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Abstract
In this paper, we describe an algorithm implementing the unique-
id abstraction from bounded-storage registers maintaining read,
write, and FAI operations. Given 𝑘 registers, storing 𝑤 bits each,

our implementation generates up to (𝑘 − 1) · 2𝑤 unique identifiers,

assuming that 𝑘 ≤ 2
𝑤 + 1. We show that this is asymptotically

optimal: no unique-id implementation can produce more than 𝑘 ·
2
𝑤 + 𝑘 + 1 identifiers.
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•Computingmethodologies→Concurrent algorithms; • The-
ory of computation→ Shared memory algorithms.
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1 Introduction
Building efficient and convenient abstractions from components

of bounded capacity is the bread and butter of computer science,

and distributed computing in particular. A notable example is the

collection of algorithms by Lamport [12], implementing read-write

registers of stronger consistency, larger capacity, or richer interface

from weaker ones. These results have been followed by a long and

prolific research line on implementing large-capacity abstractions

from low-capacity components, touching upon various abstractions,

consistency criteria, and capacity metrics [7–9, 15] (to name a few).

Recently, this question was addressed in the context of combinato-

rial properties of generic distributed task protocols [3, 14] and also

in the context of concurrent data structures with minimal memory

footprint [1].
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In this paper, we focus on the problem of generating unique
identifiers from shared registers of bounded storage capacity. The

unique-id abstraction can be accessed with an operation get() that
returns an integer identifier and ensures that in every execution,

no two operations return the same id. This abstraction is widely

used in databases to generate primary keys [6, 16, 17], distributed

tracing [13], cloud orchestration [5], etc. The unique-id problem is

reminiscent of the classical task of renaming [2]. Unlike renaming,

however, our goal is not to provide unique names in a given (ideally,

small) name range once, but to enable a sufficiently long supply of

unique identifiers in the long-lived manner. Similarly to renaming

algorithms, to filter out trivial (and, arguably, useless) solutions, we,

however, do assume anonymity—the processes are not supposed to

use their initial identifiers in deriving new ones.

We consider concurrent read-write unique-id implementations,

assuming that each shared variable (a register) can store up to 𝑤

bits and exports read, write, and fetch-and-increment (FAI) opera-
tions. Trivially, just applying FAI operations to one register, we can

generate up to 2
𝑤
unique identifiers. But what happens once we

exceed the capacity of a single register and more get() operations
are applied? Assuming that we have 𝑘 𝑤-bit registers, how close

can we get to the theoretical maximum of 2
𝑘𝑤

identifiers?

As we show in this paper, in a system with sufficiently many

concurrent processes, no unique-id implementation can generate

more than 𝑘 · 2𝑤 + 𝑘 + 1 identifiers. We match this upper bound

asymptotically with an algorithm that is able to generate up to

(𝑘 − 1) · 2𝑤 ids for any concurrency level, as long as 𝑘 ≤ 2
𝑤 + 1.

We see this result as a first step in the direction of deriving prac-

tical abstractions with large capacity implemented using bounded

memory. In contrast with the universal approach [3, 7, 14] that

aims at implementing an arbitrary sequential object or solving an

arbitrary decision task, we focus on the practical problem of gener-

ating identifiers in the pragmatic read/write/FAI model. Of course,

many questions beg for answers. Can we refine our upper bound

by introducing the concurrency level in it? What about models in

which shared variables are equipped with more general operations,

such as fetch-and-add (FAA) or compare-and-swap (CAS)? What

about other problems, e.g., the stronger variations of unique ids
that would generate monotonically increasing ids (or even gap-free,
which is equivalent to a large-range counter)? What about the use

of randomization, improving the recent communication-free solu-
tion [4] with shared-memory primitives?We expect these questions

to be tackled in the future work.
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2 Problem Statement
Consider a concurrent system, where a set of processes (or threads)
communicate via 𝑘 shared-memory registers 𝑅0, . . . , 𝑅𝑘−1. Each
register stores a 𝑤-bit unsigned integer and can be accessed by

atomic read, write, and fetch-and-increment (FAI ) primitives. FAI
works in a cyclic manner: applied to a register with value 2

𝑤 − 1,
FAI sets the register to 0.

Every thread is assigned an algorithm, informally—an automaton

that, given the local process state, the outcome of the last shared-

memory primitive and/or the application input, generates the next

primitive to be executed on a shared-memory location and/or the

application output. We assume that the automaton is anonymous
(does not use the process identifiers) and deterministic.

A UniqueID object exports one operation get() that takes no
arguments and returns an integer (an identifier). In a sequential

execution, the object should ensure that all outputs of get operations
are distinct.

