intensity-
distribution and kurtosis of surface profile 
slopes
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Wave Theory Model Prediction

We recall the solution for a perfectly conducting

one-dimensionally rough surface:-

(c.f.. (14) of Chapter 4)

Since p is complex, the quantity of interest is pp* = |p|2,

given by the double integral

00 • ■ ££ eiVx(x!-X2)eiVz(?1-?2)dxidx2

Taking mean values we have,

■n/ F22 P P iv (xi-x2)irr iv i-£2)l j
E(pp*) = 77-T J J e x E [e z ^Z/Jdxidx2

4L -L-L

= ft4 elvx(xi’X2)X2(vz,-vz)dx1dx2

-L -L

= / eiVxTX2 (vz, vz ,-T)dT ....(20)

where t = xi - x2.

For Type (C) surfaces g>>l, this is the mean scattered 

field. Computationally therefore the problem is to evalu-

ate (19) for a given surface profile £(x). Advantage can 

be taken of the fact that for a rough surface, only for 

small t will there be a significant contribution to the 

integral.

We must remember also that for a laser operating in 

TMOO mode, the energy characteristics of a Gaussian beam 

distant r from the axis are,

A(r) = A^exp (-r2/w2)

l(r) = iQexp (-2r2/w2), where w is the point where 

the power energy falls' to e of its axial value.
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(Koechner C1976] provides a valuable reference of laser 

characteristics.) Assuming a Gaussian fall-off across 

the 2mm laser spot, the following intensity distribu-

tions Figs. 7.2.8.-7.2.9. were derived on the basis 

of measured profiles.

Feature Fitting

In matching physical features of scanned intensity 

distributions and Kirchoff theory prediction intensity 

distributions, we confront the same difficulties of 

interpretation as with the facet model. For instance, 

whilst the antisymmetric tip of the specular lobe is 

indisputably captured by the Kirchhoff model (c.f. 

Fig. 7.2.2. and 7.2.8.), the secondary diffraction 

features at the foot of the lobe are not matched so 

easily.

Table 7.2.2. presents, standard deviation, skewness 

and kurtosis of the one-dimensional wave theory inten-

sity predictions, for defect free specimens, with those 

of intensity scan data. The accompanying scatter 

diagrams are shown in Figs. 7.2.10.-7.2.12.

One dimensional models are likely to be more success-

ful when the surface texture has a definite lay, or when 

a linear-type defect such as a scratch or groove is 

present.

Scratch defects were examined at 10 degree and

30 degree incidence. With the scratch aligned at right 

angles to the incident laser beam two prominant lobes 

were present. If the scratch were parallel to the 

scratch on the other hand, a single central lobe was 

present with minor side lobes.
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FIG. 7.2,8. Kirchhoff one-dimensional prediction model 
....... for specimen M1T2
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FIG. 7.2.9. Kirchhoff one-dimensional prediction 
model for specimen M1T2
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TABLE 7.2.2.

Specimen One Dimensional 
Kirchhoff Pred.

Intensity
Statistics

M1T2 SD 0.10 0.20

• SK -1.19 -0.23

KU 9.45 4.14

SD 0.12 0.25

SK -0.46 -1.98

KU 12.63 12.99

M3T2 SD 0.12 0.21

SK 0.29 0.31

KU 11.62 6.99

SD 0.13 0.30

SK 0.46 1.8

KU 10.12 8.50

M2.T2 SD 0.10 0.23

SK -0.53 -0.80

KU1 10.35 4.32

SD 0.11 0.59

SK -0.16 -3.62

KU 10.78 16.07

M0T2 SD 0.11 0.20

SK -1.69 -2.53

KU 11.23 15.71

Moments of One-dimensional Kirchhoff 
Theory Prediction and Intensity plots, 
for Corresponding Specimens
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FIG. 7.2.10. Scatter diagram of st. dev, of intensity 
against st. dev, of Kirchhoff one-dimen-
sional prediction model
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FIG. 7.2.11. Scatter diagram of skewness of intensity 
against skewness of Kirchhoff one-dimen-
sional prediction model
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FIG. 7.2.12. Scatter diagram of kurtosis of intensity 
against kurtosis of Kirchhoff one-dimen-
sional prediction model
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In the case of the perpendicular alignment, the 

wave theory model predicted three major lobes, one 

central with two symmetrically placed off-central lobes. 

Diagrammatically:-

FIG. 7.2.13. Intensity and Qne-D Kirchhoff Prediction 
for perpendicularly aligned scratch defects

The angular separation of the lobes however, was 

accurately predicted by the wave theory model for both 

angles of incidence. Furthermore, if the observer and 

incident directions are reversed the secondary peak 

also reverses.

The model assumes that shadowing and secondary 

reflections do not occur, whereas in practice, particu-

larly in the case of a severe scratch they do, and in 

consequence a major side lobe is suppressed.

For parallel alignment, the Kirchhoff wave theory 

model accurately predicted the angular separation of 

asymmetrically positioned secondary lobes.
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INTENSITY GRAPH FGR fl SCRATCH DEFECT WITH 1-D K1RCH-CFF PREDICTION

ANGLES

FIG. 7.2.14. Scratch defect specimen M2T4 scan 270 : 
Angle of incidence 30° (perpendicular 
alignment)
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FIG. 7.2.15. Scratch defect specimen M2T4- scan 180°:
angle of incidence 30° (parallel alignment)



FTG. 7.2.16, Intensity and One-dimensional Kirchhoff
Model prediction for parallel alignment

The relative lobe amplitudes of prediction and 

observation differed by a factor of 2.

The application of the one-dimensional model to 

defect analysis is taken up in Chapter 9.2. 

Comparison of Results

We highlight the general results by the following 

comparison table, and note firstly that the two 

theoretical models are in close agreement with regard 

to skewness and kurtosis, which incidently supports 

the surmise of 7.2. With regard to the standard 

deviation however, the facet model predicts a scatter 

dispersion four times larger than that of the wave 

theory prediction. The observed scattering is in fact 

mid-way between the two predictions. (The slopes of 
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the regression lines of Figs. 7.2.5. and 7.2.10. testify 

to these facts in general.)

TABLE 7.2.3. Comparison of Moment Statistics 
for Prediction Models and Data 
Scans

Facet Kirchhoff Actual

SD 0.54 0.10 0.20

Scan SK -0.66 -1.19 -0.23

180 KU 4.49 9.45 4.14

M1T2 SD 0.36 0.12 0.25

Scan SK -0.34 -0.46 -1.98

90 KU 10.69 12.63 12.99

SD 0.46 0.12 0.21

Scan SK 0.53 0.29 0.31

M3T2 0 KU 11.66 11.62 6.99

SD 0.75 0.13 0.30

Scan SK 0.37 0.46 1.8

90 KU 10.45 10.12 8.50

Comment has been made at length about the difficulties

of slope measurement and the apparent failure of the facet

model is primarily a failure of metrology.

The wave theory model is based on an analysis of a

single profile, which presupposes that the surface has

a two-dimensional roughness only. In the Longuet-Higgins 

model (c.f. Chapter 6)

lent to setting = 0 and 

dimensional analysis must

= Z; + £ 1 2 ; this is equiva-

we see at once that a two-

underestimate the slope

variance. Treating £’x and £ ’ as identical but indepen-

dent random variables, the slope variance would double,
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the variancebut for highly correlated £’ and ’ 

would quadruple and so would agree with observation. 

From the intensity modelling of 7.1, and from further 

work of Chapter 8, for a rough surface the intensity 

variance is proportional to g or a2. But o2 for a 

single scan is four to five times less than o2 based 

on an AREA measurement (c.f. Chapter 6) and thus three- 

dimensional surface topography scattering models may 

be entertained with some prospect of realising an 

adequate fit. Returning to the facet model and con-

sidering a typical scan (M1T2 scan 180 degrees); if 

scattering is geometrical and the facet and wave theory 

model are in accord.

Predicted intensity variance by facet model____
Predicted intensity variance of Kirchhoff model

Then Theoretical variance of slopes _ 1
(Predicted intensity variance) 4

But, Estimated variance of slopes 
(Predicted intensity variance)

Estimated variance of slopes 
(True slope variance)

Estimated chord variance 
(True slopevariance) = 100

2<J 2 [1 - 0(2)]
Then ----- —p------- = 20 2

X 4

= 100 X 8o 2/T32
X

> T32 2 x 0.006 = 100 x 8

> T3%250pm which is the same order of

magnitude as the T3 values which emerged in 7.1 in the

course of intensity modelling.
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Prediction of the scattered field by an enhanced 

one-dimensional Kirchhoff wave theory model, which 

took into account the electrical properties of different 

materials was also carried out. The moments of the 

scatter distribution were virtually the same (within 1$) 

as those computed under the assumption of perfect 

conductability. This was so regardless of the surface 

material whether copper, brass or steel. The additional 

subroutine, determining the local reflectance etc. 

increased the computer processing time by a factor of 

10 and could now be happily discarded. Our conclusion 

concurs with the generally held view, that the roughness 

of a surface modifies the scattered field to a much 

greater extent than does its electrical properties. 

7.2.2. Two Dimensional Models

For a perfectly conducting two-dimensionally rough 

surface,

p(92) = ^ // e1--dx dy ....(21)

A

From which we obtain

PP* = //// e^^-xj +ivy(yi-y2) +ivz(?1-?2)dxidX2dyidy2

A ....(22)

Taking mean values we have

E(pp*) = %£//// eivx(xi'X2) +ivy<yi-y^E[eivZ{^-^)]dxdxdj;dy 

A

= ^3* mi eivx^X1"X2^ + iVy^yi“y2^x2(vz,-vz)dxidx2dyidy; 

A
A ....(23)
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For Type (C) surfaces the mean scattered field is 

given by the fourth order integral of (22) above.

Again, only for near neighbours (xi, yi), (x2, y2), 

separated by a small distance t, will there be a signi-

ficant contribution; a fact which brought the computer 

processing time to within a tolerable limit. The 

Gaussian beam characteristics were again included.

An adequate fit for Type (C) surfaces was obtained, 

even on the basis of only two adjacent parallel traces. 

This is significant since the height variance had 

remained constant over the two traces. Thus the under-

lying cause of the inadequacy of one-dimensional models, 

was not the enlarged global variances of surface heights, 

and we must look beyond the first order surface statis-

tics. The extra ’degree of freedom’ of a three-dimen-

sional surface introduced a greater degree of variation 

in surface slopes and modification in the second order 

surface statistics. Two adjacent traces represented a 

l/5Oth sample of the illuminated area A.

The model fit is close enough for a point-by-point 

comparison to be made. For illustration, the two- 

dimensional Kirchhoff model prediction data on two 

parallel profiles for the rolled steel specimen M0T2, 

together with actual scan data from the same specimen, 

are presented in Table 7.2.4. Comparisons can be drawn 

with the corresponding prediction, based on full area 

information, contained in the same table. Area predic-

tions for Type (C) specimens and actual intensity data 

are further tabled in Appendix 7, together with their 

accompanying graphs.. The prediction and scan data are 

taken with the rolling direction. The surfaces illu-

262
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FIG. 7.2.17. Predicted intensity plots, based on single and 
double profiles, and area information (specimen 
M0T2)
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SPECIMEN M0T2

Intensity-
scan data

Parallel profile 
Prediction

Area
Prediction

0.17940 0.100417 0.049315

.0.24600 0.197457 0.119072

0.44780 0.325180 0.354849

0.57580 0.472577 0.503406

0.72420 0.622909 0.650870

0.77510 0.756162 0.777416

0.85130 0.853202 0.864645

0.89930 0.899300 0.899300

0.86480 0.887244 0.876012

0.83180 0.819045 0.798416

0.73460 0.705219 0.678413

0.62950 0.562717 0.533633

0.49010 0.41553 0.383902

0.37670 0.270617 0.247398

0.29100 0.154589 0.137480

0.22380 0.071495 0.060 835

0.13500 0.022315 0.017259

TABLE 7.2.4. Normalised Kirchhoff two-dimen-
sional model predictions with 
observed intensity scan data
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OBSERVED £ PREDICTED INTENSITY WITH ROLLING DIRECTION
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FIG. 7.2.18. Observed and predicted intensity graph for 
specimen M0T2 taken in the rolling direction 
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strated in Chapter 6 (Figs. 6.2.8. and 6.2.17.), was 

strongly anisotropic, with the roller surface texture 

imprinted along the direction of rolling. An effect 

of this imprinting was an enhanced correlation length 

in this direction.

With such a pronounced lay to the surface texture, 

the one-dimensional Kirchhoff model might have provided 

a better than usual first approximation. The anisotropy 

of the surface is captured however, in the intensity 

scans taken across, and with the rolling direction. 

The mean slope parameter (o/T) is reduced in the roll-

ing direction and, for a Type (C) surface, we would 

anticipate therefore the sharper peak of the intensity 

curve taken in this direction (see Figure 7.2.19).

The area prediction is sufficiently close to 

observation to consider a Chi-squared ’goodness of fit 

test’ of model adequacy. With n fitted values, for a 

satisfactory fit:

“ { I(e2)i - E(92)i }2 x2 

i=l E(e2)i n-2

where l(e2)i, E(92)i are observed and predicted inten- 

sity values. For M0T2, the sum is 0.22.

Table 7.2.5. contains further y2 values computed 

on the basis of (24) for other specimens. All the y2 

statistics are insignificant and on this evidence we 

have no reason to reject the model.

N.B. The y2 values cannot be interpreted in the usual 

way since the test is formally calculated on frequency 

count data based on independent samples.
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INTENSITY PLOTS ON 4 WITH THE ROLLING DIRECTION
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FIG. 7,2.19.
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Intensity plots across and -with the 
rolling direction, for cold rolled 
specimen M0T2
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values as aMilana and Rasello [1981] compute ’x2’

measure of support for appropriate autocorrelation 

models, but do not give details of the computations.

TABLE 7,2..5. Chi-squared values for closeness 
' of fit of area predictions

Specimen x2 No. 
of points

M0T2 0.22 17

M1T2 0.02 18

M3T2 0.08 21

M1T1 0.10 22
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7.3 Conclusions

Qualitatively, slope distributions and intensity curves 

do match, demonstrating that the scattering mechanism is 

predominantly geometric., Moreover, quantitatively, there 

is close agreement with regard to the overall shape. The 

degree of peakedness, measured by the kurtosis of the slope 

profiles is mirrored in the intensity plots, moreover 

deviations in the lobe symmetry (given by the direction and 

magnitude of the skewness) is attributable in large measure 

to skewness in the slope distribution. Where there is 

marked disagreement, is in the degree scattering.

For the facet model, the problem is partly one of any 

numerical technique for the process of differentiation. In 

contrast the integral formulation of the Kirchhoff model 

enjoys the inherent stability of an integration process.

The predictive power of the Kirchhoff wave theory 

model is remarkable, not least in view of the restrictive 

nature of the approximations imposed in its formulation, 

(the surface should contain, no sharp edges, multiple 

scattering is ignored, etc.), but also because of the 

coarseness of the sampling grid, and that the predicted 

intensity distribution is for the far field , Fraunhofer 

zone of diffraction. The prediction applies to a particular 

viewing direction and not to the field captured by a finite 

aperture. The scanning diode surveyed the scattered field 

at a distance of 12 cms from the surface, which had the 

merit of stable intensity readings, but was of the order of 

ten times too close to sense the far field. (Strictly 

speaking we should calculate the intensity at a point, not 

in a direction, on the basis of spherical scattered waves
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and not plane ones.) For the Fraunhofer linear approxima-

tion

with

from

D2
to hold, we require that d >> — ....(25)

d, D, X as defined below. Equation (25) is adapted 

(33) p. 384 Born and Wolf [1965] .

Since speckle has the characteristics of a 0/1 binary 

phenomenon, it is desirable to capture several speckles 

within the viewing aperture, in order to smooth out intensity 

variations. The Rayleigh criterion:

Rsp 0.61Xd
D . . . . (26)

gives the speckle radius, Rsp, where x and D are the wave-

length and diameter of the laser beam, and d is the distance

of the detector from the surface, when no imaging system is

used (c.f. Goodmann [1975]). Formula (26) is modified for

a Gaussian profile laser operating in TMOO mode to

Rsp = 0.61Xd

(c.f. Dainty

De

[1976]).

De 

beam

is the diameter 

at 1/e points.
of laser ....(27)

For our rig d = 12

_2
implies Rsp 5 x 10

cms, D = 1 mm, X = 62-8°A, which 

mm. Thus the scanning transducer 

output is an average over some 400 speckles. For scratch 

defects the one-dimensional theory provided partial, but 

nevertheless useful, information.

If we base a wave theory prediction on area information, 

albeit only on two parallel profiles, there is immediately 

an adequate fit with observed intensity scans. The stan-

dard deviation increases by a factor of 2 from the one-

dimensional model and agrees with observation. Over two 

traces the height variance is not appreciably different 

from estimates of height variances taken on the individual 

profiles. This suggests that the overall variation of 
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heights is important in determining the absolute value of 

intensity, but that the individual facet slopes determine 

the scatter dispersion for strong scatters, and, moreover, 

that a single profile is an inadequate determinant of slope 

statistics. The rough surfaces examined ought to be viewed 

as two-dimensional stochastic processes for purposes of 

signal processing.
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APPENDIX 7

Kirchhoff Prediction and Intensity Scan Data:

Tables and Graphs

TABLE 7.A.I. Prediction and observed intensity 
data for specimen M1T2

Intensity 
scan data

Double
profile prediction

Area
Prediction

0.04060 0.049350 0.047769

0.06020 0.074964 0.073238

0.08030 0.103764 0.101989

0.12020 0.133200 0.131477

0.14400 0.160282 0.158814

0.17970 0.182036 0.180944

0.18160 0.195925 0.195319

0.200*30 0.200300 0.200300

0.18840 0.194631 0.195263

0.18010 0.179621 0.180887

0.16060 0.157043 0.158814

0.14000 0.129522 0.131703

0.11600 0.100048 0.102442

0.08050 0.071558 0.073917

0.06070 0.046512 0.048674

0.04020 0.026575 0.028412

0.02140 0.012489 0.013810

0.01250 0.004087 0.004867
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INTENSITY PLOT WITH 1 ft 2 DIMENSIONAL KIRCHHOFF PREDICTIONS
0
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FIG. 7.A.I. Plots of observed intensity scan with
Kirchhoff predictions: specimen M1T2
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TABLE 7.A.2.

Intensity-
scan data

Kirchhoff area 
prediction

.

0.10280 0.02128

0.13360 0.06750

0.18380 0.09204

0.27010 0.25934

0.39030 0.40280

0.56210 0.56754

0.72950 0.73973

0.89440 0.90269

1.00790 . 1.03884

1.12500 1.13274

1.17360 1.17360

1.12470 1.15643

1.11610 1.08358

1.03660 0.96358

0.91320 0.81049

0.73570 0.64094

0.56410 0.47231

0.42620 0.31938

0.32440 0.19332

0.22370 0.09988

0.14300 0.03969

Kirchhoff area prediction and 
observed intensity data for 
specimen M3T2
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FIG, 7.A..2. Plot o.f observed intensify scan with Kirchhoff 
area prediction: specimen M3T2
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TABLE 7.A.3.

