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ABSTRACT

In this thesis, we investigate the interplay between entanglement and internal symmetries in 1+1D

quantum field theories (QFTs). Although the notion of symmetry-resolved entanglement has been

widely studied in various systems, its behavior in excited states of massive QFTs remains largely

unexplored. In the first part of the thesis, we focus on theories with global U(1) symmetry and

compute the symmetry-resolved entanglement entropy and logarithmic negativity of zero-density

excited states of the massive free complex boson and Dirac fermion. We find that the excess of

symmetry-resolved entropy (and negativity) of these states with respect to the ground state is

largely independent on the details of the excited state and it has a very simple dependence on the

U(1) charge. We test our results numerically on a one-dimensional Fermi gas and on a

one-dimensional harmonic chain, and we propose an interpretation of our formulae in terms of simple

multi-qubit states. Next, we generalise the field-theoretic computation of symmetry-resolved

entanglement measures to higher-dimensional, non-integrable field theories using semi-local twist

operators, which are defined through their commutation relations with an algebra of local

observables in a QFT. In the second part of the thesis, we turn our attention to the one-dimensional

massive Ising QFT, which possesses a Z2 symmetry. The ground state in the paramagnetic

(disordered) phase of the theory is symmetric, and its Z2-resolved entanglement entropy can be

obtained from a two-point function of composite twist fields. We provide an exact expression for the

cumulant expansion of this two-point function. In contrast, the ferromagnetic (ordered) phase

features two Z2-breaking vacua. The extent to which the symmetry is broken can be quantified by a

relative entropy measure known as entanglement asymmetry. By making use of twist operators, we

develop a method to compute entanglement asymmetry in massive 1+1D QFTs with discrete

internal symmetry and apply this approach to the Ising model.
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CHAPTER

ONE

INTRODUCTION

Over the past decades, advances in experimental technologies have led to extensive exploration of the

role of entanglement in quantum many-body systems [9]. In particular, the study of entanglement

measures in quantum field theory (QFT), which started in the 1990s with the seminal works [10,

11] and was then crucially extended by Calabrese and Cardy [12], brought results to the attention

of a much wider scientific community. These theoretical results, in conjunction with numerical and

analytical work in integrable spin chain models [13–16], revealed how certain entanglement measures,

such as entanglement entropy [17], display universal scaling at conformal critical points [18]. This

observation has many implications, a very important one being that computing the entanglement

entropy of a pure state is one of the most numerically effective ways of determining if the theory is

critical.

A recent development in this field is the growing interest in a type of entanglement termed

symmetry-resolved entanglement. In the context of conformal field theory (CFT), a definition of this

quantity was given in [19], where it was related to correlation functions of generalised (or composite)

branch-point twist fields (CBPTF). In the context of entanglement, such fields were first introduced

in [12] as associated with conical singularities in conformal maps and in [18, 20, 21] as symmetry

fields associated to cyclic permutation symmetry in 1+1D QFT (both critical and gapped). The

basic idea is that in theories that posses an underlying symmetry (say U(1) symmetry in a complex

free boson theory or in sine-Gordon theory) entanglement can be expressed as a sum over

contributions from different symmetry sectors. A strong motivation to study the symmetry-resolved

entanglement measures is that the different contributions to the total entropy are experimentally

measurable [22–24] and can be related to the operationally accessible entanglement in quantum

computing [25–27]. Prior to the works presented in this thesis, several results existed for the

1



CHAPTER 1. INTRODUCTION

symmetry-resolved entanglement of symmetric ground states of CFT, massive QFT and spin chains

[28], as well as for low-lying excited states of critical theory, but not for excited states of massive

QFTs1.

Alongside with progress in the study of symmetry-resolved entanglement measures, in the past

two years growing attention has been devoted to the notion of entanglement asymmetry. Introduced

in [29], entanglement asymmetry provides the first information-based probe of symmetry breaking: it

quantifies how much a certain state breaks an underlying internal symmetry of the system,

spontaneously or explicitly. Initially, such quantity was used to analyse the restoration (or lack

thereof) of a U(1) symmetry in the quench dynamics of quantum spin chains [29–31]. Shortly after

these first works, entanglement asymmetry studies were conducted on CFT [32], critical spin chains

with larger symmetries [33] and black-hole radiation [34]. The largest part of the research regarding

entanglement asymmetry has thus far been devoted to the dynamics of the entanglement asymmetry,

whereas a characterisation of this measure in a field-theoretic setting and for more complex

symmetry groups is mostly still lacking.

In part I and part II of this thesis, we contribute to filling the two large gaps in the literature that

we mentioned above. Namely, in part I we characterise the symmetry-resolved entanglement content

of excited states of massive QFTs, and in part II we introduce a field-theoretic framework for the

study of entanglement asymmetry in ordered phases of massive field theories. The two parts of the

thesis can also be distinguished according to the type of symmetry we treat. In part I, we deal with

theories that possess an internal U(1) symmetry, namely the complex boson and the Dirac fermion.

In part two of the thesis, on the other hand, we consider the massive Ising field theory, the most

paradigmatic quantum field theory featuring discrete Z2 symmetry. Chapter 4, in which we derive

exact formulae for a correlation function in the disordered phase of the Ising QFT, is included in part

II of thesis according to this criterion. Among our main contributions in the two parts of this thesis is

the introduction of a class of operators, that we call twist operators and that generalise objects known

in 1 + 1D dimensions as branch-point twist fields. We will define twist operators in Chapter 2 and

make a consistent use of them throughout the rest of the thesis.

The remaining part of this Introduction contains an essential review of the theoretical foundations

necessary for the following chapters: the definition and main properties of entanglement measures,

the replica model in 1+ 1D quantum field theories, the definition of symmetry-resolved entanglement

and entanglement asymmetry. A more detailed outline of the thesis structure concludes this chapter.

1Throughout this thesis, the expression “massive QFT”, without further specification, refers to either a free or
interacting local QFT with a mass gap.
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1.1 Entanglement in many-body quantum systems

Entanglement is arguably the quantum phenomenon that irremediably marks the departure from

deterministic, classical physics. This is, at least, the opinion of someone who might have had a say in

the matter [35]. Entanglement is essentially present when there are correlations of an intrinsic quantum

nature between two parts of a system prepared in a certain state. Thus, entanglement depends on

the state and on the way the system is partitioned. Quantum correlations can be revealed by a

measurement on one of the two parts of the system, which causes the collapse of the wavefunction

according to the Copenhagen interpretation of quantum mechanics [36]. The non-locality of the

collapse was at the heart of a debate about the completeness of quantum mechanics as a fundamental

theory of reality, a debate that culminated in the famous 1935 article by Einstein, Podolski and

Rosen [37]. In this paper, the authors proposed that quantum correlations between distant particles

should be explained by means of some local hidden variables: our ignorance about the probability

distribution associated with these variable would then explain the most counter-intuitive features of

quantum mechanics. This position on the fundamental properties of quantum mechanics is sometimes

referred to as local realism. However, if there are local hidden variables of a purely classical nature,

then the possible results of a measurement should satisfy certain inequalities, the first of which were

derived by Bell in 1964 [38]. The violation of Bell inequalities was crucially proved by Alain Aspect

and collaborators in a series of experiments that led to the 2022 Nobel Prize in Physics [39–41].

The experimental proof that there can be no local hidden variables marks the end of local realism:

quantum mechanics is complete and quantum entanglement cannot be explained in terms of classical

correlations.

With the developments in quantum technology achieved in the 1980s and 1990s, entanglement

started to be considered a resource in the field of information and communication protocols. Just to

mention two examples, it is possible to encode in a single qubit (quantum bit) the information carried

by two classical bits, as long as the qubit belongs to an entangled pair: this is known as dense coding

[42]. Moreover, by exploiting entanglement it is possible to achieve quantum teleportation [43], i.e.

transferring a state between two observers (without neither of them knowing what the state actually

is).

There are different ways of measuring entanglement, depending on the different points of view

that may be adopted. For instance, one may be interested in measuring the entanglement between

two spins at different sites in a quantum chain, ignoring the rest of the system: this is an example of

pairwise entanglement, which can be measured for instance by the entanglement of formation [9, 44].

Conversely, one may be interested in measuring how entangled are two large subsystems of a larger

system: in this case, one talks of entanglement of regions. This is the point of view we will adopt in

3



CHAPTER 1. INTRODUCTION

this thesis.

We give the following definition of entanglement. Let H = HA ⊗ HB be the Hilbert space

corresponding to a total system partitioned into subsystems A and B. Let {|ϕi⟩A}, {|χi⟩B} be basis

of HA and HB respectively. Then a state:

|ψ⟩ =
∑
i,j

αi,j |ϕi⟩A ⊗ |χj⟩B ∈ H, αi,j ∈ C,
∑
i,j

|αi,j |2 = 1, (1.1)

is said to be separable if there exist some |ϕ⟩A ∈ HA, |χ⟩B ∈ HB such that

|ψ⟩ = |ϕ⟩A ⊗ |χ⟩B. (1.2)

A state is entangled with respect to a given bipartition if it is not separable.

In quantum many-body systems, it is often convenient to adopt the viewpoint of density operators.

A density operator, or density matrix, is a map ρ : H → H that encodes all the characteristics of a

state. For a state |ψ⟩ ∈ H, the density matrix is defined as the projector:

ρ = |ψ⟩⟨ψ|. (1.3)

A state for which the density matrix can be written as a projector, i.e. every state defined by a vector

as in (1.1), is called a pure state. However, the true advantage of the density matrix formalism is

that density matrices incorporate a notion of classical probability, which is present if the state of the

system is a statistical mixture. Indeed, suppose that one wants to describe an ensemble of states

{|ψi⟩ ∈ H} in which each state is associated to a certain probability pi. The correct way to represent

this ensemble is via the density operator:

ρ =
∑
i

pi|ψi⟩⟨ψi|,
∑
i

pi = 1. (1.4)

This is called a mixed state. The paradigmatic example of a mixed state is given by the usual Gibbs

ensemble (or thermal state), which in quantum statistical mechanics is described by a density matrix:

ρβ =
e−βĤ

Z
=
∑
n

Z−1e−βEn︸ ︷︷ ︸
pn

|n⟩⟨n|,
∑
n

pn = 1, (1.5)

where {|n⟩} are the energy eigenstates. The Gibbs ensemble displays all the natural requirements of

a density operator, namely, it is a positive semi-definite, Hermitian operator of unit trace:

ρ = ρ†, ⟨ψ|ρ|ψ⟩ ≥ 0 ∀|ψ⟩ ∈ H, TrHρ = 1. (1.6)
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Every operator with these properties can be written in the form (1.4). Additionally, density matrices

of pure states (and of pure states only) are idempotent, ρ2 = ρ: for this to hold, all the probabilities

in (1.4) must be zero except for one pi = 1, and the state reduces to (1.3) for a certain |ψ⟩.

In the state ρ, the expectation value of a local observable represented by an operator O : H → H

is given by TrH(ρO). However, in systems characterised by a large number of degrees of freedom, it

often occurs that an observer can access only a portion of the total system. Suppose the observer is

interested in the expectation value of a local operator OA : HA → HA. This is easily embedded in

the algebra of operators acting on the total space by defining O := OA ⊗ 1B. Then, by picking an

orthonormal basis {|ei, ej⟩ := |ei⟩A ⊗ |ej⟩B} for the total Hilbert space, the expectation value of O

reads:

⟨O⟩ = TrH(ρ(OA ⊗ 1B))

=
∑

i,j,i′,j′

⟨ei, ej |ρ|ei′ , ej′⟩⟨ei′ , ej′ |(OA ⊗ 1B)|ei, ej⟩ = TrA(ρAOA). (1.7)

The quantity

ρA = TrHBρ, (1.8)

is the reduced density matrix (RDM) of the subsystem A. It encodes the description of the system

according to an observer who can only access a portion of the total space: the degrees of freedom

associated to the complementary region B describe then the environment, and are traced out. When

taking the partial trace of a pure state ρ = |ψ⟩⟨ψ|, one may end up with a state ρA which is mixed.

Namely, this happens when (and only when) |ψ⟩ is not separable. Therefore, the mixedness of the

reduced density matrix is a criterion for the presence of entanglement in a pure state of the total

system: the state |ψ⟩ ∈ HA ⊗ HB is separable if and only if its reduced density matrix has only

one non-vanishing eigenvalue. We do not specify which of the two density matrices: indeed, as a

consequence of the Schmidt decomposition, the two operators ρA and ρB have the same spectrum, and

can only differ in the number of their zero eigenvalues.

The inspection of the reduced density matrix is sufficient to reveal whether a state is separable,

however, it does not provide information about the amount of entanglement in that state. To do

so, one needs to define a measure of entanglement. In particular, for most of this thesis we will be

interested in quantifying the bipartite entanglement of pure states. The reason is that these states

play a prominent role in many-body systems: they describe the (non-degenerate) ground state of spin

chains and of zero-temperature QFTs. Also the particular excitations we will consider in Chapter

2, i.e. zero-density excited states of quantum field theories, are pure states. There are several ways

to define entanglement measures, but all good measures should be entanglement monotones. An

entanglement monotone is a functional E from the set of quantum states to the real numbers, which
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satisfies the fundamental properties [44]:

• non-negativity: E(ρ) ≥ 0 for every state ρ, and E(ρ) = 0 if ρ is separable.

• monotonicity under LOCC: if the state σ is obtained from ρ via local operations and classical

communications (LOCC) then E(ρ) ≥ E(σ).

The notion of LOCC can be given a precise mathematical formulation by means of Kraus operators

[45]. Here, we only remark that requiring E to be non-increasing under LOCC is fundamental for at

least two reasons. First, from a technological point of view, local quantum operations and classical

communications between separate subsystems are necessary for the implementation of protocols such

as quantum teleportation: asking that the state which is teleported does not become more entangled

during the process seems quite obvious. Second, LOCC operations can be employed to distinguish

between classical and quantum correlations: classical correlations are the ones that can be generated

by acting on a certain quantum system via LOCC.

The prototypical entanglement monotone for pure states in a bipartite quantum system is the

entanglement entropy. To define the entanglement entropy, we start from the von Neumann entropy,

i.e. the quantum analog of the Shannon entropy of classical information theory [46]. For a state

ρ : H → H (pure or mixed), the von Neumann entropy:

S[ρ] := −Tr(ρ log ρ), (1.9)

has (among others) the following properties:

• S[ρ] ≥ 0 for every state ρ and S[ρ] = 0 if and only if ρ is pure.

• If dim(H) = N , max
ρ
S[ρ] = logN , obtained for the maximally mixed state ρ = 1

N 1H.

• It is concave: if
∑

i λi = 1, S [
∑

i λiρi] ≥
∑

i λiS[ρi].

• It is sub-additive: if H = HA ⊗HB and ρA, ρB are the two RDMs, then S[ρ] ≤ S[ρA] + S[ρB].

The equality holds only if ρ = ρA ⊗ ρB.

The entanglement entropy is the von Neumann entropy of the reduced density matrix:

SA = −TrHA
(ρA log ρA). (1.10)

The von Neumann entropy vanishes on pure states, but the reduced density matrix ρA is pure if and

only if the full state ρ is separable. This means that the entanglement entropy of a bipartition is zero

if and only if ρ is not entangled. Moreover, because the two reduced density matrices have the same

6
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non-vanishing eigenvalues, SA = SB. In the following chapters, we will equivalently refer to the von

Neumann or entanglement entropy of a bipartition.

The entanglement entropy is the most ubiquitous measure of entanglement, being widely used

in quantum many-body physics [9], quantum information theory [47], quantum and conformal field

theory [12, 18, 20, 48], black-hole physics and holography [10, 11, 49]. There are several reasons behind

the popularity of entanglement entropy in condensed matter and low-dimensional QFT. First of all,

it recently became experimentally accessible through measurements of a strictly related quantity, the

Rényi entropy. The Rényi entropy of order α, or αth Rényi entropy, for α ∈ R+ and α ̸= 1, is defined

as [50]:

Sα[ρA] :=
1

1− α
log Tr(ραA), (1.11)

and it reproduces the entanglement entropy in the limit α→ 1:

SA = lim
α→1

Sα[ρA]. (1.12)

The authors of [22] were able to measure the second Rényi entropy in a trapped gas of ultra-cold

bosonic atoms by letting two many-body wavefunctions interfere2. In the next section, we will show

how the Rényi entropies can be computed in a replica version of a quantum field theory in 1 + 1D:

the “replica trick”will then be extensively used throughout the entire thesis.

Other than the experimental and computational advantages, the entanglement entropy is a prime

measure of entanglement because it encodes universal features and scaling properties of a theory. The

universality stems from the fact that the ground state entanglement entropy (as well as the thermal

entropy) of a critical system, described for instance by a two-dimensional conformal field theory,

contains information about the central charge of such theory, and thus identifies a certain universality

class: we will provide some more details about this in the next section. The scaling properties, on the

other hand, are related to the celebrated area law [51]. This is the statement that the entanglement

entropy SA of a bipartite system generally scales with the (generalised) area of the surface ∂A that

separates the two subsystems A and B. In D dimensions, this means:

SA ∼ |∂A| ∼ ℓD−1, (1.13)

where ℓ is a characteristic length scale associated with either of the two subsystems. The physical

intuition behind this law is that the entanglement entropy is due to those pairs of entangled particles

for which one particle is in A and one is in B. For systems with short-range correlations, the number

of such pairs is roughly proportional to the area of the separating surface. The validity of the area law

2For the sake of precision, the quantity that was experimentally measured is the quantum purity Tr(ρ2A), the logarithm
of which is proportional to S2[ρA].
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for the ground state of one-dimensional gapped spin chains (i.e. with finite correlation length ξ <∞)

was proved by Hastings in [52], whereas gapless spin chains, which are described by 1 + 1D CFTs in

the continuum limit, violate the area law. A good review about the area law of entanglement entropy

can be found in [53].

We conclude this section by introducing a different measure of entanglement. We mentioned that

the entanglement entropy is a good measure for bipartite systems in a pure state. When the state

is mixed, the entropy is no longer an adequate measure of entanglement because it fails to discern

true quantum correlations from the statistical correlations present in the initial ensemble. A similar

scenario occurs in many-body systems in two paradigmatic cases: when the initial state is thermal, as

in equation (1.5), or when the state itself is pure, but the system is not bipartite, i.e. the subsystems

A and B are not complementary. In this thesis, we focus on the second situation. Let us consider a

tripartite Hilbert space:

H = HA ⊗HB ⊗HC , (1.14)

where the subsystem C plays the role of the environment, and suppose we want to measure the

entanglement between subsystems A and B in a pure state ρ of the total Hilbert space. The reduced

density matrix ρA∪B = TrHC
ρ is mixed. A necessary condition for this state to be separable is that

its partial transpose ρTB
A∪B has no negative eigenvalues (this is known as the Peres-Horodecki criterion

[54, 55]). The quantity ρTB
A∪B is defined by transposing the matrix only with respect to the subsystem

B: if {|ei, ej⟩ := |ei⟩A ⊗ |ej⟩B} is an orthonormal basis of HA ⊗HB, then

⟨ei, ej |ρTB
A∪B|ek, el⟩ := ⟨ei, el|ρA∪B|ek, ej⟩. (1.15)

According to the Peres-Horodecki criterion, the logarithmic negativity [56, 57]:

E [ρA∪B] := log Tr(|ρTB
A∪B|), (1.16)

where we introduced the trace norm of a matrix, Tr|A| := Tr
√
A†A, is a good indicator of entanglement

of the state ρA∪B (and an entanglement monotone). Indeed, it is possible to show that ρTB
A∪B has real

spectrum, but in general it is not positive semi-definite, and the trace norm of the partial transpose can

be equivalently expressed as the sum of all its singular values. Therefore, a logarithmic negativity E > 0

necessarily indicates that ρTB
A∪B has at least one negative eigenvalue. This means that the subsystems

A and B are entangled. We postpone a more detailed discussion of the logarithmic negativity to

Chapter 3.
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1.2 Bipartite entanglement in 1 + 1D quantum field theories

In this section, we review the replica method for the computation of bipartite entanglement entropy

in (1 + 1)-dimensional QFTs. As we show below, in a replica theory a central role is played by some

fields which implement cyclic permutations of replicas and display semi-locality properties with respect

to the fundamental fields of the theory: these are the branch-point twist fields (BPTF). In general,

twist fields are associated to internal symmetries of a theory, and they first appeared in the context

of orbifold CFT, where they describe the propagation of bosonic strings in a background described

by a ZN orbifold [58, 59]. In statistical field theory, a prominent example of twist fields is given

by the order and the disorder fields of the Ising field theory [60–62], which are associated to the Z2

symmetry of the model and are semi-local with respect to the fermion field. The replica method for

the computation of bipartite entanglement in CFT was employed for the first time in the pioneering

works [10, 11]. These results were then extended in [12], where the entanglement of an interval in a

replica theory of a CFT (at finite temperature and in the ground state) was computed by means of

correlation functions of some primary operators of the CFT. The full picture was finally unveiled in

[20], where the case of massive integrable QFT was treated: here, the branch-point twist fields were

first defined in relation to the symmetry of the replica theory under permutation of copies. These

fields are the massive counterpart of the CFT primary operators introduced in [12], i.e. the fields that

flow to the CFT branch-point twist fields in the UV limit. The form-factor program for the BPTF

was also developed in [20], and extended to theories with a boundary in [63]. We refer to [64] for a

definition of twist fields associated to an internal continuous symmetry. In the following review, we

mostly follow [12], [20] and [18].

Let us consider the ground state |ψ⟩ ∈ HA ⊗ HB of a one-dimensional QFT, where A = [x1, x2],

B = (−∞, x1) ∪ (x2,∞). We aim to compute the bipartite entanglement entropy of this state. This

is done by first obtaining an expression for the Rényi entropy (1.11) for α = n ∈ N, n > 1, and then

performing an analytic continuation over real values of n. The density matrix ρ = |ψ⟩⟨ψ| is obtained

by taking the limit β → ∞ of the thermal state (1.5), whose matrix elements can be expressed by an

Euclidean path integral as:

⟨φ1|ρβ |φ2⟩ =
1

Z(β)

∫ φ(x,β)=φ2(x)

φ(x,0)=φ1(x)
Dφe−SE [φ], Z(β) =

∫
φ(x,0)=φ(x,β)

Dφe−SE [φ], (1.17)

where we assume that φ(x, τ) is the fundamental scalar field in the theory and the Euclidean action

is SE [φ] =
∫ β
0 dτ

∫∞
−∞ dxL[φ](x, τ). The reduced density matrix is obtained by splitting the field φ in

the components φA and φB defined on the regions A, B respectively and tracing out the degrees of

freedom φB:

⟨φ1,A|ρβ,A|φ2,A⟩ =
1

Z(β)

∫
DφB

∫
Dφe−SE [φ], (1.18)
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Figure 1.1 Replica manifold Rn for n = 3. The branch cuts in each sheet are along the interval
A = [x1, x2]. Picture taken from [20].

where the boundary conditions for the integration in Dφ are φ(x, 0) = φ1,A(x) and φ(x, β) = φ2,A(x)

for x ∈ A, φ(x, 0) = φ(x, β) = φB(x) for x ∈ B. From the expression above, after taking the

zero-temperature limit, it is straightforward to compute:

TrρnA =

∫
BC

[
n∏

i=1

Dφ

]∏
i=1

⟨φi,A|ρβ,A|φi+1,A⟩ =
Zn

(Z1)n
, (1.19)

where φn+1 ≡ φ1 and the presence of the factor (Z1)
n ensures that TrρA = 1. In the above expression

we introduced the partition function

Zn =

∫ ∏
i

[Dφi]Rn
e−SE,Rn [{φi}], (1.20)

over the n-sheeted Riemann surface Rn. This surface is the replica manifold, and its structure is

dictated by the boundary conditions (BC) imposed on the path integral, which we specify below. Rn

consists in n sheets which are flat everywhere except at the branch points (x1, 0) and (x2, 0). The

branch cuts extending between these points (that is, on the interval A) cyclically connect the sheets,

as depicted in Figure 1.1.

The replica action SE,Rn [{φi}] in equation (1.20) is given by:

SE,Rn [{φi}] =
∫
Rn

dτdxL(n)[{φi}](x, τ), L(n)[{φi}] =
n∑

i=1

L[φi]. (1.21)

Thus, the total energy of the theory is the sum of the single-replica energies, which allows interpreting

the sheets as independent copies of the theory. The fields φi, i = 1, . . . , n, each of which is defined on
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a different copy, are not interacting, being connected only through the boundary conditions:

C(x1, x2) :


φi(x, 0

+) = φi+1(x, 0
−), ∀x ∈ [x1, x2]

φi(x, 0
+) = φi(x, 0

−), ∀x /∈ [x1, x2]

, i = 1, . . . , n, n+ 1 ≡ 1 (1.22)

By explicitly employing these conditions, together with the fact that the Lagrangian density L(n)[{φi}]

is insensitive to the structure of the manifold, we can rewrite Zn as a partition function on R2:

Zn =

∫
C(x1,x2)

∏
i

[Dφi]R2 e
−SE,R2 [{φi}]. (1.23)

The equality between the two expressions (1.20) and (1.23) reflects the presence of a symmetry in the

replica version of the theory. In fact, the replica partition function is invariant under the full group Sn

of replica permutations. As evident from the boundary conditions (1.22), among the permutations a

special role is played by the subgroup Zn of cyclic permutations. The branch-point twist field T and

its Hermitian conjugate T̃ are the symmetry fields associated to the generator σ of cyclic permutations

of replicas and to its inverse σ−1, respectively:

T = Tσ, σ : i 7→ i+ 1 mod n, T̃ = Tσ−1 , σ−1 : i 7→ i− 1 mod n. (1.24)

The fields T and T̃ are defined by the property of implementing the boundary conditions (1.22).

Namely, if Oi(x, τ) is a local observable defined on the ith sheet, its replica correlation function in the

theory described by the Lagrangian density L is:

⟨Oi(x, τ) . . . ⟩L;Rn =
⟨T (x1, 0)T̃ (x2, 0)Oi(x, τ) . . . ⟩L(n);R2

⟨T (x1, 0)T̃ (x2, 0) . . . ⟩L(n);R2

. (1.25)

Pictorially, one can think of T , T̃ as generating semi-infinite branch cuts at their insertion points,

along which the permutations (1.24) are realised. These fields, being associated to a global symmetry

of the theory, are local with respect to the replica action. However, they do not have vanishing

equal-time commutators with the fields φi. Indeed, it follows from (1.25):

φi(x)T (y) =

 T (y)φi+1(x) y > x

T (y)φi(x) y < x
and φi(x)T̃ (y) =

 T̃ (y)φi−1(x) y > x

T̃ (y)φi(x) y < x
. (1.26)

Semi-local fields with the properties outlined above are not unique, but they can be fixed by

imposing that T , T̃ correspond to the lightest, spinless primary fields of the underlying CFT (of
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central charge c), with scaling dimension[12, 20, 58, 59]:

dT = 2∆T = 2∆T̃ , ∆T =
c

24

(
n− 1

n

)
. (1.27)

Thus, by employing the CFT normalisation of these fields and equation (1.25) one can finally express:

TrρnA =
Zn

(Z1)n
= ζnϵ

4∆T ⟨T (x1, 0)T̃ (x2, 0)⟩L(n);R2 , (1.28)

where the correlator is on the replicated ground state of the theory3. In the expression above, ϵ is a

short-distance cutoff, which can be identified for instance with a lattice spacing ϵ ∼ a, while ζn is a

non-universal normalisation factor such that ζ1 = 1, consistently with the fact that for n = 1 T and

T̃ reduce to the identity operator, and dζn
dn

∣∣∣
n=1

= 0. The nth Rényi entropy directly follows from the

previous equation, while the entanglement entropy is obtained as:

SA = − lim
n→1

∂

∂n

[
ϵ4∆T ⟨T (x1, 0)T̃ (x2, 0)⟩

]
. (1.29)

We mention that analytically continuing the replica index n to real values usually requires some care.

We shall come back to this at the end of Chapter 4.

A replica picture for the computation of logarithmic negativity in QFT was devised in [65, 66]. In

these works, the authors were able to obtain the Rényi negativities :

En[ρTB
A∪B] = log Tr

(
ρTB
A∪B

)n
, for n ∈ N, n > 1, (1.30)

for a subsystem A ∪ B consisting of two disjoint intervals A = [x1, x2], B = [x3, x4], by means of a

four-point function of BPTFs:

En[ρTB
A∪B] = log

[
ξnϵ

8∆T ⟨T (x1)T̃ (x2)T̃ (x3)T (x4)⟩
]
, (1.31)

where the correlator is again taken on the replicated ground state of the theory. The replica manifold

associated to the computation of the above correlation function is more complicated than the one

depicted in Figure 1.1, as there are in this case two branch cuts in each copy which cyclically connect

the sheets (see for instance [65] for a pictorial representation). We remark that the logarithmic

negativity (1.16) is obtained from the expression (1.30) by analytically continuing n to the reals and

taking the limit n → 1 when n is even. Indeed, the nth Rényi entropy has a different expression in

terms of the singular values |λi| of the partial transpose ρTB
A∪B according to the parity of n, as can be

seen from direct inspection: if ne is an even positive integer and no > 1 is an odd positive integer,

3However, as we will discuss in Chapter 2, this relation is valid even in zero-density excited state
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then

Ene [ρ
TB
A∪B] = log

∑
λi>0

|λi|ne +
∑
λi<0

|λi|ne

 , Eno [ρ
TB
A∪B] = log

∑
λi>0

|λi|no −
∑
λi<0

|λi|no

 , (1.32)

and the trace norm in (1.16) is correctly reproduced only by taking the limit limne→1 Ene [ρ
TB
A∪B].

We now come back to the bipartite entanglement entropy and briefly discuss the main findings for

the ground state of a 1+1D QFT. In a critical theory, for an interval A of length ℓ, SA is proportional

to the logarithm of ℓ [11–14]:

SA ∼ c

3
log

ℓ

ϵ
, for ϵ≪ ℓ≪ ξ, (1.33)

where c is the central charge of the CFT, ϵ is a short-distance cutoff and ξ is the correlation length of

the system. The above expression violates the area law (1.13), which predicts that for one-dimensional

systems the bipartite entropy is independent of the size4. The situation is more complex in D > 1,

where some systems characterised by a divergent correlation length satisfy the area law [67], whereas

the violation persists in other cases, see for instance [68].

On the other hand, one-dimensional off-critical systems satisfy the area law. These systems are

described by gapped quantum spin chains or, in the continuum limit limit, by massive QFTs. In this

case, the entropy SA of an interval saturates to a constant value in the limit of large ℓ:

SA ∼ c

3
log

ξ

ϵ
, for ϵ≪ ξ ≪ ℓ, (1.34)

where the correlation length is typically given by the inverse of a characteristic mass scale in the

theory, ξ = m−1. The off-critical behaviour of the bipartite entropy was derived for 1 + 1D massive

quantum field theories in [12, 20], and observed in several gapped spin chains, see for instance [69–73].

We conclude this section by mentioning how the subleading corrections to the entanglement

saturation (1.34) can be obtained in (relativistic) massive 1 + 1D QFTs. This is done by a spectral

expansion of the branch-point twist field two-point function in (1.29). In one-dimensional quantum

field theories, a basis for the Hilbert space of the theory is provided by the asymptotic multi-particle

states, labelled by the rapidities θj of the particles in the theory together with their quantum

numbers µj :

|θ1, . . . , θn⟩µ1,...,µn , (1.35)

where the rapidity θ ∈ R of an on-shell particle of mass m parametrises its energy and momentum as

E(θ) = m cosh θ, P (θ) = m sinh θ. In a replica version of a QFT, the quantum numbers µj = (ij , aj)

4However, consistently with the area law, when A is a disjoint union of intervals (see e.g. [12, 18]), SA is proportional
to the number of boundary points, which is precisely the value of |∂A| in D = 1
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account for internal degrees of freedom aj as well as the replica indices ij ∈ {1, . . . , n}. Moreover, the

rapidities in the above state are usually ordered such that θ1 > · · · > θn if the state is incoming, i.e.

far in the past before any interaction, and θ1 < · · · < θn if the state is far in the future, after any

interaction. Using the expansion in asymptotic states, one can write [20]:

n⟨0|T (x1)T̃ (x2)|0⟩n =
∞∑
k=1

∑
µ1,...,µk

∫
dθ1 . . . dθk
k!(2π)k

e−ℓ
∑k

j=1 maj cosh θj |n⟨0|T (0)|θ1, . . . , θk⟩µ1,...,µk
|2.

(1.36)

In the above equation, ℓ = |x2 − x1|, |0⟩n is the replica ground state and the quantity:

F T |µ1,...,µK (θ1, . . . , θk) :=
n ⟨0|T (0)|θ1, . . . , θk⟩µ1,...,µk

, (1.37)

is the k-particle form factor of the branch-point twist fields T . In general, form factors are matrix

elements of local or semi-local operators of a field theory, and they are used to characterise its operator

content. Form factors can be defined in every 1 + 1D QFT, as long as the asymptotic states (1.35)

are provided together with a description of the interaction in terms of scattering amplitudes between

those states. However, it is only in integrable quantum field theories (IQFT) that form factors can

be exactly obtained in a systematic way5. The reason behind the prominent role of integrability is

that the presence of infinitely many conserved quantities severely constrains the dynamics of a model:

in particular, once the scattering amplitudes are known, the form factors of a given operator can

be obtained by imposing that some natural requirements on their structure are satisfied: this is the

so-called form factor bootstrap program [77–79]. The form factor bootstrap program has been the

object of intense research in the past forty years, leading to the classification of the operator content

in several integrable QFTs, featuring diagonal and non-diagonal scattering, and even the presence of

unstable bound states: see for instance [62, 80, 81] for the Ising model, [82] for the Federbush model,

[83] for the sinh-Gordon model, [84] for the scaling Lee-Yang model, [85] for the sine-Gordon model,

[86, 87] for the homogeneous sine-Gordon model, and [88] for the Bullough-Dodd model. In the case

of operators which are semi-local with respect to the fundamental fields of the theory, the form-factor

bootstrap equations need to be slightly modified. The first treatment of form factors of semi-local

operators can be found in [62], for the order and disorder fields of the Ising IQFT, and in [89, 90] for

the U(1) vertex operator of the sine-Gordon model. The form factor equations for the branch-point

twist field were first derived in [20], and employed to obtain a large-ℓ expansion of the two-point

function (1.36) in the Ising and sinh-Gordon model. The result of [20] was then generalised in [21] to

the case of massive QFT, not necessarily integrable: for an interval A of length ℓ, the ground state

5In this thesis, we will only be concerned with form factors of free IQFT, so we refer to [74–76] for good reviews on
one-dimensional IQFTs.
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bipartite entropy is given by

SA = − c
3
log(m1ϵ) + U − 1

8

N∑
α=1

K0(2ℓmα) +O(e−3ℓm1), (1.38)

where U is a constant, mα are the masses of the N species of particles in the theory (m1 = ξ−1 being

the lightest), and K0 is a modified Bessel function [91]. In general, the inclusion of up to N -particle

scattering processes in the spectral expansion of the BPTF two-point function yields a correction to

the saturation law (1.34) which at leading order is O(e−Nm1ℓ).

In this thesis, we will perform expansions of the form (1.36) for the free massive Dirac fermion and

complex boson (Chapter 2) and for the Ising field theory (Chapters (4) and (5)), both at finite and

infinite size. We will provide the necessary details as needed throughout the work.

1.3 The role of internal symmetries

Investigating the relationship between the internal symmetries of a system and its entanglement

properties has emerged as one of the most productive research directions in the field of many-body

physics over the past five years. The first work on this subject was [92], in which the notion of

spin-resolved entanglement was introduced to better characterise the spectrum of entanglement of the

critical XXZ spin- 12 chain. A more general notion of symmetry-resolved entanglement entropy (SREE)

was then put forward in [93] and [19]. In [93], the SREE was employed to explain the mechanism

behind many-body localisation in disordered systems whereas, crucially, [19] contains a field-theoretic

characterisation of this quantity for U(1) and discrete symmetries within a replica picture. The

equipartition of the symmetry-resolved entropy, i.e. the fact that different symmetry sectors yield the

same leading-order contribution to the total entanglement, was proved in [94]. After these first works,

the SREE for a generic non-abelian Lie group in a 1+1D CFT was obtained in [95], where the author

focused on the ground state of Wess-Zumino-Witten models. Among the several other papers on this

topic, we mention the generalisations to other entanglement measures, namely the charge-imbalance

resolution of negativity [96] and symmetry-resolved quantum distances [97]. Following [19], we present

the notion of symmetry-resolved entanglement entropy for a U(1) symmetry.

The key idea is that if a system possesses an internal symmetry, then the reduced density matrix

has a block-diagonal structure. Let us consider a pure state ρ in a bipartite geometry, H = HA⊗HB,

and an internal U(1) symmetry of the system generated by the charge Q̂:

Q̂ = Q̂A ⊕ Q̂B := Q̂A ⊗ 1B + 1A ⊗ Q̂B. (1.39)

Then the Hilbert space is decomposed into irreducible representations of the symmetry, H = ⊕qHq,
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q ∈ Z. We further assume that the state ρ is symmetric, and so is the reduced density matrix6 ρA, so

that

[ρ, Q̂] = 0, [ρA, Q̂A]. (1.40)

The symmetry allows us to write ρA in a block-diagonal form:

ρA = ⊕qp(q)ρA(q), p(q) := Tr (ΠqρA) , ρA(q) =
ΠqρA

Tr (ΠqρA)
, (1.41)

where p(q) is the probability of measuring a charge eigenvalue q in the state ρA and we introduced

the projector Πq : HA → HA,q onto the charge eigenspace of HA labeled by q. In the case of U(1), Πq

can be written as

Πq =

∫ 1
2

− 1
2

dα e2πiα(Q̂A−q), q ∈ Z. (1.42)

It is straightforward to check from the above expression that Πq is idempotent, Hermitian and it

commutes with ρA.

We then define the charged replica partition function:

Zn(q) = Tr (Πqρ
n
A) , n ∈ N, n > 1, (1.43)

together with the nth symmetry-resolved Rényi entropy (SRRE):

Sn(q) =
1

1− n
log

Zn(q)

[Z1(q)]
n =

1

1− n
log Tr [ρA(q)]

n , (1.44)

and the symmetry-resolved entanglement entropy (SREE):

SA(q) = lim
n→1

Sn(q) = −Tr [ρA(q) log ρA(q)] . (1.45)

Although the SREE, and particularly the charged partition function, has an interesting interpretation

in terms of a modified replica manifold, which we describe below, in many situations one is ultimately

interested in the total bipartite entropy SA. This is related to the symmetry-resolved entropy as

follows:

SA = −
∑
q

p(q)Tr [ΠqρA log ρA]

= −
∑
q

p(q) log p(q)︸ ︷︷ ︸
Sf
A

+
∑
q

p(q)SA(q)︸ ︷︷ ︸
Sc
A

. (1.46)

6If the group acts unitarily on both HA and HB then it is easy to show that the symmetry of ρ implies that of ρA
[95].
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In the expression above, in which the second line follows from the definition (1.41) after some

straightforward algebraic manipulation, we highlighted two contributions to the total entropy: the

configurational entropy Sc
A and the fluctuation entropy Sf

A (also referred to as number entropy [22]).

The quantity Sf
A measures the entropy related to fluctuations of the total charge in the subsystem A,

which arise because of particle motion through the boundary ∂A. On the other hand, Sc
A is the

averaged symmetry-resolved entanglement entropy of the two subsystems, where each contribution

at a fixed charge q is weighted by the corresponding probability p(q). Although both quantities can

be experimentally probed [22], it is only Sc
A that can be used as a resource in quantum information.

Namely, Sc
A provides an upper bound to the operationally accessible entanglement, i.e. the

entanglement that can be transferred to a quantum register by means of LOCC [25–27].

The charged partition function (1.43) is usually computed by means of its charged moments. For

a fixed value of n, the charged moment Zn(α) is the Fourier transform of Zn(q) (or its Fourier series

in the case of a discrete group). For a U(1), this is defined as

Zn(α) := Tr
(
ρnAe

2πiα
)
, (1.47)

so that, using expression (1.42) one obtains:

Zn(q) =

∫ 1
2

− 1
2

dαZn(α)e
−2πiαq. (1.48)

Expression (1.47) appeared in [19], although similar quantities were previously employed to describe

Rényi entropies charged by a magnetic potential in holographic settings [98–100], theories with

symmetry-protected topological phases [101], 2D CFTs and free-fermionic field theories in higher

dimensions [102]. Physically, the computation of (1.47) amounts to evaluating the partition function

over a replica manifold with the insertion of an Aharonov-Bohm flux 2πα along the branch cut [103].

This is represented in Figure 1.2. Thus, a charged particle that encircled the branch point x1 for n

times, crossing all the replicas and returning to the initial position, would acquire a phase e2πiα. By

fractionalising the total flux, so that the flux between consecutive sheets is 2πα
n , the boundary

conditions (1.22) imposed on the (now charged) fields φi are modified to:

Cα(x1, x2) :


φi(x, 0

+) = e
2πiα
n φi+1(x, 0

−), ∀x ∈ [x1, x2]

φi(x, 0
+) = φi(x, 0

−), ∀x /∈ [x1, x2]

, i = 1, . . . , n, (1.49)

for a bipartition A = [x1, x2], B = Ā. These boundary conditions are implemented in the path integral

by charged or composite branch-point twist fields (CBPTF). If T is the the branch-point twist field

defined in equations (1.24), (1.25), and if Vα is the operator that generates the U(1) flux, then the
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Figure 1.2 Replica manifold Rn for n = 3 with the insertion of a flux 2πα along the branch cut in
the region A = [x1, x2]. Picture taken from [19] and re-adapted.

CBPTF T α is obtained by “fusing”T and Vα. In particular, in a conformal field theory T α is defined

as the lightest operator7 appearing in the operator product expansion (OPE) of those two fields, and

the conjugate field T̃ α is analogously defined starting from T̃ and V−α. The off-critical deformation

of the CFT fields T α, T̃ α define the composite branch-point twist fields in massive 1+1D QFTs with

internal symmetries, and in the case of integrable theories they can be fully characterised by means of

their form factors. We provide a more detailed characterisation of the composite fields associated to

continuous and discrete (abelian) internal symmetries in Chapters 2 and 4 respectively. We remark

that since the charge operator Q̂A commutes with the reduced density matrix ρA, different choices of

the flux fractionalisation will lead to the same expectation values of physical observables. However,

a homogeneous fractionalisation of the flux among copies keeps the replica symmetry manifest and it

is essential to diagonalise the action of twist fields in free theories. In the following Chapters, we will

specify every time which choice of flux fractionalisation we are adopting.

In the bipartite geometry considered above, the expression of the charged moment Zn(α) in the

ground state of a 1 + 1D QFT in terms of CBPTFs is the natural generalisation of equation (1.28):

Zn(α) = ζn,αϵ
4∆T α ⟨T α(x1, 0)T̃ α(x2, 0)⟩L(n);R2 , (1.50)

where ζn,α is a normalisation constant and ∆T α is the conformal dimension of the CBPTFs (or of

their critical counterpart). By means of charged moments, the bipartite SREE was computed in

7That is, the operator in the OPE with the lowest scaling dimension ∆ above the identity operator (for which ∆ = 0).
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the ground state of 1 + 1D CFTs [19, 94, 95], in the lowest-lying CFT excited states [104], in the

ground state of massive 1 + 1D IQFTs with continuous [105, 106] and discrete [107, 108] symmetries.

In Chapter 2, we provide a natural completion to this picture by computing charged moments and

(excess of) SREEs of excited states in massive QFT, obtaining results which extend to non-integrable

and higher-dimensional theories as well.

Before proceeding, we briefly comment on the notion of symmetry decomposition of logarithmic

negativity, introduced in [96]. In a tripartite space A ∪ B ∪ C, the partial transpose ρTB
A∪B admits a

decomposition according to the irreducible representations of some internal charge of the theory. In

this case, if Q̂ = Q̂A ⊕ Q̂B ⊕ Q̂C is the charge operator on the total Hilbert space, then the operator

that generates the symmetry of ρTB
A∪B is the charge imbalance:

Q̂A − Q̂T
B := Q̂A ⊗ 1B − 1A ⊗ Q̂T

B. (1.51)

In the replica theory, the charged moments of the partial transpose are naturally interpreted as

partition functions on the Riemann surface, with the insertion of an Aharonov-Bohm flux only on

region A. We defer a more detail discussion and a literature review on the subject to Chapter 3, where

we obtain the symmetry-resolved logarithmic negativity and Rényi negativities of excited states in a

QFT.

The idea of using entanglement measures to probe the breaking of an internal symmetry appeared

about five years after the first works on symmetry-resolved entanglement in many-body systems. The

notion of entanglement asymmetry was defined in [29] as a quantifier of the amount of symmetry

breaking in a non-symmetric state ρA. A similar notion had already appeared in [109], where it

was used as a measure of inseparability of a global state ρ with a conserved charge. In [29], the

authors quenched an initial U(1) symmetry-breaking state to the XX Hamiltonian, which preserves

the symmetry, and observed a dynamical restoration of the latter. Surprisingly, the symmetry was

restored more quickly when it was initially more broken, a phenomenon that was dubbed quantum

Mpemba effect. The reference is to the “classical”Mpemba effect, i.e. the counterintuitive phenomen

for which, in a certain range of initial temperature and pressure, hot water freezes faster than cooler

water [110]. A further investigation of the U(1) entanglement asymmetry in ground states of spin

chains, together with a quasiparticle interpretation of the dynamical restoration of symmetry (or of

its absence) was the object of [30, 31, 111]. The breaking and restoration of U(1) symmetry in random

qubit states was also used to model the loss of information in black-hole radiation [34]. The case of the

discrete group Zn was first addressed in [112], where the specific example of Z2 symmetry-breaking in

the XY ground state was discussed. In [32], the authors computed the U(1) entanglement asymmetry

in the ground state of a CFT by relating it to the presence of topological defects in the replica surface.
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Finally, the symmetry breaking pattern SU(2) → U(1) in the XXZ critical chain was first investigated

in [33].

To define the U(1) entanglement asymmetry, following [29, 30], we once again consider a pure state

ρ of a bipartite Hilbert space H = HA⊗HB, together with a global symmetry of the system generated

by Q̂ = Q̂A ⊕ Q̂B. We further assume that the RDM ρA = TrHB
ρ is not symmetric:

[ρA, Q̂A] ̸= 0. (1.52)

The symmetrised state ρA,Q is built by retaining only the part of ρA which is block-diagonal in the

eigenbasis of Q̂A, that is:

ρA,Q =
∑
q

ΠqρAΠq, (1.53)

where Πq, for q ∈ Z, are the projectors onto the U(1) charge eigenspaces. The state ρA,Q satisfies

[ρA,Q, Q̂A] = 0 by construction and it is immediate to check that ρA = ρA,Q if and only if the state

is symmetric. The entanglement asymmetry ∆SA is defined as the difference of the von Neumann

entropies of the states ρA,Q and ρA:

∆SA := S[ρA,Q]− S[ρA] = −Tr (ρA,Q log ρA,Q) + Tr (ρA log ρA) , (1.54)

and it can be conveniently obtained by taking the limit n→ 1 of the Rényi asymmetry

∆S
(n)
A :=

1

1− n

[
log Tr

(
ρnA,Q

)
− log Tr (ρnA)

]
. (1.55)

Moreover, it is possible to express ∆SA as the relative entropy between the states ρA and ρA,Q [113]:

∆SA = Tr [ρA (log ρA − log ρA,Q)] =: S(ρA||ρA,Q). (1.56)

The above equality follows from the definition (1.54) noting that

Tr (ρA,Q log ρA,Q) =
∑
q

Tr (ρAΠq log ρA,QΠq)

=
∑
q

Tr (ρA log ρA,QΠq) = Tr (ρA log ρA,Q) , (1.57)

where we used [Πq, log ρA,Q] = 0, together with the idempotence of the projector and completeness of

the expansion in charge eigenstates. The fact that ∆SA can be written as a relative entropy implies

the following important properties:

• ∆SA ≥ 0 for every state ρA,
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• ∆SA = 0 if and only if ρA = ρA,Q.

Like the SREE, the entanglement asymmetry can be computed by means of charged moments.

Using the explicit expression (1.42), we can write

ρA,Q =

∫ 1
2

− 1
2

dα e−2πiαQ̂AρAe
2πiαQ̂A , (1.58)

from which it follows that

Tr
(
ρnA,Q

)
=

∫ 1
2

− 1
2

dα1 . . . dαn Zn(α), α = (α1, . . . , αn), (1.59)

where:

Zn(α) = Tr
(
ρAe

2πi(α1−α2)Q̂AρA . . . ρAe
2πi(αn−α1)Q̂A

)
. (1.60)

We stress that, because ρA and Q̂A do not commute, the order of the operators in the above expression

is relevant.

In a replica picture, Zn(α) is the partition function on a charged Riemann manifold similar to

that depicted in Figure 1.2, with the important difference that the total Aharonov-Bohm flux, i.e. the

sum of all the fluxes inserted between consecutive replicas, is zero. In Chapter 5, we propose a way to

compute entanglement asymmetry in terms of generalisations of branch-point twist fields and we show

that twist fields associated to a vanishing total flux are indeed unitarily equivalent to the standard

(uncharged) BPTFs.

1.4 Structure of the thesis

This thesis is organised as follows. In Chapter 2, which is based on the works [1, 2], we compute the

ratio of U(1) charged moments between zero-density excited states and the ground state in free 1+1D

massive fermionic and bosonic QFTs by means of a form factor expansion of the twist field two-point

function. The ratio of charged moments is then used to obtain the excess of SREE between the excited

states and the ground state. This quantity displays the same universal features already observed for

the total excess of entropy in [114, 115] and a very simple dependence on the U(1) charge. We then

show how the QFT results can be derived within a much simpler framework, in which the excitations

are represented by qubit states. Moreover, we prove that the validity of our formulae extends beyond

the domain of free two-dimensional QFTs: this is done by explicitly computing the SREE of one-

and two-magnon states of a spin chain and by developing the formalism of twist operators for generic

algebras of observables in D-dimensional QFTs. In particular, the algebraic twist operator approach

allows us to bypass the computation of form factors and establish the validity of the free-theory results
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for local interacting theories, not necessarily integrable. We conclude the chapter by numerically

checking our results on two one-dimensional discrete models with U(1) symmetry: a chain of spinless

fermions and a complex harmonic chain.

We complete our investigation of symmetry resolution of entanglement for theories with a global

U(1) symmetry in Chapter 3, based on [3], where we focus on symmetry-resolved negativity. Employing

the qubit picture and the algebraic twist operator formalism introduced in Chapter 2, we obtain

universal results for the difference of symmetry-resolved Rényi and logarithmic negativity between

zero-density excited states and the ground state. Our results extend those found in [116] for free

massive 1 + 1D QFTs with no internal symmetry, and at leading order in the large-volume limit they

also apply to interacting and higher-dimensional theories. We provide distinct treatments of bosonic

and fermionic excitations, as the correct definition of entanglement negativity for fermions requires a

slightly different construction of the partial transpose of the RDM. We test our results numerically on

a 1D chain of spinless fermions.

The first two chapters form part I of the thesis. Part II starts with Chapter 4, based on the work

[4]. In this chapter we turn our attention to the massive Ising QFT in 1+ 1D, which features a global

Z2 symmetry, and obtain an exact formula for the cumulant expansion of log⟨Tµ(x1, 0)T̃µ(x2, 0)⟩ in

the paramagnetic ground state, where Tµ is the composite twist field obtained by fusing the BPTF T

and the disorder field µ. The cumulant expansion for the correlator of standard BPTFs is known for

free 1 + 1D theories [63, 117], but in the case of composite twist fields there are convergence issues

which we show how to solve. We conclude the chapter by performing the analytic continuation of the

cumulant expansion to real values of the replica index.

In Chapter 5, based on [5], we propose a field-theoretic framework for the computation of

entanglement asymmetry in the ordered phase of 1 + 1D, which display symmetry-breaking vacua.

Our approach, valid for any discrete global symmetry G, is based on the algebraic construction of

generalised twist operators and is applied to the Ising QFT in the ferromagnetic phase. We

characterise the generalised twist operators by means of form factor bootstrap and obtain a formula

for the Z2 entanglement asymmetry in the Ising QFT which is valid up to two-particle contributions.

Moreover, we show as a byproduct that the total bipartite entropy in the ferromagnetic phase differs

from the one in the dual point of the paramagnetic phase. We close the chapter by presenting a

conjecture on the general form of the entanglement asymmetry in the case of partial symmetry

breaking G→ H.