1

We aim at linearizable [11] implementations of this specification

above, informally, ones that create an illusion of an object exporting

an atomic get operation. An implementation can be wait-free (every
thread completes its operation in finitely many of its own steps) or

lock-free (i.e., at least one thread completes all of its operations) [9].

Our impossibility result assumes the evenweaker liveness condition

of obstruction-freedom [10] which only guarantees progress to a

thread that runs in isolation for a sufficient amount of time.

In this paper, we determine upper and lower bounds on the

number of distinct identifiers a UniqueID object can produce. In-

tuitively, we want to determine 𝐵 (as a function of 𝑘 and𝑤 ) such

that: (1) there is a UniqueID that is correct as long as at most 𝐵

operations are invoked, and (2) no correct implementation exists

when more than 𝐵 operations are invoked.

In the following, we first show that there is a wait-free algorithm

that is able to produce up to (𝑘 − 1) · 2𝑤 identifiers, and then

show that no obstruction-free algorithm can produce more than

𝑘 · 2𝑤 + 𝑘 + 1 identifiers.

3 Wait-free ID Generation
We describe a simple algorithm that generates up to 𝐵 = (𝑘 −1) ·2𝑤
identifiers, assuming the number of registers 𝑘 ≤ 2

𝑤 + 1, we then
discuss possible extensions for larger values of 𝑘 . (In the trivial case

of 𝑘 = 1, we can get up to 𝐵 = 2
𝑤
simply applying FAI to the single

register.)

First we present an algorithm that assumes that 𝑘 = 2
𝑥 + 1

for some integer 𝑥 . This assumption allows us to build a simple

correspondance between values of the first register and indices of

other registers. Later we discuss algorithms for arbitrary 𝑘 with

slight relaxations in progress guarantees or id ranges.

Algorithm 1 contains pseudocode for id generation in case 𝑘 =

2
𝑥 + 1. The first register is used to distribute operations among

𝑘 − 1 remaining registers. Each of those 𝑘 − 1 registers gets its

own designated value range from which it produces new IDs in the

sequential order.

1
One might also consider stronger sequential specifications: monotonic (the identifiers
returned by the get operations monotonically grow) or even continuously monotonic
(identifiers are produced in the incremental fashion).

Algorithm 1 Wait-free UniqueID for 𝑘 = 2
𝑥 + 1 ≤ 2

𝑤 + 1
Initially:

𝑅𝑖 ← 0 for all 𝑖

1: procedure get()
2: 𝑖 ← 𝑅0 .𝐹𝐴𝐼 () mod (𝑘 − 1)
3: 𝑗 ← 𝑅𝑖+1 .𝐹𝐴𝐼 ()
4: return 𝑖 · 2𝑤 + 𝑗
5: end procedure

Theorem 3.1. Algorithm 1 is a wait-free UniqueID implementa-
tion using 𝑘 𝑤-bit registers, assuming that the get operation is called
at most (𝑘 − 1) · 2𝑤 times.

Proof. The algorithm is trivially wait-free. We show now that

if the get operation is called no more than 𝐵 = (𝑘 − 1) · 2𝑤 times,

then all returned values are distinct.

Consider any execution with 𝐵 invocations of get. We denote

these operations 𝑜𝑝0, 𝑜𝑝1, . . . , 𝑜𝑝𝐵−1, in the order of the execution

of 𝑅0 .𝐹𝐴𝐼 () on line 2. For every operation 𝑜𝑝𝑥 denote as 𝑖𝑥 the

value of 𝑖 assigned in the line 2 and as 𝑗𝑥 the value of 𝑗 assigned in

the line 3.

From semantics and atomicity of the FAI operation on 𝑅0 we can

notice that 𝑖𝑥 = (𝑥 mod 2
𝑤) mod (𝑘 − 1) = 𝑥 mod (𝑘 − 1). Thus,

for some fixed value 𝑖′ operations with 𝑖𝑥 = 𝑖′ have identifiers of
the form 𝑜𝑝𝑖′+𝑐 · (𝑘−1) for some non-negative integer 𝑐 . Solving the

inequality 𝑖′ +𝑐 · (𝑘 −1) < 𝐵 we obtain 𝑐 < 𝐵−𝑖′
𝑘−1 ≤

𝐵
𝑘−1 = 2

𝑤
. Thus,

operation 𝑅𝑖′+1 .𝐹𝐴𝐼 () is called no more than 2
𝑤
times for any 𝑖′.

