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A B S T R A C T

Positive-unlabelled (PU) learning is a challenging task in pattern recognition, as there are only labelled-positive
instances and unlabelled instances available for the training of a classifier. The task becomes even harder when
the PU data show an underlying trifurcate pattern that positive instances roughly distribute on both sides
of ground-truth negative instances. To address this issue, we propose a universally consistent PU classifier
with asymmetric loss (UC-PUAL) on positive instances. We also propose two three-block algorithms for non-
convex optimisation to enable UC-PUAL to obtain linear and kernel-induced non-linear decision boundaries,
respectively. Theoretical and experimental results verify the superiority of UC-PUAL. The code for UC-PUAL
is available at https://github.com/tkks22123/UC-PUAL.
1. Introduction

Positive-unlabelled (PU) learning is to build classifiers with only
labelled-positive instances and unlabelled instances available for train-
ing. In other words, no labelled-negative instances are available for
the classifier training. In practice, there is a wide range of real-world
applications of PU learning, for example, time series classification [1],
learning to rank for recommendation systems [2].

There are mainly two ways to learn a PU classifier. One way can be
termed multi-step approach [3–7], which trains a series of classifiers:
firstly a classifier to search the unlabelled set for pseudo-negative
instances (i.e., the instances with high likelihood to be negative);
and then a semi-supervised classifier based on the labelled-positive
instances, the pseudo-negative instances, and the unlabelled instances.
Generative adversarial networks were also tailored in the first step to
generate pseudo-negative instances [8]. The other way can be termed
one-step approach [9–12]. Since an inadequate classifier at the first
step of multi-step methods can trigger undesired chain reaction and
unsatisfactory final performance, it is of risk to apply a multi-step
method in practice. This paper focuses on one-step methods.

The one-step methods can be further divided into two types. The
first type is inconsistent methods [13–15], whose objective functions
are not consistent estimators of the expected loss of classification. They
treat all the unlabelled instances as negative during model training.
Inconsistent methods include large margin-based approaches such as
the biased SVM (BSVM) [13], which assigns lower weights to the
unlabelled data; the biased least squares SVM (BLS-SVM) [14], which
replaces the hinge loss with the squared loss; and the global and local
learning classifier (GLLC) [15], which incorporates local information.

∗ Corresponding author.
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The second type of one-step methods is consistent methods [16–
18]. In contrast to the inconsistent methods, the objective functions
of consistent methods were crafted to be consistent estimators of the
expected loss of classification from the data population. A pioneer
consistent method is the unbiased PU learning (uPU) method [16],
which treats all unlabelled instances as a mix of positive and negative
instances and includes two unbiased and consistent estimators of the
expected loss for the unlabelled set.

In practice, it often occurs a trifurcate pattern underlying real-world
datasets, where positive instances roughly distribute on both sides
of ground-truth negative instances [19]. A classifier with non-linear
decision boundary will be needed to classify such data, which can be
achieved via kernel trick. However, in the kernel-induced new feature
space, the two positive subsets can have very distinct distances from
the ideal decision boundary. In this case, using a loss function like the
squared loss, as does GLLC, will incorrectly impose big penalties on the
correctly classified positive instances (i.e., the set of positive instances
far away from the ideal decision boundary) and hence drag the decision
boundary towards one which misclassifies many more instances. Such
an underlying trifurcate pattern is hard to be addressed by the current
inconsistent one-step methods like GLLC.

To address this issue, a method called the PU classifier with asym-
metric loss (PUAL) was proposed in [19]. PUAL is constructed on the
basis of the inconsistent objective method, GLLC [15], but introduces a
new structure of asymmetric loss on positive instances: using the hinge
loss on the labelled-positive instances, while using the squared loss for
the unlabelled instances (thus the unlabelled-positive instances).

Therefore, in this paper, we aim to exploit the best of both worlds:
we integrate the ideas from both PUAL, an inconsistent method, and
https://doi.org/10.1016/j.patcog.2025.111892
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Fig. 1. Universal consistency of UC-PUAL. Pink area: negative areas determined by UC-PUAL; Black curve: the decision boundary of the Bayes classifier; Blue circles: unlabelled
negative instances; Blue triangles: unlabelled positive instances; Red triangles: labelled-positive instances. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
uPU, a consistent method, to propose a universally consistent PU
classifier with asymmetric loss (UC-PUAL) for better classification on
trifurcate PU datasets. While uPU ensures consistency with the expected
loss of classification, it does not guarantee consistency with the Bayes
classifier that achieves the minimum classification error. In contrast,
UC-PUAL is designed so that its 0–1 risk for classification is consistent
with the Bayes risk when a universal kernel is applied to the objective
function. This universally consistent PU classifier ensures that, as the
sample size increases, UC-PUAL becomes closer to the theoretically
ideal Bayes classifier, as illustrated in the toy examples in Fig. 1.

The novelty and contributions of this paper can be summarised as
follows.

Firstly, by integrating the ideas and settings of the objective func-
tions of PUAL and uPU, we propose UC-PUAL, a classifier universally
consistent with the Bayes classifier for trifurcate PU data. To the best
of our knowledge, this is the first PU classifier specifically designed to
achieve this property.

Secondly, we propose two three-block algorithms for non-convex
optimisation to enable UC-PUAL to generate linear and kernel-induced
non-linear decision boundaries, respectively.

Thirdly, we provide theoretical analysis to show that the universal
consistency with the Bayes classifier holds for UC-PUAL.

Finally, we conduct experiments on both synthetic and real-world
datasets to showcase the superior performance of UC-PUAL.

2. Related work

In this section, we discuss in more detail about one-step PU classi-
fiers and those closely related to our work.

2.1. Inconsistent methods

For inconsistent methods, a pioneer is BSVM [13], which was
proposed on the basis of classic support vector machine, assigning the
loss on the unlabelled set a lower weight in the objective function.
Then, [14] proposed BLS-SVM by introducing the squared loss, on
both labelled-positive set and unlabelled set, into the objective func-
tion to avoid the distraction from the unlabelled-positive instances to
the model training. Moreover, [15] leveraged local information for
the model training, by incorporating a local similarity term into the
objective function of BLS-SVM, leading to GLLC. Besides the common
frameworks of PU learning, tree methods were leveraged by [20–22]
for PU learning.

2.2. Consistent methods

The uPU [16] contains two unbiased and consistent estimators of
the expected loss on the unlabelled set by treating all unlabelled in-
stances to be either positive or negative. Noticing that the optimisation
of uPU may sometimes fail to converge, nnPU [17] was proposed by
introducing a lower threshold to the objective function of uPU, which
is a biased but still a consistent estimator of the expected classification
loss. Imbalanced nnPU [18] was then proposed by re-weighting the loss
in the objective function of nnPU for better classification on imbalanced
2 
PU data. [23] modified the non-convex formulation of uPU to a convex
version with a novel double hinge loss. A rebalanced version of [23]
and an objective function to maximise the expected AUC [24] were
proposed also for class imbalanced classification [25]. Pin-LFCS [26]
was proposed for robust PU learning via the pinball loss function.
PUe [27] and SLPU [28] were proposed for better classification per-
formance on the PU data with selection bias, by incorporating the
prior knowledge of the unlabelled data and labelling mechanism into
the model training. [29] introduced few-shot learning to handle the
label imbalanced PU data. Moreover, [30] generalised the framework
of binary PU learning to that of multi-class PU learning via multi-task
self-supervised training.

2.3. Detail of three closely related methods

Now we provide more details about three closely related methods,
GLLC, PUAL and uPU. Suppose the dataset contains 𝑛𝑝 labelled-positive
instances and 𝑛𝑢 unlabelled instances with 𝑚 features. Then let 𝑿[𝑝𝑢] =
(𝒙1,… ,𝒙𝑛𝑝 ,… ,𝒙𝑛𝑝+𝑛𝑢 )

𝑇 ∈ R(𝑛𝑝+𝑛𝑢)×𝑚 denote the matrix of features,
where vector 𝒙𝑖 ∈ R𝑚×1 is the vector of the features of the 𝑖th instance;
let 𝑿[𝑝] = (𝒙1,… ,𝒙𝑛𝑝 )

𝑇 ∈ R𝑛𝑝×𝑚 be the feature matrix of the labelled-
positive instances; and let 𝑿[𝑢] = (𝒙𝑛𝑝+1,… ,𝒙𝑛𝑝+𝑛𝑢 )

𝑇 ∈ R𝑛𝑢×𝑚 denote
the feature matrix of the unlabelled set. Let 𝑠 be the labelling indicator
with 𝑠 = 1 for labelled(-positive) instance.

2.3.1. uPU [16]
Let 𝑙(𝑓 (𝑿; 𝜷), 𝑌 ) denote the loss function of the predictive score

function 𝑓 for an instance with its feature 𝑿 and class indicator
𝑌 ∈ {−1, 1} treated as r.v.. The objective function of uPU [16] to be
minimised was proposed to be an unbiased and consistent estimator
for the expected loss E[𝑙(𝑓 (𝑿; 𝜷), 𝑌 )], which can be formulated as

𝜋�̂�1
𝑝(𝑓 ) + �̂�−1

𝑢 (𝑓 ) − 𝜋�̂�−1
𝑝 (𝑓 ), (1)

where �̂�1
𝑝(𝑓 ) = 1

𝑛𝑝

∑

𝒙∈𝑿[𝑝]
𝑙(𝑓 (𝒙; 𝜷), 1), �̂�−1

𝑢 (𝑓 ) = 1
𝑛𝑢

∑

𝒙∈𝑿[𝑢]
𝑙

(𝑓 (𝒙; 𝜷),−1), �̂�−1
𝑝 (𝑓 ) = 1

𝑛𝑝

∑

𝒙∈𝑿[𝑝]
𝑙(𝑓 (𝒙; 𝜷),−1), and the class prior

𝜋 = 𝑃 [𝑌 = 1]. It should be noted that, although we do not know
the ground-truth class 𝑦𝑖 for the 𝑖th instance, the following objective
function of average loss in Eq. (2) is also an unbiased and consistent
estimator of the expected loss of classification, E[𝑙(𝑓 (𝑿; 𝜷), 𝑌 )], i.e.,

1
𝑛𝑢

𝑛𝑢
∑

𝑖=1
𝑙(𝑓 (𝒙𝑖; 𝜷, 𝛽0), 𝑦𝑖). (2)

In this case, the objective function of uPU in Eq. (1) is consistent with
Eq. (2) in probability, i.e. ∀𝜖, 𝑃

[

𝜋�̂�1
𝑝(𝑓 ) + �̂�−1

𝑢 (𝑓 ) − 𝜋�̂�−1
𝑝 (𝑓 ) − 1

𝑛𝑢

∑𝑛𝑢
𝑖=1 𝑙

(𝑓 (𝒙𝑖; 𝜷, 𝛽0), 𝑦𝑖) < 𝜖] → 1, with 𝑛𝑝 and 𝑛𝑢 tending to infinity.

2.3.2. GLLC [15]
As the information of local similarity among instances is helpful for

classification, GLLC [15] was proposed by combining BLS-SVM with the
local similarity, trained from

min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 +

𝑐𝑝
𝑛𝑝

[𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]𝑇 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]

+
𝑐𝑢
𝑛𝑢

[𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]𝑇 [𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]

𝑇

(3)
+ (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0) 𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0),
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where 𝑐𝑝, 𝑐𝑢, 𝜆 > 0 are hyper-parameters of model, and 𝟏𝑝,𝑢 =
1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

𝑘

)𝑇 , 𝑘 = 𝑛𝑝, 𝑛𝑢, and 𝑹 denotes a local similarity matrix for the

nstances based on their 𝐾-nearest neighbours (See details in [15]).
The predictive score function of GLLC is as simple as

𝑓 = 𝒙𝑇 𝜷 + 𝛽0, (4)

where 𝜷 = (𝛽1,… , 𝛽𝑚)𝑇 ∈ R𝑚×1 and 𝛽0 are the model parameters to
earn.

2.3.3. PUAL [19]
The squared loss in the objective function of GLLC, i.e., Eq. (3), can

ensure every instance to contribute to the construction of the decision
boundary of BLS-SVM, so that the importance of an unlabelled-positive
instance treated as negative can be restricted. However, the squared
loss on the label-positive instances will unfortunately impose unde-
sired penalties to the correctly classified positive instances, especially
the ones holding long distance from the ideal decision boundary in
trifurcate PU data. To address this issue, PUAL [19] was proposed
to replace the squared loss by the hinge loss for the labelled-positive
nstances, while keeping the squared loss for the unlabelled (positive
nd negative) instances. Therefore, the objective function of PUAL can
e formulated as

min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 +

𝑐𝑝
𝑛𝑝

𝟏𝑇𝑝 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]+

+
𝑐𝑢
𝑛𝑢

[𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]𝑇 [𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]

+ (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0),

(5)

where [𝑔(⋅)]+ is a column vector contained by the maximum between
each element of 𝑔(⋅) and 0.