Intensity 
scan data

Kirchhoff area 
prediction

0.03750 0.000470

0.03920 0.006451

0.05750 0.023274

0.09970 0.055429

0.14000 0.105611

0.18130 0.173453

0.26170 0.254953

0.32630 0.342476

0.42630 0.425772

0.48120. 0.493798

0.52820 0.536712

0.54790 0.547900

• 0.54580 0.525463

0.51070 0.472525

o.46640 0.396741

0.40480 0.308688

0.32450 0.219817

0.24440 0.140277

0.18080 0.077213

0.14050 0.033870

0.09870 0.009534

Kirchhoff area prediction and 
observed intensity data for 
specimen M1T1
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INTENSITY PLOT FOR A KIRCHHGFF AREA PREDICTION
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FIG. 7.A.3. Plot of observed intensity scan with 
Kirchhoff area prediction: specimen 
M1T1
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CHAPTER 8

INTENSITY SCATTER DISTRIBUTIONS: SOME

COMPARISONS WITH THEORY AND EXPERIMENT

Abstract

The interaction of a laser beam with a rough surface

was discussed at some length in Chapter X. We now consider

the variation of back scatter radiation: (i) as a function

of the viewing angle with respect to the specular direction,

and (ii) as a random variation at a fixed angle of observa-

tion. Effectively (i) is a curve of mean values whilst (ii)

describes variation about those mean values.

We illustrate these twin aspects in figures 8.1 and

8.2 below for type (A) and type (C) surfaces respectively.

A type (B) surface would occupy some intermediate position.

The theory is extended, to cover cases of surfaces

possessing normal height statistics and non-Gaussian auto-

correlation functions of surface roughness height, as well 

as exploring cases of non-gaussian height distributions, and 

anticipates the applications to the inspection and measure-

ment of surface roughness by optical methods described in 

Chapter 9.

Many, if not most, practical surfaces are non-gaussian 

with varying degrees of skewness.. Closed analytical solu-

tions are sought where possible for non-Gaussian height 

distributions, with a view to resolving the question of 

robustness of parameter estimates at a later stage.)
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FIG, 8,1 Scattering from Tyre (A) very smooth
surfaces

FIG. 8.2 Scattering from Type (C) very rough 
surfaces
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8.1 Probability Distributions of Normalised Output

Recent investigations into specular and off-specular 

back scattering from mild steel, carried out at SIRA, have 

observed the following phenomenon. Namely, that as we 

depart further away from the specular direction, the signal 

level naturally falls but, perhaps surprisingly, the spread 

or dispersion of the scattered field also falls. Frequency 

histograms collated on scatter data become tighter'as the 

viewing direction veers away from specular. (Some examples 

of which are reproduced in figures 8.1.1-8.1.3.) Indeed, 

the data has most variation at the specular angle when even 

bimodal distributions were encountered, although this 

feature was due to the fact that those particular test 

pieces were not flat. The observations are surprising to 

those unfamiliar with speckle theory since intuition might 

suggest that the reverse ought to be true: since the agency 

for off-specular reflection is surface roughness, it ought 

in consequence to be less ’well-ordered’ or more disperse.

Another phenomenon is the observed change in the signal- 

to-noise ratio when a metal sheet is interrogated by a 

coherent and an incoherent source of electromagnetic radia-

tion. Signal-to-noise ratio is defined here as the ratio: 

____ Mean intensity 
variance of intensity

In changing from a coherent source of an incoherent 

source, it is found that the signal-to-noise ratio of the 

back scattered radiation increases by a factor of 2 

Norton-Wayne [1982].

An explanation of these phenomena is sought by the 

application of the beam scattering models of Chapter 4, 

adopting, where appropriate, the approach of Beckmann and

280



COLD ROLLED STEEL STRIP

HISTOGRAM OF SAMPLE LEVELS

MOOAL LEVEL IS:-154

016.08 DEFECT TYPE ROLL MARKS

PROCESS I NG : - NONE

DETECTOR :-SPECULAR

FIG. 8.1,1. Bimodal Scattering in the Specular Direction
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COLD ROLLED STEEL STRIP

HISTOGRAM OF SAMPLE LEVELS

MODAL LEVEL IS:-134

o MODE CELL CONTAINS 4824 SAMPLES-
T

OJ oo_

C16-08 DEFECT TYPE:- ROLL MARKS

PROCESSING:- NONE

OETECTCR:-5 DEG OFF-SPEC

FIG. 8.1.2. Off-Specular Scattering Tending Towards
Negative Exponential
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COLD ROLLED STEEL STRIP

HISTOGRAM OF SAMPLE LEVELS

MODAL LEVEL IS183

MODE CELL CONTAINS 6948 SAMPLES •
00

SAMPLE SIZE

C21.26 OEFECT TYPE;- ROLL MARKS

PROCESSING:- NONE

DETECTOR:-30 DEG OFE-SPEC

FIG. 8.1.3. Tight Negative Exponential Distribution of
Off-Specular Scattering
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Spizzichino [1963]. Pa.g e references are to their book 

where the quoted equations may be found and further justi-

fication of such results is available. Firstly a qualita-

tive discussion is given to reconcile frequency histograms 

with theoretical distributions.

"Outside a narrow cone (or wedge) about the direction 

of specular reflection, the amplitude of the field scattered 

by a rough surface is always Rayleigh distributed; if the 

field is very rough and grazing incidence is excluded, the 

amplitude of the scattered field is Rayleigh-distributed 

everywhere” p.110.

(The Rayleigh distribution, is described and some 

formulae derived in Appendix 8A.)

It is simpler to treat the cases of specular and off- 

specular scattering spearately.

Off-Specular Scattering

As stated, the amplitude distribution of the off- 

specular scattered field is Rayleigh-distributed. Intensity, 

being squared amplitude, thus follows a negative exponential 

distribution (s.eze Appendix 8B for the mathematical justifica-

tion). We can now. begin to understand the previously 

observed histograms. Theory asserts that they are negative 

exponential, and there is good visual agreement with this 

assertion. Moreover a goodness-of-fit test scientifically 

supports this hypothesis. Also as we move further away from 

the specular direction, with an accompanying falling mean 

intensity level, the negative exponential distribution would 

impose an equal fall in intensity variance and so give rise 

to tighter and tighter histograms.
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Specular Scattering

Very Rough Surfaces : Type (C)

As previously remarked, when the surface is very rough

the amplitude of the scattered field is Rayleigh-distributed 

everywhere. Nevertheless the specular direction is preferred 

which,

—=» larger mean signal level,

■■■'■ > larger signal variance.

Thus the intensity distribution would be negative 

exponential with greatest spread in the specular direction. 

Diagrammatically:

FIG. 8.1.4. Neg. Exponential Distribution

Smooth Surfaces : Type (A)

For weak scatterers the amplitude distribution of the 

scattered field in the specular direction will not be 

Rayleigh-distributed. In fact, for non-grazing incidence, 

’’the amplitude of the field scattered in the specular direc-

tion has a constant coherent component and a random, Hoyt- 

distributed component”. Beckmann [1959] and Appendix 8C). 

When the surface is very rough the latter component becomes 

incoherent (Rayleigh-distributed) and the former vanishes.
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For this Type (C) situation: 

the field (if any) is always

"In the non-specular directions 

incoherent.” (Beckmann [1963]

p.151.-)

FIG. 8.1.5 Amplitude Distribution

The constant component can broadly be considered as 

arising from the first order statistics of the surface, 

whilst the mean value of the random component is attributable 

to the second order statistics, and the speckle variation 

about the mean is due to the surface microstructure. In 

Chapter 9 we emulate other workers (e.g. Chandley [1976] 

in trying to separate these components when estimating 

surface roughness parameters.

As roughness increases, the random component of the 

intensity distribution tends to the limiting case of the 

negative exponential distribution. The distributions are, 

for all grades of roughness, highly positively skewed. 

Figure 8.1.6. below illustrates these remarks.

The variance increases to a maximum as k^l (see p 

for definition of k) in agreement with arguments applied by 

Beckmann [1963] (p.150)
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We have explained that in the specular direction 

intensity variance increases as roughness increases, and 

that this variance exceeds all off-specular variance in the 

limit.. The discussion above is now augmented by returning 

to first principles and re-examining mean values.

The total field scattered by a rough surface is neces-

sarily the sum of mutually interferring elementary waves.

U = re1’*' = “ A.eUj ....(1) (p.120)

j =1 J

where r, 1 are the resultant amplitude and phase of the 

scattered field and A., b. correspond to amplitude and phase
J J

of n elementary waves.
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Writing x = ^,(U) and y = (U) , so that r2 = x2 + y2

and taking n, to be large enough for the Central Limit

Theorem to apply, x and y can be shown to be normal distri-

butions with mean values a and and variances £1 and 2

(say) respectively.

(Refer to Chapter 7 of Beckmann 

referred to earlier is /s 2/s1.)

F

J 

[1963] .

. . . .(2)

The parameter

b

1

k

Whence E(r2) = E(x2) + E(y2)

Ot2 + Si + B2 + S 2 ...(3)

Moreover, if the distribution of phases is symmetrical about

zero (a reasonable assumption), then 3=0 and x and vV are

normal variables,

independent.

In the specular direction each elementary wave has a 

randomly distributed phase according to

b = ^y^(x) cos6i ....(1) (p.150)

Thus if z, the height distribution, is normal, nhen the 

phase distribution brought about by the surface variations 

is also normal.

Take, z~N(o,a 2) i.e. the height distribution is
2 2 -2 

zero-mean normal with variance ^z. If we take b~N(0,*^b) a 

relation between ^z and ^b is easily estaolished via (5), 

namely

o2 = cos261 c2 ....(5)
a) ( A

2
To ease the notation the suffix b is dropped from ^b 

from now on.
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We novi refer to Table 7.1. p.123 of Beckmann [1963] 

which lists expressions for a, si and s2 under the normal 

distribution for b, viz

a S 1 S2

n e
n /, -a2 \ 22 (1 ' e )

n -2o\
2 (1 - e )

Thus E(r2) = a2 + Si + s2

= n2e"° + n/2(l - e ° ) + ~(1 - e )

= n2e_<j2 + n/2(l - 2e"a2 + e_2°2) + 2.(1 - e'2tt

= n2e"° + n(l - e"° + e 20 )

n2 ( = smooth surface) 

n (e rough surface) .(6)

Since,
- o z

for a smooth surface e -> 1 whilst for a rough

surface

Also V(r2) = 2(2ct2si + Si2 + s22) (c.f. Appendix 8E)

= 4n2e-°2a(l - e-°2)2 + 2^(1 - + 2^(1 - e’2^)2

= (1 - e-a2)2{2n3e-°2 + n2/2(l - e’0')2 + A(l + e-c2)2}

= (1 - e_(j2)2{2n3e'C’2 + n2(l + e"2°2)}

’2n3e’Q (1 - e”C ) +o (E smooth surface)

* n2 (= rough surface) ••••(?)

The limit of V(r2) depends on the dominance of powers

- a2
of n and the decay of e

The case of a rough type (C) surface is easiest seen
2

with e $ ->o and E(r2) ->n and V(r2) ->-n2.

N.B. E( r2) ->n, V(r2) ->n2 is in agreement with the intensity 

( = amplitude squared = x2 + y2), behaving as a nega-

tive exponential distribution, or with the more funda-

mental result, that the amplitude distribution is

Rayleigh:
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2r -r2/n
n

....(8)

Combining the above ideas, we see that theory sub-

stantiates that moving away from the specular direction has 

virtually the same effect as increasing the surface rough-

ness, with regard to the intensity of the back scattered 

radiation: the variance falls in unison with the mean 

level.

8.1.1 Signal-to-Noise Ratio of Reflected Output 
from a Rough Surface

Expressing the signal-to-noise ratio, S/NR, ratio 

of the mean intensity to the variance of the reflected

E(r2 )
signal : S/NR = , for a rough type (C) surface

this measure approaches

E( r2 ) . n _ 1
V ( r 2 j n"7" n

For- a smoother type (B

E(r2)
V(r2)

2 -a2 
n e

* 2n e"°2(l -

* k

that is for a surface which

nevertheles
-o2 .

s e is small.

surface, mathematically V(r

....(9)

surface,

e“a2f = 2n(l - e”a2)2

.... do)

is relatively smooth but

Clearly for a super smooth

) + 0, with the surface

noise tending to zero.

S/NR (smooth surface) _ y—~ 1
S/NR (rough surface) 2 (1 - e a ) 2

The practical implications of this result are 

discussed in the next chapter.

The arguments presented thus far concern the 

extreme changes in signal-to-noise ratio (S/NR), as 

defined, solely brought about by extreme changes of
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surface roughness. The nature of the illumination

was taken to be a coherent monochromatic source. For 

a type (C) surface: the surface roughness produces an 

incoherent scattered field from coherent illumination,

the total scattered power from n facets is n and the 

intensity of the speckle pattern is negative exponential 

for all viewing angles.

Consider now the result of white light illumina-

tion. Such an incoherent source implies that the

scattered field is summed algebraically and not vector-

ially so that scattering behaviour is described by the 

simple- facet model. For n scattering facets, the total 

scattered power is again n. At a particular observation 

angle the mean intensity is directly proportional to 

the number of facets inclined at the appropriate angle. 

(A Poisson random variable with mean p = np say.) The

mean intensity u is the same as for a coherent source

of the same power output.

S/NR (coherent) _ ~/l \ _ 1 _ 1
S/NR (incoherent) \ ^1/ nP ....(12)

Thus we have an improved S/NR consistent with the obser-

vations of Norton-Wayne. Formulated in terms of the 

speckle contrast, (SC say),

SC (coherent)
SC (incoherent)” =

i.e. a reduction in the speckle contrast.

8.2. Modelling of Scatter from Rough Surfaces with 
Non-Gaussian Auto-correlation Functions

As in Chapter 4, formal scattering theories are 

based on the assumption that the autocovariance func-

tion of surface roughness height, B(t), is of the form
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B(t) = o2e” where T is the correlation length.

In practice, however, it is doubtful that any real 

surface has such an autocovariance function. A nega- 

tive exponential : B(t) = a2e is commonly

encountered. (c.f, ,Chapter 6) although the curve has 

to be modified in the vicinity of T=0), so that the 

distribution of slopes has finite moments. The nature 

of possible modifications is discussed so as to be 

compatable with both theory and experimental observa-

tion of scattering, as well as with mechanical profile 

considerations.

For a surface defined in terms of the following 

surface statistics:

surface roughness height, Z~D(0,o2), 

autocovariance function, B(r) = a2e ,

the variance of zf (the random variable of surface 

gradients) is infinite (c.f. Appendix 81). The facet 

theory of scattering described in Chapter 4 (which is 

based purely on z’), when applied to such a surface, 

would predict a wide dispersion in the reflected field, 

even when the surface is optically smooth (Type (A)). 

The singularity of the variance is due to the feature 

of the autocorrelation function of the origin. A 

slight smoothing of the autocorrelation function 

dramatically alters the position: the mathematical 

infinity can be removed and a finite slope variance 

can be achieved. [An analogeous situation is the 

infinite stress computed at the corner of a square 

window cut in a panel sheet. The introduction of a 

small curvature in the window design at the corners, 

reduced the stress and the concomitant metal fatigue.]
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Such smoothing is achieved if, for example, the

following autocorrelation function obtains:

C(t)
1 - (1 - e’lT^T), 0<|t|<£

I Ae BITI | tI>1

...(14)

where A =

and 1<<T, the constants A and B being derived from 

continuity considerations.

The argument for such a model, is that the nega-

tive exponential portion fits actual computed auto-

correlation functions of surface heights, whilst the 

local, quadratic portion near t = 0, preserves the 

concord between the facet theory and wave theory of 

scattering, for those surfaces where geometrical 

optics would be expected to provide a sufficient 

explanation of observed scatter. To be meaningful 

however, the case for such a model must be made on 

mechanical grounds.. Let us consider for the moment, 

how a surface is generated in say a grinding or roll-

ing operation. The deepest grooves are cut by large 

random grits, with the displaced material being pushed 

to the. rim of the grooves. The height variations for 

large lags retains the essential Poissonian nature of 

the cutting process, with the associated exponential 

decay curve, whilst the smoothed variation for small 

lags is explained in terms of metal flow.

The resolution of the sampling (a 2y or 3u samp-

ling interval was employed) is not sufficient to 

determine autocorrelation behaviour at the truly micro 

level. Indeed stylu.s geometry prohibits valid objec-

293



tive assessment of the model. A two-structure auto-

correlation function is accepted as being more reason 

able in concept, than to suppose that a simple global 

model exists.

Whitehouse and Phillips [1978], [1982] have

proposed a variety of extremely complex mathematical 

functions which exhibit the above autocorrelation 

characteristics 

viz C(t) = sech — A2(9) cos (2ittA2(9))

Such functions have the virtue that the change 

of form is internally imposed by preset parameters, 

whereas for a two-part function the change is defined 

externally, and, moreover, at the interface there must 

be some discontinuity of higher derivatives. Against 

this, we advocate that the different mechanisms involved 

in producing the surface topography, support the notion 

of a two-structure function, provided essential auto-

correlation properties are preserved.

PTC-. 8.2.1. Typical ACF
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FIG. 8.2.2. ACF near t = 0

8.2.1. Rough Surfaces

For a surface with normal roughness heights, the 

distribution of derivatives is:

w(z,) = 757 tH exP ('iZ 5o2) ’ which 
leads to p(9) = • 2 exp (-^ ) > the

information required by the facet scattering theory. 

The predicted scatter distribution about the specular 

direction is Gaussian with variance 8o2/£T.

For the Kirchhoff wave theory we need to calcu-

late:
/ e”g” C(t)J cos(v T)dT

o

For a Type (C) surface g>>l, the only significant 

contribution to this integral is near t = 0, 

when C(t) = 1 - ~ (1 - e T/^).

then 1(0) = J e"gT2'/{'Tcos(vxi)dT

/It f2 Fn , v 2s,t^

exp (--vb
After some algebra we eventually obtain

I(B) ~ L i/ToST exP(~15p) ’ ....(16)

X
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with the two theories compatible. With reference to 

Chapter 9.3) the geometrical surface roughness para-

meter convolved in the intensity formula has been 

modified to a//£T. The ratio. still has the 

dimensions of ’slope1 but would require some re 

interpretation

Postulated Autocorrelation. Functions

Essential and obvious properties of C(t) are

that: (i) C(-t) = C(t) ,

(ii) C(0)

(iii) C( ~) = 0

although these do not in themselves constitute a

NS set of conditions for a function to be an auto-

correlation function (we shall make reference to this

1 f

remark later).