We conclude with a final summary of what we accomplished in this thesis and outline what we

believe are the most promising research directions opened up by this work.
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PART I : SYMMETRY-RESOLVED ENTANGLEMENT OF LOCALISED

EXCITATIONS IN MASSIVE COMPLEX FREE THEORIES
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CHAPTER

TWO

SYMMETRY-RESOLVED ENTROPY OF EXCITED STATES

The excess entanglement resulting from exciting a finite number of quasiparticles above the ground

state of a free 1+1D QFT has been investigated quite extensively in the literature. It has been found

that it takes a very simple form, depending only on the number of excitations and their statistics.

There is now mounting evidence that such formulae also apply to interacting and even

higher-dimensional quantum theories. In this chapter, based on [1, 2], we extend the known results

by studying the symmetry-resolved entanglement entropy of such zero-density excited states in

1+1D QFTs that possess an internal symmetry. The ratio of charged moments between the excited

and ground states, from which the symmetry-resolved entanglement entropy can be obtained, takes a

very simple and universal form, which in addition to the number and statistics of the excitations,

now depends also on the symmetry charge. Using form factor techniques, we obtain both the ratio of

moments and the symmetry-resolved entanglement entropies in complex free theories which possess

U(1) symmetry. The same formulae are found for simple multi-qubit states. We then generalise our

results in two directions: by showing that they apply also to some excited states of quantum spin

chains (one- and two-magnon states) and by developing a higher-dimensional generalisation of the

branch-point twist field picture, leading to results in (interacting) higher-dimensional models.

Finally, we provide numerical evidence for our formulae by computing functions of the charged

moments in two free lattice theories: a 1D Fermi gas and a complex harmonic chain.

2.1 Introduction and summary of results

Symmetry-resolved entanglement and zero-density states. Starting from the basic ideas

that we presented in Section 1.3, SREEs have been computed and discussed for many classes of models,
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ranging from 1+1D CFTs [19, 92, 94, 95, 97, 104, 118–122], to free [105, 123, 124] and interacting

integrable QFT [106–108], holographic settings [98, 102, 125–127], lattice models [26, 27, 92, 94, 118,

119, 123, 128–133], out of equilibrium systems [23, 118, 131, 134–137] and for systems with more

exotic types of dynamics [138–143]. In this chapter, we compute the SREEs of zero-density excited

states in 1+1D gapped systems in the scaling limit, focusing of excitations of free QFTs, the massive

Dirac fermion and the complex boson. We then extend these results to generic zero-density excited

states of interacting QFTs and spin chains.

The systems we consider are at zero temperature and finite volume with periodic boundary

conditions. The two complementary regions A and Ā have lengths ℓ and L − ℓ. Eventually, we will

consider the infinite-volume limit in which the relative size of the two subsystems is fixed:

ℓ, L→ ∞, with r :=
ℓ

L
fixed, r ∈ [0, 1]. (2.1)

In this limit, a zero-density excited state is a state describing a finite number of excitations above

the QFT vacuum whose momenta are fixed as the volume increases. In the series of papers [114–116,

144], the excess of entanglement entropy and logarithmic negativity1 of the zero-density states with

respect to their ground state values was computed and found to take a remarkably universal and simple

form: it depends only on r, on the number of excitations and on their statistics. The results were

originally derived by employing the branch-point twist field approach in free fermion and free boson

theories. However, it was argued in [114] (and illustrated with the example of one- and two-magnon

states) that the formulae should hold much more generally, for interacting and even higher-dimensional

theories2, as long as a notion of localised excitations exists. These claims have been substantiated

through additional recent results. In particular, a series of works by Rajabpour and collaborators

[145–150] has expanded previous work in various directions: by obtaining finite-volume corrections,

new formulae for systems where quasiparticles are not localised, and finally by establishing that the

formulae indeed hold for generic magnon states, thus also in interacting theories. Similar formulae

have also been found for interacting higher-dimensional theories in [151] and even in the presence of

an external potential, arising from a semiclassical limit [152]. Indeed, the formulae found in [114] were

not entirely unexpected as they can be derived for semiclassical systems [153], however their wide

range of applicability, well beyond the semiclassical regime, as well as their derivation in the context

of QFT were new.

In CFT, the excess of entanglement entropy of some excited states with respect to the ground

state was studied in [154, 155]. The states considered therein are the lowest-lying excited states of the

1In some of these works, more complex partitions were also considered, e.g. multiple disconnected regions.
2In [144] the same formulae were shown to hold for free bosons in any dimension if r is replaced by the ratio of

generalised volumes.
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theory in the same geometric setting described above. Namely, for states of the form:

|Υ⟩ := lim
z,z̄→0

Υ(z, z̄)|0⟩, (2.2)

where Υ(z, z̄) is a primary field3 of conformal weights (∆, ∆̄), the excess of entropy with respect to

the vacuum state in the limit of small subsystem size r ≪ 1 is given by:

SΥ − S0 ≃
2π2

3
(∆ + ∆̄)r2 +O(r2dΨ), (2.3)

with dΨ = ∆Ψ + ∆̄Ψ the scaling dimension of the field defined by the operator product expansion

Υ × Υ† = 1 + Ψ + . . . . This expression was then checked for the lowest-lying excited states of the

complex compactified boson (c = 2), which has (∆, ∆̄) = (1, 0). The computation of the excess of

U(1) symmetry-resolved entropy for these low-lying states was performed in [104]. On the other hand,

for zero-density excited states of the massive free boson and massive free fermion, the excess entropy

is [114, 115]:

Sexc − S0 = −r log r − (1− r) log(1− r). (2.4)

By comparing these two expressions, it is clear how the entanglement content of zero-density

excitations in massive QFT and that of low-lying states of critical systems are captured by different

physical pictures.

In this chapter we combine these two topics, symmetry-resolved entropies and excited states, to

investigate how the entropy of excited states may be seen as a sum over symmetry sectors in the

presence of an internal symmetry. We will initially focus our attention on the complex free fermion

and boson theories. The total excited state entanglement of (real) free fermions and bosons was

obtained in [115, 116], while the SREE in the ground state of the 1 + 1D massive Dirac fermion and

complex boson was studied in [105]. This chapter can be seen as a generalisation of these works. Our

motivation to study these types of states from this viewpoint is, first and foremost, to provide exact

formulae for the SREEs of at least a class of excited states in 1+1D QFT. This is interesting because

the SREE of the ground state of 1+1D QFTs has generally a very complicated form, only accessible

perturbatively in some parameter, as discussed in many papers [19, 92, 94, 95, 97, 104–108, 118–124].

On the other hand, it is possible to show that the SREEs of zero-density excited states are as complex

as that of the ground state, i.e. knowing the symmetry-resolved entanglement content of the ground

state is sufficient to reconstruct that of the excited states. Moreover, for special cases when the ground

state is trivial, the SREEs can be obtained exactly. Further motivation is provided by the fact that,

unlike the total entropy, the SREEs are entanglement measures that allow us to distinguish between

3The complex coordinates (z, z̄) are introduced as customary in the radial quantisation scheme [74], in which |z| → 0
corresponds to the infinite past in Euclidean time.
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charged and neutral excitations, although in the present chapter we only focus on charged particles.

An example where both charged and neutral excitations are present is the sine-Gordon model in the

interacting regime, which was studied in [106].

Main results and outline. The main results can be summarised as follows. Let ZΨ
n (L, ℓ, α) be

the charged moments of the nth symmetry-resolved Rényi entropy (SRRE) of a connected region of

length ℓ, in a pure state |Ψ⟩nL of an n-replica theory in finite volume L. Then, the ratio of moments

MΨ
n (r;α) := lim

L→∞

ZΨ
n (L, rL;α)

Z0
n(L, rL;α)

, (2.5)

between the state |Ψ⟩nL and the ground state |0⟩nL, in the infinite-volume limit with r fixed, is given

by a universal formula, which depends very simply on r and α. We call this quantity a charged ratio.

There are two particularly useful cases from which more general formulae can be constructed. When

|Ψ⟩nL = |1ϵ⟩nL is a state of a single particle excitation with U(1) charge ϵ = ±1 we have that

M1ϵ

n (r;α) = e2πiϵαrn + (1− r)n, (2.6)

whereas for a state of k identical excitations, that is excitations with the same momenta and charges

ϵ, we have

Mkϵ

n (r;α) =
k∑

j=0

[fkj (r)]
ne2πijϵα, fkj (r) :=

(
k

j

)
rj(1− r)k−j . (2.7)

Formula (2.7) is the building block for all other results (formula (2.6) is the k = 1 case of (2.7)). A

generic state comprising s groups of kϵii identical particles of charge ϵi will have

M
k
ϵ1
1 ...kϵss

n (r;α) =

s∏
i=1

M
k
ϵi
i

n (r;α). (2.8)

Note that the possibility of having identical excitations is excluded for fermionic theories. For α = 0

these formulae reduce to those found in [114, 115], later generalised to entanglement measures of

multiple disconnected regions [116] and to higher dimensions for free bosons in [144]. These results

in turn have been extended in a series of works [145–150] to deal with finite-volume corrections and

non-localised excitations. More recently, some of the α = 0 results were recovered as a semiclassical

limit in the presence of an interaction potential [152]. This semiclassical picture had already been

invoked much earlier, see for instance [153]. However, it is worth emphasizing that our formulae

are not merely semiclassical limits but hold for genuine quantum theories. The quantum nature of

the model is encoded in the symmetry-resolved entanglement entropy of the ground state (and its

associated moments), which is indeed highly non-trivial. In other words, it is only the ratios (2.5)

that are simple, not the individual charged moments.
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In order to obtain the SREE it is necessary to isolate the charged moments of the excited state.

This can be easily done analytically, and it allows us to write the SREEs in terms of the ground

state entropies. For instance, for the state |Ψ⟩nL = |1ϵ⟩nL considered above, the SREEs (Rényi and von

Neumann) are given by

S1ϵ

n (r; q) =
1

1− n
log

Z1ϵ
n (r, q)

(Z1ϵ
1 (r, q))n

=
1

1− n
log

Z0
n(q − ϵ)rn + Z0

n(q)(1− r)n

(Z0
1 (q − ϵ)r + Z0

1 (q)(1− r))n
, (2.9)

and

S1ϵ

1 (r; q) = −Z0
1 (q − ϵ)r log r + Z0

1 (q)(1− r) log(1− r) + [r∂nZ0
n(q − ϵ) + (1− r)∂nZ0

n(q)]n=1

rZ0
1 (q − ϵ) + (1− r)Z0

1 (q)

+ log(Z0
1 (q − ϵ)r + Z0

1 (q)(1− r)), (2.10)

in terms of the ground state partition functions and their derivatives, which can be related back to

the ground state entropies. Here ZΨ
n (r, q) are the symmetry-resolved partition functions in the state

|Ψ⟩ and Z0
n(q) are those of the ground state, which are independent of r in the scaling limit considered

here. The formulae for the SREEs of other states are rather cumbersome and we discuss more general

cases in Section 2.2.

This chapter is organised as follows: In Section 2.2 we employ the U(1) composite branch-point

twist fields to express the charged ratio of moments between zero-density states and the ground state.

We show how the problem of computing this quantity can be simplified by diagonalising the fields

in the replica space and present explicit form factor computations for zero-density excited states of

the complex free boson and fermion. We then discuss how the symmetry-resolved entropies can be

obtained from the ratios of charged moments. Some details of the calculations are left to Appendix

2.A and Appendix 2.B, while Appendix 2.C contains a form factor expansion of the two-point function

of composite twist fields in the ground state. In Section 2.3 we show how the results obtained via

the twist field approach can be derived in a simpler framework of qubit states. Multi-qubit states

have coefficients that represent the probabilities of finding a certain number of excitations in a certain

space region. In this case the symmetry-resolved entanglement of the excited states can be obtained

explicitly. In Section 2.4 we generalise the results to interacting and higher dimensional theories. In the

first part of the section we show that the formulae derived for free theories also hold in some magnonic

states of spin chains in the presence of interactions. In the second part of the section we introduce

the notion of twist operator, which extends that of twist field to theories (either free or interacting)

in higher space-time dimensions. Twist operators will be used extensively in other chapters of this

thesis. In Section 2.5 we present numerical results for two (free) discrete systems: a 1D lattice Fermi

gas and a 1D complex harmonic chain. We find that in both cases the formulae presented above are

reproduced with great precision, even if the scaling limit of the Fermi gas is a massless free fermion.
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For the complex free boson, we show how the SREE can be computed by employing a wave-functional

method, some details of which are left in Appendix 2.D. Conclusions and outlook are in Section 2.6.

2.2 Charged moments and SREE of free theories: form factor

approach

In this section we express the charged moments of excited states of U(1) free theories as two-point

functions of composite branch-point twist fields (CBPTF) in finite volume, and we show how their

computation can be much simplified by diagonalising the action of the twist fields in the replica space.

Once we have expressed the twist fields and the excited states in the diagonal basis, we compute

the two-point functions via a form factor expansion, obtaining the ratio of charged moments for the

complex boson and the Dirac fermion. Finally, from the ratio of charged moment and the knowledge of

the charged moments in the ground state, we reconstruct the SREE of the excited states by performing

simple Fourier transforms.

2.2.1 Composite branch-point twist field factorisation

Let us consider, as above, a system of total length L with periodic boundary conditions, and a

connected subsystem A extending from x = 0 to x = ℓ. The moments of the RDM of a pure state in

the replica theory, that is, a tensor product |Ψ⟩nL := |Ψ⟩L ⊗ · · · ⊗ |Ψ⟩L of n identical states, can be

obtained from the equal-time correlator of two branch-point twist fields, thanks to the identification4:

TrρnA = ε4∆T n
L⟨Ψ|T (0)T̃ (ℓ)|Ψ⟩nL, (2.11)

where ε is a short-distance cut-off and ∆T is the conformal dimension of the branch-point twist

field, defined in (1.27). Because of the definitions (1.9), (1.11), differences of Rényi or von Neumann

entropies are independent of ε. They depend only on the ratio

RΨ
n (ℓ, L) :=

n
L⟨Ψ|T (0)T̃ (ℓ)|Ψ⟩nL
n
L⟨0|T (0)T̃ (ℓ)|0⟩nL

, (2.12)

where |0⟩nL := ⊗n
j=1|0⟩nj,L is the finite-volume replica ground state. In the limit (2.1) this becomes a

function RΨ
n (r) of |Ψ⟩n and r only and, for the states considered in the previous section, it is given by

the same equations (2.6), (2.7) and (2.8) if we set α = 0. In theories possessing a U(1) symmetry the

formulation is a very natural generalisation of the previous case, in which the branch-point twist field

4Note that here we do not include a non-universal normalisation factor to account for the norm of the state. The
reason is that we are computing the correlator in finite volume and, as we will show, working in finite volume provides
a natural way to regularise the divergences arising from the norm of the state when the large-volume limit is taken.
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T is replaced by the CBPTF T α and the charged moment is given by the two-point function

TrA(ρ
n
Ae

2πiαQ̂A) = ZΨ
n (L, ℓ;α) = ε4∆T αn

L⟨Ψ|T α(0)T̃ α(ℓ)|Ψ⟩nL. (2.13)

The field T α and its conjugate T̃ α can be understood as massive counterparts of the corresponding

CFT field. This means that the field T α in the massive theory obtained as a certain relevant

perturbation of a CFT flows to the field:

T α(y) := : T Vα : (y) = n2∆α−1 lim
x→y

|x− y|2∆α(1− 1
n
)

n∑
j=1

T (y)Vj
α(x), (2.14)

when the conformal limit is performed. Above, Vα is the vertex operator associated with the U(1)

symmetry of the theory, corresponding to the insertion of an Aharonov-Bohm phase e2πiα on the

Riemann surface, ∆α is the conformal dimension of this field, and Vj
α is a copy of this field living

in copy j of the replica theory. That is, T α is the lightest field appearing in the operator product

expansion (OPE) of T and Vα. As shown in [105, 124, 156–158], the conformal dimension of the fields

T α, T̃ α is

∆T α := ∆T +
∆α

n
, (2.15)

where, for α ∈ [−1
2 ,

1
2 ]:

∆α =
α2

2
for Dirac fermions, (2.16)

∆α =
|α| − α2

2
for complex bosons. (2.17)

The main result of this section is the finding that, similar to the quantity (2.12), also the ratio of the

moments (2.13) between an excited state and the ground state:

MΨ
n (r;α) = lim

L→∞

n
L⟨Ψ|T α(0)T̃ α(rL)|Ψ⟩nL
n
L⟨0|T α(0)T̃ α(r L)|0⟩nL

, (2.18)

takes a simple, universal form which is a function of the ratio r, the charge α and the number and

statistics of excitations in the state |Ψ⟩n.

Let us now discuss how these ratios may be computed in practice, employing a form factor approach.

A key technical problem that was solved in [115] is the question of how to evaluate finite-volume matrix

elements of the branch-point twist field. The same question arises for the composite field. Although

a finite-volume form factor program for generic local fields exists [159, 160] this cannot be directly

employed for twist fields (its extension to this case is still an open problem). In the absence of such

a program, an alternative approach can be used for complex free theories, where the internal U(1)

symmetry on each replica can be exploited to diagonalise the action of the CBPTF [20, 161, 162].
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In fact, this diagonalisation procedure can also be employed in infinite volume to compute the form

factors of T α, as done in [105]. The idea is the following. Let us denote by Φ = (Φ1, . . . ,Φn)
T the

multiplet of free complex fields the replica manifold, i.e. Φj is the local field in the jth replica (for now,

we use the same symbol Φ to denote a multiplet of free complex bosons or free Dirac fermions). Since

there is a U(1) symmetry in each copy, and the free replica action is quadratic, the theory is enhanced

with a SU(n) symmetry. Thus, there is a global SU(n) transformation Φ 7→ Φ̃ = (Φ̃1, . . . , Φ̃n)
T such

that the action of T α and T̃ α is diagonal in the new basis of local fields. Assuming a homogeneous

fractionalisation of the phase e2πiα among all replicas, the fields that diagonalise the action of T α and

T̃ α are:

Φ̃p =
1√
n

n∑
j=1

e−
2πijp

n Φj ,


p = 1, . . . , n for complex bosons

p = −n−1
2 , . . . , n−1

2 for Dirac fermions

, (2.19)

and the eigenvalues of the transformation are given by

λp = e
2πi(p+α)

n . (2.20)

In free theories, correlation functions of the composite branch-point twist fields factorise in free

theories, and therefore we can write T α(x, t), T̃ α(x, t) as products of fields acting non-trivially only

on one copy. Namely, the factorisation is:

T α(x, t) =
n∏

p=1

Tp+α(x, t), T̃ α(x, t) =
n∏

p=1

T−p−α(x, t), (2.21)

for complex free bosons and

T α(x, t) =

n−1
2∏

p=−n−1
2

Tp+α(x, t), T̃ α(x, t) =

n−1
2∏

p=−n−1
2

T−p−α(x, t), (2.22)

for complex free fermion. The factors Tp+α are all U(1) fields with charge p + α, resulting from the

fusion of two U(1) fields of charges p and α: namely, the fields Tp employed in [115], in terms of

which one can decompose the (standard) branch-point twist field (1.26) in a free theory, and the U(1)

vertex operators Vα. This factorisation was already employed in [105, 124], albeit with a different

normalisation of the parameter α. There, it was shown that the conformal dimension of these fields

is ∆α+p
n

for the free fermion and ∆ |α|+p
n

for the free boson, with ∆α given by (2.17), as indeed by

summing these quantities over the allowed values of p one obtains (2.15) in the two cases. The fields

T±(p+α) satisfy the usual equal-time exchange relations for U(1) fields, which involve what is termed

a factor of local commutativity γ±p+α = exp(±2πi(p+ α)/n), that is, the phase that a field Φ̃p(x) of
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charge +1 accrues when taking a trip around the U(1) field:

T±(p+α)(x, t)Φ̃q(y, t) =


(γ±p+α)

δp,q Φ̃q(y, t)T±(p+α)(x, t) y > x

Φ̃q(y, t)T±(p+α)(x, t) y < x

. (2.23)

As we will review shortly, the factor of local commutativity is the key ingredient in determining the

form factors of these fields.

The computation presented in [115] for the total entanglement entropy may be easily extended

to the case of the ratio MΨ
n (r;α) in excited states. First, a word is due regarding the excited state

|Ψ⟩nL. In general, any state in the replica QFT can be characterised in terms of the rapidities and

quantum numbers of the excitations above the ground state. Considering a free complex theory, we

may define creation operators (aϵj)
†(θ) where ϵ = ±1 is the U(1) charge of the particle, θ is its rapidity

and j = 1, . . . , n is the copy number. Unlike the works [114–116, 144], where complex theories were

considered only in order to access results for real ones, here we are interested in obtaining results for

complex models. The type of k-particle excited state that we are interested in consists of n identical

copies of a standard k-particle state:

|Ψ⟩nL =
n∏

j=1

(
k∏

i=1

(aϵij )
†(θi)

)
|0⟩nL. (2.24)

We will start by considering the complex boson and then move to the complex fermion.

2.2.2 Complex free boson

In order to represent the state, it is convenient to move to the basis (2.19) in which the action of

the CBPTF is factorised and diagonal. In this basis, the state can be expressed in terms of creation

operators a†j(θ) and b
†
j(θ) associated with bosons of charge +1 and −1 respectively. They are related

to the creation operators in the standard basis as [115]

a
†
p(θ) =

1√
n

n∑
j=1

e
2πijp

n (a+j )
†(θ) and b

†
p(θ) =

1√
n

n∑
j=1

e−
2πijp

n (a−j )
†(θ), (2.25)

where p = 1, . . . n. That is, the sets of creation operators in the two basis are Fourier modes of each

other. The annihilation operators ap(θ), bp(θ) are defined analogously and the only non-vanishing

commutation relations are:

[ap(θ1), a
†
p(θ2)] = [bp(θ1), b

†
p(θ2)] = δ(θ1 − θ2). (2.26)

As an example, let us consider the case of one single excitation of charge ϵ, and rapidity θ, which
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we write5 as |1ϵ⟩nL. In the original basis, this would be the state
∏n

j=1(a
ϵ
j)

†(θ)|0⟩nL, that is a state

where a single complex boson of rapidity θ and charge ϵ is present in each replica. In the diagonal

basis, by inverting the relations (2.25), such a state takes the form

|1+⟩nL =
∑
{N+}

An({N+})
n∏

p=1

[a†p(θ)]
N+

p |0⟩np,L, |1−⟩nL =
∑
{N−}

An({N−})
n∏

p=1

[b†p(θ)]
N−

p |0⟩np,L, (2.27)

where the indices {N±} := {N±
1 , . . . , N

±
n } are boson occupation numbers in each sector and they are

constrained by the condition that they must add up to n

n∑
p=1

N±
p = n. (2.28)

The coefficients A({N±}) can be obtained systematically from equations (2.25) and their inverses.

Combining the factorisation of the CBPFT and equation (2.27), we can expand the two-point function

in the excited state |1±⟩nL as follows:

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL =

∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+}) (2.29)

×
n∏

p=1

n
p,L⟨0|[ap (θ)]N

+
p Tp+α(0) T−p−α(ℓ) [a

†
p(θ)]

M+
p |0⟩np,L ,

n
L⟨1−|T α(0)T̃ α(ℓ)|1−⟩nL =

∑
{N−}

∑
{M−}

A∗
n({N−}) An({M−}) (2.30)

×
n∏

p=1

n
p,L⟨0|[bp (θ)]N

−
p Tp+α(0) T−p−α(ℓ) [b

†
p(θ)]

M−
p |0⟩np,L .

This can be computed in the standard way by inserting a sum over a complete set of states between

the two fields as detailed in Appendix 2.A. A particular subtlety of this kind of computation is that,

because of finite volume, the momenta of the excitations are quantised and non-zero matrix elements

correspond to particular quantisation conditions that take the monodromy of the fields into account.

In particular we have:

P (θ±i ) = m sinh θ±i = 2πJ±
i ± 2π(p+ α)

n
, J±

i ∈ Z, (2.31)

where θ+i denotes rapidities of particles created by a†j and θ−i denotes rapidities of particles created

by b†j . The reason is that these states, being inserted between the two composite twist fields, belong

to a twisted sector of the Hilbert space (see [115] for more details), and thus the monodromy relation

5The fact that we do not label the state using the rapidity θ is justified a posteriori, as our results do not depend on
the energy and momentum of the zero-density excitations.

33



CHAPTER 2. SYMMETRY-RESOLVED ENTROPY OF EXCITED STATES

is Φ̃p(x + L) = e±
2πi(p+α)

n Φ̃p(x), from which (2.31) follows. On the other hand, the rapidity θ of the

external “untwisted”states is quantised through P (θ) = 2πI for I ∈ Z, i.e. the usual Bethe-Yang

quantisation condition for a free theory [163–165]. Note that the quantity p+α
n is never an integer

for α ∈ [−1
2 ,

1
2 ] and p ̸= n (p = n corresponds to the identity field). This guarantees that only

non-diagonal form factors (that is matrix elements involving only distinct right and left states) will

be involved in the computation of the leading large-volume contribution to (2.29).

Once a sum over a complete set of states is inserted in (2.29), the problem reduces to the

computation of matrix elements of the U(1) fields Tp+α. Such matrix elements have been known for

a long time but they were re-derived in [105, 115]. Because of the free nature of the theory, all

matrix elements are given in terms of the two-particle form factor

F p+α|+−
n (θ12) := p⟨0|Tp+α(0) a

†
p(θ1)b

†
p(θ2)|0⟩p = −τp+α sin

π(p+ α)

n

e(
p+α
n

− 1
2)θ12

cosh θ12
2

, (2.32)

where τp+α is the vacuum expectation value of Tp+α:

τp+α = p⟨0|Tp+α|0⟩p, (2.33)

and θ12 = θ1 − θ2. Since the composite twist field preserves the total charge of the state, it follows

that

F p+α|++
n (θ12) := p⟨0|Tp+α(0) a

†
p(θ1)a

†
p(θ2)|0⟩p = 0, (2.34)

F p+α|−−
n (θ12) := p⟨0|Tp+α(0) b

†
p(θ1)b

†
p(θ2)|0⟩p = 0. (2.35)

The two-point function (2.32) is the only solution of the Watson equations:

F p+α|±∓
n (θ) = F p+α|∓±

n (−θ), F p+α|±∓
n (θ + 2πi) = γ±p+αF

p+α|±∓
n (θ), (2.36)

and of the kinematic residue equation:

Resθ=0F
p+α|±∓
n (θ + iπ) = i(1− γ±p+α)τp+α. (2.37)

Higher-particle form factors simply follow from Wick’s Theorem, which for the free boson reads:

F p+α,n
2 m(θ1, . . . , θm, β1, . . . , βm) := p⟨0|Tp+α(0) a

†
p(θ1) . . . a

†
p(θm)b†p(β1) . . . b

†
p(θm)|0⟩p

= τp+α

∑
σ∈Sm

fnp+α(θσ(1) − β1) . . . f
n
p+α(θσ(m) − βm), (2.38)

where Sm is the set of permutations of the first m positive integers. For free fermions, one has to
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take into account also the parity of the permutations σ. In the formula above, we introduced the

normalised two-particle form factor:

fnp+α(θ) :=
F

p+α|+−
n (θ)

τp+α
. (2.39)

The finite-volume matrix elements can then be obtained thanks to the results of [159, 160] (see also

Appendix 2.A).

In summary, all results obtained in [115] follow through for the CBPTF with the replacement

p → p + α and the choice of an appropriate state. In particular, the ratio of charged moments for a

state describing one excitation is given by

M1±
n (r;α) =

∑
{N±}

|An({N±})|2
n∏

p=1

(N±
p !)[gn±(p+α)(r)]

N±
p = e±2πiαrn + (1− r)n, (2.40)

which is, as anticipated, the formula (2.6) and where

gnp (r) := 1− (1− e
2πip
n )r. (2.41)

For free bosons, this can be generalised to states containing k identical excitations to find (2.7). For

states containing k different excitations (with different rapidities and any combination of charges ϵi)

the result is

M1ϵ1 ...1ϵk
n (r;α) =

k∏
s=1

∑
{N±}

|Cn({N±})|2
n∏

p=1

N+
p,s! N

−
p,s!
(
gnp+α(r)

)N+
p,s
(
gn−p−α(r)

)N−
p,s

=

k∏
j=1

[
e2πiϵjαrn + (1− r)n

]
. (2.42)

In these formulae, Cn({N±} and An({N±} are coefficients which are determined by the form of the

state in the diagonal basis. Both results are special cases of (2.8).

2.2.3 Complex free fermion

For complex free fermions the computation is very similar, although states involving identical

excitations are forbidden. The Fourier modes of the creation operators (a±j )
†(θ) are:

a
†
p(θ) =

1√
n

n∑
j=1

e
2πijp

n (a+j )
†(θ) and b

†
p(θ) =

1√
n

n∑
j=1

e−
2πijp

n (a−j )
†(θ), (2.43)
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where now p = −n−1
2 , . . . n−1

2 , and the only non-vanishing anticommutators are:

{ap(θ1), a†p(θ2)} = {bp(θ1), b†p(θ2)} = δ(θ1 − θ2). (2.44)

For a free fermion, the two-particle form factor of the factorised CBPTF is modified to [82, 89]

F p+α|+−
n (θ12) := p⟨0|Tp+α(0) a

†
p(θ1)b

†
p(θ2)|0⟩p = iτp+α sin

π(p+ α)

n

e(
p+α
n )θ12

cosh θ12
2

. (2.45)

The structure of a state consisting of a single particle excitation is as for the free boson, namely

|1+⟩nL =
n∏

j=1

(a+j )
†(θ)|0⟩nL =

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ωjp
a
†
p(θ)|0⟩nL, (2.46)

|1−⟩nL =
n∏

j=1

(a−j )
†(θ)|0⟩nL =

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ω−jp
b
†
p(θ)|0⟩nL, (2.47)

with ω = e−
2πi
n . For instance, for n = 2 we have:

|1+⟩2L =
1

2
(ia†− 1

2

(θ)− ia†1
2

(θ))(−a†− 1
2

(θ)− a†1
2

(θ))|0⟩2L = −ia†− 1
2

(θ)a†1
2

(θ)|0⟩2L, (2.48)

and

|1−⟩2L =
1

2
(−ib†− 1

2

(θ) + ib†1
2

(θ))(−b†− 1
2

(θ)− b†1
2

(θ))|0⟩2L = ib†− 1
2

(θ)b†1
2

(θ)|0⟩2L. (2.49)

Similarly, for n = 3:

|1+⟩3L = ia†−1(θ)a
†
0(θ)a

†
1(θ)|0⟩

3
L , |1−⟩3L = −ib†−1(θ)b

†
0(θ)b

†
1(θ)|0⟩

3
L. (2.50)

Due to the anticommutation relations, many contributions now cancel off and the states take extremely

simple forms in the diagonal basis. It is easy to show that the general structure of the states (2.46)

and (2.47) is:

|1+⟩nL = eiκ

n−1
2∏

p=−n−1
2

a
†
p(θ)|0⟩nL, |1−⟩nL = e−iκ

n−1
2∏

p=−n−1
2

b
†
p(θ)|0⟩nL, (2.51)

with κ a real parameter that can be computed for each specific state and will not play a role in our

computation. Making use of the factorisation (2.22) we can expand the fermionic two-point function

in terms of a sum over the form factors (2.45). The details are presented in Appendix 2.B. For a state
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consisting of a single excitation the result is

M1±
n (r;α) =

n−1
2∏

p=−n−1
2

gn±p±α(r) =

n−1
2∏

p=−n−1
2

[
1− (1− e±

2πi(p+α)
n )r

]
.

Since the quantities e±
2πip
n are the nth roots of +1 for n odd, and the nth roots of −1 for n even, it

follows that
n−1
2∏

p=−n−1
2

(x− e±
2πip
n y) = xn + (−y)n, (2.52)

which, after setting x = 1− r, y = −re±
2πiα
n gives:

n−1
2∏

p=−n−1
2

gn±p±α(r) = e±2πiαrn + (1− r)n, (2.53)

that is, the same result as (2.40) for free bosons, albeit resulting from a rather different product of

g-functions. Similarly, all free boson formulae presented in the previous subsection are recovered for

free fermions, as long as we consider only distinct excitations.

2.2.4 Symmetry-resolved entanglement entropies

Having obtained the ratios of charged moments we now proceed to computing the SREE of excited

states. To this aim, we need to isolate the charged moments of the excited state and then compute

their Fourier transform to obtain the charged partition functions (1.48). In other words, we need to

multiply our results of the previous section by the ground state correlator in the infinite-volume limit

considered here. Note that this ground state correlator will be different for different theories, even if

formulae (2.6)-(2.8) are always satisfied.

For (local) 1+1D QFTs, such as complex free theories, the ground state correlator in our scaling

limit reduces to its disconnected part, that is the square of the vacuum expectation value (VEV) of

the field T α. This result follows simply from clustering of correlators in local QFT, but can also be

demonstrated explicitly from the finite-volume expansion of the ground state two-point function. This

expansion is presented in Appendix 2.C for complex free fermions6. In particular, looking at equation

(2.218) we can see how, despite the complexity of the expansion, in infinite volume the only surviving

term in the sum corresponds to the product of VEVs |τp+α|2. The same statement holds for complex

free bosons. As mentioned earlier, it is common to normalise the correlators by the inclusion of a UV

6A large-distance expansion of the two-point function of T α in free complex theories was performed in [105], although
in that case the authors considered QFTs in infinite volume from the very beginning.
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cut-off, so that the natural quantity to compute is

ZΨ
n (r;α) = Z0

n(α)M
Ψ
n (r;α) with Z0

n(α) = ε4∆α⟨T α⟩2, (2.54)

where ZΨ
n (r;α) are the charged moments of the excited state in our particular scaling limit, Z0

n(α)

are the moments of the ground state and ⟨T α⟩ is the VEV of the composite twist field. From general

dimensionality arguments, as can be found for instance in [166], the VEV has a very particular

dependence on the mass scale and the conformal dimension of the CBPTF. In fact, we have

⟨T α⟩ = vαnm
2∆T α , (2.55)

where vαn is a function that depends on the model and can be determined by requiring CFT

normalisation of the composite twist field (that is, that the CFT two-point function has numerical

coefficient of 1) and ∆T α is given by (2.15). The Fourier transform of the ground state moments has

been studied in detail for free QFTs in [105, 124], thus we will not revisit its computation here.

Instead, we show that, assuming Z0
n(α) to be known , it is possible to express the symmetry-resolved

partition functions and entropies of excited states fully in terms of those of the ground state. The

reason for this is that the functions MΨ
n (r;α) depend on α in an extremely simple manner, namely

through factors of the form e±2πijα only. Thus, in order to compute the SREE of an excited state,

the only non-trivial integrals that we need to consider are of the form

∫ 1
2

− 1
2

dαZ0
n(α)e

−2πiα(q±j) = Z0
n(q ± j). (2.56)

For instance, using (2.6), the simple example of a single excitation of charge ϵ gives the following

relationship amongst partition functions

Z1ϵ

n (r; q) = Z0
n(q − ϵ)rn + Z0

n(q)(1− r)n. (2.57)

Therefore, the symmetry-resolved Rényi and von Neumann entropies of such a state are given by

formulae (2.9) and (2.10), respectively. They can in turn be written in terms of the SREE and

partition function of the ground state (i.e. eliminating derivative terms) by recalling that

∂nZ0
n(q)

∣∣
n=1

= −Z0
1 (q)[S

0
1(q)− logZ0

1 (q)]. (2.58)

Similar relations are found for more complicated cases, such as (2.7), that is an excited state of k
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identical excitations of charge ϵ. In this case we find instead

Skϵ

n (r; q) =
1

1− n
log

∑k
j=0

[
fkj (r)

]n
Z0
n(q − ϵj)[∑k

j=0 f
k
j (r)Z0

1 (q − ϵj)
]n , (2.59)

and the symmetry-resolved von Neumann entropy

Skϵ

1 (r; q) = −

∑k
j=0

[
Z0
1 (q − ϵj)fkj (r) log f

k
j (r) + fkj (r) ∂nZ0

n(q − ϵj)
∣∣
n=1

]
∑k

j=0 f
k
j (r)Z0

1 (q − ϵj)

+ log

k∑
j=0

fkj (r)Z0
1 (q − ϵj). (2.60)

Unlike for the charged moments, the entropies of other states are not expressed by particularly simple

formulae. However, the kind of integrals involved are of the same type so that the computation can

be performed in a similar manner for any excited state. As a last example, let us consider the ratio of

charged moments for an excited state of two particles of opposite charges. We have that

Z1+1−
n (r; q) =

∫ 1
2

− 1
2

dαZ0
n(α)(r

n + e2πiα(1− r)n)(rn + e−2πiα(1− r)n)e−2πiαq

= Z0
n(q)(r

2n + (1− r)2n) + (Z0
n(q − 1) + Z0

n(q + 1))rn(1− r)n, (2.61)

so that the Rényi entropy is

S1+1−
n (r; q) =

1

1− n
log

Z0
n(q)(r

2n + (1− r)2n) + (Z0
n(q − 1) + Z0

n(q + 1))rn(1− r)n

[Z0
1 (q)(r

2 + (1− r)2) + (Z0
1 (q − 1) + Z0

1 (q + 1))r(1− r)]n
, (2.62)

from which the von Neumann entropy follows as above.

In conclusion, the SREE of the kind of excited states considered here can be expressed in terms

of the SREE and partition function of the ground state. This statement holds for any system where

formulae (2.6)-(2.8) apply and where the ground state contribution is well-defined. As we shall see

below, this includes a wide range of models, well beyond free QFTs. As a final remark, we recall that a

key property of the SREEs of the ground state both in QFT [19] and interacting quantum spin chains

[94] is the property of equipartition at leading order. That is, within a certain range of parameters7

the SREEs of all charge sectors are charge independent. It is clear from the formulae above that this

property also holds for the SREEs of excited states, as their charge dependence is solely encoded in

the symmetry-resolved partition function and entropies of the ground state. Thus, if the entropy is

equipartite in the ground state it will also be so in excited states.

7For massive QFT this range typically corresponds to the double limit of large subsystem size ℓ ≫ 1 and | log(mϵ)| ≪ 1
where m is a typical mass scale and ϵ a UV cut-off (see e.g. [106, 108]).
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2.3 The qubit picture

Besides the QFT approach based on twist fields that we have presented so far, there are alternative

ways in which the entanglement of excited states may be studied. In the works [114–116] several models

and approaches were considered, including the study of the entanglement of certain qubit states. In the

present context, such states are also useful as they provide a simpler way of obtaining our formulae for

the ratios of charged moments, even if their associated SREEs will be different, in fact much simpler

than those of QFT states.

2.3.1 Charged moments of multi-qubit states

The main idea behind the qubit picture is that of representing a localised excitation in A ∪ Ā via

a superposition of two two-qubit states:

|Ψ(1)
qb ⟩ =

√
r|1⟩A ⊗ |0⟩Ā +

√
1− r|0⟩A ⊗ |1⟩Ā, (2.63)

where the qubit state 1(0) represents the presence (absence) of the excitation in the corresponding

spacial region. The coefficients are chosen in such a way to reproduce a uniform probability of finding

the excitation in A ∪ Ā, a choice dictated by the fact that the SREEs computed via the form factor

approach are independent on the energy of the excitation. A state consisting of k indistinguishable

excitations (same rapidity and same charge) is described by defining a Hilbert space HA ⊗HĀ, with:

HA = span{|q⟩A, q = 0, . . . , k} ≃ HĀ ≃ Ck+1, (2.64)

and a subspace

H(k) = span{|q⟩A ⊗ |k − q⟩Ā, q = 0, . . . , k} ⊂ HA ⊗HĀ. (2.65)

Then:

|Ψ(k)
qb ⟩ :=

k∑
q=0

√
fkq (r)|q⟩A ⊗ |k − q⟩Ā ∈ H(k), (2.66)

where the function fkq (r) (see the definition in (2.7)) represents the probability of finding q out of k

indistinguishable particles in the region A. The RDM can be computed in the orthonormal multi-qubit

basis of HA ⊗HĀ, yielding:

ρ
(k)
A = TrĀ|Ψ

(k)
qb ⟩⟨Ψ

(k)
qb |

= TrĀ
∑
q,q′

√
fkq (r) f

k
q′(r)|q⟩AA⟨q′| ⊗ |k − q⟩ĀĀ⟨k − q′|

=
k∑

q=0

fkq (r)|q⟩AA⟨q|, (2.67)
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that is, the reduced density matrix is diagonal. Assuming that the charge operator associated with

the internal symmetry is Q̂ = Q̂A ⊕ Q̂Ā and that, without loss of generality, all the particles in the

state above have charge ϵ = +1, then e2πiαQ̂A |q⟩A = e2πiαq|q⟩A and the charged moments can be easily

computed as follows:

Tr
[(
ρ
(k)
A

)n
e2πiαQ̂A

]
=

∑
q1,...,qn=0,...,k

A⟨q1|ρ(k)A e
2πiαQ̂A

n |q2⟩A A⟨q2|ρ(k)A e
2πiαQ̂A

n |q3⟩A . . . A⟨qn|ρ(k)A e
2πiαQ̂A

n |q1⟩A

=
∑
{qi}

n∏
i=1

fkqi(r)e
2πiαqi

n δqi,qi+1 =
k∑

q=0

[fkq (r)]
ne2πiαq. (2.68)

Thus, the result (2.7) is reproduced. The more general situation one can consider is that of a state

containing N sets of indistinguishable excitations, with the set j formed by kj particles of the same

rapidity and charge ϵj , for j = 1, . . . , N . By keeping fixed the total number of particles k =
∑

j kj ,

the Hilbert space of the multi-qubit states is now HA ⊗HĀ, with:

HA = span{|qϵ11 , . . . , q
ϵN
N ⟩A, qj = 0, . . . , kj , ϵj = ±1, j = 1, . . . , N} ≃ HĀ ≃

N⊗
j=1

Ckj+1. (2.69)

A multi-qubit state with k particles uniformly distributed over A ∪ Ā is:

|Ψ(k1,ϵ1;...;kN ,ϵN )
qb ⟩ :=

∑
q1,...,qN

√√√√ N∏
j=1

f
kj
qj (r)|q

ϵ1
1 , . . . , q

ϵN
N ⟩A ⊗ |q̄ϵ11 , . . . , q̄

ϵN
N ⟩Ā, q̄j := kj − qj . (2.70)

The state is normalised:

⟨Ψ(k′1,ϵ
′
1;...;k

′
N ,ϵ′N )

qb |Ψ(k1,ϵ1;...;kN ,ϵN )
qb ⟩ =

N∏
j=1

δkj ,k′jδϵj ,ϵ′j , (2.71)

and factorises into a product of multi-qubit states (2.66):

|Ψ(k1,ϵ1;...;kN ,ϵN )
qb ⟩ =

N⊗
j=1

|Ψ(kj ,ϵj)
qb ⟩ =

N⊗
j=1

 kj∑
qj=0

√
f
kj
qj (r)|q

ϵj
j ⟩A ⊗ |q̄ϵjj ⟩Ā

 . (2.72)

Because of this factorisation, the charged moments are obtained in a straightforward way from those

of the state (2.66). Indeed, the RDM matrix is:

ρ
(k1,ϵ1;...;kN ,ϵN )
A =

N⊗
j=1

ρ
(kj ,ϵj)
A =

N⊗
j=1

kj∑
qj=0

f
kj
qj (r)|q

ϵj
j ⟩AĀ⟨q

ϵj
j |, (2.73)
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and, decomposing Q̂A =
⊕N

j=1 Q̂
(j)
A , we obtain the expression:

Tr
[(
ρ
(k1,ϵ1;...;kN ,ϵN )
A

)n
e2πiαQ̂A

]
=

N∏
j=1

Tr
[(
ρ
(kj ,ϵj)
A

)n
e2πiαQ̂

(j)
A

]
=

N∏
j=1

kj∑
qj=0

[f
kj
qj (r)]

ne2πiαqjϵj , (2.74)

which indeed reproduces the most general result (2.8) (with s = N).

2.3.2 SREE of multi-qubit states

We close this section by noting that for multi-qubit states the results obtained are directly the

charged moments of the state rather than ratios of moments. This is so because the qubit ground state

|0⟩A⊗ |0⟩Ā is trivial from the point of view of entanglement. This means that the formulae (2.6)-(2.8)

are the quantities we need to Fourier-transform in order to obtain the SREEs. The simplicity of the

formulae allows us to obtain the SREEs exactly, something that is typically beyond reach for QFT.

By using ∫ 1
2

− 1
2

dα e−2πiαx = δx,0, for x ∈ Z, (2.75)

it immediately follows from (2.68) that

Skϵ

n (r; q) =
1

1− n
log

∑k
j=0

[
fkj (r)

]n
δq,ϵj[∑k

j=0 f
k
j (r)δq,ϵj

]n , (2.76)

and in particular

S1ϵ

n (r; q) =
1

1− n
log

[
δq,ϵr

n + δq,0(1− r)n

(δq,ϵr + δq,0(1− r))n

]
. (2.77)

The von Neumann entropies easily follow from these expressions. Due to the simplicity of the states,

however, we see that all the entropies above are identically zero whenever any of the delta-functions

is 1. This can be interpreted as the statement that the symmetry-resolution of the entropy does not

give any additional information about these states. Another way to put this is to say that the only

property that matters in establishing formulae (2.77)-(2.76) is whether particles are distinguishable

or not and in both formulae particles are identical by construction, so that specifying the charge does

not add any relevant information.

The situation is different if we consider states containing distinct excitations. For instance, for a

state of k distinct excitations of the same charge ϵ the charged moments are given by

(rn + e2πiϵα(1− r)n)k =
k∑

j=0

(
k

j

)
(1− r)nje2πiϵαjrn(k−j), (2.78)
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Figure 2.1 Symmetry-resolved entropies of various qubit states in the zero charge sector as functions
of r. Left: The symmetry-resolved von Neumann entropy of the charge zero sector for states of
equal numbers k of identical positively and negatively charged particles. In the figure k = 1, 2, 3, 4
giving larger entropy for higher k. The maxima at r = 1/2 are log 2, log 6, log 20 and log 70, that is
log(2k)! − 2 log(k!) which counts the number of distinct arrangements of two groups of k identical
particles. Right: The symmetry-resolved Rényi entropy of the charge zero sector of a state consisting
of four identical positively and four identical negatively charged excitations for n = 2, 4, 8, 20. The
larger n is, the more sharply peaked at r = 1/2 the functions become. The value at r = 1/2 is log 70,
independent of n.

so performing the Fourier transform we get

S1ϵ1ϵ...1ϵ

n (r; q) =
1

1− n
log

∑k
j=0

(
k
j

)
(1− r)njδq,ϵjr

n(k−j)[∑k
j=0

(
k
j

)
(1− r)jδq,ϵjr(k−j)

]n , (2.79)

thus for q = ϵj, j = 0, . . . , k, we have

S1ϵ1ϵ...1ϵ

n (r; ϵj) =
1

1− n
log

(
k
j

)
(1− r)njrn(k−j)[(

k
j

)
(1− r)jr(k−j)

]n = log

(
k

j

)
. (2.80)

In this case the symmetry-resolved Rényi entropy tells us about the number of equally likely

configurations which produce a charge ϵj in region A, and it is independent of n. Many other

configurations can be considered, all of which produce different results, with similar interpretations.

For instance, for a state with one positively and one negatively charged particle, the Fourier

transform of the function

(rn + e2πiα(1− r)n)(rn + e−2πiα(1− r)n), (2.81)

yields the simple formula

S1+1−
n (r; q) =

1

1− n
log

(r2n + (1− r)2n)δq,0 + rn(1− r)n(δq,1 + δq,−1)

[(r2 + (1− r)2)δq,0 + r(1− r)(δq,1 + δq,−1)]
n , (2.82)
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and

S1+1−
n (r; 0) =

1

1− n
log

r2n + (1− r)2n

(r2 + (1− r)2)n
, S1+1−

n (r;±1) = 0. (2.83)

In this case the q = 0 result is n-dependent and gives a non-trivial symmetry-resolved von Neumann

entropy:

S1+1−
1 (r; 0) = log(r2 + (1− r)2)− r2 log r2 + (1− r)2 log(1− r)2

r2 + (1− r)2
, S1+1−

1 (r;±1) = 0. (2.84)

In this example the SREE of the q = 0 sector is non-trivial as there are now two possible configurations

that we can associate with such a charge, namely both particles being in region A and no particle being

in region A. Thus there is a difference in the SREEs of states involving two particles with the same

or distinct charges, even for the simple states considered here. Additional examples are presented in

Fig. 2.1.

It is worth noting that all formulae in this section are in agreement with those in Section 2.2.4 if

one identifies the ground state partition function Z0
n(q − ϵj) with the quantity δq,ϵj . Therefore, the

study of multi-qubit states provides a neat application of the general results of the previous section

to the case of a trivial, unentangled, ground state.

Because of the simplicity and explicit nature of the formulae for the multi-qubit states, it is

possible to compute precisely the two contributions to the total von Neumann entropy, that is the

configurational entropy and the number entropy [19, 93, 94]. Calling SΨ
1 (r) the total von Neumann

entropy of the state |Ψ⟩, we can write

SΨ
1 (r) =

∑
q

(p(q)SΨ
1 (q; r)− p(q) log p(q)), (2.85)

where p(q) := ZΨ
1 (r; q), that is the symmetry-resolved partition function of the state for n = 1, and the

term
∑

q p(q) log p(q) is the number entropy. The quantity p(q) represents the probability of obtaining

the value q when measuring the charge. It is easy to work out an explicit example and see the features

of these two contributions. For the state consisting of two distinct excitations with different charges

the SREEs are given by (2.84). Thus, from

p(0) = r2 + (1− r)2, p(±1) = r(1− r), (2.86)

it follows that the number entropy is simply

(r2 + (1− r)2) log(r2 + (1− r)2) + 2r(1− r) log(r(1− r)), (2.87)
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while the configuration entropy is

(r2 + (1− r)2)S1+1−
1 (r; 0), (2.88)

By summing these contributions we recover the known formula for the total von Neumann entropy of

a state of two distinct excitations −2r log r − 2(1− r) log(1− r) as found in [114, 115]. We note also

that the number entropy takes its maximum (absolute) value 3/2 log 2 at r = 1/2, and that it can

itself be considered a measure of entanglement, as discussed for other examples in [93, 109].

We close this section by noting that the entropy formulae for qubit states considered here do not

have the property of equipartition, that is, they depend explicitly on the charge sector as we see for

instance from Eq. (2.83). This is no contradiction, since the property of equipartition [94] is typically

a leading order property (for instance in [94] it holds for small magnetisation), whereas in the case of

multi-qubit states we have exact formulae rather than leading order expressions. Indeed, these states

provide probably the simplest example where such a dependence on the charge sector can be fully

computed.

2.4 Generalisations to interacting theories and higher dimensions

2.4.1 Magnon states

The agreement of the results obtained via form factors of CBPTFs in Section 2.2 and via multi-qubit

states in Section 2.3 provide evidence that the formulae we obtained are correct. This is further

substantiated by the numerical results we will present in the next Section. We now consider how our

results might be applicable in a broader context. A natural starting point are magnon states. Such

states describe the eigenstates of a variety of spin chain Hamiltonians, with or without interactions.

They admit a simple explicit form in the spin basis so that entanglement computations are easy to

perform. We also know from [115, 150] that the total entanglement entropy of magnon states is

described by our formulae with α = 0. As we see below, even in the presence of non-trivial scattering,

the agreement extends to α ̸= 0.

The main idea behind this construction is somewhat similar in spirit to the qubit picture [1, 115],

namely, that the entanglement content of quasiparticles can be easily understood if one factors out

the zero-point fluctuations. In other words, instead of considering the full quantum theory where

the quasiparticles are constructed on top of a nontrivial ground state, which in general has its own

entanglement content, we consider a simpler theory in which particles are constructed above a trivial

ground state. It turns out that the entanglement of this simpler model keeps track of the exact

entanglement of the quasiparticle and explicitly discards explicitly the entanglement of the true ground
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state. Our magnon states belong to a Fock space generated by multi-particle configurations, endowed

with an internal symmetry that acts as a phase on each multi-particle state. This phase is directly

related to the quantum numbers of each particle.