We note that both PUAL and the UC-PUAL to be proposed in this
paper simply use the same predictive score function as does GLLC
n Eq. (4).

The classification performance of PUAL is sensitive to the hyper-
arameters 𝑐𝑝 and 𝑐𝑢 to weigh the losses on the labelled-positive set
nd the unlabelled set, respectively. However, in UC-PUAL, there is no
eed to tune these two hyper-parameters.

PUAL does not have a consistent objective function and is not
universally consistent to the Bayes classifier. Although uPU has a
onsistent objective function with respect to the expected loss, it lacks

the penalisation on 𝜷 and the use of kernel mapping, therefore does
ot achieve universal consistency. In the Appendix, we provide further
etails on determining whether a classifier is universally consistent
ased on the objective function in Eq. (A.5) with the loss function

in Eq. (A.6). While the expectation of the loss function for training
may be low, the expected 0-1 loss of uPU and PUAL can still be
significantly higher than that of the Bayes classifier. Consequently,
using an unsuitable loss function for uPU training can result in poor
classification performance, even with a large dataset. However, UC-
PUAL is universally consistent to the Bayes classifier and there is no
eed to select the loss function when the training set is large.

3. Methodology

3.1. UC-PUAL with linear decision boundary

3.1.1. Objective function
First, we leverage the structure of the consistent objective function

of uPU to develop a consistent objective function for UC-PUAL. Let us
compare the objective function of PUAL in Eq. (5) and that of uPU
n Eq. (1). We note that: firstly, 1

𝑛𝑝
𝟏𝑇𝑝 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]+ in Eq. (5)

an be regarded as corresponding to �̂�1
𝑝(𝑓 ) in Eq. (1); secondly, 1

𝑛𝑢
[𝟏𝑢 +

𝑿[𝑢]𝜷+𝟏𝑢𝛽0)]𝑇 [𝟏𝑢+ (𝑿[𝑢]𝜷+𝟏𝑢𝛽0)] in Eq. (5) can be regarded as �̂�−1
𝑢 (𝑓 )

in Eq. (1). Hence, we need to introduce into Eq. (5) a new term -
1 [𝟏 + (𝑿 𝜷 + 𝟏 𝛽 )]𝑇 [𝟏 + (𝑿 𝜷 + 𝟏 𝛽 )], which can be regarded
𝑛𝑝 𝑝 [𝑝] 𝑝 0 𝑝 [𝑝] 𝑝 0

3 
as corresponding to −�̂�−1
𝑝 (𝑓 ) in Eq. (1), i.e., to borrow the objective

function’s idea and structure of uPU into the objective function of
UAL. The obtained objective function of UC-PUAL can be initially

formulated as

min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 + 𝜋 𝑐

𝑛𝑝
𝟏𝑇𝑝 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]+

+ 𝑐
𝑛𝑢

[𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]𝑇 [𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]

− 𝜋 𝑐
𝑛𝑝

[𝟏𝑝 + (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]𝑇 [𝟏𝑝 + (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]

+ (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0),

(6)

where 𝑐 is a hyper-parameter and 𝜋 is the class prior as in uPU.
Second, we revise the third and fourth terms with the absolute loss

n Eq. (6) to ensure universal consistency with the Bayes classifier.
This adjustment allows the loss function to be expressed in the form
f Eq. (A.6), which is required for universal consistency. Further details

are provided in Appendix A.1. In this way, the objective function of
UC-PUAL with linear decision boundary can be rewritten as

min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 + 𝜋 𝑐

𝑛𝑝
𝟏𝑇𝑝 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]+ + 𝑐

𝑛𝑢
‖𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)‖1

− 𝜋 𝑐
𝑛𝑝

‖𝟏𝑝 + (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)‖1 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0).

(7)

3.1.2. Parameter estimation
The asymmetric loss of the objective function in Eq. (7) cannot

always meet the linear-odd condition proposed in [31, Lemma 4], i.e.,

𝑙(𝑓 , 1) − 𝑙(𝑓 ,−1) = [1 − 𝑓 ]+ − |1 + 𝑓 | =

⎧

⎪

⎨

⎪

⎩

2 ≠ −2𝑓 , 𝑓 < −1,
−2𝑓 ,−1 < 𝑓 < 1,
−𝑓 ≠ −2𝑓 , 𝑓 ≥ 1.

(8)

Not satisfying the odd condition can render the objective function
in Eq. (7) non-convex, leading to significant challenges in optimisa-
tion [23].

Despite ADMM being initially proposed for convex optimisation
in [32], in recent years studies [33] have explored the convergence
conditions of ADMM for non-convex and non-differentiable objective
functions. In this section, we propose an algorithm based on ADMM
for the non-convex optimisation of UC-PUAL in Eq. (7).

Firstly, let us slightly rewrite the objective function in Eq. (7), to
meet the convergence conditions in [33, Table 1]. Let matrix

𝑪𝑛 =
⎡

⎢

⎢

⎣

− 𝜋 𝑐
𝑛𝑝
𝑰𝑝 𝟎

𝟎 𝑐
𝑛𝑢
𝑰𝑢,

⎤

⎥

⎥

⎦

(9)

where 𝑰𝑢 is an 𝑛𝑢 × 𝑛𝑢 identity matrix and 𝑰𝑝 is an 𝑛𝑝 × 𝑛𝑝 identity
matrix. In this case, the objective function of UC-PUAL in Eq. (7) can
be transformed to the following three-block form:

min
𝜷,𝛽0 ,𝒉,𝒂

𝜆
2
𝜷𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0) + 𝜋 𝑐

𝑛𝑝
𝟏𝑇𝑝 [𝒉]+ + 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++

𝑠.𝑡. 𝒉 = 𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0), 𝒂 = 𝟏𝑝𝑢 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0),

(10)

where [𝒂]++ is a column vector and the 𝑖th element of [𝒂]++ is |𝑎𝑖|
The objective function in Eq. (10) can be divided into three blocks,

.e., 𝜋 𝑐
𝑛𝑝
𝟏𝑇𝑝 [𝒉]+, 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ and 𝜆

2𝜷
𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷

+ 𝟏𝑝𝑢𝛽0):

1. 𝜆
2𝜷

𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0) is convex and Lips-
chitz differentiable w.r.t. 𝜷 and 𝛽0.

2. 𝜋 𝑐
𝑛𝑝
𝟏𝑇𝑝 [𝒉]+ is convex but not always differentiable w.r.t. 𝒉.

3. 𝟏𝑇 𝑪 [𝒂] is neither convex nor always differentiable w.r.t. 𝒂.
𝑝𝑢 𝑛 ++
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We also would like to make two remarks:

• 𝟏𝑇𝑝 [𝒉]+ =
∑𝑛𝑝

𝑖=1 max(0, ℎ𝑖) and 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ = 𝑐
𝑛𝑢

∑𝑛𝑝𝑢
𝑖=𝑛𝑝+1

|𝑎𝑖| −
𝜋 𝑐
𝑛𝑝

∑𝑛𝑝
𝑖=1 |𝑎𝑖|; this indicates that 𝟏𝑇𝑝 [𝒉]+ and 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ are piece-

wise linear functions for 𝒉 and 𝒂, respectively.
• Furthermore,

𝜋 𝑐 𝜕𝟏𝑇𝑝 [𝒉]+
𝑛𝑝𝜕𝒉

is a column vector consisting of elements

that are either 𝜋 𝑐
𝑛𝑝

or 0;
𝜕𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++

𝜕𝒂 is a column vector whose
elements take value from { 𝜋 𝑐

𝑛𝑝
,− 𝜋 𝑐

𝑛𝑝
, 𝑐
𝑛𝑢
,− 𝑐

𝑛𝑢
}; this indicates that

𝜋 𝑐 𝜕𝟏𝑇𝑝 [𝒉]+
𝑛𝑝𝜕𝒉

and
𝜕𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++

𝜕𝒂 are bounded in any bounded set.

Then, we note that, according to [33, Table 1], for the non-convex
objective function to be solved via ADMM, the non-convex blocks
and the blocks not always differentiable are required to be piece-wise
linear and their partial derivatives are required to be bounded in any
bounded set. Moreover, [33] also requires the convex blocks to be
ipschitz differentiable. Hence, as discussed above, the three blocks
𝑇
𝑝 [𝒉]+, 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ and 𝜆

2𝜷
𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0) all

meet their corresponding requirements. Therefore, based on the struc-
ure of ADMM in [33], we propose the following algorithm to solve the

optimisation of the three-block form of UC-PUAL in Eq. (10).
Firstly, the Lagrangian function of the objective function of UC-

PUAL in Eq. (10) can be written as

(𝜽𝑢𝑐 ) =𝜆
2
𝜷𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)

+𝜋 𝑐
𝑛𝑝

𝟏𝑇𝑝 [𝒉]+ + 𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ + 𝒖𝒉𝑇 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0) − 𝒉]

+𝒖𝒂𝑇 (𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0 − 𝒂)

𝑠.𝑡. 𝒉 = 𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0),
𝒂 = 𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0,

(11)

where 𝜽𝑢𝑐 = {𝜷, 𝛽0,𝒉,𝒂, 𝒖𝒉, 𝒖𝒂}, 𝒖𝒉 and 𝒖𝒂 are dual variables.
Then, the augmented Lagrangian function of UC-PUAL is defined as

𝑎(𝜽𝑢𝑐 ) =(𝜽𝑢𝑐 ) +
𝜇1
2

‖

‖

‖

𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0) − 𝒉‖‖
‖

2

2

+
𝜇2
2

‖

‖

‖

𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0 − 𝒂‖‖
‖

2

2
.

(12)

Update of 𝒂. Then, following Eq. (12), the update of 𝒂 is to solve

𝒂(𝑘+1) = ar g min
𝒂

1
𝜇2

𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ +
𝒖𝒂(𝑘)

𝑇

𝜇2
(𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷(𝑘) + 𝟏𝑝𝑢𝛽

(𝑘)
0 − 𝒂)

+ 1
2
‖

‖

‖

𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷(𝑘) + 𝟏𝑝𝑢𝛽
(𝑘)
0 − 𝒂‖‖

‖

2

2
.

(13)

This is equivalent to optimise

ar g min
𝒂

1
𝜇2

𝟏𝑇𝑝𝑢𝑪𝑛[𝒂]++ + 1
2

‖

‖

‖

‖

‖

𝟏𝑝𝑢 +
𝒖𝒂(𝑘)

𝜇2
+𝑿[𝑝𝑢]𝜷(𝑘) + 𝟏𝑝𝑢𝛽

(𝑘)
0 − 𝒂

‖

‖

‖

‖

‖

2

2
.

(14)

As the terms containing 𝑎𝑖, 𝑖 = 1,… , 𝑛𝑝𝑢 in Eq. (14) do not con-
tain other elements of 𝒂, we can solve the update of 𝑎(𝑘+1)1 ,… , 𝑎(𝑘+1)𝑛𝑝𝑢
independently.

That is, firstly for 𝑎(𝑘+1)𝑖 , 𝑖 = 1,… , 𝑛𝑝, the objective function is

−𝜋 𝑐
𝜇2𝑛𝑝

|𝑎𝑖| +
1
2

(

1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+ 𝒙𝑇𝑖 𝜷
(𝑘) + 𝛽(𝑘)0 − 𝑎𝑖

)2

. (15)

To minimise Eq. (15), we can consider the following function w.r.t. 𝑥:

𝑗 |𝑥| + 1 (𝑥 − 𝑑 )2, 𝑗 < 0, (16)
𝑝 2 𝑝 𝑝

4 
where 𝑗𝑝 and 𝑑𝑝 are constants. There are two cases of the threshold
function in Eq. (16), thus we can define

𝑔[1]𝑗𝑝
(𝑑𝑝) = ar g min

𝑥
𝑗𝑝|𝑥| +

1
2
(𝑥 − 𝑑𝑝)2 =

{

𝑑𝑝 + 𝑗𝑝, 𝑑𝑝 < 0,
𝑑𝑝 − 𝑗𝑝, 𝑑𝑝 ≥ 0.

