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MULTICAUSENET temporal 
attention for multimodal emotion 
cause pair extraction
Ma Junchi1, Hassan Nazeer Chaudhry2, Farzana Kulsoom3, Yang Guihua1, Sajid Ullah Khan4, 
Sujit Biswas7, Zahid Ullah Khan5 & Faheem Khan6

In the realm of emotion recognition, understanding the intricate relationships between emotions 
and their underlying causes remains a significant challenge. This paper presents MultiCauseNet, a 
novel framework designed to effectively extract emotion-cause pairs by leveraging multimodal data, 
including text, audio, and video. The proposed approach integrates advanced multimodal feature 
extraction techniques with attention mechanisms to enhance the understanding of emotional 
contexts. The key text, audio, and video features are extracted using BERT, Wav2Vec, and Vision 
transformers (ViTs), which are then employed to construct a comprehensive multimodal graph. 
The graph encodes the relationships between emotions and potential causes, and Graph Attention 
Networks (GATs) are used to weigh and prioritize relevant features across the modalities. To further 
improve performance, Transformers are employed to model intra-modal and inter-modal dependencies 
through self-attention and cross-attention mechanisms. This enables a more robust multimodal 
information fusion, capturing the global context of emotional interactions. This dynamic attention 
mechanism enables MultiCauseNet to capture complex interactions between emotional triggers 
and causes, improving extraction accuracy. Experiments on emotion benchmark datasets, including 
IEMOCAP and MELD achieved a WFI score of 73.02 and 53.67 respectively. The results for cause pair 
analysis are evaluated on ECF and ConvECPE with a Cause recognition F1 score of 65.12 and 84.51, and 
a Pair extraction F1 score of 55.12 and 51.34.

Keywords Emotion–cause pair extraction, Multimodal emotion recognition, Graph attention networks 
(GATs), Vision transformers (ViTs), Transformers and attention mechanisms, Feature fusion, Multimodal 
graphs, Self and cross attention, Emotion triggers

In recent years, understanding human emotions has gained increasing attention across multiple domains. 
Emotion recognition has evolved from merely identifying feelings to analyzing their complexities, intricacies, and 
causal relationships with specific triggers1. The ability to link emotions with their corresponding causes-termed 
emotion–cause pair extraction-has substantial implications in various applications, such as sentiment analysis, 
social media monitoring, and mental health assessment. To understand emotion–cause Pair Extraction consider 
a scenario in which a user posts a message on social media expressing sadness after watching a particular film. An 
emotion–cause pair extraction system could identify the emotion (“sadness”) and link it to the cause (“watching 
a film”). This capability not only aids in understanding the user’s emotional state but also the reasons behind 
it. Another example is a user who shares their experience of feeling overwhelmed during a job interview. An 
emotion–cause extraction system would capture the emotion (“overwhelmed”) and the cause (“job interview”). 
As a third example, we will use a visual description. Figure 1 illustrates a sequence of events involving five 
utterances, each represented by an image at the top. These utterances correspond to emotional responses that 
evolve throughout the interaction. Utterance 1 shows a moment of joy, with the characters appearing happy. 
In Utterance 2, the emotional tone shifts to surprise, as one of the characters reacts unexpectedly. The emotion 
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returns to joy in Utterances 3 and 4, with the characters exhibiting positive feelings. However, in Utterance 5, 
there is a shift to disgust, as one of the characters expresses a negative reaction. Below the emotional labels for 
each utterance, a chain of causal relationships between the utterances is shown. These utterances are labelled U1 
through U5 and connected by arrows, indicating the progression of emotions. Utterance 1, which is linked to 
joy, causes the surprise seen in Utterance 2. This surprise, in turn, leads to a joyful response in Utterance 3. The 
joy continues into Utterance 4, showing a flow of positive emotions.

However, this emotional flow is broken in Utterance 5, where the emotion shifts to disgust. The arrows 
connecting the emotions, such as joy, surprise, and disgust, highlight the way one emotional state triggers the 
next. For example, the surprise experienced in Utterance 2 leads to a joyful reaction in Utterances 3 and 4, 
before finally transitioning to disgust in Utterance 5. This causal structure represents the dynamic nature of 
emotional interactions in a conversation, showing how emotions influence one another as the dialogue unfolds. 
The overall figure demonstrates how different utterances cause shifts in emotional states, contributing to the 
unfolding emotional narrative.

The emotion extraction could be done using a single modality such as image, text and video, or a combination 
of these or more modalities2. The distinction between single and multiple modalities in emotion recognition 
is critical. Single-modality approaches typically focus on one form of data, such as text or audio, to identify 
emotions. While these methods can yield useful insights, they often fall short of capturing the full complexity 
of human emotions. For example, relying solely on textual data may miss vital emotional cues present in tone 
or facial expressions3. Conversely, multiple modalities offer a more holistic view of emotional expressions. By 
integrating data from various sources, researchers can construct a comprehensive understanding of emotions. 
For instance, a study by4 successfully combined audio, visual, and textual features to enhance emotion 
recognition performance, demonstrating the efficacy of multimodal approaches. However, the integration 
of multiple modalities poses its challenges, including the need for effective feature extraction, alignment of 
temporal sequences, the handling of missing or noisy data across different modalities and having images of low 
quality5,6. These challenges necessitate advanced methodologies capable of addressing the complexities inherent 
in multimodal data. Human emotions are inherently multimodal, manifested not just through spoken or written 

Fig. 1. Example of cause analysis.
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words but also through tone, body language, facial expressions, and contextual cues from video content. As a 
result, leveraging multimodal data is essential for capturing the richness of emotional expressions.

Traditional approaches often focus on isolated modalities, neglecting the temporal relationships that 
interconnect these inputs. Consequently, there is a significant gap in the literature regarding integrating 
multiple modalities for effective emotion–cause pair extraction. Despite advancements in emotion recognition, 
several challenges hinder effective emotion–cause pair extraction. Firstly, the inherent subjectivity of emotions 
complicates the development of robust models capable of generalizing across diverse contexts and individual 
differences. Emotions are often nuanced and context-dependent, making it challenging to establish clear causal 
relationships. For instance, what elicits joy in one individual may evoke sadness in another, depending on their 
unique experiences and perspectives. Secondly, existing methodologies frequently rely on a single modality, 
which limits their effectiveness. For instance, textual analysis alone may not capture the full spectrum of 
emotional expression, as tone and context are equally significant. This limitation is particularly pronounced 
in dynamic settings, where real-time interactions necessitate a comprehensive understanding of multiple 
modalities. A singular focus on one modality can lead to incomplete analyses, as it ignores the potential 
contributions of other forms of data. Thirdly, the temporal aspect of emotions further complicates the extraction 
process. Emotions are not static; they evolve, influenced by preceding events and ongoing stimuli. As such, 
capturing the temporal relationships between different modalities is essential for accurately linking emotions 
with their causes. Fourthly, image quality is very important for correct extraction of cause and emotions7. There 
is rich literature on image quality inspection which could be employed to assess the quality of the image before 
cause or emotion could be determined8–10.