2.4.1.1 One-magnon states

We firstly focus on a single magnon state on the lattice, belonging to the one-particle sector of a

quantum spin-12 chain of length L. A one-magnon state can be written as a superposition of localised

excitations with momentum p:

|Ψ1⟩ =
1√
L

L∑
j=1

eipj |j⟩, |j⟩ = |↑⟩1 ⊗ . . . |↓⟩j ⊗ . . . |↑⟩L. (2.89)

If one imposes boundary conditions on the chain, the momentum p is quantised as follows

p ∈ 2π

L
Z. (2.90)

We introduce the action of the symmetry operator e2πiαQ̂, where Q̂ is associated with an internal

symmetry. For our purposes we just need to specify its action on the vacuum state |0⟩ = ⊗L
j=1|↑⟩j

and on the one-particle sector. In addition we assume that the magnon is charged with respect to Q̂,

and it has charge +1.

We are interested in the entanglement of the one-magnon state with respect to the partition of

spin sites into A = {1, 2, · · · , ℓ} and Ā = {ℓ + 1, . . . , L}. We associate to the region A a restricted

symmetry generator e2πiαQ̂A , which acts as

ei2παQ̂A |0⟩ = |0⟩ e2πiαQ̂A |j⟩ = e2πiαδj∈A |j⟩ (2.91)

where δj∈A = 1 if j ∈ A and δj∈A = 0 otherwise. The reduced density matrix of the region A is

ρA := TrĀ (|Ψ1⟩⟨Ψ1|) =
1

L

∑
j,j′∈A

eip(j−j′)|j⟩A A⟨j′|+ (1− r)|0⟩A A⟨0|, (2.92)

where the states |0⟩A, |j⟩A are defined by restricting the tensor products to the sites in A and r = ℓ/L.

The two terms appearing in the formula above are interpreted as the contributions associated to the

presence/absence of the magnon in subsystem A. It is easy to show that

e2πiαQ̂AρnA =

 1

L

∑
j,j′∈A

eip(j−j′)|j⟩A A⟨j′|

n

e2πiα + (1− r)n|0⟩A A⟨0|, (2.93)
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and that [ρA, e
2πiαQ̂A ] = 0. After a straightforward calculation one gets

TrA

 1

L

∑
j,j′∈A

eip(j−j′)|j⟩A A⟨j′|

n

= rn, TrA ((1− r)n|0⟩A A⟨0|) = (1− r)n. (2.94)

Putting the pieces together, we arrive at the expected final result

Tr
(
ρnAe

2πiαQ̂A

)
= rne2πiα + (1− r)n, (2.95)

which provides the exact charged moments of a single magnon state.

2.4.1.2 Two-magnon states

In the following we consider a state of two magnons with the same symmetry charge. This example

is more interesting because it allows us to test whether the presence of non-trivial interaction changes

our results. Given a pair of momenta p and p′, we parametrise the two-magnon state in the following

way

|Ψ2⟩ =
1√
L

L∑
j,j′

Sj,j′e
ipj+ip′j′ |jj′⟩, (2.96)

where S is a scattering matrix and |jj′⟩ is the state with two localised magnons in sites j and j′. The

choice of the S-matrix is not really relevant for our purpose, but for the sake of concreteness we set

Sjj′ =


eiφ for j > j′,

1 for j < j′,

0 for j = j′,

(2.97)

using the same conventions as in [114]. The action of the restricted symmetry operator e2πiαQ̂A on

the two-particle sector of the Hilbert space is

e2πiαQ̂A |jj′⟩ = e2πiα(δj∈A+δj′∈A)|jj′⟩. (2.98)

It is possible to decompose ρA = TrĀ (|Ψ2⟩⟨Ψ2|) in a block-diagonal way as follows

ρA =
1

L

(
ρ
(1)
A + ρ

(2)
A + ρ

(3)
A

)
, (2.99)

where ρ
(1)
A is the two-particle contribution (both particles in A), ρ

(2)
A is the vacuum contribution

(no particles in A) and ρ
(3)
A is the one-particle contribution (one particle in A and one in Ā). The
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introduction of the flux gives rise to the following relation

ρnAe
2πiαQ̂A =

1

Ln

(
(ρ

(1)
A )ne4πiα +

(
ρ
(2)
A

)n
+
(
ρ
(3)
A

)n
e2πiα

)
. (2.100)

No approximation was made up to this point, but the explicit expressions of ρ
(j)
A , given in [114], are

cumbersome and not particularly enlightening for our purpose. However, one can show that in the

limit (2.1) and with p ̸= p′ kept fixed, TrA

(
(ρ

(j)
A )n

)
simplifies drastically, and the leading contributions

are:

TrA

(
(ρ

(1)
A )n

)
≃ Lnr2n, TrA

(
(ρ

(2)
A )n

)
≃ Ln(1− r)2n, TrA

(
(ρ

(3)
A )n

)
≃ 2Lnrn(1− r)n. (2.101)

Putting all the pieces together, one finally gets

TrA

(
ρnAe

2πiαQ̂A

)
≃ r2ne4πiα + 2rn(1− r)ne2πiα + (1− r)2n = (rne2πiα + (1− r)n)2. (2.102)

This computation shows that in this particular scaling limit the interaction between particles has

no effect on the final result, and the total charged moment is just a product of two single-particle

charged moments. A different result is obtained if p = p′ and fixed. In that case, the magnons are

indistinguishable and one can prove that

TrA

(
(ρ

(1)
A )n

)
≃ Lnr2n, TrA

(
(ρ

(2)
A )n

)
≃ Ln(1− r)2n, TrA

(
(ρ

(3)
A )n

)
≃ 2nLnrn(1− r)n, (2.103)

so that

TrA

(
ρnAe

2πiαQ̂A

)
≃ r2ne4πiα + 2nrn(1− r)ne2πiα + (1− r)2n, (2.104)

which no longer factorises into one-magnon contributions. Both results are special cases of (2.6) and

(2.7).

The results of this section generalise previous work for the excess entanglement entropy of excited

states [115] and are also related to the results of [150] where the entanglement of magnon states was

considered more generally. In particular, it was shown that for states consisting of several magnons,

entanglement will factorise into the contributions of groups of magnons which are well-separated from

each other in momentum space (that is, their momentum difference is of order O(1) rather than

O(1/L), as the length of the system grows). Such results also apply to the present case up to the

introduction of the appropriate phases.
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2.4.2 Twist operator approach

So far we have derived the behaviour of the charged moments of the SREE of quasiparticle excited

states making use of two different types of formalism: the form factor expansion in 1+1D (free) IQFTs

[1] and the analysis of qubit/magnon states on the lattice. Unfortunately, these techniques are suited

for a limited range of situations. Indeed, on the one hand, the description of the Rényi entropy as a

correlation function of branch-point twist fields inserted at different points is special of 1+1D QFT

[12, 20]. On the other hand, while the description of excited states as magnons or qubit states can

be generalised to higher dimensions, it has the disadvantage of not taking into account the zero-point

fluctuations. In this Section, we want to consider instead a generic QFT in higher dimensions. To

this aim we introduce a slightly different approach.

Despite the technical limitations outlined above we expect that, in the particular scaling limit we

are considering, the universal entanglement content of the symmetry-resolved Rényi entropy should

not depend on dimensionality, on the presence of interactions and even on the integrability of the

theory. The computation performed on interacting two-magnon states in the previous Subsection

partially supports this claim. Concerning theories in higher dimensions, at least one precedent for

this generalisation already exists. In a previous work [144], the excitations of the free massive boson

in D := d + 1 dimensions were analysed and their Rényi entropy was computed in terms of graph

partition functions. The results obtained therein agree with the formulae in [115], with r replaced by

the ratio of generalised volumes.

In this section we slightly generalise the formalism of [144] to take into account possible interactions

and provide, as a proof of concept, a simple calculation of symmetry-resolved entanglement of a

single-particle excited state. The key ingredients we need are the description of the excited states

as local operators acting on a vacuum state and a semi-local twist operator, which generalises the

composite branch-point twist field to higher dimensional settings. The only strong assumption we

make in our derivation is the presence of a finite mass gap m, with correlation length ξ = m−1 much

smaller than the typical lengths of the system.8

We anticipate here that our formulae (2.6)-(2.8) are unchanged in higher dimensional theories, up

to the identification

r =
VA
V
, (2.105)

which is the ratio between the (generalised) volumes of subsystem A and of the total system. It may

seem surprising that the results should only depend on r and not on other features of the entanglement

region, such as the connectivity and smoothness of its boundary. Indeed, the charged moments and

8The emergence of the universal entanglement content is also expected for some high-energy states in massless theories
(see [148, 150] for the analysis of the gapless XY chain). However, here we keep the assumption of a finite mass gap to
avoid technical complications.
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symmetry-resolved entropies of both the ground state and excited states depend on such properties, as

would finite-volume corrections to our results. However, our computations deliver results for the ratio

of charged moments in the infinite-volume limit, and it is this ratio in this limit which is universal

and independent of boundary features. This independence of boundary features has been analytically

shown for the ratio of (uncharged) moments in the case of one-dimensional disconnected regions, where

the same formulae as for one connected region were found to apply, with r the sum of the lengths of

all disconnected parts [116].

2.4.2.1 Excited states and operator algebra

Let us consider the vacuum state |0⟩ of a Hilbert spaceH, together with an algebraA of observables9

acting on H which has |0⟩ as a cyclic vector (see [167] for a modern review of this algebraic viewpoint

in QFT). This allows us to represent any state |Ψ⟩ of the Hilbert space as

|Ψ⟩ = O|0⟩ with O ∈ A. (2.106)

We would like to assume that the vacuum state is translationally invariant, namely that it is invariant

under a faithful representation of the translation group in d dimensions. However, since we consider

a finite-size system, we modify this requirement by defining the system on a d-dimensional torus M

of volume V and requiring that |0⟩ is invariant under the isometries of the torus. Other boundary

conditions can be considered too, but they do not change the picture in the scaling limit we are

interested in. We also require locality of the observables, asking that at any point x ∈ M, A is

generated by a set of fields {O(x)}.

We define the Fourier transform of the field O(x) as

O(p) =

∫
M

ddx e−ipxO(x), (2.107)

where we adopt the same symbol O in real and momentum space for notational convenience. The

Fourier-transformed fields are building blocks for the following set of translationally invariant states

O1(p1) . . .Ok(pk)|0⟩, (2.108)

which correspond to k particles distributed over M with momenta p1, . . . ,pk, and the choice of the

fields {Oj} depend on the particle species and quantum numbers. This construction is similar to the

usual way of generating particle states in free theories acting with creation operators on the vacuum

of a Fock space. However, the advantage of our formulation is that it is directly related to local

9In the case of a single real boson, A is just the algebra of operators generated by the field Φ(x) and its conjugated
momentum Π(x).
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observables, a property which is fundamental to correctly define entanglement measures.

Let us take a set of orthogonal fields {Oj}, so that the correlation function ⟨0|O†
i (x)Oj(x

′)|0⟩

vanishes for i ̸= j. In other words, the fusion rule

[O†
i ]× [Oj ] → [1], (2.109)

is present only if i = j and the Operator Product Expansion (OPE) can be expressed formally as

O†
i (x)Oj(x

′) ≃ δij⟨0|O†
i (x− x′)Oi(0)|0⟩+ . . . , (2.110)

where in the right-hand side we neglected contributions coming from operators less relevant than the

identity. The exact evaluation of the correlation function above can be hard, but the assumption of

a finite gap m ensures that the latter is exponentially damped for |x − x′| ≫ m−1. This is the only

property we really need in the following discussion.

We now consider a restriction of the modes O(p) with support in a subsystem only, that is a spacial

region A ⊆ M:

OA(p) =

∫
A
ddx e−ipxO(x). (2.111)

Given any two regions A, A′ ⊆ M, we can compute10 O†
A(−p)OA′(p′) by making use of some

approximations. First, we consider only the most relevant term in the fields OPE

O†
A(−p)OA′(p′) =

∫
A
ddx

∫
A′

ddx′eipx−ip′x′O†(x)O(x′)

≃
∫
A
ddx

∫
A′

ddx′eipx−ip′x′⟨0|O†(x)O(x′)|0⟩. (2.112)

Second, since we are working in the limit of small correlation length (compared to the geometry),

the leading contribution comes from the insertion of the fields at small distances, which is present if

x,x′ ∈ A ∩ A′; this observation motivates the change of variable x′′ = x′ − x, and the subsequent

approximation11

O†
A(−p)OA′(p′) ≃

∫
A∩A′

dx ei(p−p′)x

∫
M

dx′′ e−ip′x′′⟨0|O†(0)O(x′′)|0⟩. (2.113)

The second integral may be difficult to compute and in principle it could require a UV regularisation

10One should note that Hermitian conjugation and Fourier transform do not commute. Indeed, with our notation
O†

A(−p) = (OA(p))
†.

11To be more rigorous: in approximating the integration domain x ∈ A, x′ ∈ A′ with x, x′ ∈ A∩A′ we are neglecting
terms where at least one of the two variables, say x, lies outside of A ∩ A′. If the distance between x and A ∩ A′ is
smaller than the correlation length there is no exponential suppression, however, the integration over x produces a term
which grows with the area of the boundary ∂(A ∩ A′) and hence is subleading in the large-volume limit. On the other
hand, the integration domain of the variable x′′ depends in principle on the set A ∩ A′, and its approximation with M
is valid up to terms exponentially damped in the correlation length.
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for |x′′| < ϵ ≪ m−1. However, because the integration is over M, the result does not depend on

the regions A,A′ and in our computation this integral appears only as a multiplicative constant. In

conclusion, we end up with

O†
A(−p)OA′(p′) ∝ VA∩A′δp,p′ , (2.114)

where VA∩A′ is the volume of A∩A′. Equation (2.114) is the main result of this Subsection. Since the

volume in (2.114) emerges from the integrals (2.113), which involve a Fourier transform, we require

that subsystem A ∩ A′ consists of a finite number of disconnected regions, whose boundaries are

piecewise smooth.

It is natural to ask how the discussion above would be modified for a vanishing gap m = 0. The

main change is in the scaling of correlations functions: exponential localisation of the correlation

function in a region of typical length m−1 does not hold any longer, due to the long algebraic tails of

the correlation functions. We conjecture that, as long as the momenta are fixed in the infinite-volume

limit, the main conclusion (2.114) is unchanged. A qualitative argument is that in this case the inverse

momentum, say the De Broglie length, plays the role of typical length scale. In order to make this

consideration more precise, let us analyse Eq. (2.113) for a 1+1D CFT, where O is a field of conformal

dimension ∆O. We focus on the following integral

∫
M

dx e−ipx⟨0|O†(0)O(x)|0⟩, (2.115)

which we regulate both in the UV, with a cutoff ϵ, and in the IR, with a cutoff L, as follows

∫ L

ϵ
dx e−ipx 1

x4∆O
+ (c.c.). (2.116)

This integral can be explicitly computed. However, the important feature is that for ∆O > 0, p > 0

and ϵ > 0 all fixed, the integral converges to a finite value when L → +∞. This is no longer the

case if p ∼ 1/L in the infinite-volume limit. In practice, this means that for small momentum and

scaling dimension 0 < ∆O ≤ 1 the considerations we made so far regarding the scaling at large sizes

cannot be applied. As a matter of fact, for free CFTs the scaling dimensions of the fundamental fields

are smaller than 1: the fermionic field Ψ has dimension 1/2 while the derivative of a compact boson

∂xΦ has dimension 1. While these considerations are not mathematically rigorous in establishing

convergence of the OPE in the large-volume limit, they are sufficient to explain why low-energy states

of gapless theories, or multi-particle states with small momenta difference, are not well captured by

our predictions. Indeed, for such states the excess entanglement was computed in [154, 155], and the

results obtained therein are different from those of [114, 115].
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2.4.2.2 Replica construction for symmetry-resolved entanglement

Consider now a replica version of the theory, consisting of n copies of the latter. For any state |Ψ⟩

we denote its replicated version by |Ψ⟩n. Our goal is to define a U(1) composite twist operator which

generalises to higher dimensions the composite branch-point twist field defined in [19]. We construct

this operator in such a way that its expectation value over |Ψ⟩n gives exactly the charged moments

Zn(α), allowing for the computation of symmetry-resolved Rényi entropies in higher dimensional

QFTs. This type of operator was already considered in the literature, mostly without the flux insertion

(see for example [144, 168–170]). However, the novelty of our approach consists in establishing the

relation between the twist operator and the algebra of local operators.

The first point we have to clarify regards the symmetry and its action on the space of fields.

Starting from e2πiαQ, the global generator of U(1) symmetry in the non-replicated theory, we say that

O(x) has charge κO if

e2πiαQ̂O(x)e−2πiαQ̂ = e2πiακOO(x). (2.117)

Since one can decompose the space of fields in irreducible representations of U(1), we restrict our

analysis to charged fields. Going back to the replicated theory, we define the algebra of replicated

observables An as the algebra generated by the tensor product of n observables in A. Thus, to any

field O(x) ∈ A, we associate Oj(x) ∈ An defined as

Oj(x) = 1⊗ · · · ⊗ 1⊗O(x)⊗ 1 · · · 1, (2.118)

where O(x) is inserted in the jth replica. By requiring orthogonality of local fields in different copies,

the momentum space OPE (2.114) generalises to:

Oi,†
A (−p)Oj

A′(p
′) ∝ VA∩A′δp,p′δi,j . (2.119)

Consider now a spacial region A ⊂ M and its complement Ā. We define a composite twist operator

Tα
A which implements the structure of the n-sheeted, cyclically connected, Riemann surface where

the replica theory is defined. That is, Tα
A implements the “gluing”of the replicas along A with an

additional flux insertion due to the action of the U(1) symmetry. The commutation relations of Tα
A

with any charged field Oj(x) generalise in an obvious way those of a standard CBPTF:

Tα
AOj(x) =


e2πiκOαδj,nOj+1(x)Tα

A x ∈ A,

Oj(x)Tα
A x ∈ Ā.

(2.120)

Here, the flux is inserted only between the nth and the first replica, but other choices are possible.

We emphasize that a similar definition has already appeared in the context of 1+1D integrable QFTs
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(see [105–108] ). In particular, for A = [0, ℓ] one can identify

Tα
A = T α

n (0)T̃ α
n (ℓ), (2.121)

and the commutation relations for Tα
A can be obtained from those of the CBPTF and of its Hermitian

conjugate. However, such a representation in terms of the usual CBPTFs of one-dimensional theories

is in general not possible in higher dimensions. Regarding the definition of the twist operator Tα
A ,

it is worth mentioning also that in QFT it is known[171, 172] that the twist operators are not local

observables of the algebra An. Rather, they are observables of the orbifolded algebra An/Zn, which

is obtained by taking the coset of An over the cyclic symmetry of replicas.

We are now ready to relate the twist operator to the symmetry-resolved entanglement. The charged

moments of |Ψ⟩ are given by

ZΨ
n (α) =

n⟨Ψ|Tα
A |Ψ⟩n

n⟨Ψ|Ψ⟩n
. (2.122)

The above definition, together with the commutation relations (2.120) and the momentum space OPE

(2.119), is enough to obtain the explicit expression for the ratio of charged moments between the state

|Ψ⟩ and the ground state, as defined in (2.5). We now show how these ideas come together with a

simple example.

2.4.2.3 Single-particle state

In this Section, we consider an excited state |Ψ⟩ consisting of a single quasiparticle with momentum

p generated by a charged field O. Its explicit expression is given by

|Ψ⟩ = O(p)|0⟩, (2.123)

and the replicated version is just

|Ψ⟩n = O1(p) . . .On(p)|0⟩n. (2.124)

For the sake of convenience, we split the observable

Oj(p) = Oj
A(p) +Oj

Ā
(p), (2.125)

so that its commutation relations with Tα
A become more transparent. Indeed, using (2.120) one can

write

Tα
A |Ψ⟩n = Tα

A(O1
A(p) +O1

Ā(p)) . . . (O
n
A(p) +On

Ā(p))|0⟩
n =

(O2
A(p) +O1

Ā(p)) . . . (O
1
A(p)e

2πiακO +On
Ā(p))T

α
A |0⟩n.

(2.126)

54



Michele Mazzoni

Up to now, everything is exact. However, to compute the expectation value n⟨Ψ|Tα
A |Ψ⟩n we make use

of the OPE contraction (2.119). Among all the terms which are generated, all but two are vanishing

and they give

n⟨Ψ|Tα
A |Ψ⟩n ≃ e2πiακO n⟨0|(O†)nA(−p) . . . (O†)1A(−p)O2

A(p) . . .On
A(p)O1

A(p)T
α
A |0⟩n

+n⟨0|(O†)nĀ(−p) . . . (O†)1Ā(−p)O1
Ā(p)O

2
Ā(p) . . .O

n
Ā(p)T

α
A |0⟩n

∝
(
e2πiακOV n

A + (V − VA)
n
) n⟨0|Tα

A |0⟩n
n⟨0|0⟩n

.

(2.127)

To evaluate the first of the two terms we needed to commute the local observable before applying the

OPE contraction, but the commutators always produce terms which are subleading in the volume, as

it is obvious e.g. from the inspection of the free theory. Similarly, we can evaluate the norm n⟨Ψ|Ψ⟩n

which does not require the splitting of Oj(p)

n⟨Ψ|Ψ⟩n = n⟨0|(O†)n(−p)(O†)1(−p)O1(p) . . .On(p)|0⟩n ∝ V n. (2.128)

In the evaluation of the ratio
n⟨Ψ|Tα

A |Ψ⟩n
n⟨Ψ|Ψ⟩n

, (2.129)

the proportionality constant (which is non-universal and could be absorbed in a redefinition of the

field) cancels out, and one can write

n⟨Ψ|Tα
A |Ψ⟩n

n⟨Ψ|Ψ⟩n
≃
(
e2πiακOrn + (1− r)n

) n⟨0|Tα
A |0⟩n

n⟨0|0⟩n
(2.130)

with r = VA
V . In the expression above the term in brackets is universal, while the term factored out

is not universal and it is the nth charged moment of the ground state. Therefore, as anticipated, the

ratio of charged moments is given by:

MΨ
n (r, α) =

n⟨Ψ|Tα
A |Ψ⟩n

n⟨Ψ|Ψ⟩n
n⟨0|0⟩n

n⟨0|Tα
A |0⟩n

≃ e2πiακOrn + (1− r)n. (2.131)

Results for multi-particle states can be obtained in a similar fashion.

In conclusion, the striking simplicity of these results relies on the truncation of the OPE in (2.110),

which is expected to become exact in the limit mdV ≫ 1. We expect that for finite mdV further

contributions in the OPE can be recast as a (possibly non-integer) power series in (mdV )−1, which

generalises the explicit (mL)−1 power expansion that is obtained for 1+1D free theories using form

factor techniques (see Appendix 2.C). In massless theories, we instead expect corrections as a power

series in (|p|dV )−1. The explicit evaluation of these non-universal corrections, as well as the treatment

of possible divergences in the power series, are all beyond the purpose of this Thesis.
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2.5 Numerical results

In this section we present numerical results for two very different discrete models. First we consider

a 1D lattice Fermi gas, which has a gapless phase but it also possesses highly excited states whose

entanglement is well described by our formulae, and then we look at the harmonic chain, which

becomes a U(1) massive free boson in the scaling limit. While for the first model we can only consider

distinct excitations, for the second we consider also identical excitations. The treatment of the complex

harmonic chain is based on a generalisation of the wave-functional method as presented in [115] which

we derive in detail. The good agreement with the theoretical predictions confirms the picture already

put forward for the total entropy in [114], i.e. that our formulae hold under the broad assumption of

localised excitations.

2.5.1 1D lattice Fermi gas

In this subsection we analyse a particle-hole excited state of a 1D lattice Fermi gas, comparing

our analytical predictions with the numerical data. Even though the model is critical, it was realised

in [147] that certain highly energetic quasiparticle excitations still have a universal entanglement

content. More precisely, if one considers a set of quasiparticles with small enough De Broglie

wavelengths (compared to the typical geometric lengths) and sufficiently separated momenta, then

these quasiparticles will be essentially uncorrelated with each other and with respect to zero-point

fluctuations. We refer to [145–150] for further details about the universal entanglement content of

quasiparticles in critical systems.

Our goal here is to briefly review the numerical techniques involved in the characterisation of

fermionic Gaussian states [173] and their application to the computation of symmetry-resolved

measures. We start by considering the Hamiltonian of free spinless fermions on a circle of length L

H = −1

2

∑
j

f †j+1fj + f †j fj+1 + µ
∑
j

f †j fj , (2.132)

where µ is the chemical potential and {fj}j=1,...,L , {f †j }j=1,...,L are the ladder operators obeying the

standard anticommutation relations

{fj , fj′} = {f †j , f
†
j′} = 0, {fj , f †j′} = δjj′ . (2.133)

When |µ| < 1 the theory is gapless, as can be seen by moving to momentum space, where the

Hamiltonian is diagonal:

H =
L−1∑
q=0

[
µ− cos

(
2πq

L

)]
f̃ †q f̃q, (2.134)
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and the ground state is a Fermi sea with Fermi momentum kF = arccos(µ). The two-point function

evaluated in the ground state at Fermi momentum kF takes the following form [174, 175]:

C0(j, j
′) := ⟨f †j fj′⟩0 =

sin kF (j − j′)

L sin π(j−j′)
L

. (2.135)

Here, we analyse the quasiparticle excited state described by the two-point function

C(j, j′) = C0(j, j
′) +

1

L
e−i(kF+π

4
− π

L
)(j−j′) − 1

L
e−i(kF−π

4
+ π

L
)(j−j′), (2.136)

which corresponds to the insertion of a fermion of momentum k = kF + π
4 − π

L above the ground

state and the removal of another fermion (or equivalently, the insertion of a hole) at k = kF − π
4 + π

L .

The choice of the momentum shift is not important in the continuum limit, where the only necessary

condition is that |k − kF | remains finite when L → ∞ 12. We now have to specify the symmetry of

the model. The Hamiltonian (2.132) is invariant under an internal U(1) symmetry associated to the

number of fermions, generated by the operator

Q̂ =
∑
j

f †j fj , (2.137)

which satisfies the locality condition Q̂ = Q̂A + Q̂Ā, with

Q̂A =
∑
j∈A

f †j fj , Q̂Ā =
∑
j∈Ā

f †j fj . (2.138)

As done in Section 2.4.1, the subsystems A and Ā are defined by the sets of fermion sites A = {1, . . . , ℓ},

Ā = {ℓ + 1, . . . , L}. We denote by CA
0 and CA the ℓ × ℓ matrices resulting from projection of the

matrices C0 and C (defined by equations (2.135) and (2.136) respectively) onto subsystem A, so that

the indices j, j′ ∈ A. Following [104] we express the charged moments of the particle-hole state and

the ground state by means of the determinants

TrA(ρ
n
Ae

2πiαQ̂A) = det
(
(CA)ne2πiα + (1− CA)n

)
, (2.139)

TrA(ρ
n
A,0e

2πiαQ̂A) = det
(
(CA

0 )
ne2πiα + (1− CA

0 )
n
)
, (2.140)

with ρA and ρA,0 the RDMs of the two states. According to our analytical predictions, because the

fermion and the hole are distinguishable quasiparticles with opposite charges ±1, we expect the ratio

12In the work [104] a particle-hole state satisfying |k − kF | ∼ 1/L was considered. Unlike the present case, the
entanglement measures of such a low-lying state is captured by CFT predictions, due to the strong correlation effects
between the particle/hole and the zero-point fluctuations.
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of charged moment to take the universal form

TrA(ρ
n
Ae

2πiαQ̂A)

TrA(ρnA,0e
2πiαQ̂A)

≃ (rne2πiα + (1− r)n)(rne−2πiα + (1− r)n), (2.141)

where the equality only holds in the scaling limit of the lattice model, with r = ℓ/L fixed.

To test the validity of Eq. (2.141) we consider two entanglement measures, namely the excess of

(total) Rényi entropy and the so-called (following the terminology of [104]) “excess of variance”. The

excess of entropy is recovered from our formulae for α = 0, and for two distinct excitations it takes

the simple form

∆Sn =
1

1− n
log

TrA(ρ
n
A)

TrA(ρnA,0)
≃ log (rn + (1− r)n)2

1− n
. (2.142)

We define the variance13 associated to ρA as

⟨∆Q̂2
A⟩n :=

TrA(ρ
n
AQ̂

2
A)

TrA(ρnA)
−

(
TrA(ρ

n
AQ̂A)

TrA(ρnA)

)2

=
1

(2πi)2
d2

dα2
log

TrA(ρ
n
Ae

2πiαQ̂A)

TrA(ρnA)

∣∣∣∣∣
α=0

. (2.143)

Similarly, we denote by ⟨∆Q̂2
A⟩n,0 the variance of the ground state ρA,0. From (2.141) it follows that

the excess of variance is given by

⟨∆Q̂2
A⟩n − ⟨∆Q̂2

A⟩n,0 ≃
2rn(1− r)n

(rn + (1− r)n)2
. (2.144)

A way to physically interpret the result (2.144) is to regard this excess of variance as twice the

contribution associated to a single quasiparticle, since particles and antiparticles contribute in the

same way. The latter is just the variance of a Bernoulli random variable with success probability

given by

p =
rn

rn + (1− r)n
, (2.145)

namely the probability one associates to the presence of a quasiparticle in A computed with the density

matrix ρnA. Since the variance of a Bernoulli variable with probability p is just p(1− p), one gets Eq.

(2.144).

In Fig. 2.2 we report our analytical predictions and the numerical values of ∆Sn and ⟨∆Q̂2
A⟩n −

⟨∆Q̂2
A⟩n,0, computed from (2.139) and (2.140) using exact diagonalisation of the correlation matrices

CA, CA,0. We keep L fixed, analysing different values of r = ℓ/L. Our choice is motivated by the

expectation that these plots should be “universal”at large L, meaning that data obtained with different

values L should collapse to the same universal prediction (independent of lattice details such as the

value of kF ) when L → ∞. As we see from the plots of both measures, the match between numerics

13The choice of this terminology comes from the fact that for n = 1 this measure reproduces the physical variance of
the charge in the state ρA.
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Figure 2.2 Numerical data versus analytical prediction for the particle-hole excited state described
by the correlation function (2.136). Here, kF = π/2, L = 200 and we considered the first values of n
for r = ℓ/L ∈ [0, 1]. Left: Excess Rényi entropy checked against Eq. (2.142). Right: Excess variance,
checked against Eq. (2.144). The numerical results are in very good agreement with the analytical
formulae.

and analytics is really good.

2.5.2 Complex free boson and 1D harmonic chain

In this section we consider a complex massive free boson. Unlike the 1D Fermi gas, this model and

its lattice version allow us to test formulae for states containing two or more identical excitations. Our

numerical computation is based on the wave-functional method introduced in [115] (see Appendix A of

that paper). Here we need to extend the technique to a complex theory and to the symmetry-resolved

moments. These extensions are not entirely trivial and for that reason we review the wave-functional

method in detail.

Let us consider a 1D complex massive boson on the line [0, L] with Hamiltonian:

H =

∫ L

0
dx
(
Π†Π+ (∂xΦ)

†(∂xΦ) +m2Φ†Φ
)
, (2.146)

where

Π(x) = Φ̇†(x), Π†(x) = Φ̇(x). (2.147)

Alternatively, one can introduce a pair of real bosons Φ1,Φ2, and express Φ and Π as

Φ =
Φ1 + iΦ2√

2
, Π =

Π1 + iΠ2√
2

, (2.148)

so that the Hamiltonian becomes that of two real bosons. The only non-vanishing equal-time

commutators are:

[Φ(x),Π(y)] = [Φ†(x),Π†(y)] = iδ(x− y). (2.149)
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Since space is compact, there are discrete energy levels with dispersion relation:

Ep =
√
m2 + p2, p ∈ 2π

L
Z, (2.150)

and the Hamiltonian is diagonalised via the introduction of two sets of creation/annihilation operators.

The annihilation operators are:

Ap =
1√
2LEp

∫ L

0
dxe−ipx(EpΦ(x) + iΠ†(x)), (2.151)

Bp =
1√
2LEp

∫ L

0
dxe−ipx(EpΦ

†(x) + iΠ(x)). (2.152)

and as usual A†
p (B†

p resp.) creates from the a positively (negatively) U(1)-charged particle with

momentum p from the vacuum. These operators satisfy:

[Ap, A
†
p′ ] = [Bp, B

†
p′ ] = δp,p′ . (2.153)

Φ(x), Π(x) then admit the usual Fourier decomposition

Φ(x) =
∑
p

1√
2LEp

(
Ape

ipx +B†
pe

−ipx
)
, (2.154)

Π(x) = −i
∑
p

√
Ep

2L

(
Bpe

ipx −A†
pe

−ipx
)
. (2.155)

Finally, the charge operator corresponding to the U(1) symmetry of the theory is:

Q = i

∫ L

0
dx :

(
Φ†(x)Π†(x)− Φ(x)Π(x)

)
: =
∑
p

(A†
pAp −B†

pBp), (2.156)

where : O : denotes the usual normal ordering of O.

2.5.2.1 The wave-functional method

A very useful way to represent the states in the theory is provided by the wave-functional formalism.

In this approach, we associate to every state a functional Ψ acting on the space of classical field

configurations ϕ, ϕ† : [0, L] → C and formally defined by:

Ψ[ϕ, ϕ†] = ⟨ϕ, ϕ†|Ψ⟩. (2.157)

This definition resembles that of the wave function ψ(x) = ⟨x|ψ⟩ in non-relativistic quantum

mechanics, and the action of the operators Φ, Π on the state |ϕ, ϕ†⟩ mimics that of the position and
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momentum operators on the state |x⟩:

Φ(x)Ψ[ϕ, ϕ†] = ϕ(x)Ψ[ϕ, ϕ†], iΠ(x)Ψ[ϕ, ϕ†] =
δΨ[ϕ, ϕ†]

δϕ(x)
, (2.158)

and analogously

Φ†(x)Ψ[ϕ, ϕ†] = ϕ†(x)Ψ[ϕ, ϕ†], iΠ†(x)Ψ[ϕ, ϕ†] =
δΨ[ϕ, ϕ†]

δϕ†(x)
. (2.159)

Notice that, for consistency, when iΠ, iΠ† act on a ket |ϕ, ϕ†⟩ there is a minus sign in front of the

functional derivative. The vacuum state functional is defined by:

ApΨvac = BpΨvac = 0 ∀ p ∈ 2π

L
Z, (2.160)

and the only solution to these functional differential equations up to normalisation is the Gaussian

functional:

Ψvac[ϕ, ϕ
†] = exp

[
−
∫ L

0
dx

∫ L

0
dy ϕ†(x)K(x− y)ϕ(y)

]
, K(x− y) =

1

L

∑
p

Epe
ip(x−y). (2.161)

Notice that K(x) is a real and even function of x. The functionals of the positively and negatively

charged one-particle states are obtained through the action of A†
p and B†

p:

A†
pΨvac = αp[ϕ

†]Ψvac, αp[ϕ
†] =

√
2Ep

L

∫ L

0
dx eipxϕ†(x), (2.162)

B†
pΨvac = βp[ϕ]Ψvac, βp[ϕ] =

√
2Ep

L

∫ L

0
dx eipxϕ(x), (2.163)

and the functional of a state with k+ positive excitations and k− negative excitations (all with different

momenta) is:

Ψk+,k−

{pi,qj}[ϕ, ϕ
†] =

k+∏
i=1

A†
pi

k−∏
j=1

B†
qjΨvac[ϕ, ϕ

†] =

k+∏
i=1

αpi [ϕ
†]

k−∏
j=1

βqj [ϕ]Ψvac[ϕ, ϕ
†]. (2.164)

A correct choice of the normalisation in (2.161) ensures that the functional above has unit norm with

respect to the bra-ket product. It is then immediate to construct the functionals of multi-particle

states with identical excitations. If there are k+i (k−i ) positively (negatively) charged particles with

momentum pi (qi), for i = 1, . . . ,m+ (m−) we define:

Ψ
{k+i ,k−j }
{pi,qj} [ϕ, ϕ†] =

m+∏
i=1

(A†
pi)

k+i√
k+i !

m−∏
j=1

(B†
qj )

k−j√
k−j !

Ψvac[ϕ, ϕ
†]. (2.165)
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The action of the charge operator on a wave-functional immediately follows from that of the fields:

QΨ[ϕ, ϕ†] =

∫ L

0
dx

(
ϕ†(x)

δ

δϕ†(x)
− ϕ(x)

δ

δϕ(x)

)
Ψ[ϕ, ϕ†], (2.166)

and in particular one finds that the vacuum functional and the functionals of multi-particle states are

charge eigenstates:

QΨvac = 0 , QΨk+,k−

{pi,qj} = (k+ − k−)Ψk+,k−

{pi,qj}. (2.167)

However, because |ϕ, ϕ†⟩ is not associated to any charged state in the Fock space, it is not a charge

eigenstate. The exponential of the charge operator acts on |ϕ, ϕ†⟩ by introducing phases (notice the

minus sign in front of the integral):

e2πiαQ|ϕ, ϕ†⟩ = exp

[
−2πiα

∫ L

0
dx

(
ϕ†(x)

δ

δϕ†(x)
− ϕ(x)

δ

δϕ(x)

)]
|ϕ, ϕ†⟩ = |e2πiαϕ, e−2πiαϕ†⟩.

(2.168)

Employing these results it is possible to show (see Appendix 2.D for the derivation) that

TrA(ρ
n
0,Ae

2πiαQA) =

∫
Dϕ1Dϕ†1 . . .DϕnDϕ

†
n exp [−Gα] , (2.169)

where Gα is a known Gaussian functional of the fields ϕ(x), ϕ†(x) given in (2.248). Results for the

harmonic chain can then be obtained by discretisation, as we see in the next Subsection.

2.5.2.2 The harmonic chain

Since the Hamiltonian (2.146) reduces to the sum of two Hamiltonians for the real bosons Φ1,

Φ2 with prefactors 1
2 , the discretisation proceeds exactly as for the real boson [115]. We divide the

interval [0, L] in N parts by introducing a spacing:

∆x =
L

N
, (2.170)

and we define x = L
N x̄, x̄ ∈ {0, 1, . . . , N − 1}, so that we can replace every integral with a sum:

∫
A∪Ā

dx → L

N

L−∆x∑
x=0

,

∫
A
dx → L

N

ℓ−∆x∑
x=0

,

∫
Ā
dx → L

N

L−∆x∑
x=ℓ

. (2.171)

If we discretise the Laplace operator as:

∂2xΦ(x) → Φ(x+∆x) + Φ(x−∆x)− 2Φ(x)

(∆x)2
, (2.172)

and impose periodic boundary conditions Φ(0) = Φ(L), Φ†(0) = Φ†(L), the Hamiltonian (2.146)

reduces (after integration by parts) to two independent harmonic chains for real fields. The set of
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momenta is now restricted to the first Brillouin zone, p = 2π
L p̄, p̄ ∈ {0, 1, . . . , N−1}, and the dispersion

relation becomes:

Ep =

√
m2 +

(
2N

L
sin

pL

2N

)2

, (2.173)

from which the relativistic relation E2
p = m2 + p2 is obtained when pL

2N ≪ 1. Notice that since we

restrict the set of momenta, the function K(x) defined in (2.161) becomes a finite sum:

K(x) =
1

L

2π(N−1)/L∑
p=0

Epe
ipx, (2.174)

thus it is no longer an even function of x, though the property K∗(x) = K(−x) still holds.

For the sake of simplicity we will take Φ and Φ† to be the fundamental degrees of freedom in

the following, while keeping in mind that the real degrees of freedom are recovered using (2.148). In

the formula (2.251) the functions U±
i , V ±

i are modified by simply replacing the integrals with sums

following the prescription (2.171). On the other hand, discretisation of the measure Gα leads to a

finite-dimensional (nN)× (nN) matrix G which couples the fields ϕ†i (x) and ϕj(y):

Gα =

(
L

N

)2 n∑
i=1

2
 ∑

x∈A,y ∈A

+
∑

x∈ Ā,y ∈ Ā

ϕ†i (x)K(x− y)ϕi(y)

+
∑

x∈A,y ∈ Ā

(
ϕ†i (x) + ϕ†i+1(x)e

−2πiαδi,n
)
K(x− y)ϕi(y)

+
∑

x∈ Ā,y ∈A

ϕ†i (x)K(x− y)
(
ϕi(y) + ϕi+1(y)e

2πiαδi,n
) =:

n∑
i,j=1

L∑
x,y=0

ϕ†i (x)Gix,jyϕj(y), (2.175)

where we explicitly wrote the complex conjugate in (2.248) before discretising the integrals. Wick’s

theorem ensures that the Gaussian average in (2.251) can be computed from the contractions of pairs

of fields, which are in turn obtained via the inversion of the matrix G:

ϕi(x)
†ϕj(y) = (G−1)ix,jy. (2.176)

The matrix G has a block structure, consisting of n2 blocks Gi·,j·, each of which is an N ×N matrix.

From the above expression we see that the only non-vanishing blocks are either in the diagonal Gi·,i·

or just off the diagonal, Gi·,(i±1)·. Each block G admits a sub-block structure in terms of the matrices

KQ1Q2 , Q1, Q2 ∈ {A, Ā}, whose elements are:

(KQ1Q2)xy =

(
L

N

)2

K(x− y), x ∈ Q1, y ∈ Q2. (2.177)

Notice that KAA is a square matrix with dimensions ℓ
LN × ℓ

LN , KAĀ has dimensions ℓ
LN × L−ℓ

L N
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and so on. From (2.175) we obtain the following basic structures:

• Diagonal blocks Gi·,i·

 ∑
x∈A,y ∈A

+
∑

x∈ Ā,y ∈ Ā

+
∑

x∈A,y ∈ Ā

+
∑

x∈ Ā,y ∈A

ϕ†i (x)Gix,iyϕi(y)

=

(
L

N

)2

2 ∑
x∈A
y ∈A

ϕ†i (x)K(x− y)ϕi(y) + 2
∑
x∈ Ā
y ∈ Ā

ϕ†i (x)K(x− y)ϕi(y)

+
∑

x∈A,y ∈ Ā

ϕ†i (x)K(x− y)ϕi(y) +
∑

x∈ Ā,y ∈A

ϕ†i (x)K(x− y)ϕi(y)


⇒ Gi·,i· =

2KAA KAĀ

KĀA 2KĀĀ

 .

• Off-diagonal blocks Gi·,(i+1)·

∑
x∈ Ā,y ∈A

ϕ†i (x)Gix,(i+1)yϕi+1(y) =

(
L

N

)2 ∑
x∈ Ā,y ∈A

ϕ†i (x)K(x− y)ϕi+1(y)e
2πiαδi,n

⇒ Gi·,(i+1)· =

 0 0

KĀAe
2πiαδi,n 0

 .

• Off-diagonal blocks G(i+1)·,i·

∑
x∈A,y ∈ Ā

ϕ†i+1(x)G(i+1)x,iyϕi(y) =

(
L

N

)2 ∑
x∈A,y ∈ Ā

ϕ†i+1(x)K(x− y)ϕi(y)e
−2πiαδi,n

⇒ G(i+1)·,i· =

0 KAĀe
−2πiαδi,n

0 0

 .

Note that the block structure is different from that in [115] because the roles of regions A and Ā are

now exchanged. Although this exchange has no effect on the form of the entanglement entropy, for

the SREE it makes a difference as the symmetry between A, Ā is broken when we choose to place the

charge in subsystem A.

In terms of the N ×N blocks above, we can schematically write the matrix G as follows:
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1 2 n− 1 n︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A Ā A Ā A Ā A Ā︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

1


A

{
2KAA KAĀ 0 0

· · ·
0 0 0 λ∗αKAĀ

Ā

{
KĀA 2KĀĀ KĀA 0 0 0 0 0

2


A

{
0 KAĀ 2KAA KAĀ

· · ·
0 0 0 0

Ā

{
0 0 KĀA 2KĀĀ 0 0 0 0

...
...

. . .
...

...

n− 1


A

{
0 0 0 0

· · ·
2KAA KAĀ 0 0

Ā

{
0 0 0 0 KĀA 2KĀĀ KĀA 0

n


A

{
0 0 0 0

· · ·
0 KAĀ 2KAA KAĀ

Ā

{
λαKĀA 0 0 0 0 0 KĀA 2KĀĀ

where we introduced λα = e2πiα.

2.5.2.3 Numerical results

In Appendix 2.D we have explicitly derived the ratio of charged moments for excited states. We

thus have all the ingredients needed to obtain numerical results. Let us take a bi-partition where A is

a segment made of NA ≤ N consecutive sites, with NA/N = r and analyse the behaviour of MΨ
n (r;α).

In Fig. 2.3 we compare results for two kinds of two-particle excited states: those of particles with

identical charges and either distinct or equal momenta p1 and p2. Our analytical predictions for

Mn(r;α) are

M1+1+

n (r;α) = (rne2iπα + (1− r)n)2, p1 ̸= p2,

M2+

n (r;α) = r2ne4πiα + 2n(1− r)nrne2πiα + (1− r)2n, p1 = p2. (2.178)

In our numerics we have chosen L = N = 30, so that the lattice spacing L/N = 1. We also fix

the mass scale to m = 0.1, which corresponds to a typical correlation length of ξ = m−1 = 10 sites.

Finally we choose either p1 = p2 = π or p1 = π and p2 =
2π
5 , both in units of the lattice spacing.

Similarly, Fig. 2.4, we consider the following three-particle excited states: a state of three equal

momenta, that is p1 = p2 = p3, a state of two equal momenta among the three, that is p1 = p2 ̸=
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Figure 2.3 Charged moments of two-particle excited states in the 1D harmonic chain

Numerical data (triangles) versus analytical predictions (dashed lines) for M1+1+
2 (r;α) (top row) and

M2+
2 (r;α) (bottom row). We consider n = 2, system size L = 30 with m = 0.1. The left/right panels

in each row show the real/imaginary part of the function. In both rows we take values of the flux
α = 0, 0.1, . . . 0.5. For the numerics of the top row figures we use momenta p1 = π, p2 = 2π/5 whereas
for the bottom row we take equal momenta p1 = p2 = π.

p3, and a state with three distinct momenta, that is p1, p2, p3 distinct. In this case the analytical

predictions are

M3+

n (r;α) = r3ne6iπα + 3nr2n(1− r)ne4iπα + 3nrn(1− r)2ne2iπα + (1− r)3n, p1 = p2 = p3, (2.179)

and

M2+1+

n (r;α) =M2+

n (r;α)(rne2iπα + (1− r)n), p1 = p2 ̸= p3, (2.180)

M1+1+1+

n (r;α) = (rne2iπα + (1− r)n)3, p1 ̸= p2 ̸= p3. (2.181)

The set of momenta is p1 = p2 = p3 = π for the first excited state, p1 = p2 = π, p3 = π/3 for the

second state, and p1 = π, p2 = π/3, p3 = π/5 for the third one.

In all our figures we chose non-negative values of α. Given the formulae above, taking α < 0 is

equivalent to complex conjugation with α positive, so the figures for negative α are identical except

for a change of sign in the imaginary part of all functions. We have also considered the value α = 0 (in
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Figure 2.4 Numerical data (triangles) versus analytical predictions (dashed lines) for M3+
2 (r;α) (top

row), M2+1+
2 (r;α) (central row), and M1+1+1+

2 (r;α) (bottom row). We consider n = 2, system size
L = 30 with m = 0.1. The left/right panels in each row show the real/imaginary part of the function.
In each rows we take values of the flux α = 0, 0.1, . . . 0.5. For the numerics of the top row figures we
use momenta p1 = p2 = p3 = π, for the central row p1 = p2 = π, p3 = π/3, whereas for the bottom
row we take p1 = π, p2 = π/3, p3 = π/5.

green) which is the limit where there is no flux. As expected, in this case our formulae recover those

for the excess Rényi Entropies in [114, 115], which are symmetric in r and have vanishing imaginary

part. Despite the fact that the correlation length is not particularly small with respect to the system

size L (ξ = m−1 = L
3 ), we took highly energetic states (momenta being fixed in the large-volume limit)

and we thus expect our predictions to remain valid.

In both Fig. 2.3 and 2.4, we plot the numerical data (triangles) against analytical predictions
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((2.178) and (2.181)) as functions of r fixing n = 2 for several values of α between 0 and 1
2 , which

correspond to flux ±1, respectively. At these two points, the ratio becomes purely real. The figures

show excellent agreement between numerical data and analytical predictions.

2.6 Concluding remarks

In this chapter we have computed the symmetry-resolved entanglement entropy and its moments

for zero-density excited states. These are excited states consisting of a finite number of excitations

above the ground state in a scaling limit where both the volume of the system and the volume of each

subsystem are taken to infinity, keeping their ratio constant.

It is known from previous work [114–116, 144–150] that the difference between the entanglement

entropy of the excited state and that of the ground state, also known as excess entropy, takes an

extremely simple and universal form for non-interacting 1+1D QFTs and also for certain highly

excited states of CFT [104]. Since this excess of entanglement represents the extra contribution

to entanglement of an excited state above a non-trivially entangled ground state, the same extra

contribution is obtained when the ground state is trivial. For this reason both a free QFT and

a qubit picture lead to the same results, even if the underlying theories are extremely different.

Finally, it has also been shown that the results extend to free bosons in any dimension [116] and

more generally they are expected to hold in any situations where excitations are localised. Here, we

extended the work summarised above to the computation of excess symmetry-resolved Rényi entropies

and entanglement entropies in excited states of theories possessing a U(1) symmetry. The ratio of

charged moments between the excited and ground states takes the same universal form in the 1+1D

massive Dirac fermion and 1+1D complex free boson. By employing the form factor program for

composite branch-point twist fields, we computed the ratio of charged moments and from the latter

we obtained exact expressions for the SREE of the excited states. Interestingly, these expressions can

be written solely in terms of the SREE and symmetry-resolved partition function of the ground state.

As we expected, the results obtained in free 1+1D QFTs are recovered using the qubit picture also in

the symmetry-resolved case.

The greatest novelty of the work presented in this chapter consists in showing that our results, i.e.

the formulae for the excess of SREE, apply much more broadly than the form factor computation would

suggest: namely, they apply to any localised excitations of interacting and higher dimensional theories

with U(1) symmetry as long as the correlation length is much smaller than the typical subsystem size.

As a first, simple example we considered one- and two-magnon states of quantum spin chains, with

and without interaction. Their entanglement entropies can be computed analytically via free fermion

techniques and we showed that, irrespective of interaction, the formulae presented in Section 2.1 still
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apply, in line with observations made in [115, 150]. Furthermore, we proposed a general method to

compute the charged moments of zero-density excited states of QFTs in higher dimensions with or

without interactions. Our method is based on the notion of algebra of local observables of a theory,

and on the commutation relations between composite twist operators -generalisations of CBPTFs to

higher dimensions- and the local observables. The formulae already obtained for free 1+1D theories

can then be derived in full generality by making few natural assumptions on the OPE of observables

in the theory and on the correlation length of the latter.

Finally, we performed numerical tests of our results. For this, we considered a 1D Fermi gas

and a complex harmonic chain. Although both the models are discrete and amenable to numerical

computations, their microscopic features are quite different. Whereas the 1D Fermi gas is a fermionic

theory which possesses a gapless phase, the complex harmonic chain is a gapped theory which becomes

the complex massive free boson in continuous limit. It is therefore quite remarkable that the same

set of formulae for the ratios of charged moments apply for both theories. This is nonetheless the

case. Whereas for the 1D Fermi gas our formulae hold for highly excited states containing excitations

of large momenta, thus small De Broglie wavelengths, for the complex harmonic charge the formulae

hold as long as the correlation length is small compared to subsystem size.

In the following chapter, we will extend our investigation of zero-density excited states to another

symmetry-resolved measure of entanglement, the logarithmic negativity [23, 116, 136]. In the

conclusion of that chapter, we will also discuss some research directions that naturally emerge from

our work.

2.A Complex free boson computation

In this appendix we present the form factor computation of the ratio of charged moments in detail,

focusing on the complex free boson theory.

2.A.1 Single-particle excited states

The two-point function in (2.29) can be computed by inserting a sum over a complete set of states

between the U(1) fields as follows:

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL =

∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

m+∏
j=1

m−∏
r=1

1

m+!m−!