(17)

Therefore the solution of 𝑎(𝑘+1)𝑖 , 𝑖 = 1,… , 𝑛𝑝 can be obtained via
computing

𝑎(𝑘+1)𝑖 = 𝑔[1]−𝜋 𝑐
𝜇2𝑛𝑝

(1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+ 𝒙𝑇𝑖 𝜷
(𝑘) + 𝛽(𝑘)0 ), 𝑖 = 1, 2.,… , 𝑛𝑝. (18)

Then for the update of 𝑎(𝑘+1)𝑖 , 𝑖 = 𝑛𝑝+ 1,… , 𝑛𝑝𝑢, we need to separately
solve

𝑐
𝜇2𝑛𝑢

|𝑎𝑖| +
1
2

(

1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+ 𝒙𝑇𝑖 𝜷
(𝑘) + 𝛽(𝑘)0 − 𝑎𝑖

)2

. (19)

To minimise Eq. (19) we can consider the following function w.r.t. 𝑥:

𝑗𝑢|𝑥| +
1
2
(𝑥 − 𝑑𝑢)2, 𝑗𝑢 > 0, (20)

where 𝑗𝑢 and 𝑑𝑢 are constants. The three cases of the threshold function
in Eq. (20) are as follows:

ar g min
𝑥

𝑗𝑢|𝑥| +
1
2
(𝑥 − 𝑑𝑢)2 =

⎧

⎪

⎨

⎪

⎩

𝑑𝑢 + 𝑗𝑢, 𝑑𝑢 < −𝑗𝑢,
0, −𝑗𝑢 ≤ 𝑑𝑢 ≤ 𝑗𝑢,

𝑑𝑢 − 𝑗𝑢, 𝑑𝑢 < −𝑗𝑢.
(21)

Thus, by defining 𝑔[2]𝑗𝑢
(𝑑𝑢) = ar g min𝑥 𝑗𝑢|𝑥| +

1
2 (𝑥 − 𝑑𝑢)2, 𝑎

(𝑘+1)
𝑖 , 𝑖 = 𝑛𝑝 +

,… , 𝑛𝑝𝑢 can be solved via computing

𝑎(𝑘+1)𝑖 = 𝑔[2]𝑐
𝜇2𝑛𝑝

(1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+ 𝒙𝑇𝑖 𝜷
(𝑘) + 𝛽(𝑘)0 ), 𝑖 = 𝑛𝑝 + 1,… , 𝑛𝑝 + 𝑛𝑢. (22)

Update of 𝒉. The update of 𝒉 is to solve

𝒉(𝑘+1) = ar g min
𝒉

𝜋 𝑐
𝑛𝑝

𝟏𝑇𝑝 [𝒉]+ + 𝒖𝒉(𝑘)
𝑇 [𝟏𝑝 − (𝑿[𝑝]𝜷(𝑘) + 𝟏𝑝𝛽

(𝑘)
0 ) − 𝒉]

+
𝜇1
2

‖

‖

‖

𝟏𝑝 − (𝑿[𝑝]𝜷(𝑘) + 𝟏𝑝𝛽
(𝑘)
0 ) − 𝒉‖‖

‖

2

2
,

(23)

which is equivalent to solve the problem

min
𝒉

𝑛𝑝
∑

𝑖=1

{

𝜋 𝑐
𝑛𝑝𝜇1

[ℎ𝑖]+ + 1
2
[1 +

𝑢(𝑘)𝒉𝑖
𝜇1

− (𝒙𝑇𝑖 𝜷(𝑘) + 𝛽(𝑘)0 ) − ℎ𝑖]2
}

. (24)

To minimise the threshold function in Eq. (24), suppose function 𝑗[𝑥]++
1
2 (𝑥 − 𝑑)2, 𝑗 > 0 and

𝑠𝑗 (𝑑) = ar g min
𝑥

𝑗[𝑥]+ + 1
2
(𝑥 − 𝑑)2 =

⎧

⎪

⎨

⎪

⎩

𝑑 − 𝑗 , 𝑑 > 𝑗 ,
0, 0 ≤ 𝑑 ≤ 𝑗 ,
𝑑 , 𝑑 < 0.

(25)

Then ℎ𝑖, 𝑖 = 1,… , 𝑛𝑝, can be updated via computing

ℎ(𝑘+1)𝑖 = 𝑠 𝜋 𝑐
𝑛𝑝

[

1 +
𝑢(𝑘)𝒉𝑖
𝜇1

− (𝒙𝑇𝑖 𝜷(𝑘) + 𝛽(𝑘)0 )

]

. (26)

Update of 𝜷 and 𝛽0. The update of 𝜷 and 𝛽0 is to solve

ar g min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 + (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)

+ 𝒖𝒉(𝑘)
𝑇 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0) − 𝒉(𝑘+1)]

+
𝜇1
2

‖

‖

‖

𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0) − 𝒉(𝑘+1)‖‖
‖

2

2

+ 𝒖𝒂(𝑘)
𝑇 [𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0 − 𝒂(𝑘+1)]

+
𝜇2
2

‖

‖

‖

𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0 − 𝒂(𝑘+1)‖‖
‖

2

2
,

(27)

which is a quadratic function. Therefore we can solve the optimisation
in Eq. (27) via the Karush–Kuhn–Tucker (KKT) conditions directly.
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Let 𝑰𝑘,∀𝑘 ∈ Z denote a 𝑘 × 𝑘 identity matrix. By defining

𝑴11 = 𝜆𝑰𝑚 + 2𝑿𝑇
[𝑝𝑢]𝑹 𝑿[𝑝𝑢] + 𝜇1𝑿𝑇

[𝑝]𝑿[𝑝] + 𝜇2𝑿𝑇
[𝑝𝑢]𝑿[𝑝𝑢],

𝑴12 = 2𝑿𝑇
[𝑝𝑢]𝑹𝟏𝑝𝑢 + 𝜇1𝑿𝑇

[𝑝]𝟏𝑝 + 𝜇2𝑿𝑇
[𝑝𝑢]𝟏𝑝𝑢,

𝑴21 = 𝑴𝑇
12,

𝑀22 = 2𝟏𝑇𝑝𝑢𝑹𝟏𝑝𝑢 + 𝜇1𝑛𝑝 + 𝜇2(𝑛𝑝 + 𝑛𝑢),

𝒎1 = 𝑿𝑇
[𝑝]𝒖

(𝑘)
𝒉 + 𝜇1𝑿𝑇

[𝑝](𝟏𝑝 − 𝒉(𝑘+1)) −𝑿𝑇
[𝑝𝑢]𝒖𝒂

(𝑘) − 𝜇2𝑿𝑇
[𝑝𝑢](𝟏𝑝𝑢 − 𝒂(𝑘+1)),

𝑚2 = 𝟏𝑇𝑝 𝒖
(𝑘)
𝒉 + 𝜇1𝟏𝑇𝑝 (𝟏𝑝 − 𝒉(𝑘+1)) − 𝟏𝑇𝑝𝑢𝒖𝒂

(𝑘) − 𝜇2𝟏𝑇𝑝𝑢(𝟏𝑝𝑢 − 𝒂(𝑘+1)),

(28)

the solution of problem in Eq. (27) can be obtained by solving the
following linear equation w.r.t. 𝜷 and 𝛽0:
[

𝑴11 𝑴12
𝑴21 𝑀22

]

[

𝜷(𝑘+1)

𝛽(𝑘+1)0

]

=
[

𝒎1
𝑚2

]

. (29)

Update of 𝒖𝒉 and 𝒖𝒂. Following [33], the update of 𝒖𝒉 and 𝒖𝒂 can be
btained as

𝒖𝒉(𝑘+1) = 𝒖𝒉(𝑘) + 𝜇1[𝟏𝑝 − (𝑿[𝑝]𝜷(𝑘+1) + 𝟏𝑝𝛽
(𝑘+1)
0 ) − 𝒉(𝑘+1)],

𝒖𝒂(𝑘+1) = 𝒖𝒂(𝑘) + 𝜇2[𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷(𝑘+1) + 𝟏𝑝𝑢𝛽
(𝑘+1)
0 − 𝒂(𝑘+1)].

(30)

3.1.3. Algorithm
The algorithm of UC-PUAL with linear decision boundary can be

ummarised in Algorithm 1.

Algorithm 1 UC-PUAL with linear decision boundary
Input: PU dataset, 𝑐, 𝜆, 𝜎 and 𝜇1
Output: 𝜷 and 𝛽0
1: Initialise 𝜷, 𝛽0, 𝒉, 𝒂, 𝒖ℎ, 𝒖𝑎
2: while not converged do
3: Update 𝒂(𝑘+1) = ar g min

𝒂
𝑎(𝜷 (𝑘), 𝛽(𝑘)0 ,𝒉(𝑘),𝒂, 𝒖𝒉(𝑘), 𝒖𝒂(𝑘))

4: Update 𝒉(𝑘+1) = ar g min
𝒉

𝑎(𝜷 (𝑘), 𝛽(𝑘)0 ,𝒉,𝒂(𝑘+1), 𝒖𝒉(𝑘), 𝒖𝒂(𝑘))

5: Update (𝜷 (𝑘+1), 𝛽(𝑘+1)0 ) = ar g min
𝜷,𝛽0

𝑎(𝜷, 𝛽0,𝒉𝑘+1,𝒂(𝑘+1), 𝒖𝒉(𝑘+1), 𝒖𝒂(𝑘))

6: Update 𝒖𝒉(𝑘+1) = 𝒖𝒉(𝑘) + 𝜇1[𝟏𝑝 − (𝑿[𝑝]𝜷 (𝑘+1) + 𝟏𝑝𝛽
(𝑘+1)
0 ) − 𝒉(𝑘+1)]

7: Update 𝒖𝒂(𝑘+1) = 𝒖𝒂(𝑘) + 𝜇2[𝟏𝑝𝑢 +𝑿[𝑝𝑢]𝜷 (𝑘+1) + 𝟏𝑝𝑢𝛽
(𝑘+1)
0 − 𝒂(𝑘+1)]

8: end while

3.2. UC-PUAL with non-linear decision boundary

In this section, we develop a kernel-based algorithm to solve UC-
UAL with non-linear decision boundary. The way of using kernel trick
ere is similar to those used by previous methods [15,34–36].

3.2.1. Objective function
Suppose 𝝓(𝒙) ∈ R𝑀×1 be a mapping of the instance vector 𝒙.

Then let 𝝓(𝑿[𝑘]) ∈ R𝑛𝑘×𝑟, 𝑘 = 𝑝, 𝑢, 𝑝𝑢 be the mapping of the original
data matrix 𝑿[𝑘]. The 𝑖th row of 𝝓(𝑿[𝑘]) is 𝜙(𝒙𝑖)𝑇 ∈ R1×𝑟. According
to Eqs. (28) and (29), once we substitute 𝑿[𝑝𝑢] for 𝝓(𝑿𝑝𝑢) during the
training of classifiers, the following necessary condition for the optimal
solution of 𝜷 to satisfy can be obtained: 𝜷 = 𝑩−1𝝓(𝑿[𝑝𝑢])𝑇𝜴, where

𝑩 = 𝑴11 −
𝑴12𝑴21

𝑀22
, and

𝜴 =

[

𝒖𝒉 − 𝜇1(𝟏𝑝 − 𝒉) − 𝜇1
𝑚2
𝑀22

𝟏𝑝
0

]

− [𝒖𝒂 + 𝜇2(𝟏𝑝𝑢 − 𝒂) + 2𝑚2
𝑀22

𝑹𝟏𝑝𝑢

+
𝜇2
𝑀22

𝟏𝑝𝑢].
(31)

Therefore, the predictive score function in Eq. (4) for instance 𝒙∗ of
C-PUAL can be transformed to

𝑓 = 𝜱(𝒙∗,𝑿[𝑝𝑢])𝜴 + 𝛽0. (32)
5 
Define kernel matrices 𝜱(𝑿[𝑘],𝑿[𝑝𝑢]) = 𝝓(𝑿[𝑘])𝑩−1𝝓(𝑿[𝑝𝑢])𝑇 and
2(𝑿[𝑘],𝑿[𝑝𝑢]) = 𝝓(𝑿[𝑘])𝑩−1𝑩−1𝝓(𝑿[𝑝𝑢])𝑇 for 𝑘 = 𝑝, 𝑢, or 𝑝𝑢. Then,

he objective function of UC-PUAL with kernel trick applied can be
epresented as

min
𝜴,𝛽0

𝜆
2
𝜴𝑇𝜱2(𝑿[𝑝𝑢],𝑿[𝑝𝑢])𝜴 + 𝜋 𝑐

𝑛𝑝
𝟏𝑇𝑝 [𝟏𝑝 − (𝜱(𝑿[𝑝],𝑿[𝑝𝑢])𝜴 + 𝟏𝑝𝛽0)]+

+ 𝑐
𝑛𝑢

‖𝟏𝑢 +𝜱(𝑿[𝑢],𝑿[𝑝𝑢])𝜴 + 𝛽0𝟏𝑢‖1 −
𝜋 𝑐
𝑛𝑝

‖𝟏𝑝 +𝜱(𝑿[𝑝],𝑿[𝑝])𝜴 + 𝛽0𝟏𝑝‖1

+(𝜱(𝑿[𝑝𝑢],𝑿[𝑝𝑢])𝜴 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝜱(𝑿[𝑝𝑢],𝑿[𝑝𝑢])𝜴 + 𝟏𝑝𝑢𝛽0),

(33)

whose solution is not related to 𝑿[𝑘], 𝑘 = 𝑝, 𝑢, or 𝑝𝑢 once the kernel
matrices are determined.