Traditional machine-learning approaches often fail to account for these temporal dynamics, leading to 
incomplete or misleading conclusions. The motivation behind this research stems from the understanding that 
emotions are complex constructs influenced by various factors, including situational context and individual 
differences. For instance, a person’s emotional reaction to a film scene may depend on both the auditory 
cues (e.g., background music) and visual elements (e.g., facial expressions of characters). Furthermore, the 
context in which these cues are presented plays a critical role in shaping emotional responses. Therefore, 
an integrated approach that considers the interplay between text, audio, and video is crucial for accurately 
identifying emotions and their causes. This integration can provide a more nuanced understanding of emotional 
experiences, facilitating insights that are often lost in unidimensional analyses. Moreover, the significance of 
emotion–cause pair extraction extends beyond academic interest; it holds practical implications for industries 
such as marketing, where understanding customer emotions can lead to more effective strategies, and 
healthcare, where emotional assessments can enhance patient care. For example, in mental health assessments, 
accurately identifying emotions can inform therapeutic approaches, leading to improved patient outcomes. By 
elucidating the triggers of emotions, we can foster a deeper understanding of human behaviour and improve 
decision-making processes in various fields. Several studies have focused on emotion recognition, utilizing 
various methodologies and datasets. Early works primarily relied on traditional machine learning techniques, 
such as support vector machines (SVM) and hidden Markov models (HMM), for emotion classification based 
on textual data. For example,11 explored the use of lexical features in the text to identify emotions, while12 
demonstrated the effectiveness of HMM for recognizing emotions in speech. With the advent of deep learning, 
significant advancements have been made in this field. Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) have been widely adopted for emotion recognition tasks.13 proposed a deep learning 
framework combining CNNs and LSTMs to extract features from both text and audio for emotion classification.

Recent advancements in transformer architectures have also significantly influenced emotion recognition 
tasks. Models such as BERT and its variations have demonstrated state-of-the-art performance in various natural 
language processing tasks, including emotion detection14. Furthermore, the integration of transformers with 
audio and visual modalities has shown promise in capturing the contextual relationships essential for emotion–
cause pair extraction.

In addressing these challenges, this paper proposes a novel technique that leverages attention mechanisms 
and graph-based representations to enhance multimodal emotion–cause pair extraction. The proposed system 
integrates text, audio, and video inputs to construct a comprehensive graph representation that captures emotions’ 
relationships and potential triggers. The process begins with multimodal feature extraction, where contextual 
embeddings for text, audio, and video are generated using state-of-the-art models such as BERT, Wav2Vec, 
and Vision Transformers (ViT). BERT14 has been extensively used for text representation, capturing contextual 
information effectively. Wav2Vec15 excels in audio feature extraction by leveraging self-supervised learning to 
model acoustic representations. Similarly, Vision Transformers16 have shown promising results in extracting 
visual features from video data. These embeddings are then employed to construct a multimodal graph, where 
vertices represent key features across modalities, and edges encode the relationships between emotions and their 
potential causes. The graph structure represents complex interconnections between different emotional triggers, 
enhancing the model’s ability to capture the nuanced relationships inherent in human emotions. Subsequently, 
we employ Graph Attention Networks (GAT) to facilitate the emotion–cause pairing process. GATs leverage 
attention mechanisms to assign different weights to the vertices in the graph, enabling the model to focus 
on the most relevant features while accounting for the temporal relationships inherent in multimodal data. 
This dynamic attention mechanism enhances the model’s ability to adaptively learn from the data, leading to 
improved performance in emotion–cause pair extraction.

The resultant framework not only enhances the accuracy of emotion–cause pair extraction but also provides 
valuable insights into the contextual interplay between emotions and their triggers. By effectively capturing the 
relationships among different modalities, our proposed technique aims to bridge the existing gap in the literature 
and advance the field of emotion recognition. In conclusion, this research contributes to the growing body of 
knowledge in the field of emotion recognition by introducing a robust and integrative approach to emotion–
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cause pair extraction. Through the application of multimodal inputs and advanced attention mechanisms, we 
aim to advance the understanding of emotions and their complexities in real-world scenarios. By elucidating 
the triggers of emotions, we hope to pave the way for future research and applications in this vital area of 
study. Furthermore, our findings underscore the necessity of developing more sophisticated models that can 
handle the intricacies of human emotions in dynamic environments. This research lays the groundwork for 
further exploration in emotion recognition and highlights the potential for transformative applications in 
various sectors, including mental health, marketing, and human-computer interaction, where understanding 
emotional nuances is essential for fostering positive experiences and outcomes. The objectives of this work are to 
develop a novel multimodal framework for emotion–cause pair extraction by integrating text, audio, and video 
features using advanced models such as BERT, Wav2Vec, and ViT. The proposed approach aims to construct a 
multimodal graph representation that effectively models the relationships between emotions and their causes. 
By introducing a temporal attention mechanism and leveraging GATs, this research seeks to align multimodal 
features over time, enhance dynamic feature linking, and capture complex dependencies between emotional 
states and triggers. Additionally, the study aims to demonstrate the superiority of the proposed method through 
a comprehensive evaluation of benchmark datasets, contributing to the field by setting a new benchmark for 
emotion–cause pair extraction.

To summarize, our key contributions are:

• We propose a novel multimodal framework for emotion–cause pair extraction, integrating text, audio, and 
video features using BERT, Wav2Vec, and ViT. A multimodal graph representation models emotion–cause 
relationships, with vertices for modality-specific features and edges capturing their interactions.

• We introduce a temporal attention mechanism that aligns multimodal features over time, enabling the model 
to account for the evolving nature of emotions and their causes across different modalities.

• We integrate GATs for dynamic attention-weighted feature linking and combine Transformers for global con-
text with GATs for local relational modelling, enabling enhanced intra-modal and inter-modal fusion. This 
unified architecture effectively captures complex dependencies between emotions and their causes.

• We provide a comprehensive analysis of the temporal and contextual dynamics of emotions, showing how the 
model captures emotion evolution and the intricate dependencies between emotional states and their causes, 
setting a new benchmark for future research in this domain.