×n
p,L⟨0|[ap (θ)]N

+
p Tp+α(0)a

†
p(θ

+
j )b

†
p(θ

−
r )|0⟩np,L × n

p,L⟨0|ap(θ+j )bp(θ
−
r )T−p−α(ℓ) [a

†
p(θ)]

M+
p |0⟩np,L ,

(2.182)

69



CHAPTER 2. SYMMETRY-RESOLVED ENTROPY OF EXCITED STATES

and similarly for the |1−⟩nL case. As shown in [115] following [159, 160], the finite-volume matrix

elements involved in the expression above differ from the corresponding infinite-volume form factors

for a term O(e−µL), with µ a characteristic mass scale, in this case µ = m. Thus, we can rewrite the

previous expression up to exponentially decaying corrections as

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL =

∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

1

m+!m−!
(2.183)

× e
iℓ
(∑m+

j=1 P (θ+j )+
∑m−

r=1 P (θ−r )−M+
p P (θ)

)
√
LE(θ)

N+
p +M+

p ∏m+

j=1 LE(θ+j )
∏m−

r=1 LE(θ−r )
F p+α,n

N+
p +m++m−(θ

+
1 . . . θ

+
m+ , θ̂, . . . θ̂, θ

−
1 . . . θ

−
m−)

×Fn−p−α,n

M+
p +m++m−(θ . . . θ, θ̂

−
1 . . . θ̂

−
m− , θ̂

+
1 . . . θ̂

+
m+),

being θ̂±j = θ±j + iπ, and E(θ), P (θ) are the one-particle energy and momentum. The momenta

are quantised according to the usual Bethe-Yang condition or to equation (2.31) for the intermediate

rapidities θ±j . The complete formula for the form factors above was given in [115] and they can

be fully expressed as sums of products of two-particle form factors. They are non-vanishing for

N+
p =M+

p = m+ −m− and zero otherwise.

If the same intermediate rapidity θ+j is paired up (in the Wick-contraction sense) with the rapidity

of the excited state θ from the in- an out-states, the dominant contribution in the form factor product

will come from kinematic poles. In other words, if θ+j ≃ θ two-particle form factors will appear as

follows:

F p+α,n

N+
p +m++m−(θ

+
1 . . . θ

+
m+ , θ̂ . . . θ̂, . . . ) ≃ N+

p f
n
p+α(θ

+
j − θ̂)

×F p+α,n

N+
p +m++m−−2

(θ+1 . . . θ
+
j−1θ

+
j+1 . . . θ

+
m+ , θ̂ . . . θ̂ . . . )

Fn−p−α,n

M+
p +m++m−(θ . . . θ, . . . θ̂

+
1 . . . θ̂

+
m+) ≃M+

p f
n
n−(p+α)(θ̂ − θ+j )

×Fn−p−α,n

M+
p +m++m−−2

(θ . . . θ, . . . θ̂+1 . . . θ̂
+
j−1θ̂

+
j+1 . . . θ̂

+
m+),

where the number of rapidities θ̂ (θ) in the arguments of the form factors in the right-hand side are

now N+
p − 1 (M+

p − 1). The main property of the matrix elements in (2.182) in determining the final

formula for (2.29) is the infinite-volume limit of the terms such as

∑
J+∈Z

fnp+α(θ
+ − θ̂)fnn−p−α(θ − θ̂+)eiℓ(P (θ+)−P (θ))

cosh θ cosh θ+
≃

(mL)2
∑
J+
i ∈Z

sin2 π(p+α)
n

π2
e2πir(J

+−I+ p+α
n

)

(J+ − I + p+α
n )2

= (mL)2gnp+α(r), (2.184)

with gnp+α(r) the functions defined in (2.41) and the indices J+, I are integers resulting from the

quantisation conditions of the rapidities of intermediate states (2.31) and of the rapidity of the
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physical one-particle state respectively. We can proceed in an analogous way for (2.30) obtaining

(mL)2gn−(p+α)(r) as the leading contribution.

Once all possible contractions with a rapidity of the excited in- and out- state have been carried

out, the leading large-volume contribution from the summation over the quantum number J+ is of

order O(L0) and comes from terms with N =M , as shown in Appendix B of [115]. This contribution

reads

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL =

∑
{N+}

|An({N+})|2
n∏

p=1

N+
p !
[
gnp+α(r)

]N+
p

∞∏
q+=0

∞∏
m−=0

1

q+!m−!

∑
{J±}∈Z

× e
iℓ

(∑q+

j=1 P (θ+j )+
∑m−

r=1 P (θ−r )

)
∏q+

j=1 L
2E(θ+j )

∏m−

r=1 L
2E(θ−r )

F p,n
q++m−(θ

+
1 . . . θ

+
q+
, θ−1 . . . θ

−
m−)F

n−p,n
q++m−(θ̂

+
1 . . . θ̂

+
q+
, θ̂−1 . . . θ̂

−
m−)

with q+ = m+ −N+
p . Dividing by the finite-volume vacuum two-point function:

n∏
p=1

n
p,L⟨0|Tp+α(0)T−p−α(ℓ)|0⟩np,L,

we obtain the formula (2.40) for the ratio of moments of the SREE for a one excitation state. We

stress that the approximations made in considering the leading contributions become exact if the

large-volume limit (2.1) is taken while keeping the mass m fixed.

2.A.2 Free boson (k = 1,n = 2)

In this Section we work out an example in detail. Consider a single particle excited state consisting

of a complex boson excitation above the ground state. The relevant state is

(a+1 )
†(θ)(a+2 )

†(θ)|0⟩2L =
1

2
(−a†1(θ) + a

†
2(θ))(a

†
1(θ) + a

†
2(θ))|0⟩

2
L, (2.185)

and comparing this expression to (2.27) we obtain A2(2, 0) = −A2(0, 2) = −1
2 . Thus

M1+

n (r;α) =
2!

4
(g21+α(r)

2 + g22+α(r)
2)

=
1

2

(
1− r + reπi(1+α)

)2
+

1

2

(
1− r + reπi(2+α)

)2
=

1

2
((1− r)2 + r2e2πiα − 2r(1− r)eiπα + (1− r)2 + r2e2πiα + 2r(1− r)eiπα)

= (1− r)2 + e2πiαr2. (2.186)
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2.A.3 Multi-particle excited states

Below, we describe in detail the computation of the ratio of moments of the SREE for a state

consisting of k particle excitations with equal rapidities and charge signs. These states have the form:

|k±⟩nL =
n∏

j=1

(a±j )
†(θ)|0⟩nL =

1

(
√
k!)n

∑
{N±}

Dn({N±})
n∏

p=1

[(
ã±p
)†

(θ)
]N±

p

|0⟩nL, (2.187)

where in the second equality we used the expression of the creation operators in the diagonal basis

(2.25), with the convenient notation (ã+p )
† = a†p, (ã−p )

† = b†p. After inserting a the resolution of the

identity between the twist fields, the two-point function reads:

n
L⟨k±|T α(0)T̃ α(ℓ)|k±⟩nL =

1

(k!)n

∑
{N±}

∑
{M±}

Dn({N+}) D∗
n({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

m+∏
j=1

m−∏
r=1

1

m+!m−!

×n
p,L⟨0|[ã±p (θ)]N

±
p Tp+α(0)a

†
p(θ

+
j )b

†
p(θ

−
r )|0⟩np,L n

p,L⟨0|ap(θ+j )bp(θ
−
r )T−p−α(ℓ) [(ã

±
p )

†(θ)]M
±
p |0⟩np,L ,

(2.188)

Employing the relation between these matrix elements and the finite-volume form factors, together

with the action of the translation operator, we get:

n
L⟨k±|T α(0)T̃ α(ℓ)|k±⟩nL =

1

(k!)n

∑
{N+}

∑
{M+}

Dn({N+}) D∗
n({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

1

m+!m−!

× e
iℓ
(∑m+

j=1 P (θ+j )+
∑m−

r=1 P (θ−r )−M±
p P (θ)

)
√
LE(θ)

N±
p +M±

p ∏m+

j=1 LE(θ+j )
∏m−

r=1 LE(θ−r )
Fn,p

N±
p +m++m−(θ

+
1 . . . θ

+
m+ , θ̂, . . . θ̂, θ

−
1 . . . θ

−
m−)

×Fn−p,n

M+
p +m++m−(θ . . . θ, θ̂

−
1 . . . θ̂

−
m− , θ̂

+
1 . . . θ̂

+
m+).

Once all possible intermediate rapidities have been paired up with the same rapidity of the excited

state in both form factors and the contribution of the ground state has been factored, the leading

large-volume contribution of the ratio of moments can be written as:

Mk±
n (r;α) =

1

(k!)n

∑
{N±}

|Dn({N±})|2
n∏

p=1

N±
p !
(
gn±(p+α)(r)

)N±
p

=
k∑

p=0

 k

p

 rp(1− r)k−p

n

e±2πiαp. (2.189)

On the other hand, if the k-particle excitations have distinct rapidities there can be two different cases:

• k-particle excitations with distinct rapidities but equal charge sign

• k-particle excitations with distinct rapidities and charge sign
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We can summarize the computations for both cases if we consider the following ansatz for the excited

state:

|1ϵ1 1ϵ2 . . . 1ϵk⟩nL =
k∏

i=1

n∏
j=1

(aϵij )
†(θi)|0⟩nL =

∑
{N±}

Cn({N±})
k∏

s=1

n∏
p=1

[a†p(θs)]
N+

p,s [b†p(θs)]
N−

p,s |0⟩nL, (2.190)

where each ϵi with i = 1, . . . , k can be either + or −. If we consider k-particle excitations with distinct

rapidities but equal charge sign + (−) then all the ϵi are the same sign and N−
p,s (N+

p,s) vanish. When

pairing up the intermediate rapidities with the same rapidity of the excited state in both form factors,

the conditions for the matrix elements to be non vanishing are:

N−
p,s +m+ = N+

p,s +m−,

m− +M+
p,s = m+ +M−

p,s.

Subtracting the contribution of the ground state, the leading large-volume contribution to the ratio

of moments can be written as:

M1ϵ1 1ϵ2 ...1ϵk
n (r;α) =

k∏
s=1

∑
{N±}

|Cn({N±})|2
n∏

p=1

N+
p,s! N

−
p,s! [g

n
p+α(r)]

N+
p,s [gn−p−α(r)]

N−
p,s

 . (2.191)

Notice that if we study k-particle excitations with distinct rapidities but equal charge sign, the above

expression reduces to:

M1± 1±...1±
n (r;α) =

k∏
s=1

∑
{N±}

|Cn({N±})|2
n∏

p=1

N±
p,s! [g

n
±(p+α)(r)]

N±
p,s

 , (2.192)

with the conditions m∓ +M±
p,s = m± = N±

p,s +m∓ for the ± sign state.

2.A.4 Free boson (k = 2,n = 2)

As an example, consider the following two-particle excited states with distinct rapidities:

|1+1+⟩2L = (a+1 )
†(θ1)(a

+
1 )

†(θ2)(a
+
2 )

†(θ1)(a
+
2 )

†(θ2)|0⟩2L =
1

4

(
[a†1(θ1)]

2 [a†1(θ2)]
2

+ [a†2(θ1)]
2 [a†2(θ2)]

2 − [a†1(θ2)]
2 [a†2(θ1)]

2 − [a†1(θ1)]
2 [a†2(θ2)]

2
)
|0⟩2L, (2.193)

|1+1−⟩2L = (a+1 )
†(θ1)(a

−
1 )

†(θ2)(a
+
2 )

†(θ1)(a
−
2 )

†(θ2)|0⟩2L =
1

4

(
[a†1(θ1)]

2 [b†1(θ2)]
2

+ [a†2(θ1)]
2 [b†2(θ2)]

2 − [a†2(θ1)]
2 [b†1(θ2)]

2 − [a†1(θ1)]
2 [b†2(θ2)]

2
)
|0⟩2L. (2.194)
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The charged ratios for these excited states are given by

M1+1+

2 (r;α) =
1

4

(
[g21+α(r)]

4 + [g22+α(r)]
4 + 2 [g21+α(r)]

2 [g22+α(r)]
2)
)

=
(
(1− r)2 + r2e2πiα

)2
, (2.195)

M1+1−
2 (r;α) =

1

4

(
[g21+α(r)]

2 [g2−1−α(r)]
2 + [g22+α(r)]

2 [g2−2−α(r)]
2 + [g21+α(r)]

2 [g2−2−α(r)]
2

+
[
g2−1−α(r)]

2 [g22+α(r)]
2
)
=
(
(1− r)2 + r2e2πiα

) (
(1− r)2 + r2e−2πiα

)
. (2.196)

On the other hand, if we consider ta two-particle excited state with coinciding rapidities:

|2−⟩2L = [(a−1 )
†(θ)]2 [(a−2 )

†(θ)]2|0⟩2L

=
1

8

(
[b†1(θ)]

4 + [b†2(θ)]
4 − 2[b†1(θ)]

2 [b†2(θ)]
2
)
|0⟩2L, (2.197)

the charged moment is

M2−
2 (r;α) =

1

82
(4! [g2−1−α(r)]

4 + 4! [g2−2−α(r)]
4 + 42 [g2−1−α(r)]

2 [g2−2−α(r)]
2)

= (1− r)4 + 4 r2(1− r)2e−2πiα + e−4πiαr4. (2.198)

2.B Complex free fermion computation

In this appendix we present the form factor computation of the ratio of charged moments in detail,

focusing on the complex free fermion theory.

2.B.1 Single-particle excited states

Below, we present the explicit computation of the fermionic two-point function in an excited state

consisting of a single positively-charged particle. Thanks to the factorisation (2.22), the latter can be

cast as:

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL

=

n−1
2∏

p=−n−1
2

n
p,L⟨0|ap (θ) Tp+α(0) T−p−α(ℓ) a

†
p(θ) |0⟩np,L

=

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

1

s!(s+ 1)!
n
p,L⟨0|ap (θ) Tp+α(0) a

†
p(θ1) . . . a

†
p(θs+1)b

†
p(θs+2) . . . b

†
p(θ2s+1)|0⟩np,L

× n
p,L⟨0|ap (θ1) . . . ap(θs+1)bp(θs+2) . . . bp(θ2s+1)T−p−α(0) a

†
p(θ)|0⟩np,Leiℓ(

∑2s+1
i=1 P (θi)−P (θ))

=

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

|F p+α,n
2s+2 (θ1, . . . , θs+1; θ + iπ, θs+2, . . . , θ2s+1)|2

s!(s+ 1)!LE(θ)
∏2s+1

i=1 (θi)LE(θi)
eiℓ(

∑2s+1
i=1 P (θi)−P (θ)), (2.199)

74



Michele Mazzoni

where the resolution of the identity is inserted in such a way as to preserve the total charge of the

one-particle state and the Bethe quantum numbers {J±
i } are defined as in (2.31). Notice that since

the excitations are fermionic, one could either have J±
i ∈ Z or J±

i ∈ Z + 1
2 : for the sake of simplicity,

we consider the case where these numbers are integer, as this assumption does not make a difference

in the final result.

The non-vanishing contributions in the large-volume limit come from the terms in the previous

expression in which the rapidity of the excited state is contracted with θi, i = 1, . . . , s + 1 in both

form factors. The s+ 1 possible contractions in F p+α,n
2s+2 give rise to:

F p+α,n
2s+2 (θ1, . . . , θs+1; θ̂, θs+2, . . . , θ2s+1)

≃ fnp+α(θi − θ̂)F p+α,n
2s (θ1, . . . , θ̌i, . . . , θs+1; θs+2, . . . , θ2s+1), (2.200)

where around the pole:

fnp+α(θi − θ̂) ≃
θ≃θi

mL sin π(p+α)
n cosh θ e

iπ(p+α)
n

π(J+
i − I + p+α

n )
. (2.201)

Thus, considering also the contraction coming from the form factor of T−p−α, we can separately

perform the s+ 1 summations over the quantum numbers J+
i as

∑
J+
i ∈Z

|fnp+α(θi − θ̂)|2eiℓ(P (θi)−P (θ))

Lm cosh θ Lm cosh θi

≃
θ≃θi

∑
J+
i ∈Z

sin2 π(p+α)
n e2πir(J

+
i −I+ p+α

n )

π2(J+
i − I + p+α

n )2
= gnp+α(r). (2.202)

We therefore obtain, in the limit (2.1) and for fixed m:

n
L⟨1+|T α(0)T̃ α(ℓ)|1+⟩nL

=

n−1
2∏

p=−n−1
2

gnp+α(r)

∞∑
s=0

1

(s!)2

∑
{J±

i }

|F p+α,n
2s (θ1, . . . , θs;β1, . . . , βs)|2

eiℓ
∑s

i=1(P (θi)+P (βi))∏s
i=1 LE(θi)LE(βi)

=

n−1
2∏

p=−n−1
2

gnp+α(r) × n
p,L⟨0|T α(0)T̃ α(ℓ)|0⟩np,L, (2.203)

where we re-labeled the rapidities of the negatively charged intermediate states as βi = θs+i+1 for

i = 1, . . . , s. We can now make use of (2.53) in the evaluation of the ratio, so that we finally obtain
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for the free fermionic one-particle states:

M1+

n (r;α) =

n−1
2∏

p=−n−1
2

gnp+α(r) = (1− r)n + e2πiαrn. (2.204)

An analogous result can be obtained for a negatively charged particle, where the phase above picks

up an extra minus sign.

2.B.2 Multi-particle excited states

The anticommuting nature of the creation/annihilation operators allows us to obtain an exact

expression for the ratio of the charged moments in the fermionic case, which (unlike for the free boson)

does not require a case-by-case calculation. This is because in the free fermion case, the structure

of the states in the transformed base is extremely simple, as we shall see. We have non-vanishing

two-point functions only with two kind of states:

• k-particle excitations with distinct rapidities, irrespective of the charge signs;

• 2-particle excitations with equal rapidities and different charge signs: |1+1−⟩nL.

Below, we consider in detail the case of k-particle states with distinct rapidities. Such states are

written exactly as in the bosonic case:

|1ϵ1 1ϵ2 . . . 1ϵk⟩nL =

k∏
i=1

n∏
j=1

(aϵij )
†(θi)|0⟩nL, (2.205)

where ϵi = ±1, θi ̸= θi′ if i ̸= i′. Unlike the bosonic case, however, all the operators anticommute, so

that we can make the ansatz:

|1ϵ1 1ϵ2 . . . 1ϵk⟩nL = eiκ

n−1
2∏

p=−n−1
2

k∏
i=1

(aϵip )
†(θi)|0⟩nL, (2.206)

with the identification (a+p )
†(θi) = a

†
p(θi), (a

−
p )

†(θi) = b
†
p(θi) and the only unspecified parameter is the

phase κ = κ(k, n; {ϵi}). Notice that the order of the operators in the double product can be arbitrarily

altered, resulting only in a change in the phase. Without giving a full proof of the validity of this

formula, let us consider a few simple cases and introduce the notations k± to indicate the number of

positively/negatively charged excitations in the state, with k = k+ + k−:

• n = 2, k+ = 2:

76



Michele Mazzoni

|1+1+⟩2L =

2∏
i=1

2∏
j=1

1√
2

1
2∑

p=− 1
2

e−
2πijp

2 a
†
p(θi)|0⟩2L

=
1

4

2∏
i=1

(ia†− 1
2

(θi)− ia†1
2

(θi))(−a†− 1
2

(θi)− a†1
2

(θi))|0⟩2L

=
1

4

2∏
i=1

(−2ia†− 1
2

(θi)a
†
1
2

(θi))|0⟩2L = −

1
2∏

p=− 1
2

2∏
i=1

a
†
p(θi)|0⟩2L

• n = 2, k+ = 2, k− = 1:

|1+1+1−⟩2L =

 2∏
i=1

2∏
j=1

1√
2

1
2∑

p=− 1
2

e−
2πijp

2 a
†
p(θi)

 2∏
j=1

1√
2

1
2∑

p=− 1
2

e
2πijp

2 b
†
p(θ3)|0⟩2L

=

(
1

4

2∏
i=1

(−2ia†− 1
2

(θi)a
†
1
2

(θi))

)
1

2
(2ib†− 1

2

(θ3)b
†
1
2

(θ3))|0⟩2L

= −i

1
2∏

p=− 1
2

(
2∏

i=1

a
†
p(θi)

)
b
†
p(θ3)|0⟩2L

• n = 3, k+ = 2:

|1+1+⟩3L =

2∏
i=1

3∏
j=1

1√
3

1∑
p=−1

e−
2πijp

3 a
†
p(θi)|0⟩3L

=
2∏

i=1

1

3
3
2

(
e

2πi
3 a

†
−1(θi) + a

†
0(θi) + e−

2πi
3 a

†
1(θi)

)
×
(
e

4πi
3 a

†
−1(θi) + a

†
0(θi) + e−

4πi
3 a

†
1(θi)

)
(a†−1(θi) + a

†
0(θi) + a

†
1(θi))|0⟩

3
L

= −
1∏

p=−1

2∏
i=1

a
†
p(θi)|0⟩3L.

For a fixed value of n, the structure of more complicated states can be easily worked out following

these simple examples. Using equation (2.206) and the twist field factorisation (2.22), the two-point
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function reads:

n
L⟨1ϵ1 1ϵ2 . . . 1ϵk |T α(0)T̃ α(ℓ)|1ϵ1 1ϵ2 . . . 1ϵk⟩nL

=

n−1
2∏

p=−n−1
2

n
p,L⟨0|ap(θ1) . . . ap(θk+)bp(β1) . . . bp(βk−)Tp+α(0)T−p−α(ℓ)a

†
p(θ1) . . . a

†
p(θk+)b

†
p(β1) . . . b

†
p(βk−)|0⟩np,L

=

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

1

s!(s+ q)!
e
iℓ
(∑q+s

i=1 P (θ̃i)+
∑s

i=1 P (β̃i)−
∑k+

i=1 P (θi)−
∑k−

i=1 P (βi)
)

× n
p,L⟨0|ap(θ1) . . . ap(θ+k )bp(β1) . . . bp(βk−)Tp+α(0)a

†
p(θ̃1) . . . a

†
p(θ̃q+s)b

†
p(β̃1) . . . a

†
p(β̃s)|0⟩np,L

× n
p,L⟨0|ap(θ̃1) . . . ap(θ̃q+s)bp(β̃1) . . . bp(β̃s)T−p−α(0)a

†
p(θ1) . . . a

†
p(θk+)b

†
p(β1) . . . b

†
p(βk−)|0⟩np,L. (2.207)

In the expansion above we assumed the total charge of the excited state to be positive, q := k+−k− > 0.

However, the computation steps are unchanged if one assumes q < 0, the only difference being in the

structure of the resolution of the identity. Denoting x̂ := x + iπ, the infinite-volume form factor

corresponding to the first matrix element reads:

F p+α,n
q+2s+k(θ̃1, . . . , θ̃q+s, β̂1, . . . , β̂k− ; β̃1, . . . , β̃s, θ̂1, . . . , θ̂k+), (2.208)

where the total charge conservation is ensured by the equality q + s+ k− = s+ k+. When turning to

the finite-volume, one needs to divide the previous infinite-volume form factor by a quantity:

q+s∏
i=1

LE(θ̃i)

k−∏
i=1

LE(βi)

s∏
i=1

LE(β̃i)

k+∏
i=1

LE(θi)

 1
2

. (2.209)

Taking into account also the contribution coming from the other form factor, this results into a factor

of order O(L−q−2s−k) for every term in the expansion (2.207), and the latter reads:

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

1

s!(s+ q)!
e
iℓ
(∑q+s

i=1 P (θ̃i)+
∑s

i=1 P (β̃i)−
∑k+

i=1 P (θi)−
∑k−

i=1 P (βi)
)

×
|F p+α,n

q+2s+k(θ̃1, . . . , θ̃q+s, β̂1, . . . , β̂k− ; β̃1, . . . , β̃s, θ̂1, . . . , θ̂k+)|2∏q+s
i=1 LE(θ̃i)

∏k−

i=1 LE(βi)
∏s

i=1 LE(β̃i)
∏k+

i=1 LE(θi)
. (2.210)

In the large-volume limit, the leading contributions are those coming from simultaneous contractions

in both form factors. In turn, in each form factor the simple poles arise from the pairings of the

rapidities θ̂i with θ̃i (these are at most k+ contractions) and from the pairings of the rapidities β̂i with

β̃i (these are at most k− contractions). Again, these pairings have to be made simultaneously. The

terms with s < k− (or equivalently q + s < k+) do not contribute in this limit, as they contain some

extra factors of L in the denominator. On the other hand, the terms with s > k− contain a sum of
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k+!k−! products of the form:

|fnp+α(θ̃i − θ̂j)f
n
p+α(β̂i′ − β̃j′)|2 × residual form factors.

By making use of (2.201), the simultaneous expansion around the poles leads to the following leading

contribution:

∑
J+
i ,J−

j′

|fnp+α(θ̃i − θ̂j)f
n
p+α(β̂i′ − β̃j′)|2

cosh θ̃i cosh θi coshβi′ cosh β̃j′
eiℓ[P (θ̃i)−P (θj)+P (β̃j′ )−P (βi′ )]

≃ (mL)4
∑
J+
i ∈Z

sin2 π(p+α)
n

π2
e2πir(J

+
i −Ij+

p+α
n

)

(J+
i − Ij +

p+α
n )2

∑
J−
j′∈Z

sin2 π(p+α)
n

π2
e
2πir(J−

j′−Ii′−
p+α
n

)

(J−
j′ − Ii′ − p+α

n )2

= (mL)4gnp+α(r)g
n
−p−α(r). (2.211)

Since each of the k+!k−! terms in the sum contains exactly k+ functions gnp+α and k− functions gn−p−α

we have, relabelling m = s− k−:

n
L⟨1ϵ1 1ϵ2 . . . 1ϵk |T α(0)T̃ α(ℓ)|1ϵ1 1ϵ2 . . . 1ϵk⟩nL

=

n−1
2∏

p=−n−1
2

∞∑
m=0

∑
{J±

i }

1

(m!)2
(gnp+α(r))

k+(gn−p−α(r))
k−

×eiℓ
∑m

i=1(P (θ̃i)+P (β̃i))
|F p+α,n

2m (θ̃1, . . . , θ̃m; β̃1, . . . , β̃m)|2∏m
i=1 LE(θ̃i)LE(β̃i)

=

 n−1
2∏

p=−n−1
2

gnp+α(r)


k+ n−1

2∏
p=−n−1

2

gn−p−α(r)


k−

n
L⟨0|T α(0)T̃ α(ℓ)|0⟩nL, (2.212)

and therefore, thanks to (2.22), the ratio of charged moments is:

M1±1±...1±
n (r;α) = ((1− r)n + e2πiαrn)k

+
((1− r)n + e−2πiαrn)k

−
. (2.213)

2.C Finite-volume two-point function in the ground state

In this appendix we investigate the large-volume expansion of the correlator

n
L⟨0|T α(0)T̃ α(r L)|0⟩nL, (2.214)

which is the denominator of the ratio of charged moments MΨ
n (r;α) in (2.18). We show that, as

expected, the leading contribution in the limit (2.1) is given by the squared modulus of the vacuum

expectation value of the composite twist field T α, and we compute the first finite-volume corrections
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to this quantity. The calculations are carried out in the fermionic case, but they apply to the free

boson case with few changes.

The first step in the evaluation of (2.214) is as usual the insertion of a projection onto asymptotic

states:

n
L⟨0|T α(0)T̃ α(ℓ)|0⟩nL =

n−1
2∏

p=−n−1
2

n
p,L⟨0|Tp+α(0) T−p−α(ℓ) |0⟩np,L

=

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

1

(s!)2
n
p,L⟨0|Tp+α(0) a

†
p(θ1) . . . a

†
p(θs)b

†
p(β1) . . . b

†
p(βs)|0⟩np,L

× n
p,L⟨0|ap (θ1) . . . ap(θs)bp(β1) . . . bp(βs)T−p−α(0)|0⟩np,Leiℓ

∑s
i=1(P (θi)+P (βi))

=

n−1
2∏

p=−n−1
2

∞∑
s=0

∑
{J±

i }

|F p+α,n
2s (θ1, . . . , θs;β1, . . . , βs)|2

(s!)2
∏s

i=1 L
2E(θi)E(βi)

eiℓ
∑s

i=1(P (θi)+P (βi)). (2.215)

Notice that the equal number of particles of the two types is dictated by the fact that twist fields

preserve the total charge of the state. In a free fermion theory, the infinite-volume form factor of an

even number of particle is given by Wick’s theorem:

F p+α,n
2s (θ1, . . . , θs;β1, . . . , βs) =

∑
σ∈Ps

τp+α sgnσ
s∏

i=1

fnp+α(θσ(i) − βi), (2.216)

where the normalised fermionic two-particle form factor is obtained diving (2.45) by the VEV τp+α.

Thus, the squared modulus of the 2s-particle form factor is a sum of (s!)2 terms, each of which is a

product of s terms of the type

fnp+α(θi − βj)f
n
p+α(θk − βj)

∗ = sin2
π(p+ α)

n

e
p+α
n

(θi+θk−2βj)

cosh
θi−βj

2 cosh
θk−βj

2

. (2.217)

We can therefore explicitly rewrite (2.215) as:

n
L⟨0|T α(0)T̃ α(ℓ)|0⟩nL =

n−1
2∏

p=−n−1
2

|τp+α|2
∞∑
s=0

sin2s π(p+α)
n

(s!)2(mL)2s

∑
{J±

i }

∑
σ,ω∈Ps

sgnσ sgnω

×
s∏

i=1

eiℓ(P (θi)+P (βi))

cosh θi coshβi

e
p+α
n

(θσ(i)+θω(i)−2βi)

cosh
θσ(i)−βi

2 cosh
θω(i)−βi

2

. (2.218)

From this expression we easily see that the vacuum expectation value is corrected by contributions of

multi-particle states, and that in general every 2s-particle state (containing s particles with positive

charge and s particles with negative charge) contributes with a leading large-volume term O((mL)−2s).

Further corrections can be obtained by working out how the product in the second line of (2.218)
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depends on L. This is done by solving the Bethe equations for sinh θi and sinh βi:

sinh θi =
2π
(
J+
i + p+α

n

)
mL

:=
c+i
mL

, (2.219)

sinhβi =
2π
(
J−
i − p+α

n

)
mL

:=
c−i
mL

. (2.220)

Where either J+
i , J

−
i ∈ Z or J+

i , J
−
i ∈ Z + 1

2 . Let us consider in detail the expansion up to s = 1

terms, assuming that J+
1 , J

−
1 ∈ Z. Some elementary algebra shows that:

e2(θ1−β1)
p+α
n

cosh2 θ1−β1

2

= 1 + 2

(
p+ α

n

)
c+1 − c−1
mL

+O
(

1

(mL)2

)
(2.221)

and:
eiℓ(P (θ1)+P (β1))

cosh θ1 coshβ1
= e2πir(J

+
1 +J−

1 )

(
1− (c+1 )

2 + (c−1 )
2

2(mL)2
+O

(
1

(mL)4

))
. (2.222)

Thus we have:

n
L⟨0|T α(0)T̃ α(ℓ)|0⟩nL =

n−1
2∏

p=−n−1
2

|τp+α|2
1 + sin2 π(p+α)

n

(mL)2

∑
J+
1 ,J−

1 ∈Z

e2πir(J
+
1 +J−

1 )

(
1 + 2

(
p+ α

n

)
c+1 − c−1
mL

+O
(

1

(mL)2

)) .
(2.223)

We immediately notice that there is no contribution of order O((mL)−2), as we can regularise the non

convergent double sum by introducing two small real parameters ε, δ:

∑
J+
1 ,J−

1 ∈Z

e2πir(J
+
1 +J−

1 )

= lim
ε→0
δ→0

−1 +
∑
J≥0

e2πiJ(r+iε) +
∑
J≥0

e−2πiJ(r−iε)

−1 +
∑
J≥0

e2πiJ(r+iδ) +
∑
J≥0

e−2πiJ(r−iδ)

 = 0.

(2.224)

The term of order O((mL)−3) can similarly be regularised to zero. Therefore, the first finite-volume

correction to the ratio of moments of the SREE is (at least) of order O((mL)−4). However, at that

order the computation becomes more involved as there are contributions coming from terms with

s > 1 in (2.218).
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2.D Trace calculations via wave-functional method

In this appendix we present explicit calculations of the ratio of charged moments for excited states

in a complex free boson theory using the wave-functional method introduced in Section 2.5.2. The

discretisation of these results leads to the formulae for the complex harmonic chain presented in

Subsection 2.5.2.2.

2.D.1 Zero flux

We wish to compute the ratio of charged moments

TrA
(
ρnA e

2πiαQA
)

TrA

(
ρn0,A e

2πiαQA

) , (2.225)

where ρA and ρ0,A are the reduced density matrices of the excited and ground states, respectively.

We define restricted wave-functionals which take as arguments (complex) fields that either have

support on region A := [0, ℓ) or on Ā := [ℓ, L]. Leaving the dependence on the conjugate fields ϕ†

implicit, we write:

Φ(x)Ψ[ϕA, ϕ
′
Ā] =

(
δx∈Aϕ(x) + δx∈ Āϕ

′(x)
)
Ψ[ϕA, ϕ

′
Ā], (2.226)

iΠ(x)Ψ[ϕA, ϕ
′
Ā] =

(
δx∈A

δ

δϕ(x)
+ δx∈ Ā

δ

δϕ′(x)

)
Ψ[ϕA, ϕ

′
Ā], (2.227)

and similarly for the action of Φ†(x), iΠ†(x). The action of the charge operator Q̂A on the

wave-functional is simply:

Q̂AΨ[ϕA, ϕ
′
Ā] =

∫
A
dx

(
ϕ†(x)

δ

δϕ†(x)
− ϕ(x)

δ

δϕ(x)

)
Ψ[ϕA, ϕ

′
Ā], (2.228)

while from (2.168) it follows that

e2πiαQ̂A |ϕA, ϕ′Ā⟩ = |e2πiαϕA, ϕ′Ā⟩. (2.229)

The reduced density matrix then admits the functional representation

ρA = TrĀρ =

∫
DϕĀ⟨ϕĀ|ρ|ϕĀ⟩ ⇒ ⟨ϕ′A|ρA|ϕ′′A⟩ =

∫
DϕĀΨ[ϕ′A, ϕĀ]Ψ[ϕ′′A, ϕĀ]

∗, (2.230)

where Dϕ is shorthand for DϕDϕ†.

We start with the simple case where there is no symmetry resolution, that is, we compute (2.225)
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for α = 0, following [115]. For n integer, we insert the resolution of the identity n times and obtain:

TrA(ρ
n
0,A) =

∫
Dϕ1A . . .DϕnA⟨ϕ1A|ρvac,A|ϕ2A⟩ . . . ⟨ϕnA|ρvac,A|ϕ1A⟩

=

∫
Dϕ1 . . .Dϕn

n∏
i=1

Ψvac[ϕi,A, ϕi,Ā]
n∏

i=1

Ψvac[ϕi+1,A, ϕi,Ā]
∗. (2.231)

The product of the diagonal terms, i.e. those in which the fields in subsystems A and Ā are in the

same copy, is

n∏
i=1

Ψvac[ϕi,A, ϕi,Ā] = exp

[
−

n∑
i=1

∫
x,y∈A∪Ā

dxdy ϕ†i (x)K(x− y)ϕi(y)

]
, (2.232)

with K(x) defined in (2.161). For the non-diagonal terms we notice that since K(x)∗ = K(−x) we

have Ψvac[ϕi+1,A, ϕi,Ā]
∗ = Ψvac[ϕi+1,A, ϕi,Ā] and:

n∏
i=1

Ψvac[ϕi+1,A, ϕi,Ā] = exp

{
−

n∑
i=1

[∫
x∈A
y ∈A

dxdy ϕ†i+1(x)K(x− y)ϕi+1(y) (2.233)

+

∫
x∈ Ā
y ∈ Ā

dxdy ϕ†i (x)K(x− y)ϕi(y) +

∫
x∈A
y ∈ Ā

dxdy ϕ†i+1(x)K(x− y)ϕi(y) + c.c.

 . (2.234)

Putting all the terms together, we end up with the Gaussian measure:

TrA(ρ
n
0,A) =

∫
Dϕ1 . . .Dϕn exp [−G] , (2.235)

where

G =
n∑

i=1

2

∫
x∈A
y ∈A

+

∫
x∈ Ā
y ∈ Ā

 dxdy ϕ†i (x)K(x− y)ϕi(y)

+

n∑
i=1

∫
x∈A
y ∈ Ā

dxdy (ϕi(x) + ϕi+1(x))
†K(x− y)ϕi(y) + c.c.

 . (2.236)

Let us now compute the numerator of (2.225). For a state of the form (2.164) we have:

TrA (ρnA) =

∫
Dϕ1 . . .Dϕn

n∏
i=1

Ψ{pj+ ,pj−}[ϕi,A, ϕi,Ā]

n∏
i=1

Ψ{pj+ ,pj−}[ϕi+1,A, ϕi,Ā]
∗, (2.237)
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with:

n∏
i=1

Ψ{pj+ ,pj−}[ϕi,A, ϕi,Ā] =

∏
j+

2Epj+

L

∏
j−

2Epj−

L

n
2 n∏
i=1

∏
j+

∫
A∪Ā

dxeipj+xϕ†i (x)

×
∏
j−

∫
A∪Ā

dxeipj−xϕi(x)
n∏

i=1

Ψvac[ϕi,A, ϕi,Ā], (2.238)

n∏
i=1

Ψ{pj+ ,pj−}[ϕi+1,A, ϕi,Ā]
∗ =

∏
j+

2Epj+

L

∏
j−

2Epj−

L

n
2

×
n∏

i=1

∏
j+

(∫
A
dxe−ipj+xϕi+1(x) +

∫
Ā
dxe−ipj+xϕi(x)

)

×
∏
j−

(∫
A
dxe−ipj−xϕ†i+1(x) +

∫
Ā
dxe−ipj−xϕ†i (x)

) n∏
i=1

Ψvac[ϕi+1,A, ϕi,Ā]. (2.239)

Putting everything together, we obtain

TrA (ρnA)

TrA(ρn0,A)
=

∏
j+

2Epj+

L

∏
j−

2Epj−

L

n

⟨
n∏

i=1

∏
j+

U+
i (pj+)V

+
i (pj+)

∏
j−

U−
i (pj−)V

−
i (pj−)⟩ (2.240)

where the correlation function is defined with respect to the Gaussian measure:

⟨O[ϕ1, ϕ
†
1 . . . , ϕn, ϕ

†
n]⟩ :=

∫
Dϕ1Dϕ†1 . . .DϕnDϕ

†
nO[ϕ1, ϕ

†
1 . . . , ϕn, ϕ

†
n] exp [−G]∫

Dϕ1Dϕ†1 . . .DϕnDϕ
†
n exp [−G]

, (2.241)

and the operators are

U+
i (p) :=

∫
A∪Ā

dx eipxϕ†i (x), U−
i (p) :=

∫
A∪Ā

dx eipxϕi(x) (2.242)

V +
i (p) :=

∫
A
dx e−ipxϕi+1(x) +

∫
Ā
dx e−ipxϕi(x), (2.243)

V −
i (p) :=

∫
A
dx e−ipxϕ†i+1(x) +

∫
Ā
dx e−ipxϕ†i (x). (2.244)

If the excited state is of the form (2.165), the result (2.240) is minimally modified. The terms inside

the correlator are exactly the same and the prefactor is modified to:

 m+∏
j+=1

1

k+
j+
!

(
2Epj+

L

)k+
j+ m−∏

j−=1

1

k−
j− !

(
2Epj−

L

)k−
j−
n

. (2.245)

84



Michele Mazzoni

2.D.2 Non-trivial flux insertion

We now come to the quantity (2.225) with α ̸= 0, assuming the excited state to be of the form

(2.164). Let us consider the denominator first. Because of the flux insertion to the right of the nth

operator ρ0,A, everything is the same as in (2.231) except for the last resolution of the identity, which

produces a term:

⟨Ψ|e2πiαQ̂A |ϕ1A, ϕnĀ⟩ = ⟨Ψ|e2πiαϕ1A, ϕnĀ⟩ = Ψ[ϕ1Ae
2πiα, ϕnĀ]

∗. (2.246)

Thus, the Gaussian measure in the presence of the charge is modified as follows:

TrA(ρ
n
0,Ae

2πiαQ̂A) =

∫
Dϕ1 . . .Dϕn exp [−Gα] , (2.247)

with

Gα =

n∑
i=1

2
∫

x∈A
y ∈A

+

∫
x∈ Ā
y ∈ Ā

 dxdy ϕ†i (x)K(x− y)ϕi(y)

+

∫
x∈A
y ∈ Ā

dxdy
(
ϕ†i (x) + ϕ†i+1(x)e

−2πiαδi,n
)
K(x− y)ϕi(y) + c.c.

 . (2.248)

As for the numerator of (2.225), we have similarly

TrA(ρ
n
A) =

∫
Dϕ1 . . .Dϕn

n−1∏
i=1

Ψ{pj+ ,pj−}[ϕiA, ϕiĀ]Ψ{pj+ ,pj−}[ϕi+1,A, ϕiĀ]
∗

×Ψ{pj+ ,pj−}[ϕnA, ϕnĀ]Ψ{pj+ ,pj−}[ϕ1,Ae
2πiα, ϕnĀ]

∗. (2.249)

The product in the first line yields the same quantity as in the α = 0 case, with the replica index

taking values up to n− 1 only. The product of the last two functionals gives:∏
j+

αpj+
[ϕ†n]αpj+

[ϕ†1Ae
−2πiα, ϕ†

nĀ
]∗
∏
j−

βpj− [ϕn]βpj− [ϕ1Ae
2πiα, ϕnĀ]

∗


×Ψvac[ϕnA, ϕnĀ]Ψvac[ϕ1,Ae

2πiα, ϕnĀ]
∗. (2.250)

and from the definitions (2.162) we obtain our final result:

TrA

(
ρnA e

2πiαQ̂A

)
TrA

(
ρn0,A e

2πiαQ̂A

) =

∏
j+

2Epj+

L

∏
j−

2Epj−

L

n

× ⟨
n∏

i=1

∏
j+

U+
i (pj+)V

+
i (pj+)

∏
j−

U−
i (pj−)V

−
i (pj−)⟩α, (2.251)
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where ⟨. . .⟩α is the average with Gaussian measure (2.248). The quantities U±
i (p) are defined exactly

as in (2.242), while the functions V ±
i (p) are now modified by the presence of the charge as follows:

V +
i (p) = e2πiαδi,n

∫
A
dx e−ipxϕi+1(x) +

∫
Ā
dx e−ipxϕi(x), (2.252)

V −
i (p) = e−2πiαδi,n

∫
A
dx e−ipxϕ†i+1(x) +

∫
Ā
dx e−ipxϕ†i (x). (2.253)

If the excited state is given by (2.165), the right-hand side of (2.251) is changed exactly as in the case

α = 0.

86



CHAPTER

THREE

SYMMETRY-RESOLVED NEGATIVITY OF EXCITED STATES

In the previous chapter, we studied the symmetry-resolved Rényi entropies of quasi-particle excited

states in QFTs with U(1) symmetry. We found that the entropies display some model-independent

features which we characterised using different approaches. In this chapter, based on [3], we extend

this line of investigation by providing analytical and numerical evidence that a similar universal

behavior arises for the symmetry-resolved negativity. In particular, we compute the ratio of charged

moments of the partially transposed reduced density matrix. These charged ratios are given by

expectation values of the composite twist operators introduced in the previous chapter: their use

allows us to perform the computation in an arbitrary number of spacial dimensions. We show that,

in the large-volume limit, only the commutation relations between the twist operators and local

fields matter, and computations reduce to a purely combinatorial problem. We address some specific

issues regarding fermionic excitations, whose treatment requires the notion of partial time-reversal

transformation, and we discuss the differences with their bosonic counterpart. We find that although

the operation of partial transposition requires a redefinition for fermionic theories, the ratio of the

negativity moments between an excited state and the ground state is universal and identical for

fermions and bosons, as it is found by performing computations on QFT states as well as simple qubit

states. Our predictions are tested numerically on a 1D Fermi chain.

3.1 Introduction

Over the past two decades, entanglement measures have been widely studied in the context of

low-dimensional QFT, starting with several seminal works [11–16, 48] which focused on one measure

(the entanglement entropy [17]) and on one type of theory, largely 1+1D CFT and its discrete
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counterpart, critical spin chains. From these papers sprang several important ideas and techniques

which have been extensively exploited thereafter. Notable among them is the numerical and

analytical observation that the entanglement entropy exhibits universal properties, i.e. properties

that depend only on the theory’s universality class characterised by the central charge c. As already

discussed in the previous chapters, from a computational point of view, an important idea to emerge

from [12, 48] and later reinterpreted and generalised to non-critical theories in [20] is that

entanglement measures can be written in terms of correlation functions of semi-local fields of a

replica version of the QFT under study. One particular development of these ideas has been the

proposal and study of new measures of entanglement, each tailored to capturing particular features

of entanglement and/or of the state whose entanglement is being measured. One such new measure

is the (logarithmic) negativity [56, 57, 176–180] which we defined in (1.16) for a tripartite system

consisting of subsystems A,B and C := A ∪B and Hilbert space given by (1.14).

An interesting issue that is specific to the logarithmic negativity is the fact that the definition of

E in terms of the partial transpose ρTB
A∪B, whose matrix elements are given in (1.15), directly apply

to spin chains or bosonic systems, but it is ill-suited for fermionic systems. The reason for this is

rather technical and can be explained in different ways. Unlike for bosons, the partial transpose of

the Gaussian density matrix of a free fermion state is not Gaussian, which makes the computation of

the negativity spectrum particularly difficult. There have been several proposals as to how to modify

the definition of E in a way that is better adapted to deal with fermionic degrees of freedom. The first

definition of partial transposition specifically modified for fermionic states was introduced in [181].

However, in [182] it was proved that, because of the anticommuting nature of the fermionic degrees

of freedom, two of the standard requirements of a partial transposition operation, namely that if

ρ ≡ ρA∪B then

(ρTA)TB = ρT and ρTA
1 ⊗ · · · ⊗ ρTA

n = (ρ1 ⊗ · · · ⊗ ρn)
TA , (3.1)

with T representing transposition over the total space (here T = TA∪B), may not hold with the

definition given in [181]. On the other hand, these properties are satisfied with the definition introduced

in [182]: this is the time-reversal (or fermionic) negativity, which accounts for the locality properties

of fermions [182, 183] and which we present below. Following [183], we now take HA⊗HB to be a Fock

space associated to fermionic degrees of freedom in ℓA + ℓB sites and choose an occupation number

basis:

|{nj}A, {nj}B⟩ := |n1, . . . , nℓA , nℓA+1, . . . , nℓA+ℓB ⟩

= (f †1)
n1 . . . (f †nℓA

)nℓA (f †nℓA+1
)nℓA+1 . . . (f †nℓA+ℓB

)nℓA+ℓB |0⟩, (3.2)
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such that all the nj ∈ {0, 1} and f †j is a fermionic creation operator at site j. Then, given the RDM

ρA∪B =
∑

{nj}A,{nj}B
{n′

j}A,{n′
j}B

|{nj}A, {nj}B⟩⟨{nj}A, {nj}B|ρA∪B|{n′j}A, {n′j}B⟩⟨{n′j}A, {n′j}B| , (3.3)

we define the fermionic partial transposition as

ρRB
A∪B :=

∑
{nj}A,{nj}B
{n′

j}A,{n′
j}B

iϕ({nj},{n′
j})|{nj}A, {n′j}B⟩⟨{nj}A, {nj}B|ρA∪B|{n′j}A, {n′j}B⟩⟨{n′j}A, {nj}B| ,

(3.4)

where ϕ({nj}, {n′j}) is given by

ϕ({nj}, {n′j}) = (τB + τ ′B)(mod 2) + 2(τA + τ ′A)(τB + τ ′B) , (3.5)

and τA/B =
∑

j∈A/B nj , τ
′
A/B =

∑
j∈A/B n

′
j are the numbers of occupied states in each subsystem.

Thus, the novelty of the fermionic partial transposition (3.4), as compared to (1.15), is the presence of

an additional phase shift which depends on the number of fermions. The operation RB defined in (3.4)

is also called partial time reversal, as in a path integral formalism for spinless fermions it implements

time reversal only in the subsystem B [184]. While in general ρRB
A∪B is no longer Hermitian for fermionic

systems, one can still use the definition (1.16) for fermionic logarithmic negativity, but where now

|ρRB
A∪B| =

√
(ρRB

A∪B)
†ρRB

A∪B , (3.6)

which is a positive semi-definite matrix.

Let us now add the final layer of definitions by introducing symmetry-resolved negativities. As seen

in the previous chapters, symmetry-resolved entanglement measures have become very popular in the

past few years and extend the standard definitions by exploiting the presence of internal symmetries.

While the earliest studies focused on the entanglement entropies (see [19, 94] for the CFT/QFT and

quantum spin chain constructions), more recently also the logarithmic negativity has been generalised

in a similar fashion [96, 120, 185, 186]. Let us consider a theory with a global U(1) symmetry (i.e. a

complex free boson/fermion). In that case, a global U(1) charge Q̂A∪B = Q̂A ⊕ Q̂B commutes with

the state ρA∪B:

[ρA∪B, Q̂A ⊕ Q̂B] = 0 . (3.7)

Then, it has been shown in [96] that the charge imbalance operator Q̂A − Q̂T
B, defined in (1.51),

commutes with ρTB
A∪B

[ρTB
A∪B, Q̂A − Q̂T

B] = 0, (3.8)
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and it generates a U(1) symmetry for the (bosonic or fermionic) partial transpose. The matrix

representation of the charge imbalance operator is basis-dependent, and in the occupation number

basis Q̂T
B = Q̂B so we will drop the transposition on Q̂B from now on. At this point, it is natural to

consider the charged moments of the partial transpose. These are defined as

Tr
(
(ρTB

A∪B)
ne2πiα(Q̂A−Q̂B)

)
, α ∈ [−1/2, 1/2] , (3.9)

and, generalising the standard moments (1.30), when integrated over α they provide the

symmetry-resolved Rényi negativities. For fermions, the definition above is changed to

Tr
(
|ρRB

A∪B|
ne2πiα(Q̂A−Q̂B)

)
, α ∈ [−1/2, 1/2] . (3.10)

The computation of charged moments of the partial transpose was performed in [120] in the ground

and thermal state of massless free fermions in 1+1 dimensions, where the universal UV divergences

were captured by the underlying CFT. They have also been measured in an experimental setup in [23].

In this chapter, we are interested in zero-density quasi-particle states of (massive) QFT, obtained as

excitations of the ground state with finite number of particles at given momenta. These are the same

states we considered in the previous chapter, and that were already used in [114–116, 144] for the

standard (uncharged) entanglement measures. We aim to compute the contribution to the charged

moments given by the quasi-particles, which arises in addition to the zero-point fluctuations.

We will now briefly state the main results of this chapter. Let us consider a QFT in D = d + 1

dimensions carrying a global U(1) symmetry and two non-complementary spacial regions A and B.

Let |0⟩ be the vacuum state in the Hilbert space (1.14), and let |Ψ(k)⟩ be an excited state containing k

identical excitations with unit charge. We construct the associated reduced density matrices (RDM)

over A ∪B as

ρA∪B,0 := TrC |0⟩⟨0|, ρA∪B := TrC |Ψ(k)⟩⟨Ψ(k)|, with C := A ∪B . (3.11)

Then, generalising what we did in the previous chapter, we consider the limit in which the generalised

volume VA, VB, VC of each region goes to infinity while the ratios

rA :=
VA
V
, rB :=

VB
V

and r :=
VC
V

= 1− rA − rB , (3.12)

are finite and V = VA + VB + VC . We then define the ratio of charged moments:

Rn
k(rA, rB, r;α) :=

Tr
(
(ρTB

A∪B)
ne2πiα(Q̂A−Q̂B)

)
Tr
(
(ρTB

A∪B,0)
ne2πiα(Q̂A−Q̂B)

) . (3.13)
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We find this ratio to be universal in the large-volume limit, and for a single particle excitation (k = 1)

it is given by

Rn
1 (rA, rB, r;α) = e2πiαrnA + e−2πiαrnB +

(
r +

√
r2 + 4rArB
2

)n

+

(
r −

√
r2 + 4rArB
2

)n

. (3.14)

We notice that, because rA, rB, r ∈ (0, 1), the last term in (3.14) is positive (negative) when n is an

even (odd) integer and therefore one needs to consider two distinct analytic continuations over the

even and odd integers. In particular, the analytic continuation from n even to n = 1 gives

lim
n→ 1

2

R2n
1 (rA, rB, r;α) = e2πiαrA + e−2πiαrB +

√
r2 + 4rArB . (3.15)

Comparing these expression to the α = 0 results found in [116, 144], we see that the phases e±2πiα

appear only in the first two terms of (3.14), whereas the other terms are unchanged. This provides a

useful hint as to how more complicated formulae for multi-particle states will generalise to the

symmetry-resolved measure, namely by the substitutions rA 7→ e
2πiα
n rA and rB 7→ e−

2πiα
n rB.