3.2.2. Parameter estimation
In this case, the update of 𝒂 can be written as

𝑎(𝑘+1)𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔[1]−𝜋 𝑐
𝜇2𝑛𝑝

[

1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+𝜱(𝒙𝑖,𝑿[𝑝𝑢])𝜴(𝑘) + 𝛽(𝑘)0

]

, 𝑖 = 1,… , 𝑛𝑝,

𝑔[2]𝑐
𝜇2𝑛𝑝

[

1 + 𝑢(𝑘)𝒂𝑖
𝜇2

+𝜱(𝒙𝑖,𝑿[𝑝𝑢])𝜴(𝑘) + 𝛽(𝑘)0

]

, 𝑖 = 𝑛𝑝 + 1,… , 𝑛𝑝 + 𝑛𝑢.

(34)

Then, the update of 𝒉 can be reformulated as

𝒉(𝑘+1)𝑖 = 𝑠 𝜋 𝑐
𝑛𝑝

[

1 +
𝑢(𝑘)𝒉𝑖
𝜇1

− (𝜱(𝒙𝑖,𝑿[𝑝𝑢])𝛺(𝑘) + 𝛽(𝑘)0 )

]

, 𝑖 = 1,… , 𝑛𝑝. (35)

Then, we can update 𝛽0 via

𝛽(𝑘+1)0 =
𝑚2
𝑀22

−𝑸(𝑘+1)
𝑏 ∕𝑀22, (36)

where 𝑚2, 𝑀22 are not related to 𝑿[𝑝],𝑿[𝑢],𝑿[𝑝𝑢] and

𝑸(𝑘+1)
𝑏 =(2𝟏𝑇𝑝𝑢𝑹 + 𝜇2𝟏𝑇𝑝𝑢)𝜱(𝑿[𝑝𝑢],𝑿[𝑝𝑢])𝜴(𝑘+1)

+𝜇1𝟏𝑇𝑝 𝜱(𝑿[𝑝],𝑿[𝑝𝑢])𝜴(𝑘+1).
(37)

Finally, the update of 𝒖𝒉 and 𝒖𝒂 becomes

𝒖𝒉(𝑘+1) = 𝒖𝒉(𝑘) + 𝜇1[𝟏𝑝 − (𝜱(𝑿[𝑝],𝑿[𝑝𝑢])𝜴(𝑘+1) + 𝟏𝑝𝛽
(𝑘+1)
0 ) − 𝒉(𝑘+1)],

𝒂
(𝑘+1) = 𝒖𝒂(𝑘) + 𝜇2[𝟏𝑝𝑢 +𝜱(𝑿[𝑝𝑢],𝑿[𝑝𝑢])𝜴(𝑘+1) + 𝟏[𝑝𝑢]𝛽

(𝑘+1)
0 − 𝒂(𝑘+1)].

(38)

We note that 𝜱2(𝑿[𝑘],𝑿[𝑝𝑢]) does not directly appear in the update
rocess for the optimisation in this section so that we only need to

determine the form of 𝜱(𝑿[𝑘],𝑿[𝑝𝑢]). Moreover, 𝜆 also does not appear
directly in the update process; it is contained in matrix 𝑩 as a part of
(𝑿[𝑘],𝑿[𝑝𝑢]). Therefore, for convenience, we use 𝜆 to represent the
yper-parameter(s) of the kernel matrix 𝜱(𝑿[𝑘],𝑿[𝑝𝑢]).

3.2.3. Algorithm
The algorithm of UC-PUAL with non-linear decision boundary can

e summarised in Algorithm 2.

Algorithm 2 UC-PUAL with non-linear decision boundary
Input: PU dataset, 𝜱, 𝑐, 𝜆, 𝜎 and 𝜇1
Output: 𝜴 and 𝛽0
1: Initialise 𝜴, 𝛽0, 𝒉, 𝒂, 𝒖ℎ and 𝒖𝑎.
2: while not converged do
3: Update 𝒂 via Equation (34)
4: Update 𝒉 via Equation (35)
5: Update 𝜴 and via Equation (31) w.r.t. 𝒉(𝑘+1), 𝒂(𝑘+1), 𝒖𝒉(𝑘) and 𝒖𝒂(𝑘)

6: Update 𝛽0 via Equation (36)
7: Update 𝒖𝒉 and 𝒖𝒂 via Equation (38)
8: end while
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3.3. Universal consistency

3.3.1. Bayes risk
Firstly we define the risk, i.e., the expected error rate, of a binary

lassifier with decision function 𝑓 ∗(𝒙) = sgn(𝑓 (𝑥)) ∈ {−1, 1} as

(𝑓 ∗) = ∫(𝒙,𝑦)∈
ℶ(𝑓 ∗(𝒙) ≠ 𝑦)𝑃 (𝑿 = 𝒙, 𝑌 = 𝑦)𝑑𝒙𝑑 𝑦 = 𝑃 [𝑓 ∗(𝑿) ≠ 𝑌 ],

(39)

where ℶ(⋅) is the indicator function;  is the domain of the instance
𝑿, 𝑌 ); and  indicates the probability of a classifier to misclassify
nstance (𝑿, 𝑌 ) selected at random from this domain.

Let 𝑥 be the domain of 𝑿. We can divide 𝑥 into the following
hree regions by the class which instance (𝑿 = 𝒙, 𝑌 = 𝑦) is more likely
o belong to:

𝒁+ = {𝒙 ∈ 𝑥 ∶ 𝑃 (𝑌 = 1 ∣ 𝑿 = 𝒙) > 𝑃 (𝑌 = −1 ∣ 𝑿 = 𝒙)},

− = {𝒙 ∈ 𝑥 ∶ 𝑃 (𝑌 = 1 ∣ 𝑿 = 𝒙) < 𝑃 (𝑌 = −1 ∣ 𝑿 = 𝒙)},

0 = {𝒙 ∈ 𝑥 ∶ 𝑃 (𝑌 = 1 ∣ 𝑿 = 𝒙) = 𝑃 (𝑌 = −1 ∣ 𝑿 = 𝒙)}.

(40)

Then, based on the three regions 𝒁+, 𝒁− and 𝒁0 in Eq. (40), the
Bayes decision function 𝑓 ∗

Bayes can be defined as 1 for 𝒙 ∈ 𝒁+ ∪𝒁0 and
1 for 𝒙 ∈ 𝒁−. Hence, the misclassification probability 𝜂(𝒙) = 𝑃 (𝑌 =
1|𝑿 = 𝒙) for 𝒙 ∈ 𝒁+ ∪𝒁0 and 𝜂(𝒙) = 𝑃 (𝑌 = 1|𝑿 = 𝒙) for 𝒙 ∈ 𝒁−.

The classifier with the Bayes decision function is called the Bayes
classifier, and the risk of the Bayes classifier is termed the Bayes risk,

hich can be obtained in our case from Eq. (39) as

Bayes = (𝑓 ∗
Bayes) = ∫𝒙∈𝑥

𝜂(𝒙)𝑃 (𝑿 = 𝒙)𝑑𝒙. (41)

3.3.2. Universal consistency of UC-PUAL
Suppose that the feature mapping 𝝓(⋅) is used to train UC-PUAL and

define the covering number 
((

𝑥, 𝑑𝝓
)

, 𝜖), where metric 𝑑𝝓(𝒙𝑖,𝒙𝑗 ) =
‖𝝓(𝒙𝑖) − 𝝓(𝒙𝑖)‖22, to be the minimum number of hyper-spheres with
iameter 𝜖 > 0 to cover the entire metric space (𝑥, 𝑑𝝓). Then according
o [37, Lemma 1], the universal kernel 𝜱∗(𝒙1,𝒙2) = 𝝓(𝒙1)𝑇𝝓(𝒙2)
pecifies the kernel functions when 𝝓(⋅) is continuous and ∀𝜖 > 0,


((

𝑥, 𝑑𝝓
)

, 𝜖) can be regarded as a finite function w.r.t. 𝜖.

Define 𝑐′ = 2𝑐
𝜆 and the decision function of UC-PUAL trained from

ample size 𝑛𝑝𝑢 to be 𝑓
∗𝑛𝑝𝑢
uc . Then the universal consistency of UC-PUAL

an be summarised by the following theorem:

Theorem 1. Firstly, suppose that 𝑥 is compact, and 𝜱(𝑿[𝑘],𝑿[𝑝𝑢]) is a
universal kernel function. Secondly, suppose that there exists constant 𝛼 > 0
satisfying 

((

𝑥, 𝑑𝝓
)

, 𝜖) ∈  (𝜀−𝛼). Thirdly, suppose that there exists con-
stant 𝛿 satisfying 0 < 𝛿 < 1

𝛼 , and when 𝑛𝑝 and 𝑛𝑢 tend to infinity, the value
of 𝑐′ also tends to infinity with 𝑐′ ∈ (𝑛𝛿𝑝𝑢). In this case, ∀𝜖 > 0, we have

𝑃 𝑛𝑝𝑢
[


(

𝑓
∗𝑛𝑝𝑢
uc

)

−Bayes ⩽ 𝜖
]

→ 1,

where 
(

𝑓
∗𝑛𝑝𝑢
𝑢𝑐

)

is the risk of the trained decision function 𝑓
∗𝑛𝑝𝑢
uc of

UC-PUAL at sample size 𝑛𝑝𝑢.

Theorem 1 indicates that, with the size of the training set increasing,
he gap between the Bayes risk and the risk of UC-PUAL tends to 0
n probability. The proof of Theorem 1 is in Appendix. Notably, the

effectiveness of the universal consistency can be approximated via the
nequality in Theorem 2 in Appendix A.2.

4. Experiments

4.1. Experiments on synthetic datasets

In this section, experiments were conducted on linearly separable
synthetic datasets to verify the superiority of UC-PUAL compared with
UAL and GLLC. The generation of synthetic positive–negative datasets
s the same as that in [19].
 s

6 
Table 1
Summary of the average F1-score (%) and the standard deviation
of the experiments on the synthetic datasets; The best result
of each row is in blue. When UC-PUAL achieves the highest
accuracy, * indicates the 𝑝-value from the Wilcoxon signed-
rank test comparing UC-PUAL with the second-best method, with
significance levels denoted as *** for 𝑝 < 0.01, ** for 𝑝 < 0.05,
and * for 𝑝 < 0.1.
𝐦𝐞𝐚𝐧𝑝2 UC-PUAL PUAL GLLC

50 96.41 ± 1.43∗ 93.26 ± 1.80 91.08 ± 2.74
100 96.67 ± 1.48∗ 93.15 ± 0.98 85.52 ± 5.87
200 96.03 ± 1.63∗∗ 94.25 ± 1.60 81.09 ± 9.01
500 97.02 ± 1.52∗∗ 92.55 ± 2.07 74.64 ± 6.78
1000 96.97 ± 1.87∗∗ 91.51 ± 0.84 71.67 ± 6.16

4.1.1. Training–test split for the synthetic PU datasets
Considering UC-PUAL was proposed in the case-control scenario [9],

we split each of the generated synthetic datasets to construct the PU
training and test sets consistent with the case-control scenario by the
following two steps:

1. 𝛾 ′ of the synthetic positive instances were picked randomly into
the labelled-positive set, and the rest positive instances were into
the unlabelled set.

2. The whole labelled-positive set and 70% of the unlabelled set
formed the training set. The rest 30% of the unlabelled set
formed the test set.

In this case, we obtained 25 pairs of PU training set and test set.
oreover, 𝛾 ′ is set to 7

37 , and we have the training sets with label
frequency 𝛾 = 𝛾 ′∕(0.3𝛾 ′ + 0.7) = 0.25.