• Evaluated on IEMOCAP and MELD, our framework outperforms existing methods by leveraging multi-
modal strengths. It also captures temporal and contextual emotion dynamics, setting a new benchmark for 
emotion–cause extraction.

Section “Related work” presents existing literature and state of the art; Section “Proposed Technique” describes 
the proposed technique. Section “Results and performance evaluation”, presents the experimental setup and 
discusses the results. Finally, Section “Conclusions” concludes.

Related work
This section presents the related work to multimodal emotion recognition and cause pair analysis. Section 
“Multimodal emotion recognition” provides a brief introduction to multimodal emotion recognition. Section 
“Emotion cause pair extraction” explains research work related to cause pair analysis. The last Section “Benchmark 
state of art” provides a short introduction to research work used as a bench mark in the results section.

Multimodal emotion recognition
MERC can be categorized into three primary groups: multimodal fusion, context-aware models, and studies 
integrating external knowledge. The first group focuses on fusion representations. Some works, such as Hu et 
al.28,29 and Joshi et al.30, employ graph neural networks to model the inter- and intra-dependencies of utterance 
information. Additionally, other studies propose cross-attention Transformers31 to capture cross-modality 
interactions. In addressing context incorporation, Sun et al.32, Li et al.33, and Ghosal et al.34 construct graph 
structures to represent contextual information and model inter-utterance dependencies. Furthermore, Mao et 
al.35 introduce the concept of emotion dynamics to effectively capture context. The final group includes advanced 
MERC studies that integrate external knowledge. These studies utilize techniques such as transfer learning33,36, 
commonsense knowledge37, multi-task learning38, and external information39 to provide auxiliary information, 
enhancing the model’s understanding of conversations.

Emotion cause pair extraction
With the growing trend of extending various NLP tasks to the multimodal domain28,40–43, Wang et al.44 
introduced the concept of MECPE and created the Emotion–Cause-in-Friends (ECF) dataset, which is derived 
from the MELD dataset4. In addition, Li et al.45 developed a multimodal dataset for English conversational 
emotion–cause pair extraction, leveraging the IEMOCAP dataset46. The primary objective of MECPE is to 
determine the cause of utterances corresponding to a given emotion utterance, thereby generating pairs of 
utterances. Despite the recent emergence of MECPE as a research area, there is a limited number of baseline 
methods available. In earlier works, Wang et al.44 and Li et al.45 established baseline approaches by integrating 
multimodal features to address the MECPE task. Although these studies broadened the scope of emotion–cause 
pair extraction to a multimodal context, they primarily adapted existing baseline methods designed for text-
based emotion–cause extraction, neglecting the critical roles of inter-utterance context and multimodal fusion 
in effectively understanding emotional causation.
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Benchmark state of art
Table 1 provides an overview of various baseline methods employed in emotion recognition, particularly 
contrasting these with the proposed MultiCauseNet model. Each method showcases distinct deep learning 
techniques, datasets utilized, and notable aspects that contribute to the field of emotion recognition. The 
DialogueGCN method employs GCNs to capture the interrelations among dialogue turns. By leveraging the 
structural properties of graphs, this approach enhances the contextual understanding of emotional exchanges 
within conversations. Utilizing the IEMOCAP dataset, this method is effective in discerning the nuances of 
emotional expression by mapping relationships between various dialogue participants. Similarly, DialogueRNN 
leverages RNNs to encapsulate the sequential dynamics inherent in dialogue. Its implementation across both the 
IEMOCAP and MELD datasets signifies its robustness in managing diverse dialogue structures. This capability 
is crucial for tracking emotional transitions and reactions throughout conversations, thereby providing a richer 
analysis of emotional development over time.

In addition, MMGCN adopts a Multimodal GCN to enhance recognition capabilities for emotions such as 
sadness and excitement. By integrating multimodal features, this method addresses the complexity of emotional 
detection, demonstrating improved performance across various emotional categories through the incorporation 
of diverse input types, including audio and visual data. The IterativeERC method introduces an iterative 
refinement process, allowing for continuous improvement of predictions through feedback mechanisms. This 
approach highlights the significance of adaptive learning in dynamic dialogue contexts, enhancing the model’s 
understanding and responsiveness to emotional cues effectively. The QMNN showcases an innovative blend 
of quantum computing and machine learning, utilizing quantum-inspired techniques to bolster multimodal 
integration. By effectively merging different modalities, this method expands the scope of emotion recognition, 
suggesting that advanced computational frameworks can significantly enhance the efficacy of emotion detection 
systems. On the other hand, employing a Deep Fusion Network, MM-DFN addresses the challenges associated 
with recognizing complex emotional expressions. This method’s focus on the fusion of multimodal information 
emphasizes the necessity of combining various data sources to attain a comprehensive understanding of 
emotional states, which are often multifaceted.

Further, the MVN method implements a multi-view approach to extract a range of emotional signals. By 
analyzing data from diverse perspectives, this technique enhances the model’s ability to recognize emotions 
across varying contexts, indicating the benefits of adopting a holistic view in emotional analysis. Utilizing 
self-supervised learning, UniMSE unifies multimodal strategies, minimizing the dependence on extensive 
labelled datasets. This approach is vital for scaling emotion recognition systems, as it facilitates learning from 
unstructured data while maintaining high performance and accuracy. Moreover, the EmoCaps method is 
dedicated to detecting nuanced emotional expressions, utilizing various techniques across multiple datasets. 
This focus on subtle emotional cues is crucial, as they often convey significant information that might be 
overlooked by conventional emotion recognition systems. The GA2MIF method enhances emotion recognition 
by merging facial expressions with contextual information. This dual-focus approach fosters a comprehensive 
understanding of emotional cues, which is essential for applications demanding high accuracy in emotional 
detection, such as in social interactions and mental health monitoring. The MALN excels in recognizing multiple 
emotions simultaneously through a Multimodal Learning Network. This capability to process and integrate 
diverse information sources effectively positions this method as a significant advancement in the field, catering 
to the complexities of human emotional expression. Finally, MultiEMO emphasizes the detection of sadness, 
employing advanced methodologies that improve recognition accuracy within multimodal frameworks. This 
targeted approach underscores the growing necessity for emotion recognition systems to deeply understand 
specific emotional states, particularly in sensitive applications like mental health monitoring.