Therefore, we can write:

Rn
1 (rA, rB, r;α) = Rn

1

(
e

2πiα
n rA, e

− 2πiα
n rB, r; 0

)
. (3.16)

The generalisation to states of many distinct quasiparticles is straightforward, and each particle

contributes independently (multiplicatively) to the ratio of charged moments, similar to the structure

found in the previous chapter for the charged Rényi entropies. We highlight that the result (3.14)

holds also for fermions with the definitions (3.6) and (3.10) when n is even. This is the case we will

consider in the following when treating the fermionic case. For bosonic systems, states of multiple

identical excitations can also be considered. The total (uncharged) negativity of these states was

obtained in [116, 144], and for the ratio of charged moments in this case we find:

Rn
k(rA, rB, r;α) =

k∑
p=−k

[n
2
(k−p)]∑

q=max(0,−np)

Ap,qr
np+q
A rn(k−p)−2qrqB e

2πiαp, (3.17)

where [·] represents the integer part and

Ap,q :=
∑

{k1,...,kn}∈Pn(q)

n∏
j=1

k!

(p+ kj)!(k − p− kj − kj+1)!kj !
, (3.18)

are combinatorial factors, with the sum running over the set Pn(q) of partitions of q ∈ N0 into n

non-negative integers.

We structure this chapter as follows. In Section 3.2 we analyse in detail a simplified model consisting
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of a state of few qubits. In spite of the simplicity of these states, their symmetry-resolved negativity

moments capture the main universal features found in QFT. In Section 3.3 we give a field-theoretic

formulation of the charged moments of the partially transposed RDM, employing the notion of twist

operators. The difference between fermionic and bosonic particles is thoroughly discussed in this

context, and the evaluation of the moments is shown to reduce to a combinatorial problem which we

solve exactly for single and multiple distinct excitations. Some details of our combinatorial arguments

are left to Appendix 3.A, while in Appendix 3.B we prove some useful identities that we use in Section

3.3. We check numerically our predictions on a 1D Fermi chain in Section 3.4 and find good agreement.

We conclude in Section 3.5.

3.2 Qubit computation

In this section we derive the main formulae for the charged replica negativities in a multi-qubit

system. This toy model was already employed in [114–116], as well as in the previous chapter, following

the observation that even if multi-qubit states are much simpler than the excited states of a QFT,

they both produce the same universal contribution to entanglement entropies and negativities. The

advantage of this picture is that the ground state of a multi-qubit system is trivial from the point of

view of the entanglement content, which means that the excess of entropy, or the excess of negativity,

of an excited state with respect to the ground state effectively reduces to the entropy or negativity of

the excited state. Analogously, the ratio of charged moments of the partial transpose coincides with

the charged moment of the partial transpose of the excited state. The notion of charge imbalance in a

qubit setup was introduced in [96] and the notion of fermionic partial transposition in the same setup

was later used in [120].

The main result of this section is to show that equation (3.14) for a state consisting of a single

excitation can be derived employing either the bosonic or the fermionic notion of partial transposition.

Interestingly, even if the intermediate steps of the computation are different in the two cases, the final

result is still the same. For bosonic theories, the result can be generalised to multiple identical

excitations to give (3.17).

3.2.1 Single bosonic excitation

Proceeding exactly as in Section 2.3, let us assume that a single bosonic excitation of charge1 +1 is

localised in space according to a uniform probability distribution, so that rA, rB and r can be regarded

as the probabilities for the excitation to be found in regions A, B, C respectively. Then the state in

1Without loss of generality, in this section we take all the quasiparticle excitations to be positively charged. In this
way the action of the U(1) charge Q̂ on the multi-qubit states is identical to that of the number operator N̂ .
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HA ⊗HB ⊗HC representing a single excitation can be written as

|Ψ(1)
qb ⟩ =

√
rA|100⟩+

√
rB|010⟩+

√
r|001⟩, (3.19)

where the values 0 (1) represent the absence (presence) of the excitation and the coefficients can be

interpreted as probabilities of finding the excitation in a particular region. Here and in the following

we omit the tensor products in writing qubit states, identifying |k1k2k3⟩ := |k1⟩A⊗|k2⟩B ⊗|k3⟩C . The

RDM ρA∪B is obtained taking the trace over HC :

ρA∪B = TrC |Ψ(1)
qb ⟩⟨Ψ

(1)
qb |

= rA|10⟩⟨10|+ rB|01⟩⟨01|+
√
rArB(|01⟩⟨10|+ |10⟩⟨01|) + r|00⟩⟨00|, (3.20)

or in matrix form

ρA∪B =



00 01 10 11

00 r 0 0 0

01 0 rB
√
rArB 0

10 0
√
rArB rA 0

11 0 0 0 0


. (3.21)

This matrix has a block-diagonal structure with respect to the charge operator Q̂A∪B = Q̂A ⊕ Q̂B:

(Q̂A ⊕ Q̂B)|kAkB⟩ = (kA + kB)|kAkB⟩ , kA, kB ∈ {0, 1}, (3.22)

as indeed we can decompose it according to the eigenspaces of Q̂A∪B, with eigenvalues Q = 0, 1, 2:

ρA∪B = (r)Q=0 ⊕

 rB
√
rArB

√
rArB rA


Q=1

⊕ (0)Q=2. (3.23)

Let us now come to the partially transposed matrix ρTB
A∪B. From the definition (1.15), it follows:

ρTB
A∪B = rA|10⟩⟨10|+ rB|01⟩⟨01|+

√
rArB(|00⟩⟨11|+ |11⟩⟨00|) + r|00⟩⟨00|

=



00 01 10 11

00 r 0 0
√
rArB

01 0 rB 0 0

10 0 0 rA 0

11
√
rArB 0 0 0


, (3.24)
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which is a block-diagonal matrix with respect to the charge imbalance operator Q̂A − Q̂B:

(Q̂A − Q̂B)|kAkB⟩ = (kA − kB)|kAkB⟩ , kA, kB ∈ {0, 1}, (3.25)

and denoting the eigenvalues of the charge imbalance by ∆Q = 1, 0,−1 we can write:

ρTB
A∪B = (rA)∆Q=1 ⊕

 r
√
rArB

√
rArB 0


∆Q=0

⊕ (rB)∆Q=−1 . (3.26)

The partial transpose ρTB
A∪B has four distinct eigenvalues, one of which is negative:

σ
(
ρTB
A∪B

)
=

{
rA, rB,

r +
√
r2 + 4rArB
2

,
r −

√
r2 + 4rArB
2

}
, (3.27)

and therefore this system has non-vanishing negativity. From the block-diagonal structure of ρTB
A∪B it

is immediate to construct the matrix (ρTB
A∪B)

ne2πiα(Q̂A−Q̂B) and we finally obtain the expected result:

Tr
(
(ρTB

A∪B)
ne2πiα(Q̂A−Q̂B)

)
= Rn

1 (rA, rB, r;α) , (3.28)

with Rn
1 (rA, rB, r;α) given by (3.14). We highlight that the knowledge of the spectrum (3.27) allows

for a direct evaluation of the logarithmic negativity (1.16) without the need to obtain the moments

first.

3.2.2 Single fermionic excitation

In this section we show that the result (3.14) holds for n even also if we adopt the fermionic

prescription (3.4) for the partial transposition. With that definition, the matrix ρRB
A∪B differs from

ρTB
A∪B as given in (3.26) only because there is now an extra phase in the off-diagonal elements:

(|10⟩⟨01|)RB = −i|11⟩⟨00| , (|01⟩⟨10|)RB = −i|00⟩⟨11|, (3.29)

while the diagonal elements are not modified. It follows that ρRB
A∪B is still block-diagonal with respect

to the imbalance operator:

ρRB
A∪B = (rA)∆Q=1 ⊕

 r −i√rArB

−i√rArB 0


∆Q=0

⊕ (rB)∆Q=−1 . (3.30)

The two eigenvalues in the sector ∆Q = 0 can now be imaginary, depending on the values of rA and

rB. However, we are eventually interested in the evaluation of the charged moments

Tr
(
|ρRB

A∪B|nei2πα(Q̂A−Q̂B)
)

for n even, which requires only the knowledge of the eigenvalues of
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|ρRB
A∪B|2. From the definition (3.6), and making use of the above block diagonal decomposition we

can write:

(ρRB
A∪B)

†ρRB
A∪B = (r2A)∆Q=1 ⊕

 r2 + rArB ir
√
rArB

−ir√rArB rArB ,


∆Q=0

⊕ (r2B)∆Q=−1, (3.31)

and

σ
(
(ρRB

A∪B)
†ρRB

A∪B

)
=

r2A, r2B,
(
r +

√
r2 + 4rArB
2

)2

,

(
r −

√
r2 + 4rArB
2

)2
 . (3.32)

Since these eigenvalues are the squares of the eigenvalues of ρTB
A∪B, the result (3.14) is recovered here

for n even.

3.2.3 Multiple distinct excitations

We now consider states containing k distinct excitations. Among these states, let us focus on those

which are tensor products of the linear combination (3.19), that is, on states of the form:

|Ψ(1,...,1)
qb ⟩ := |Ψ(1)

qb ⟩
⊗k. (3.33)

For k = 2 we have for instance

|Ψ(1,1)
qb ⟩ = rA|100⟩ ⊗ |100⟩+ rB|010⟩ ⊗ |010⟩+ r|001⟩ ⊗ |001⟩

+
√
rArB(|100⟩ ⊗ |010⟩+ |010⟩ ⊗ |100⟩)

+
√
rAr(|100⟩ ⊗ |001⟩+ |001⟩ ⊗ |100⟩)

+
√
rBr(|010⟩ ⊗ |001⟩+ |001⟩ ⊗ |010⟩) . (3.34)

For a tensor product state the density matrix is a tensor product of single-particle matrices, and this

applies to the RDM and to its partial transpose as well:

ρ(1,...,1) = ρ⊗k , ρ
(1,...,1)
A∪B = (ρA∪B)

⊗k , ρ
(1,...,1),TB

A∪B = (ρTB
A∪B)

⊗k, (3.35)

with ρA∪B and ρTB
A∪B given by (3.21) and (3.24) respectively. Decomposing the charge imbalance as

Q̂A − Q̂B =
⊕k

j=1(Q̂
(j)
A − Q̂

(j)
B ), we can compute the charged replica negativities using the bosonic

partial transposition (1.15):

Tr
((
ρ
(1,...,1),TB

A∪B

)n
e2πiα(Q̂A−Q̂B)

)
=

k∏
j=1

Tr
((
ρTB
A∪B

)n
e2πiα(Q̂

(j)
A −Q̂

(j)
B )
)
= (Rn

1 (rA, rB, r;α))
k . (3.36)
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The result above is not surprising and it is a consequence of the choice of the state: if the multi-particle

state is a tensor product then there is no correlation between different particles and the total charged

moment is the product of the single-particle ones. As we shall see below, this is not the case when the

particles are indistinguishable.

3.2.4 Multiple identical excitations

In this section we consider a state consisting of k positively charged indistinguishable excitations.

Its associated qubit state can be written as:

|Ψ(k)
qb ⟩ =

∑
kA,kB ,kC∈N0

ckA,kB ,kC |kAkBkC⟩, (3.37)

where the coefficient

ckA,kB ,kC :=

√
k!rkAA rkBB rkC

kA!kB!kC !
δkA+kB+kC ,k, (3.38)

is the square root of the probability of finding kA identical particles in region A, kB identical particles

in region B and the remaining kC particles in region C. From rA + rB + r = 1 it is easy to show that

if the vectors |kAkBkC⟩ form an orthonormal set, then also ⟨Ψ(k)
qb |Ψ

(k)
qb ⟩ = 1.

From this expression it is then possible to explicitly construct the matrix elements of the (bosonic)

partially transposed density matrix as:

⟨k1Ak1B|ρ
TB
A∪B|k

2
Ak

2
B⟩ =

∑
kC∈N0

ck1Ak2BkC
ck2Ak1BkC

, (3.39)

where the sum represents taking the trace over the degrees of freedom in C and the partial transposition

exchanges the indices k1B and k2B in the coefficients. The matrix elements of the nth power can then

be computed inserting n resolutions of the identity in HA∪B:

⟨k1Ak1B|
(
ρTB
A∪B

)n
|kn+1

A kn+1
B ⟩ =

∑
ks
A

,ks
B

∈N0 ; s=2,...,n

kr
C

∈N0 ; r=1,...,n

n∏
j=1

c
kjAkj+1

B kjC
c
kj+1
A kjBkjC

=
∑

ks
A

,ks
B

∈N0 ; s=2,...,n

kr
C

∈N0 ; r=1,...,n

n∏
j=1

k!r
kjA
A rk

j
Cr

kjB
B

kjA!k
j
C !k

j
B!

δ
kjA+kj+1

B +kjC ,k
δ
kj+1
A +kjB+kjC ,k

, (3.40)

While expression (3.40) was already presented in [116], its symmetry-resolved version is new and can
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be easily written by introducing phase factors in the sum above. We have

⟨k1Ak1B|
(
ρTB
A∪B

)n
e2πiα(Q̂A−Q̂B)|kn+1

A kn+1
B ⟩

=
∑

ks
A

,ks
B

∈N0 ; s=2,...,n

kr
C

∈N0 ; r=1,...,n

n∏
j=1

k!r
kjA
A rk

j
Cr

kjB
B

kjA!k
j
C !k

j
B!

e
2πiα
n

(kjA−kjB)δ
kjA+kj+1

B +kjC ,k
δ
kj+1
A +kjB+kjC ,k

. (3.41)

Starting with this result, the derivation of equations (3.17) and (3.18) is identical to that presented

in [116, 144]. The idea is to employ all the delta-function constraints on the values of kjA, k
j
B and kjC

in order to reduce the number of terms in the sum. After all the constraints have been implemented,

equation 3.41 reproduces the result (3.17) with (3.18).

Before concluding the section let us analyse the simplest case, k = 1. For a single excitation, the

right-hand side of (3.17) is given by:

A−1,n r
n
B e

−2πiα +A1,0 r
n
A e

2πiα +

[n/2]∑
q=0

A0,q(rArB)
qrn−2q. (3.42)

By looking at the definition (3.18) one immediately gets A−1,n = A1,0 = 1. On the other hand,

A0,q =
∑

{k1,...,kn}∈Pn(q)
1, where each kj ∈ {0, 1} and whenever kj = 1 then kj+1 = 0. Counting the

number of sequences (k1, . . . , kn) that satisfy these constraints is a combinatorial problem identical to

the one we solve in the next section. The number of these sequences is n
n−q

(
n−q
n

)
. As we explain in the

next section, this implies that expression (3.42) exactly reproduces (3.14). More generally, looking at

the coefficients (3.18) it is clear that even for k > 1 the computation has an underlying combinatorial

interpretation. For the α = 0 case this has been established by reinterpreting the sum (3.17) as a

partition function for a certain class of graphs [144]. A combinatorial picture will emerge again in the

next section in a related context: the computation using twist operators.

3.3 Twist operator approach

In this section, we provide a field-theoretic description of the charged moments of the partially

transposed RDM, valid in principle for any local QFT and in any spacetime dimensions. To do so, we

employ the replica construction and the formalism of twist operators that we introduced in Section

2.4. There, we showed that it is possible to compute entanglement entropies (or at least charged

ratios) of quasi-particle states just by relying on a few algebraic properties: the exchange relations

between local fields and twist operators and the operator product expansion (OPE) of the local fields.

On the other hand, most of the theory-dependent features are hidden in the zero-point fluctuations

(ground state entanglement), which factors out. In this section we show that the same applies to the

logarithmic negativity.

97



CHAPTER 3. SYMMETRY-RESOLVED NEGATIVITY OF EXCITED STATES

Proceeding as we did in the previous section, here we compute the charged moments of the partial

transpose in a bosonic and a fermionic theory, starting with single-particle states and generalising

the result to excitations containing many quasiparticles. In the fermionic case, we discuss how to

modify the algebra of twist operators and fermionic fields and, as a byproduct, we perform a simpler

derivation valid for free fermions in any dimension.

3.3.1 Single bosonic excitation

We consider now a bosonic QFT, described by its algebra of local observables A, acting on the

Hilbert space H, and |0⟩ ∈ H is the ground state of the theory. We then consider the replica version of

this theory, consisting of n non-interacting copies of the same model. The algebra of observables is now

denoted by An, so that Zn becomes an internal (global) symmetry, which includes cyclic permutation

symmetry among copies [58, 59, 187, 188]. We also assume that the QFT carries an additional global

U(1) symmetry. This procedure allows us to introduce a set of twist operators, supported on extended

spacial regions, which mix cyclic permutation and internal U(1) symmetries, and generalise the notion

of composite twist fields of 1+1D QFT [19, 107, 117, 156–158].

Let Oj(x) ∈ An be a local bosonic field of the j-th replica (j = 1, . . . , n) with U(1) charge κO. We

consider a region A, and we associate to the twist operator Tα
A which satisfies equations (2.120). That

is, the action of Tα
A is non-trivial only in the region A, where it consists of a replica shift j → j + 1

followed by the insertion of a U(1) flux between the n-th and the first copy. The operator Tα
A is

sufficient for the computation of moments of the RDM in case of a spacial bipartition. However, here

we need to define a conjugate twist operator T̃α
A so that

T̃α
AOj(x) =


e−2πiκOαδj,1Oj−1(x)T̃α

A x ∈ A ,

Oj(x)T̃α
A x /∈ A,

(3.43)

and we can identify T̃α
A = (Tα

A)
†. These operators will now allow us to develop a field-theoretic

formulation of the symmetry-resolved negativity and its moments. Let A and B be two

non-complementary connected regions which share at most a boundary, |Ψ⟩ ∈ H a zero-density state

and ρA∪B its RDM over A ∪ B. In 1+1D QFT one can interpret the moments of the partial

transpose as functions over a n-sheeted Riemann surface with two branch-cuts in A and B,

connecting the replicas in two opposite directions [182]. A similar construction in the presence of

fluxes has been proposed in [96, 120]. In analogy with the works above, we establish the following

relation between the charged moments and the twist operators:

Tr
(
(ρTB

A∪B)
ne2πiα(Q̂A−Q̂B)

)
=

n⟨Ψ|Tα
A T̃

α
B |Ψ⟩n

n⟨Ψ|Ψ⟩n
, (3.44)
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where |Ψ⟩n represents the replicated version of the state |Ψ⟩.

Following the construction of the previous chapter, we consider a one-particle excitation of fixed

momentum p and charge +1, which is created by a field O acting on the ground state as

|Ψ(1)⟩ = O(p)|0⟩ . (3.45)

Here O(p) is the Fourier transform of O(x)

O(p) =

∫
M

ddxe−ip·xO(x) , (3.46)

and M is the whole space, which, for simplicity, we take to be a d-dimensional torus. We note that

O†(−p) = [O(p)]† which will be important for later computations. Our aim, as in the previous section,

is to compute the ratio of charged moments, which up to a normalisation constant is given by

n⟨Ψ(1)|Tα
A T̃

α
B |Ψ(1)⟩n

n⟨0|Tα
A T̃

α
B |0⟩n

. (3.47)

We define the projection of O(p) over a generic region A as the restricted integral

OA(p) =

∫
A
ddxe−ip·xO(x) , (3.48)

then we can write

n⟨Ψ(1)|Tα
A T̃

α
B |Ψ(1)⟩n

n⟨Ψ(1)|Ψ(1)⟩n
=

n⟨0|(O†)n(−p) . . . (O†)1(−p)Tα
A T̃

α
BO1(p) . . .On(p)|0⟩n

n⟨0|(O†)n(−p) . . . (O†)1(−p)O1(p) . . .On(p)|0⟩n
. (3.49)

We point out that bosonic creation operators, whether on the same or on different copies, commute

with each other, therefore the order of a string of operators Oj(p) is irrelevant. We now observe that

Oj(p) = Oj
A(p) +Oj

B(p) +Oj
C(p), (3.50)

which, when inserted into (3.49), leads to a large numbers of terms both in the numerator and the

denominator. The key idea is that in the infinite volume limit many of these terms are subleading and

the leading contribution is the one which reproduces the expected result. We now present the details

of the calculation.

Employing the exchange relations (2.120) and (3.43), we can bring all the bosonic fields Oj(p) to
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the left of Tα
A T̃

α
B in (3.49). This gives

n⟨0|(O†)n(−p) . . . (O†)1(−p)Tα
A T̃

α
BO1(p) . . .On(p)|0⟩n =

n⟨0|(O†)n(−p) . . . (O†)1(−p)(O2
A(p) +On

B(p)e
−2πiα +O1

C(p)) · · · ×

(O1
A(p)e

2πiα +On−1
B (p) +On

C(p))T
α
A T̃

α
B |0⟩n,

(3.51)

where the phases are attached only to the fields O1
A and On

B. To proceed with the evaluation of the

expectation value, we focus on the large-volume behavior. In the previous chapter, we argued that

the leading terms come from the contractions of fields belonging to the same replica, which amount

to the following formal replacement inside the correlation function:

(O†)jA′(−p)Oj
A(p) → ⟨0|(O†)jA′(−p)Oj

A(p)|0⟩ ∝ VA∩A′ , (3.52)

with A, A′ ⊆ M generic spacial regions. Proportionality to the volume is valid in the large-volume

limit and the proportionality constant can in principle be absorbed in the normalisation of the field O

and does not affect the final result. We remarked in Section 2.4 that the accuracy of the approximation

(3.52) is supported when the correlation length or the de Broglie length (represented by |p|−1) are

significantly smaller than the size of the subsystem. This condition is an essential requirement for the

excited states we aim to describe. In this regime, the vacuum expectation value of the twist operators

also factors out:

n⟨0|(O†)n(−p) . . . (O†)1(−p)(O2
A(p) +On

B(p)e
−i2πα +O1

C(p)) · · · ×

(O1
A(p)e

i2πα +On−1
B +On

C(p))T
α
A T̃

α
B |0⟩n ≃

n⟨0|(O†)n(−p) . . . (O†)1(−p)(O2
A(p) +On

B(p)e
−2πiα +O1

C(p)) · · · ×

(O1
A(p)e

2πiα +On−1
B (p) +On

C(p))|0⟩n × n⟨0|Tα
A T̃

α
B |0⟩n,

(3.53)

which means that the charge moments of the ground state factor out and will subsequently be cancelled

in the ratio (3.47). While the formula above is already a large-volume approximation, when the sums

are expanded and each individual term considered, many terms that are subleading for large volume

still appear. To make things clear, consider the terms

n⟨0|(O†)n(−p) . . . (O†)1(−p)O2
A(p) . . .On

A(p)O1
A(p)|0⟩ne2πiα ≃ V n

A e
2πiα , (3.54)

and

n⟨0|(O†)n(−p) . . . (O†)1(−p)On
B(p)O1

B(p) . . .On−1
B (p)|0⟩ne−2πiα ≃ V n

B e
−2πiα . (3.55)

These are the terms that generate the highest powers in the volume of regions A and B respectively.

Among the other terms that are generated, the leading ones at large volume are those containing a
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string of operators Oj(p) and their daggered versions all inserted at different replicas, just as in the

examples above. If that is not the case, there is at least a pair of operators that can not be contracted

as in (3.52) and the term is subleading.

We now proceed with the systematic evaluation and counting of all the leading terms generated in

the expansion (3.53). We introduce the following notation to identify each term

(A1 . . . An) :=
n⟨0|(O†)n(−p) . . . (O†)1(−p)Oj1

A1
(p) . . .Ojn

An
(p)|0⟩n, (3.56)

where Ai ∈ {A,B,C} and ji ∈ {1, . . . , n}, ∀i = 1, . . . , n. We observe that, once the sequence of regions

(A1 . . . An) is identified, the sequence of replica indices (j1 . . . jn) is fixed unambiguously, as in fact

ji =


i+ 1 , if Ai = A

i , if Ai = C

i− 1 , if Ai = B

, (3.57)

hence the choice of notation above. Moreover, due to the contraction rules discussed above, only

the terms for which (j1 . . . jn) = (σ(1), . . . , σ(n)), with σ a permutation of the indices {1, . . . , n}

are non-vanishing. As a consequence, one can show (See Appendix 3.A.1) that the only possible

non-vanishing terms fit into one of these two categories:

• Either (A1 . . . An) = (A . . . A) or (A1 . . . An) = (B . . . B), the two cases which have been already

discussed in equations (3.54), (3.55),

• Or, whenever A appears in (A1 . . . An), it has to be followed by B. Similarly, if B appears in

(A1 . . . An), then it has to be preceded by A.

We focus on the second set of terms. It is convenient to split this into two additional subsets, which

we call type-I and type-II

• Type-I: (A1 . . . An) = (B A2 . . . An−1 A) ,

• Type-II: (A1 . . . An) with A1 ̸= B, An ̸= A .

Thus, each string in both these subsets contains a number k ≥ 0 of pairs AB and n − 2k C’s, and

according to (3.52) each of them will yield a term proportional to (VAVB)
kV n−2k

C . Due to the balance

of A’s and B’s there is no phase present in these terms (no α dependence). We now just need to count

how many strings of each type we have.

Among the strings of type-I, there is always at least one pair AB and there are at most [n/2]− 1

additional pairs AB that can be present. The number of such strings is precisely (a proof is given in
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3.A.2): (
n− k − 1

k − 1

)
for k = 0, . . . [n/2]. (3.58)

Similarly, one can show that the number of type-II strings consisting of k pairs of consecutive A and

B is: (
n− k

k

)
for k = 0, . . . [n/2]. (3.59)

In summary,

n⟨0|(O†)n(−p) . . . (O†)1(−p)(O2
A(p) +On

B(p)e
−i2πα +O1

C(p)) · · · ×

(O1
A(p)e

i2πα +On−1
B (p)ei2πα +On

C(p))|0⟩n ≃

V n
A e

2πiα + V n
B e

−2πiα +

[n2 ]∑
k=0

n

n− k

(
n− k

k

)
(VAVB)

k(VC)
n−2k,

(3.60)

where we used the identity

(
n− k

k

)
+

(
n− k − 1

k − 1

)
=

n

n− k

(
n− k

k

)
. (3.61)

The denominator in (3.49) can be fully contracted and yields V n (up to a non-universal normalisation

constant). Therefore, when properly normalised, the ratio (3.47) becomes a function of the variables

rA, rB and r defined in (3.12) and we we obtain

Rn
1 (rA, rB, r;α) =

n⟨Ψ(1)|Tα
A T̃

α
B |Ψ(1)⟩n

n⟨Ψ(1)|Ψ(1)⟩n
n⟨0|0⟩n

n⟨0|Tα
A T̃

α
B |0⟩n

= rnAe
2πiα + rnBe

−2πiα +

[n2 ]∑
k=0

n

n− k

(
n− k

k

)
(rArB)

krn−2k , (3.62)

which is the main result of this section. Note that although this formula looks different from (3.14),

they are in fact equivalent. That is

(
r +

√
r2 + 4rArB
2

)n

+

(
r −

√
r2 + 4rArB
2

)n

=

[n2 ]∑
k=0

n

n− k

(
n− k

k

)
(rArB)

krn−2k . (3.63)

This relation was used in [116, 144] without a proof. The proof is indeed quite involved, and can be

performed using properties of the generalised Lucas’ polynomials. This is presented in Appendix 3.B.1,

where we also derive two interesting corollaries. The equality (3.63) is particularly interesting because

it shows that the result is always a polynomial in integer powers of rA, rB, r for n positive, even or

odd. However, its analytic continuation from n even to n = 1 does contain a square root, as seen in

(3.15).
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3.3.2 Single fermionic excitation

Let us consider a theory for which the algebra A contains fermionic observables. In other words,

we assume that A is a Z2-graded algebra (superalgebra) generated by bosonic/fermionic fields, which

are even/odd with respect to the Z2 fermionic parity. Here, to generalise properly the twist operator

construction, one must take care of the fermionic nature of the fields. Indeed, two such fields sitting

at distinct points, say Ψ(x) and Ψ(x′) will now anticommute

Ψ(x)Ψ(x′) = −Ψ(x′)Ψ(x). (3.64)

Moreover, when the replica construction is performed, we require that fermionic fields on distinct

replicas also anticommute

Ψj(x)Ψj′(x′) = −Ψj′(x′)Ψj(x). (3.65)

As a result, the algebra of the replica theory An is not a conventional tensor product.

As before, we assume that an additional U(1) symmetry is present in the theory. Let A be a spacial

region, and we associate to it a twist operator Tα
A which shifts the replica index and appends a U(1)

flux to the field. The natural generalisation of (2.120) for a fermionic field Ψ of charge κΨ is:

Tα
AΨ

j(x) =


(−1)(n−1)δj,ne2πiκΨαδj,nΨj+1(x)Tα

A x ∈ A,

Ψj(x)Tα
A x /∈ A.

(3.66)

We point out that the only difference with respect to (2.120) is the presence of an additional flux

(−1)n−1 between the n-th and the first replica, a factor that was already introduced in [162] and

employed for instance in [20] in the calculation of the vacuum expectation value (VEV) of the Ising

twist field. A derivation of (3.66) for α = 0 in 1+1D using the coherent state representation of

fermionic density matrices can be found in [182].

For fermionic theories we need to define another twist operator which implements explicitly the

fermionic partial transposition, and from now on we only consider n even. It has been shown in [182]

that the effect of the partial transposition on the fermions gives rise to an additional insertion of a

flux (−1) among any pair of consecutive replicas, in addition to the usual replica shift. To implement

this construction, we define a twist operator T̃α
A satisfying

T̃α
AΨ

j(x) =


−(−1)(n−1)δj,1e−2πiκΨαδj,1Ψj−1(x)T̃α

A x ∈ A,

Ψj(x)T̃α
A x /∈ A.

(3.67)

We are now ready to compute the ratio of charged moments, along the same lines of the previous
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computation. Namely, given a fermionic field Ψ(x) with U(1) charge +1, we consider the state

|Ψ(1)⟩ = Ψ(p)|0⟩, (3.68)

and its replicated version

|Ψ(1)⟩n = Ψ1(p) . . .Ψn(p)|0⟩. (3.69)

Given two regions A and B defined as in the previous section, we express the ratio of charged moments

of the partial transpose also in this case as (up to a normalisation constant)

n⟨Ψ(1)|Tα
A T̃

α
B |Ψ(1)⟩n

n⟨0|Tα
A T̃

α
B |0⟩n

. (3.70)

We then expand the expectation value of the twist operators as follows:

n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)(Ψ2
A(p) + Ψn

B(p)e
−2πiα +Ψ1

C(p)) · · · ×

(−Ψ1
A(p)e

2πiα −Ψn−1
B (p)e2πiα +Ψn

C(p))T
α
A T̃

α
B |0⟩n ≃

n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)(Ψ2
A(p) + Ψn

B(p)e
−2πiα +Ψ1

C(p)) · · · ×

(−Ψ1
A(p)e

2πiα −Ψn−1
B (p) + Ψn

C(p))|0⟩n × n⟨0|Tα
A T̃

α
B |0⟩n.

(3.71)

As in the bosonic case, many terms are generated from the expansion of the above expression, and

we can apply similar considerations as to which of these terms are leading and which are sub-leading

in the large-volume limit. However, since the fermionic fields anticommute, we need to pay attention

to the order of the fields. For example, following the notation (3.56), the term (A A . . . A) can be

evaluated to

n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)Ψ2
A(p) . . .Ψ

1
A(p)|0⟩n(−e2πiα) =

n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)Ψ1
A(p)Ψ

2
A(p) . . .Ψ

n
A(p)|0⟩ne2πiα ≃ e2πiαV n

A ,
(3.72)

where Ψ1
A(p) has been recast in the first position after crossing n− 1 (odd) fermions, thus acquiring

an additional phase −1. Similarly, it is easy to show that

n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)Ψn
B(p) . . .Ψ

n−1
B (p)|0⟩n(−e−2πiα) ≃ V n

B e
−2πiα. (3.73)

In general, each term of the expansion is weighted with a phase which arises from the commutation

relations between twist operators and fermions and from those between fermions and fermions. This

is the crucial difference with respect to the calculation presented for the boson. We can summarise

104



Michele Mazzoni

the total contribution to the phase for a generic term2

(A1 . . . An) :=
n⟨0|(Ψ†)n(−p) . . . (Ψ†)1(−p)Ψj1

A1
(p) . . .Ψjn

An
(p)|0⟩n, (3.74)

as follows:

• If jn = 1 and An = A there is a −e2πiα phase. Similarly, if j1 = 1, and A1 = B, there is a

contribution of −e−2πiα.

• In addition to the previous phase, an additional −1 is present for each B which appears in the

string (A2 . . . An). This is due to the fermionic partial transposition over B.

• Once the contraction is performed, there is a sign coming from the order of the fields. Given

(j1 . . . jn) = (σ(1) . . . σ(n)), with σ a permutation of the replica indices, one can show that the

sign appearing after the contraction is sign(σ).

Having suitably modified the definition of the twist operators for the fermion, the phase of each term

appearing in (3.71) is the same as the one for the corresponding term in (3.53), leading to the same

result for fermions and bosons. To see this, let us first analyse a term of type-I:

(A1, . . . , An) = (B,A2, . . . , An−1, A). (3.75)

The phases coming from the last A and the first B cancel each other. Let Ai+1 = B: then this must

be preceded by Ai = A. The resulting replica indices at the corresponding positions are ji+1 = i

and ji = i+ 1. In other words, there is an exchange of the replica indices i and i+ 1, which changes

the sign of the permutation σ and it contributes as −1 after the contraction, but it is compensated

by the −1 due to the presence of a B. Similar considerations apply straightforwardly to the strings

of type-II. Putting everything together, the same formula (3.14) is obtained again, which is the final

result. We emphasise that this derivation relies on the assumption that n is even, something that was

not necessary for a single bosonic excitation.

3.3.2.1 Single fermionic excitation via replica diagonalisation

In this section, we show that the result just derived for fermions in full generality can also be

obtained via replica diagonalisation in the free case in 1+1D. This is essentially the procedure employed

in Section 2 of the previous chapter, but the twist operator approach, together with the simple

assumptions on the large-volume behaviour of the OPE, allows us to bypass the lengthy form factor

calculations. The key observation is that, as show in Ref. [182], the fermionic partial transpose of a

Gaussian state is still Gaussian. This allows to simplify the analysis of the replica theory, reducing it

2given a sequence (A1 . . . An), the indices ji are fixed by (3.57) also for the fermion.
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to a single-replica model in the presence of proper fluxes. For instance, given a Gaussian state and its

RDM, and taking again n even, one can show that the following factorisation [182] holds:

Tr
(
|ρRB

A∪B|
ne2πiα(Q̂A−Q̂B)

)
=

n−1
2∏

p=−n−1
2

Tr
(
ρA∪Be

2πi(α+p)
n

(Q̂A−Q̂B)+iπQ̂B

)
. (3.76)

Each term appearing inside the product is a single-copy charged partition function with fluxes along

A and B. Thus, we can evaluate the ratio of charged moments of the partial transpose as a product

of ratios of single-copy correlators of twist operators, the only difference being that now we need to

shift the flux α in Tα
A :

Rn
1 (rA, rB, r;α) =

n−1
2∏

p=−n−1
2

Tr
(
ρA∪Be

2πi(α+p)
n

(Q̂A−Q̂B)+iπQ̂B

)
Tr
(
ρA∪B,0e

2πi(α+p)
n

(Q̂A−Q̂B)+iπQ̂B

) ∝

n−1
2∏

p=−n−1
2

⟨Ψ|Tα+p
A T

−α−p+ 1
2

B |Ψ⟩

⟨0|Tα+p
A T

−α−p+ 1
2

B |0⟩
,

(3.77)

where the twist operators are defined by (3.66) with n = 1 and the proportionality constant is fixed

by normalising the state. A similar calculation as in the previous sections for a one-particle states

gives

⟨Ψ(1)|Tα
AT

−α+ 1
2

B |Ψ(1)⟩ = ⟨0|Ψ†(p)Tα
AT

−α+ 1
2

B Ψ(p)|0⟩ =

⟨0|Ψ†(p)(ΨA(p)e
2πiα −ΨB(p)e

−2πiα +ΨC(p))T
α
AT

−α+ 1
2

B |0⟩ ≃

⟨0|Tα
AT

−α+ 1
2

B |0⟩(VAe2πiα − VBe
−2πiα + VC),

(3.78)

so that:

n−1
2∏

p=−n−1
2

⟨Ψ(1)|Tα+p
A T

−α−p+ 1
2

B |Ψ(1)⟩

⟨0|Tα+p
A T

−α−p+ 1
2

B |0⟩

⟨0|0⟩
⟨Ψ(1)|Ψ(1)⟩

=

n−1
2∏

p=−n−1
2

(rAe
2πi(α+p)

n − rBe
− 2πi(α+p)

n + r). (3.79)

This product can be shown yet again to be equal to (3.14), although the proof requires some

mathematical identities that we present in Appendix (3.B.2).

3.3.3 Bosonic state with multiple distinct excitations

Consider now a k-particle bosonic state where all particles have the same (unitary) charge and

momentum p. In order to ensure the presence of U(1) symmetry we consider the complex free boson,

described by a field O which satisfies Wick’s theorem in the vacuum state. We thus describe the

excited state as

|Ψ(k)⟩ = (O(p))k |0⟩. (3.80)
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Before entering the core of the computation in the replica model, it is convenient to slightly modify

the definition (2.120) of the twist operators as follows

Tα
AOj(x) =


e

2πiα
n Oj+1(x)Tα

A x ∈ A,

Oj(x)Tα
A x /∈ A.

(3.81)

This amounts to distributing the total flux e2πiα in equal part among all copies, rather than inserting

it between the n-th and the first replica only. The expectation values are not affected by this choice,

which is however computationally useful. An analogous fractionalisation will be considered for T̃α
A .

We can now evaluate

n⟨Ψ(k)|Tα
A T̃

α
B |Ψ(k)⟩n

n⟨Ψ(k)|Ψ(k)⟩n
=

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k
Tα
A T̃

α
B

(
O1(p)

)k
. . . (On(p))k |0⟩n

n⟨0| ((O†)n(−p))
k
. . . ((O†)1(−p))

k
(O1(p))k . . . (On(p))k |0⟩n

. (3.82)

The denominator, required to ensure normalisation, can be computed using Wick’s theorem, which

gives the expectation value as a sum over the possible contractions:

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k (
O1(p)

)k
. . . (On(p))k |0⟩n =

[⟨0|
(
(O†)(−p)

)k
(O(p))k |0⟩

]n ≃ V nk(k!)n.

(3.83)

The numerator in (3.82) can be manipulated in a way analogous to the single-particle state, now

using the exchange relation (3.81) :

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k
Tα
A T̃

α
B

(
O1(p)

)k
. . . (On(p))k |0⟩n =

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k (
O2

A(p)e
2πiα
n +On

B(p)e
− 2πiα

n +O1
C(p)

)k
· · · ×(

O1
A(p)e

2πiα
n +On−1

B (p)e−
2πiα
n +On

C(p)
)k
Tα
A T̃

α
B |0⟩n ≃

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k (
O2

A(p)e
2πα
n +On

B(p)e
− 2πiα

n +O1
C(p)

)k
· · · ×(

O1
A(p)e

2πiα
n +On−1

B (p)e−
2πiα
n +On

C(p)
)k

|0⟩n × n⟨0|Tα
A T̃

α
B |0⟩n.

(3.84)

The evaluation of the previous expression in the general case is a hard combinatorial task, but many

crucial features are already apparent. Namely, it is clear that 3nk terms are generated simply from

the expansion of all the products. Each of these terms is a string containing nk daggered operators

(O†)j(−p), where every j ∈ {1, . . . , n} appears exactly k times, followed by nk operators Oj
Ai
(p):

to have a non vanishing expectation value, also in these latter operators every j ∈ {1, . . . , n} must

appear exactly k times. Each of the non vanishing terms can then be evaluated via Wick’s theorem

and will give rise to precisely (k!)n identical contractions, thus canceling the combinatorial factor in

Eq. (3.83). Moreover, whenever the restriction of Oj
A(p) over the region A appears, a factor VAe

2πiα
n
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is present after the Wick contraction; similarly, a factor VBe
− 2πiα

n appears with every B and a factor

VC for every C. Putting everything together, we can infer the general structure

n⟨0|
(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k (
O2

A(p)e
2πiα/n +On

B(p)e
−2πiα/n +O1

C(p)
)k

· · · ×(
O1

A(p)e
2πiα/n +On−1

B (p)e−2πiα/n +On
C(p)

)k
|0⟩n ≃

(k!)n
∑
kA,kB

CkA,kBV
kA
A V kB

B (VC)
nk−kA−kBe

2πiα(kA−kB)

n ,

(3.85)

so that the expectation value is a homogeneous polynomial of degree nk in VA, VB, VC , and CkA,kB is

a combinatorial coefficient. Thus, generalising (3.62), the ratio of charged moments is:

Rn
k(rA, rB, r;α) =

n⟨Ψ(1)|Tα
A T̃

α
B |Ψ(1)⟩n

n⟨Ψ(1)|Ψ(1)⟩n
n⟨0|0⟩n

n⟨0|Tα
A T̃

α
B |0⟩n

=
∑
kA,kB

CkA,kBrA
kArB

kBrnk−kA−kBe
2πiα(kA−kB)

n , (3.86)

valid as usual in the infinite volume limit. The closed formula for the combinatorial coefficient CkA,kB

at any k and n is difficult to obtain by this method, but it has been obtained earlier for simpler qubit

states. Indeed, The numbers CkA,kB are nothing but the coefficients Ap,q in (3.18). Rather then giving

a complete proof of this claim, in the next section we study in detail a simple example.

3.3.3.1 An example: k = n = 2

Let us consider the example n = 2 and k = 2 to get an idea of how the combinatorics of (3.85)

works in this case. First, we define the symbol

(A1 ... Ank
j1 ... jnk

)
:=n ⟨0|

(
(O†)n(−p)

)k
. . .
(
(O†)1(−p)

)k
Oj1

A1
(p) . . .Ojkn

Akn
(p)|0⟩n. (3.87)

Among the strings which are generated, we only keep those for which any replica index j appears

exactly k times among (j1 . . . jnk), as all others will vanish after Wick contractions. For n = k = 2 the

length of the strings above is nk = 4. We notice that, unlike the case of a single excitation, the indices

ji in (3.87) are not uniquely fixed by the corresponding Ai’s: in particular, there may be different

permutations of the Ai’s corresponding to the same sequence of ji’s. For any given string, there are

others that can be obtained via the following permutations of the Ai indices:

(A1 A2 A3 A4) → (A2 A1 A3 A4), (A1 A2 A3 A4) → (A1 A2 A4 A3),

(A1 A2 A3 A4) → (A3 A4 A1 A2),
(3.88)

corresponding to a swap of the two operators in the first copy, a swap of the two operators in the

second copy and to a cyclic permutation of the copies respectively. All these terms contribute equally.
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Furthermore, as noticed in the previous section, each non-vanishing string yields a combinatorial

factor (k!)n = 4. These considerations allow us to slightly simplify the combinatorial counting, and

we only list the terms coming from strings up to the transformations generated by Eq. (3.88), taking

care of the degeneracy for each representative distinct string. Up to the combinatorial factors, the

contributing terms are:

• (A A A A): it yields (VAe
2πiα

2 )4.

• (B B B B): it yields (VBe
− 2πiα

2 )4.

• (A A B B) and (A B A B): they yield 6V 2
AV

2
B.

• (B A A A): it yields 4(VAe
2πiα

2 )3(VBe
− 2πiα

2 ).

• (A B B B): it yields 4(VBe
−2πiα/2)3(VAe

2πiα/2).

• (A C B C): it yields 8VAVBV
2
C .

• (C C C C): it yields V 4
c .

• (A C A C): it yields 4V 2
c (VAe

2πiα
2 )2.

• (B C B C): it yields 4V 2
C(VBe

− 2πiα
2 )2.

Putting all these pieces together and diving the result by (3.83), we obtain

R2
2(rA, rB, r;α) = r4Ae

4πiα + r4Be
−4πiα + 6r2Ar

2
B + 4r3ArBe

2πiα + 4r3BrAe
−2πiα+

8rArBr
2 + r4 + 4r2Ar

2e2πiα + 4r2Br
2e−2πiα.

(3.89)

This result is consistent with the one obtained from a direct evaluation of the right hand side of (3.17)

for n = 2, k = 2.

3.4 Numerics

In this section, we present numerical results for a 1D lattice Fermi gas, the same model we already

considered in Section 2.5.1. In particular, we consider the ground state at vanishing chemical potential,

which is a Fermi sea and has critical features. This Fermi sea is then excited through the insertion of

an additional particle above the Fermi energy at large momentum. We aim to compute the ratio of

charged moments for a state of a single excitation and show the validity of result (3.14) numerically.

Agreement with the latter confirms the claim made earlier in this chapter and in the previous one,

namely that while the ground state exhibits theory-dependent, highly non-trivial behavior (in this

case, captured by a free fermion CFT [120]), the contribution given by the excitation is universal.
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3.4.1 The method

Let us consider a Fermi chain of length L described by the fermionic operators {fj , f †j }j=1,...,L

satisfying the standard anticommutation relations

{fj , fj′} = {f †j , f
†
j′} = 0, {fj , f †j′} = δjj′ . (3.90)

We choose a Gaussian state with a given number of particles and consider its correlation matrix,

denoted by

C(j, j′) = ⟨f †j fj′⟩, j, j′ = 1, . . . , L. (3.91)

Let us further define the L× L covariance matrix

Γ = 1− 2C. (3.92)

Given any two disjoint spacial subsystems A and B, of length ℓA, ℓB respectively, the restriction of Γ

over A ∪B is a (ℓA + ℓB)× (ℓA + ℓB) matrix defined by

ΓA∪B =

ΓAA ΓAB

ΓBA ΓBB

 , (3.93)

Following [189] one can show that, if ρA∪B is the RDM for this system, the fermionic partial

transposition ρRB
A∪B is Gaussian. Moreover, since in general ρRB

A∪B is not Hermitian, it is convenient to

introduce a matrix ρ× defined as

ρ× =
(ρRB

A∪B)(ρ
RB
A∪B)

†

Tr(ρ2A∪B)
. (3.94)

From the definition of partial time-reversal transposition, it is possible to show [190] that ρ× has unit

trace. If one interprets ρ× as an unphysical mixed state of A∪B, its associated covariance matrix is3

(See [189, 191])

Γ×
A∪B ≡ 2

1 + Γ2
A∪B

ΓAA 0

0 −ΓBB

 . (3.95)

One can then express the even charged moments of the partially transposed RDM in terms of the

eigenvalues of ΓA∪B and Γ×
A∪B as (See also [120])

log Tr
(
|ρRB

A∪B|
ne2πiα(Q̂A−Q̂B)

)
= Tr log

((
1− Γ×

A∪B
2

)n
2

e2πiα +

(
1 + Γ×

A∪B
2

)n
2

)

+
n

2
Tr log

((
1 + ΓA∪B

2

)2

+

(
1− ΓA∪B

2

)2
)
.

(3.96)

3Strictly speaking, the correlation matrix is unitarily equivalent to the one in Eq. (3.95), as shown in [190]. However,
this is not important for our purpose, as we are interested on its spectrum only.
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We stress that Eq. (3.96) makes sense also if n is not an even integer, and it naturally provides the

analytic continuation over n for the even charged moments.

3.4.2 Lattice Fermi gas

For our numerics we take the Hamiltonian of a lattice free Fermi gas on a ring of length L

H = −1

2

∑
j

f †j+1fj + f †j fj+1 . (3.97)

Its ground state is a Fermi sea, with Fermi momentum kF = π/2, and its correlation matrix is

C0(j, j
′) := ⟨f †j fj′⟩0 =

sin kF (j − j′)

L sin π(j−j′)
L

. (3.98)

We then consider the excited state obtained via the insertion of a particle at momentum

k = kF +
π

2
− π

L
, (3.99)

above the Fermi sea, whose correlation matrix is

C(j, j′) = C0(j, j
′) +

1

L
e−i(kF+π

2
− π

L
)(j−j′). (3.100)

Notice that this state differs from the particle-hole excitation considered in 2.5.1. While the specific

choice of k is irrelevant for our purpose, it is important to require that k − kF is finite in the

thermodynamic limit. We then consider the subsystems

A = {1, . . . , ℓA}, B = {ℓA + 1, . . . , ℓA + ℓB}, (3.101)

and we fix the size of A ∪B to be half the subsystem size:

ℓA + ℓB
L

=
1

2
. (3.102)

Finally, by using (3.96) we evaluate numerically the difference of charged Rényi negativities

En(α)− En,0(α) := log
Tr
(
|ρRB

A∪B|ne2πiα(Q̂A−Q̂B)
)

Tr
(
|ρRB

A∪B,0|ne2πiα(Q̂A−Q̂B)
) , (3.103)

for some values of the flux α as a function of rA = ℓA/L, and we compare it with the prediction (3.14)

(with rB = ℓB/L = 1/2− rA). In figures 3.1 and 3.2 we show the results for a chain of length L = 400

and given values of n and α, while varying the value of rA from 0 to 1/2. We consider also non-even
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Figure 3.1 Difference of (uncharged, α = 0) Rényi negativities for the one-particle state at n =
0.5, 1, 2. Note that although we derived equation (3.14) for n even via the replica approach, we can
analytically continue the latter to any value of n. The theoretical results are the dashed lines, and the
numerical values are the dots.

values of n, and we compare the numerics with the analytic continuation (over the even integers) of

our predictions. The agreement between the numerical results and equation (3.14) is good, even if

there are small discrepancies for small values of ℓA or ℓB (corresponding to rA ≃ 0 and rA ≃ 0.5) due

to finite-size effects which vanish in the large-volume limit.

3.5 Concluding remarks

In this chapter we concluded the investigation of U(1) symmetry-resolved entanglement measures in

zero-density excited states. Zero-density here means that volume is taken to infinity, while the number

of excitations above the ground state (which may be trivial, as for a qubit state, or highly non-trivial as

in QFT) is kept fixed and finite. The results presented in this chapter and in the previous one extend

work on entanglement measures for zero-density excited states carried out in [114–116, 144]. Other

important contributions to this research field are [146, 148–150, 152, 192, 193]. In line with the results

of the previous chapter for the Rényi entropies, we expected and indeed found that the contribution of

a finite number of excitations to the symmetry-resolved (logarithmic) negativity is given by a simple

formula, a polynomial on the variables rA, rB and r = 1−rA−rB, which represent the relative sizes of

two subsystems A and B and their complement, respectively. For the symmetry-resolved moments of

the negativity, this polynomial depends also on a parameter α related to the internal U(1) symmetry

of the theory. The formulae that we obtained generalise the results for the uncharged moments in a

simple way and are consistent with numerical results. However, some of the methods that we have

employed to obtain these results are quite new and have potential for further use.

The method of twist operators, suggested by the computation of entanglement measures in

d-dimensional free bosonic theories [144], was introduced in the previous chapter and here we

provided a very non-trivial check of its validity. From this method alone, we can claim that our
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Figure 3.2 Difference of charged Rényi negativities for the one-particle state at flux α =
0.1, 0.2, 0.3, 0.4 and n = 1, 2 evaluated numerically (dots) versus the analytical predictions (3.14)
(dashed lines). The left (right) panels show the real (imaginary) part of En(α)− En,0(α). The size of
the chain is L = 400, and we plot the results as functions of rA ∈ (0, 1/2).

formulae should be valid in any dimensionality and in the presence of short-range interactions as

well. Compared to a computation based on branch-point twist fields for free QFT, as performed for

the negativity in [116], the use of twist operators captures the same universal result through a

significantly simpler computation. A further application of twist operators and one of the most

interesting and novel results of this chapter is the fact these operators can be easily adapted to treat

particles with both fermionic and bosonic statistics. In particular, it has been known for some time

that the negativity of fermionic theories requires a redefinition of the operation of partial

transposition [181, 182]. Here we find that, first, this redefinition is easy to implement in the context

of twist operators and, second, that once implemented it leads to a result which is the same as for

bosons. This ties in well with the idea that the universal part of the entanglement associated with

these types of excitation has a semiclassical interpretation (as recently explored in [152]), thus the

statistics of excitations plays no role at leading order in the large-volume expansion.

Looking ahead, there are many directions to explore in relation to the role of quasiparticle

excitations in the context of symmetry-resolved entanglement measures. Via twist operators, any

new measures of charged entanglement should be computable by a suitable redefinition of the
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operators. In particular, a quantum distance such as the relative entropy [113] can be computed to

detect a difference in the entanglement content of zero-density states which have the same

symmetry-resolved entropy and/or negativity. The symmetry-resolved relative entropy of excited

states in 1+1D CFT was studied in [97].