4.1.2. Model setting
For the hyper-parameter tuning of UC-PUAL, PUF-score was used:

PUF − scor e = recall2
𝑃 [sgn(𝑓 (𝒙)) = 1] , (42)

where ‘recall’ is to be estimated by 1
𝑛𝑝

∑

𝒙𝑖∈𝑝 ℶ(sgn(𝑓 (𝒙𝑖)) = 1) with

he indicator function denoted by ℶ(⋅), and 𝑃 [sgn(𝑓 (𝒙)) = 1] can
e estimated via 1

𝑛𝑢

∑

𝒙𝑖∈𝑢 ℶ(sgn(𝑓 (𝒙𝑖)) = 1). Firstly, 𝑐 was set to
𝑢 and the number 𝐾 of the 𝑘-nearest neighbours was set to 5 for
enerating local similarity matrix 𝑹. Then 𝜎 and 𝜆 were picked from
he set {1, 2, 3, 4, 5}◦{0.1, 1, 10, 100} and tuned by 4-fold cross-validation
CV). Parameters 𝜆 and 𝜎 in GLLC and PUAL were tuned in the same
ay as in UC-PUAL. For GLLC and PUAL, 𝑐𝑢 was tuned from the set
0.01, 0.02,… , 0.5}◦𝑛𝑢 while 𝑐𝑝 was set to 𝑛𝑝.

4.1.3. Results and analysis
The results of the experiments, on the constructed synthetic PU

atasets, are summarised in Table 1. The results are measured by the
average F1-score.

From Table 1, we can observe the following patterns. Firstly, UC-
PUAL always has better performance than PUAL and GLLC on the
ynthetic PU datasets with all the 5 values of 𝐦𝐞𝐚𝐧𝑝2. This indicates that
C-PUAL can have better performance to generate the linear decision
oundary than PUAL and GLLC on trifurcate data when class prior 𝜋
s known. Secondly, with the 𝐦𝐞𝐚𝐧𝑝2 become larger, the improvement
ffered by UC-PUAL over PUAL and GLLC becomes larger. To assess
he statistical significance of the improvement, we conducted a right-
ailed Wilcoxon signed-rank test on the F1-score difference between
C-PUAL and the second-best method, with H0 ∶ 𝑀𝐷 ≤ 0, and
1 ∶ 𝑀𝐷 > 0, where 𝑀𝐷 is the median of difference. In all scenarios,
C-PUAL demonstrates a statistically significant improvement over the

econd-best method PUAL.
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Table 2
The average F1-score (%) with the standard deviation of the classifiers trained on the 16 real-world PU datasets; for each
dataset, the two rows were obtained under label frequencies 𝛾 = 0.5 and 0.25, respectively; the best result is in blue. The
rest of the caption is as in Table 1.

Dataset UC-PUAL PUAL GLLC uPU nnPU Robust-PU T-HOneCls

OR1 93.0 ± 3.2∗∗∗ 90.1 ± 2.3 85.6 ± 3.8 16.6 ± 33.3 84.1 ± 6.9 85.8 ± 2.3 82.4 ± 6.4
87.4 ± 2.5∗∗∗ 83.9 ± 5.8 72.9 ± 5.5 20.9 ± 33.1 72.1 ± 7.0 80.6 ± 4.9 78.4 ± 3.7

OR2 88.3 ± 1.6 88.9 ± 1.2 86.5 ± 1.4 76.9 ± 4.9 81.6 ± 4.2 84.2 ± 4.7 83.7 ± 5.8
86.1 ± 2.5∗∗ 85.5 ± 3.4 77.1 ± 5.7 74.4 ± 5.5 77.3 ± 3.8 81.0 ± 2.2 80.5 ± 2.5

Pen 98.9 ± 1.2∗∗∗ 92.5 ± 8.1 88.9 ± 10.2 77.8 ± 31.0 87.5 ± 14.9 93.7 ± 3.8 91.6 ± 2.9
98.2 ± 1.9∗∗∗ 91.7 ± 9.0 87.0 ± 11.4 72.6 ± 31.0 84.1 ± 16.9 91.8 ± 2.6 88.2 ±3.5

Seeds 94.6 ± 1.9 92.3 ± 4.9 94.6 ± 2.8 92.4 ± 1.5 97.3 ± 3.7 100 ± 0.0 100 ± 0.0
94.3 ± 1.9 89.1 ± 5.5 91.2 ± 4.5 86.9 ± 3.1 93.1 ± 3.9 100 ± 0.0 100 ± 0.0

HD 88.1 ± 2.5∗∗ 82.7 ± 2.4 82.0 ± 5.5 71.4 ± 4.2 74.4 ± 2.2 85.3 ± 5.0 83.7 ± 7.9
87.8 ± 2.6∗∗∗ 81.9 ± 4.0 84.5 ± 4.1 71.0 ± 4.0 75.1 ± 2.4 80.6 ± 1.3 81.4 ± 5.2

Acc 62.1 ± 3.3 65.0 ± 4.8 68.1 ± 2.2 20.1 ± 27.6 20.5 ± 28.6 72.5 ±4.9 76.1 ±7.4
60.0 ± 7.6 66.4 ± 4.4 64.1 ± 3.3 22.0 ± 29.6 23.4 ± 31.4 69.1 ±5.3 71.9 ±8.1

OD 100 ± 0.0∗∗∗ 89.0 ± 8.4 100 ± 0.0 80.0 ± 42.2 100 ± 0.0 100 ±0.0 100 ±0.0
100 ± 0.0∗∗∗ 95.7 ± 6.7 100 ± 0.0 80.0 ± 42.2 100 ± 0.0 100 ±0.0 100 ±0.0

PB 98.7 ± 1.9 95.9 ± 1.1 100 ± 0.0 69.8 ± 2.6 67.2 ± 3.2 96.2± 1.7 98.2 ±2.7
99.1 ± 0.6 97.9 ± 0.7 100 ± 0.0 68.8 ± 2.6 66.6 ± 4.1 93.1 ± 2.5 96.9 ±3.2

Ecoli 90.3 ± 1.3 90.8 ± 2.6 88.6 ± 2.8 84.4 ± 6.1 85.9 ± 6.7 86.2 ± 2.4 88.3 ± 9.8
89.3 ± 1.3 88.0 ± 4.4 89.4 ± 3.7 84.9 ± 6.8 86.1 ± 6.6 83.1± 1.8 85.5 ± 11.0

SSMCR 87.9 ± 0.9 87.6 ± 1.3 87.8 ± 1.8 85.7 ± 2.0 87.4 ± 1.4 62.8 ± 0.9 60.7 ± 8.4
87.9 ± 0.9 87.6 ± 1.3 87.5 ± 1.6 85.0 ± 2.0 86.8 ± 1.5 62.5 ± 0.9 69.8 ± 6.1

ENB 55.8 ± 9.3 42.8 ± 4.8 42.7 ± 4.6 29.6 ± 22.1 30.2 ± 23.7 69.3 ±5.2 64.8 ± 3.2
53.9 ± 9.5 45.8 ± 7.5 44.2 ± 6.6 26.1 ± 30.5 26.9 ± 31.3 65.1 ± 3.1 64.0 ±7.1

LD 53.4 ± 4.5 44.2 ± 5.7 50.8 ± 6.9 11.9 ± 25.8 31.5 ± 27.8 83.9 ± 3.7 86.0 ± 1.5
56.4 ± 4.4 36.9 ± 10.0 40.1 ± 8.9 10.2 ± 22.4 20.1 ± 26.3 81.1 ±6.1 80.9 ± 1.9

UMD 98.4 ± 1.6 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0
99.0 ± 1.5 99.6 ± 0.9 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

RD 83.1 ± 2.3∗ 82.5 ± 2.2 83.1 ± 2.9 70.6 ± 12.9 71.3 ± 13.6 62.8 ± 0.9 60.7 ± 8.4
80.9 ± 5.3 77.6 ± 3.8 81.2 ± 2.3 72.9 ± 14.5 73.1 ± 12.8 62.6 ± 2.4 69.8 ± 8.1

MNIST1 89.7 ± 4.1∗∗∗ 86.5 ± 3.9 80.4 ± 3.8 81.9 ± 2.5 83.5 ± 4.4 87.1 ± 3.0 85.9 ± 1.6
88.3 ± 3.7∗∗∗ 84.2 ± 5.2 79.5 ± 1.9 77.2 ± 4.1 82.1 ± 3.9 85.5 ± 3.6 84.7 ± 2.8

MNIST2 84.6 ± 4.3 81.7 ± 4.0 85.2 ± 3.9 84.0 ± 2.6 85.5 ± 4.5 89.3 ± 3.1 87.9 ± 1.7
80.6 ± 3.8 79.3 ± 5.3 81.7 ± 2.0 79.3 ± 5.2 84.2 ± 4.6 87.2 ± 2.9 85.3 ± 4.1
4.2. Experiments on real-world data

4.2.1. Real-world datasets
Fourteen real-world datasets from the UCI Machine Learning Repos-

itory were used to assess the performance of UC-PUAL: Pen-Based
Recognition of Handwritten Digits (Pen), Accelerometer (Acc), User
Knowledge Modelling Data Set (UMD), Seeds, Liver Disorders (LD),
Ecoli, Parking Birmingham (PB), Sepsis survival minimal clinical
ecords (SSMCR), Raisin Dataset (RD), Occupancy Detection (OD),
nline Retail (OR1), Online Retail II (OR2), Energy efficiency Data Set
ENB) and Heart Disease (HD). We also constructed two image datasets,
rifurcate MNIST1 and non-trifurcate MNIST2, from MNIST1 [38].
MNIST1 treats digits 1 and 8 as positive and 7 as negative, while
MNIST2 treats 1 and 7 as positive and 8 as negative. [Details on how
the datasets are constructed as PU data can be found in [19].

4.2.2. Compared methods and model setting
As the compared methods with UC-PUAL, PUAL, GLLC, uPU, nnPU,

obust-PU and T-HOneCls were also trained on the 16 real-world
datasets. GLLC and PUAL serve as the baseline of UC-PUAL; uPU and
nPU are two consistent PU learning methods; Robust-PU [5] and T-
OneCls [39] are two recent state-of-the-arts for multi-step approach

and one-step approach, respectively.
The setting of parameters here is similar to that in Section 4.1.2, ex-

ept that 𝜆 and 𝜎 were first tuned from the set {10−4, 10−3,… , 103, 104}
based on the setting in [15], and then continually tuned following a

1 https://github.com/cvdfoundation/mnist?tab=readme-ov-file.
7 
greedy algorithm based on the average PUF-score on the validation sets
as follows:

1. Set 𝜆, 𝜎 from the grid search.
2. Update one of 𝜆, 𝜎 by increasing/decreasing 10% of its current

value. The optimal case in the 4-fold CV is treated as the update
of this step.

3. Repeat Step 2 until there is no better case of 𝜆 and 𝜎.

For GLLC and PUAL, 𝜆, 𝜎 were tuned in the same way. Similarly, 𝑐𝑢 was
firstly tuned from the set {0.01, 0.02,… , 0.5}◦𝑛𝑢 and then tuned with
the above greedy algorithm. The hyper-parameters of uPU and nnPU
were as recommended by [17].2 The hyper-parameters of Robust-PU
were as recommended by [5].3 The hyper-parameters of T-HOneCls
were as recommended by [39]4. Radial Basis Function (RBF) ker-
nel exp

(

−‖𝑥𝑖 − 𝑥𝑗‖2∕2𝜆2
)

for the (𝑖, 𝑗)th element of kernel matrix
𝜱(𝑿[𝑝𝑢],𝑿[𝑝𝑢]) was applied to UC-PUAL, PUAL and GLLC.

4.2.3. Results and analysis
The Training–Test split of the datasets is the same as that in Sec-

tion 4.1.1. The results of the experiments are summarised in Table 2
by average F1-score for the 32 cases of 16 real-world datasets. We can
make the following observations. Firstly, UC-PUAL achieved very com-
petitive or superior F1-score than PUAL on 26/32 cases, including 7/8

2 https://github.com/kiryor/nnPUlearning.
3 https://github.com/woriazzc/robust-pu.
4 https://github.com/Hengwei-Zhao96/T-HOneCls.

https://github.com/cvdfoundation/mnist?tab=readme-ov-file
https://github.com/kiryor/nnPUlearning
https://github.com/woriazzc/robust-pu
https://github.com/Hengwei-Zhao96/T-HOneCls
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Fig. 2. The t-SNE plots of the test classification results of UC-PUAL, PUAL and uPU on the trifurcate dataset, Pen; red: positive instances; green: negative instances; cross: incorrectly
lassified; circle: correctly classified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cases of the four trifurcate datasets Pen, OR1, OR2 and MNIST1; this
indicates that the universally consistent objective function is of benefit
o the PU classification on trifurcate datasets. Secondly, uPU and nnPU
ften exhibited much larger standard deviations than PUAL and UC-
UAL. This is potentially because their algorithms, based on Adam

for optimising their non-convex objective functions, cannot always
onverge to the optimal solution. Thirdly, in 12/32 cases, UC-PUAL

achieved the best performance among all the seven methods compared
in the experiments. Finally, whenever UC-PUAL achieves the highest
accuracy, it is consistently statistically significantly better than the
second-best method, as confirmed by the Wilcoxon signed-rank test.