As 𝑅𝑖′+1 stores 2𝑤 values, no two operations 𝑅𝑖′+1 .𝐹𝐴𝐼 () can return

two equal values meaning that all values of 𝑗 will be distinct for

such operations.

Thus, for any two operations 𝑜𝑝 𝑓 ans 𝑜𝑝𝑠 we have 𝑖 𝑓 ≠ 𝑖𝑠 or

𝑗𝑓 ≠ 𝑗𝑠 . Since both 𝑖 and 𝑗 are values of register and don’t exceed

2
𝑤
, we can infer that 𝑖 𝑓 · 2𝑤 + 𝑗𝑓 ≠ 𝑖𝑠 · 2𝑤 + 𝑗𝑠 which in turn means

that all the values returned by get operations are distinct. □

We propose two simple variations of Algorithm 1 for the case

when 𝑘 − 1 is not a power of two.
As the first one, we run Algorithm 1 on the maximal 𝑘′ ≤ 𝑘

registers such that 𝑘′ − 1 = 2
𝑥
for some 𝑥 . This approach reduces

the possible number of generated values, but since 𝑘′ ≥ 𝑘/2, we
get the number of operations 𝐵 ≥ 𝑘/2 · 2𝑤 .

Second, we can find theminimal 𝑘′ ≥ 𝑘 such that 𝑘′−1 = 2
𝑥
and

generate values of 𝑖 , taking the result of 𝑅0 .𝐹𝐴𝐼 () modulo (𝑘′ − 1)
instead of (𝑘 − 1) (see Algorithm 2). This will sometimes lead to

situations when there’s no register with index 𝑖 +1 because 𝑖 +1 > 𝑘 .

In this case, we can invoke 𝑅0 .𝐹𝐴𝐼 () again. We repeat this operation

until a valid index is obtained. This strategy will ensure that all

operations are still evenly distributed between all 𝑘 − 1 registers
even when occasional overflows of 𝑅0 occur. This algorithm does

not have a constant bound on the number of steps required to

complete each operation. Although a process might starve due to

the progress of other processes, the algorithm remains wait-free

since the object produces a finite number of distinct identifiers.

Remark. The reason Algorithm 2 does not work for 𝑘 > 2
𝑤 + 1 is

that by performing FAI() operation on a single register 𝑅0, we can
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Algorithm 2 UniqueID for 𝑘 ≤ 2
𝑤 + 1

Initially:
𝑅𝑖 ← 0 for all 𝑖

𝑘′ = 2
⌈log

2
(𝑘−1) ⌉ + 1

1: procedure get()
2: repeat
3: 𝑖 ← 𝑅0 .𝐹𝐴𝐼 () mod (𝑘′ − 1)
4: until 𝑖 < 𝑘 − 1
5: 𝑗 ← 𝑅𝑖+1 .𝐹𝐴𝐼 ()
6: return 𝑖 · 2𝑤 + 𝑗
7: end procedure

only generate 2
𝑤
distinct values. To make the algorithm operate

on 𝑘 > 2
𝑤 + 1 registers, we can use a UniqueID object (instead

of a register) and invoke get() operation on it. If our implemen-

tation of UniqueID additionally guarantees that it returns values

in range [0, 𝐵 − 1] and can be reused after the whole range is ex-

hausted, then by replacing the call to 𝑅0 .𝐹𝐴𝐼 () in Algorithm 2 with

𝑈𝑛𝑖𝑞𝑢𝑒𝐼𝐷.𝑔𝑒𝑡 () we can increase the number of generated ids. Algo-

rithm 2 satisfies these properties, meaning that it can be recursively

used within itself to generate ids in larger range in cases when

𝑘 > 2
𝑤 + 1. For example, we can use three registers to implement a

UniqueID object that would generate values from 0 to 2
𝑤+1 − 1 and

then use 2
𝑤+1

registers to generate actual ids. This gives us an algo-

rithm that is capable of generating (𝑘 − 3) · 2𝑤 ids for 𝑘 ≤ 2
𝑤+1 + 3.

We delegate the proof and the analysis of trade-offs of this solution

to future work.

4 Impossibility Result
In this section, we show that the optimal upper bound 𝐵 does not

grow exponentially with 𝑘 and is asymptotically smaller than the

theoretical maximum of 2
𝑘𝑤

for 𝑘 registers of 𝑤 bits each. This

impossibility result applies to UniqueID implementations that are

even obstruction-free (only guarantee progress to the processes

that eventually run in isolation).

Theorem 4.1. In a system with sufficiently many concurrent pro-
cesses, no obstruction-free implementation of UniqueID using 𝑘 𝑤-bit
registers allows the get() function to be called more than 𝑘 · 2𝑤 +𝑘 + 1
times.