Equally interesting would be the investigation of the crossover from low- to high-energy states in

CFT, from the model-dependent predictions of [154] to the sort of universal results obtained in [1, 2,

114–116, 144] and here. The results of [154] apply to low-lying excited states of CFT, whereas the

universal formulae obtained for zero-density excited states apply for large momentum/energy. This

suggests that there must be a crossover between these two behaviours, which could be understood

using CFT arguments.

Finally, twist operators seem to be a promising approach to computing entanglement measures in

limiting cases where many details of the interaction can be neglected, i.e. the semiclassical limit. A

field where these ideas can be applied is that of out-of-equilibrium protocols [136, 194]. In this context,

characterising the entanglement growth for free or interacting theories in any dimension via the twist

operator approach constitutes an interesting challenge. For some protocols, such as a global quench,

we expect that the linear growth of entanglement may be captured by a semiclassical approximation

of correlation functions, similar to what we considered in this chapter and in the previous one.

3.A Combinatorics

3.A.1 Non-vanishing strings

Here, we show which terms in (3.53) give rise to non-vanishing contractions in the large-volume

limit, following the notation introduced in (3.56). As noted after equation (3.56), the strings that

produce leading powers of the volume are those where the sequence of indices (j1, . . . , jn) is a

permutation (σ(1), . . . , σ(n)), and the ji are further constrained by (3.57).

Now suppose that Ai = A for one value of i. this means that ji = i+ 1 and thus it can be either

ji+1 = i + 2, which fixes Ai+1 = A or ji+1 = i, which fixes Ai+1 = B. In the first case the fact that

Ai = Ai+1 = A selects all the other Ai = A, while in the second case we simply have a pair AB.

Analogously, we can start with Ai = B, ji = i − 1. Now the two possibilities are ji−1 = i, that is

Ai−1 = A and thus again we have a pair AB, or ji−1 = i − 2, that is Ai−1 = B and thus Ai = B for

every i. To summarise, there are only three possibilities: Ai = A for every i, Ai = B for every i, and

finally whenever Ai = A, Ai+1 = B. This is the claim presented after equation (3.57).
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3.A.2 Combinatorial counting of strings

In this appendix we count the number of non-vanishing strings

(A1 . . . An), (3.104)

containing k pairs of consecutive A’s and B’s. We first focus on the type-I strings

(B A2 . . . . . . An−1 A). (3.105)

The number of strings that satisfy the constraints derived in Section (3.3.1) is given by all the possible

ways one can insert sequences of C’s among any pair of A’s and B’s. In other words, the generic string

will look like

(B C C . . . C A B C C . . . . . . C A), (3.106)

where k sequences of C’s of length {xi}i=1,...,k are present, and xi ≥ 0 are integer numbers. As the

length of the total string is n, the {xi}i=1,...,k satisfy the following constraint

x1 + · · ·+ xk = n− 2k. (3.107)

We now make use of a remarkable mathematical result, namely that the number of non-negative

integer solutions of x1 + · · · + xk = n, that is the number of non-negative integer partitions of n

into k parts is
(
n+k−1

n

)
[195]. As a consequence, the number of type-I strings satisfying the previous

constraints is (
n− k − 1

k − 1

)
. (3.108)

Similarly, we consider now the type-II strings, having the following structure

(C C . . . C A B C C . . . . . . C). (3.109)

In this case, when there are k pairs of consecutive A’s and B’s, there are k+1 sequences of consecutive

C’s. Thus, we now have to count the number of non-negative integer solutions of

x1 + · · ·+ xk+1 = n− 2k, (3.110)

which is (
n− k

k

)
. (3.111)
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Summing up the contribution of both type of strings, we get precisely

(
n− k − 1

k − 1

)
+

(
n− k

k

)
(3.112)

as the total number of strings containing k pairs of consecutive A’s and B’s, and this proves the result

(3.60). We notice that in type-I strings there is always at least one pair of consecutive A’s and B’s,

given by An = A and A1 = B. Then, if k = 0 in (3.108) there are no strings satisfying the constraints,

which is compatible with the convention
(
n−1
−1

)
= 0.

As a final remark, we stress that the problem of counting the number of type-I and type-II strings

containing k pairs of consecutive A’s and B’s is identical to the problem mentioned after equation

(3.42), namely counting the number of sequences (k1, . . . , kn) with ki ∈ {0, 1} and ki+1 = 0 whenever

ki = 0.

3.B Mathematical identities

3.B.1 Generalised Lucas polynomials and a proof of equation (3.63)

In this appendix we prove the identity (3.63) by taking advantage of some properties of generalised

Lucas polynomials. These are polynomials V (x, y) defined by the recurrence relation [196, 197]:

Vn+2(x, y) = xVn+1(x, y) + yVn(x, y) , n ∈ N0, (3.113)

the first two polynomials being V0(x, y) = 2, V1(x, y) = x. The proof of (3.63) is based on the fact

that the two sides of the equation are precisely two equivalent closed formulae for the n-th Lucas

polynomial, with x = r, y = rArB. In fact, we will now prove the following two statements:

1. For all integers n ≥ 0, one has a generalised Binet formula

Vn(x, y) = αn + βn , α =
x+

√
x2 + 4y

2
, β =

x−
√
x2 + 4y

2
. (3.114)

This is immediate to prove, as (3.113) holds by inspection for n = 0, n = 1 and furthermore

α2 = xα + y, β2 = xβ + y, which implies that αn+2 = xαn+1 + yαn and βn+2 = xβn+1 + yβn.

This means that αn + βn satisfies the relation (3.113) for all n ≥ 0.

2. For all integers n ≥ 1 another explicit formula for Vn(x, y) is given by

Vn(x, y) =

[n/2]∑
k=0

n

n− k

(
n− k

k

)
xn−2kyk . (3.115)
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We prove this by showing again that the recurrence relation is satisfied. For n = 1, n = 2 it is

immediate to see that this reproduces the correct polynomials. For n ≥ 3, we can make use of

the identity

n

n− k

(
n− k

k

)
=

n− 1

n− k − 1

(
n− k − 1

k

)
+

n− 2

n− k − 1

(
n− k − 1

k − 1

)
, (3.116)

and we adopt the convention that
(
n
k

)
= 0 if k > n or k < 0. Let us now consider n = 2m, the

case of n odd being completely analogous. If n = 2m, [n/2] = m, [(n−1)/2] = [(n−2)/2] = m−1.

From (3.115) and (3.116) we have

Vn(x, y) =
m∑
k=0

2m

2m− k

(
2m− k

k

)
x2m−2kyk

= x
m∑
k=0

2m− 1

2m− 1− k

(
2m− 1− k

k

)
x2m−1−2kyk

+ y

m∑
k=0

2m− 2

2m− 1− k

(
2m− 1− k

k − 1

)
x2m−2kyk−1. (3.117)

The first sum in the right-hand side vanishes if k = m, so that this term is xVn−1(x, y). The

second sum on the other hand vanishes if k = 0, so we can shift the summation variable and we

see that this term reproduces yVn−2(x, y). Hence the recurrence relation is proved.

Equation (3.63) follows from the identity of expressions (3.114) and (3.115), and it has two interesting

implications. The first one comes from a direct expansion of the Binet formula using the binomial

theorem:(
x−

√
x2 + 4y

2

)n

+

(
x+

√
x2 + 4y

2

)n

=
1

2n

n∑
j=0

[
(−1)k

(
n

j

)
xn−j(x2 + 4y)j/2 +

(
n

j

)
xn−j(x2 + 4y)j/2

]

= 21−n

[n/2]∑
j=0

[(
n

2j

)
xn−2j(x2 + 4y)j

]

= 21−n

[n/2]∑
j=0

(
n

2j

)
xn−2j

j∑
k=0

(
j

k

)
x2j−2k22kyk = 21−n

[n/2]∑
j=0

j∑
k=0

(
n

2j

)(
j

k

)
xn−2k22kyk

= 21−n

[n/2]∑
k=0

xn−2k22kyk
[n/2]∑
j=k

(
n

2j

)(
j

k

)
=

[n/2]∑
k=0

21−n+2k

[n/2]∑
j=k

(
n

2j

)(
j

k

)xn−2kyk , (3.118)
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where in the last line we rearranged the sums over j and k. This quantity equals (3.115), which implies

the non-trivial combinatorial identity:

n

n− k

(
n− k

k

)
= 21−n+2k

[n/2]∑
j=k

(
n

2j

)(
j

k

)
. (3.119)

To the best of our knowledge, this identity was only proved for n odd in [196].

The other interesting implication is obtained for x = y = 1. In this case, the Lucas polynomials

(3.113) reduce to the Lucas numbers:

Ln = Ln−1 + Ln−2 , n ≥ 2, (3.120)

with L0 = 2, L1 = 1. The recurrence formula is the same defining the Fibonacci sequence, except

for the different initial values. Equation (3.114) with x = y = 1 gives a closed formula for the Lucas

numbers, and thus we have, for n ≥ 1:

[n/2]∑
k=0

n

n− k

(
n− k

k

)
=

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

. (3.121)

The quantity on the right-hand side is ϕn + (1 − ϕ)n, with ϕ the golden ratio, and it is always a

positive integer. On the other hand, the quantity on the left hand side is the number of non-vanishing

strings of type-I and type-II (out of a total of 3n possible strings) obtained via the contraction methods

discussed in Section 3.3.

3.B.2 Product formulae

Here we point out two useful identities which are employed to obtain the free fermion result in

Subsection 3.3.2.1. The first relation, which is immediate to check, is:

n−1
2∏

p=−n−1
2

(x+ e
2πip
n y) = xn + yn, n ∈ N, (3.122)
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where the product is performed over p integer (resp. semi-integer) when n is odd (resp. even). A

consequence of this identity is:

n−1
2∏

p=−n−1
2

(xe
2πip
n + ye−

2πip
n + z)

= xn

n−1
2∏

p=−n−1
2

[
1 +

z −
√
z2 − 4yx

2x
e−

2πip
n

][
1 +

z +
√
z2 − 4yx

2x
e−

2πip
n

]

= xn

[
1 +

(
z −

√
z2 − 4yx

2x

)n][
1 +

(
z +

√
z2 − 4yx

2x

)n]

= xn + yn +

(
z −

√
z2 − 4yx

2

)n

+

(
z +

√
z2 − 4yx

2

)n

.

Finally, the equation above can be employed to evaluate

n−1
2∏

p=−n−1
2

(rAe
2πi
n

(α+p) − rBe
− 2πi

n
(α+p) + r)

= e2πiαrnA + e−2πiαrnB +

(
r +

√
r2 + 4rArB
2

)n

+

(
−r +

√
r2 + 4rArB
2

)n

, (3.123)

valid if n is an even integer 4.

4It is important here that n is even, as (−rB)
n = rnB .
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FOUR

TWO-POINT FUNCTION OF COMPOSITE TWIST FIELDS IN THE

DISORDERED PHASE OF THE ISING FIELD THEORY

All standard measures of bipartite entanglement in one-dimensional QFT can be expressed in terms of

correlators of the branch-point twist fields (BPTF) T and T̃ . These are symmetry fields associated to

cyclic permutation symmetry in a replica theory and having the smallest conformal dimension at the

critical point. As seen in the previous chapters, the composite twist fields (CTF), typically of higher

dimension, play a role in the study of symmetry-resolved measures of entanglement. In this chapter,

based on [4], we give an exact expression for the two-point function of a CTF that arises in the Ising

field theory. In doing so we extend the techniques originally developed for the standard BPTF in free

theories as well as an existing computation [107] of the same two-point function which focussed on the

leading large-distance contribution. We study the ground state two-point function of the composite

twist field Tµ and its conjugate T̃µ. At criticality, this field can be defined as the leading field in the

operator product expansion of T and the disorder field µ. We find a general formula for the logarithm

of ⟨Tµ(0)T̃µ(ℓ)⟩ and for (the derivative of) its analytic continuation to positive real replica numbers

greater than 1. We check our formula for consistency by showing that at short distances it exactly

reproduces the expected conformal dimension

4.1 Introduction

It is well known that the 1+1D Ising field theory, obtained as the continuum limit of the quantum

Ising chain, is described near the critical point by the action of a free Majorana fermion [60, 61, 74,

198]:

S =

∫
dzdz̄

(
ψ(z)∂̄ψ(z) + ψ̄(z̄)∂ψ̄(z̄) +mψ̄(z̄)ψ(z)

)
, (4.1)
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where ψ, ψ̄ are the two components of the Majorana field Ψ and the sign of the mass term indicates

whether the theory is in the ordered or in the disordered phase (the critical point being at m = 0).

This theory has an internal Z2 symmetry, as the action is invariant under Ψ → −Ψ. This symmetry

is associated to the order operator σ (the spin field) and the disorder operator µ (disorder operator),

which are semi-local with respect to the fermion field Ψ, so that the three fields can be characterised

by their mutual equal-time exchange relations [60, 61, 81]:

Ψ(x)σ(y) =

 σ(y)Ψ(x) y > x

σ(y)Ψ(x) y < x
and Ψ(x)µ(y) =

 −µ(y)Ψ(x) y > x

µ(y)Ψ(x) y < x
. (4.2)

In the replica version of the theory, the fields above acquire an index {µj , σj ,Ψj} with j = 1, . . . , n,

running over the copy numbers. The resulting model possesses a larger amount of symmetry, as

the Z2 symmetry on each copy is now enhanced with symmetry under the exchange of any copies.

As discussed in Section 1.2, the latter symmetry plays a fundamental role in computations of the

entanglement entropy and other measures of entanglement [11, 12, 20].

In [20] the branch-point twist fields T and its conjugate T̃ were defined as the symmetry fields

associated with cyclic permutation symmetry of copies in a replica theory. These fields too are

characterised by their exchange relations with respect to the fermions, which are identical to those in

(1.26):

Ψj(x)T (y) =

 T (y)Ψj+1(x) y > x

T (y)Ψj(x) y < x
and Ψj(x)T̃ (y) =

 T̃ (y)Ψj−1(x) y > x

T̃ (y)Ψj(x) y < x
(4.3)

for j = 1, . . . , n and n + 1 ≡ 1. These relations can be written for any 1+1D QFT, however, in the

context of massive integrable theories they provide -together with the two-body scattering matrix-

all the information needed to compute correlation functions and matrix elements of T . These

computations have now been carried out for many theories and entanglement measures (see e.g. [63,

117, 199, 200]) revealing many new insights into the universal properties of entanglement at

near-critical points.

In recent years, it has been shown that also the fields resulting from the conformal OPE of T

with other fields of the Ising field theory can be of interest in the context of entanglement [19, 94,

156–158, 201]. In particular, the correlation functions of the leading field in the OPE of T and
∑

j µj ,

denoted by Tµ, are related to the Z2-resolved entanglement entropy [19, 94, 107]. Tµ satisfies exchange

relations which combine those for T and µ as seen above:

Ψj(x)Tµ(y) =

 −Tµ(y)Ψj+1(x) y > x

Tµ(y)Ψj(x) y < x
and Ψj(x)T̃µ(y) =

 −T̃µ(y)Ψj−1(x) y > x

T̃µ(y)Ψj(x) y < x
. (4.4)
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The computation of the symmetry-resolved entanglement provides strong motivation to study

correlators of Tµ and this is the focus of the present chapter. Using techniques of integrable QFT, we

find an exact analytic expression for the (logarithm of the) two-point function ⟨Tµ(0)T̃µ(ℓ)⟩ in the

disordered phase of the model. The applications of such a result in the context of entanglement will

not be discussed here, but they follow quite straightforwardly from existing literature. In particular,

the form factors of Tµ and the leading contribution to its two-point function were computed in [107].

The present work is an extension of those results to include higher particle contributions and to show

how non-trivial resummation identities allow for relatively simple closed formulae for all correlation

function cumulants.

Correlation functions of composite twist fields have been studied in a number of works both for

the Ising field theory and other, interacting models. Most of these results build upon the form factor

program for the matrix elements of T [20] and its extension to composite twist fields [107]. In [105, 123,

124] free theories were studied, whereas interacting IQFTs such as the Ising and sinh-Gordon models

(both with discrete Z2 symmetry), the sine-Gordon model (with continuous U(1) symmetry) and the

3-state Potts model (with discrete Z3 symmetry) were studied in [106, 107] and [108], respectively. It

is also possible to study composite twist fields where T is composed with a local field not associated

with an internal symmetry. Such composite fields are associated with cyclic permutation symmetry

too and have a conformal dimension which is distinct from that of T . In particular, for theories

whose UV fixed point is described by a non-unitary CFT, it is possible to construct composite twist

fields whose dimension is lower than that of T and they play a critical role in describing the usual

measures of entanglement [158]. This happens for instance for the Lee-Yang theory both at and away

from criticality. The form factors and two-point functions of the BPTF and CTF for this theory were

studied in [201]. The expectation values of composite twist fields involving the energy field in the

Ising field theory were studied in [156, 157].

The structure of this chapter is as follows: In Section 4.2 we review form factor results for the order

and disorder fields in the Ising field theory as well as for T and Tµ. We then present the cumulant

expansion of two-point functions and introduce an example of the type of convergence issues that

arise in the cumulant expansion of ⟨Tµ(0)T̃µ(ℓ)⟩/⟨Tµ⟩2. In Section 4.3 we find closed formulae for all

higher cumulants, leading to a close-form expression for the two-point function. In Section 4.4 we test

this expression by obtaining the exact conformal dimension of Tµ from resummation of leading terms

in the short-distance expansion of the cumulants. We show that the normalised two-point function

⟨Tµ(0)T̃µ(ℓ)⟩/⟨Tµ⟩2 is in fact proportional to the normalised two-point function ⟨µ(0)µ(ℓ)⟩/⟨µ⟩2, thus

it factorises into n-dependent and n-independent parts. In Section 4.5 we show how to analytically

continue the cumulant expansion from n integer and greater than 1 to n real. This allows us to write

a formula for the n-derivative of the two-point function at n = 1, a quantity that typically plays a
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role in entanglement measures. We conclude in Section 4.6.

4.2 Field content of the Ising model and form factors

The correlation functions and form factors of the fields σ, µ in the disordered phase can be obtained

via form factor bootstrap [77, 78] and were studied in the seminal papers [62, 81]. Form factors of

descendent fields (in the CFT sense) of the energy field ε were studied in [80] and shown to match

in number and spin the field content of the corresponding Verma module in the underlying Ising

CFT. Starting from the relations (4.2) the form factor equations can be written and solved for matrix

elements of σ, µ and these were found to take an extremely simple form [62], namely (the factor ik is

needed to satisfy the kinematic residue equation):

Fµ
2k(θ1, . . . , θ2k) = ik⟨µ⟩

∏
1≤i<j≤2k

tanh
θij
2
, (4.5)

F σ
2k+1(θ1, . . . , θ2k+1) = ikF σ

1

∏
1≤i<j≤2k+1

tanh
θij
2
, (4.6)

with θij := θi − θj and ⟨µ⟩ and F σ
1 normalisation constants which can be identified with the vacuum

expectation value of µ and the one-particle form factor of σ, respectively. In general, as discussed in

Section 1.2, form factors are characterised by a set of quantum numbers specifying the particle types

in the asymptotic state, but in the Ising model there is a single particle type so these do not need to be

specified. For the field µ the products above can be rewritten as a Pfaffian of a 2k× 2k antisymmetric

matrix A with entries Aij = tanh
θij
2 . In particular this means that the vacuum expectation value of µ

is non-vanishing, whereas it is vanishing for σ. This is a consequence of the fact that in the disordered

phase the field σ (µ) is odd (even) with respect to the Z2 action on the the fermion field, which creates

the asymptotic states, and hence σ (µ) will have a non vanishing correlator only with an odd (even)

number of particles.

The form factors of the BPTFs T and T̃ in the (replica) Ising model have been known for some

time [20, 63] and due to the free nature of the model they can also be expressed in terms of a Pfaffian

F
T |11...1
2k (θ1, . . . , θ2k;n) = ⟨T ⟩Pf(K), Pf(K) =

√
detK, (4.7)

where n labels the number of replicas,

Kij := k(θij) =
sin π

n

2n sinh
(
iπ−θij
2n

)
sinh

(
iπ+θij
2n

) sinh θij
2n

sinh iπ
2n

, with i, j = 1, . . . , 2k, (4.8)

and the superindices 11 . . . 1 indicate that all particles are in the same copy 1. From this representation
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we also see that all form factors are functions of rapidity differences only, a property that holds for all

spinless fields in relativistic QFT. The two-particle form factor is simply F
T |11
2 (θ1, θ2;n) = ⟨T ⟩k(θ12).

Form factors for particles in copies j1 . . . j2k can be obtained from the above using the standard form

factor equations presented in [20]

F
T |j1...j2k
2k (θ1, . . . , θ2k;n) = F

T |1...1
2k (θj1−1

1 , . . . , θjk−1
2k ;n), for j1 ≥ j2 · · · ≥ j2k, (4.9)

with

θj := θ + 2πij. (4.10)

The form factors of the composite twist field Tµ where first obtained in [107] and have again the

Pfaffian structure typical of the Ising model, that is

F
Tµ|11...1
2k (θ1, . . . , θ2k;n) = ⟨Tµ⟩Pf(W ), (4.11)

with

Wij := w(θij) =
sin π

n

2n sinh
(
iπ−θij
2n

)
sinh

(
iπ+θij
2n

) sinh θij
n

sinh iπ
n

. (4.12)

As we can see, this function differs from k(θ) above only because n is replaced by n/2 in the minimal

part of the form factor (i.e. the part that does not contain kinematic poles). However, this small

change leads to some important differences, the main one being the asymptotic properties

lim
θ→∞

k(θ) = 0, and lim
θ→±∞

w(θ) = ± i

n
, (4.13)

as well as

lim
n→1

k(θ) = 0, and lim
n→1

w(θ) = i tanh
θ

2
. (4.14)

Note that the last equality simply shows that the two-particle form factor of Tµ reduces to that of µ

for n = 1, as expected. This extends to higher-particle form factors too. It is known from the study of

many models and arguments such as those presented in [202] that the asymptotics of two particle form

factors should be related to the value of a one-particle form factor. This is a consequence of so-called

cluster decomposition in momentum space. In simple theories, as assumed in [202], this one-particle

form factor would be that of the same field. However, in the Ising model, due to Z2 symmetry there

is a mixing between form factors of µ and σ and also those of Tσ (defined as the composition of T and∑
j σj) and Tµ, in such a way that:

lim
θ→±∞

w(θ) = ±τ2, (4.15)

where τ := F
Tσ |1
1 is the one-particle form factor of Tσ, which by relativistic invariance does not depend
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on θ. Combining (4.15) with (4.13) we have that

|F Tσ |1
1 |2 = |τ |2 = 1

n
. (4.16)

Higher form factors of Tσ can also be related to Pfaffians by employing a more general version of the

cluster decomposition property. Namely

lim
θ2k+2→∞

⟨Tµ⟩−1F
Tµ
2k+2(θ1, . . . , θ2k+2;n) = τF Tσ

2k+1(θ1, . . . , θ2k+1;n). (4.17)

Note that the prefactor ⟨Tµ⟩−1 ensures that when k = 0 both sides of the equation become τ2. In this

way, the form factors F Tσ
2k+1(θ1, . . . , θ2k+1;n) can be computed systematically and it is easy to show

that they can be written as sums of Pfaffians involving 2k variables. In fact, we can show that

F Tσ
2k+1(θ1, . . . , θ2k+1;n) =

τ

⟨Tµ⟩

2k+1∑
j=1

(−1)j+1F
Tµ
2k (θ1, . . . , θ̄j , . . . θ2k+1;n), (4.18)

where the sign depends on the position of the variable θj and can be worked out by counting Wick

contractions. Similarly, the symbol θ̄j means that this variable is removed, hence this is a sum over

2k-particle form factors depending on a subset of the variables {θ1, . . . , θ2k+1}. For instance

F Tσ
3 (θ1, θ2, θ3;n) = τ(w(θ12)− w(θ13) + w(θ23))

=
τ

⟨Tµ⟩
(F

Tµ
2 (θ1, θ2;n)− F

Tµ
2 (θ1, θ3;n) + F

Tµ
2 (θ2, θ3;n)). (4.19)

The formula (4.18) is, to the best of our knowledge, new and first presented here. However, this

structure is the same relating the form factors (4.5) and (4.6) of the fields µ and σ which are obtained

in the limit n = 1, and ultimately relies on the factorisation properties of the tanh function.

In [107] it was also shown that the form factor (4.12) gives the correct conformal dimension of Tµ

via the ∆-sum rule [202]. This dimension is [12, 19, 58, 59, 156]

∆Tµ = ∆T +
∆µ

n
=

n

48
+

1

24n
, with ∆T =

1

48

(
n− 1

n

)
, ∆µ =

1

16
. (4.20)

We observe that, since ∆µ = ∆σ, it also holds ∆Tµ = ∆Tσ .
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4.2.1 Two-point function and cumulant expansion

In this chapter, we are interested in the two-point function of the field Tµ in the ground state of

the disordered phase. Our goal is to write down an expansion of the form

log

(
⟨Tµ(0)T̃µ(ℓ)⟩

⟨Tµ⟩2

)
=

∞∑
k=1

c
Tµ
k (ℓ;n)

mℓ≪1≃ −4∆Tµ log(mℓ)−KTµ , (4.21)

where the sum is over functions c
Tµ
k (ℓ;n) known as cumulants and KTµ is a constant that depends

on the vacuum expectation value ⟨Tµ⟩. The structure of the right-hand side in the above equation is

dictated by the form of correlators of primary fields in CFT. The cumulant expansion of the two-point

function of the standard BPTF in the ground state of the free massive boson was performed in [117],

and we borrow ideas from that work. The cumulants are multiple integrals of linear combinations of

products of form factors. More precisely, we have the following structure

c
Tµ
k (ℓ;n) =

1

k!(2π)k

n∑
j1,...,jk=1

∫ ∞

−∞
dθ1 · · ·

∫ ∞

−∞
dθk h

Tµ|j1...jk
k (θ1, · · · , θk, n)e−mℓ

∑k
i=1 cosh θi , (4.22)

where the functions h
O|j1...jk
k (θ1, · · · , θk, n) are given in terms of the form factors of the field involved,

and ji are the copy numbers. For example:

h
Tµ|j1j2
2 (θ1, θ2, n) = ⟨Tµ⟩−2

∣∣∣F Tµ|j1j2
2 (θ1, θ2, n)

∣∣∣2 ,
h
Tµ|j1j2j3j4
4 (θ1, θ2, θ3, θ4, n) = ⟨Tµ⟩−2

∣∣∣F Tµ|j1j2j3j4
4 (θ1, θ2, θ3, θ4, n)

∣∣∣2
−hTµ|j1j22 (θ1, θ2, n)h

Tµ|j3j4
2 (θ3, θ4, n)

−hTµ|j1j32 (θ1, θ3, n)h
Tµ|j2j4
2 (θ2, θ4, n)

−hTµ|j1j42 (θ1, θ4, n)h
Tµ|j2j3
2 (θ2, θ3, n), (4.23)

and so on, whereas all odd particle terms are zero. Similar formulae can be written for the cumulants

of Tσ where only odd particle cumulants are non-vanishing. A general diagrammatic construction of

the functions appearing in a cumulant expansion can be found for instance in [203]. For a generic

local field O, it is standard to require that

h
O|j1...jk
k (θ1, · · · , θk) ∼ e−θi , (4.24)

as θi → ∞. Given the properties of the form factors presented in the previous section, we see that this

asymptotic behaviour is not satisfied for the cumulants of the two-point function of Tµ, or indeed for

the cumulants of the two-point function of µ as shown in [62]. In fact, the cumulant expansion is still

convergent in both cases, but the leading behaviour for small mℓ is harder to extract than in theories
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where (4.24) holds.

4.2.2 Two-particle contribution

One of the simplest ways to check the validity of the two-point function expansion consists in

recovering the conformal dimension of the field by exact resummation of all terms which are

proportional to log(mℓ) for mℓ ≪ 1, that is the first term in (4.21). Let us start by considering the

simplest contribution to the connected part of the two-point function ⟨Tµ(0)T̃µ(ℓ)⟩/⟨Tµ⟩2, which has

already been studied in the literature [107]. The first non-vanishing contribution to the cumulant

expansion comes from h
Tµ|j1j2
2 (θ1, θ2, n), which is nothing but the normalised squared modulus of the

two-particle form factor. Using (4.9), the latter can be rewritten as

n∑
i,j=1

∣∣∣F Tµ|ij
2 (θ1, θ2)

∣∣∣2 = n
n−1∑
j=0

∣∣∣F Tµ|11
2 (θ1 + 2πij, θ2)

∣∣∣2 = n⟨Tµ⟩2
n−1∑
j=0

w((−θ12)j)w(θj12). (4.25)

Thus we have

c
Tµ
2 (ℓ;n) = n

n−1∑
j=0

∫ ∞

−∞

∫ ∞

−∞

dθ1dθ2
2(2π)2

w((−θ12)j)w(θj12) e
−mℓ cosh θ1−mℓ cosh θ2

=
n

(2π)2

n−1∑
j=0

∫ ∞

−∞
dθ w((−θ)j)w(θj)K0(2mℓ cosh

θ

2
), (4.26)

where the second line is obtained by performing a change of variable θ = θ1− θ2, Θ = θ1+θ2
2 and using

the integral representation of the Bessel function [91]

K0(z) =

∫ ∞

0
dx e−z coshx. (4.27)

The sum over the copy index j was computed in [107] via contour integration and it is given by

n−1∑
j=0

w((−θ)j)w(θj) = −i tanh θ
2
(w(2θ + iπ) + w(2θ − iπ))− 1

n
. (4.28)

This function tends asymptotically to the value 1
n for |θ| → ∞. This means that the usual procedure

consisting of expanding the Bessel function for mℓ ≪ 1 and isolating the log(mℓ) leading term, thus

effectively removing the Bessel function from the integrand in (4.26), now leads to a divergent integral.

However, we can rewrite (4.26) as

c
Tµ
2 (ℓ;n) =

n

(2π)2

∫ ∞

−∞
dθ

n−1∑
j=0

w((−θ)j)w(θj)− 1

n

 K0(2mℓ cosh
θ

2
)

+
1

(2π)2

∫ ∞

−∞
dθK0(2mℓ cosh

θ

2
). (4.29)

128



Michele Mazzoni

In this form, the integral in the first line can be approximated for mℓ ≪ 1 by expanding the Bessel

function, giving a leading contribution which is proportional to log(mℓ), while the integral in the

second line can be computed exactly to

∫ ∞

−∞
dθK0(2mℓ cosh

θ

2
) = 2K0(mℓ)

2 mℓ≪1≃ −2(log(mℓ))2, (4.30)

so that, in this case, the leading small mℓ contribution diverges as (log(mℓ))2. Thus, although the

cumulant (4.26) is still well-defined, its leading small mℓ behaviour is now dominated by (log(mℓ))2

instead of log(mℓ). This is a consequence of the property (4.24) not holding in this case. Nonetheless,

terms of order (log(mℓ))2 should cancel out when including further contributions in the form factor

series as one expects to recover the 1/r4∆Tµ behaviour of the two-point function at short distances.

In the next sections we will show that this is indeed the case, providing a way to recover the expected

scaling (4.21) from our cumulant expansion.

4.3 Higher particle contributions: closed formulae

Existing studies of the branch-point twist field two-point function for free fermions [63] and bosons

[117] have revealed that the form of higher cumulants can be considerably simplified. This is because

under sum over particle types and integration over the rapidities, many of the terms in the cumulant

either cancel each other out or can be shown to be identical. In fact, it is possible to show that just

as for the standard BPTF, and for the same reasons already discussed in [63, 117] the cumulants of

the two-point function of Tµ take the generic form

c
Tµ
2k (ℓ;n) =

n

2k(2π)2k

n−1∑
j1,...,j2k−1=0

[
2k∏
i=1

∫ +∞

−∞
dθi e

−mℓ cosh θi

]

× (−1)k

(
w(θ−j1

12 )
k−1∏
i=1

w(θ
j2i−j2i+1

2i+12i+2))

)(
w(θ

j2k−1

1 2k )
k−1∏
i=1

w(θ
−j2i−1+j2i
2i 2i+1 )

)
. (4.31)

By using the fact that w(θ−j) = −w((−θ)j), we can change the sign of half of the factors in the second

line, cancelling out the factor (−1)k, so that the integrand becomes:

n−1∑
j1,...,j2k−1=0

w((−θ12)j1)w(θ
j2k−1

1 2k )

k−1∏
i=1

w(θ
j2i−j2i+1

2i+12i+2)w((−θ2i 2i+1)
j2i−1−j2i). (4.32)

In order to evaluate the integrals (4.31), it is convenient to perform a change of variables whereby we

first change the sign of all the rapidities θi with i even, without any change in the integration measure.
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Then, defining θ̂ij ≡ θi + θj the integrand becomes a function of rapidity sums only:

n−1∑
j1,...,j2k−1=0

w((−θ̂12)j1)w(θ̂ j1−j2
23 )w(θ̂ j2−j3

34 ) . . . w(θ̂
j2k−2−j2k−1

2k−1 2k )w(θ̂
j2k−1

1 2k ). (4.33)

We will refer to this as a fully connected sum, meaning that all terms are cyclically “connected” both

at the level of the rapidities and the summation indices.

4.3.1 Recursive formulae

The sum (4.33) can be computed recursively, leading to generalisations of the following result:

f1(x, y;n) :=
n−1∑
j=0

w((−x)j)w(yj) = − i

2

sinh
(x+y

2

)
cosh x

2 cosh
y
2

[w(x+ y + iπ) + w(x+ y − iπ)]− 1

n
, (4.34)

which is presented here for the first time, although the case x = y was obtained in [107] and has

already been reported in (4.28). It is also useful to know that

n−1∑
j=0

w(xj) = i tanh
x

2
. (4.35)

A derivation of formulae (4.34), (4.35) and their generalisations to multiple sums (see below) is

presented in Appendix 4.A.

For the branch-point twist field of free fermions and bosons [63, 117] a formula almost identical to

(4.34) also holds, albeit without the term − 1
n . This term in fact makes the generalisation of (4.34)

to multiple sums more complex for Tµ than it is for T . It can nonetheless be done as follows. Let us

consider, as an example, the next sum in the series, namely a sum of the form

n−1∑
j1,j2=0

w((−x)j1)w(yj1−j2)w(zj2) =

n−1∑
j=0

f1(x, y
−j , n)w(zj). (4.36)

Repeated use of (4.34) and (4.35) leads to

n−1∑
j1,j2=0

w((−x)j1)w(yj1−j2)w(zj2) = − i

n

(
tanh

x

2
+ tanh

y

2
+ tanh

z

2

)
(4.37)

+
1

4

cosh
(x+y+z

2

)
cosh x

2 cosh
y
2 cosh

z
2

[2w(x+ y + z) + w(x+ y + z + 2iπ) + w(x+ y + z − 2iπ)] .

This special case gives a good indication of the kind of structures that emerge. We observe that the

contribution in the second line of the above expression has exactly the same structure as found for the

BPTF in the free fermion theory [63]. The terms in the first line form a symmetric polynomial on the
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variables tanh x
2 , tanh

y
2 , tanh

z
2 . The general structure for higher sums goes as follows. let us define:

fk(x1, . . . , x2k, n) :=
2i(−1)k sinh x

2∏2k
i=1 2 cosh

xi
2

Fk(x;n), (4.38)

gk(x1, . . . , x2k+1, n) :=
2(−1)k+1 cosh x

2∏2k+1
i=1 2 cosh xi

2

Gk(x;n), (4.39)

where x :=
∑

i xi and

Fk(x;n) :=

k∑
j=1

(
2k − 1

k − j

)[
w(xj−

1
2 ) + w(x−j+ 1

2 )
]
, (4.40)

Gk(x;n) :=

(
2k

k

)
w(x) +

k∑
j=1

(
2k

k − j

)[
w(xj) + w(x−j)

]
, (4.41)

with

lim
|x|→∞

Fk (x ;n) = sgn(x)
i

n
22k−1, lim

|x|→∞
Gk (x ;n) = sgn(x)

i

n
22k, (4.42)

and

Fk (x ; 1) = 22k−1i coth
x

2
, Gk (x ; 1) = 22k−1i tanh

x

2
. (4.43)

We can then compute the sum (4.33) to

n−1∑
j1,...,j2k−1=0

w((−x1)j)w(x j1−j2
2 ) . . . w(x

j2k−2−j2k−1

2k−1 )w(x
j2k−1

2k )

= fk(x1, . . . , x2k, n) +
(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x2k
2

)
, (4.44)

whereas a similar sum involving an even number of indices can be evaluated to

n−1∑
j1,...,j2k=0

w((−x1)j)w(x j1−j2
2 ) . . . w(x

j2k−1−j2k
2k )w(xj2k2k+1)

= gk(x1, . . . , x2k+1, n) + i
(−1)k

n

k−1∑
j=0

σ
(2k+1)
2j+1

(
tanh

x1
2
, . . . , tanh

x2k+1

2

)
. (4.45)

In both formulae, σ
(k)
j (a1, . . . , ak) is the elementary symmetric polynomial of order j in k variables,

defined as

σ
(k)
0 (a1, . . . , ak) = 1, and σ

(k)
j (a1, . . . , ak) =

∑
1≤i1<i2<···<ij≤k

ai1ai2 · · · aij . (4.46)

Equations (4.44) and (4.45) can be proven by induction in k, following a procedure already employed

for the standard BPTF of the free fermion in [63]. The proofs are presented in Appendix 4.A.
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An interesting property of the formula (4.44) and a consistency check of its validity is the fact that

the cumulant expansion of ⟨µ(0)µ(ℓ)⟩/⟨µ⟩2 is recovered for n = 1. Indeed, from (4.43) it follows that

fk(x1, . . . , x2k, 1) =
(−1)k+1 cosh x

2∏2k
i=1 cosh

xi
2

= (−1)k+1
k∑

j=0

σ
(2k)
2j (tanh

x1
2
, . . . , tanh

x2k
2

). (4.47)

Then, in the limit n → 1 the only term remaining from the sum (4.44) is the symmetric polynomial

σ
(2k)
2k (tanh x1

2 , . . . , tanh
x2k
2 ) which is just the product of its arguments. This exactly reproduces the

cumulant expansion of log⟨µ(0)µ(ℓ)⟩ given in [62], formula (3.12a). Similarly, it can be shown that

gk(x1, . . . , x2k+1, 1) =
i(−1)k+1 sinh x

2∏2k+1
i=1 cosh xi

2

= i(−1)k+1
k∑

j=0

σ
(2k+1)
2j+1 (tanh

x1
2
, . . . , tanh

x2k+1

2
). (4.48)

4.3.2 Main result of this section

Putting together the expression (4.31) with the sum formula (4.44), we have the following exact

result for the cumulant expansion of the logarithm of the ground state two-point function of the CTF

Tµ in the disordered phase of the Ising model:

log

(
⟨Tµ(0)T̃µ(ℓ)⟩

⟨Tµ⟩2

)
=

∞∑
k=1

c
Tµ
2k (ℓ;n)

=
∞∑
k=1

n

2k(2π)2k

[
2k∏
i=1

∫ +∞

−∞
dθi e

−mℓ cosh θi

] [
fk(θ̂12, . . . , θ̂2k−1 2k, θ̂1 2k, n)

+
(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

θ̂12
2
, . . . , tanh

θ̂2k−1 2k

2
, tanh

θ̂1 2k
2

) . (4.49)

We now proceed to test the validity of this expression by examining its leading short-distance behaviour

beyond the two-particle contribution of Section 4.2.2.

4.4 Conformal dimension from the cumulant expansion

The conformal dimension of the field Tµ was already recovered by ∆-sum rule in [107], but the

computation in that case only involved two-particle form factors. Below we provide a more extensive

test of all the form factors by obtaining the conformal dimension from the complete cumulant expansion

(4.49). Each cumulant is expected to contain a leading contribution which is proportional to logmℓ

whereas other divergent terms should cancel out, so that the overall sum gives (4.21) with dimension

given by (4.20).
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First, let us return to the fully connected sum (4.33) and change variables once more. We define

xi = θ̂i i+1 for i = 1, . . . , 2k − 1, x2k = θ2k, (4.50)

so that:

θi =
2k∑
j=i

(−1)j−ixj ,
2k∑
i=1

θi =
k∑

i=1

x2i−1, θ̂1 2k =
2k−1∑
i=1

(−1)i−1xi. (4.51)

The Jacobian of the transformation from the θ variables to the x variables is an upper triangular

matrix with the diagonal terms being all +1, so the measure acquires no extra factor. By applying

this change of variables to (4.33) and expressing the result in the new variables (4.50), we obtain:

n−1∑
j1,...,j2k−1=0

w((−x1)j)w(x j1−j2
2 ) . . . w(x

j2k−2−j2k−1

2k−1 )w

(2k−1∑
i=1

(−1)i−1xi

) j2k−1


= (−1)k
2i sinh

(∑k
i=1 x2i−1

)
2 cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 2 cosh

(
xi
2

)Fk

(
2

k∑
i=1

x2i−1 ;n

)

+
(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x2k−1

2
, tanh

∑2k−1
i=1 (−1)i−1xi

2

)
, (4.52)

with Fk(x;n) the function defined by (4.40). Furthermore, recalling equation (4.47), it is possible to

express the sum over symmetric polynomials in terms of products of hyperbolic functions as

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x2k−1

2
, tanh

∑2k−1
i=1 (−1)i−1xi

2

)

=
cosh

(∑k
i=1 x2i−1

)
cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

) − tanh

∑2k−1
i=1 (−1)i−1xi

2

2k−1∏
i=1

tanh
xi
2
. (4.53)

This rewriting will prove useful later on.

4.4.1 Exponential factors

Now let us look at the exponential factors in the integrand of (4.31) and see what they look like

in terms of the new variables xi. From the first relation in (4.51) one has:

2k−1∑
j=i

(−1)j−ixj =


θi − θ2k for i even

θi + θ2k for i odd

, (4.54)
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so that

2k∑
i=1

cosh θi = cosh θ2k +
2k−1∑
i=1

cosh(θi − θ2k + θ2k)

= cosh θ2k + cosh θ2k

(∑
i even

cosh(θi − θ2k) +
∑
i odd

cosh(θi + θ2k)

)

+ sinh θ2k

(∑
i even

sinh(θi − θ2k)−
∑
i odd

sinh(θi + θ2k)

)

= coshx2k

1 + 2k−1∑
i=1

cosh

2k−1∑
j=i

(−1)j−ixj

+ sinhx2k

2k−1∑
i=1

(−1)i sinh

2k−1∑
j=i

(−1)j−ixj

 . (4.55)
Therefore, since none of the functions in (4.52) depends on x2k the integral on this variable can be

carried out by making use of the identity1

∫ +∞

−∞
dt exp(−A cosh t−B sinh t) = 2K0

(√
A2 −B2

)
, forA > B, (4.56)

giving ∫ +∞

−∞
dx2k e

−mℓ
∑2k

i=1 cosh θi = 2K0(mℓd2k−1), (4.57)

with

d22k−1 =

1 + 2k−1∑
i=1

cosh

2k−1∑
j=i

(−1)j−ixj

2

−

2k−1∑
i=1

(−1)i sinh

2k−1∑
j=i

(−1)j−ixj

2

. (4.58)

The mℓ≪ 1 expansion of the modified Bessel function is:

K0(mℓd2k−1) = − logmℓ+ log 2− ln d2k−1 − γ + o(mℓd2k−1), (4.59)

from which the leading short-distance contributions to the cumulant expansion can be obtained. It is

worth mentioning that one could also resum contributions proportional to the constant term log 2− γ

in (4.59) and those should contribute to the KTµ-term in (4.21), that is to the logarithm of ⟨Tµ⟩. A

similar computation was carried out in [117] for ⟨T ⟩ in the free boson theory.

4.4.2 Short-distance behaviour of the cumulant expansion

Putting together (4.52), (4.53) and (4.57) in (4.31) we can split the cumulant into three

contributions

c
Tµ
2k (ℓ;n) = c

(1)
2k (ℓ;n) + c

(2)
2k (ℓ) + cµ2k(ℓ). (4.60)

1This identity is obtained by rewriting A cosh t + B sinh t =
√
A2 −B2 cosh

(
t+ ln

√
A+B
A−B

)
and then shifting the

integration variable t.
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We will define these contributions as follows. First:

c
(1)
2k (ℓ;n) =

2(−1)kin

k(4π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1K0(mℓd2k−1)

×
sinh

(∑k
i=1 x2i−1

)
cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

) F̂k

(
2

k∑
i=1

x2i−1 ;n

)
, (4.61)

with

F̂k(x;n) := Fk(x;n)− sgn(x)
i

n
22k−1. (4.62)

This shift is motivated by the asymptotics (4.42) and ensures that the function F̂k(x;n) goes to zero

for |x| large. This in turn ensures the convergence of the integrals even when the Bessel function is

approximated by its leading short-distance contribution − log(mℓ).

The next contribution is then a combination of the first term in (4.53) and the term introduced

by the shift (4.62):

c
(2)
2k (ℓ) =

(−1)k

k(2π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1K0(mℓd2k−1)

×

cosh
(∑k

i=1 x2i−1

)
− sinh

(∑k
i=1 x2i−1

)
sgn(

∑k
i=1 x2i−1)

cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

)
 . (4.63)

Note that this contribution is n-independent. Finally, the contribution cµ2k(ℓ) is nothing but the

cumulant of the expansion of ⟨µ(0)µ(ℓ)⟩/⟨µ⟩2 resulting from the last term (the product of tanh

functions) in (4.53):

cµ2k(ℓ) =
(−1)k+1

k(2π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1K0(mℓd2k−1)

×tanh

(∑2k−1
i=1 (−1)i−1xi

2

)
2k−1∏
i=1

tanh
(xi
2

)
, (4.64)

as it indeed coincides with the cumulant presented in [62] when expressed in terms of the variables

(4.50).

4.4.3 Leading contribution to c
(1)
2k (ℓ;n)

In order to evaluate the integral (4.61) we can perform yet another change of variables:

y =
k∑

i=1

x2i−1 ⇒ x2k−1 = y −
k−1∑
i=1

x2i−1,
2k−1∑
i=1

(−1)i−1xi = y −
k−1∑
i=1

x2i, (4.65)
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so that, at short distances
∑

k c
(1)
2k (ℓ;n) ≃ −zn log(mℓ) with

zn =
∞∑
k=1

(−1)k2ni

k(4π)2k

∫ +∞

−∞
dy sinh y F̂k(2y;n)

∫ +∞

−∞
dx1· · ·

∫ +∞

−∞
dx2k−2[

sech

(
y −

∑k−1
i=1 x2i−1

2

)
k−1∏
i=1

sech
(x2i−1

2

)][
sech

(
y −

∑k−1
i=1 x2i
2

)
k−1∏
i=1

sech
(x2i

2

)]

=
∞∑
k=1

(−1)k2ni

k(4π)2k

∫ +∞

−∞
dy sinh y F̂k(2y;n)G

2
k(y), (4.66)

where, exactly as in [63, 117]:

Gk(y) =

∫ +∞

−∞
dx1· · ·

∫ +∞

−∞
dxk−1

[
sech

(
y −

∑k−1
i=1 xi
2

)
k−1∏
i=1

sech
(xi
2

)]
=

∫ +∞

−∞
da

(2π)k−1eiay

coshk πa
.

(4.67)

The functions Gk(y) can be evaluated explicitly to

Gk(y) =
(2π)k−1

(k − 1)!


y

π sinh y
2

∏ k
2
−1

j=1 (
y2

π2 + (2j)2) for k even

1
cosh y

2

∏ k−1
2

j=1 (
y2

π2 + (2j − 1)2) for k odd
. (4.68)

By replacing Fk(x;n) with F̂k(x;n) in (4.61), we have ensured that the integrals (4.66) are convergent

since G2
k(y) sinh y is asymptotically polynomial in y and F̂k(2y;n) is exponentially decaying. They

can be evaluated with great precision and fitted to the function

zn =
1

12

(
n− 1

n

)
+

1

4n
+ z′ = 4∆Tµ + z′, (4.69)

with z′ = −0.217(4). This additional constant should be cancelled by contributions coming from

c
(2)
2k (ℓ) + cµ2k(ℓ).

Numerical results for zn are shown in Fig. 4.1. It is interesting to observe that there is very good

agreement with the formula (4.69) for n integer and also for n not integer, greater than 2. However

for 1 < n < 2 the numerical data differ from (4.69), suggesting that the analytic continuation of (4.66)

to n = 1 from n real greater than 1 is non-trivial. This is in agreement with results found in [107]

where the limit n→ 1 of the two-particle form factor contribution produced a delta-function term.

4.4.4 Leading contribution to c
(2)
2k (ℓ) + cµ2k(ℓ)

We now consider the leading contribution to the second term in the cumulant (4.60). This is

independent of n, and employing the same change of variables as above it is easy to write an

expression which is given by a convergent integral involving the functions Gk(y). Letting
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Figure 4.1 Left: The function zn evaluated numerically through the sum (4.66) for integer values of
n = 1, . . . , 10 (red squares) against the formula (4.69) (blue solid line). Right: The same comparison
for n ∈ [1, 3] including non integer values. When evaluating the sum (4.66) numerically we truncate
at some value of k. This value of k is different for each value of n and is chosen so that the sum is
stable up to 5 decimal digits.

∑
k c

(2)
2k (ℓ) ≃ −z′′ log(mℓ), we obtain

z′′ =
∞∑
k=1

2(−1)k

k(2π)2k

∫ +∞

0
dy e−y G2

k(y) = −0.0326(1), (4.70)

and we note that

z′ + z′′ = −0.250(0) ≃ −1

4
. (4.71)

Remarkably, this value is precisely what we need to recover the correct dimension of the field Tµ. This

is because [62]
∞∑
k=1

cµ2k(ℓ) ≃ −1

4
log(mℓ), (4.72)

as this is the sum over cumulants corresponding to the two-point function ⟨µ(0)µ(ℓ)⟩/⟨µ⟩2 and µ has

dimension 4∆µ = 1/4. Therefore, the overall leading short-distance behaviour of the

⟨Tµ(0)T̃µ(ℓ)⟩/⟨Tµ⟩2 cumulants correctly predicts the conformal dimension (4.20). This highly

non-trivial result provides strong support for the formula (4.49). In addition, the structure of the

cumulants means that we can also write

⟨Tµ(0)T̃µ(ℓ)⟩
⟨Tµ⟩2

= R(ℓ;n)
⟨µ(0)µ(ℓ)⟩

⟨µ⟩2
, (4.73)

where R(ℓ;n) :=
∏∞

k=1 e
c
(1)
2k (ℓ;n)ec

(2)
2k (ℓ) has the property R(ℓ; 1) = 1.

Recalling the observation of Section 4.2.2, namely that the cumulant expansion of Tµ posed some

convergence issues, we note that those issues did not feature in the computations of this section. This

is because by writing the cumulant as we have done, all convergence issues have been “hidden” in the

contribution cµ2k(ℓ). Indeed, a naive expansion of the Bessel function in (4.64) leads to a divergent
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integral. Nonetheless, as shown in [62], the short-distance limit of this quantity can be obtained via a

semiclassical approach and it ultimately leads to the expected result (4.72).

4.5 Analytic continuation to n ∈ R≥1

All results obtained so far are valid for n ∈ N. This is always the case in the replica picture where

n represents a replica number. However, the entanglement measures that our two-point function

describes are typically defined for generic positive n. Therefore it is useful to write an expression for

the correlation function which is valid for n ∈ R≥1. Let us start by studying the analytic continuation

of the leading short-distance terms.

4.5.1 Analytic continuation of leading short-distance contributions

The plot in figure 4.1 (right) strongly suggests that our formula needs to be analytically continued

in the region 1 < n < 2. A similar problem was addressed in [63, 117], where it was shown that

as n approaches 1 from n > 1 some of the poles of the cumulants will cross or pinch the real line

and provide additional contributions to the cumulant expansion which are non-vanishing for n ∈ R

and need to be added. The correct analytic continuation is obtained when these contributions are

correctly accounted for. The discussion is nearly identical as for the free boson case [117], albeit

involving different functions.

As we have seen, only the contribution c
(1)
2k (ℓ;n) to the cumulant is n-dependent. Therefore we

only need to analytically continue the coefficient of the leading short-distance contribution to this

term, that is the quantity zn defined in (4.66). For non-integer n larger than 1, zn picks up additional

contributions which account for the residues of the poles of F̂k(2y;n) that cross the real axis as n→ 1+.