The following model autocorrelation function has

been proposed:

C(t) = -
A -BT
Ae

e”Ty/T) , o < t < £

T > £, £ < < T

1

A and B >0 and for negative t, C(-t) = C(t).

Near t = 0, C(t) behaves as 1 - t2/&T, i.e. locally 

quadratic with C(0) = 1, C’(0) = 0 and C”(0) = -2/&T. 

For large t, positive or negative, C(t)^0 brought 

about by the negative exponential decay. Thus pro-

perties (i), (ii) and (iii) are satisfied. The 

constants A and B are determined from elementary 

regularity restrictions, namely the continuity of 

C(t) and C’(t) at the point t = £.

Continuity of C(t) implies
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whilst continuity of the derivative C’(t) implies

+ 1
' T

2
T (correlation length T/2.)

Back substituting,

e(e8'^T - 1 + J>/T) e-’-/T

The precise function is therefore

This function must also obey certain consistency 

relations in order to fulfil autocorrelation proper-

ties : a NSC that C(t) is an autocorrelation function 

is that C(0) = 1 and C(t) is a positive semi-definite 

function.

In particular the property

C(2t) > -1 + 2[c(r)]2 is essential.

We now investigate the proposed function with 

regard to this restriction.

Case (i) 2t<£

C(2t) + 1 - 2[C(t)]2 = 1 - y- (1 - e‘2Ty,T) +

1 - 2[1 - 2. (j. _ e‘T/T)]2
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(1 -

+ e"2Ty/T + 2 -2e"T//T /0 J. 2t -t/T ,
- t/£ + —+

Z
e’2T/T)

2t
£

[i + (1 - t/Z )
-2t/T

e

2t
£

(1 - ?/£)
2e'T/T +

2t
£

(1 - t /z ) (1 -
e-T/T)2

s-2t/t]

> 0 (T<z)

Case (ii) t>£

C(2t) + 1 - 2 [c(t)]2 a -2Bt Ae +
1 - 2[Ae'ST]Z

(2A2 - A) e’2BT + 1

. _ . 2 a \ -2B£ , -n> - (2A2 - A) e +1, taking 2A2 - A>0

(otherwise result is trivial).

2e-2VT

2e-2VT

A-h'2^1 + 

l-e*/T 
e

1 (appealing to W )

-22./T
x e +1

2e-2VT el-(! + H/T + £2/T22! + •••)x e-2H/T + 1

-2£/T i -VT - 
e k e

£2/T22!

e-2X./T - £/T- ... -2)

1 +

1 +

+

+

+

’* *-2)

'v 1 (1 + £/T) (1 - 2£/T) small £, large T

1 1 - £/T + 2£/T + 2£2/T2

£/T > 0

Case (iii) 2t>£>t

C(2t) + 1 - 2[C(t)]2 = Ae"2BT + 1 -2[i
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Ae"2BT + 1 - 2 + —• (1 - e’T//T) - (1 - e”Ty/T)2

= x eL2T/i (gVT -i> - 2T/T] - 1 + Al (1 - e^/T)

Using just order approximations,

p VT Y -2t/£.j>/T - 2t/T , , At t 2t2
X _1 T T “ F~

A/T s-At/T _ + iT2/j>T _ 2t“/«.2T2

■v (1 + J./T) (1 - 4t/T) - 1 + At2/£T

= 1 + «./T - At/T - Ut/T2 - 1 + 4t2/«.T

= pjr (I2 - A At + At2 )

= pp (JI - 2t)2 > 0

In summary, we may now confidently assert that 

the function C(r) defined explicitly by (11) is an 

autocorrelation function. It is primarily negative 

exponential but the cusp at t = 0 has been smoothed off.

This simple modification, effectively removes a singu-

larity in the variance of the derivatives of the stoch-

astic process, characterised by negative exponential 

autocorrelation functions.

We now crystallise the discussion in a search for 

a model autocorrelation function which satisfies the 

following properties and conditions:

(i) obvious end conditions

C(0) = 1 ; C(») = 0

(ii) statistical consistency

C(2t) > -1 + 2[C(t)]2

(ill) data characteristics

macro scale - negative exponential
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(iv) permits compatibility of scattering models 

micro scale - local quadratic near t = 0.

(v) consistent with the dispersion of the 

scattered laser beam

-C'f(0) 2/T2 (T = correlation length)

(For rough Type (C) surfaces, the dis-

persion of the scattered field is a 

function of the curvature at lag 0 of the 

autocorrelation curve c.f. Appendix 81.

=> robustness of the a/T statistic 

estimated in Chapter 9.

This set of conditions, although imposing, is not

sufficient for a unique model. Initially we look for 

a solution of the form : C(t) = e and using

(1) - (v) try to find a suitable function y.

Write y(t) = (t/T)^T\ Then for (iii) and (iv) 

to be satisfied we require j3(r) 1 macro scale, and

the two-scale model

Z
....(18)

Z

t) 'v 2 micro scale. Accordingly

below is proposed.

C(r) =
for t <

-t/T 
e

for t >

with |3(£) = 1 to ensure continuity of C(t) at t = Z.

The problem is in fact to find a 8(t) with all the

desired properties.

Returning to the form C(t) and differen-

tiating we obtain the expressions

C’(t) = - y ’ (t)e’^T, and

C”(t) = - y"(t)e~y(+ [y’(t)]
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From (i) y(0) = 0 and from (iv) C’(0) = 0 => y’(0) =0.

Further (v) C"(0) = - |-2=*Y"(0) = 2/T2.

For continuity of the derivative of C(t) at t = £

we require yT(£) = y.

With y(t) = (t/T)^^T\

log [y(t) ] = 3(t) log (t/T)

-Xy y'(t) = B'(t) log (t/T) + B(t) . i

Y'(T) = B'(t) (|]6(T)log (xj + B(t)1

For y’(0) = 0, 6(0)>l will suffice, whilst for the 

condition y’(£) = 1/T, we have

Y'U) = B'(t)> and 

therefore this condition is met by B(&) = 1 and 6’(£) =0.

Also y"(t) = B"(t) B(Thog + g>(T) S(t)L +

B'(t)y'(t)log yj + B ' (t)i^ +

6(t)1 A (LpW-1
1 /t 1 1 ,rT\B(t)-l

Last term = B(t)^{(B'(t) - 0) log + (B(t)-I).-} y|

There are several indeterminate terms on the R.H.S. for 

y”(0), but for t->0, positive powers of t ensures zero 

limit valu.es despite the presence of log terms.

Then y"(0) = B(0)y{B(0)-1}.|.l if 8(0) = 2

= 2/T2 (recall (v))

To date we have: 3(0) = 2;

0(£) = 1;

B’(£) = 0
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FIG, 8.2.3. Power Function 3(t)

The simplest function which comes to mind is:

( t _ 9 )
3(t) = 1 + -—^"2", and this satisfies all the con-

ditions except (ii). To satisfy this condition and 

to achieve the necessary autocorrelation property we 

require |3(t) to have fhe form shown below, i.e. (3(t) 

should decrease very rapidly near T = 0.

FIG. 8.2.j. Power Function 8(t)

3(t) = 2- (1 - (T )/m for a sufficiently large

m would work. (if we surmise t^lum, m may be taken 

as 10. )
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To summarise the autocovariance function

B( t ) ♦ T £ £

, t > £ .... (19)

could give rise to observations described in Chapter 6 and 7. 

B(t) is seen as a mathematical model to a real-life

function: it fits the observable portion of a real- 

life curve, whilst the unobservable, unsensed portion 

is modelled on the basis of purely deductive arguments.

FIG. 8.2.5. Model Autocorrelation Function

exponential

Influential zone ofInfluential zone for rough

Type (C) surfaces. Facet

and Kirchhoff theories con-

moderately rough Type

(B) surfaces. Facet

verge. and Kirchhoff diverge.

1(3) oc
(see 
over)
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From the wave theory of scatter applied to surfaces

with normal distribution of height, we may write

1(3) re-g[i - c(T)]
7 0 cos(vxT)dr for g>>l . ...(20)

(for g -10

small)

certainly.)

and large T

For near specular angles

we may further approximate to :

00

1(3) °C v t ) dr
X

..(21)

treating the autocorrelation function as a pure nega-

tive exponential (£, extremely small), and assuming 

that the degree of roughness is sufficient for saddle-

point integration to be valid. The full treatment for 

the scatter arising from a surface with negative expo-

nential autocorrelation, may be found in Appendix 8G 

at the end of this Chapter.

The intensity graph for very rough surfaces is 

based solely on knowledge of the autocorrelation proper-

ties at t = 0 and is described by a gaussian curve: 

for less rough surfaces the intensity graph, based on 

a negative exponential type of autocorrelation has the 

form of a Lorenzian curve. We note that the latter 

'variance1 term is g/4 times the former. In which case, 

we should expect to see the Kirchhoff model predicting 

scatter dispersion /g/2 times larger than that predic-

ted on the basis of the facet theory.

This affords a possible explanation of apparent 

paradoxical scattering phenomena (c.f. Chapter 4), 

namely a smoother surface producing a wider scatter,
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FIG. 8.2.6. Scattering from Rough Surfaces with C(t) 
autocorrelation function

with the order of the increase in broad agreement with 

a /g/2 ratio.

8.2.2. Smooth Surfaces

The scatter distribution obtained when a laser 

beam is directed upon a ground glass mirror surface, 

at normal incidence, has been studied at the SIRA 

Institute by Dr L Cox. His work hopes to correlate 

scatter distribution characteristics with surface 

characteristics, such as the type of coating applied 

to the surface, and the surface texture of the surface 

layer, in terms of grain size and homogenity, as seen 

under a microscope.. Certain empirical observations 

have been, drawn from the experimental data. Does the 

Kirchhoff theory of electromagnetic scattering, (i) 

support these conclusions, or (ii) provide alternative 

models to fit the data?

The Experimental Scatter Distributions

A typical result is presented in figures 8.2.7, 

8.2.8. Figure 8.2.7. is a plot (on log-linear paper) 

of the logarithm of intensity against observation angle.
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0 degrees

FIG. 8.2.7. Log (intensity) versus angle plot (off 
specular scattering)
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The angle of incidence 9i = 0°, whilst 92, the off- 

specular angle of scatter, varied as monitored between 

5° and 40°. Figure 8.2.8. is a plot of the logarithm 

of intensity against cosec29 and a straight line pass-

ing through the origin has been fitted to the data.

Simple intuitive arguments advanced, are that near 

the specular direction (92 -*0°), the asymptotic 

approach is as i^2. In this vicinity, cot2 92,v|-2 

But 1 + cot29 and thus cosec29 broadly exhibits the 

behaviour of the log (intensity) plot of figure 8.2.7.

The Theoretical Scatter Distribution

We now suppose that the distribution of surface

heights has zero mean, variance a2, and autocorrelation

function C(t). Furthermore, taking the surface height

distribution to

T / A \ _ F2 iv
I ( 92 ) = — J Q x

— L

be normal, the off-specular intensity

....(22)

surface 

case of a

two-dimensional rough surface is dealt with in Appendix

8H. )

CO

e”gI (gC(T)}m dT, 
m=l mJ

. ... (23)

on using the power series expansion of the exponential

function. For a very smooth ground glass surface g<<l, 

we may approximate by taking only the leading term.

Therefore:

I(92)
/ e^VxTC(T)dT

-L

x
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In other circumstances, this provides a useful formula 

for estimating G(t) from intensity data (c.f. Chapter

-T2/T29). The Guassian function C(t) = e 7 leads to a 

broadly quadratic log (intensity) graph which does not 

agree with observation. However, recalling our 

previous discussion, C(t)’s are typically of the form 

illustrated in Fig. 8.2.1. - a rapid fall within a lag 

of one micron, followed by a slow negative exponential 

decay, we formulate the mathematical model function 

shown:

FIG. 8.2.9. Model Autocorrelation Function

The model function is the composite of an impulse 

at the origin, representing the micro component, and 

a negative exponential function of large correlation 

length representing the macro component.

Evaluating 1(62) we have,
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ge-gg{^-(e
X

1 / iv £ 
—( e x e"ivx£) + Ai f 1 (_

iv -1/Te x 
x

(iv -1/T)t1L
.X.

■ £

+ Ai 1
(iv +1/T) 

X

. (iv
e x +1/T)t]-£}

• -L

tti2 „ 2sin(v e)
L-e"g^{______a __

2L gt v
x

+ Ai.
-(ivx+i/T) (lv 1/T)L (iv -1/T)£1

V 2 +1/T 2 e x -ex )
x

-e

+ Ai 1
(iv +i/t;

A.

‘ -£
}

J -L

p2
= 2Le 8{

2sin(v e)
x

v
X

+ Ai.
-(iv +1/T)
v.41/T2
x

(eivx-l/T)L_e(ivx-l/T)£)
-e

+ A i
(-iv +1/T)

v Z+1/TZ
X

(e-(ivx+l/T)e_e-(ivx+l/T)L)}

f?2 ~£T

2Le
2 sinv £

X
V
X

+ A i7 2+i/t2
x

X (Me £//T2cos(v e)
i x -e

For large

i(e2)

Where B

+

L

V
X

— o

and £ small

F2 -o- ,
2L® =g U +

ge-gg£(l +

g-e-Sgea -

-

we may write:

Ai ,1 2
v 2+l/T2 4 ’ V)} 
x

2
- . _ X ) ,
v 2+l/T2 J 
x

Ai(1he

Ai +
v

-V

I/TeII/T2-)
2 +1/T 2 

x

+ v 2+l/T2J
X J

Then log[l(Q2)J - Constant -cr o + 10S g + - 2+B1/T2 • . ..(25)
X ' '

310



Away from the specular angle, v is sufficientlyX

dominant for the first order approximation to be valid.

The variation of log (intensity) is governed by the 

behaviour of v 4^2 “

That is a near linear relationship with cosec202«

8.3 Scattering from Rough Surfaces Possessing Non-Gaussian 
Distributions of Surface Profile Height

In addition to expounding the case of light scattering 

from rough surfaces, when the surface statistics are normal, 

Beckmann and Spizzichino [1963] formalised a procedure for 

dealing with the general case. However, on leaving the 

sanctuary of the normal distribution, the mathematics 

becomes more involved, and additional assumptions concerning 

the nature of high order moments and correlations, need to 

be made. A few simple cases, whereby the surface statistics 

are summarised by straightforward characteristic functions, 

or failing that, when the moments of the surface height 

distribution are readily compiled, are explored.

The following discussion is restricted to

surfaces possessing one-dimensional roughness.

the case of

The govern-

ing equation for the

I(92) = POX<VZ)X*(VZ

int ensi

2L}T

ty distribution is therefore,

elvxT[x2(vz>vz;T)-x(vz)x*(va)]dT

.♦..(26)

+

(c.f. equation (36) p66)

Furthermore of prime interest, with regard to applica-

tions, are the very rough Type (C) surfaces with g = o2v 2>>1, 
z

for which the leading term together with the second term in

the integral are negligible. The methodology is to propose, 

if possible, a suitable Xz(v ,-v ) for some specified height 
z z 
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distribution and to evaluate the subsequent integral by 

’’saddle-point” integration, whereby the autocorrelation 

function is approximated by a local linear or quadratic 

curve in. the neighbourhood of t = 0.

In simple cases the intensity graphs are sketched; 

others, involving advanced mathematical functions, would 

require numeri.cal computation.

8.3.1. Surface Height Distribution : zero mean, 
negatively skewed, exponential

Height distributions, based on real data, are 

often negatively skewed (worn surfaces, plateau-honed 

surfaces, etc.), and so we transform the usual p.d.f. 

to accommodate this fact.

FIG. 8.3.1. Negative Exponential Distribution

w( z)
X > 0

For this p.d.f., we have

x(vz) = E['eivzz]
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X
X+iv

z

iv / X 
e z

X(vz)x*(vz)

X2
= X2+v '2

z

1 + v 2/X2
z

....(27)

1 7But —2is the variance of the distribution = o ana
X

introducing g = a2v 2 as usual, we may write
z

X(vz)x*(vz) 1
1+g

. . . (28)

X 2 ("^ ;t), the joint characteristic function
z z

was postulated to be ~c( t  ) j s^-nce we certainly

require in general that limx2(v ,-v ;t) = y(v )x*(v ) 
tO z z z z

as a necessary condition on X2(v ,-v ;t). This form of 

bivariate characteristic function is substantiated in

Johnson and Kotz [1972^ p.260

f(xiX2) = oioji-p1) exP l-P 01 ^2
-r 2/p /X1X2\

....(29)

is a bivariate distribution with negative exponential 

marginals and correlation p (c.f. Appendix 8F). (See 

also note on Moran's bivariate exponential distribution 

Johnson and Kotz [1972J .
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If C>1 = 02

Then y2(v ,-v ;t)
Zj -u

1
’ l+g[l-C(T)j ....(30)

Then for Type (C) surfaces g>>l, we have

-L

eivxT dr
1 + g[l-C(T)J

....(31)

We now proceed by
—T2/T2

taking C(t) = e

the Gaussian model form of autocorrelation much favour-

ed in the past. Whence,

2 r00 cosv TdT 
l(92) ~ 2Lj l+gx^/T2

-CO

....(32)

-vxT//i

vxT//g

v >0
X

....(33)
v <0
x

(c.f. Gradshteyn and Ryzhik’s tables of Integrals Series 

and Products.3.723(2) p.406)

ttF2T - ( T/u) tan§/2
4l7g e
kF2T e (T/o)tan3/2 

,4L7g

S>0
....(34)

S<0,

FIG. 8.3.2. Scattering from Type (C) Surface - Neg. 
Exponential Height Distribution '
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The intensity is a two-part function about the 

specular direction and has a cusp point in that 

direction. Clarke and Thomas [1979] show just such 

a cusp plot, obtained from a scanning instrument. 

The curve differs considerably from the Gaussian form: 

1(82) = ^7g|T| exp(-vx2T2/4g) ....(35)

when normal surface statistics are deemed appropriate, 

(c.f. case (6) Chapter 1.) In either situation the 

curves are completely specified by /g/T or more 

appropriately by o/T, a profile mean slope parameter, 

in keeping with the approximation to geometric scat-

tering for rough Type (C) surfaces (c.f. Chapter 4).

Measurements of half-widths of the intensity curves 

should correlate with this parameter (c.f. Chapter 9).

Again, in practice, autocorrelation functions are

more often modelled by C(t)

COSV T
X

which would lead

to

i(e2)
( COSV T

- ' X
} 1+gr/T

dr
1-gT/T

+ r

„2 f00 COSV T ,F x dr
L h l+gi/T

= T~- [-sin(vxT/g)si(vxT/g)-cos(vxT/g)ci(vxT/g)p
....(36) v >0

• X

(l(02) for negative v - appeal to symmetry.) (c.f.