For Acc and UMD, we observe a slight reduction in classification
accuracy of UC-PUAL compared with PUAL. This is likely because the
sample sizes of the two datasets are limited. For Acc, PB and RD,
NIST2, UC-PUAL and PUAL are worse than GLLC, indicating that the

istributions of these datasets are not trifurcate.
The t-SNE visualisations of the correctly and incorrectly classified

instances on one test set of the trifurcate dataset, Pen, for UC-PUAL,
PUAL and uPU, are shown in Fig. 2. Clearly, UC-PUAL achieves the
best classification, with minimal false negatives (green crosses), while
UAL has more false negatives concentrated on the bottom-left corner,

and uPU exhibits many false positives (red crosses).

5. Conclusion and future work

In this paper, we propose UC-PUAL, a universally consistent PU clas-
sifier to achieve better classification on trifurcate PU datasets, where
positive instances distribute on both sides of negative instances. The
key novelty of UC-PUAL is to integrate the idea of PUAL, which uses an
asymmetric structure of loss on positive instances, and the idea of uPU,
which offers a consistent setting of PU classification. The superiority
f UC-PUAL was demonstrated by experiments on both synthetic and
eal-world datasets.

The performance of UC-PUAL is heavily dependent on the esti-
mation of the class prior 𝜋. In future work, we aim to propose a
onsistent objective function without estimating 𝜋. Furthermore, UC-
UAL is specifically designed to make PUAL universally consistent. In
he future, we aim to design a more general universally consistent
ramework for different PU classifiers.
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Appendix. Proof of universal consistency of UC-PUAL

A.1. The approximate of UC-PUAL

Let us consider the objective function of UC-PUAL in Eq. (A.1) with
kernel mapping 𝝓(𝑋[𝑘]), 𝑘 = 𝑝, 𝑢, 𝑝𝑢 substituting 𝑿[𝑝], 𝑿[𝑢], and 𝑿[𝑝𝑢]
espectively.

min
𝜷,𝛽0

𝜆
2
𝜷𝑇 𝜷 + 𝜋 𝑐

𝑛𝑝
𝟏𝑇𝑝 [𝟏𝑝 − (𝝓(𝑿[𝑝])𝜷 + 𝟏𝑝𝛽0)]+

+ 𝑐
𝑛𝑢

‖𝟏𝑢 + (𝝓(𝑿[𝑢])𝜷 + 𝟏𝑢𝛽0)‖1

− 𝜋 𝑐
𝑛𝑝

‖𝟏𝑝 + (𝝓(𝑿[𝑝])𝜷 + 𝟏𝑝𝛽0)‖1 + (𝝓(𝑿[𝑝𝑢])𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝝓(𝑿[𝑝𝑢])𝜷

+ 𝟏𝑝𝑢𝛽0).

(A.1)

According to [15], the local constraint (𝝓(𝑿[𝑝𝑢])𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝝓
𝑿[𝑝𝑢])𝜷 + 𝟏𝑝𝑢𝛽0) in the objective function of UC-PUAL with kernel
apping in Eq. (A.1) can be transformed to

2
𝑛𝑝𝑢

∑

𝒙𝑖 ,𝒙𝑗 are KNN of each other
exp

(

−
‖𝒙𝑖 − 𝒙𝑗‖22

𝜎

)

(𝑓 (𝝓(𝒙𝑖)) − 𝑓 (𝝓(𝒙𝑗 )))2,

(A.2)

where 𝑓 (𝝓(𝒙)) = 𝝓(𝒙)𝑇 𝜷 + 𝛽0.
For certain 𝑖 = 1,… , 𝑛𝑝𝑢, define the r.v.  [𝑚𝑥]

𝑘[𝑖] to be the 𝑘th maximum
alue of set {(−‖𝑿𝑖 − 𝑿𝑗‖

2
2) ∶ 𝑗 = 1,… , 𝑖 − 1, 𝑖 + 1,… , 𝑛𝑝𝑢.} of 𝑛𝑝𝑢 − 1

lements. Hence,

𝑃 [ [𝑚𝑥]
1[𝑖] ≤ 𝑥] = 𝑛𝑝𝑢−1

𝑖− (𝑥), (A.3)

where 𝑖−(𝑥) is the cdf of any r.v. −‖𝑿𝑖 −𝑿𝑗‖
2
2 for certain 𝑖.

Here we make an assumption that ∀𝑥 < 0, there is 𝑖−(𝑥) < 1; hence,
as 𝑛𝑝𝑢 tends to infinity, 𝑃 [ [𝑚𝑥]

1[𝑖] ≤ 𝑥] tends to 0 for 𝑥 < 0. Meanwhile,
only the pdf 𝑝[ [𝑚𝑥]

1[𝑖] = 0] tends to infinity as 𝑛𝑝𝑢 tends to infinity, so
hat  [𝑚𝑥]

1[𝑖] converges to 0 in probability.
Generally for 𝑘 ≥ 1, we have

𝑃 [ [𝑚𝑥]
𝑘[𝑖] ≤ 𝑥] =

𝑛𝑝𝑢−1
∑

𝑎=𝑛𝑝𝑢−𝑘

(

𝑛𝑝𝑢 − 1
𝑎

)

𝑎
𝑖−(𝑥)(1 − 𝑖−(𝑥))

𝑛𝑝𝑢−1−𝑎

= 𝑛𝑝𝑢−1
𝑖− (𝑥) +

𝑘
∑

𝑎=2

(

𝑛𝑝𝑢 − 1
𝑎 − 1

)

(1 − 𝑖−(𝑥))𝑎−1
𝑛𝑝𝑢−𝑎
𝑖− (𝑥).

(A.4)

Note that, for limited 𝑘 and thus 𝑎, 0 <
(𝑛𝑝𝑢−1

𝑎−1

)

𝑛𝑝𝑢−𝑎
𝑖− (𝑥) ≤ 𝑛𝑎−1𝑝𝑢 𝑛𝑝𝑢−𝑎

𝑖− (𝑥).
As 𝑛𝑎−1𝑝𝑢 𝑛𝑝𝑢−𝑎

𝑖− (𝑥) converges to 0 as 𝑛𝑝𝑢 tends to infinity, we can justify
that 𝑃 [ [𝑚𝑥]

𝑘[𝑖] ≤ 𝑥] converges to 0 for 𝑥 < 0, as 𝑛𝑝𝑢 tends to infinity; that
is,  [𝑚𝑥]

𝑘[𝑖] converges to 0 in probability. Furthermore, the case appearing
with  [𝑚𝑥]

𝑘[𝑖] = 0 is continuous function (𝑓 (𝝓(𝒙𝑖)) − 𝑓 (𝝓(𝒙𝑗 )))2 = 0 for
𝒙𝑗 to be the 𝑘th nearest neighbour of 𝒙𝑖. Hence the local constraint
n Eq. (A.2) can be regarded as the weighted average of the r.v.s
onverging to 0 in probability. Therefore, the local constraint also
onverges to 0 in probability as 𝑛 tends to infinity.
𝑝𝑢
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It follows that we only need to consider 𝜆
2𝜷

𝑇 𝜷 + 𝜋 𝑐
𝑛𝑝
𝟏𝑇𝑝

𝟏𝑝 − (𝝓(𝑿[𝑝])𝜷 + 𝟏𝑝𝛽0)]++
𝑐
𝑛𝑢
‖𝟏𝑢 + (𝝓(𝑿[𝑢])𝜷 + 𝟏𝑢𝛽0)‖1−

𝜋 𝑐
𝑛𝑝
‖𝟏𝑝+ (𝝓(𝑿[𝑝])𝜷

+ 𝟏𝑝𝛽0)‖1 in the objective function of UC-PUAL for sufficiently large
𝑝𝑢. This objective function is consistent with the following one by
ntroducing the term − 𝜋 𝑐

𝑛𝑝
‖𝟏𝑝 + (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)‖1:

𝜷𝑇 𝜷 + 𝑐′

𝑛𝑢

∑

𝒙𝑖∈𝑿[𝑢]

𝑙(𝑓 (𝝓(𝒙𝑖); 𝜷, 𝛽0), 𝑦𝑖) (A.5)

where 𝑐′ = 2𝑐
𝜆 . Because the use of the absolute loss in the objective

function in PUAL in Eq. (7), the asymmetric loss function in Eq. (A.5)
an be represented as

𝑙(𝑓 (𝒙; 𝜷, 𝛽0), 𝑦) =
{

[1 − 𝝓(𝒙)𝑇 𝜷 − 𝛽0]+, 𝑦 = 1;
|1 + 𝝓(𝒙)𝑇 𝜷 + 𝛽0|, 𝑦 = −1. (A.6)

This loss function is important for our latter proof of contradictory, with
etails provided in Appendix A.4.2.

The predictive score function of this approximate of UC-PUAL is the
same as the one of GLLC in Eq. (4). In this case, 

(

𝑓 ∗𝑛𝑢
uc

)

→ 
(

𝑓 ∗𝑛𝑢
ap

)

with 𝑛𝑢 increasing, where 
(

𝑓 ∗𝑛𝑢
ap

)

is the risk of the trained decision
function 𝑓 ∗𝑛𝑢

ap of the approximate of UC-PUAL in Eq. (A.5) with 𝑐′ = 𝑐𝑛𝑢
nd the sample size 𝑛𝑢.

Then we can find the kernel form of the optimisation of Eq. (A.5)
ia the KKT conditions w.r.t. 𝜷 as

min
𝝊,𝛽0 ,𝝃

1
2
𝝊𝑇𝜱∗(𝑿[𝑢],𝑿[𝑢])𝝊 + 𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑖=1
𝜉𝑖

.𝑡. 𝜉𝑖 ≥ 1 −𝜱∗(𝑿[𝑢],𝑿[𝑢])𝝊 − 𝛽0, for 𝑖 with 𝑦𝑖 = 1; 𝜉𝑖 ≥ 0, for 𝑖 with 𝑦𝑖 = 1;
𝜉𝑖 ≥ 1 +𝜱∗(𝑿[𝑢],𝑿[𝑢])𝝊 + 𝛽0, for 𝑖 with 𝑦𝑖 = −1;
𝜉𝑖 ≥ −1 −𝜱∗(𝑿[𝑢],𝑿[𝑢])𝝊 − 𝛽0, for 𝑖 with 𝑦𝑖 = −1.

(A.7)

where the (𝑖, 𝑗) element of kernel matrix 𝜱∗(𝑿[𝑢],𝑿[𝑢]) is 𝜱∗(𝒙𝑖,𝒙𝑗 ).
Furthermore, for certain 𝑩 with continuous 𝝓(⋅)𝑩−1∕2 and finite


((

𝑥, 𝑑𝑩−1∕2𝝓

)

, 𝜖
)

, we can also find 𝝓(⋅) = 𝝓(⋅)𝑩−1∕2𝑩1∕2 continuous
with 

((

𝑥, 𝑑𝝓
)

, 𝜖) finite. Therefore, 𝜱∗(𝒙1,𝒙2) = 𝝓(𝒙1)𝑇𝝓(𝒙2) can
e regarded as a universal kernel once 𝜱(𝒙,𝒙) = 𝝓(𝒙)𝑩−1𝝓(𝒙)𝑇 is a
niversal kernel.

A.2. Universal consistency of the approximate

To prove Theorem 1, firstly we prove the universal consistency of
the approximate of UC-PUAL with the objective function in Eq. (A.7),
following the idea in [40, pp. 775–776], which proves the universal
consistency of the classic SVM. We can give the following Theorem 2
for the approximate of UC-PUAL:

Theorem 2. Suppose 𝑥 is compact and the kernel function 𝛷(⋅) is
niversal. ∀0 < 𝜖 < 1, we can find a constant 𝑐∗ > 0 such that for all

𝑐′ ≥ 𝑐∗ there is

𝑃 𝑛𝑢
[


(

𝑓 ∗𝑛𝑢
ap

)

−Bayes ≤ 𝜖
]

≥ 1 − 2𝑀 𝑒−
𝜖6𝑛𝑢

229𝑀2 ,

= 64
𝜖


(

(

𝑥, 𝑑𝛷
)

, 𝜖

32
√

𝑐′

)

.

A.3. Step 2: Construction of a ‘Representative’ dataset

In this section, we construct a ‘representative’ dataset based on the
domain 𝑥 itself, which is independent of the objective function, the
loss function and the predictive score function. Therefore, what we do
in this section is the same as the corresponding part in [40, pp. 776–
780]. In this case, we summarise the important details of [40] with the
9 
roof (referring to the proof of Lemma 2 to Lemma 4 in [40]) skipped
and then provide some additional analysis.