The sum (4.40) in the function F̂k(2y, n) has poles at
2

2y ± (2j − 1)iπ = (2mn+ 1)iπ and 2y ± (2j − 1)iπ = (2mn− 1)iπ for m ∈ Z, (4.74)

for every j = 1, . . . , k. These are due to the kinematic poles of the two-particle form factor (4.12) at

iπ ± θ = 2mniπ. Solving the above equation for y gives rise to four families of poles

y1 = (mn+ 1− j)iπ, y2 = (mn− j)iπ, m ∈ Z, (4.75)

y3 = (mn− 1 + j)iπ, y4 = (mn+ j)iπ, m ∈ Z, (4.76)

2The twist field approach assumes n integer larger than 1 (since n is a copy number). For that reason it is natural
to look for an analytic continuation to n = 1 from n > 1. However, once found, the analytic continuation is unique and
thus valid for all n.
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with corresponding residues of the function inside the sum (4.66) given by:

R1(k, j,m, n) =
n(−1)k+j

k(4π)2k

 2k − 1

k − j

 sinh(iπmn)G2
k((nm− j + 1)iπ), (4.77)

R2(k, j,m, n) = −n(−1)k+j

k(4π)2k

 2k − 1

k − j

 sinh(iπmn)G2
k((nm− j)iπ), (4.78)

R3(k, j,m, n) =
n(−1)k+j

k(4π)2k

 2k − 1

k − j

 sinh(iπmn)G2
k((nm+ j − 1)iπ), (4.79)

R4(k, j,m, n) = −n(−1)k+j

k(4π)2k

 2k − 1

k − j

 sinh(iπmn)G2
k((nm+ j)iπ). (4.80)

These functions are all zero for n integer but they contribute for non-integer n. Let us now investigate

which of these poles cross the real line in the limit n→ 1+.

Since there are many indices involved, let us start by considering just one example: n = 4
3 and up

to k = 2 in the sum (4.66). According to the formula (4.20) 4∆Tµ = 0.236111 in this case but the

numerical evaluation of (4.66), after subtracting the constant z′, gives the value 0.243211 which slightly

overestimates the result. The disagreement is not simply due to numerical imprecision. The function

F̂3(2y, 4/3) has poles that cross the integration line as n→ 4/3. From (4.76) and the definition (4.40)

we see that for k = 1 the sum runs only over the value j = 1. For j = 1 the four families of poles

labeled by the integer m are:

y1 = imnπ, y2 = (mn− 1)iπ, m ∈ Z, (4.81)

y3 = imnπ, y4 = (mn+ 1)iπ, m ∈ Z. (4.82)

It is clear that all these poles are always above the real line (for m > 0) or below the real line (for

m < 0), that is they never cross the real line, as n approaches 4
3 . Therefore, there is no correction

coming from the k = 1 contribution. Let us consider k = 2. Now j = 1, 2. For j = 1 the poles are the

same as above and never cross the real line. For j = 2 we have the following four families:

y1 = i(mn− 1)π, y2 = (mn− 2)iπ, m ∈ Z (4.83)

y3 = i(mn+ 1)π, y4 = (mn+ 2)iπ, m ∈ Z. (4.84)

We have already seen above that the poles y1 and y3 never cross the real line, so we can only have

some contributions from y2 and y4. For m > 0 and n positive and large both families of poles are

above the real line. However, for n → 4
3 we see that the pole (mn − 2)iπ crosses the real line for

m = 1. Similarly, for m < 0 and n positive and large all poles are in the lower half plane but the pole
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(mn+ 2)iπ crosses the real line for n→ 4
3 and m = −1.

In summary, there are two poles for j = 2 located at ±2πi
3 . The corresponding residue contributions

are

2πi(R2(2, 2, 1, 4/3)−R4(2, 2,−1, 4/3)) = −0.00680653. (4.85)

Therefore, the addition of the residua of these two poles improves the estimate of the conformal

dimension from 4∆Tµ = 0.243211 to 4∆µ = 0.243211 − 0.00680653 = 0.236404 which is much closer

to the exact value (note that the formula (4.66) gives -4∆Tµ , hence the minus sign of (4.85)). The

addition of poles for higher values of k, and hence of j, will bring this value ever closer to formula

(4.20) as shown in Fig 4.2. In the general n case, in order to fully identify those poles that will cross
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◆

◆
◆

◆
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▲
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▲
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n

z n

Figure 4.2 The function zn evaluated numerically through the sum (4.66) for n ∈ [1, 3] (red squares)
against the formula (4.69) (green dashed line) and its analytically continued values (blue triangles)
given by (4.87).

the real line we find once more four cases:

y1 : mn+ 1− j < 0 ⇒ 1 ≤ m <
j − 1

n
,

y2 : mn− j < 0 ⇒ 1 ≤ m <
j

n
,

y3 : mn− 1 + j < 0 ⇒ −j − 1

n
< m ≤ −1,

y4 : mn+ j < 0 ⇒ − j

n
< m ≤ −1, (4.86)
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This gives the analytically continued values ẑn

ẑn = zn +
∞∑
k=1

k∑
j=1

[ j−1
n

]−q1∑
m=1

in(−1)k+j+1

k(4π)2k−1

 2k − 1

k − j

 sinh (iπnm)G2
k ((nm− j + 1) iπ)

+
∞∑
k=1

k∑
j=1

[ j
n
]−q2∑

m=1

in(−1)k+j+1

k(4π)2k−1

 2k − 1

k − j

 sinh (iπnm)G2
k ((nm− j) iπ) , (4.87)

where we used the fact that the residues R2(k, j,m, n) = −R4(k, j,m, n) and

R1(k, j,m, n) = −R3(k, j,m, n) (which produces a factor 2) and are multiplied by a factor 2πi as

required by the residue theorem. The shifts q1, q2 take the value 1 when n[ j−1
n ] = j − 1 and n[ jn ] = j,

respectively and are zero otherwise (they can be removed by requiring n to be non-integer). Here the

symbol [.] represents the integer part. Fig. 4.2 shows the same functions as in Fig. 4.1 (right) plus an

additional set of values, which are the analytically continued values of zn (in blue). As we can see

these now agree perfectly with the fit (4.69), even for non-integer n between 1 and 2.

4.5.2 Analytic continuation of the n-derivative

Applications of the correlation function (4.49) in the context of entanglement measures frequently

require the computation of its derivative with respect to n followed by the limit n→ 1. As discussed

in [20, 63] and [107] the derivative with respect to n of the function (4.38) has a discontinuity. More

precisely, as n approaches 1 and poles cross the real line, the derivative is not uniformly convergent as a

function of θ and this leads to terms involving δ-functions. The simplest examples of this phenomenon

are seen for the two-particle contribution to the two-point function of T [20] and of Tµ [107]. Here

we show how this generalises to the whole cumulant sum. Notice that we only need to consider the

contribution from the function c
(1)
2k (ℓ;n) in (4.61) since all other terms are independent of n and so

the derivative is zero. For this term, we actually only need to consider Fk(x;n) as the additional term

in F̂k(x;n) version is also n-independent. Thus, we define

s
Tµ
2k (ℓ) := − lim

n→1

d

dn
c
(1)
2k (ℓ;n)

=
2(−1)k+1i

k(4π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1K0(mℓd2k−1)

×
sinh

(∑k
i=1 x2i−1

)
cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

) lim
n→1

d

dn

[
nFk

(
2

k∑
i=1

x2i−1 ;n

)]
. (4.88)
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One way to treat the derivative is to recall the k = 1 result that was derived in [107], namely

lim
n→1

d

dn
nf1(x, x, n) = − i

2

sinhx

cosh2 x
2

lim
n→1

d

dn
n[w(2x+ iπ) + w(2x− iπ)]

=
x

cosh2 x
2 sinhx

− π2

2
δ(x), (4.89)

that is, there is a finite part and a distribution part that accounts for the behaviour around x = 0.

Recall that the function f1(x, y, n) is defined in (4.34). This extends to higher cumulants in similar

ways, so that we can write

s
Tµ
2k (ℓ) = sfin2k(ℓ) + sδ2k(ℓ), (4.90)

where the two contributions represent the finite and δ-function contributions. The finite part can be

easily computed by noting that

lim
n→1

d

dn
n sinhxF(2x;n) =

i22k−1x

sinhx
, (4.91)

and therefore

sfin2k(ℓ) =
(−1)k

k(2π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1K0(mℓd2k−1)

×
∑k

i=1 x2i−1

sinh
(∑k

i=1 x2i−1

)
cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

) . (4.92)

The δ-function contribution is a generalisation of the k = 1 case seen above and can be obtained by

identical arguments as those presented in [63]. In fact, the result is also identical to formula (4.6) in

[63], that is,

sδ2k(ℓ) =
π2(−1)k

k(4π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k−1 δ(

k∑
i=1

x2i−1)

×


 2k − 2

k − 1

 2K0(2mℓd2k−1)

cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

)


−π
2(−1)k

k(4π)2k

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dx2k δ(

k∑
i=1

x2i−1)

×
k∑

j=1

j−1∑
m=1

∑
q=±


 2k − 1

k − j

 (−1)j
∏2k

i=1 e
−rm cosh(

∑2k
j=1(−1)j−ixi+iπq j−m

2k )

cosh

(∑2k−1
i=1 (−1)i−1xi

2

)∏2k−1
i=1 cosh

(
xi
2

)
 . (4.93)
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4.6 Concluding remarks

In this paper we studied the normalised two-point function ⟨Tµ(0)T̃µ(ℓ)⟩/⟨Tµ⟩2 of the composite

twist field Tµ and its conjugate. The motivation to study this object comes from recent investigations

of symmetry-resolved entanglement entropy in QFTs possessing an internal Z2 symmetry [19, 94, 107].

More fundamentally, our work contributes to developing the understanding of correlation functions in

the replica Ising field theory, a theory that contains a large number of symmetry fields or twist fields

which are not present in the standard, non-replicated model.

We employed traditional IQFT techniques, namely the the form factor bootstrap program adapted

to composite twist fields [107], to expand the logarithm of the correlation function into a series of

cumulants. The main result of this chapter consists in deriving closed-form expressions for these

cumulants which result from a number of multiple sum formulae involving the two-particle form

factors of the field Tµ, presented in Appendix 4.A.

Employing the cumulant expansion we found the following structure

⟨Tµ(0)T̃µ(ℓ)⟩
⟨µ(0)µ(ℓ)⟩

⟨µ⟩2

⟨Tµ⟩2
= R(ℓ;n) with R(ℓ; 1) = 1, (4.94)

where µ is the disorder field of the Ising field theory, and we provided an explicit expression for R(ℓ;n).

By exact resummation of leading contributions to the cumulant expansion, we showed that at short

distances this two-point function scales as a power law in r with exponent consistent with the CFT

dimension (4.20). Furthermore, we provided the analytic continuation of our formulae to real replica

number, generalising results found in [107] and [20]. As a byproduct of our investigation, we have also

showed how the form factors of the composite field Tσ can be obtained from those of Tµ via clustering

in momentum space, in much the same way as the form factors of the fields σ and µ are related.

As mentioned above, our result has applications in the context of the symmetry-resolved

entanglement entropy and directly leads to a more complete formula for the latter in the Ising

model. We further expect the results of this investigation to apply with some modifications to other

composite fields, at least for free theories, for instance those associated with U(1) symmetry in

doubled free models which were studied in [105, 123, 124].

4.A Summation formulae

In this appendix we derive the identities presented in Section 4.3.1. Let us first prove equations

(4.35) and (4.34), which are both obtained via contour integration. To show (4.35), consider the
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integral in the complex plane:
1

2πi

∮
C
dz π cot(πz)w(xz), (4.95)

where C is the rectangular contour with vertices −ϵ+ iL, −ϵ− iL, n− ϵ− iL, n− ϵ+ iL. The vertical

contributions cancel off because the integrand is invariant under the shift z → z + n. The same holds

for the horizontal contributions in the large L limit, as

lim
L→∞

cotπ(t± iL) = ∓i, lim
L→∞

w
(
xt±iL

)
= ∓ i

n
, t ∈ R, (4.96)

and therefore the sum of the residues must vanish. Within the integration contour, the function

π cot(πz) has simple poles at z = 0, 1, . . . n− 1 with unite residue. The kinematic poles of w(xz) are

at z = 1
2 − x

2πi , z = n− 1
2 − x

2πi , with residue 1
2π . At both these points, cot(πz) = −i tanh x

2 . Putting

all the pieces together, one has therefore:

0 =
n−1∑
j=0

w(xj)− i tanh
x

2
. (4.97)

Using the very same strategy, one can prove (4.34). The integral to evaluate is now

1

2πi

∮
C
dz π cot(πz)w((−x)z)w(yz), (4.98)

along the same contour C as before. In this case, however, the horizontal contributions do not cancel

off, as

lim
L→∞

w((−x)t±iL))w(yt±iL) = − 1

n2
, t ∈ R, (4.99)

and thus the integral evaluates to − 1
n in the large L limit. Summing over the residues of the poles of

π cot (πz) gives the left-hand side of (4.34), while the kinematic poles are now at z = 1
2 + x

2πi , −
1
2 +

n+ x
2πi and z =

1
2 − y

2πi , −
1
2 + n− y

2πi , with residues:

Res
z= 1

2
+ x

2πi

w((−x)z)w(yz) = 1

2π
w(x+ y + iπ), Res

z=n− 1
2
+ x

2πi

w((−x)z)w(yz) = 1

2π
w(x+ y − iπ),

Res
z= 1

2
− y

2πi

w((−x)z)w(yz) = − 1

2π
w(x+ y − iπ), Res

z=n− 1
2
− y

2πi

w((−x)z)w(yz) = − 1

2π
w(x+ y + iπ).

By evaluating the cotangent at the kinematic poles and putting all the pieces together, we obtain

− 1

n
=
∑

Res[π cot(πz)w((−x)z)w(yz)]

=

n−1∑
j=0

w((−x)j)w(yj) + i

2

sinh
(x+y

2

)
cosh

(
x
2

)
cosh

(y
2

) [w(x+ y + iπ) + w(x+ y − iπ)],

which is indeed (4.34).
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Using the above results, it is possible to prove (4.44) and (4.45) by induction. It is useful to observe

beforehand that the following expansions hold:

sinh
(∑k

i=1 xi

)
∏k

i=1 coshxi
=

[ k−1
2

]∑
j=0

σ
(k)
2j+1(tanhx1, . . . , tanhxk), (4.100)

cosh
(∑k

i=1 xi

)
∏k

i=1 coshxi
=

[ k
2
]∑

j=0

σ
(k)
2j (tanhx1, . . . , tanhxk). (4.101)

Following the procedure employed in [63, 117], we will prove that (4.44) implies (4.45). If (4.44) holds,

than we can shift x2k by −2iπp, multiply the left-hand side by a factor w(xp2k+1) and sum over p to

obtain:

n−1∑
j1,...,j2k−1,p=0

w((−x1)j)w(x j1−j2
2 ) . . . w(x

j2k−2−j2k−1

2k−1 )w(x
j2k−1−p
2k )w(xp2k+1)

=

n−1∑
p=0

fk(x1, . . . , x
−p
2k , n)w(x

p
2k+1) +

n−1∑
p=0

(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x−p
2k

2

)
w(xp2k+1), (4.102)

Let us focus on the first term in the second line, which yields two contributions due to the presence

of a constant term in the right-hand side of (4.34). Indeed, defining x =
∑2k

i=1 xi, we obtain:

n−1∑
p=0

fk(x1, . . . , x
−p
2k , n)w(x

p
2k+1)

=
2i(−1)k sinh x

2∏2k
i=1 2 cosh

xi
2

n−1∑
p=0

k∑
j=1

(
2k − 1

k − j

)[
w
(
xj−p − iπ

)
+ w

(
x−j−p + iπ

)]
w(xp2k+1)

=gk(x1, . . . , x2k+1, n) +
4i(−1)k sinh x

2

n
∏2k

i=1 2 cosh
xi
2

k∑
j=1

(
2k − 1

k − j

)

=gk(x1, . . . , x2k+1, n) +
i(−1)k

n

k−1∑
j=0

σ
(2k)
2j+1(tanh

x1
2
, . . . , tanh

x2k
2

). (4.103)

The emergence of the function gk in going from the second to the third line was already proved in

Appendix A of [63]. In going from the third to the fourth line we used the identity (4.100) and∑k
j=1

(
2k−1
k−j

)
= 22k−2. We now consider the second term in the second line of (4.102): using the fact

that tanh x±p

2 = tanh x
2 and the sum (4.35), we have:

n−1∑
p=0

(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x−p
2k

2

)
w(xp2k+1)

=
i(−1)k

n

k−1∑
j=0

σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x2k
2

)
tanh

x2k+1

2
. (4.104)

Now we observe that the elementary symmetric polynomial of degree j in k variables can be
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decomposed as σ
(k)
j (a1, . . . , ak) = σ

(k−1)
j (a1, . . . , ak−1) + σ

(k−1)
j−1 (a1, . . . , ak−1) ak, hence:

k−1∑
j=0

[
σ
(2k)
2j+1(tanh

x1
2
, . . . , tanh

x2k
2

) + σ
(2k)
2j

(
tanh

x1
2
, . . . , tanh

x2k
2

)
tanh

x2k+1

2

]

=
k−1∑
j=0

σ
(2k+1)
2j+1 (tanh

x1
2
, . . . , tanh

x2k+1

2
). (4.105)

Thus the sum of (4.103) and (4.104) yields (4.45). In an analogous way it is possible to prove (4.44)

starting from (4.45).
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CHAPTER

FIVE

ENTANGLEMENT ASYMMETRY IN THE ORDERED PHASE OF THE

ISING FIELD THEORY

Global symmetries of quantum many-body systems can be spontaneously broken. Whenever this

mechanism happens, the ground state is degenerate and one encounters an ordered phase. In this

chapter, based on [5], we investigate this phenomenon by examining the entanglement asymmetry of a

region in a one-dimensional many-body system in its ordered phase. This quantity has been recently

introduced in the context of U(1) symmetry breaking, and we extend its definition to encompass

arbitrary finite groups G. We also establish a field-theoretic framework in the replica theory using

twist operators. We explicitly demonstrate our construction in the ordered phase of the Ising field

theory in 1+1 dimensions, where a Z2 symmetry is spontaneously broken, and we employ a form

factor bootstrap approach to characterise a family of composite twist fields. Analytical predictions

are provided for the entanglement asymmetry of an interval in the Ising model as the length of the

interval becomes large. We also propose a general conjecture relating the entanglement asymmetry

and the number of degenerate vacua, which we expect to be valid for a large class of states, and we

prove it explicitly in a simple case.

5.1 Introduction

Symmetry is nowadays considered a cornerstone of modern Physics. Its breaking is responsible for a

plethora of interesting phenomena, such as ferromagnetism [204], superconduction, superfluidity [205].

Spontaneous symmetry breaking is the phenomenon by which a symmetry possessed by a quantum

system, described in terms of its Hamiltonian/Lagrangian or its equations of motion, is not mirrored

by the ground state of the system. For instance, it is very well known that at low-enough temperatures
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some ferromagnetic materials magnetise spontaneously in a given direction, which depends solely on

the way those materials are cooled down. A similar mechanism has been observed at zero temperature

in frustrated quantum systems, e.g. quantum spin chains, where spontaneous symmetry breaking

arises if an external parameter, such as a magnetic field or a chemical potential, is varied [206].

Zero-temperature phases with different symmetries can be separated by a quantum phase transition

[207]. Close to the transition, quantum correlations are dominant, giving rise to a large amount

of entanglement among the regions of the systems. In the last decade, much attention has been

devoted to the relation between symmetries and entanglement [19, 92, 94], especially in the context

of zero-temperature states close to phase transitions, which can be investigated quantitatively via

QFT [104, 124–126]. As a result of this interest, a notion of symmetry-resolved entanglement for

one-dimensional quantum many-body systems was introduced in [19, 92, 94] and further developed in

[96, 97, 121, 185, 194, 208].

In contrast, until recently, little research focused on exploring the relationship between symmetry

breaking and entanglement. In [29] a new measure of entanglement, dubbed entanglement

asymmetry, was introduced to probe symmetry breaking in many-body systems. Originally, this

quantity was used in the context of quench dynamics to analyse the restoration of a U(1) symmetry

in a symmetry-breaking state of a quantum spin chain, evolved using a symmetric Hamiltonian

[29–31]. Following these initial works, entanglement asymmetry was investigated in several other

models, as we reviewed in Section 1.3. However, a general framework for the study of entanglement

asymmetry in quantum field theories is still missing. Therefore, the purpose of this work is to apply

the proposed approach of [29] to characterise the spontaneous symmetry-breaking pattern in

equilibrium quantum many-body systems that can be described by 1+1D QFT.

We initiate this program by giving a definition of entanglement asymmetry that can be applied

to any finite or compact Lie group, extending the construction already provided for U(1) in [29] and

for ZN in [112]. Moreover, we provide a field-theoretic treatment of the one-dimensional quantum

Ising model via form factor bootstrap. Our approach combines the expression of the Rényi entropies

in terms of twist fields via the replica trick [18, 20] and its extension in the presence of additional

Aharonov–Bohm fluxes [19], which stems from the action of the group and gives rise to composite

(charged) twist fields [157]. A vast literature regarding integrable field theories where similar fields

were considered is present, and we refer the reader to [1–4, 105–108] for further details. However,

most of these works refer to paramagnetic phases of field theories, where a single symmetric vacuum

is present: there, different ways of inserting the same total Aharonov–Bohm flux among the replicas

give rise to the same result (see e.g [105, 107, 108]). An example of this is provided by complex

free theories with U(1) symmetry, in which the flux can be equivalently inserted between the nth

and the first replica or fractionalised and uniformly distributed among all replicas. These distinct
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choices correspond to the insertion of distinct operators, and symmetry-broken states explicitly spot

these differences. This mechanism, which is new to our knowledge, lies at the core of entanglement

asymmetry, as we will show.

Before delving into the main content of this work, we first provide a definition of Rényi entanglement

asymmetry, inspired by [29], which applies to any finite group G. Let us consider a (possibly mixed)

state ρ of a bipartite system A ∪ Ā, described by the Hilbert space

H = HA ⊗HĀ. (5.1)

We assume that a finite group G acts unitarily on H via a linear map G ∋ g 7→ ĝ ∈ End(H) which

satisfies

ĝ = ĝA ⊗ ĝĀ ∈ End (HA)⊗ End (HĀ) . (5.2)

That is, A and Ā are not mixed by G, which plays the role of a global symmetry for the system (see

also [95]). Given ρ, we construct the reduced density matrix over A in the usual way as

ρA := TrĀ (ρ) , (5.3)

and we aim to understand whether ρA is symmetric under the group G. This is equivalent to asking

whether the equality

ρA = ĝAρAĝ
−1
A , (5.4)

always holds or it is violated for some g ∈ G, thus signaling a breaking of the symmetry. To do so, we

introduce a fictitious density matrix ρ̃A defined as

ρ̃A :=
1

|G|
∑
g∈G

ĝAρAĝ
−1
A , (5.5)

where |G| denotes the order of the group G. The quantity ρ̃A can be regarded as the symmetrisation

of ρA under the adjoint action of the group (see e.g. a standard textbook in linear representations of

finite groups [209]), as it is easy to show that ρ̃A is symmetric under G:

ĝAρ̃Aĝ
−1
A = ρ̃A, ∀g ∈ G. (5.6)

Moreover, it is not difficult to check that

ρ̃A = ρA iff ρA = ĝAρAĝ
−1
A , ∀g ∈ G. (5.7)

Therefore, following the logic of [29], it is rather natural to compare the two states ρA and ρ̃A in order
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to probe (spontaneous or explicit) symmetry breaking at the level of the subsystem A. We do so via

the introduction of the Rényi entanglement asymmetry, defined as

∆Sn :=
1

1− n
log Tr (ρ̃nA)−

1

1− n
log Tr (ρnA) , (5.8)

that is the difference of Rényi entropies of the two states. Similarly, in the limit n → 1 we get the

difference of von Neumann entropies

∆S1 := −Tr (ρ̃A log ρ̃A) + Tr (ρA log ρA) , (5.9)

and we refer to ∆S1 as the entanglement asymmetry. We mention that the definitions above can be

generalised to compact Lie groups in a straightforward way [210]. For instance, given the (normalised)

Haar measure
∫
G dg of a compact Lie Group G [209], it is sufficient to replace (5.5) with

ρ̃A :=

∫
G
dg ĝAρAĝ

−1
A , (5.10)

that is compatible with the original formulation of asymmetry valid for U(1) [29]. While most of the

theory we discuss in this work is unchanged for continuous groups, finite groups are the only relevant

ones in the context of spontaneous symmetry breaking in zero-temperature one-dimensional systems,

due to the Mermin-Wagner theorem[211].

In this work we analyse in detail the Ising field theory [212, 213] in its ferromagnetic phase, probing

the symmetry-breaking pattern

Z2 → {1}, (5.11)

via the (Rényi) entanglement asymmetry associated with the group G = Z2. In particular, we consider

one (of the two) spontaneously broken ground states, and we compute the asymmetry of an interval of

size ℓ which is large compared to the correlation length ∼ m−1 of the model. We do so with a replica

trick, relating the Rényi entanglement asymmetry for n ≥ 2 integer to the expectation values of some

Z2 composite twist fields. We describe systematically the form factors of these fields, and we obtain

analytical results for their correlation functions in the two-particle approximation. The main result

for the Ising QFT can be summarised by the following expression:

∆Sn ≃ log 2, mℓ≫ 1, (5.12)

which is valid for any integer n ≥ 2 up to exponentially small corrections which we compute at first

order.

We structure this chapter as follows. In Section 5.2 we provide an explicit construction of the
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composite twist operators, valid for finite-dimensional Hilbert spaces, and we relate their expectation

values to the asymmetry of a subsystem. In Section 5.3, we review the scattering properties of the

Ising field theory, and we characterise the form factors of the standard twist field in the ferromagnetic

phase. These form factors are eventually employed in the computation of the Rényi entropies in this

phase. Then, in Section 5.4, the core of our work, we extend our analysis to a family of composite Z2

twist fields. In particular, we focus on those fields with vanishing net Z2 flux across the replicas, and

we establish a connection between their form factors and the ones of the standard twist fields. This

analysis allows us to compute the entanglement asymmetry of a large interval. Finally, in Section

5.5 we identify a fundamental mechanism behind the large-volume behavior of the entanglement

asymmetry of arbitrary (clustering) states, and we provide a general conjecture valid for any finite

group G. We leave conclusions and outlook to Section 5.6. Appendix 5.A contains the details of

some two-particle form factor calculations, while in Appendix 5.B we provide some useful bounds on

the Rényi asymmetries for finite groups. Finally, in Appendix 5.C we discuss some results on the

entanglement entropy in the ordered and disordered phase of the transverse-field Ising chain.

5.2 Twist operators and entanglement asymmetry

In this section, following the ideas of [214, 215], we introduce a family of operators in the replica

theory, the twist operators, which allow us to express the entanglement measures of interest as

expectation values. The branch-point twist fields in 1+1D replica theories, together with their

composite versions and their generalisations to higher-dimensional theories, have been widely used

throughout this thesis. However, the point of view we adopt here is slightly different. While in the

previous chapters we defined the twist operators via their equal-time commutation relations with

local fields of the theory, in this chapter we give a rigorous characterisation of these operators for

finite-dimensional Hilbert spaces, extending the analysis of [214, 215] with the additional

introduction of Aharonov-Bohm fluxes arising in the presence of the action of a group G. While the

technical details of our construction do not immediately apply to infinite chains or quantum field

theories, the main important properties are expected to remain valid in the continuum limit, as

explained in [214].

5.2.1 Characterisation of the twist operators

Let us consider a finite-dimensional Hilbert space H describing a bipartition A∪ Ā as in (5.1). We

take n copies of the above, so that the total Hilbert space of the replica model is H⊗n. We aim to

define a twist operator TA, associated with a cyclic permutation among the replicas restricted to the
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subsystem A. We do so by requiring that on any factorised state of the replica model

|v1, . . . , vn⟩ ⊗ |v̄1, . . . , v̄n⟩ :=
(
⊗n

j=1|vj⟩
)
⊗
(
⊗n

j=1|v̄j⟩
)
, |vj⟩ ∈ HA, |v̄j⟩ ∈ HĀ, (5.13)

the action of TA is1

TA (|v1, v2, . . . , vn⟩ ⊗ |v̄1, . . . , v̄n⟩) := |vn, v1, . . . , vn−1⟩ ⊗ |v̄1, . . . , v̄n⟩. (5.14)

Physically, TA implements the permutation j → j + 1 on A, where j is a replica index.

In the presence of a global symmetry associated with a group G, it is possible to “charge”the twist

operator defined above via the action of G. Following the terminology of [19], this corresponds to the

additional insertion of Aharonov–Bohm fluxes between the replicas. The action of G on H, defined

in (5.2), is naturally extended to the replica model H⊗n. Thus, we can construct a composite twist

operator T {g1,...,gn}
A obtained as the combination of the replica shift j → j + 1 and the insertion of a

flux gj between the jth and the (j + 1)th replicas. We do that by defining

T {g1,...,gn}
A := TA ◦ (ĝ1,A ⊗ · · · ⊗ ĝn,A ⊗ 1⊗n

Ā
), (5.15)

from which it follows that

T {g1,...,gn}
A (|v1, . . . , vn⟩ ⊗ |v̄1, . . . , v̄n⟩) = ĝn,A|vn⟩ ⊗ ĝ1,A|v1⟩ ⊗ · · · ⊗ |v̄1, , . . . , v̄n⟩, (5.16)

where ĝj,A refers to the action of gj restricted to A and 1 is the action of the identity element 1 ∈ G.

An operator is therefore associated to any n-tuple {g1, . . . , gn} and, in particular, TA is recovered for

{g1, . . . , gn} = {1, . . . , 1}.

In the remaining part of this section, we investigate some useful properties of the composite twist

operators. Namely, we relate them to specific traces (charged moments) that appear in the

computation of the Rényi entanglement asymmetry. Then, we show that distinct twist operators can

be related to each other via global unitary transformations induced by the group elements. Finally,

we present the mutual locality relations of twist operators with local observables.

1. Computation of traces. Let ρ ∈ End(H) be the density matrix of a (possibly mixed) state

and ρA = TrHĀ
ρ. We show that the following identities hold:

TrH⊗n

(
ρ⊗nTA

)
= TrHA

ρnA, (5.17)

1By linearity this definition allows us to express the action of TA on any vector in H⊗n.
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TrH⊗n

(
ρ⊗nT {g1,...,gn}

A

)
= TrHA

(ρAĝn,AρAĝn−1,A . . . ρAĝ1,A) . (5.18)

These are relations between the (charged) moments of ρA and the expectation values of the

(composite) twist operators in the replica model. Let us stress that in the left-hand side the

traces are taken over H⊗n, while in the right-hand side the traces are only over one copy of the

subsystem A. Since the first relation is a special case of the second one, obtained when all the

gj = 1, we focus on (5.18).

A straightforward proof can be provided if one picks two orthonormal bases for HA,HĀ and

compute the trace in those bases. We denote by |ej⟩, |ēj⟩ the generic basis elements of HA, H̄A

in the jth replica respectively, and we simply expand

TrH⊗n

(
ρ⊗nT {g1,...,gn}

A

)
=
∑

e1,...,en
ē1,...,ēn

⟨e1, . . . , en| ⊗ ⟨ē1, . . . , ēn|ρ⊗nT {g1,...,gn}
A |e1, . . . , en⟩ ⊗ |ē1, . . . , ēn⟩

=
∑

e1,...,en

⟨e1|ρAĝn,A|en⟩⟨e2|ρAĝ1,A|e1⟩ . . . ⟨en|ρAĝn−1,A|en−1⟩

=TrHA
(ρAĝn,AρAĝn−1,A . . . ĝ2,AρAĝ1,A) , (5.19)

which proves equation (5.18).

2. Unitary transformations

An important observation is that different composite twist operators T {g1,...,gn}
A , corresponding to

different choices of {g1, . . . , gn}, can be related to each other via global unitary transformations.

Specifically, given hj ∈ G, j = 1, . . . , n, we show that

(
ĥ1 ⊗ · · · ⊗ ĥn

)
T {g1,...,gn}
A

(
ĥ1 ⊗ · · · ⊗ ĥn

)−1
= T {g′1,...,g′n}

A , g′j := hj+1gjh
−1
j . (5.20)

In the relation above, the action of hj is not restricted to the subsystem A. Indeed, the region Ā

is not affected by the twist operator appearing in Eq. (5.20), and the combined action of hj , h
−1
j

gives the identity on that subsystem.

To prove (5.20) it is sufficient to show that the left- and right-hand side act in the same way on
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factorised vectors of H⊗n. Therefore, for a given state (5.13) we just compute

(
ĥ1 ⊗ · · · ⊗ ĥn

)
T {g1,...,gn}
A

(
ĥ1 ⊗ · · · ⊗ ĥn

)−1
|v1, . . . , vn⟩ ⊗ |v̄1, . . . , v̄n⟩

=
(
ĥ1 ⊗ · · · ⊗ ĥn

)(
ĝn,Aĥ

−1
n,A|vn⟩ ⊗ · · · ⊗ ĝn−1,Aĥ

−1
n−1,A|vn−1⟩ ⊗ ĥ−1

1,Ā
|v̄1⟩ ⊗ · · · ⊗ ĥ−1

n,Ā
|v̄n⟩

)
=
(
ĥ1,Aĝn,Aĥ

−1
n,A|vn⟩ ⊗ · · · ⊗ ĥn,Aĝn−1,Aĥ

−1
n−1,A|vn−1⟩

)
⊗ |v̄1, . . . , v̄n⟩

=T {h2g1h
−1
1 ,...,h1gnh

−1
n }

A |v1, . . . , vn⟩ ⊗ |v̄1, . . . , v̄n⟩, (5.21)

that is an elementary proof of (5.20).

We now discuss a number of remarkable consequences of the above equation. First, the relation

g′j = hj+1gjh
−1
j implies that

g′n g
′
n−1 . . . g

′
1 = 1 iff gn gn−1 . . . g1 = 1, (5.22)

regardless of the choice of {hj}. Physically, this means that a twist operator T {g1,...,gn}
A with a

vanishing net Aharonov-Bohm flux accumulated across the replicas is unitarily equivalent via

(5.20) to all and only the other operators T {g′1,...,g′n}
A with the same property. To characterise

this unitary transformation it is sufficient to show that for any {g′i} satisfying g′n . . . g
′
1 = 1 there

is a n-tuple {gj} such that

g′j = gj+1g
−1
j . (5.23)

A solution to (5.23) is indeed

g1 = 1, g2 = g′1, g3 = g′2g
′
1, . . . gn = g′n−1 . . . g

′
1. (5.24)

Therefore, with the previous choices of {gj}, {g′j}, it holds

(ĝ1 ⊗ · · · ⊗ ĝn) TA (ĝ1 ⊗ · · · ⊗ ĝn)
−1 = T {g′1,...,g′n}

A , (5.25)

which means that TA is always unitarily equivalent to a given composite twist operator with a

vanishing net flux.

Finally, we notice that distinct unitary transformations can give rise to the same twist operator,

since equation (5.23) has multiple solutions. For example, it is easy to show that

(
ĝ⊗n

)
TA
(
ĝ⊗n

)−1
= TA, (5.26)

for any choice of g ∈ G, which means that the standard twist operator TA is neutral under

a global unitary transformation. More generally, equation (5.23) has precisely |G| solutions:
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indeed, if {gj} is a solution of (5.23) for a given n-tuple {g′j}, then also {gjg} satisfies the same

relation for any g ∈ G.

3. Action on local observables

The last properties we show are the commutation relations between the twist operators and

the local observables of the system. This is particularly useful to make an explicit connection

between the construction proposed above and the defining properties of twist operators in QFT

based on the algebra of local observables. Let O ∈ End(HA) be an observable of the subsystem

A. O can be naturally embedded in the space of observables of the whole system A ∪ Ā by

mapping it to O ⊗ 1Ā ∈ End(H). Similarly, we can embed O in the jth replica of the replica

model by defining

Oj := 1A ⊗ . . .O︸ ︷︷ ︸
j

⊗ . . . 1A ⊗ 1⊗n
Ā

∈ End(H⊗n). (5.27)

As a consequence of the definitions, it is not difficult to show that

TAOj = Oj+1TA, (5.28)

and we say that the twist operator acts as a replica shift j → j + 1 on the observable O of A.

Similarly, one has

T {g1,...,gn}
A Oj =

(
ĝ⊗n
j

)
Oj+1

(
ĝ⊗n
j

)−1
T {g1,...,gn}
A . (5.29)

Physically, this means that the action of the composite twist operators on a local observable

of A amounts to the usual replica shift followed by the action of the group element gj on O.

Vice versa, local observables of Ā are not affected by the presence of the twist operators. For

instance, given O ∈ End (HĀ), and Oj its embedding in the replica model, one easily shows

T {g1,...,gn}
A Oj = OjT {g1,...,gn}

A . (5.30)

Therefore, as expected, the action of the twist operator on A commutes with the observables of

the complement Ā.

5.2.2 Entanglement asymmetry via twist operators

In this section, we make a connection between the twist operators introduced previously and the

definition of the Rényi entanglement asymmetry in Eq. (5.8). To do so, we characterise the Rényi

asymmetry of a state ρ ∈ End (HA ⊗HĀ) for an integer n ≥ 2. First, we recall that (5.17) allows us

to express the Rényi entropy of ρA via the twist operator. Then, by making use of the definition of
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ρ̃A in Eq. (5.5) and after a change of variable, we obtain

Tr (ρ̃nA) =
1

|G|n
∑

g1,...,gn∈G
Tr
(
ĝ1,AρAĝ

−1
1,Aĝ2,AρAĝ

−1
2,A . . . ĝn,AρAĝ

−1
n,A

)
=

1

|G|n−1

∑
g′1,...,g

′
n−1∈G

Tr
(
ρAĝ

′
1,A . . . ρAĝ

′
n−1,AρA(ĝ

′
1,A . . . ĝ

′
n−1,A)

−1
)
.

(5.31)

Here, the second line follows from the change of variable g′j = g−1
j gj+1. Notably, the g′j are not

independent since they satisfy the constraint
∏

j g
′
j = 1. This allows us to express Tr(ρ̃nA) as a sum of

|G|n−1 terms rather than |G|n terms in the second line. Finally, we employ the property (5.18) and

we express the moments of ρ̃A using the composite twist operators as

Tr (ρ̃nA) =
1

|G|n−1

∑
g1,...,gn−1∈G

Tr
(
ρ⊗nT {g1,...,gn−1,(g1...gn−1)−1}

A

)
, (5.32)

and, eventually, from (5.8) we get

∆Sn = log |G|+ 1

1− n
log

 ∑
g1,...,gn−1∈G

Tr
(
ρ⊗nT {g1,...,gn−1,(g1...gn−1)−1}

A

)
Tr (ρ⊗nTA)

 . (5.33)

We point out that all the possible |G|n−1 composite twist operators with a vanishing net

Aharonov–Bohm flux appear explicitly2 in the sum in (5.33).

5.3 Form factor program for the twist fields in the Ising

ferromagnetic phase

In this section, our focus is on the integrable QFT of the Ising model in 1+1 dimensions in its

ferromagnetic phase. We aim to provide an explicit characterisation of the twist operators introduced

in Section 5.2 by means of form factor bootstrap. In particular, we consider n replicas of the Ising

model, and we investigate a family of branch-point twist fields (BPTF). This allows us to obtain the

Rényi entropy of the symmetry-broken phase, which is different from the one of the disordered phase

investigated in [20].

Before delving into the details of the Ising model, it is worth making a connection between the

twist operators of Section 5.2 and the BPTF widely used in 1+1D quantum field theories (see e.g.

[18] for CFTs, and [20] for massive integrable QFTs). For any half-line A = (x,∞), we regard the

2Namely, the operators appearing in the sum are all and only the ones with zero net flux across all replicas. This
condition is required for the consistency of our construction. Indeed, an operator with a net flux different from zero
would signal that the state has a definite charge value under the symmetry G, but this would in turn imply vanishing
entanglement asymmetry.
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corresponding twist operator as a (semi-local) field inserted at x and we denote it by T (x), namely

TA ∼ T (x), A = (x,∞), (5.34)

up to a non-universal proportionality constant that has been neglected. These fields are the building

blocks needed to reconstruct the entanglement properties of any region, and through their insertion

at different points, one can express the twist operator of any union of disjoint intervals [18]. A

paradigmatic example is the case of a single finite interval, where it is possible to express

TA ∼ T (0)T †(ℓ), A = (0, ℓ), (5.35)

with T , T † a pair of Hermitian conjugated twist fields. This correspondence was generalised to U(1)

composite twist fields in [2, 3].

Having made the identification (5.34) or (5.35), it is worth noting that the expression for ∆Sn in

(5.33) is invariant after rescaling of the space coordinate. Indeed, under a transformation x→ λx the

twist operators transform with the same scaling dimension d:

TA → λ−dTA, T {g1,...,gn−1,(g1,...,gn−1)−1}
A → λ−dT {g1,...,gn−1,(g1,...,gn−1)−1}

A . (5.36)

This observation is fundamental for quantum field theories in which spontaneous symmetry breaking

occurs, and it can be argued from the fact that the two fields are related by a global unitary

transformation. That is, equation (5.25) implies that the charged and uncharged twist operators

must have the same (UV) scaling dimension. Indeed, in the limit of a small region their correlation

functions are expected to be the same as those computed at the UV critical point. But because the

critical point is invariant under the symmetry group G, these expectation values are equal, and so

must be the scaling dimensions of the two fields. Furthermore, because of equation (5.25), the

normalisation of TA unambiguously determines the normalisation of T g1,...,gn−1,(g1,...,gn−1)−1

A .

Consequently, the ratio appearing in (5.33), and therefore the entanglement asymmetry, is universal.

It is important to emphasise that this is not the case for entanglement entropy (see for instance [10,

216]) due to the presence of UV divergences.

Despite the extensive literature existing on twist fields in 1+1D integrable QFT, the vast majority

of those works [18, 21, 200, 217, 218] focus on the entanglement properties in the the paramagnetic

(disordered) phase only, where a single vacuum is present. However, in the presence of spontaneous

symmetry breaking, multiple vacua are present, and one must be cautious when specifying them.

Moreover, as there might be elementary excitations (kinks) interpolating between different vacua,

analytic continuations in rapidity space may result in a mixing of the corresponding form factors, a
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mechanism that is well understood for the q-state Potts field theory [219], which describes the Ising

model for q = 2. To the best of our knowledge, the consequence of vacuum degeneracy in the context

of entanglement for field theories has not been explored yet. Our objective is to address this gap

by examining the simplest, yet non-trivial case: the Ising model. In particular, in this section we

aim to formulate and solve the form factor bootstrap equations for the standard twist fields in the

ferromagnetic case. These results will be eventually employed to compute the Rényi entropy of a

symmetry-broken ground state.

We first review some basic properties of the massive Ising field theory [60–62, 81, 212, 213], and

then we discuss its n-replica model, where the twist fields arise. The theory can be regarded as a

relevant perturbation of the Ising CFT [166, 198] with Euclidean action3

S = SCFT + λ

∫
dxdτ ε(x, τ). (5.37)

Here SCFT is the action at criticality, associated to a CFT with central charge c = 1/2, λ is a

parameter with the dimension of a mass and ε(x, τ) is a scalar field of dimension 1 representing an

energy density. Depending on the sign of λ, the theory is in its paramagnetic (disordered, λ < 0)

or ferromagnetic (ordered, λ > 0) phase. We focus on the ferromagnetic phase where spontaneous

symmetry breaking arises, and two degenerate vacua |+⟩, |−⟩ related by Z2 symmetry are present. The

elementary excitations above the ground state(s) are multi-kink configurations interpolating between

the two vacua [219]. In particular, a single-particle (kink) state with rapidity θ, denoted by

|K+−(θ)⟩, (5.38)

interpolates between |+⟩ at −∞ and |−⟩ at ∞. To make contact with the quantum Ising chain,

one should regard a one-kink state with definite momentum as the L → ∞ limit of the plane-wave

superposition:

|K+−(p)⟩ = N
L∑

j=−L+1

eipj |K̃+−(j)⟩, (5.39)

where p is the quantised momentum, N is a normalisation factor and |K̃+−(j)⟩ is the domain wall

created by the lattice disorder operator µj =
∏

j≤i σ
z
i on the state ⊗L

i=−L|+⟩i:

|K̃+−(j)⟩ = µj ⊗L
i=−L |+⟩i = |+⟩−L · · · ⊗ |+⟩j−1 ⊗ |−⟩j · · · ⊗ |−⟩L. (5.40)

In the continuum limit, the momentum p is parametrised by the rapidity as p = m sinh θ. In general,

3After changing coordinates from Euclidean to holomorphic and expressing the energy density in terms of the fermion
field, equation (5.37) reduces to the Majorana action (4.1).
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a configuration with N kinks has the form

|Kα1α2(θ1)Kα2α3(θ2) . . .KαNαN+1(θN )⟩, (5.41)

where the indices αj ∈ {+,−} label the vacua and θj ∈ R, j = 1, . . . , N are the rapidities of the

excitations. We say that the configuration is neutral, or topologically trivial, if α1 = αN+1. It is

convenient to identify four topological sectors, labelled by the values of (α1, αN+1): physically, these

sectors correspond to different choices of the boundary conditions (i.e. spin up or spin down) at

x = −∞ and x = +∞, and they can be regarded as constraints for the states interpolating between

them.

The multi-kink configurations are the (asymptotic) excited states of the theory, and their

energy-momentum is

(E,P ) =

m N∑
j=1

cosh θj ,m

N∑
j=1

sinh θj

 . (5.42)

Here m = |λ| is the mass of each kink, and it plays the role of inverse correlation length away from

criticality. When two kinks scatter, they acquire a scattering phase eiδ = −1 which does not depend

on the rapidity difference, a property ultimately related to the equivalence (see for instance [198])

between the Ising model and free fermionic Majorana field theory4.

For any field O(x) one can define the form factors, i.e. the matrix elements of O between the vacua

and the multi-kink states, as

⟨±|O(0)|Kα1α2(θ1)Kα2α3(θ2) . . .KαNαN+1(θN )⟩. (5.43)

In principle, depending on the field O, there may be several non-vanishing form factors; however, their

number is drastically reduced by topological constraints, as discussed in [219] for the q-state Potts

model. In the Ising field theory, for the order field σ only the form factors with neutral states may be

non-vanishing, and they are

⟨±|σ(0)|K±α2(θ1)Kα2α3(θ2), . . .KαN±(θN )⟩, (5.44)

together with the vacuum expectation values (VEVs) ⟨±|σ(0)|±⟩. In contrast, the disorder field µ(0)

is topologically non-trivial, as it introduces a spin-flip along the half-line [0,+∞) that mixes the two

4There are some technical differences between the Ising model and the field theory of free Majorana fermions, which
can be traced back to the presence of distinct spin sectors. However, since this feature does not play any role in this
work, we do not discuss it further.
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Figure 5.1 (Left) Order field σ(x): the two-particle form factor ⟨+|σ(0)|K+−(θ1)K−+(θ2)⟩ is shown.
(Right) Disorder field µ(x): the three-particle form factor ⟨+|µ(0)|K+−(θ1)K−+(θ2)K+−(θ3)⟩ is
represented. The red line corresponds to a spin-flip exchanging the two vacua. Space is in the
horizontal direction and time in the vertical direction.

vacua, and the form factors which are not ruled out by topological constraints are

⟨±|µ(0)|K±α2(θ1)Kα2α3(θ2) . . .KαN∓(θN )⟩. (5.45)

In Figure 5.1 we represent pictorially the form factors of the order and disorder field. While σ(x) is a

local field, µ(x) is semi-local, and we depict this semi-locality with a red line in Figure 5.1. The locality

properties of the two fields fix the boundary conditions at infinity for incoming states interpolating

with the outgoing vacuum. In particular, only an even/odd number of kinks gives rise to non-vanishing

form factors for σ(x), µ(x) respectively.

In the next sections, we first extend the analysis above to the twist fields of the replica model,

identifying their topological constraints. Then, via the bootstrap program, we characterise analytically

their non-vanishing form factors, and we give an analytical expression for the two-particle ones.

5.3.1 Standard twist fields

The replica theory of the Ising model in the ordered phase is obtained by taking n decoupled copies

of the model and considering the resulting theory itself as a QFT. The (asymptotic) spectrum of the

replica QFT is expressed in terms of single-replica vacua and kink states, as no correlations are present

between distinct copies. In particular, in the ordered phase, there are 2n degenerate vacua which are

obtained as tensor products of single-replica vacua:

|+⟩⊗n, |+⟩⊗n−1 ⊗ |−⟩, . . . , |−⟩⊗n. (5.46)

The excitations can be described via the insertion of kinks in each replica, similarly to what happens

with quasi-particle excitations in the paramagnetic phase (see [20]). Moreover, the scattering matrix
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between two kinks at replicas i and j with rapidities θi, θj respectively is

Sij(θi − θj) =


−1 i = j,

1 i ̸= j,

(5.47)

since no interactions between distinct replicas are present. This further implies that two kinks on the

same replica satisfy the Faddeev-Zamolodchikov algebra:

K±∓(θ1)K∓±(θ2) = −K±∓(θ2)K∓±(θ1), (5.48)

which is consistent with the algebra of the scattering kinks in the q-state Potts model [219, 220] for

q = 2.

The standard BPTF is as usual introduced as a semi-local field of the replica model implementing

the replica cyclic permutation j → j +1. In particular, from the commutation relations (5.28), (5.30)

and the identification (5.35) we obtain

T (x)Oj(y) =


Oj+1(y)T (x) x < y,

Oj(y)T (x) otherwise,

(5.49)

for any local field5 Oj(x) inserted in the jth replica. In particular, this reproduces the commutation

relation (4.3) between the BPTF and the fermion field in the paramagnetic phase. According to this

commutation relation (see Refs [18, 20]), we say that T (x) inserts a branch cut on the semi-infinite

line (x,∞), which connects the jth replica with the (j + 1)th. It is important to stress that Eq.

(5.49), rather than unambiguously identifying a single field T (x), selects a space of fields with given

monodromy properties (details can be found in [64]). However, we are interested in the lightest fields

satisfying (5.49), which correspond to a deformation of the primary twist fields of CFTs [18]. As seen

in the previous chapters, these are scalar fields with conformal dimension ∆T given by (1.27).

In the remaining part of the section, we study the form factors of branch-point twist fields in the

ferromagnetic phase of the Ising model. These are matrix elements of T , T † between the multi-kink

state and one of the 2n vacua. For our purposes, the most interesting form factors are the ones with

the vacuum ⟨+|⊗n. However, as we will see, other form factors are generated from the latter using the

bootstrap equations.

5One should be careful about the definition of local fields, and more in general local observables. Here, we just mean
that O belongs to the algebra generated by the fields ε (the energy density) and the order operator σ. This requirement
is very natural in the lattice counterpart, as it corresponds to the usual notion of locality in the computational basis of
the quantum spin chain.
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5.3.1.1 Zero-particle form factors

The simplest form factor that is expected to be non-vanishing is the VEV

⊗n⟨+|T (0)|+⟩⊗n. (5.50)

We represent it pictorially in Figure 5.2: the n replicas are connected together along the branch cuts

inserted by the twist fields T at the origin of space-time, the state |+⟩⊗n (⊗n⟨+|) is the incoming

(outgoing) state represented below (above) the origin in each replica. In particular, since the standard

twist fields exchange replicas but do not act as spin-flips, if ± is present in the jth replica above

the branch cut, then ± has to be present also in the (j + 1)th replica just below the branch cut. In

other words, fixing the boundary condition of the outgoing state at spacial infinity unambiguously

fixes the boundary conditions of the incoming state. Specifically, the boundary conditions at x = −∞

remain the same for both outgoing and incoming states, while the boundary conditions at x = +∞

are connected through a replica shift j → j+1. For a similar discussion concerning the (single-replica)

q-state Potts model, we refer the reader to [219].

According to these considerations, it is not difficult to show that the only other non-vanishing

zero-particle form factor is

⊗n⟨−|T (0)|−⟩⊗n. (5.51)

Its value can be related to the one of ⊗n⟨+|T (0)|+⟩⊗n via a global Z2 symmetry. Indeed, let us

consider the global unitary transformation µ 6 which generates the Z2 symmetry exchanging the two

vacua. In the replica theory, it holds

µ⊗n|±⟩⊗n = |∓⟩⊗n. (5.52)

Since the twist field is neutral with respect to the action of the global spin-flip µ⊗n (see Eq. (5.26)),

this immediately implies that the two zero-particle form factors above are equal: this value is referred

to as

τ := ⊗n⟨±|T (0)|±⟩⊗n. (5.53)

5.3.1.2 Vanishing one-particle form factors and further constraints

Here, we show that the one-particle form factors are all vanishing. To do that, it is sufficient to

observe that these form factors are not compatible with the topological constraints arising from the

boundary conditions at spacial infinity.