3.722(3) p406 G, and R.)
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8.3.3- Surface Height Distribution: zero mean, 
negatively skewed, gamma

w( z )

jcheck

Put

FIG. 8.3..3 . Gamma Distribution

x[x(ba - z) ifhdMklsfl
H's!

rB/X r
J X[.X(|3/X-z)
— co

8
A

- dz =

*7 Zj

d§

z< (3/ X 

z>8/ X

jB-1s-X(BA\ -z)dz = G say

. 0

3

9

9

Then
G = /“\

o

In this case x(v )
z

e-X(B/X - z)eivzz dz

eivF/X r

T(TF I
B-le-(ivz+X)§d§

(iv + X) [(iv + A)3p_1 -(iv
Z Z “

r(8)
+ x)§

d!

XgeivzS/X 

f1 +

[1 + vzz/Xz]6

1
D + g/8|8

. . . .(37)
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The gamma distribution is less 'extreme' than 

the negative exponential and perhaps would provide a 

better fit to more modestly skewed real-life height 

distribution data.

If we pursue a similar analysis to the previous 

case, we suppose

Xa (, -vz ; v) = p”+ gB(l - C ( t ))] 8 ....(38)

replacing g by g(l-C(T)) as before. Kibble [*1940] 

quotes a bivariate gamma distribution with gamma 

marginals of order p and correlation p, namely

P ^(xiX2)^ ^exp - (xi 1x2)

f(xi’X2) = FCp)'(i-p) L i-p .

T 2/^ /X1X2
Tp-1( 1-p )

which we can generalise to

f(xi,x2)
r(p)(i-p)

r -Vxi + x2)
1 (i-p)

...(39)

The characteristic function, in this case is

...(40)

This could be deduced^- directly, following a

precisely similar analysis to that portrayed in

Appendix 8F, or by reference to the work of Moran 

[1969] . Work ing with the parameter g as usual, we 

have X2(vz,-vz;t) = n + ^8(1 - C(T)j}g as Postulated-
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Then l(02) = /L
-L

iv T ,
e z____  dm

(i + g/e u - c(t)])e

iv T 
e x____________________dm

(1 + g/S.Tz/T2}0

(0W =

F
L ro

COS(V T) ,
x dm

(1 + g/8.T2/T2)B

1 - t2/T2 etc.)

Available from Gradshteyn and Ryzhik’s tables

integrals are a number of special cases:

(i) 3 = 3/2 (c.f. p.472 3.876(5))

. .. (41)

of

I(92) FVL
cos(vxt) dT 

(1 + 2gTz/3T2} . .. (.42)

rp 3 -v e x/3T//2Z ♦< v >0x ...(43)

v /3T//2g 
ex ° v <0

X

which gi ves a similar output scatter diagram to the

previous case.

(ii) 3=2 (c.f. p.410 3.729(1) )

_ . .co

I(92)
COSV T ,

x dm
{1 +gT2/2T2}2

ttF2/2T
8L/g"

(1 e-vx/2T//i
. . . (45)

s

ttF2/2T
8L/g~

(1 v /2T A } evx/2T//g

(iii) B = n (positive integer) (p.413 3.737(i))

i(e2) ’ 2L h
cos(v t) ,

______  x dr 
{1 + gTz/nT2)n . . . . ( 46)

co

-co
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FIG. 8.3.Z-* Scattering from Type (C) Surface -
Gamma Height Distribution

order j_,e, the exponent varies as /B". The

local behaviour in the specular direction is quadratic, 

the curvature being proportional to 3.

N.B.. /Bv T//g* /Ft/(2o)0 = off-specular angle) and for
X

large 3, the gamma distribution tends to the normal, as
X1 • rl + gT2/T2 1 “gT2/T2 T . T J X XT

the expression t— (3 ---e which leads to the

Gaussian output curve.

8.3.3. Surface Height Distribution: zero mean negatively 
skewed, transformed Chi-squared

FIG. 8.3.5. Chi-Squared Distribution of
Surface Heights
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w( z)

•(v.z)v/2-le-(v-Z)/2

1 2V^2r(v/2)
Z < VI

0 Z > V ,

/ x -(v-z)/2 iv z ,
y(v ) = I (v-z) e e z dzZ L 2^2r(v/2)

Put v-z = ip then

2v/2r(v/2)

iv v e z
J" ^/2-le-(l+2ivz)»/2dtb 

o 2v/2r(v/2)

iv ve z
[l+2ivz]V/2

r
0

.v/2-1 -<t>/2
b e dtp

2v/2r(v/2)

1

b = (l+2iv )ip 
z

iv v
[i+2i/r/2

1
X(vz)x*(vz) = [1 + 4Vz2]«/2 ....(49)

For the Chi-squared distribution o2

propose

= 2v and so we

1
that X2(vz,-vz;t) = ■ ~ g*(17C(Ty)/4

z ....(50)
F2 f°°

Whence I(02) = 2L J

—00

COs(v t) n . XI
_________ x dz, using the 
riuv

z J

same

Then

methodology as before.

1(02) = ¥■ / cos(v t)A"°2t2/T2 dT

L o x

cos(v^t)exp(-a2T2/T2logA ) dr

I<».) .

/ttF2T
Lo exp

exp

-v 2T2
/ x x
klo2log A 7

-Vx2T2 v
^aTlog[l + 4vz2y ....(51)i. e.
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FIG. 8.3.6. Scattering from Type (C) Surface -
Chi-Square Height Distribution

8.3.4-.. Surface Height Distribution : zero mean 
negatively skewed, Rayleigh

FIG. 8.3.7. Rayleigh Distribution of Surface
Heights
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w(z) = '

( ~ / 7"o \ - ( o/m/2 -z ) 2 / 2 o 2(a/tt/2-z) e
-----F2— z < o/ir/2

0 z >) o/tt/2 .

of theform
<7 -7^ / ?

N.B. For w(z) = —r e 7 , the standard

Rayleigh, o is.the mode of the distribution, the variance is 

in fact o2(2-7r/2).

The characteristic function, v(v ) is
A z

(a/772-Z)e-(a^-z)2/2a2eivZzdz
= j --- -----

eivzavW2>e-vz2a2/2j” (j-W) e-§2/2a2d§

iv o2 o2
z

on substituting ^+ivzO2 = §.

fivz° 1 -v2/2
For the probability integral J(iv o) = J e dy,

-co

$(0) = 1/2 and we propose to expand b(iv a) as a Maclaurin 

power series about v =0.
z
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J’(iv a) = 1//2tt eVz ^2(ia) ; (0) = io//2tt

Z “*

5”(ivza) = (vz<j2) evz ° ^2(ia) ; J”(0) = 0

Differentiating n times (Leibniz),

^(n+2)^v _ (v c2 j <g( n+l) (+ na2^(n\iv a)
Z Z z ~ z

whilst i(2m+1)(0) = (2m-l)(2m-3). 3-1 a2m+1/J7 m=l,1,2 ....

for the odd derivatives.

^(n+2)(0) = no2<|(n(0)

Since £”(0) = 0, it follows that J^2m\o) = 0 for m=l,2, ...,

. ’ . 3>( iv a) = 4 ’•
— z

, i + ” (2m-l)(2m-3)..3.1(av_ )2m+1 )
* 757 (ovz + z '

= 4 + 777 is real)

X(vj iv o/tt/2 r / /rr~. „
e z (1- ( /2ttiv o e

z 

ei/g7r/2 { 1-iZ^Tg e‘g/2[j - i 'K/g)]}.................. (53)
757

on writing /g* = ov as is our usual practice, although a is

not the S.D.. of height p.d.f. in this case remember.

x(v ), = {l-/ge gy^2^(/g) - i/gTr/2 e g^2 }
z

x(v )x*(v ) = {l-/ge“gy/2^(/g) I2 + (/ng/2 e"g//2)2 
z z

= 1-2/ge g/2^(/g) + ge gip2(/g). + -^-e &

....(54)

We now propose the two-dimensional characteristic

function
X2(vz,-vz;p) = l-2v^’(l-p)e"Sy/2^1"p^(/g(l-p))

+ g(l-p)ip2 (/g(l-p) ) + ^ (l-p)e"gkl"p^

say f (l/ov^ )

z
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and Xz(v ,-v ;t)
Zi z»

- l-2/gT^/T2e”^T y/2T <p(/gT2/T*)

+ gT2/T2ip2 (/gT2/T2) + irgT2/2T2 e ....(56)

F2 f00
The intensity, l(62) = 2L J cosvxtx2(vz,-vz;T)dr.

We include as many terms in l>(/g) as is deemed

desirable.

3/2l>(/g) = /g+g /3! + . .. and we may check our working

by evaluating the early terms of x(v )x*(v ) as a power series 
z z

in g, and then compare the result with equ ( 3 ) of Appendix

81 computed on the basis of moments p’ from Appendix 8A.

8.3.5* Surface Height Distribution : zero mean, negatively 
skewed; Poisson, Neg. Binomal

In the past the Poisson distribution has been used to 

fit surface height data (Tanner and Fahoum {1976]). A joint 

characteristic function y2(v ,-v ) can be deduced from the
z z

bivariate Poisson distribution on p.298 of Johnson & Kotz 

[1969];

X2(v ,-v ) = exp[-(a2-§)(l-eivz)-(a2- §)(l-e ^vz)]
z z

= exp[-2a2+2§ + (a2 - §)(e^7z + e ^vz)]

= expf-2a2(l-§/a2)(1-cosv )] ....(57)
** z

The marginals of the above are Poisson, with variance

o2 and covariance §. Thus §/o2 is the correlation.

We may then write

X2(v ,-v ;t) = exp [-2o2(1-C(t))(1-cosv )] ....(58)
z z — z

F2 f°° r 2o2t2 1Therefore, l(62) = J cos(vxT)exp[—^7— (l-cosvz)J dr, 

....(59)

which is an integral form closely resembling that for the
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small so thatnormal case of Chapter 4. (if we take v 
z

l-cosv^-v2/^ the solution leads precisely to equation (46) 

of Chapter 4.

Tanner fl976] introduced the Poisson to model the 

skewness of actual distributions of surface height. He 

also used a 3-Gaussian model to achieve the same ends. The 

negative binomial is, in some circumstances, a compound 

distributions of Poissons. Its characteristic function may

be expressed as x(vz) = (Q-Pe^Vz)”N, and so

__________1____________
X(vz)x*(vz) = [(Q_pgivz)(Q.Pe-ivz)]N ....(60)

__________1_________
[q2+P2 - 2PQcosv 1N ....(61)

Since Q-P =1, we have y(v )y*(v )
z z

__________1_________
= [1 + 2PQ(l-cosv ) ]N

z J

__________1___________
[1 + 2o2/N(l-cosvz)]N

____________1____________
We take \2(v ,-v ;p) = [, \ IN

A z z 11 + 2oz(l-o)(l-cosv )
N z

which leads to

cosv TdT
?2 __________x___________

r^02^ = 2L ‘ [1 + 2c2t2(1-cosv )1N
00 L NT7- z J

....(62)

....(63)

with N not necessarily an integer. Here the integral closely 

resembles that for the gamma distribution of heights described 

in 8.3.2

The vast majority of statistical distributions do not 

have a simple form of characteristic function although in 

certain important cases the full set of moments is readily 

available. A case in point is the Beta distribution, a
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modified form of which, namely the Pearson type I frequency

distribution, has been verified as accurately modelling 

actual surface profile data Watson et al [1979].

8.3.6. Surface Height Distribution : zero mean, negatively 
skewed, Beta

w(z) = ,

( + m > ” ( n 
z m+n m+n

B ( m, n)

n-1 
-z) n

m+n z m+n
- m

I 0 otherwise.

Then x(v ) = E 
z
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rm+n

-m
m+n

r iv zi [e z J

( , m \m-l/_n \
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B(m,n)

n-1
e
iv z , 

z dz

1
B (m, n)
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m-1
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n - z)

n-1. i , m 
iv k z + 

e z m+n - —)m+1' dz
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f-iv
eL l 
B(m,n)

m -I n 
z m+nJ [m+n 
Tn") '-m

m n

k z + ~i~ m+n
m+n

m-1 n-1

r
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(-iv -S-]
e z m+n
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00 ( •z (1VZ 

r=0 rJ

oo . / . m \s {lvz(z + ^r)}

r /

o
I
I £h

£

r’

m+r-1m+n

(z
-m

+ -S-
m+n'i

m + n

(
n-1

n \
m+n ~7i dz

r • m iJ~1Vz m+n^ 

B(m,n)

(ivz)r

r ’

[-iV
e z —1m+nJ

00 B(m+r,n) (iv )r 
£ ----------

r=0
B(m,n) rl

= e[-ivz —1m+nJ

oo

E 
r=0

,r(m+n)/r(m)r(n) 
r(m+r+n)/F(m+r)T(

J-1V
e z —1m+nJ

nJ 

(ivz)r

r ’

/ iv x r 
( z)

r.»

[-iv
e z

{ 1

F(m+n)r(m+r) 
T(m)T(m+r+m)

+ _JL_ + m(m+l} (^z) 2 + . n
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where J(m,m+n;iv ) is termed a degenerate hyper-geometric 

function).

y(v )y*(v ) = <5(m,m+n;iv)<f(m,m+n;-iv) ....(65)
Z Z “* Z “* z

We forego the.general case and explore the special case 

when m = n = p + J as this offers some prospect of a tractable 

solution.

N»B. The beta distribution is now symmetrical about zero.

We use the identity T(p + J, 2p + 1; 2iz)

-p
= r(p + l) (|) elzJ (z) (p.1059 Of G. and R.)

x(vz)x*(v2) = (r(p+l)}2(p-) (Jp(vz/2)}2

{r(p+i) = {r(P+D (Zi) P j (vz/2)}2
< p

v -2p » (-l)k(-v /22)2&+2kr(2p+2k+l)

= {r(p+i)}2(jz-) r(2p+k+i)r(p+k+i)r(p+k+i) -

(c.f. p.96O of G. and R.)

" / \k ,vz\2k T(2p+2k+l)
f("2p+'m"r

2
}r(p+i) 

r(p+k+i)
....(66)

= 1
(2p + 2) Vz ■. ■(2o+4) (2p + 3.)-. - (Vz ) \ 
■(p + iT.IS ' + {tp+lTFp+TJT2 '255' "

i
’ (P +1)

m = n = p+4n , „2 mn
u (m+n)2(m+n+1)

n2 _ 1 _ 1
In2(2n+l) 4(2p+2) 8( p+1)

x(vz)x*(vz) = i-oWz2 + ( 2/-.I

! . e + 42+U+1 . si .1 s (p+1+1) 2

3 , 1/4+a21 ’ § + i/sis2
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• • • ....(69)

Take \2(v ,-v ;t) to be 
z z

[i , which leads to the negative exponen

- 1 - gT2/T2 + (gT2/T2)2 «... for o2/T2 small (small 

slopes)

1 
+gT2/T2

tial solution of 8.3.1.

For interestjthe rectangular distribution:

w(z) = , a-h < z < a+h is such that

sinv h\t \ iv a / z ) iv a , /
\(v ) = e z (---- r— = e z smcv h « ....(70)A z v h z

x(v )x*(v ) = sin2cv h = sin2cv /3a = sin2c 
z z z z

From which Xs(v >”v »p) = sin2 c/3g(1-p) 
z z

757
. ... (71)

....(72)

and \2(v ,-v ;t) = sin2 c/3gT^/T2 
z z

....(73)

P2 f°° cos(v ,T)sin2/3g t/T , ,
Then i(e2) = L-f------- V73FF7TF------ ....(74)

leads to the triangular function:

f 73g^1-73al^ 0 <3< 2/3‘u/T ....(75)

i 75? + 15 -2/3a/T<9<0

The distribution of slopes, based on the difference 

of rectangular random variables., is well understood to be 

the corresponding triangular density.
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8.4 Conclusions

The wave theory of scattering provides an adequate 

explanation of the speckle intensity distributions, illu-

strated in Figures 8..1.2 and 8.1.3, obtained from the 

interrogation of sheet steel material by an incident laser 

beam. In addition the theory suggests simple probability 

distributions which describe both specular and off-specular 

scattering. Such distributions enable thesholds to be set 

when monitoring and detecting surface defects and would 

precisely quantify the false alarm rate when employing an 

automatic detection system.

The distribution of light scattered from very smooth 

ground glass mirror surfaces, as portrayed in Figures 8.2.7. 

and 8.2.8., can be substantiated by the Kirchhoff wave theory 

of scattering. The mathematical justification presented, was 

based on a particular form of autocorrelation of the surface 

texture, and whilst it remains to check whether talysurf 

traces of the specimens employed formally validate this 

supposition, the form of the autocorrelation is commonly 

met in ground metal surfaces. The mathematical model auto-

correlation function could be modified, to allow for a 

periodic component for instance, and the same general results 

could be derived.

The grinding process, by which the glass surfaces are 

prepared, frequently creates anisotropic surfaces whose 

texture have a definite lay. For such surfaces the one-

dimensional surface roughness model, is appropriate, and the 

empirical fitting of cosec20 to log (intensity) has been 

granted theoretical support as an approximation to part of 

the range of a Lorenzian-type scatter function. For truely 
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isotropic surfaces, theory suggests that the order of the 

fit is in fact cosec39.

The discussion of surfaces possessing non-Gaussian 

height distributions has been largely confined to very 

rough Type (C) surfaces* Although in most instances non-

Gaussian Type (A) and Type (B) surfaces could have been 

incorporated in the discussion. As an illustration, 

negative exponential Type (A) and Type (B) surfaces are 

treated in Appendix 8G.

Intensity curves from non-Gaussian Type (C) surfaces 

are not over sensitive to slight deviations from normality. 

The indication therefore, is that the estimation procedures 

considered in Chapter 9 would still yield useful comparative 

estimates of surface roughness parameters should assumptions 

of normality be invalid.
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Statistics of the Rayleigh Distribution

APPENDIX 8A

-x2/2a2
-^e
0 >

x -x2/2a2 x0h 
-re e axo

x > 0

x > 0

....(1)

x -(x-ea2)2/2<J2 e2a2/2,
„ 2 e ® axa

= e92a2/2 . e-02°2/2 + e02c2/2e^a/“ , 1 le'?2/20

-6o2 /2ir a

= 1 + 6o/2tt e^ ° y-— e z ^dz z = y/a

-Ser

M (0) =1 + 0a/2tt" e® a [l-§(-0a)] ....(2)
X 

dy
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where £(-ea)
j-00

— oo

_1_ e"Z2/2dz
72? e dz (£(o) = i)

Then '(-9a) 1
777 e-92°2/2..(-a).

where

From

"(-ea)

-9a)

fHI

$ (-0O2)

I

M
x

1
72 7T (-a)

1
= 777

=. 1
777

^-20o2^3e-02o2/2

-02o2/2 ,
x e + 1

777

denotes differentiation

$ »

$ n

$ tn

(0)

(0)

(0)
$ " ’’ (0 )

(0)

1

1

1

which

i
d2

t
P3

t
IM

+

+

+

+

= -o/777
= 0 

la3

777
= o

00777 e92a2/2

9a/2? (1 +

J7770O + O02

*

we read ui( =

8o4

, -02o2/2

+ 6

+7h2^-3

w • r. t. 0..