Proof. By contradiction, suppose that there is a UniqueID al-

gorithm that produces more than 𝐵 = 𝑘 · 2𝑤 + 𝑘 + 1 identifiers. To
establish a contradiction, we launch a series of concurrent get()
operations. Once we launched an operation, we track all updates
(write and FAI primitives) this operation performs. In certain cases,

we will suspend the process that invoked the operation just before

it performs an update primitive on some register 𝑅𝑖 , and we say

that the process is poised to perform the primitive on 𝑅𝑖 . A process

𝑝 𝑗 is poised on 𝑅𝑖 if:

(1) 𝑝 𝑗 is about to perform a FAI() primitive on 𝑅𝑖 , and there are

less than 2
𝑤
processes poised on 𝑅𝑖 or

(2) 𝑝 𝑗 is about to perform a write(𝑥) primitive on 𝑅𝑖 , and there

are no other processes poised on 𝑅𝑖 with awrite(𝑥) primitive.

Claim 1. Suppose that 2𝑤 processes are poised on a register 𝑅𝑖 .
Then 𝑅𝑖 can be set to any desired value simply by allowing some
poised processes to perform their primitives.

Proof. Recall that all values of write operations are distinct. Let
𝑓 be the number of poised processes that are about to perform FAI
primitives, then the remaining 2

𝑤 − 𝑓 poised processes are about

to perform writes with distinct values {𝑤1,𝑤2, . . . ,𝑤2
𝑤−𝑓 } = 𝑊 .

Consider a value 𝑥 ∈ {0, . . . , 2𝑤 − 1}. But, as |𝑊 | = 2
𝑤 − 𝑓 , at least

one value in {𝑥, 𝑥 − 1, . . . , 𝑥 − 𝑓 } should be in𝑊 , therefore 𝑅𝑖 can

be set to 𝑥 by resuming poised write(𝑥 − 𝑓 ′) (0 ≤ 𝑓 ′ ≤ 𝑓 ) and then

scheduling 𝑓 ′ poised FAI primitives. □

One after another, we launch new get() operations in a separate

process and run in isolation. As the algorithm is obstruction-free, a

process running an operation either eventually returns from it or

is poised on a register.

Suppose that a process returns from the operation. If, within

the execution, the process has performed the first update on some

register (i.e., that register has never been modified before), we call

it special. (There cannot be more than 𝑘 special processes.)

Consider the first non-special process which has finished its

get() operation without getting poised. We can show that once this

process 𝑝 𝑗 finished its operation, it is possible to restore the state

of the memory that occurred before this process was started.

Indeed, consider any register 𝑅𝑖 that 𝑝 𝑗 has modified, and sup-

pose 𝑝 𝑗 ’s first update on 𝑅𝑖 changed the register’s state from 𝑥 to 𝑦.

As 𝑝 𝑗 is not special, 𝑅𝑖 has been modified before this. Hence, the

last update primitive performed on 𝑅𝑖 before the modification of 𝑅𝑖
by 𝑝 𝑗 set the value of the register to 𝑥 .

Let 𝑝𝑘 be the process that performed this update on 𝑅𝑖 . As 𝑝𝑘 was

not poised just before performing this update, then either (1) there

were already at least 2
𝑤
operations poised on𝑅𝑖 , or (2) 𝑝𝑘 performed

write(𝑥) and there was already another write(𝑥) primitive poised

on 𝑅𝑖 .

In case (2), by scheduling the poised write(𝑥), we bring 𝑅𝑖 back
to 𝑥 , the state of 𝑅𝑖 before 𝑝 𝑗 started its get() operation. In case (1),

by Claim 1, by scheduling the steps of some of the poised on 𝑅𝑖
processes, we can bring the state of 𝑅𝑖 back to 𝑥 . Thus, every trace

of a non-special process can be wiped out from the memory by the

poised processes.

As the algorithm is deterministic, obstruction-free, and anony-

mous, a get() operation by another process run in isolation from

the restored state will bring the same output as 𝑝 𝑗 .

Let us calculate the number of get() operations invoked in the

incorrect execution we constructed. There are the operations of at

most 2
𝑤
processes poised on every register (up to 𝑘 · 2𝑤 altogether),

up to 𝑘 operations of the special processes and, finally, the two

operations that returned the same value—2
𝑤 · 𝑘 + 𝑘 + 2 operations

in total. Thus, the total number of distinct identifiers the algorithm

can produce cannot exceed 𝐵 ≤ 𝑘 · 2𝑤 + 𝑘 + 1. □
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