Proposed technique
This section describes the proposed technique for multimodal emotion–cause pair extraction, which leverages 
various state-of-the-art models to process and integrate information from different modalities. The approach 

Method (year) Deep learning technique Dataset Notable aspects

DialogueGCN (2019)17 Graph Convolutional Network (GCN) IEMOCAP Models interrelations among dialogue turns

DialogueRNN (2019)18 Recurrent Neural Network (RNN) IEMOCAP, MELD Captures sequential dynamics of dialogue

MMGCN (2019)19 Multimodal GCN IEMOCAP Enhances recognition for Sadness and Excitement

IterativeERC (2020)20 Iterative Method IEMOCAP Refines predictions through multiple iterations

QMNN (2021)21 Quantum-Inspired Techniques Various Integrates techniques across modalities

MM-DFN (2022)22 Deep Fusion Network IEMOCAP Addresses complex emotional expressions

MVN (2022)23 Multi-View Approach Various Extracts diverse emotional signals

UniMSE (2022)24 Self-Supervised Learning Various Unified multimodal strategy

EmoCaps (2022)2 Various Various Detects nuanced emotional expressions

GA2MIF (2023)25 Facial and Contextual Info Various Enhances emotion recognition

MALN (2023)26 Multimodal Learning Network Various Excels in recognizing multiple emotions

MultiEMO (2023)27 Advanced Methodology Various Excels in detecting Sad emotions

Table 1. Benchmarking MultiCauseNet against baseline methods.
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is structured into multiple stages, starting from feature extraction to final emotion–cause pair identification, 
and each stage plays a critical role in achieving robust performance across modalities. The first section 
“Multimodal feature extraction”, discusses the extraction of features from three modalities: text, audio, and 
video. Each modality’s independent features are then aligned and integrated for subsequent stages of analysis. 
Following feature extraction, the next stage, detailed in Section “Feature fusion using transformers”, focuses on 
the fusion of multimodal features using attention mechanisms. The fusion process combines intra-modal and 
inter-modal dependencies, enabling the model to represent complex relationships across text, audio, and video 
modalities. The self-attention mechanism captures intra-modal dependencies, while cross-attention manages 
the integration of inter-modal features, leading to a unified feature representation suitable for downstream tasks. 
In Section “Emotion–cause pair extraction with graph attention networks”, we introduce the use of GATs for 
emotion–cause pair extraction. In this stage, the multimodal feature representations are transformed into graph 
structures, where each node represents a specific segment of data. The GATs are then employed to model the 
dependencies between these nodes, allowing the system to capture relational information across the multimodal 
inputs. This mechanism enhances the model’s ability to extract emotion–cause pairs by focusing on interactions 
between different segments of data within and across modalities. Section “Transformer and GAT Hybrid for 
Emotion–Cause Detection” describes a hybrid approach combining Transformer architectures with GATs. 
Transformers contribute global contextual understanding by modelling dependencies between input tokens 
using self-attention, while GATs enhance the model’s capability to focus on local relational information between 
graph nodes. This hybrid approach benefits from the complementary strengths of both architectures, leading 
to improved performance in emotion–cause detection. Finally, Section “Combining outputs using attention 
mechanism” presents a mechanism to combine the outputs of the Transformer and GAT models using attention. 
This combination ensures that the most relevant features from both models are dynamically weighted and 
integrated. A hierarchical structure is adopted to process the outputs from each model independently, followed 
by merging them using an attention mechanism. This step ensures that the final output captures both the global 
and local dependencies essential for detecting emotion–cause pairs effectively.

Multimodal feature extraction
This sub-section describes our approach to extracting features from multiple modalities: text, audio, and video. 
Each modality is processed independently to capture relevant information before alignment and integration 
for further analysis. In Section “Text processing” features are extracted from text using BERT (Bidirectional 
Encoder Representations from Transformers), for audio in Section “Audio processing” we have employed 
Wav2Vec. Finally in Section “Video processing”, ViT is used for feature extraction from video. In this subsection, 
we have assumed that all extracted features converge, the proof of this is provided in the Annexure (Lemma 1, 
Transformer Feature Extraction Convergence), and can be read for further understanding.

Text processing
In our approach, textual data is processed using pre-trained transformer models such as BERT14. The primary 
objective of text processing is to extract rich contextual embeddings that encode the semantics of the input 
sentences while maintaining temporal coherence. Let the input text be represented as a sequence of words or 
tokens:

 X = {x1, x2, x3, . . . , xn} (1)

Where xi represents the i-th token in the sequence, and n is the total number of tokens. Each token is then 
passed through a BERT model to obtain contextual embeddings. Specifically, for each token xi, we derive a 
hidden state hi from the BERT model, such that:

 hi = BERT(xi, X) (2)

Where hi ∈ Rd and d is the dimension of the embedding space. The function BERT(xi, X) encodes the token 
xi in the context of the entire sequence X , utilizing the self-attention mechanism inherent to transformer 
architectures. BERT employs a multi-head self-attention mechanism that allows the model to focus on different 
parts of the sentence simultaneously. The self-attention score for token xi attending to token xj  is computed as:

 
Attention(xi, xj) = softmax

(
(hiWQ)(hjWK)T

√
dk

)
 (3)

Where WQ and WK  are learned projection matrices that project the hidden states hi and hj  into query and key 
vectors, respectively, and dk  is the dimension of these vectors. The attention mechanism dynamically weighs 
the importance of different tokens in the sequence. After applying multi-head attention across the sequence, the 
model outputs contextual embeddings:

 H = {h1, h2, h3, . . . , hn} (4)

Where H ∈ Rn×d represents the matrix of contextual embeddings for the entire sequence.

Audio processing
In our approach, audio data is processed using pre-trained models such as Wav2Vec. The objective is to extract 
meaningful features from raw audio signals, which are critical for capturing the nuances of spoken content, 
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including emotional and prosodic variations. Let the raw audio signal be represented as a continuous time-
domain signal:

 A(t) = {a1, a2, a3, . . . , aT } (5)

Where A(t) is the audio waveform sampled at time t, and T  represents the total number of time steps in the 
signal. Each sample ai corresponds to the amplitude of the audio signal at time step ti. The Wav2Vec model is 
used to extract high-level audio features from raw waveforms. Initially, the input waveform is segmented into 
overlapping frames using a sliding window approach, with each frame containing a fixed number of samples. 
Let fi ∈ Rk  represent the i-th frame, where k is the window size. Thus, the audio signal can be segmented as:

 A(t) = {f1, f2, f3, . . . , fT } (6)

Where T  is the total number of frames. Each frame fi is then passed through the convolutional layers of the 
Wav2Vec model to capture local features. The output of the convolutional layers, zi, represents the latent speech 
representation at frame i, given by:

 zi = ConvLayers(fi) (7)