+

+

mean) =

.)e-02°2/2

1 + ) i +—-2-, +.--)[2 +

+

i o6 _ o3e3
777 ” 777

(^.l)a363 + (i-g-)a3e3 +

n pi c3 0 3 , Sa^e1* ,
3 J2 “3!“ + ~ + •••
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For moments of the Rayleigh distribution in general, we

may use direct methods:

i
U 2

f°° 2m
k x

-x2/2o2
x e dx

r 2mlx re r + rJ o o
00

(2m)o2

-x2/2o2

n
0

(°° 2m-2 x -x2/2o2 ,J x e dx
o

(2m)°24m-2 

= (2m)o2. (2m-2)o2. . . . 2o2I2

t

U 2m+i

= 2mm!o2m ....(4), for the even moments,

= (2m+l)(2m.-l) ..____ (a2)m

= (2m+l) L(v2')m Fn~ - _ ( 2m+l) ! c2m+1 /T
ml 2“--- 4 2 0 -----mT-- 2®---  J 2

....(5), for the odd moments.
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APPENDIX 8B

Transformation of the Rayleigh Distribution

Consider the distribution of I = Z2 when Z is Rayleigh-

distributed .

Since the transformation is one-to-one,

But I = z2, and so z = /i*.

whence
I dz 11 1
I di I 2 7f

Thus,
1 1

• 2 7l

f(l) =
1^0

I < 0.

i. e.

f(l)' is the well-known negative: exponential distribution 

with parameter 1/2X2.
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Mean = 2XZ; variance = 2X2.

X increases=& mean increases

X increases =5* variance increased with

mean 
variance

independent of X.
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APPENDIX 8C

The Hoyt Distribution

p(z)

k2 +1
—z exp [- ] Io(W’ z2),for z > 0

o . for z < 0

where 1^ is a

order zero or

modified Bessel function of the first kind of

xo
00

z
s=0

x \ 2s(f)

p(z) = ’

2ze“z2
for z > 0,

0 for z < 0,

which is the special case of the Rayleigh distribution.

Verification that p(z) is a genuine p.d.f.

fCO

To show I
I 0

p(z)dz = 1

Write

Then

/ 1+k2 v = ( —

f°°
I p(z)dz

•’ o

)z, .

2k f°° 
^+1 ;o1F+1

Let w = v2, then dw =

R. H.S.
2k 

iF+T

2k
FTT

2k 
IF+T

j  / 1 + k2 \ ,
dv = ( )dz.

To

2ve'v2

(k2-l)(k2+l).

2vdv and

r
0

r
o

00

• z
s=0

4k7
4k2 2

(HFF
T 2k n
] * i+IF^

-we

e -w

t [ k2 -1 
To [ FTF v

write r|

Iq(pw)dw

co

z
S = 0

urn

2]dv

k2-l 
k2 +1 '

(Wh 2s
2 2

-w
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r(2s+i)
2k „ 1 /H\2s- iF+Ts^0 TTTK (2}

OO / x
2k v, (2s) ’ z th 2s

■ k^Ts=0 V7TK (2}

But S of 2 expanding term by term
s=0 's’' z

= 1 + 2(2.) + (2.) + (1) + ...

= 1 + ^- + ^n1* + ppn6 + —

Also

Thus
.co .
Jo p(z)dz - pqy (1-n2) '

and -i 2 n /k2-!^i-n = 1 - (pp)

(k2+l)2 - (k2-l)2----- fk^i)2---  
4k2

(k2+l)2

•'• /0 p(z)dz = UF7IT’

= 1, as required.
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APPENDIX 8D

Transformation of the Hoyt Distribution

p( Z )

k2+l
z ^P [-< °-ho< ku-l

4k2 z2) z > 0

0 , z < 0

Consider once more the distribution of I z2 Then in

this case,

f(I)
k2+l 
k

/T exp £ - ( k2+l
2k )2 Z1 zo I) 1 1

2 /T

N.B. for k

k2+l
2k exP [- ( 1 ] To ( k*-l T

7F“ 1 >

distribution

1, f(l) reduces to e , the negative exponential

Check: _
/ f(l) di

0

00
k2+l
2k

o
■o'T 1 ldI

Write:

v k2+1)2I,( 2k dv
/ k2 +1 X 2(— ' dI
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Then
/f(I)

o
di 2k f

FTT '
-v e

o
z0 [ P7T v ] dv

Mean u
= /?

k2+l
2k

2k
FTl

(

(

(

(

2k [
F7T ‘

00
-V e

o
Io (qv) dv

1

f(l) di

S'j I exp 
o

(c.f. Appendix C)

[■< k2+l
2k

f°°7 (F71)iv

2k
FTT

2k
FTT

2k 
iF+i

2k 
iF+T

Via Appendix C,

oo

z
s=0

Then
00

z
s=0

e“v

f")3 JJ 0

00

)3 £
s=0

oo

)3 Z
s=0

00

)3 z
s=0

(2s)! <n>2s
( s!)2 '21

(1)23+1

Differentiating

1
2

. u = (

V -Ve

oo

z 
s=0

73TF

1
T7TF

IQ(r|v) dv

1 / pv \2s
37TT2 ( 2 }

..oo
(^■)2s /qv2s+1 e"“ dv-V

(2-)2s r(2s + 2)

1
7(i-n2)

(i-n2)’1/2

n/2 
(l-ri )1/2

w.r.t.

z 2 s
k2'

n:

1
• 2

1-n2
(l-n2)3/2

+ n2

2(l-n2)

-2n)

■4^ )3 x
(1-n2)

1____
77377

1
772
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u = 1, independent of p (or k).

Result is obvious from normalisation considerations

Also
00

E(l2)
-CO2k r / 

IF+T o (
-VF7i ’4 y2 e’v To (nv) dv

/ 2k
k iF+T

oo

)5 D
s=0

-00
1 /P\2s f 2s+2nrr (2} h v -V J e dv

- < 2k( kdT
CO

)5 2
s=0

(2s + 2) J . /nds 
(s!)2 ' (2}

Using the identity:

(2s+l)’
(sTF“

(*)2S =

(1-n2)372

we have

(i)2s+2 (n/2)2
d-n2)3/2

Differentiating,

OO 

z

S=0

(2s+2)!
(si?"

(£)2s+1
1 = ,2^2^2 ~~ (j) 2^1~

’ 2 (1 - n2)3

- (1 n2)1/2- (1-n ) d-n )

_ 1 - n2+ |n2
d-n2')57"

= a
2

= a
2

+
d-n2)5/2

oo

z 
s=0

(2s+2)J /nds
(s!F ' 2

2 + p2

(l-n2)5/2

e (i2) - ( 2k I s( FTl •' )S x (2 + n2)
= 2 + n2.

v(l) = E(I2) - U2

= 1 + n2.
3i1



V(l) has minimum when r) = 0 or k = 1

Check: k = 1 E(l) = 1; V(l) = 1 

in agreement with e distribution.

V(l) is the variance cf normalised intensity.

Actual intensity variance

= D{p} . V(I) 

= (s i + s2) (1 + P2 )

(c.f. Beckmann [1963] for full explanation of the notation 

adopted.

= s2(si/s2 + 1)(1 + n2)

S2
2(k*+l) 
k2(k2+l)

= D {I u) x 2 
m

(l+l/k1*)
(l+l/k2)

increases as roughness increases and k 1 or Intensity

variance

= D (I p} .2 
m

(l+l/k1*)
1+1/k2

In the case where roughness height obeys a normal distribu-

tion law:

s2=D{Ip}=l-e^^ with k2 = + e —
n l-e-g

whence e & = jp—= 1

„ , . , k2-l ,2 ,2(k'*+l)
Intensity variance = (1 - ( (k2+1 j

Ik2 2(^+1) 
(k2+l)2 ’ k2(k +1)

(k'+l)
(1+k2)3

/2 as k^l.

= 8

3i2



APPENDIX 8E

Moments of the-Normal Distribution

The moment generating function, Mx (6) of the normal 

u9 + o202distribution N (u,o2) is eu 2 from which all moments

can be derived.

M (6) = 1 + (u0 + 4 o2e2) 
x

(ue + i o2e2)2 , (u© + i o2e2)3
21 31

, (ue + i o2e2)4, 
4!

In general M (0)
X

in terms of moments u’ about the origin.

From (1), coefficient of O4:

ln2
Is4 , 3u2 2g , u4 _ 3o4 + 6u2o2 + u
” 31 41 41

-> u4 = 3c*4 + 6p2o2 + u4 ....(2)

Again, coefficient of 02

+ U 2 / 21 O’2 + u2
21

....(3)

In terms of the notation of the paper,

x N(a,Sj) whence

V(x2) = E(x4) - [e(x2)J2

= U4 - (di)2

= a4 + 6a2si + 3si2 - (a2 + si)2

= o'1 + 6a2Si + 3si2 - a4 - 2a2si - si2

= 4a2si + 2si2 ....(4)

y N(0,s2 )

V(y2) = 2s22

343



Since x and y are independent •* x2 and y2 are

independent.

Thus, V( r2) = V(x2 + y2 )

= V(x2) + V(y2)

= 4a2si + 2si2 + 2s22.
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APPENDIX 8F

Bivariate Negative Exponential Distribution

Consider the bivariate probability density function:

f(xi,xi) = g2j.p) exp [- httpt  (xi+xz)] •

The characteristic

X2(vz,-vz;p) =//

function X2(v ,-v ;p) is defined as 
z z

1 (Xl+X2)
1 , piv (xi-x2) -a(l-p)

c>2(l-pT e z e

f 1 -x2/p(1-p) “iv x= I o2'(i“pye e, z
x2

^dx2 /e-Xl/0(1-p)ei

xi
1VZX1IQ(.) dX2

For the second integral,

/e-xi/a(l-p)ei

Xi

ivzxr Z rJrCr+l) 

r=0

( o(£) ’/x1x2)2rdx1

oo

z 
r=0

r
x2 f P

r»r(r+l) az(l-p)z
fj Xir

Xi

( 1 iv \Xie-(3TT^T ’ z) dxi

oo

z 
r=0

r
X2
r! az(l-p)k

r r r -axi
} j x*y.dxi where we have written

r
X2
r ’

p 1 r 1 
pz(l-p)2 ar+l

1 00
“7 2
a -nr=0

_ p 7, 
az(l-p)2 J / r •'

{

{

{ a

a =

i exp

Thus \2(v ,v ;p)
z z

- I .TO •■<5^ ‘ 
x2

iv z
)x2 a(l+p) -iv^a2 (1-p) zdx2

. e

As a check so far put v z
0:
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Marginal distribution for X2 is

—'j'7 d < e"x2/CJ(l_p) X exD(—£'X2—r) ct* = —7———r a1 2(l-p) e * a* xpMl-P)' c(l-p)

1
l+g(l- P)

which is negative exponential with variance o2.

derivation of \2(v ,-v ;p) : 
z z

Continuing the

X2(vz-vz;p) = f 1
1 o-iv o2(l-p
X2 z

■ exp[+ 1Vz ’ q(l~p)-iv a2(l-p)^X2]
A z

dX2

1
o-iv a2(l-p) 

z

_______________1__________________
X 1 + • _ _ _______P

a(l-p) lvz a(l-p)-iv a2(1-p)2
z

= ________  1-P
(1-iv o(l-p))(l+iv o(l-p)) -p

z z

1-P
1+v^2 o2(1-p)2-p

z

1
1+v 2O2(l-p)

z

i.e. X2(vz,-vz;p) 1
l+g(l-p)

Finally, E(XiX2)

i. . H
o2(l-p) JJ

- ( X1 +X2 ) /p( 1 “p ) v 1 r ... p X1X2 1 r J J
XiX2 e F’fCr+1) { o5 (1-p)^ } dxidx2

x2

-x2/p(l-p) J., v 1- f P fL r+l_-xi/p(l-p) 
dx2Z?!r W^i-p)2* JX1 e

xi
dxi
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1
(1-p)

/ x2e-X2/0(1-p) ” 

x2 r=0

x2r r P . r (r + 2)
r!f (r+1/ a2(1-p ) 2 ' r+2(a*)r

dx2

1 
oz(l-p)’

f X2e-X2/O(1~p) ”
J —* ( a * ) 2
x2 r=0

= (1-p) /

X2

X2e-x2/p(i-p) (^£^.+ 1) epx2/a(l-p)dx2

= (1-p)/ + x2e“X2/° } dx2

= p/ x22 e"X2//<7 dx2 + (l-p)a / x2 e"X2//<7 dx2 

=2p.a2 + (l-p).a2

But Cov(xiX2) = E(XiX2) - E(Xi)E(x2)

Cov(xiX2) = 2po2 + (l-p)a2 - o2

i.e. Correlation of Xi and X2 is p.



APPENDIX 8G

Scattering from Surfaces Possessing Negative Exponential
Properties

Supposing a normal distribution of surface height we

may quote equation 4.41J

2 -g
PQe

2. -g
p e 5 
o

2 rL' IV T -g e x e s
“-L

+ £1/ 
21?

2 iv T e x e
“-L .

+ zi/ 
21?

F2+ -— e2L e

{ egC(T) - 1 }

-£T o 
m=l

00

I {gC(T)}

dr

drm
m!

taking C(t) a pure negative exponential auto

correlation function. In this case,

I(02) = Pqs”S
m-r-,9 00

+ £-e‘g £
2Le \

m=l

m fl / .£t( / e(1V 
m 1 J o

-m/T)T, ,
x dr +

JOe(iVX+D,/T)TdT }

-L
I

z “gp e s 
o

F2e“g
2L

oo

■ z
m=l

m r
5t <[i 1

iv -M/T e 
x

(ivx -m/T)t1L, re(ivx+m/T)T~L 

J o L ivx+m/T }
J-L

+
o

z “gPoe
F2e“g 7
2L m=l

X ,yn.{ (-iv -m/T)(e(ivx-m/T)L-l)
ml(v z+m /Tz) x

aC

+(-ivx+m/T)(l-e(ivx+m/T)L) }

+

z -g
PQS

F2e~g 7
2L , m=l

gm r 2ni , - mL/T/ mz
mJ (v{ T + e ( "'T e

X

iv L 
x

, -iv Lx 
+ e x )

. / iv L-ivx(e x -e -ivxL))}

+

+z -g
p0e

gm r 2m/n ( T \ -mL/Tx
m*(v ~(1 ~ cos(vxL)e )

X

+ 2v sin(v L)e }
x x

For type(A) surface g<<l we take the first term only:



For Type (B) g-1 simply take as many terms as necessary.

For Type (C) g>>l use saddle point integration:

I(02) 2Lg(1+T2v z/gz)
.X.

(c.f.(21) Chapter 8)

If, on the other hand, the distribution of surface heights

is negative exponential,

I(02) p2~- +
0 1 + g

F2 f

2L<L
iV T r 
ext l+g[l-C(T)j ' 1+g }dT

For a

i(e2)

i(e2)

For a

i(e2)

n2* 1 +
°l + g

2. 1 4-P TT“ + 0 1 + g

Gaussian

* i 
Po 1 + g

I 1
Pol + g

1
Pol + g

+

+

+

negative

po 1 + g +

0 1 + g

The result for

F2 [L

2L-L
1 

n+u
( 1

L 1 + g -I
-1 } e iV Tn

X dT

F2 1 fL
2L Tl + g7

form : C(t)

F2
2L(l-+g)

F2
L (1+g)

/ttF2T
L(l+g)

ivxT s { }1 1+s J

-t2/T2
e ,

m

00

z 
m=l

00

z 
m=l

00

z 
m=l

exponential

p2
2L(l+g)

F2
L(l+g)

W1

i
d+g)m

f iv r
J e x e 
-L

-mT2/l2dT

-T2v 2/4m m ZnT 
e x x T/—

m

-T2v 2/4m 
e____ x
/m(1+g)m

form :

00

z 
m=l

00

z 
m=l

WTm

_______ 1_________ m/-, / Tx -mL/T)(1+ g)111 (v 2+m2/T‘i)' T(1'C0S(vxL)e
X

+ v sin(v L)e —• } 
x x T

a surface possessing exclusively negative

exponential properties.
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APPENDIX 8H

Derivation of results for two-dimensional roughness:

o
)x*(v)JTdT

(c.f.. Beckmann [1963] equation (33) p.79)

F3 = 1 for normal incidence, v 
xy

v 2 
y

with v
x

2tt . _
~t- sm02 , vA z y

= sin.02sin0 3 ( 0 3 is the orienta-

tion of observation; angle with respect

plane) and Jo(.) is the Bessel function of order zero.

For weak scatters.< (small g<<l)>

to the incident

employing

before.

D{p} J J0(v t ) e“ggC(r)TdT 
o

A

£
T J ( V T ) dT 

o ° xy

the same mathematical model

D(P) = ^e-Sg (/E
0

.00
tJ_(v T)dr + ( /

0 xy k J 0

_ • 27tF 32 “g- e §g </:
n 2ttF32 -g
-pre *g

<r

o

+/ Aie T/Trj (v T)dr} 
e 0 xy z

function for C(t) as

-j A1e‘T/TTJ0(v T)dT_)}
O y

(l-Aie'T/T)TJ0(-JxyT )<1t + /,-Aie (v
o o xy

(l-Ai+A1T/T)(1^VxvT2)TdT

IF
+ / AiTe*T^T Z (-l)n(iv 

o n=0
2 T2 )n 

__xy L ' 
(n’)2

2^32e'gg.{(l-A1)eV2 + Ai
(-l)n(iv2xv)n 

j n j j 2

(4V2 )n
fnj2 T2n + 2 r (2n + 2)}
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+ A>T2 E (-1)n (v2yT2) (2n+l)2n(2n-l)..3.21} 

n=0 2nn!

+

2nn!

AiT2 S ('1)n (vxvT2)rl(iH3/2)..(n-i)(2n4-l)l 

n=0 n!