Firstly we can divide 𝑥 into the following subsets:

𝑥[𝑖] =

{

{𝒙 ∈ 𝑥 ∶ 𝑖2−𝜌 ≤ 𝜂(𝒙) < (𝑖 + 1)2−𝜌}, 𝑖 = 0, 1,… , 2𝜌−1 − 2,
{𝒙 ∈ 𝑥 ∶ 𝑖2−𝜌 ≤ 𝜂(𝒙) ≤ 1

2 } 𝑖 = 2𝜌−1 − 1.
(A.8)

where 𝜌 is the integer meeting 2−𝜌 ≤ 𝜏 ≤ 2−𝜌+1 and 𝜏 = 𝜖∕32; this leads
to the following relationship:
2𝜌−1−1
∑

𝑖=0

𝑖
2𝜌

𝑃 [𝑿 ∈ 𝑥[𝑖]] ≤ Bayes ≤
2𝜌−1−1
∑

𝑖=0

𝑖
2𝜌

𝑃 [𝑿 ∈ 𝑥[𝑖]] + 1
2𝜌

2𝜌−1−1
∑

𝑖=0
𝑃 [𝑿 ∈ 𝑥[𝑖]]

≤
2𝜌−1−1
∑

𝑖=0

𝑖
2𝜌

𝑃 [𝑿 ∈ 𝑥[𝑖]] + 𝜏 .
(A.9)

To control the numbers of the positive and negative instances in the
representative’ dataset, we need to divide 𝑥[𝑖], 𝑖 = 0, 1,… , 2𝜌−1− 2, into
1
𝑥[𝑖] = 𝑥[𝑖] ∩𝒁+ and −1

𝑥[𝑖] = 𝑥[𝑖] ∩𝒁−. Furthermore, we can construct
a ‘large’ enough compact subset 𝑗

[𝑖] of 𝑗
𝑥[𝑖], i.e.,

𝑃
[

𝑿 ∈ 𝑗
𝑥[𝑖]∖

𝑗
[𝑖]

]

≤ 𝜏2−𝜌, 𝑖 = 0,… , 2𝜌−1 − 2, 𝑗 ∈ {−1, 1}. (A.10)

Furthermore, there exists subset [2𝜌−1−1] of 𝑥[2𝜌−1−1] meeting

𝑃
[

𝑿 ∈ 𝑥[2𝜌−1−1]∖[2𝜌−1−1]
]

≤ 𝜏2−𝜌 (A.11)

For convenience, let 1
[2𝜌−1−1]

= [2𝜌−1−1] ∩ (𝒁+ ∪ 𝒁0) and −1
[2𝜌−1−1]

=
[2𝜌−1−1] ∩𝒁−.

As proved in Lemma 2 of [40], when 𝜱∗(𝑿1,𝑿2) = 𝝓(𝑿1)𝝓(𝑿2)𝑇 to
be universal kernel, there exists value �̃� of 𝜷 to satisfy

𝝓(𝒙)𝑇 �̃� ∈ [1, 1 + 𝜏], 𝒙 ∈ ∪2𝜌−1−2
𝑖=0 1

[𝑖];𝝓(𝒙)
𝑇 �̃� ∈ [−(1 + 𝜏),−1],

𝒙 ∈ ∪2𝜌−1−2
𝑖=0 −1

[𝑖] ;

𝝓(𝒙)𝑇 �̃� ∈ [−𝜏 , 𝜏], 𝒙 ∈ [2𝜌−1−1];𝝓(𝒙)
𝑇 �̃� ∈ [−(1 + 𝜏), 1 + 𝜏],

𝒙 ∉ ∪𝑗=−1,1 ∪2𝜌−1−1
𝑖=0 𝑗

[𝑖].

(A.12)

Formulae in (A.12) are used to construct the upper bound of the
ontradiction in Appendix A.4.1.

Let 𝜎 = 𝜏∕
√

𝑐′. For 𝑖 = 0,… , 2𝜌−1 − 1 and 𝑗 = −1, 1, we are
ble to divide 𝑗

[𝑖] into finite partition Ã𝑗
𝑖 with the diameter of each

et  ∈ Ã𝑗
𝑖 no greater than 𝜎 in the kernel space. According to the

efinition of covering number, the cardinality of Ã𝑗
𝑖 is no greater than

((

𝑥, 𝑑𝝓
)

, 𝜎). Based on this, we can define

A𝑗
𝑖 =

{

 ∈ Ã𝑗
𝑖 ∶ 𝑃 [𝑿 ∈ ] ≥ 2𝜏

𝑀

}

, (A.13)

with 2𝜌 ≤ | ∪𝑗=−1,1 ∪2𝜌−1−1
𝑖=0 A𝑗

𝑖 | ≤ 𝑀 . Therefore, recalling 𝑀 = 64
𝜖 

(

(

𝑥, 𝑑𝛷
)

, 𝜖
32
√

𝑐′

)

, there is

∑

∈A𝑗
𝑖

𝑃 [𝑿 ∈ ] = 𝑃 [𝑿 ∈ 𝑗
[𝑖]] − 𝑃 [𝑿 ∈ 𝑗

[𝑖]∖ ∪∈A𝑗
𝑖
]

≥ 𝑃 [𝑿 ∈ 𝑗
[𝑖]] −

2𝜏
𝑀


((

𝑥, 𝑑𝝓
)

, 𝜎) = 𝑃 [𝑿 ∈ 𝑗
[𝑖]] −

2𝜏
𝑀

𝜏
2
𝑀

= 𝑃 [𝑿 ∈ 𝑗
[𝑖]] − 𝜏2 ≥ 𝑃 [𝑿 ∈ 𝑗

[𝑖]] − 𝜏 .

(A.14)

For convenience, let ∗𝑗
[𝑖] = ∪∈A𝑗

𝑖
 for 𝑖 = 0,… , 2𝜌−1− 1, 𝑗 ∈ {−1, 1}.

Consider the following conditions for the dataset {(𝒙1, 𝑦1), (𝒙2, 𝑦2),
, (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )} with 𝑛𝑢 ≫ 2𝜌+1:

𝐹+
𝑛𝑢 ,

=
{(

(𝒙1, 𝑦1),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )
)

∶ |

|

{𝑙 ∶ 𝒙𝑙 ∈ , 𝑦𝑙 = 𝑗}|
|

≥ 𝑛𝑢(1 − 𝜏)
(

1 − 𝑖 + 1
2𝜌

)

𝑃 [𝑿 ∈ ]
}

,

−
𝑛𝑢 ,

=
{(

(𝒙1, 𝑦1),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )
)

∶ |

|

{𝑖 ∶ 𝒙𝑙 ∈ , 𝑦𝑖 ≠ 𝑗}|
|

≥ 𝑛 (1 − 𝜏) 𝑖 𝑃 [𝑿 ∈ ]
}

,

(A.15)
𝑢 2𝜌
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where 𝑖 = 0,… , 2𝜌−1 − 2, 𝑗 ∈ {−1, 1} and  ∈ A𝑗
𝑖 . Besides, for  ∈

A𝑗
2𝜌−1−1

, 𝑗 ∈ {−1, 1} we can define the conditions as

𝐹+
𝑛𝑢 ,

=
{(

(𝒙1, 𝑦1),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )
)

∶ |

|

{𝑙 ∶ 𝒙𝑙 ∈ , 𝑦 = 1}|
|

≥ 𝑛𝑢(1 − 𝜏)
( 1
2
− 1

2𝜌
)

𝑃 [𝑿 ∈ ]
}

.

−
𝑛𝑢 ,

=
{(

(𝒙1, 𝑦1),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )
)

∶ |

|

{𝑙 ∶ 𝒙𝑙 ∈ , 𝑦 = −1}|
|

≥ 𝑛𝑢(1 − 𝜏)
( 1
2
− 1

2𝜌
)

𝑃 [𝑿 ∈ ]
}

.

(A.16)

We need to ensure a minimum number of instances form each
set  ∈ A𝑗

𝑖 , 𝑖 = 0,… , 2𝜌−1 − 1, 𝑗 ∈ {−1, 1} to construct the ‘rep-
resentative’ dataset. More specifically, let 𝐹𝑛𝑢 = ∩𝑗∈{−1,1} ∩2𝜌−1−1

𝑖=0
∩∈A𝑗

𝑖

(

𝐹+
𝑛𝑢 ,

∩ 𝐹−
𝑛𝑢 ,

)

. We can construct the ‘representative’ dataset as
we make the dataset meet both Condition (A.15) and Condition (A.16),
i.e., {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )} ∈ 𝐹𝑛𝑢 . The probability of obtaining
uch a ‘representative’ dataset via i.i.d. sampling form the population is

𝑃 𝑛𝑢
(

𝐹𝑛𝑢

)

≥ 1 − 2𝑀 𝑒−2
(

𝜏6∕𝑀2)𝑛𝑢 = 1 − 2𝑀 𝑒−
𝜖6𝑛𝑢

229𝑀2 , (A.17)

for 𝑛𝑢 ≫ 2𝜌+1 as proved in Lemma 3 of [40]. There are at least 2𝜌

ositive instances and negative instances in the ‘representative’ dataset
ince 𝑃 [𝑿 ∈ ] in Eq. (A.15) and Eq. (A.16) is always greater than 0

according to Eq. (A.13),

A.4. Step 3: Proof of Theorem 2 by contradiction

In this section, we prove that once {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )} are
the ‘representative’ instances, we will have 

(

𝑓 ∗𝑛𝑢
ap

)

−Bayes < 𝜖, via
the proof by contradiction in an inequality.

A.4.1. Upper bound of the inequality for contradiction
Firstly, assume that there is a ‘representative’ dataset {(𝒙1, 𝑦1),… ,

(𝒙𝑛𝑢 , 𝑦𝑛𝑢 )} ∈ 𝐹𝑛 with


(

𝑓 ∗𝑛𝑢
ap

)

−Bayes > 𝜖 . (A.18)

Define 𝜷[ap] and 𝛽[ap]0 to be the optimal solution of the objective
function in Eq. (A.7). Then let the value of the slack variable of instance
𝒙𝑙 , 𝑦𝑙) in Eq. (A.7) of instance (𝒙𝑙 , 𝑦𝑙), with 𝜷 = 𝜷[ap] and 𝛽0 = 𝛽[ap]0, to

be 𝜉[ap]𝑙. Similarly, let the value of the slack variable of instance (𝒙𝑙 , 𝑦𝑙),
with 𝜷 = �̃� and 𝛽0 = 0, to be 𝜉𝑙.

Furthermore, according to the relationships in Eq. (A.12) and the
constraints in Eq. (A.7), there are the following eight scenarios for 𝜉𝑙:
for 𝑥𝑙 ∈ ∗1

[𝑖] and 𝑦𝑙 = 1, let 𝜉𝑙 = 0; for 𝑥𝑙 ∈ ∗1
[𝑖] and 𝑦𝑙 = −1, let 𝜉𝑙 = 2 +𝜏;

For 𝑥𝑙 ∈ ∗−1
[𝑖] and 𝑦𝑙 = 1, let 𝜉𝑙 = 2 + 𝜏; for 𝑥𝑙 ∈ ∗−1

[𝑖] and 𝑦𝑙 = −1, let
𝜉𝑙 = 𝜏; for 𝑥𝑙 ∈ [2𝜌−1−1] and 𝑦𝑙 = 1, let 𝜉𝑙 = 1 + 𝜏; for 𝑥𝑙 ∈ [2𝜌−1−1]
and 𝑦𝑙 = −1, let 𝜉𝑙 = 1 + 𝜏; for 𝑥𝑙 ∉ (∪2𝜌−1−2

𝑖=0 ∪𝑗={−1,1} 
∗𝑗
[𝑖]) ∪ [2𝜌−1−1]

and 𝑦𝑙 = 1, let 𝜉𝑙 = 2 + 𝜏; for 𝑥𝑙 ∉ (∪2𝜌−1−2
𝑖=0 ∪𝑗={−1,1} 

∗𝑗
[𝑖]) ∪ [2𝜌−1−1] and

𝑦𝑙 = −1, let 𝜉𝑙 = 2 + 𝜏.
Then let 𝑛1, 𝑛+1 , 𝑛−1 , 𝑛2, 𝑛3, 𝑛4 denote the number of specific instances

n the ‘representative’ set {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛𝑢 , 𝑦𝑛𝑢 )} as

𝑛+1 =
|

|

|

|

{

𝑙 ∶ 𝒙𝑙 ∈ ∪2𝜌−1
𝑖=0 ∗1

[𝑖] , 𝑦𝑙 = 1
}

|

|

|

|

, 𝑛−1 =
|

|

|

|

{

𝑙 ∶ 𝒙𝑙 ∈ ∪2𝜌−1
𝑖=0 ∗−1

[𝑖] , 𝑦𝑙 = −1
}

|

|

|

|

,

𝑛2 =
|

|

|

|

{

𝑙 ∶ 𝒙𝑙 ∈ ∪2𝜌−1
𝑖=0 ∗−1

[𝑖] , 𝑦𝑙 = 1
}

|

|

|

|

+
|

|

|

|

{

𝑙 ∶ 𝒙𝑙 ∈ ∪2𝜌−1−2
𝑖=0 ∗1

[𝑖] , 𝑦𝑙 = −1
}

|

|

|

|

,

𝑛1 = 𝑛+1 + 𝑛−1 , 𝑛3 =
|

|

|

{

𝑙 ∶ 𝒙𝑙 ∈ [2𝜌−1−1]
}

|

|

|

,

𝑛4 =
|

|

|

|

{

𝑙 ∶ 𝒙𝑙 ∉ (∪2𝜌−1−2
𝑖=0 ∪𝑗={−1,1} 

∗𝑗
[𝑖]) ∪ [2𝜌−1−1]

}

|

|

|

|

.