Where zi ∈ Rd, and d is the dimensionality of the latent feature space. These features capture both phonetic and 
prosodic information from the audio frames. Wav2Vec employs a multi-layer transformer architecture to learn 
contextualized representations from the latent features zi. For each frame i, the transformer processes the latent 
feature zi along with its neighbouring frames to capture temporal dependencies. Let H = {h1, h2, . . . , hN } 
represent the sequence of hidden states from the transformer:

 hi = TransformerLayer(zi, zi−1, . . . , zi+k) (8)

Where each hi ∈ Rd encodes the contextual information for frame i, considering both past and future frames 
within a context window of size k. The self-attention mechanism in the transformer computes attention scores 
between different frames to determine the contribution of each frame to the contextual representation. For two 
frames i and j, the attention score is computed as:

 
Attention(i, j) = softmax

(
(hiWQ)(hjWK)T

√
dk

)
 (9)

Where WQ and WK  are learnable projection matrices for the query and key vectors, and dk  is the dimension of 
these vectors. The attention mechanism dynamically weighs the importance of different frames based on their 
relevance to the target frame. The output from the transformer’s final layer is a sequence of contextualized audio 
embeddings:

 H ′ = {h′
1, h′

2, . . . , h′
N } (10)

Where H ′ ∈ RN×d represents the audio embeddings that capture both local frame-level features and long-
range temporal dependencies. These embeddings are then passed to the downstream tasks, such as emotion and 
cause extraction, allowing the model to integrate the audio modality effectively with other modalities like text 
and video.

Scientific Reports |        (2025) 15:19372 7| https://doi.org/10.1038/s41598-025-01221-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 1. Multimodal feature extraction for text, audio, and video.

 

Video processing
To extract meaningful visual features from video frames, we utilize ViTs. These transformers operate on image 
patches, processing temporal and spatial relationships within the video to capture both frame-wise and sequence-
based information. Let the video be represented as a sequence of frames:

 V = {F1, F2, . . . , FT } (11)

Where Fi is the i-th video frame, and T  is the total number of frames. Each frame Fi ∈ RH×W ×C  represents 
an image with height H , width W , and C  color channels. Each video frame Fi is divided into non-overlapping 
patches of fixed size p × p, yielding a sequence of image patches:

 Fi = {p1, p2, . . . , pk} (12)

Where pj ∈ Rp×p×C  represents the j-th patch, and k = H×W
p2  is the total number of patches per frame. These 

patches are then flattened into 1D vectors, producing patch embeddings:

 ej = Flatten(pj) (13)

Where ej ∈ Rp2×C  represents the flattened patch embedding. The patch embeddings for each frame Fi can be 
concatenated to form a sequence of embeddings:

 Ei = {e1, e2, . . . , ek} (14)

Where Ei ∈ Rk×(p2×C). These embeddings are then augmented with positional encodings to retain spatial 
information before being fed into the ViT.

The input to the ViT can be expressed as:

 XV iT = Ei + P  (15)
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Where P  represents the positional encoding matrix. The Vision Transformer employs a self-attention mechanism 
similar to that of text transformers, allowing it to learn relationships between different patches in a frame as well 
as across frames in a video sequence as depicted in Figure 2. The output of the ViT for frame i can be denoted as:

 Hi
V iT = ViT(XV iT ) (16)

Where Hi
V iT ∈ Rk×d represents the contextualized patch embeddings. In Algorithm  1 multimodal feature 

extraction for text, audio and video is summarized.

Feature fusion using transformers
Feature fusion is a pivotal process in multi-modal learning, aimed at effectively combining diverse feature sets 
to enhance the model’s overall performance. Transformers, with their robust self-attention and cross-attention 
mechanisms, excel in capturing complex dependencies both within individual feature sets and across different 
modalities. This section elaborates on a novel approach to feature fusion utilizing these attention mechanisms.

Input feature representation
Let FT ∈ Rn1×d1 , FA ∈ Rn2×d2 , and FV ∈ Rn3×d3  represent the text, audio, and video feature sets, 
respectively. Here, n1, n2, and n3 denote the number of feature vectors, while d1, d2, and d3 indicate their 

Fig. 2. Multimedia feature extraction.
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respective dimensions. The goal of feature fusion is to generate a unified representation Ffused ∈ Rn×d, where 
n = n1 + n2 + n3 and d is the selected dimensionality for the fused representation.

To achieve this, we first project the feature sets into a common-dimensional space. Let WT ∈ Rd1×d, 
WA ∈ Rd2×d, and WV ∈ Rd3×d be the projection matrices. The projected features are computed as follows:

 F′
T = FT WT , F′

A = FAWA, F′
V = FV WV  (17)

Where F′
T ∈ Rn1×d, F′

A ∈ Rn2×d, and F′
V ∈ Rn3×d represent the transformed feature sets.

Self-attention mechanism
The self-attention mechanism is fundamental in transformers, allowing the model to weigh the importance of 
different feature vectors within the same modality. Given a query matrix Q, a key matrix K, and a value matrix 
V derived from the same set of features, the attention scores are computed as follows:

 
ASelf = softmax

(
QK⊤
√

d

)
 (18)

Where A ∈ Rn×n is the attention matrix, and d is the dimension of the features used for scaling as shown in 
Figure 3. The output of the self-attention layer is then obtained by:

 Oself = AV (19)

This mechanism enables the model to capture relationships and dependencies among different features in the 
same modality, thus enhancing the representational power of the feature set.

Cross-attention for inter-modal fusion
In addition to self-attention, cross-attention can be employed to fuse features from different modalities. For 
instance, let Q be derived from the text features F′

T  while K and V are derived from the audio features F′
A:

Fig. 3. Self attention.
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Across = softmax

(
QK⊤
√

d

)
 (20)

The output of the cross-attention layer is given by:

 Ocross = AcrossV (21)

In this case, the model learns how to align the textual features with the audio features, allowing for a better 
representation of the underlying relationships across modalities as shown in Figure 4. This process can be 
similarly applied for audio and video, or text and video pairs, creating a rich, interconnected representation.

Feature aggregation
To aggregate the outputs from both self-attention and cross-attention, we concatenate the results:

 Ocombined = concat(Oself, Ocross) (22)

This combined output is then passed through a feed-forward neural network (FFN):

 Ffused = LayerNorm (Ocombined + FFN(Ocombined)) (23)

The FFN is defined as follows:

 FFN(X) = ReLU(XW1 + b1)W2 + b2 (24)

Where W1 ∈ Rd×dhidden  and W2 ∈ Rdhidden×d are the weights of the FFN, and b1 and b2 are the bias terms. 
This structure allows for the learned representations to be fine-tuned further, ensuring that the combined 
features are both coherent and informative for downstream tasks. Through these mechanisms, the proposed 
approach effectively captures both intra-modal dependencies via self-attention and inter-modal relationships 

Fig. 4. Cross attention.