= 27rF32e-gg{(l-A1)E2/2
A

AiT2 S (vxy T2) 

n=0 n!
(-2) (-3/2). ..(-n+J) (2n+l)}+

+= ^3e“gg{(l-Ai)e2/2 AiT2 
[1 + (v }

Away from specular,

D{p} ~pr3 © gg ( (1-Ai)e2/2
A iT2

v 
xy

} , which may be

expressed in the form

Dip} =
21TF32
"F e"sg (1-Ai)£2/2 { +

V 
xy

whence

2kF32
"A2"

e’gg (1-Ai)c2/2 exp a2/t
V 3 
xy J

exp
a2/t ]
—3-------
V 
xy

A2/T
“7—
xy

2 K / ~
= — sin02yl + sin203, and thus scanning with

03 = constant, together

term, results in a near

and consequently with

with the dominance of the second
1

linear relationship with ”7 ~
1 ‘ xy

sinJe2 = cosec302-

y +

+

1 }
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APPENDIX 81

General Theory

A number of general results from statistical theory are

worthy of attention:

Given the two-dimensional characteristic function:

= / / W(zi,z2;T)i(zi-z2)eiVzz1~Z2^dzidz2

7 —oo —co

= -/ / w( z 1, z2 ;t) ( z 1-Z2 ) 2eivz^ Z 1-22 dz idz2 

2 2 -oo -co

^2 1 f°° f°°
= -J J W(zi,z2;T)(zi-Z2)2dzidz2

Z •* V =0 -oo_co
Z

= -e[(zi-z2)2 I t)

= -E [(zi2-2ziz2 + z22)It]

= -2d2 + 2C(ZI,Z2;T)

where C(zi,z2?t) is the covariance of zi and z2 for heights 

zi (xi, yi) and z2(x2, y2), points (xi, yi) andwhen the

(x2, y2) are separated by a T .distance

114
z

or

This is

C( Z 1 , Z2 ) = (J2 + ~

B(T) = O2 + i-

somewhat at odds with (77)

=0

of Beckmann [1963]

• • v 
z

; t) t

p. 96

...(1)

Check: The normal distribution.

The two-dimensional characteristic

X2(vz,-vz;t) = exp [-vz2o2(1-C(t)) ] for

function

the normal distri-
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bution N(0,cj2). is well known.

Then = -2vzQ2(l-C)exp[-^z2o2(1-C)j
z

= -2o2 (l-C)exp [-vz2o2 (1-C)]
z

+ Iv 2o4(l-C)2 exp [-v 2cj2(1-C)]
z z

9v_2. = -2o2(l-C)
z J v

z

B(t) = a2 + i- (-2a2(l-C))

= a2 - a2 + a2c

= o2C(t) , as required.

Again Xztv ,-v ;t ) = / / W(zi,zi;t) e^Vz^Z1 Z2^dzidz2

Then lim X2(v >
T-xo z

-vz;t) = {lim W(zi,Z2JT)}e^VzZ 1 Z2dzidz2
-OO -OO '{■->00

/ W(zi)e^VzZ1

— 00

dz 1 / W(za)e ivzZ2

-00

dZ2

= x(vz)x*(vz) , (2)

since [/lim W(zi,Z2)]
'[•->00

= W(z), the
Z1=Z2=T

one-dimensional

distribution function.

In terms of moments we may write,

x(vz) = E r iv z 1 L e z j

J
- U2.

21

. ’ v 3
1P3 Z

31
1 v 4 

IM z +
41

and X*(v ) = 1
z

. 1 v 3
1U3 Z

31
’ v4

IM z
4.’

1
+ inlvz

iU i v
z

z +

z

+ +
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x(vz)x*(vz) = 1 - -
!

U 1
11

i
Ul
11

U2
21

where C2r

»

11.

But p2 is,

J
( Uj l

k41. ’

j

U 3
31

!
U 1
11

4-
t

U2
21

T
U2
21

t
Ul.
11.

t
U3
3!

co

E 
r=0

(-l)k

(-i)rc2r

t
Ul
11/ •

r
U2r-k 

r2r-k)l

t
U2r-2

t
UK
kl

I

Ux
21

i
U2T

ul + Uz.) =
3 I O I /11 21

f
U2

2
Ul = U2

in fact, o2 and so

X(vz)xs(vz)
t

/U4
l41

i
U i .
11

!
U2 U2
21 21

t
Ul U 3

r
-i-=- ^-1 +
11 31

!

N ot e: (

+

+

t

1 - g +

z

+

+

+ W- 4
Z

i
U 3

' 31

i !
Ult) v
41 ' vz ’•

= 1 - g + (Uu - 4U3U1 + 3u22)vz -

(for zero mean = 1 - g + i \ 2 + 3)(u2)2vI+ - ...
distribution) 12 z

= 1 - g + (B2 + 3)g2 - ... ....(3)
1

where B2 = is the coefficient of kurtosis and

In the case of the normal, $2 = 3 and we have l-g + g2/2, 

the first three terms of exp (-g).

We return to \2(v ,-v ) and investigate this in terms of 
z z

moments:

Xa(v ,-v ) = E [eivz(?1_52) ]
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4V V V
1 + iv z 0 - -yr- E (£ i - £ 2 )2 - i yy. ,. 0 + yy E (£ i - £ 2 ) 4

21

(N.B. all odd powers of (£i-£2) will have zero expectation.) 

2 7 4 4
v TZ fr x \2 V T / _ \4

X2(vz,-vz;t) = 1 --^7— E { } + E { 1^.2),... } _

Now 1is a measurement of a ’chord’ of the surface 
T

profile, whilst lim
7->0O

the distribution of slopes etc.

a2, the second moment of 
s ’

Then for small t, we have

E

7 7 4 4VZTZ V T
Z u (J2 4" " ■— II —
21 5 4! sU*

a (v2)2Ft21’ z star'- z /
{-T> ' (2rJ!

where, in. general,. sPr is the rth moment of the distribution

of slopes

Write K2(v ,.-v;t) = logtxztv ,-v ;t)z z z z }

V 2 2

= log { 1 - -|t^ o2
s

V 4 4

4 1 S 4
+ -•}

V * 4 »*

Z l LI i— 3 +v2 2
= log { 1 - (-ff- o2

S'

[rz2^2s°2
*L 2!

4 2VZ.T
41

/v 2 T2o 02
) + (z--- s—
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of the distribution of slopes.

v2 v4
X2(vz,-vz;t) = i_ 2.1 21r E [(^ i-^2)2J + -^r- E LU1-C2) J - ...

v2

1 21

v 4
—{o2 + o2-2o2C( t) } + -77- 2{p\ - 4E [c i3^2]

+ 3E ki2C22] }-.

= 1 - o2
V 4

V 2 {1-C( t) } + { IM -
z

■ 4E [c 13Ca ] + 3E[5i2c2

The higher order moments E [<; 1 2 £ 2 J and E^i2^2] involve

the autocorrelation functions of higher orders.

Defining, £’ lim 5(x + t) - <;(x).
t + 0 T *

V(c') lim
T*0

v (c(x) + t) - c(x) }
T

lim
T+0 Y2<V^(X + T) - (Ux))}

= lim
T->0

p{VU(x + t) + vu (x) - 2C(£(x + t)(x))}

lim 
t ->0

r 2o2 - 2o2C(t) t 
{ ----- p------  }

Using L’ Hospital’s rule:

v(c') lim 
~ T->0 '

2o2C’(t)
2t

Again, V( £ ’ ) lim
T+0

2o2C"(t)
2

2D-.

-o2C"(0).
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CHAPTER 9

APPLICATIONS

Abstract

This chapter summarises the results and observations 

accrued, during the study to the applications of:

(i) optical inspection instrumentation,

(ii) defect detection and classification from

polar intensity diagrams, and

(iii) surface roughness parameter estimation.

Comment is made on the following instrument design 

features: the nature of the interrogating source, the 

incident and receiver angles, and the transducer system.

Use can be made of knowledge of the speckle intensity 

distributions in selecting thresholds for detecting surface 

flaws, so as to work to desired detection and false alarm 

rates.

Polar diagrams demonstrate clear discrimination between 

scratch and indentation defects, as well as showing evidence 

of periodicity in the macrostructure.

In addition, a variety of surface roughness parameter 

estimates are derived for Type (A) and Type (C) surfaces. 

9.1 Instrument Design

The optical rig used in the study was built for the 

the purpose of studying the interaction of a laser beam 

and a rough surface, and at no stage was it conceived as a 

prototype surface inspection instrument. It demonstrated
• 

the feasibility however, of automatic data gathering by an 

optical scanning sensor. Traditional optical scanners have 

a serious disadvantage in that they are constrained to move 

in a fixed path. A roving scanner, tracking under control 
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in three dimensions, is a higher order of magnitude of 

instrumentation, and there would be great difficulty in 

protecting the receiver device, in the severe industrial 

environment in which it would operate commercially.

An alternative, as with the SIRA system, is to use 

fixed sensors at strategic points. The obvious drawback 

is the partial information that this provides. For mild 

steel strip the reflected field is scattered over a large 

solid angle, whereas for some types of highly finished 

stainless steel, it is confined to a solid angle of 1-2 

degrees only. A diode array nowadays offers a better 

alternative. Thwaite’s instrument (c.f. Thwaites [1982]), 

employed a linear diode array successfully, and there is 

no reason why this could not be augmented to a planar 

diode array matrix. For our specimens, gross defects 

resulted in variations in the specular lobe, within a 

fraction of one degree, and the indications are that the 

dimensions of this array need not be extensive. A compre-

hensive appraisal of scanning instruments versus diode 

array devices is to be found in Norton-Wayne [1982].

Another design option is the choice of wavelength of 

the incident radiation. Practical measurements, supported 

by the analyses of Chapter 8, have shown that better 

contrast is available if incoherent illumination is utilised, 

rather than coherent illumination. A 2:1 improvement in the 

signal-to-noise ratio has been observed if we opt for an 

incoherent source. The practical importance of this result 

is that low contrast defects might now be detected, since 

the threshold bounds (c.f. 9.2.1.) can be tightened for 

greater sensitivity, without introducing unacceptably high 

false alarm rates.
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An alternative method of detecting low contrast 

defects is to align both source and sensor at grazing 

incidence. The background surface roughness fades to a 

smoother roughness type enabling the defect signal to be 

extracted. Sawatari [1972] described such a mode of opera-

tion. One can simulate this effect by holding up a surface 

near a light source and tilting the surface towards grazing 

incidence.

The effect is easily explained in terms of the wave 

theory since,

—(c o s 9i + cos0
A

...d)

and 9i, 92 90° =* g 0 as we approach grazing incidence.

In the laboratory, grazing incidence can be easily 

achieved.. However, with the actual rig the maximum avail-

able movement of the scanner only allowed angles of 92 

up to about 60 degrees or so. Nevertheless, the ’smoothing 

effect’ of oblique illumination was plainly discernable and 

for strong scatterers, such as surfaces bearing semi-circular 

indentations,, it was necessary to operate at as wide an 

angle as possible to detect the scattered field above the 

background radiation. (Mundy and Porter [1981] actually 

reverse this technique in estimating the depth of scratch 

etc., in searching for the angle of zero contrast.)

There are additional benefits in operating in a 

smoother roughness mode, in that the scattered field no 

longer purely imitates the distribution of surface slopes. 

If we transpose to a Type (A) surface, the- extra term 

available from the wave theory becomes significant from 

which the RMS roughness, o, can be estimated (c.f. Chapter

9.3.).
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Unfortunately, in the application to moving surfaces, 

there are operational difficulties at grazing incidence 

because of the ’flap’ of the surface material. This 

causes the reflected beam to fluctuate wildly out of the 

field of view of any would-be receiver.

Another way of achieving the same ends, namely of 

transforming from a Type (C) to Type (A) surface, is to 

operate with a different incident wavelength.

Clearly to make g small in (1) we can let 0i, 02 

90° or allow A to become large compared with the RMS rough-

ness o. Thwaite achieved this by using infra-red radiation, 

not only to estimate o, but also to estimate the autocorre-

lation function of surface heights.

We can adapt the work of Wirgin [1975], by matching 

the wavelength of the incident light, to the dimension of 

defect type we are interested in. However, to achieve this 

resonance mode, the size of the laser spot must be reduced 

to, say, three times the dimensions of the defect type. 

This is virtually a matched filter optimally designed for 

one specific size of defects. The Kirchhoff model evalua-

tion, using the deterministic term for geometrical defects, 

verifies the discrimination of polar diagrams to defect 

shapes, but the indication of 9.2.2., is that this would be 

rapidly obscured when the ideal geometry is disturbed by 

random fluctuations.

9.2 Defect Detection and Classification

9.2.1. Thresholding

For the past ten years optical methods have been 

employed to aid the problem of detecting surface flaws. 

Trigger signals, activated by a loss in intensity 
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amplitude, indicate the presence of a gross defect. 

The SIRA institute devised an empirical method of 

implementing a trigger pulse, see Brook [1971]. Their 

method was to smooth the output of a specularly posi-

tioned transducer, by means of a low pass filter. 

Attenuation by 10$ of the filtered signal provided a 

suitable reference; should the specular signal fall 

below this threshold a trigger pulse was transmitted.

This system was modelled by using time series 

methods to obtain the expected specular output (c.f. 

Obray [1973]). The surface roughness imparts a noise 

to the monitored intensity level, and this noise was 

estimated by the MAD (mean absolute deviation) of the 

output intensity using the technique of exponential 

smoothing. The decision threshold for defect detection 

could then be set at ±2MAD.

However, we can now incorporate the knowledge of 

Chapter 8, namely, that for the off-specular receiver 

the intensity output is negative exponential, whilst 

the random component in the specular direction is 

given by the transformed Hoyt distribution. Thus 

thresholdscan be set for different receivers so as to 

operate with prescribed false alarm probabilities for 

each detector.

The outputs of individual detectors are not 

independent, since light scattered away from one 

sensor will fall upon another. Crosscorrelation of 

output from the specular sensor, with that of a sensor 

5 degrees off-specular, shows a significant negative 

correlation. (A typical crosscorrelation plot obtained 

from the SIRA system is given in Fig. 9.2.1.). False
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alarm probabilities, based on several sensors would 

need to include the conditional probabilities involved.

The output from the pair of off-specular sensors

(5 degrees and 30 degrees) of the SIRA system can be 

expressed in terms of the bivariate negative exponen-

tial distribution:

f(xi,x2) 1
OiO2(1-p) exp , 1 I XI + X2_l T

-
2/p" / xix2

(1-p) 1 01 ' CJ2 | _
• -L

0 i-p y °i°2

The correlation, p, is derived from the cross correlation 

plot at lag 0, of the 5 degree and 30 degree sensors, 

whilst Oi and o2 are the standard deviations of their

respective outputs. Then, 

the probability that both sensor outputs exceed their 

threshold values (lT(5°) and IT(3O0)), can be derived, 

etc. For m>2 sensors, a multivariate form such as to 

be found on p.227 of Johnson and Kotz [1972], should be 

used with variance - covariance information based on 

past performance.

9.2.2. Classification

Hill*s method of defect classification used a 

matched filter bank for intensity profile comparisons, 

and past trigger signal records. With a planar photo-

diode array detector device, to monitor the reflected 

polar diagram, the signal processing involved could be 

considerably less in terms of the volume of information. 

A simple integrator to monitor the total received power, 

would distinguish between a geometric defect and an 

oil drop for example, where much more light energy 
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would be absorbed.

Scratch Defects

A scratch defect scatters light in all directions 

but, as we have reported in Chapter 7, if the scratch 

is orientated approximately perpendicular to the 

incident light, the polar diagram reveals a major 

secondary lobe. Rules, for bimodality can be devised, 

for instance whether or not a quartic polynomial leads 

to a significantly improved fit. Moreover, the turning 

points of the polynomial could locate the lobe maxima 

more precisely should there be an accompanying surface 

noise.

The interpretation of the polar diagram from the 

geometrical profile is not completely straightforward. 

It is tempting to treat the defect as a mixed model of 

Chapter 4, imposing a random facet micro-structure 

upon a deterministic half-plane macro-structure. For 

such a model we would expect to see preferred scatter-

ing directions with Gaussian dispersion about those 

directions. In reality, we do see a secondary lobe 

and, furthermore, this is far more substantial than 

anticipated. The lobe separation however is of the 

order of 0.5 degrees, and not, judging by the slope 

of the flanks, 45 degrees or more.

The lobe position does not vary substantially with 

variation of the angle of incidence (consistent with 

facet theory), but the relative amplitude of the 

lobes can vary, believed to be an effect of shadowing.

Debris material along the run of the scratch 

exacerbates shadowing. For this reason there is some
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FIG. 9.2.2. Half-plane scratch scattering 

evidence to suggest that near normal incidence is 

preferable, in order to obtain a clear bimodal graph, 

although the result is by no means conclusive. Second-

ary reflection, on the other hand, is thought to be 

the reason for only one secondary lobe and not two. 

Gaussian or non-Gaussian dispersion about the preferred 

directions is of the same order as for non defect 

specimens of the same RMS roughness.

The half-plane model is too rigid to explain the 

close proximity of the lobes. The groove was not 

precisely machined but crudely scribed. The random-

ness of the scattering is, in consequence, very much 

greater than suggested by the model. In effect, there 

is much more scattering away from specular, and the 

specular lobe is much diminished. This accounts for 

a more substantial secondary lobe. Scratch defect
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INTENSITY FLOT FCR A SCRATCH DEFECT WITH 1-0 KIRCH-CFF FRETCICTICN

ANGLES

Scratch defect specimen M2T4 scan 90°: 
angle of incidence 30°(perpendicular 
alignment)

FIG. 9.2.3.



INTENSITY GRAPH FOR R SCRATCH DEFECT WITH 1-D KIRCHHOFF PREDICTION

R N G L E S

Scratch defect specimen M2T4 scan 90.0°: 
angle of incidence 10° (perpendicular 
alignment)

FIG. 9.2.4.
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1-D KIRCHHOFF PREDICTION FOR fl SCRATCH DEFECT

Z F 
111 Z U

)

ANGLES

Scratch defect specimen M1T4- scan: angle 
of incidence 30° (perpendicular alignment)

FIG. 9.2.5.
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intensity plots are reproduced in Figures 9.2.3.- 

9.2.6. for which the range of scatter is about 2.5 

degrees.

In particular figure 9.2.6. illustrates an 

intensity plot obtainable from a specimen bearing a 

parallel scratch defect. The antisymmetric graph is 

stepped with some hint of the step positions being 

indicated by the one-dimensional Kirchhoff prediction. 

Indentation Defects

A ’circular1 indentation widely scatters the 

incident beam. Figure 9.2.7. shows such a low inten-

sity versus angle plot. The surface identation was 

formed by a sphere of diameter 10 mm and the cap 

diameter was 1.76 mm, and thus it virtually occupied 

the whole of the laser spot. The maximum amplitude 

of the plot was reduced by 2 orders of magnitude by 

the'presence of the defect.

The scatter distribution is uniform about the 

wide angle model domain, with local ’upturn notches’ 

on the plot.

The one-dimensional wave model, even has some 

predictive powers with regard to this gross three- 

dimensional defect. The graph predicts a wide angle 

scatter region and also local maxima approximately 

coincident with the notch positions on the actual 

intensity plot.
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FIG* 9.2.6. Parallel scratch defect specimen M3T5 
~~ (perpendicular alignment
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FIG. 9.2.7. Intensity plot from ’circular* 
indentation
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9.3 Estimation of Surface Roughness Parameters

As we have seen for Type (C) surfaces the reflected 

field is a function of surface slopes. Since most practi-

cal surfaces are of this type, the discussion focuses on 

the retrieval of slope statistics. However, in the course 

of the study various peripheral analyses suggested methods 

whereby other surface parameters might be estimated for 

suitable surfaces.