6Notice that the operator µ acts as a spin-flip everywhere while the field µ(x) acts on the half-line (x,+∞). Roughly,
the relation between these operators is (up to a proportionality constant) µ ∝ µ(−∞)µ†(+∞).
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Figure 5.2 The form factors of the twist field T (0). Consecutive replicas are connected to each
other via the branch cut, represented by a dashed line starting at x = 0. Top: vacuum expectation
value ⊗n⟨+|T (0)|+⟩⊗n. Bottom: Two-particle form factors ⊗n⟨+|T (0)|K+−(θ1)K−+(θ2),+, . . . ,+⟩
with two kinks in the same replica.

Let us consider a generic outgoing vacuum state ⟨α1, . . . , αn|, with αj = ±. If T (0) interpolates

between a multi-particle incoming state and the vacuum above, we can immediately obtain the

boundary conditions for the incoming state. Indeed, it is easy to show that the boundary conditions

for the latter in the jth replica at x = −∞, x = ∞ have to be αj , αj−1 respectively. This property

rules out the presence of matrix elements with an odd number of kinks having ⟨α1, . . . , αn| as

outgoing state, and, in particular, the one-particle form factor.

Further constraints are also implied, and, for the sake of concreteness, we only discuss them for

the outgoing vacuum ⟨+, . . . ,+|. Since + should be present at x = ±∞ of the incoming state in the

jth replica, only an even number of kinks has to be present for any replica. For example, two-particle

states with two kinks inserted at different replicas have vanishing form factors. It is worth noting that

this property is specific to the ferromagnetic phase of the Ising model, while the same mechanism does

not arise in the paramagnetic one.

5.3.2 Two-particle form factors

The two-particle (or two-kink) form factors of T (x) are responsible for the leading corrections to

the saturation value of the Rényi entropy. They are generally non-vanishing, as they are not ruled out

by symmetry or topological constraints, and can be exactly determined via the bootstrap equations.

We perform an analysis similar to the one in [20], where the paramagnetic phase was considered: many

analogies arise due to the same scattering properties in the two phases, but there are also important

conceptual differences stemming from the vacuum degeneracy. The two-kink form factors can be

determined by their monodromy conditions and the residues at their kinematic poles. We shall first
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derive the monodromy equations, and then move to the equations for the kinematic poles.

Let us focus on the following two-kink form factor

F
(n)
11 (θ1 − θ2) :=

⊗n⟨+|T (0)|K+−(θ1)K−+(θ2),+, . . . ,+⟩, (5.54)

which depends on the difference θ1−θ2 only, due to relativistic invariance. In general, this is expected

to be non-vanishing, since, as argued in Section 5.3.1.2, two kinks are presented in the same replica

(the first). We give a pictorial representation of F
(n)
11 (θ1 − θ2) in Fig. 5.2. As a consequence of replica

symmetry there is no explicit dependence on the replica j where the pair of kinks is inserted, and we

have

F
(n)
jj (θ1 − θ2) :=

⊗n⟨+|T (0)|+, . . . ,+,K+−(θ1)K−+(θ2)︸ ︷︷ ︸
j

,+, . . . ,+⟩ = F
(n)
11 (θ1 − θ2), (5.55)

with j = 1, . . . , n.

Let us discuss the monodromy equations of F
(n)
11 (θ). The rapidity shift θ1 → θ1+2πi in Eq. (5.54)

has the effect of moving the corresponding kink from the first to the second replica. In addition, the

topological sectors are mixed with each other, and we get

⊗n⟨+|T (0)|K+−(θ1 + 2πi)K−+(θ2),+, . . . ,+⟩

=⟨−,+, . . . ,+|T (0)|K−+(θ2),K+−(θ1),+, . . . ,+⟩. (5.56)

This means that the outgoing vacuum is modified under the above rapidity shift. This is not

particularly surprising, since we already argued in Section 5.3.1.2 that the two-particle form factors

of ⟨+, . . . ,+| with kinks in distinct replicas vanish. Similarly, for j = 1, . . . , n− 1, we have

⊗n⟨+|T (0)|K+−(θ1 + 2πij)K−+(θ2),+, . . . ,+⟩

=⟨−, . . . ,−︸ ︷︷ ︸
j

,+, . . . ,+|T (0)|K−+(θ2),−, . . . ,−,K+−(θ1)︸ ︷︷ ︸
j+1

,+, . . . ,+⟩, (5.57)

and the kink moves from the first to the (j + 1)th replica under θ1 → θ1 + 2πij. Under the shift

θ1 → θ1 + 2πin, the kink goes back to the first replica, but all the signs are exchanged, namely

⊗n⟨+|T (0)|K+−(θ1 + 2πin)K−+(θ2),+, . . . ,+⟩

=⊗n⟨−|T (0)|K−+(θ2)K+−(θ1),−, . . . ,−⟩. (5.58)

This expression can be further manipulated by using the Z2 neutrality of the twist fields together with
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the (fermionic) scattering properties (5.48), yielding:

⊗n⟨+|T (0)|K+−(θ1 + 2πin)K−+(θ2),+, . . . ,+⟩

=− ⊗n⟨+|T (0)|K+−(θ1)K−+(θ2),+, . . . ,+⟩, (5.59)

that is F
(n)
11 (θ+2inπ) = −F (n)

11 (θ). The monodromy equations thus lead to an anti-periodicity condition

on the fundamental two-kink form factor.

Following closely the arguments in [21], we argue that the form factor F
(n)
11 (θ) has two kinematic

poles at θ = iπ and θ = 2πin− iπ. Their residues are

Resθ=iπF
(n)
11 (θ) = iτ, Resθ=(2n−1)iπF

(n)
11 (θ) = −iτ, (5.60)

with τ the vacuum expectation value (5.53). Combining all these results, we conclude that the

monodromy and the bootstrap equations of F
(n)
11 (θ) are the same encountered in the paramagnetic

phase [20]. Therefore, a solution7 to these equations can be easily provided:

F
(n)
11 (θ) =

iτ cos
(

π
2n

)
sinh

(
θ
2n

)
n sinh

(
θ−iπ
2n

)
sinh

(
θ+iπ
2n

) . (5.61)

5.3.3 Rényi entropy and its analytic continuation

With the previous results, we can finally present a form-factor expansion for the two-point function

of the twist fields, valid in the limit mℓ≫ 1. This expansion is then used to obtain the Rényi entropies.

Eventually, we analytically continue the replica index n→ 1 to get the entanglement entropy.

Starting from the replica state |+⟩⊗n, the quantity we need to compute is

Tr
(
ρ⊗nTA

)
= ⊗n⟨+|T (0)T †(ℓ)|+⟩⊗n. (5.62)

We insert a resolution of the identity between the branch-point twist fields and, at the two-particle

approximation, we get

⊗n⟨+|T (0)T †(ℓ)|+⟩⊗n ≃ |τ |2 +
n∑

j=1

∫
θ1>θ2

dθ1 dθ2
(2π)2

|F (n)
jj (θ1 − θ2)|2e−mℓ(cosh θ1+cosh θ2). (5.63)

In deriving the expression above, we used the fact that the only vacuum that can be connected to ⊗n⟨+|

by T (0) is |+⟩⊗n. Moreover, only pairs of kinks inserted in the same replica j give a non-vanishing

7It is well known that the bootstrap equations have multiple solutions, but the ∆-theorem [202] provides a severe
additional constraint. Here, as in [20], the solution with the mildest growth for |θ| → ∞ is given. This one is expected
to describe the twist field with the lowest scaling dimension, corresponding to a primary field of the associated CFT.
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contribution in the expansion above.

By performing the usual change of variable θ = θ1 − θ2, Θ = θ1+θ2
2 and after an integration over

Θ and a sum over the copy index j, which trivially follows from |F (n)
jj (θ)|2 = |F (n)

11 (θ)|2, the above

equation reduces to

⊗n⟨+|T (0)T †(ℓ)|+⟩⊗n ≃ |τ |2 + n

4π2

∫ +∞

−∞
dθK0

(
2mℓ cosh

(
θ

2

))
|F (n)

11 (θ)|2. (5.64)

In the large volume limit mℓ → ∞ the correlation function factorises and the square of the vacuum

expectation value |τ |2 is recovered: the first non-trivial correction, which decays exponentially to zero

as ∼ e−2mℓ, comes from the second term of equation (5.64) and is due to the pairs of kinks. This

result should be compared to the (two-particle approximation of) the two-point function obtained in

the paramagnetic phase [20]. The crucial difference is that in the paramagnetic phase form factors

with single-particle excitations inserted in distinct replicas are allowed, which amounts to replacing

|F (n)
11 (θ)|2 →

n−1∑
j=0

|F (n)
11 (−θ + 2πij)|2 (5.65)

in equation (5.64). As we show below, this difference has important consequences in the replica limit

n→ 1.

Now, we can finally express the Rényi entropy of an interval in the state |+⟩ as

Sn =
1

1− n
log ⊗n⟨+|T (0)T †(ℓ)|+⟩⊗n + Cn

≃ 1

1− n
log

(
1 +

n

4π2

∫ +∞

−∞
dθK0

(
2mℓ cosh

(
θ

2

))
|F (n)

11 (θ)|2

|τ |2

)
+ Cn, (5.66)

where the constant Cn, which contains the non-universal twist field normalisation and the

short-distance cut-off, will not play any role in the following. In the large mℓ limit, the support of

the integral in equation (5.66) is localised near θ ≃ 0, and a saddle-point analysis reveals that the

two-particle contribution decreases exponentially, scaling as ∼ e−2mℓ. While these considerations

hold for integer values of n ≥ 2, the analytical continuation n → 1 is more subtle, as we explain

below.

Indeed, we observe that the ratio
|F (n)

11 (θ)|2
|τ |2 does not explicitly depend on the field normalisation, and

it is fixed by bootstrap. Moreover, since for n = 1 the twist field becomes the identity operator [20],

its two-particle form factors vanish. This suggests that under analytic continuation over n, F
(n)
11 (θ)

converges to zero uniformly in the distributional sense (for θ real) as n→ 1 (see [20]), a property that

can be explicitly checked from the expression (5.61). Therefore,
|F (n)

11 (θ)|2
|τ |2 behaves as O((n − 1)2) for

(n−1) small and, accordingly, the two-particle contribution to the von Neumann entropy, obtained as
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the limit n→ 1 in equation (5.66), vanishes identically. This circumstance is quite unexpected and, to

the best of our knowledge, it has not been previously observed. Indeed, a two-particle contribution is

always present in the paramagnetic phase of a large class of theories with a single vacuum, as shown

in [21].

Finally, we stress that our analysis does not imply that the entanglement entropy is exactly

independent of ℓ. In fact, it is reasonable to expect a non-vanishing contribution from the four-kink

form factors, thus yielding

S1 ≃ const. +O(e−4mℓ). (5.67)

However, the investigation of higher-kink form factors is beyond the purpose of this work.

5.4 Form factors for the composite twist fields and entanglement

asymmetry in the ferromagnetic phase of Ising QFT

In this section, we analyse the Z2 composite twist fields that arise in the computation of the

entanglement asymmetry. These are the building blocks used to reconstruct the composite twist

operators introduced in Section 5.2, and, as for the standard twist fields, the correspondence goes as

T {g1,...,gn}
A ∼ T {g1,...,gn}(x), A = (x, ∞), (5.68)

T {g1,...,gn}
A ∼ T {g1,...,gn}(0)

(
T {g1,...,gn}

)†
(ℓ), A = (0, ℓ), (5.69)

and similarly for any union of disjoint intervals. Physically, T {g1,...,gn}(x) introduces a branch cut along

(x,∞) which connects the jth and (j+1)th replicas via the additional insertion of an Aharonov–Bohm

flux gj . In particular, to compute the entanglement asymmetry, we only need those composite twist

fields with vanishing net flux (satisfying gn · · · g1 = 1). A fundamental observation pointed out in

Section 5.2 is that such composite twist fields can be related to the standard one via global unitary

transformations induced by the symmetry. In particular, given the form factors of T (x), the ones

of T {g1,...,gn}(x) can be easily reconstructed once the action of the symmetry on the multi-particle

states is known. Before entering the core of this section, we recall that Z2 composite twist fields with

non-vanishing net flux have been characterised in the paramagnetic phase of the Ising model [4, 107]

and used to compute the symmetry-resolved entanglement entropy: those fields are not related by

global unitary transformations to T (x) and the discussion of this section does not apply to them.

Our analysis refers to the ferromagnetic phase of the Ising field theory, where the group is G = Z2

which corresponds to a spin-flip exchanging the two vacua. We parametrise the elements of Z2 as

Z2 = {1, µ}, (5.70)
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with µ2 = 1, and in the forthcoming discussion, with a slight abuse of notation, we do not distinguish

the elements of Z2 from the corresponding unitary operators (i.e. we drop the “hat” notation that we

adopted in Section 5.2). It is easy to show that the n-tuples {gj} with vanishing net flux are the ones

for which an even number of elements µ is present. Since |G| = 2, there are 2n−1 of those n-tuples

(see Eq. (5.32)), and, for the sake of completeness, we list them explicitly in a few cases

• n = 2: {g1, g2} can take the values {1, 1} and {µ, µ}.

• n = 3: {g1, g2, g3} can take the values {1, 1, 1}, {1, µ, µ} and its two cyclic permutations.

• n = 4: {g1, g2, g3, g4} can take the values {1, 1, 1, 1}, {µ, µ, µ, µ}, {1, µ, 1, µ} and its cyclic

permutation, {1, 1, µ, µ} and its three cyclic permutations.

We first discuss the zero-particle form factors of the composite twist fields. We anticipate that

T {g1,...,gn}(0) does not interpolate between ⊗n⟨+| and any other vacuum (except in the trivial case

{gj = 1}), a property which is crucial for the large-distance behavior of the entanglement asymmetry.

Then, we move to the analysis of the two-particle form factors, providing exact analytical results.

Finally, we collect these results together and give an expression for the Rényi entanglement asymmetry

of a large interval.

5.4.1 Zero-particle form factors

We first recall the relation (5.25) and apply it to the composite twist fields, obtaining

(
g′1 ⊗ · · · ⊗ g′n

)
T (0)

(
g′1 ⊗ · · · ⊗ g′n

)−1
= T {g1,...,gn}(0), gj = g′j+1(g

′
j)

−1, (5.71)

which is valid for gn · · · g1 = 1. As previously established, the only non-vanishing vacuum expectation

values of T (0) (see Eq. (5.53)) are ⊗n⟨±|T (0)|±⟩⊗n. Similarly, thanks to (5.71), the composite twist

fields have only two non-vanishing zero-particle form factors: these are overlaps between the same

vacuum, which however is in general different from |±⟩⊗n, as we show below.

If g′j = 1 or g′j = µ for every j = 1, . . . , n in Eq. (5.71), we have T {g1,...,gn}(0) = T (0). In all

the other cases, namely if at least two elements of the n-tuple {g′j} are different, we get a non-trivial

composite twist field T {g1,...,gn}(x), i.e. at least one of the gj = µ. For these non-trivial cases, it holds

⊗⟨±|T {g1,...,gn}(0)|±⟩⊗n = ⊗n⟨±|
(
g′1 ⊗ · · · ⊗ g′n

)
T (0)

(
g′1 ⊗ · · · ⊗ g′n

)−1 |±⟩⊗n = 0, (5.72)

since (g′1 ⊗ · · · ⊗ g′n)
−1 |±⟩⊗n is always different from |±⟩⊗n. This is one of the main results we will

need later.

Other vacua have nevertheless non-vanishing amplitudes. Even if the latter do not appear in the
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Figure 5.3 Pictorial representation of the form factor ⟨+,−|T {µ,µ}(0)|+,−⟩. The blue dotted arrow
in the top left figure shows that the second replica is reached from the first one when the branch
cut, depicted by a dashed black line, is crossed clockwise. The red line represents the spin-flip, which
exchanges + and −. T {µ,µ}(0) can be equivalently obtained via global spin-flips acting on T (0), as
shown in the top right figure. Since the global spin-flip lines commute with the Hamiltonian, they
can be translated and positioned at infinity, so that they act on the ingoing/outgoing states. This
equivalence allows us to establish the relation ⟨+,−|T {µ,µ}(0)|+,−⟩ = ⟨+,+|T (0)|+,+⟩.

computation of the entanglement asymmetry (because in equation (5.33) we take ρ = |+⟩⟨+|), it is

useful to analyse a simple case explicitly. We consider for n = 2 the twist field T {µ,µ}(0). This is

related to the standard twist field via the transformation (5.71), with {g′1 = 1, g′2 = µ}. Therefore,

from (5.71) we get

⟨±,∓|T {µ,µ}(0)|±,∓⟩ = ⟨±,±|T (0)|±,±⟩, (5.73)

and these are the only non-vanishing vacuum expectation values of T {µ,µ}(x).

We can interpret this result as follows. If the boundary condition + is chosen in the first replica

for both the outgoing and the incoming states then, due to the spin-flip induced by the field, the

boundary condition − has to be present in the second replica. We represent this mechanism in Figure

5.3, which shows pictorially the relation between T (x) and T {µ,µ}(x).

5.4.2 Two-particle form factors

The analysis for the two-particle form factors is slightly more involved. In principle, one can just

use the form factors of Section 5.3.2, with vacua as outgoing states and pairs of kinks as incoming ones,

use the relation (5.71) and systematically reconstruct every non-vanishing two-particle form factor.

In practice, this procedure becomes rather cumbersome as the number of composite twist operators

grows exponentially with n. For our purpose, it is more convenient to focus on the outgoing state
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Figure 5.4 Two-particle form factor ⊗4⟨+|T {µ,1,µ,1}(0)|+,K+−(θ1),+,K+−(θ2)⟩. Since a single kink
K+− is present in the second replica, a spin-flip, depicted as a red line, has to be inserted in the
first replica to get a non-vanishing form factor. Similarly, the presence of a kink in the fourth replica
implies the spin-flip in the third replica.

⊗n⟨+| and the incoming states

|+, . . . ,K+−(θ1), . . . ,K+−(θ2), . . . ,+⟩, (5.74)

with the kinks K+−(θ1), K+−(θ2) inserted in the replicas j and j′ respectively and + in every other

replica. We do so as these are the only contributions entering our computation of the entanglement

asymmetry. Then, we investigate which n-tuples {gj} give rise to a non-vanishing form factor of

T {g1,...,gn}(x) for the states above. We also explicitly assume j ̸= j′ (say j < j′), since, for j = j′, that

is when the two kinks are in the same replica, only the trivial twist field T (0) can interpolate between

this state and ⊗n⟨+|, a case already discussed in Section 5.3.2. Let us now discuss the consequences

of the presence of a single kink K+− in the jth replica. Since the boundary conditions are ± for

x = ∓∞, a spin-flip has to connect the (j − 1)th and the jth replica. This is the only way to match

the + above the branch cut in the (j − 1)th replica and the − below the branch cut in the jth one.

Vice versa, if no kinks are present in the jth replica, no spin-flips between the (j − 1)th and the jth

replicas can be present. An example of the mechanism above is shown in Fig. 5.4. As a result, the

only composite twist fields having non-vanishing form factors with two kinks in different replicas are

precisely those with two spin-flips. Namely, the matrix element

⊗n⟨+|T (0){1,...,µ,...,µ,...,1}|+, . . . ,K+−(θ1), . . . ,K+−(θ2), . . . ,+⟩, (5.75)

with µ inserted in the (j − 1)th, (j′ − 1)th replicas and K+−(θ1), K+−(θ2) in the jth and j′th replica

respectively, is non-vanishing. Furthermore, it is not difficult to show that the value of (5.75) is

precisely F
(n)
11 (2πi(j′ − j)− θ1 + θ2), and we leave some details to Appendix 5.A.

5.4.3 Entanglement asymmetry

In this section we put together all the results obtained so far and we compute the entanglement

asymmetry of an interval of length ℓ for the state |+⟩. We focus on the limit mℓ ≫ 1 keeping

only the two-particle contribution. In the two-particle approximation, the only twist fields appearing
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in the computation are the standard twist field T (x) and the composite fields with two spin-flips

T {1,...,µ,...,µ,...,1}(x). The reason is that the other fields do not have non-vanishing two-particle form

factors with ⊗n⟨+|, and their contribution is therefore subleading.

For A = (0, ℓ) and ρ = |+⟩⟨+| we can write

∑
g1,...,gn−1∈{1,µ}

Tr
(
ρ⊗nT {g1,...,gn−1,(g1,...,gn−1)−1}

A

)
=

∑
g1,...,gn−1∈{1,µ}

⊗n⟨+|T {g1,...,gn−1,(g1,...,gn−1)−1}
A |+⟩⊗n (5.76)

≃⊗n⟨+|T (0)T †(ℓ)|+⟩⊗n +
∑

1≤j<j′≤n

⊗n⟨+|T {1,...,µ,...,µ,...,1}(0)
(
T {1,...,µ,...,µ,...,1}

)†
(ℓ)|+⟩⊗n,

where the spin-flips µ are inserted at positions j and j′. In the large-volume limit mℓ → ∞ the

two-point function of the standard twist field converges to |τ |2 (the square modulus of the vacuum

expectation value). In contrast, the one of any composite twist field goes to zero exponentially fast

as ∼ e−2mℓ, because these fields have vanishing vacuum expectation value and the first non-trivial

contribution comes from the two-particle form factors. Expanding in the basis of the multi-kink states,

we arrive at

∑
g1,...,gn−1∈{1,µ}

⊗n⟨+|T {g1,...,gn−1,(g1,...,gn−1)−1}
A |+⟩⊗n

⊗n⟨+|TA|+⟩⊗n
(5.77)

≃ 1 +
n

4π2

n−1∑
j=1

∫
R
dθK0

(
2mℓ cosh

(
θ

2

))
|F (n)

11 (2πij − θ)|2

|τ |2
. (5.78)

Finally, we employ the definition of Rényi asymmetry entanglement, and from (5.33) we get

∆Sn ≃ log 2− 1

n− 1
log

1 +
n

4π2

n−1∑
j=1

∫
R
dθK0

(
2mℓ cosh

(
θ

2

))
|F (n)

11 (2πij − θ)|2

|τ |2

 , (5.79)

an expression valid for any integer n ≥ 2. Before discussing the analytic continuation over n, some

comments are in order. First, the Rényi entanglement asymmetry is a universal quantity as it does not

depend on the normalisation of the twist fields: this is manifest in the appearance of the two-particle

form factor F
(n)
11 (θ) through its ratio with the VEV only. Moreover, for large mℓ, the quantity ∆Sn

approaches its asymptotic value log 2 from below, and this limit is compatible with the inequality

0 ≤ ∆Sn ≤ log |G|, (5.80)

which we expect to have general validity, and we prove in some simple cases in Appendix 5.B. These

conclusions appear to be quite general, as they do not depend on the explicit expression of the
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two-particle form factors in Eq. (5.61): instead, they strongly rely on the fact that the VEV of

composite twist fields vanish, a property which results from topological constraints only.

In order to obtain the entanglement asymmetry we need to take the limit n → 1+ of ∆Sn, which

requires to analytically continue the sum

n−1∑
j=1

|F (n)
11 (2iπj − θ)|2, (5.81)

a task that has been accomplished in [20]. Following the same steps and employing the notation

thereof, we define the function

f(θ, n) =
1

|τ |2
n−1∑
j=0

|F (n)
11 (2πij − θ)|2, (5.82)

and we denote with f̃(θ, n) its analytic continuation from n ∈ N \ {1} to n ∈ [1,∞). In [20] it was

shown that

lim
n→1+

f̃(θ, n) = 0, lim
n→1+

∂f̃(θ, n)

∂n
=
π2

2
δ(θ), (5.83)

a relation valid in the distributional sense over real values of θ. Here, we are interested in the sum

g(θ, n) =
1

|τ |2
n−1∑
j=1

|F (n)
11 (2πij − θ)|2 = f(θ, n)− |F (n)

11 (θ)|2

|τ |2
, (5.84)

namely, the term with j = 0 in Eq. (5.82) is not present in our calculation. Since, as we showed in

Section 5.3.3, |F (n)
11 (θ)| ∼ O((n− 1)2), the same properties established above for f̃(θ, n) are valid for

g̃(θ, n), including its analytic continuation. In particular, we have

lim
n→1+

g̃(θ, n) = 0, lim
n→1+

∂g̃(θ, n)

∂n
=
π2

2
δ(θ). (5.85)

Inserting this result in (5.79) we finally get

∆S1 = log 2− 1

4π2
lim

n→1+

∫
R
dθK0

(
2mℓ cosh

(
θ

2

))
∂

∂n
(ng̃(θ, n)) +O(e−4mℓ)

= log 2− K0(2mℓ)

8
+O(e−4mℓ), (5.86)

that is the main result of this section. As a concluding remark, we observe that from the large-z

asymptotics of the modified Bessel function [91], that is K0(z) ∼
√

π
2z e

−z, one immediately sees that

the two-particle contribution to the entanglement asymmetry is exponentially suppressed in the size

of the region.
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5.5 Further generalisations

In this section, we propose a general conjecture regarding the entanglement asymmetry for any

finite group G. We believe that our finding ∆Sn ≃ log 2 is not specific to the integrability features

of the Ising field theory, and it mostly relies on the symmetry-breaking pattern Z2 → {1} of this

model. We also provide a paradigmatic case in which our conjecture can be proven with elementary

techniques, that is, the case of zero-entanglement states.

Let us first recall that a state ρ is symmetric under g ∈ G if the following equality holds

ρ = gρg−1. (5.87)

Clearly, the set of g ∈ G leaving ρ invariant is a group itself. Therefore, we define

H := {h ∈ G|ρ = hρh−1} ⊂ G, (5.88)

and we say that the symmetry-breaking pattern

G→ H, (5.89)

arises for the state ρ. We conjecture that the Rényi asymmetry of a large subsystem A in the state ρ

is

∆Sn ≃ log
|G|
|H|

. (5.90)

In particular, for the Ising model G = Z2, H = {1} (the trivial group), and our conjecture is compatible

with the main result (5.12) of this paper. In general, |G|/|H| is precisely the number of ground states

(vacua) in the ordered phase of a theory. For example, for the q-state Potts model [219], q distinct

vacua are present and our conjecture (5.90) gives ∆Sn ≃ log q. We remark that equation (5.90) refers

to finite groups only, and it does not apply to the case of U(1) that has been previously studied in

Ref. [29] (see also Appendix 5.B and [210]).

While we do not have a rigorous general proof of (5.90), we think that a few physical hypotheses

should be sufficient to prove it:

• Homogeneity: a finite region A has to encode the global symmetries of the total system, that is

the case for homogeneous systems.

• Short-range correlations: we require that correlations among points of the region A decay fast

enough. This is the case for ground states, and equilibrium states of short-range Hamiltonians.

We believe that this hypothesis is sufficient to prove the existence of a large-volume limit for the
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entanglement asymmetry.

Before discussing an explicit case where the conjecture (5.90) can be proven, we would like to point

out the intuition behind it. Let us first express, for n ≥ 2

Tr(ρ̃nA)

Tr(ρnA)
=

1

|G|n−1

∑
g1,...,gn−1∈G

Tr(ρAg1ρA . . . gn−1ρA(g1 . . . gn−1)
−1)

Tr(ρnA)
, (5.91)

where both the index A and the hat have been dropped from the operators for notational convenience.

Whenever gj ∈ H in the sum above, that is

ρgj = gjρ, j = 1, . . . , n− 1, (5.92)

one can commute the elements inside the trace in the numerator, obtaining

Tr(ρAg1ρA . . . gn−1ρA(g1 . . . gn−1)
−1)

Tr(ρnA)
= 1, gj ∈ H. (5.93)

There are precisely |H|n−1 ways one can choose such (n − 1)-tuples {g1, . . . , gn−1} such that every

gj ∈ H. The other terms in the sum (5.91) are expected to vanish in the large volume limit. Indeed,

if [ρA, gj ] ̸= 0 the eigenspaces of gj and ρA are distinct: in the large volume limit, we expect that the

eigenspaces above are at “generic positions” with respect to each other at large size, leading to a fast

decay of the traces in which ρA and gj are inserted consecutively: a related mechanism is known in

the context of free independence between random matrices, and we refer the interested reader to [221]

for a review. The considerations above lead to (5.90) after simple manipulations.

5.5.1 Zero-entanglement states

For zero-entanglement states, the conjecture (5.90) can be proven for any finite group G, as we

show below. While this example may not be a realistic description of physical states with short-range

correlations, it correctly captures the important features we mentioned above.

Let us consider the pure state

ρ = |0 . . . 0⟩A ⊗ |0 . . . 0⟩Ā, (5.94)

in which |0⟩ is an on-site configuration belonging to a finite-dimensional Hilbert space. The reduced

density matrix of the state above is

ρA = |0 . . . 0⟩A A⟨0 . . . 0|, (5.95)

and, since ρA is pure, no entanglement between A and Ā is present. In particular, this means Tr (ρnA) =

1. Let us then assume that a finite group G acts unitarily as a global symmetry of the system. It is
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not difficult to show that the subgroup H that leaves the state invariant is:

H = {h ∈ G s.t |⟨0|h|0⟩| = 1}, (5.96)

namely |0⟩ and h|0⟩ are proportional through a phase. In contrast, whenever g /∈ H, one has

|⟨0|g|0⟩| < 1. (5.97)

By considering a generic n-tuple {gj ∈ G}j=1,...,n, we can compute

Tr (ρAg1 . . . ρAgn) =
n∏

j=1

A⟨0 . . . 0|gj |0 . . . 0⟩A =
n∏

j=1

⟨0|gj |0⟩|A|, (5.98)

with |A| the number of sites of A. As long as at least one element satisfies gj /∈ H, one has

lim
|A|→∞

|⟨0|gj |0⟩||A| = 0, (5.99)

which trivially implies

lim
|A|→∞

Tr (ρAg1 . . . ρAgn) = 0. (5.100)

On the other hand, for n-tuples of elements of H, equation (5.93) holds. Putting together these results

with (5.91), one finally gets (5.90) for the case of a large subsystem A.

5.6 Concluding remarks

In this paper we generalised the notion of Rényi entanglement asymmetry, first proposed in [29], to

include the action of an arbitrary finite group G, and we characterised its value in the symmetry-broken

ground state of the Ising field theory. In particular, we employed the replica trick to describe the

quantities of interest as expectation values of composite twist operators, and we provided analytical

expressions of their form factors using integrable bootstrap.

In addition, we proposed a general conjecture (5.90), which we expect to hold for a large class of

quantum states and for any finite group G. Remarkably, if our conjecture is correct, the entanglement

asymmetry of a large but finite region becomes a useful tool to “count” the number of ground states

in a spontaneously symmetry-broken phase via a local probe.

Many interesting directions are left to explore. It would be interesting to investigate other

integrable QFTs using the approach we developed in this paper. For instance, the q-state Potts

model in its ferromagnetic phase [219] stands out as the simplest generalisation of the Ising model.

Moreover, one could analyse massless flows [222] in which the symmetry is broken explicitly along

175



CHAPTER 5. ENTANGLEMENT ASYMMETRY IN THE ORDERED PHASE OF THE ISING
FIELD THEORY

the renormalisation group flow, and distinct symmetries are present in the IR and UV fixed points.

It may also be worth considering field theories where the symmetry breaking arises due to the

presence of boundary conditions or impurities (see e.g. [223, 224]) and translational invariance is

absent.

Furthermore, the relation between the paramagnetic and the ferromagnetic phase of the Ising

model is, from the point of view of entanglement content, quite puzzling. As we have shown, there

are formal analogies in the form factor bootstrap of the twist fields, but the relation is subtle and,

in general, the entropies are different in the two phases (see Appendix 5.C). It is well-known that

the Kramers-Wannier duality [225], which is nowadays understood in the language of non-invertible

defects [226], relates the ordered and the disordered phase non-locally: this duality might be a good

candidate to explain the relationship between the twist fields in the two phases. In particular, it

would be interesting to understand what is the “dual”of the entanglement of a region under the

Kramers-Wannier duality.

We also consider the study of low-energy states in the ferromagnetic phase of one-dimensional

quantum systems (i.e. domain walls interpolating between distinct vacua) to be promising. Indeed, it

is not obvious a priori whether the results found in [114–116, 144] for quasi-particles should also hold

for these topological excitations typical of the ordered phase.

Finally, a general, comprehensive proof of conjecture (5.90) is still missing. Recently, its validity

has been rigorously shown for matrix product states (see e.g. [227]) in [210], where the authors

also proposed a generalisation of equation (5.90) for compact Lie groups. However, many physically

relevant states, such as (generalised) Gibbs ensembles or regularised boundary states of CFT [228] are

yet to be studied. Moreover, it would be interesting to understand whether Eq. (5.90) is also valid for

the steady states arising in the long-time dynamics, which is the main motivation behind the original

formulation of the entanglement asymmetry [29].

5.A Two-particle form factors of composite twist fields

In this appendix we show in some simple cases the validity of the relation

⊗n⟨+|T (0){1,...,µ,...,µ,...,1}|+, . . . ,K+−(θ1), . . . ,K+−(θ2), . . . ,+⟩ = F
(n)
11 (2πi(j′ − j)− θ1 + θ2), (5.101)

which was presented at the end of Section 5.4.2. A proof of the equation above for generic values of

n, j, j′ is easy to obtain by making use of the monodromy equation, global spin-flip invariance and

the algebra (5.48). However, the general mechanism is better highlighted by looking at some explicit

examples.
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Let us consider n = 2, 3, 4 and the following fields (see Section 5.2)

T {µ,µ}(x) = (1⊗ µ)T (x)(1⊗ µ) for n = 2, (5.102)

T {1,µ,µ}(x) = (1⊗ 1⊗ µ)T (x)(1⊗ 1⊗ µ) for n = 3, (5.103)

T {µ,1,µ,1}(x) = (1⊗ µ⊗ µ⊗ 1)T (x)(1⊗ µ⊗ µ⊗ 1) for n = 4. (5.104)

For n = 2 we have

⟨+,+|T {µ,µ}(0)|K+−(θ1),K+−(θ2)⟩

=⟨+,+|(1⊗ µ)T (0)(1⊗ µ)|K+−(θ1),K+−(θ2)⟩

=⟨+,−|T (0)|K+−(θ1),K−+(θ2)⟩

=⟨−,−|T (0)|K−+(θ2 + 2πi)K+−(θ1),−⟩

=⟨+,+|T (0)|K+−(θ2 + 2πi)K−+(θ1),+⟩ = F
(2)
11 (2πi+ θ2 − θ1), (5.105)

where we used the monodromy equation for T (x) (discussed in Section 5.3) in going from the third to

the fourth line and applied an overall spin-flip transformation to each replica to obtain the last line.

Similar calculations are shown below for n = 3:

⟨+,+,+|T {1,µ,µ}(0)|K+−(θ2),+,K+−(θ1)⟩

=⟨+,+,+|(1⊗ 1⊗ µ)T (0)(1⊗ 1⊗ µ)|K+−(θ2),+,K+−(θ1)⟩

=⟨+,+,−|T (0)|K+−(θ2),+,K−+(θ1)⟩

=⟨−,−,−|T (0)|K−+(θ1 + 4πi)K+−(θ1),−,−⟩

=⟨+,+,+|T (0)|K+−(θ1 + 4πi)K−+(θ2),+,+⟩

=F
(3)
11 (4πi+ θ2 − θ) = F

(3)
11 (2πi− θ1 + θ2). (5.106)

Finally, for n = 4 one has

⟨+,+,+,+|T {µ,1,µ,1}(0)|+,K+−(θ1),+,K+−(θ2)⟩

=⟨+,+,+,+|(1⊗ µ⊗ µ⊗ 1)T (0)(1⊗ µ⊗ µ⊗ 1)|+,K+−(θ1),+,K+−(θ2)⟩

=⟨+,−,−,+|T (0)|+,K−+(θ1),−,K+−(θ2)⟩

=⟨+,+,+,+|T (0)|+,K+−(θ2 + 4πi)K−+(θ1),+,+⟩

=F
(4)
11 (4πi− θ1 + θ2). (5.107)
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5.B Useful inequalities

In this appendix, we provide some upper and lower bounds for the Rényi entanglement asymmetry

of finite groups. In particular, we focus on n = 2, leaving some considerations for the other values of

n at the end of this section. The main result, proved below, is

0 ≤ ∆S2 ≤ log |G|, (5.108)

with ∆S2 = 0 iff ρA = ρ̃A.

We first express ∆S2, defined in (5.8), as (see also equation (5.33))

∆S2 = log |G| − log

∑
g∈G

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
)

 . (5.109)

Therefore, to bound ∆S2 it is sufficient to analyse the possible values taken by

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
) , (5.110)

as a function of g ∈ G. We observe that, since ρA and gρAg
−1 are both positive semi-definite, one can

easily show that8

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
) ≥ 0, ∀g ∈ G. (5.111)

Furthermore, because the ratio takes the value 1 for g = 1, we can write

log

∑
g∈G

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
)

 = log

1 +
∑
g ̸=1

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
)

 ≥ 0, (5.112)

which, from equation (5.109), implies ∆S2 ≤ log |G|.

To prove ∆S2 ≥ 0, we apply the von Neumann’s trace inequality [229] to ρA and gρAg
−1, obtaining

Tr
(
ρAgρAg

−1
)

Tr
(
ρ2A
) ≤ 1, (5.113)

and the bound is saturated iff ρA and gρAg
−1 share the same eigenvectors (which means they have to

be equal, as their eigenvalues are always the same). Inserting the result above in equation (5.109), we

obtain

∆S2 ≥ 0, (5.114)

where the equality holds iff ρA = gρAg
−1 for any g ∈ G. Therefore, from the definition (5.5), we have

8Given A,B positive semi-definite matrices, one has Tr (AB) = Tr
(
(
√
A
√
B)(

√
A
√
B)†

)
≥ 0.
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∆S2 = 0 iff ρA = ρ̃A, which proves the main result (5.108) of this appendix.

It is worth considering whether comparable strategies can be used to establish the inequality

0 ≤ ∆Sn ≤ log |G| for other values of n. The first issue we encounter is that

Tr
(
ρA · g1ρAg−1

1 · g2ρAg−1
2 . . . gn−1ρAg

−1
n−1

)
Tr
(
ρnA
) , (5.115)

is not necessarily real for n ≥ 3. For example, the matrices

M1 =

1 0

0 0

 , M2 =
1

2

1 1

1 1

 , M3 =
1

2

 1 i

−i 1

 , (5.116)

are positive semi-definite, having 0 and 1 as eigenvalues, but Tr (M1M2M3) =
1+i
4 /∈ R. This implies

that the previous technique, employed for n = 2 to show ∆S2 ≤ log |G|, does not apply directly to

n ≥ 3.

On the other hand, we can provide a simple proof of ∆Sn ≥ 0 valid for any, possibly non-integer,

n ≥ 1. The key idea is that the symmetrised state ρ̃A is generically more mixed (less pure) than ρA,

and, therefore, it has more entropy. More precisely, one can show from (5.5) that the superoperator

Φ, defined as

Φ(ρA) := ρ̃A, (5.117)

is completely positive and trace-preserving (CPT). Then, we use the monotonicity of the sandwiched

Rényi divergence [230], valid for CPT maps, and we apply it directly to ρA and the infinite-temperature

state 1A
Tr(1A) . As an immediate consequence, we get

∆Sn ≥ 0, n ≥ 1. (5.118)

However, with this approach it is not possible to claim that, for a generic value of n, ∆Sn = 0 implies

ρA = ρ̃A.

As a last remark, we point out that for a compact Lie group the number of elements is infinite

and the Rényi entanglement asymmetry does not have an upper bound. For instance, in a simple

example analysed in [29], the U(1) asymmetry grows logarithmically in the subsystem size. A detailed

exploration of the entanglement asymmetry for compact Lie groups can be found in [210].
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5.C Exact results for the Rényi entropies via corner transfer matrix

and Kramers-Wannier duality

In this appendix, we review some exact results available for the entanglement of the

transverse-field Ising chain, following closely [231]. Let us consider the quantum one-dimensional

Ising model, described by the Hamiltonian

H = −
∑
j

(
σxj σ

x
j+1 + hσzj

)
, (5.119)

with σxj , σ
z
j the Pauli matrices at position j. This model displays a quantum critical point at h = 1

separating a ferromagnetic phase (h < 1) from a paramagnetic one (h > 1). It is well known that

Kramers-Wannier duality [225] relates the spectra of the Hamiltonian at h and h−1, and, more in

general, local and semi-local observables are mapped into each other by this duality. The same

mechanism is observed in the underlying Ising field theory, where one can relate the paramagnetic and

the ferromagnetic phase at the same value of the mass m. However, as shown in [231], the entropies at

dual points differ explicitly. In particular, the entanglement of the half-chain has been characterised

analytically in the infinite-volume limit via the Corner Transfer Matrix (CTM) method [232]. Here,

we only report and discuss the final result found in [231].

Let us define the parameters

k := min(h, h−1), ϵ = π
K(

√
1− k2)

K(k)
, (5.120)

with K(z) the complete elliptic integral of the first kind [91]. Then, given

ϵj :=


(2j + 1)ϵ h > 1,

2jϵ h < 1,

(5.121)

for j = 0, 1, . . . one can express the nth Rényi entropy of the half chain at field h as

Sn(h) =
1

1− n

∞∑
j=0

log
1 + e−ϵjn

(1 + e−ϵj )n
. (5.122)

Equation (5.120) clearly shows that the value of the parameter ϵ is the same at the dual points h, h−1,

even though the “single-particle eigenvalues”ϵj are different.

We emphasise that for h < 1, corresponding to the ferromagnetic phase, the ground state is

degenerate and one should be careful. For instance, the result (5.122) refers to the symmetric ground
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state (often dubbed GHZ state), which in our notation corresponds to

|GHZ⟩ = 1√
2
(|+⟩+ |−⟩) . (5.123)

To obtain the entropies of the symmetry-broken ground state |±⟩ one has to explicitly remove the

zero-mode j = 0 from the sum in (5.122), as explained in [231], thus getting

Sn(h < 1) =
1

1− n

∞∑
j=1

log
1 + e−ϵjn

(1 + e−ϵj )n
=

1

1− n

∞∑
j=0

log
1 + e−ϵjn

(1 + e−ϵj )n
− log 2, (5.124)

which means that the Rényi entropy of the doubly degenerate state |±⟩ is smaller than that of the

GHZ state (5.122), as one would intuitively expect. Remarkably, in the limit h → 1 one has ϵ → 0

and, accordingly, the Rényi entropy diverges. The origin of this divergence is universal, and it is

traced back to the properties of the underlying CFT (see [231] for further details): in particular, the

divergence is the same if the critical magnetic field h = 1 is approached from above or below.

Discrepancies between dual points can nevertheless be spotted if one takes into account also the

finite terms arising in (5.122) when taking the limit h→ 1. In particular, using the results of [231] one

can show that the entropy difference between the paramagnetic phase and the ferromagnetic phase

(in the GHZ state) satisfies

lim
h→1+

[
Sn(h)− Sn(h

−1)
]
= − log(2)

2
. (5.125)

The origin of the constant − log(2)
2 is much more subtle than the log(2) term in (5.124): indeed, the

former appears only close to the critical point, and a full explanation based on the formal analogy

between (5.122) and the thermal entropy of a CFT has been provided in [231] (see also [63] for a

related discussion).

Below, we interpret these results in the language of the Ising field theory. Let us focus on a

given value of the mass m and let |0⟩ be the paramagnetic ground state, |±⟩ the symmetry-broken

ferromagnetic ground state, and |GHZ⟩ the state defined by (5.123). To compute the Rényi entropy

of a given state in the half-infinite chain, say A = (0,∞), we have to evaluate the twist field T (0) over

the corresponding replica state. In particular, the difference of Rényi entropy between |GHZ⟩ and |+⟩

would be just
1

1− n
log

⊗n⟨GHZ|T (0)|GHZ⟩⊗n

⊗n⟨+|T (0)|+⟩⊗n
= log 2. (5.126)

Here, to obtain (5.126) we only used the definition (5.123) and the fact that the only non-vanishing

VEVs of T (0) over replica vacua are ⊗n⟨+|T (0)|+⟩⊗n = ⊗n⟨−|T (0)|−⟩⊗n (see Section 5.3). This result

is compatible with (5.124), and reasonably a similar argument can be employed even beyond the field

theoretic regime, when |h− 1| is finite.
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Instead, a different mechanism arises if we try to compare |+⟩ and |0⟩. We first notice that the

ratio
⊗n⟨+|T (0)|+⟩⊗n

⊗n⟨0|T (0)|0⟩⊗n
, (5.127)

is dimensionless, i.e. it is a universal number which does not depend on m (the only mass scale).

Moreover, according to the lattice result (5.125) valid near the critical regime where the field theory

is predictive, we expect
⊗n⟨+|T (0)|+⟩⊗n

⊗n⟨0|T (0)|0⟩⊗n
= gn−1, g =

√
2, (5.128)

so that the difference of entropy between |+⟩ and |0⟩ would be just9

1

1− n
log

⊗n⟨+|T (0)|+⟩⊗n

⊗n⟨0|T (0)|0⟩⊗n
= − log 2

2
. (5.129)

We believe that (5.128) can be proven, once the normalisation of the twist field is fixed, via a form factor

approach similar to that of [63]. We also conjecture that the value of the constant g in Eq. (5.128)

comes precisely from Affleck-Ludwig boundary entropy [233]: however, it is not clear to us whether an

explicit relation between the off-critical paramagnetic/ferromagnetic phases and a boundary CFT can

be provided. We only point out that if (5.128) is correct, then it cannot be a trivial consequence of

the Kramers-Wannier duality, which holds exactly on the lattice, as the relation (5.125) is only valid

close to the critical point.

9Equation (5.125) compares the GHZ state and the paramagnetic ground state. If we take |+⟩ instead of the GHZ

state, we get lim
h→1+

Sn(h)− Sn(h
−1) = + log(2)

2
.
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OUTLOOK

The results we presented in this thesis contribute to expand the knowledge in the field of

symmetry-resolved entanglement measures in quantum many-body systems, an area which has been

the object of intense activity in the past five years. One of the main theoretical tools we employed

throughout this work is that of composite twist operators: these are operators that are defined in a

very simple way by means of their algebraic relations with the local observables of a theory in a

generic D-dimensional QFT. In the context of charged zero-density excited states of a QFT, by

making some simple approximations, composite twist operators allow us to reproduce, at leading

order in the system size, the results which can be obtained by form factor calculations and generalise

those to higher-dimensional theories. Furthermore, crucially, we used twist operators to derive a

new, general way of computing entanglement asymmetry in a symmetry-breaking ground state of a

QFT, paving the way for a deeper investigation of entanglement properties in the ordered phase of a

field theory.

Since the notion of symmetry resolution of entanglement was introduced, different techniques have

been employed to establish exact results as well as asymptotic behaviours of the symmetry-resolved

bipartite and multipartite entanglement measures in one-dimensional systems. These include, most

notably, spin chains, conformal field theories, integrable quantum field theories, and quantum cellular

automata. The most prominent result that has emerged from these extensive investigations is the

equipartition of symmetry-resolved entropy at leading order in the system size, that is, the property

that different charge sectors equally contribute to the total entanglement. Our main contribution to

the field of symmetry-resolved entanglement consists in obtaining exact and universal leading-order

results for the U(1) symmetry-resolved entanglement of zero-density excited states in massive QFTs.

Our results exclusively rely on the locality of the excitations, and bridge a significant gap in the
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existing literature. Next-to-leading-order contributions to the entanglement will reveal how the latter

depends on the microscopic details of the theory; however, a perturbative study of the large-volume

limit of entanglement measures generally requires the knowledge of finite-volume form factors, and

the development of a form factor program for non-local fields at finite volume is a challenging and -so

far- virtually untackled task.

Employing a notion of entanglement asymmetry to investigate the properties of symmetry-broken

phases in one-dimensional systems is an idea that made its appearence in the community of quantum

many-body physics very recently. Prior to our work, only few papers had appeared, primarily focussing

on the evolution of U(1) entanglement asymmetry after a quantum quench. In our work, we looked at

the ferromagnetic phase of the Ising field theory to propose an algebraic approach for the computation

of entanglement asymmetry in field theories, based on composite twist operators. Furthermore, we

conjectured a formula for the entanglement asymmetry of a state displaying partial symmetry breaking

which, to the best of our knowledge, was verified in any system studied to date.

We now highlight some research directions that emerge from our work. A first topic that deserves

further investigation is that of entanglement properties of localised quasi-particle excitations. Indeed,

the universality of entanglement entropy (total and symmetry-resolved) of excited states of gapped

theories poses a question: how do we distinguish between states at different energy, from the point

of view of the entanglement content? A possible way to tackle the problem is by looking at relative

entropy as a measure of distinguishability among excited states with the same energy and same

entanglement entropy. Moreover, form factor expansions allows us to obtain finite-volume corrections

to the correlation functions, and beyond leading order the energy of the excitations (as well as the

integrability features of the theory) becomes relevant.

On the other hand, the entanglement entropy of descendant states of a CFT has been well studied

in the past decade. It is known that the low-lying and the high-lying states in the spectrum have

entropies that depend on the details of the system in functionally different ways. The high-energy

states reproduce, in certain limits, the universal result found in gapped theories. How does this

crossover between the CFT and massive QFT results happens physically? Specific limits can be taken

but a general explanation is missing. Holography may be a key, as high-energy CFT states may be

obtained by looking at (2+1)d in a small coupling regime.

Two physical questions of the utmost relevance can be approached using integrability techniques,

namely: the interplay between symmetries and boundary effects, and the dynamics of entanglement

in QFT. Indeed, on the one hand the twist field and twist operator techniques we developed in [1, 2,

5] pave the way for a study of correlation functions and symmetry-resolved entanglement measures

in theories with boundaries, thus addressing the question of whether -or to which extent- entropy
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equipartition is spoiled by boundary effects. On the other hand, the very same techniques allow us to

investigate what happens to entanglement-related physical observable of a QFT after a quench in the

mass or in other parameters of the theory.

Finally, the entanglement properties specific to the ordered phase of a many-body system are

particularly interesting. In the recent work [8], we observed that the entanglement content of kink-like

excitations in the ferromagnetic phase of the Ising model is not captured by the universal results for

the entanglement of quasi-particle excitations. This is due to the different localisation properties of

domain walls, which induce topological effects. The algebraic framework we developed in [5] and [8]

can be employed for the investigation of entanglement properties in the ordered phase of a QFT, where

excitations can be described by kinks interpolating between vacua.
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entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization”. In:

Phys. Rev. B 101 (2020), p. 235169. doi: 10.1103/PhysRevB.101.235169.

[133] S. Murciano, P. Ruggiero, and P. Calabrese. “Symmetry resolved entanglement in

two-dimensional systems via dimensional reduction”. In: J. Stat. Mech. 2020.8 (2020),

p. 083102. doi: 10.1088/1742-5468/aba1e5.

[134] S. Fraenkel and M. Goldstein. “Entanglement Measures in a Nonequilibrium Steady State:

Exact Results in One Dimension”. In: SciPost Phys. 11 (2021), p. 85. doi:

10.21468/SciPostPhys.11.4.085.

197

https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1007/JHEP08(2020)073
https://arxiv.org/abs/2006.09069
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1007/JHEP12(2021)104
https://doi.org/10.1007/JHEP05(2022)166
https://doi.org/10.1088/1742-5468/ab7753
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.1209/0295-5075/129/60007
https://doi.org/10.1103/PhysRevB.103.L041104
https://doi.org/10.1103/PhysRevB.101.235169
https://doi.org/10.1088/1742-5468/aba1e5
https://doi.org/10.21468/SciPostPhys.11.4.085


REFERENCES

[135] G. Parez, R. Bonsignori, and P. Calabrese. “Exact quench dynamics of symmetry resolved

entanglement in a free fermion chain”. In: J. Stat. Mech. 2021.9 (2021), p. 093102. doi: 10.

1088/1742-5468/ac21d7.

[136] G. Parez, R. Bonsignori, and P. Calabrese. “Dynamics of charge-imbalance-resolved

entanglement negativity after a quench in a free-fermion model”. In: J. Stat. Mech 2022.5

(2022), p. 053103. doi: 10.1088/1742-5468/ac666c.
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