 

Scientific Reports |        (2025) 15:19372 11| https://doi.org/10.1038/s41598-025-01221-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


through cross-attention, thereby enriching the fused feature representation for improved performance in multi-
modal tasks.

Emotion–cause pair extraction with graph attention networks
Emotion–cause pair extraction is a key task in understanding the underlying triggers of emotions. This task is 
particularly challenging when dealing with multi-modal data (e.g., text, audio, video). To tackle this complexity, 
GATs can be employed to capture relationships between different segments of input data. GATs can model 
dependencies between nodes in a graph, using an attention mechanism to weigh the relevance of connections 
between nodes. In this subsection, we describe the use of GATs for modelling interactions between multi-modal 
data segments and how these interactions can help extract emotion–cause pairs. We have used the node stability 
assumption for embedding without proofing it, the formal proof of it can be found in the Annexure of the paper 
(Lemma 2, GAT Node Embedding Stability). We have also assumed that the attention scores are normalized 
which is proved in the Annexure of the paper (Lemma 3, Attention Score Normalization).

Graph construction
After fusing multi-modal features (combining text, audio, and video data), we construct a graph to represent 
relationships between these features. In this graph, nodes correspond to different segments of the input, such as 
words in text, frames in video, or segments of audio. The edges represent relationships between these segments, 
such as syntactic dependencies, temporal proximity, or semantic similarity. Let the input multi-modal features 
be represented as:

 X = {x1, x2, . . . , xn}, (25)

where xi is the feature vector corresponding to the i-th segment of input data. These features are derived from 
text, audio, and video modalities.
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Algorithm 2. Feature fusion using transformers.

The input data is represented as a graph G = (V, E), where V = {v1, v2, . . . , vn} are the nodes, and 
E ⊆ V × V  are the edges between nodes. The adjacency matrix A encodes the edges:

 
Aij =

{ 1 if there is an edge between vi and vj ,
0 otherwise.  (26)

The graph captures both temporal and syntactic relationships across modalities.
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GATs for emotion–cause pairing
Once the graph is constructed, GATs are used to model the interactions between different segments. Each node 
represents a candidate for either an emotion or a cause. The attention mechanism in GATs allows the model to 
focus on the most important connections between nodes, learning which nodes (i.e., emotions and causes) are 
related. For each node vi, the feature vector hi is updated based on its neighbors vj . The attention score αij  
between node vi and its neighbor vj  is computed as:

 
αij =

exp
(
LeakyReLU

(
a⊤ [Whi ∥ Whj ]

))
∑

k∈N (i) exp (LeakyReLU (a⊤ [Whi ∥ Whk]))
, (27)

Where a is a learnable attention vector, W is a learnable weight matrix, and [· ∥ ·] represents concatenation. 
The softmax function ensures that attention scores αij  are normalized across all neighbours of the node vi. 
The node’s feature vector h′

i is updated by aggregating its neighbours’ features, weighted by the attention scores:

 

h′
i = σ


 ∑

j∈N (i)

αijWhj


 , (28)

Where σ(·) is a non-linear activation function, such as ReLU.

Emotion–cause relationship extraction
The attention mechanism in GATs is used to calculate the relevance of each node in the graph to potential 
emotions or causes. Let vi represent an emotion node and vj  represent a cause node. If the attention score αij  is 
above a certain threshold τ , the pair (vi, vj) is considered an emotion–cause pair:

 (e, c) = {(vi, vj) | αij > τ}, (29)

Where τ  is the threshold for significant attention scores. The relationships may span across different modalities. 
For example, an emotion detected from the text may be caused by an event captured in a video. GATs model 
these cross-modal relationships by allowing edges between nodes representing different modalities. GATs enable 
the incorporation of both temporal and syntactic relationships. For example, in video data, the cause of an 
emotion may occur several frames before the emotion is expressed. Similarly, in text, syntactic dependencies can 
be modelled between words. The adjacency matrix A can thus be modified to account for these relationships:

 
Aij =

{ 1 if nodes vi, vjtemporally/ syntactically related,
0 otherwise.  (30)

By constructing a graph of multi-modal input data and using GATs, we can effectively model relationships 
between segments and identify emotion–cause pairs. The attention mechanism in GATs allows selective focus 
on the most important connections, leading to accurate emotion–cause pair extraction. Incorporating both 
temporal and syntactic relationships allows for a comprehensive understanding of emotion–cause dependencies.
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Algorithm 3. Emotion–cause pair extraction using GATs.

Transformer and GAT Hybrid for emotion–cause detection
The integration of Transformer architectures with GATs provides a powerful framework for detecting emotion–
cause pairs within multi-modal data. This hybrid approach leverages the strengths of both architectures: the 
global context understanding of Transformers and the localized relational modelling of GATs. In this section, 
we outline how this combination can be effectively utilized for emotion–cause detection, focusing on the 
mathematical formulations involved in both components. Transformers utilize self-attention mechanisms to 
model dependencies between input tokens, allowing for the capture of contextual information regardless of 
their positions. Given a sequence of input embeddings E = {e1, e2, . . . , en}, the self-attention mechanism 
computes the attention scores A as follows:

 

Aij =
exp

(
QiK⊤

j√
dk

)

∑n

k=1 exp
(

QiK⊤
k√

dk

) , (31)

Where Qi, Kj , and Vj  represent the query, key, and value embeddings for the i-th and j-th tokens respectively, 
and dk  is the dimension of the key vectors. The output of the self-attention mechanism for each input embedding 
can be calculated as:

 
Outputi =

n∑
j=1

AijVj . (32)
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This mechanism allows the Transformer to focus on relevant tokens within the input sequence, which is crucial 
for understanding emotions in context. In our hybrid architecture, after obtaining the contextual embeddings 
from the Transformer, we can construct a graph similar to the previous sections. The transformed embeddings 
H = {h1, h2, . . . , hn} from the Transformer are utilized as the initial node features for GAT processing. 
Each node vi in the graph corresponds to a transformed embedding hi, which is then updated based on the 
relationships defined by the graph structure. The attention scores αij  between nodes vi and vj  can be computed 
using the updated feature vectors h′

i and h′
j :

 
αij =

exp
(
LeakyReLU

(
a⊤ [

Wh′
i ∥ Wh′

j

]))
∑

k∈N (i) exp (LeakyReLU (a⊤ [Wh′
i ∥ Wh′

k]))
. (33)

This formula integrates the learned representations from the Transformer into the GAT framework, allowing the 
model to focus on the most relevant interactions between segments.