For instance, returning to our work on incoherent and 

coherent illumination of the previous chapter, we have a 

possible means of estimating the variance of surface rough-

ness heights:

For a smooth surface

n2 / \ _ S/NR (specular) ~ 1 . . .
R (W) S/NR (off specular) 2(p _ e~° )2 ••••(2)

Measurement of the L.H.S., R2, in practice gives

or

1
/2(1 - e‘°2)-o

-o2
e

-o2
e

-a2

o2

as a

1
72R

1
72R

further approximation,

R

1

*

10S d -T^R }

-l°g(l -7^) ....(3)

a2 - 
<P

from

1
72R

equation (5) of Chapter 8

on returning to our earlier notation. Thus

16tt2 cos20i o2 =
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....(4)

.The standard deviation of surface heights, o z

X 
--------------------TZ---- T 
4ttcos6 i (/SR) 2

A laboratory method to estimate 0% would be to view 

the specimen at the same specular angle 9 i, alternatively 

with a coherent and an incoherent light source. After 

each pair of readings the specimen would be moved so that 

a different region of the surface would be illuminated. 

The mean/variance ratios of the data sets would allow R2 

to be derived.

Again, an algorithm for parameter extraction emerges 

from Cox’s work on smooth mirrors.

Given that the log (intensity) scatter can be modelled 

adequately (at least qualitatively), it would be of interest 

to attempt a qualitative fit and estimate certain parameters.

FIG. 9.3.1. Log (intensity) Plot with Model.
Curve. Fit.

Model : z± (say) = log [I(e2)± ]

= aQ - 21og(l + cos02i) -a1(l + cose2i)2+asin2e2i + a3

....(5)
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Initially estimate a , ai, B, ag by least squares to 

provide a , ai, B and £3.

a is of no interest but a2 = A—A
o 47T

(N.B. a >o to be meaningful.)

Also T = l//a and B carries information on Ai and e 

to provide useful surface texture autocorrelation data.

If this is encouraging, enhance the method to breakdown B 

into its separate features.

The estimation is non-linear but the following algori-

thm, essentially a two-stage linear process should be tried:

(1) Reduce model to - a - a t. + —— 
o 11 ax.

1
z .
1

or z .1
= a -at. 

o 1 1
s. where t. =21og(1 + cos 62•)

2 1 1 s 1
+ a

(2)

1
ax^ a(sin 2 02^)

Estimate

squares

Model

a , a , a bv a 
o 1 2 J

a t. +
10 1

4 7T2 
a - -p-

A
, a , 

00’ io’
A
a
20 by simple least

d
20

a
3

where

A
a
20
+ a

3

A
a 
oo

A
a t.
10 1

and s .
1

or u.
1

1
9

z .
1

ax.
1

+

ax.
1

u.
1

z .
1

and w.
1

= ax.
1

+ a
3

with

A

a 2 0
u.
1

w.
1

Estimate a3 from w.
1

model to obtain
Aa 30

Now update s^ to 1
-------- i—*-----ax. + a1 30

and go to (1)

Stop when estimates have converged.
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9.3.1. Half-width of Intensity Distribution

A simple processing statistic is to compute the 

angular deflection for which the intensity falls to 

half the specular value. The absolute value of the 

specular intensity, or for that matter the absolute 

value of off-specular intensity, is a function of the 

reflective properties of the material and the dimen-

sions of the illuminated region, as well as surface 

roughness. As we have seen before, a ratio of 

intensity values removes difficulties of interpreta-

tion.

An exploratory paper by Thomas and Clarke [1978] 

reports half-width measurements performed in the 

laboratory. Thomas and Clarke used a laser scanner 

developed by Ferranti, the details of which are to be 

found in Clarke and Bedford [1978]. The quoted 

conclusions have been discredited, but the potential 

capability of the device is not in question. Half-

width measurements varied from about 0.2 degrees for 

finely finished surfaces to almost 50 degrees for 

coarsely finished surfaces.

For our laboratory samples half-widths were about 

0.1 degrees (regardless of material), except for 

specimen M0T3 (cold rolled stainless steel) which was 

approximately 0.1 degrees. The intensity in fact 

dropped by 1 order of magnitude at approximately 0.25 

degrees from specular.

Cold-rolled mild steel is coarsely textured and 

measurements by Barker and Brook [1978] on this 

material showed a 1 order of magnitude drop at about
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15 degrees, a 2 orders of magnitude drop at about

40 degrees. Further, using a data bank of successive 

scan data held on magnetic tape, the intensity at 

5 degrees off-specular is three-quarters of the - 

specular value. (in practice the mean values of the 

sensor outputs can be computed as the SIRA scanner 

automatically inspects a sheet: Chandley £1976] 

physically moved a specimen 4-000 times in order to 

remove speckle effects and obtain ensemble mean 

intensity values.)-

Combining the information we have the incomplete 

plot shown, on normalising the intensity value to 1 

at specular.

FIG. 9.3.2. Partial Scatter Information of SIRA
—Sensors

If we assume a Gaussian distribution of surface 

height, the intensity scatter from a Type (C) rough 

surface is given by
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....(6)
m2 « 2

1(3) oc exp (- j-g-jr )

(c.f. equation (46) of Chapter 6.)

for reasonably small angles 9 from specular. An 

adequate fit of a Gaussian curve can be made if we 

discard the 40 degree value. (We would not expect the 

approximation to still hold in this remote diffuse 

region in any event.)

4 exp [" 180 ) J

(d/T) [ - loge (3/4)]2.

= 0.040

i.e. a mean surface slope statistic of 0.040 (0.043 

if we use the 15 degree value) or 2.29 degrees. We 

will shortly pursue the notion of fitting a Gaussian 

curve by formally applying a least squares fit to our 

intensity scan data.

The mathematical justification of the association 

between half-width intensity and surface roughness 

slope parameters for a Type (C) rough surface is given 

in Appendix 9A.

A half-width A = (s°) (6 ~2%ga-)* ....(7)

for a near normal distribution of slopes say, 

2.5 < s02 < 4.5. Here sQ and s$2 are the standard 

deviation and kurtosis of slopes respectively. Thus 

the expression (7) for half-width comprises two 

characteristics: a measure of spread (s°) and a 

measure of shape (s(32) of the slope, distribution in 

keeping with the dominant geometrical nature of Type 

(C) scattering.
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Incidently Porter and Mundy [1981], estimate sQ 

from the half-width point assuming, albeit unstated, 

a Gaussian distribution of surface heights. However, 

half-width estimates are reasonably robust as demon-

strated in Appendix 9A.

9.3.2. Mean Slope Roughness by Intensity

Curve Fitting
rn rn 2 ft 2

The Gaussian function: 1(62) 00 “ exp (-—^2) ....(8) 

has been established as the mean intensity for Type (C) 

surfaces with Gaussian height statistics. The 

strategy now adopted to obtain an estimate of mean 

slope is to fit a Gaussian curve to intensity scan 

data by the method of least squares.

FIG. 9.3.3. Least Squares Fit to Gaussian Intensity
Plot

The model fitting function is of the form

e [i(0)] = A /ci exp (-aS2) ... .(9)

on introducing the dimensionless variable
T2

Ot — -1 z 7
16oz
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Take logarithms to produce, after a little

algebra, a linear relationship.

log[l(S)] = logA + loga - aS2.

With N data points, S, sum of squared errors -

N 1
= E {y. - (logA + 5- loga - ax. ) }2 on writing 
1=1 1 z 1

y± = log[l(S)] and x± = S2.

Whence, ||- = 2 2{yi - (logA + -loga - ax±)}. (-^a - x±)

1 N a ->«. ^2 {y -logA-iloga

1=1
tax^}

N A A
- E {yixj_"(l°gA + 2 loga) xi+axp 
i=l

Also

0 , for minimum . . . .(10)

3S
3A

i-loga -

N
.’. 2

i=l

A

(y± - L°gA - In2-loga ax.} = 0
1

....(11)

for minimum

A A 1

i.e. y - log(Aa2) I A “+ ax . . . . (12)

From (10) and (11),

N AAi N
2 y x. - log(Aa2) E x. 

i=l 11 i=l 1

N
2 xf = 0 

i=l

Eliminating the log (Aa2)

N 
ZyiXi

1=1
- (y +

N
ax) 2 x.

i=l 1

term

N
+ aEx? = 0

1=1

which

Sxi

(Ey±)(Ex±)/N},
(lxi)2/N ’

is the usual form of the estimate of the slope

Aa

+

+

+

0

A 
a

parameter in simple linear regression.

....(13)



.... (14)

To complete the fitting,

A A 1

log (Aa2) = y + ax

Aa2 = exp (y + ax).

The surface roughness statistic, a/T is then estimated 

by 1/ 1/a” .

A Gaussian curve has been fitted to a number of 

intensity data scans employing program SCATGH.FOR

(c.f. Appendix 5A for program listing). Figure 6.1.14 

shows a Gaussian curve fit to an intensity graph from 

specimen M1T2, from which a/T is estimated to be 

0.00113.

Such a value would indicate a scatter spread of 

about 0.8 degrees. In fact the observed range is about 

1.2 degrees.

The derived a/T values are used next in 9.3.3. to 

obtain a RMS roughness heights.

The expression (8) above was formulated on the 

basis of a Gaussian form of autocorrelation
T2 /T2

C(t) = . if the nature of the autocorrelation

is negative exponential instead, then

i(e2)
2T/g

1 + T2^2

F

is the appropriate intensity model.

Then E [l(9)] = y; ---rr . . . . (16)

is the requisite fitting function.

Whence, + ^92 = E rj) I

....(15)

....(17)
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Writing y = p^TJ and x we have again a simple

linear regression with the slope parameter = and 

the intercept parameter = -r .

The ratio of the linear regression parameters 

enables a = T/g to be estimated.

This least squares fitting routine was utilised 

in a simulation exercise in Appendix 9B. Whilst the 

tails of actual intensity plots do decay more slowly 

than Gaussian, reflecting the negative exponential 

portion of surface autocorrelations, a Lorenzian type 

curve fit is manifestly inadequate.

Many of the intensity plots obtained experimentally 

were extremely leptokertic, indicating that neither 

Gaussian nor Lorenzian curves are suitable bases for 

model fitting. Such intensity plots were modelled by 

Pearson VII curves using the method of moments, and we 

appeal to the geometric nature of Type (C) roughness 

scattering to derive an estimate of mean slope. For 

specimen M1T2, the Pearson parameters are c2 = 0.1355 

and m = 3.04, from which we estimate the mean slope to 

be 0.10 degrees which compares directly with 0.13 

degrees from the Gaussian fit.

9.3.3. Estimation of RMS of Surface Heights

In the literature review of Chapter 3, we noted in

3.2, methods of obtaining RMS of surface roughness 

heights. Often the method methodology required some 

degree of extra sophistication, such as the use of 

two modes of incidence or two nearly coincident wave - 

lengths of illumination.
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We have seen that the first order surface 

statistics gives rise to a specular spike, whilst 

the mechanism for scattering about the specular 

spike, is the second order statistics of the surface. 

Many of the test specimens were too rough to distin-

guish the spike feature, but for more moderately rough 

specimens the specular spike is just discernable, as 

seen in Figure 9.3.4. for example. We approximate the 

diffuse component by a Gaussian scatter curve, and 

consider the ratio of the intensities in the specular 

direction

I (first order)
I (second order) ....(18)

7tt 7l t

= (Lv e~S)(c/T) ....(19)

7tT

For a specimen such as M3T2 on the Type (B)/Type (C) 

boundary., the methods of 9.3.2. enable a reasonable 

estimate of o/T to be found independently. The 

relative magnitude of the specular spike to the broad 

diffuse intensity component then allows for the deter-

mination of g and thence a.

For the scan shown:

i(spike) _ 1.15 - 1.14 _ 0.04
I(diffuse) 1.14 1.14

- —— 0'762'8 0.00164 e s

= • 4
114
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FIG. 9>3.1> Specular component and off-specular 
component for specimen M3T2

FIG. 9.3.5» Diffuse component and total intensity 
plot for Type (B) specimen M3T1
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=» g = 7.10

=> o = 0.138 pm, which compares with the 

talysurf value of 0.09 pm.

For a super-smooth specimen M3T1 (a smoother 

brass specimen), the relative contributions are vastly 

different. The diffuse component is a relatively 

disperse, low amplitude field. The ’specular spike’, 

for reasons explained in Chapter 7, appears broadly 

Gaussian. The method in this case is to use the 

’tails’ of the intensity plot, to estimate the 

diffuse contribution of the field attributable to the 

second order statistics. The intensity ratio is used 

in the same manner to estimate the value of g etc.

The ratio in this instance is approximately 1. Whence 

6 = 0.0747. Table 9.3.1. gives estimated and observed 

RMS values. In general, the estimated values 6, are 

approximately 1.4 times larger than the measured 

talysurf-5 values. Although for the anisotropic rolled 

steel surface, there was exact agreement.

TABLE 9-3.1.

Specimen Estimated 6 Observed o

M3T2 0.138 0.09

M3T1 0.07 0.05

•M1T2 0 .137 0.10

M0T2 0 .12 0.12 (rolled)

Estimated and Observed 
RMS Values of Surface 
Heights
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9.3.4. Estimation of the Autocorrelation Function 

of Surface Heights

For smooth Type (A) surfaces, equation (24) of

-00

Chapter 8 provides a useful result for Fourier

inversion. We thus obtain:

r00
n/ \ 1 -1V Te(T) = 27 J ge x l(v ) dv . 

F x x
... . (20)

- 00

In the case of Type (C) surfaces the corresponding

approximate result, as seen from equation (22) of

Chanter 8, is
-CO

T, / X 1 -iv TK(t) = 57 J “ x st- l(V )dv
F x x

... .(21)

where K(t) = exp [-g(1 - C(t))] if in this case g and 

F, in reality functions of 62 (and consequently of v ), 

can be treated as reasonably constant.

To appreciate the potential usefulness of (21)

two special cases are analysed in Appendix 9B : speci- 

-t2/T2fically when C(t) takes the form (i) e and (ii)

e“lTl/T^ case (ii) is further pursued in a simulation 

exercise.

However the apparent simplicity of equations (20) 

and (21) above is deceptive. Since the intensity 

l(v ) of (20) is the component of the scattered field
X

about the specular direction, and the component due to 

the first order statistics must be removed first. In 

(21), an intensity model based on the Pearson fit 

yields a global autocorrelation function, but cannot 

realise the micro/macro structure components of 

observed autocorrelation functions. From our work in 

7.1, the significant micro component contribution to 
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the scatter field is confined to the near specular 

region. One approach would be to attempt to fit the 

near’specular region separately, and use a semi- 

empirical method of assessing the relative contribu-

tions to the autocorrelation integral from knowledge 

of the g parameter.

However this is unconvincing as a methodology 

since it is formulated by virtue of hindsight. 

Inversion of the actual intensity for Type (C) 

surfaces yields Gaussian-type autocorrelations, and 

in view of the approximations involved, would be 

meaningful for relatively few lags, say t < 50 urn. 

Over the lags 10 pm to 50 pm the derived autocorre-

lations are linear and agree reasonably well with 

talysurf autocorrelograms listed in Chapter 6. For 

longer lags the autocovariance of the scattered 

waves drops much more rapidly than the autocovariance 

of actual surface heights. (in agreement with the 

work of Chandley [1976b].)

Near t = 0 the talysurf and normalised auto-

correlation functions from light scattering measure-

ments differ considerably. The immediate fall regis-

tered in the talysurf graphs is not echoed by the 

light scattering graphs. For smoother surfaces the 

talysurf autocorrelograms register a less dramatic 

step at zero lag, and consequently light based auto-

correlograms show better agreement near lag zero, 

but nonetheless fall more rapidly than their talysurf 

counterparts.
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based on light intensity 
measurements

Lag

Specimen Type (C) Specimen
Type (B) 
M3T1M1T2 M3T2 M0T2

6.5 0.99 0.99 0.98 0.99

13 0.98 0.97 0.96 0.97

19.5 0.97 0.94 0.92 0.95

26 0.95 0.91 0.88 0.92

32.5 0.93 0.88 0.85 0.90

39 0.90 0.84 0.83 0.86

45.5 0.87 0.81 0.81 0.82

52 0.84 0.76 0.78 0.77

58.5 0.80 0.72 0.73 0.71

TABLE 9 .3.2. Normalised Autocorrelations

9.3.5. Periodicity of the Surface Roughness

Model surfaces having exact periodicity were 

closely examined in Chapter 4.3.1. Intensity plots 

demonstrate periodicity in their diffraction pattern 

away from the specular lobe. The separation of 

diffraction maxima gives a measure of an underlying 

periodicity in the surface roughness macro-structure.

A measure of the power spectrum, Xq, defined by

Xq = 2k
s

is termed the ’average wavelength’, so called since 

for a sinusoidal surface this parameter takes the 

value of the wavelength of the sinusoid.

A wavelength value Xq* is available from the 

separation of the specular lobe (order zero) and 

the first order diffraction lobe.
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For the specimen M0T2 (cold rolled steel 

sample) this separation is 0.4 degrees.

sin 30.4° = sin 30° + -p-.,
Aq-

=> Xq* = 104 pm

For specimen M3T1, employing ’the scan listed 

in Table 5.1.1., the separation is 0.92 degrees

sin 10.92° = sin 10° + -Aq *

. => Xq* = 40 um

These values are approximately half the 

corresponding values obtainable from talysurf 

power spectra, and are consistent with the diff-

erences in light scattering and mechanical esti-

mates of slopes and autocorrelograms.

Adjacent off-specular diffraction maxima 

gives higher harmonics of the surface periodicity.

9.3.6. Depth of Scratch Defects

If a scratch defect is aligned parallel to 

the incident laser beam the intensity plot is a 

broad Gaussian distribution. The ratio of the 

o/T estimate for this plot with that obtained from 

defect free material enables an estimate of the

scratch depth to be made provided the delineation

of the scratch is known (e.g. from SIRA laser 

trace scanner). From

gSC

°RMS

since the scratch

2L5 x , (W = scratch width)

roughness is smoothed over the

area of the spot.

For the M2T4 sample, Ogg - 40 pm which 

reasonably compares with the talysurf value.
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9•4 Conclusions

Discrimination between the polar diagrams of 

circular indentations, can be partially explained in 

terms of simple geometry. Quantitatively, however, 

details of the polar diagram cannot be trivially 

inferred from talysurf profiles. The one-dimensional 

wave theory model can anticipate the whereabouts of 

defect-related polar diagram features and this 

represents a potential tool for developing more 

efficient classification algorithms.

The work has also shown the necessity of model-

ling non-Gaussian processes. The vast majority of 

slope distributions encountered were non-Gaussian, 

obeying a Pearson type IV or VII frequency law, for 

which the high kurtosis leads to a revision of the 

Gaussian based estimate of slope variance.