(A.19)
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According to Eq. (A.19), 𝑛𝑢 = 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4. Furthermore, as
𝜷[ap], 𝛽[ap]0) is the optimal solution of (𝜷, 𝛽0), we have

𝜷𝑇
[ap]𝜷[ap] +

𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉[ap]𝑙 ≤ �̃�𝑇 �̃� + 𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉𝑙 ≤ �̃�𝑇 �̃� + 𝑐′

𝑛𝑢

(

𝜏 𝑛−1 + (2 + 𝜏)𝑛2

+(1 + 𝜏)𝑛3 + (2 + 𝜏)𝑛4
)

= �̃�𝑇 �̃� + 𝑐′

𝑛𝑢

(

𝜏 𝑛−1 + (2 + 𝜏)
(

𝑛𝑢 − 𝑛1
)

− 𝑛3
)

.

(A.20)

Then according to Inequality (A.14) and the inequality condition in
(A.15), the same as the content in [40] (Proof of Lemma 4), there is

(2 + 𝜏)
(

𝑛𝑢 − 𝑛1
)

≤
⎛

⎜

⎜

⎝

1 −
2𝜌−1−2
∑

𝑖=0
𝑃 [𝑿 ∈ 1

[𝑖] ∪ −1
[𝑖] ]

+
2𝜌−1−2
∑

𝑖=0

𝑖
2𝜌

𝑃 [𝑿 ∈ 1
[𝑖] ∪ −1

[𝑖] ]
⎞

⎟

⎟

⎠

2𝑛𝑢(1 − 𝜏) + 9𝑛𝑢𝜏 .

(A.21)

According to Inequality (A.10), Inequality (A.14) and Condition
(A.15), we have

𝜏
𝑛𝑢

𝑛−𝑛 ≤ 𝜏
⎡

⎢

⎢

⎣

1 −
2𝜌−1−2
∑

𝑖=0

∑

∈A1
𝑖

(1 − 𝜏)
(

1 − 𝑖 + 1
2𝜌

)

𝑃 [𝑿 ∈ ]
⎤

⎥

⎥

⎦

≤ 𝜏
⎡

⎢

⎢

⎣

1 − 1
2
(1 − 𝜏)

2𝜌−1−2
∑

𝑖=0

∑

∈A1
𝑖

𝑃 [𝑿 ∈ ]
⎤

⎥

⎥

⎦

≤ 𝜏
⎡

⎢

⎢

⎣

1 − 1
2
(1 − 𝜏)

2𝜌−1−2
∑

𝑖=0
(𝑃 [𝑿 ∈ 1

[𝑖]] − 𝜏2)
⎤

⎥

⎥

⎦

= 𝜏

⎧

⎪

⎨

⎪

⎩

1 − 1
2
(1 − 𝜏)

⎡

⎢

⎢

⎣

2𝜌−1−2
∑

𝑖=0
𝑃 [𝑿 ∈ 1

[𝑖]] − (2𝜌−1 − 1)𝜏2
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

≤ 𝜏
⎡

⎢

⎢

⎣

1 − 1
2
(1 − 𝜏)

⎛

⎜

⎜

⎝

2𝜌−1−2
∑

𝑖=0
𝑃 [𝑿 ∈ 1

[𝑖]] − 𝜏
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

≤ 𝜏
[

1 − 1
2
(1 − 𝜏)

(

𝐷− − 2𝜏)
]

,

(A.22)

where 𝐷− = 𝑃 [𝑿 ∈ 𝒁+] − 𝑃 [𝑿 ∈ 𝑥[2𝜌−1−1] ∩𝒁+].
Besides, according to Inequality (A.14) and Condition (A.16), the

same as the content in [40] (Proof of Lemma 4), we have

𝑛3 ≥ 2𝑛𝑢(1 − 𝜏)
{

𝑃 [𝑿 ∈ [2𝜌−1−1]] −
( 1
2
− 1

2𝜌
)

𝑃 [𝑿 ∈ [2𝜌−1−1]]
}

− 6𝑛𝑢𝜏 .

(A.23)

Combining Inequality (A.21) and Inequality (A.23) with Inequality
(A.9), Inequality (A.10), and Inequality (A.11), we can get

1
𝑛𝑢

(

(2 + 𝜏)
(

𝑛𝑢 − 𝑛1
)

− 𝑛3
)

≤ 2(1 − 𝜏)
⎛

⎜

⎜

⎝

1 −
2𝜌−1−1
∑

𝑖=0
𝑃 [𝑿 ∈ 1

[𝑖] ∪ −1
[𝑖] ]

+
2𝜌−1−1
∑

𝑖=0

𝑖
2𝜌

𝑃 [𝑿 ∈ 1
[𝑖] ∪ −1

[𝑖] ]
⎞

⎟

⎟

⎠

+ 15𝜏

≤ 2(1 − 𝜏)
⎛

⎜

⎜

⎝

𝜏 +
2𝜌−1−1
∑

𝑖=0

𝑖
2𝜌

𝑃
[

𝑿 ∈ 𝑥[𝑖]
]

⎞

⎟

⎟

⎠

+ 15𝜏 ≤ 2(1 − 𝜏)(Bayes + 8.75𝜏).

(A.24)
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Combining Inequality (A.21), Inequality (A.22) and Inequality
(A.23), we can eventually obtain

𝜷𝑇
[ap]𝜷[ap] +

𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉[ap]𝑙 ≤ �̃�𝑇 �̃� + 2𝑐′(1 − 𝜏)

[

Bayes

+(8.75 +
𝑛−1

2𝑛𝑢(1 − 𝜏)
)𝜏
]

≤ �̃�𝑇 �̃� + 2𝑐′(1 − 𝜏)
[

Bayes + (8.75 + 𝑛𝑛
2𝑛𝑢(1 − 𝜏)

)𝜏
]

≤ �̃�𝑇 �̃� + 2𝑐′(1 − 𝜏)
⎡

⎢

⎢

⎣

Bayes + (8.75 +
1 − 1

2 (1 − 𝜏)
(

𝐷− − 2𝜏)

2(1 − 𝜏)
)𝜏
⎤

⎥

⎥

⎦

.

(A.25)

A.4.2. Lower bound of the inequality for contradiction
The way to construct the lower bound of the inequality for con-

tradiction is quite similar to the corresponding content in [40] (proof
of Lemma 6). One can easily achieve this by replacing the constraints
condition of 𝜉𝑖 in the proof of [40] with the constraints of 𝜉𝑖 in Eq. (A.7).
The same result as it in [40] (Lemma 6) can be obtained as

𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉[ap]𝑙 > (1 − 𝜏)2𝑐′

(

2Bayes + 𝜖 − 11𝜏)

= 𝑐′(1 − 𝜏)
(

2Bayes + 32𝜏 − 11𝜏 − 2𝜏Bayes − 𝜖 𝜏 + 11𝜏2)

> 𝑐′(1 − 𝜏)
(

2Bayes + 19𝜏) .
(A.26)

A.4.3. Construction of contradiction for the proof of Theorem 2
Combining Inequality (A.25) with Inequality (A.26) we can find

�̃�𝑇 �̃� ≥ 𝜷𝑇
[ap]𝜷[ap] +

𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉[ap]𝑙 − 2𝑐′(1 − 𝜏)

⎡

⎢

⎢

⎣

Bayes

+(8.75 +
1 − 1

2 (1 − 𝜏)
(

𝐷− − 2𝜏)

2(1 − 𝜏)
)𝜏
⎤

⎥

⎥

⎦

≥ 𝑐′

𝑛𝑢

𝑛𝑢
∑

𝑙=1
𝜉[ap]𝑙 − 2𝑐′(1 − 𝜏)

[

Bayes

+(8.75 +
1 − 1

2 (1 − 𝜏)
(

𝐷− − 2𝜏)

2(1 − 𝜏)
)𝜏
⎤

⎥

⎥

⎦

> 𝑐′(1 − 𝜏)
(

2Bayes + 19𝜏) − 2𝑐′(1 − 𝜏)
[

Bayes

+(8.75 +
1 − 1

2 (1 − 𝜏)
(

𝐷− − 2𝜏)

2(1 − 𝜏)
)𝜏
⎤

⎥

⎥

⎦

= 𝑐′𝜏
[

0.5 − 1.5𝜏 + 1
2
(1 − 𝜏)

(

𝐷− − 2𝜏)
]

.

(A.27)

It should be noted that

𝜏 ≤ 1
32

< 0.2 < 1
4

min
𝐷−∈[0,1]

{5 +𝐷− −
√

(5 +𝐷−)2 − 8(𝐷− + 1)}. (A.28)

Therefore, 0.5 − 1.5𝜏 + 1
2 (1 − 𝜏)

(

𝐷− − 2𝜏) > 0 holds for all 0 < 𝜏 = 𝜖
32 ≤

1
32 . Then let

𝑐∗ =
�̃�𝑇 �̃�

𝜏 min𝐷−∈[0,1]{0.5 − 1.5𝜏 + 1
2 (1 − 𝜏)

(

𝐷− − 2𝜏)}

=
2�̃�𝑇 �̃�

𝜏(1 − 5𝜏 + 2𝜏2) .
(A.29)

For 𝑐′ ≥ 𝑐∗, we can obtain the contradiction according to Inequality
(A.27) as

�̃�𝑇 �̃� > 𝑐∗𝜏
[

0.5 − 1.5𝜏 + 1
2
(1 − 𝜏)

(

𝐷− − 2𝜏)
]

> �̃�𝑇 �̃�. (A.30)
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Thus the assumption in Inequality (A.18) is false and we can draw
a conclusion that, for 0 < 𝜖 = 32𝜏 < 1 and 𝑐′ ≥ 𝑐∗,


(

𝑓 ∗𝑛𝑢
ap

)

−Bayes ≤ 𝜖

holds on the ‘representative’ dataset. Finally Theorem 2 is proved.

A.5. Step 4: Proof of Theorem 1

As the value of 𝑐′ tends to infinity with 𝑛𝑢 increasing, we can find
∗ so that 𝑐′ ≥ 𝑐∗ when there is 𝑛𝑢 ≥ 𝑛∗. Then, according to Theorem 2,

there is

𝑃 𝑛𝑢
[


(

𝑓 ∗𝑛𝑢
ap

)

−Bayes ≤ 𝜖
]

≥ 1 − 2𝑀𝑛𝑢𝑒
− 𝜖6𝑛𝑢

229𝑀2
𝑛𝑢 , (A.31)

where 𝑀𝑛𝑢 = 64
𝜖 

(

(

𝑥, 𝑑𝝓
)

, 𝜖
32
√

𝑐′

)

. As 𝑀2
𝑛𝑢

∈ 
(

𝑐′𝛼
)

following the

ssumption on the covering number of (𝑥, 𝑑𝝓), 𝑛𝑢𝑀−2
𝑛𝑢

tends to infinity
ith 𝑛𝑢 increasing, and there is

𝑃 𝑛𝑢
[


(

𝑓 ∗𝑛𝑢
ap

)

−Bayes ≤ 𝜖
]

→ 1.

As 
(

𝑓 ∗𝑛𝑢
uc

)

→ 
(

𝑓 ∗𝑛𝑢
ap

)

with both 𝑛𝑝 and 𝑛𝑢 increasing, Theorem 1 is
roved, i.e.,

𝑃 𝑛𝑢
[


(

𝑓 ∗𝑛𝑢
uc

)

−Bayes ≤ 𝜖
]

→ 1.
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