Algorithm 4. Transformer and GAT hybrid for emotion–cause detection.

Joint training for emotion–cause detection
To optimize the detection of emotion–cause pairs, we employ a joint training strategy. The overall loss L can be 
formulated as a combination of two losses: the loss from the Transformer and the GAT loss, given by:

 L = Ltransformer + λLGAT, (34)

Where λ is a hyperparameter that balances the contributions of both components. The Transformer loss 
Ltransformer can be derived from cross-entropy based on the predicted emotional states, while the GAT loss 
LGAT can be based on the accuracy of the detected emotion–cause pairs.
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The emotion–cause relationship extraction follows a similar approach to that described previously. Given the 
output of the GAT, if the attention score αij  exceeds a threshold τ , the pairs can be identified:

 (e, c) = {(vi, vj) | αij > τ}. (35)

This framework allows for a robust model capable of processing complex dependencies across different 
modalities, ultimately improving the performance of emotion–cause pair detection. By integrating Transformers 
with GATs, we enhance the capability of emotion–cause detection systems to leverage both global contextual 
relationships and local node interactions. This hybrid model facilitates a deeper understanding of how emotions 
are triggered by various causes, making it an effective solution for multi-modal emotion analysis.

Algorithm 5. Combining outputs using attention mechanism.

Combining outputs using attention mechanism
In our proposed hybrid framework, we integrate the outputs from the Transformer and GAT using a final 
attention mechanism. This mechanism dynamically assigns weights to the outputs from both components, 
allowing the model to prioritize the most relevant information for emotion–cause detection. The combined 
output Hcombined is defined as follows:

 Hcombined = Attention(Htransformer, HGAT) (36)

In the above equation, we have assumed the correctness and optimality of weighted output can be seen from 
Lemma 4 and 5 of Annexure. To compute the combined representation, we first calculate the attention scores αi 
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for each component’s output. The scores reflect the relevance of the i-th output from the Transformer concerning 
the GAT output:

 
αi =

exp
(
score(Hi

transformer, HGAT)
)

∑n

j=1 exp
(
score(Hj

transformer, HGAT)
)  (37)

Where the scoring function score(·) can be defined as the dot product between the i-th Transformer output and 
the GAT output, expressed as:

 score(Hi
transformer, HGAT) = Hi

transformer · HGAT (38)

Using these attention scores, we can weight the outputs of both the Transformer and GAT as follows:

 
Hcombined =

n∑
i=1

αiH
i
transformer +

n∑
j=1

(1 − αj)Hj
GAT (39)

This formulation ensures that Hcombined captures the most pertinent features from both modalities, enhancing 
the model’s capacity to identify emotion–cause pairs effectively.

Hierarchical structure
Incorporating a hierarchical structure into our framework further enriches the output combination process. This 
structure enables independent processing of the Transformer and GAT outputs before merging them. We have 
assumed that emotion causes a pair to converge proof can be seen in (Lemma 10, Convergence of emotion–cause 
Detection), similarly, the Uniqueness of the emotion pair is assumed (Lemma 8, Uniqueness of emotion–cause 
Pair extraction). We define the hierarchical processing as follows:

 1. **Independent Processing**: Each output is passed through separate feed-forward layers, which can be de-
fined mathematically as:

 Hprocessed
transformer = σ(WtransformerHtransformer + btransformer)  (40)

 Hprocessed
GAT = σ(WGATHGAT + bGAT)  (41)

 Where W  and b are the weights and biases for each layer, and σ is an activation function such as ReLU.

 2. **Merging**: After processing, the outputs are combined using the attention mechanism:

 Hcombined = Attention(Hprocessed
transformer, Hprocessed

GAT ) (42)

 By adopting both the attention mechanism and a hierarchical structure, our model becomes increasingly robust, 
effectively integrating the global contextual information from the Transformer with the localized relational 
insights provided by the GAT.

The figure 5 represents a hybrid architecture for emotion cause extraction, combining a Transformer Block and 
GAT Block. The architecture is designed to capture both sequential dependencies (through the Transformer) 
and graph-based relational information (via the GAT). The bottom part of the figure represents the transformer 
Block, it processes the input sequence of emotion words (e1, e2, e3, . . . , en). Each emotion word is embedded 
into a vector space and processed through an attention mechanism, which computes interactions between word 
vectors using query, key, and value matrices.

• Attention mechanism: The attention mechanism assigns different weights to each word in the sequence 
based on their relevance to the current word, this is achieved by computing attention scores.

• Normalization and feed-forward: After calculating the attention-weighted sum of the values, the output is 
normalized and passed through a feed-forward neural network.

The Transformer block produces hidden representations (h1, h2, h3, . . . , hn) corresponding to each input 
emotion word. The GAT block is given in the middle of the figure, after obtaining the hidden representations 
from the Transformer, these are fed into the GAT block.

• Self-attention in GAT: Each node in the graph (i.e., each hidden representation h′
i) computes attention 

scores with its neighbouring nodes.
• Feature aggregation: Once the attention scores (αij) are computed, the features of neighbouring nodes are 

aggregated in a weighted sum, where the weights are given by the attention scores. This allows each node to 
incorporate information from its neighbours.
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The GAT block produces an updated set of hidden representations (h′
1, h′

2, h′
3, . . . , h′

n), which capture both 
the node features and their relational information from the graph structure. Finally, the top section of the figure 
shows Joint Loss Calculation, the architecture employs a joint loss function that combines the losses from both 
the Transformer block (LTransformer) and the GAT block (LGAT). The overall loss is a weighted sum of these 
two components, with a weight factor λ. Based on the attention coefficients (αij), pairs of emotion terms (ei, cj) 
are extracted if their attention weight exceeds a predefined threshold (τ).