Prior knowledge of the form of the slope dis-

tributions should in fact determine the appropriate 

fitting routine for the extraction of the mean 

absolute slope statistic. Furthermore, if a negative 

exponential distribution of heights was envisaged the 

R.H.S. of (18) of 9.3.3. should read

i/u+g)
nT/iLg

and the estimation of should proceed accordingly.

The estimation of Voight from a single

intensity scan appears feasible under conditions 

which enable components of the field due to the first 

and second order height statistics to be clearly dif-

ferentiated. The results agree with talysurf values 

to within the sampling variation of of mechani-
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cally measured heights. The methodology offers 

obvious advantages of instrumentation should the 

results be confirmed by further work.

Autocorrelograms based on light scattering 

measurements show much the same linear decay over 

the range 10 pm-50 pm as talysurf autocorrelograms. 

In general, for longer lags the light scatter auto-

correlograms decay to zero more rapidly than corres-

ponding talysurf autocorrelograms, which are much 

more influenced by the longer surface wavelengths. 

For Type (C) surfaces, K(t) = exp [l+g(1-C(t)) ] is 

based on the assumption of a Gaussian height distri-

bution. If a negative exponential is adopted, the 

requisite form is

[l+g(l-C(T))|

and the decay to zero is more rapid still.

The cusp feature of the talysurf graphs eluded 

those based on light scattering. Whilst the cusp 

feature is apparent rather than real, and noting the 

different wavelength resolutions of the two measure-

ments involved, the discrepancy demonstrates some 

conflict in the contacting and non-contacting results. 

For very smooth surfaces (20) is more robust than (21) 

in relation to the statistical distribution of surface 

height. Nevertheless, higher powers of g have been 

neglected in its formulation with the underlying 

assumptions of the Beckmann theory being presupposed.
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APPENDIX 9A

Half-width of Intensity Distribution

Although half-width is s simple processing statistic 

of actual intensity data, there is no simple model inten-

sity curve on which to compute a theoretical half-width 

parameter: the functional forms of intensity curve being 

determined by the statistical distributions of surface 

height.. Here the approach is to evaluate the following 

integral for intensity:

I(.) = / cos(v t)x2(v ,-v ;t) dr, ....(1)
Li Li

using early terms of the X2(v »"v >T) expansion.
z z

(N.B. For g>>l Type (C) roughness, the only significant 

contribution to the integral is close to t=0.)

Applying the general results of Appendix 81,

X2(vz,-vz;t)

OO

r=0
....(2)

where s r is the rth moment of the distribution of slopes.

9 9 o k k
/.co V q 2 v  p

Thus l(.) a oosvxz { 1-- z 2, S + -- 4
21

} dr

oo COS V TdT
_________ X

ll + aT^ + bT1*}
...(3)

We require as near as possible,

v 2t2 o2 v u
{1--^T-S '<1 + aT2 + bT2} = 1 ••••(4)

■* a - Z2S ■ ■ = 0 (coeff.of-t2) ....(5)

391



4

b + —
V

4— - a —
2 o2 

z s -
21

0 (coeff. of t4) ....(6)

a
V2 o2 z s

21
...(7)

o2
b

v2
z sv2 o2 

z s

is

21 2!

V^ f o°2 z (s ) ( 6-
41

V4 / O2 \ 2 z (s )
41

(6- Sg2 } ’

sUu 
(-o^T2 
K s ‘

VZ SU4
41

}

....(8)

the kurtosis of the slope distribution.

check on the working so far 3 =3 for a normal
S 2

distribution, and therefore,

1 + ar2 + br4
sSt2

-| 4- 2--------- +1 + 2!

The R.H..S. is the

I «c / ....(9)

further suppose that surface heights are correla- 

ted to C(t) = e~zZ^2, then „g = 2o2/T2vz2 = 2g/T2.

If we

f°° -p-t2/T2. * . I( J °° LoocosvxTe g dT ....(10)

which is of the form of (28) p.85 of Beckmann [1963]-

As a second check, for a negative exponential distri-

bution, 3 =6, which implies b = 0 and
s 2

COSV TdT

11 + Jt2/2}s
....(11)

This leads to the cusp solution as required.

In full, consider
.co COSV TdT
/ (1 + a?)

G
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f

v > 0 x

....(12)

00 cosv t di cosv t dr
XI X

o (1 + aTz) ” ' all/a + tz }
o

COSV T dT
. z_____

a{ ( a‘ )2 + tz
a’ =

I

1 71 -v a
a ~ e x

But a = s§/2 = i o2v 2
2 s z

7T

/2 cjv
6 o X Z

s z

71 -/2/satan( 1 2) 6i > e

s z
....(13)

That is a cusped function with halfwidth A

satisfying A
2 l°ge2

....(14)
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....(15)

<•00 COSV T
Returning to J {1 + aTz +XbT*j 

c

we have

fCo COSV TdT
____________X

'c {1 + arz + br4}
COSV Tdr

X
(1+ 1TZ)(1 + 1TZ)

00_ r y2s2 cos(vxT)dT
' ° ( g2 + T2)(yZ + T2 )

V2S2 (Be~vxY-ye~yxe)
Y B -n 2By(B2-Y ) ’

with ^2 + ^2 = a

is allowable.

1
3zy2 b provided that the factorisation

(The solution in 

derived if we take -jp

the special case with b = 

a and allow y-><»).

0 can be

l(.) - 2(gI_gy2T { Be-V - ye-vx6 }

3!
...)

x g2
3

V ft3 
X P
31

+ ...)

= 2(P-YZ) { (S'Y) 3y(6-y)v2
2 x

+By(B2-y2)vA - }
31

= + 3y( 3+y)v3
3 x

If b = 0, we have a function which is locally quadratic at 

v =0 (specular). The half-width A is given by {.} = 77, 

but more simply, at least in mathematical terms, would be 

the ’half-width’ condition:
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i
4

....(17)

s ° [6nrr*
so

UTT*
{6-sB2}i

2sa

(4 J) p+

In the case of the normal, A*

= 2t202/T2)*

2(2a2/T)^3*

(4!)>*
1 1 

, which compares with A = (2o2/T2)2(21ogg2)2 , 

the true half-width value.

As a working approximation we may take

A* = go x (6 - s32)4 ....(18)

r00
N.B. (i) In truth, the evaluation of J cosv t \2(v -v ;r)dr 

-co X z Z

proceeds by knowledge of the poles of the function

\2(v ,-v ;t), when expressed in terms of the 
z z

complex variable z.

(ii) If B9 >6 then b<0 from (8) and the quadratic

1 + az + bz2 = 0 has real zeros. In which case,

1 + ar2 + br11 = (1+ ^rT2 ) (1 - —rT2 ). Then

00 9 f
cosv TdT Y2B I cosv TdT

X / X
o {1 + ar2 + bTH} ~ o (B2 +r2 ) (y2 -t2 )

y2b2
B2+y2

Y2B2
B2 +y2

cosv TdT
x , 

( Bz + t2')

7T
2B

r COSV TdT 
X

J y 2 _ q- 2

....(19)

Thus the half-width parameter is insensitive to

slope kurtosis for leptokurtic slope distributions.
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(iii) The approximations in the above treatment tend

to nullify one another and the result

seems acceptable for near normal distributions.

However A.so is preferred if the slope distri-

bution approaches a Laplacian density.
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APPENDIX 9B

Inversion Theorem for Autocorrelation Information

equation (22) of

8.2.2. we take C(t)

Then I (
F2
2L

since the integral

)

is plainly even. To evaluate the above integral contour 

integration methods of functions of a complex variable are 

pursued and confirm in passing equation (15) of Chapter 4.

** 2 z 2 / T 2
Consider the integral e ° around the contour C^

shown below.

Since no singularities are contained within the

contour,

f e-^2/T2
J
CR

dz =0



i.e. pe-g^/^dT + j’Re-g/T2^+iW2g) dT +J + j = 0 
-r r rR rR-

Suppose for the moment that J and j* ■> 0 as R . 

TR TR’

Under this supposition we may write,

/°° -g?2/T2 i f00 -gT2/T2 iv t T2v 2/Z-gJ e 5 dr + J e s . e x . e x 7 dr = 0
— 00 — 00

fe-S^2/T2dT = eT2vx2/4g fe-gT2/T2 eivxTdf

— CO _co

e-g/T2(R+iy)2 e-gR2/T2. egy2/T2 e-2Rygi/T2
r

as R

Similarly for z = -R + iy. Hence

e+gy2/T2 e2Rygi/T2

0 as R -> oo

As a test of the inversion theorem take the result 

for l(v ) and attempt to recover the Gaussian autocorrela- 

tion function:
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- f00 • /—’ v 2TZ
K(t) = 5— / e~1VxT T/^expC- ---)dv

2tf Loo 7 S x

foo v 2T2
= 75— T / - J exp(- --- ) cos ( v r)dv2tt / g J m ^g x ' x

= ± T/J . exp(-t2g/T2)

= e-gT2/T2

In the course of deriving l(vx), C(t) = e”

was approximated by 1 - t2/T2 and so

K(t) = e-g[l-C(T)J s e-gT2/T2 

which is reconciled with the above.

As a second illustration, consider the case of a

negative exponential autocorrelation function

I(v- )
X

e-g[l ■c(T)JdT

To a first approximation,

I(VX) = g- jLeivxT e-shl/TdT

-L

— 00

justifying the limits to be ±°° as previously.

Note however | e Vx_T | = | e^VxT||e”^T^

= e -> q as  t -> 00

, \ F2T iIn summary Kv*) /g2 a function which

is of the form of the Cauchy distribution in statistics.



Can the Inversion theorem now be used to recover

K( t) = e'glT l'/T?

We have K(t)
1 [°° -iv t 2T 1

2^he x T r+-HP/gi'

1 f°°
In particular, K(0) = J

-00

1
g 1+V ZT2

x
g2

2T dv
x

Setting s = have

/°°= 27 /
-00

2T 
g

ds
1 + s2

g.
T

oo
ds

T 1 , (from property of the
-00

Cauchy p.d.f.) as required.

v T
x
g

, we

= f
J TT 1 + S

In general, for the evaluation of K(t) we again resort 

to contour integration techniques.

For t>0 we consider the complex function

e~iTz = e~iTz _ g2/T2 e~1TZ
1 + Tzz z/g2 Tz/gz(zz + gz/Tz) (z + ig/T)(z - ig/T) 

taken round the contour C^ as shown. There is a simple 

pole at z = —within CR with residue

S2 e-ii(-ig/T) _ _g e-gT/l

T2 - 2ig/T T 2i
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By

CR

Cauchy’s residue theorem, 

e -irz

1 + zzTz/g
2tt 1 x -g/T

2i

1

e’1TX . .ng e’gT/T
~^fVg2 dx - T

Suppose as
R -> 00 J 

rR
■* 0 , then

r
-00

-iTXe
+ xzT2/g

gr/TTTg e&
Tt  dx1

K(t) 1
2tt

-OO/ — .
OO O

-iv T
1 + v 2Tz/gz dvx

K(t)

1
2tt

2T
g

egT/T

e-iTZ

On rR’ 1-+ z

x egT/T

as required.

-i tR( cos9 + isin6)

Tz/gz(Rz-l)

TRsinQ
= T'/gz(Rz-l) < i-p"Z"y”2^2 ) (Rsin 0<O remember)

< T2/g2fR2 1) * and "this 'tends

For t < 0 we consider the same function but taken

round C ’
n

401



By the residue theorem

/
cr'

-iTz j e dz
1 + zzTz/gz

2tt 1
Tg/T

g. e
T 2i

Again if

e~iTzdz

+ zzTz/gz + /R
-R

-iTx ,
e dx

1 + xzTz/gz

eXg/T

/
rR

00 , we have

/r 11 R
1 T

-> 0 as R ->

r

-00

“iTX j
e dx

1 + xzTz7gz

Tg/T
7rg e &

T

Thus K(t) 2tt g
eTg/T = eTg/T

(t o)

It remains to verify
that /

r ’1R

as 00

z = RcosO 

e-i-rz

+ zWF

and+ i RsinO 

^TRsin©

Tz/g2(Rz - 1)

so

< Tz/gz(Rz - 1) (T < °)

1 2T Ig.
" T

-> 0 R

r

>

1

!
R

-iTz
i + z-^/F dz < ... 1

T2/gz(Rz-l)

1

irR -> 0 as R -> °°

Simulation Exercise

As a further investigation of inversion, Cauchy type

intensity distributions, 

I(x) 2T/g
1 + Tz/gzxz ’ are generated for different

values of the parameter T/g.• According to theory remember

such distributions could arise from surfaces having negative 

I t I /T
exponential autocovariance functions B(t) = o2e“ 17

The function e j_s recovered by the inversion theorem

and compared with

Since K(0) should

the true negative exponential values.

be unity a normalised output K(t)/K(O) is

also calculated. Lastly with a view to surface parameter
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estimation applications, T/g is estimated from the 

intensity data by a least squares routine.

The results show close agreement between K(t), as 

obtained by the inversion algorithm and the true negative 

exponential values, and validates the least squares para-

meter extraction procedure.

Input T/g parameter = 20

Lag Normalised 
correlation fn.

Neg. exponential 
model

0 1.00 1.00
3 0.87 0.86
6 0 • 7 0.74
9 0.53 CO • ^0

i P V • J/ J? 0.55
15 0.45 0.47

Least squares, estimate T/g = 20.000

Input T/g parameter = 40

Lag
Normalised Neg. exponential

correlation fn. model

0 1.00 1.00
8 0.81 0.82

16 0.65 0.67
24 0.52 0.55
32 0.40 0.45
40 0.30 0.37

Least squares estimate T/ g = 40.000

TABLE 9.B.I. Recovery of correlation function 
from Cauchy 'intensity' plot with 
theoretical neg, exponential model
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CHAPTER 10

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

10.1 Summary of Research Achievement

The principal conclusion arising from the study, is 

that the Kirchhoff theory adequately predicts the back 

scatter from reflective metal surfaces of the order of 

0.07-0.5 RMS roughness investigated, if we apply the full 

two-dimensional treatment. The full model is not merely 

a refinement of the simpler one-dimensional model, employed 

to explain short-comings of the one-dimensional model, as 

was thought to be the case when the project was initiated. 

Isotropic surfaces required AREA statistics to be input 

into the model: the one-dimensional model fails to hold.

For the roughness grades specified the scattering is 

believed to be virtually geometric, although talysurf 

profile slopes indicate otherwise. Our conclusion is that 

numerical values of slopes are likely to be substantially 

too large if the autocorrelation function of surface 

heights is near negative exponential.

For typical defect-free surfaces.2ym, the two- 

dimensional Kirchhoff theory model provided an adequate 

fit to observation, on the basis of a small representative 

sample of the surface topography. Furthermore, the fit was 

not materially improved by the inclusion of the local 

reflectance properties, and the simplification of perfect 

conductivity was justifiable. These remarks are important, 

since the evaluation of the fourth order integral over 

100,000 sample heights is a daunting task, and an insatiable 

user of CPU time. The two-dimensional model captured the 

broad features of observed intensity curves and indicated 
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the extent of fine features at the tip of the specular 

lobe for instance. The diffraction features at the foot 

of the lobe were exaggerated however.

Scattered intensity showed itself to be sensitive, 

both to the lay of the surface texture of rolled surfaces, 

and to the orientation of scratch defects. For defect 

specimens it is ambitious to hope for a totally adequate 

prediction, in view of the presence of sharp surface 

irregularities and the associated problems of shadowing 

and secondary reflections.

Simple model geometries are deficient in the explana-

tion of the order of observed scattering. It is impossible 

to relate the position of a ’defect’ lobe from a scratch 

defect for instance, from a talysurf trace record of the 

scratch. For such a linear defect, the one-dimensional 

Kirchhoff model provides useful, albeit partial, informa-

tion. The predicted intensity curve requires a degree of 

interpretation, but the model appears capable of accurately 

forecasting the separation of the central lobe from the 

defect lobe. The accuracy of the prediction of the relative 

lobe amplitudes is an open question. The relative amplitude 

not only depends on the size of the scratch, but also its 

position beneath the laser spot due to the Gaussian profile 

characteristics of the laser beam. A pair of parallel 

scratches of different dimensions, can give rise to a 

’tiered’ structure of intensity. The one-dimensional model 

suggests the location of the individual tiers.

The project also demonstrates the recovery of certain 

rough surface parameters and defect measurements. This is 

not entirely new ground in some instances, but the reliance 
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on Gaussian statistics, a methodological requirement of 

several previous analyses, has been relaxed in many of the 

procedures.

10.2 Areas of Further Research

In the field of optical instrumentation, a rectangu-

lar diode array device of small aperture, functioning with 

incoherent light, ought to be considered. There is con-

siderable scope for research in appraising such an instru-

ment, and in developing suitable computer software, both 

for decision threshold subroutines for defect detection 

and classification, and for on-line parameter estimation 

procedures, which would grade and control the quality of 

surfaces.

The sensitivity of polar diagrams to the orientation 

of scratch defects is easily understood. The precise 

interpretation of near specular polar diagram information 

should be studied using the one-and two-dimensional 

Kirchhoff scattering models. The simple one-dimensional 

model has shown itself capable of locating an adjacent 

lobe arising from a scratch deformation. On this evidence 

simulation studies on surfaces bearing scratch or grooved 

defects, whereby the predicted scatter is computed on the 

basis of a single profile only, should be performed to 

investigate how the position and relative amplitude of 

the ’defect' lobe, varied with the width and depth of the 

scratch.

The models perform a particularly useful function, 

since it does not appear possible to link the slopes of 

profile heights with scatter dispersion directly. We need 

to resort to a regression technique as in Chapter 7.
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The two-dimensional Kirchhoff model performed well in 

modelling non-defect scatter patterns, but less well in 

modelling defect scatter patterns. A prime reason is that 

the disordered nature of defect surfaces exposes limita-

tions in the reference map: the lack of resolution in the 

across trace direction, together with a lack of precise 

control over the start up point of each trace, introduces 

too much error variation. It would be of interest to 

improve the mapping procedures by utilising the laser appli 

cation of exact distance measurement. By suitable gearing, 

a stepping motor could advance an X/Y table so that the 

same resolution (of the order of 2-3um), applies in both 

’X and Y’ directions, whilst a static laser beam could 

provide an exact start up reference. Having demonstrated 

the feasibility of using Kirchhoff wave theory models to 

study defects, and with defect geometries specified more 

precisely, samples of industrial defects should be mapped 

and the predicted scatter patterns computed. Such patterns 

would assist in the interpretation of polar diagrams 

obtained on-line, and would aid defect detection and 

classification decision-making.

A useful by-product of this line of research, is a 

high integrity data base for studies in the area of surface 

metrology, such as to investigate the relationship of 

profile parameters to area parameters, or modelling three- 

dimensional surfaces by spatial time series analysis.
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