Fig. 5. Emotion cause extraction.
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In summary, the proposed hybrid framework for emotion–cause detection combines Transformers and 
GATs to enhance the detection of emotion–cause pairs in multi-modal data. The integration of these models 
allows for leveraging both global contextual relationships and local node interactions, improving the system’s 
performance in complex multi-modal emotion analysis tasks. The framework utilizes a joint training strategy 
that combines the losses from both the Transformer and GAT components. A hyperparameter is employed 
to balance the contributions of these two losses. The Transformer loss is derived from cross-entropy based on 
the predicted emotional states, while the GAT loss evaluates the accuracy of detected emotion–cause pairs. 
This approach ensures that the model is not only learning to identify emotions but also effectively establishing 
relationships between emotions and their causes. emotion–cause relationship extraction is achieved by analyzing 
attention scores from the GAT output. If the attention score exceeds a specific threshold, the corresponding 
pairs are identified as emotion–cause pairs. This method provides a systematic approach to extracting relevant 
pairs, allowing the model to handle complex dependencies and improve its accuracy in identifying how 
emotions are triggered by specific causes. An essential part of this hybrid model is the attention mechanism 
used to combine outputs from the Transformer and GAT components. The attention mechanism dynamically 
assigns weights to outputs from both models, prioritizing the most relevant information for emotion–cause 
detection. The combined output is computed through an attention-based weighting process, which considers 
the relevance of each component’s outputs. This weighted combination enhances the model’s ability to detect 
emotion–cause pairs effectively. The proposed framework also incorporates a hierarchical structure, enriching 
the output combination process. The hierarchical processing involves independently processing outputs from 
the Transformer and GAT through separate feed-forward layers. These processed outputs are then merged using 
the attention mechanism, resulting in a robust final output that integrates both global and local information. The 
model’s hierarchical structure allows for independent processing of the Transformer and GAT outputs before 
merging. Each output is passed through feed-forward layers, applying activation functions to produce processed 
representations. The merging process uses the attention mechanism to combine the independently processed 
outputs, strengthening the model’s capacity to integrate global contextual information from the Transformer 
with the localized relational insights from the GAT. The figure illustrating the architecture shows how the model 
processes the input sequence of emotion words through the Transformer Block. This block captures sequential 
dependencies using an attention mechanism that computes interactions between word vectors using query, key, 
and value matrices. The attention mechanism assigns weights to words based on their relevance, normalizes 
the output, and processes it through a feed-forward neural network, resulting in hidden representations for 
each input word. The GAT Block takes the hidden representations from the Transformer Block and applies 
self-attention to compute scores with neighbouring nodes. It aggregates features of neighbouring nodes using 
a weighted sum where the weights are derived from attention scores. This aggregation allows each node to 
incorporate relational information from the graph structure, enhancing the representation of node features. The 
joint loss calculation in the architecture uses a combination of the Transformer and GAT losses. The overall loss 
is a weighted sum of these components, governed by a weighting factor. The architecture extracts emotion–cause 
pairs based on attention coefficients, selecting pairs whose attention weights exceed a predefined threshold. This 
method ensures that the model effectively identifies relevant emotion–cause pairs, contributing to a deeper 
understanding of how emotions are influenced by various causes. The hybrid model’s design is particularly 
well-suited for multi-modal emotion analysis, offering a versatile and powerful approach to detecting complex 
emotion–cause relationships. By combining the strengths of Transformers and GATs, the model achieves a robust 
balance between capturing sequential dependencies and leveraging relational insights, leading to improved 
performance in identifying emotion–cause pairs across different modalities.

Results and performance evaluation
This section presents the overall result and performance of the proposed system and compares it with the state 
of the art. Section “Datasets” discusses the datasets used in this study and the data distribution. The second 
Section “Performance metrics” provides evaluation metrics for the assessment of results. The third Section 
“Baseline” provides a baseline for the evaluation of the evaluations. The results are provided in two subsections, 
emotion detection experimental results are presented in Section “Emotion detection results discussion and SOA 
comparison” and for cause pair extraction results are given in Section “Analysis of confusion matrices”. A more 
detailed analysis of the result is given in Section “Emotion cause pair extraction results” which is a confusion 
matrix, while the ablation study is presented in Section “Ablation study”.

Datasets
Our experiments utilized two benchmark datasets for emotion recognition: the Multimodal EmotionLines 
Dataset (MELD)4 and the Interactive Emotional Dyadic Motion Capture Database (IEMOCAP)46. MELD 
(Multimodal EmotionLines Dataset), consists of conversations from the TV show Friends, annotated with 
emotions in multiple modalities (text, audio, and visual). This dataset not only provides a rich resource for 
training and evaluating multimodal emotion recognition systems but also highlights the importance of contextual 
understanding in emotional analysis. The second dataset is CMU-MOSEI (Multimodal Opinion Sentiment 
and Emotion Intensity), which offers a diverse range of sentences annotated for sentiment and emotion across 
different modalities. MELD consists of 13,707 conversation clips, where each clip is annotated with one of six 
emotion labels: joy, sadness, fear, anger, surprise, and disgust. This dataset has been widely used in multimodal 
emotion recognition tasks due to its large size and inclusion of various emotions. On the other hand, IEMOCAP 
contains 7,532 samples, each annotated with one of six emotion categories: happiness, sadness, anger, neutral, 
excitement, and frustration. This dataset focuses on dyadic interactions and is specifically designed for emotion 
recognition in human dialogue. The dataset is split into 80/20 training and testing, having 1506 and 2741 for 
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testing on IEMOCAP and MELD respectively. Figure 6 shows the distribution of IEMOCAP and MELD for 
different emotion classes.

We employed two additional datasets for cause-effect pair extraction tasks: ConvECPE and ECF. The ECF 
dataset contains 151 dialogues comprising 7,433 utterances, making it a valuable resource for exploring cause-
effect relations in conversational data.

Performance metrics
The performance of our model is evaluated using two primary metrics: accuracy (ACC) and weighted F1-
score (WF1) for the Multimodal Emotion Recognition Classification (MERC) task, which were also employed 
by previous studies18,17,21,23. In particular, WF1 is used as a more balanced evaluation metric to account for 
class imbalance. The WF1 score is computed by weighting the F1 scores of individual classes according to the 
proportion of samples in each class. The formula used to compute the WF1 is as follows:

 
W F 1 =

n∑
i=1

(class counti

total count
× F 1i

)
 (43)

In this equation, F 1i represents the F1 score for class i, class counti is the number of instances in class i, 
total count refers to the total number of instances across all classes, and n is the number of classes. For the 
Emotion Cause Pair Extraction (ECPE) task on the ECF and ConvECPE datasets, we employ precision (P), recall 
(R), and F1-score as the evaluation metrics. Precision measures the correctness of predictions, recall measures 
how well the model identifies all relevant instances, and the F1-score is the harmonic mean of precision and 
recall, balancing both metrics.

Baseline
In this study, we benchmark our proposed method, MultiCauseNet, against several prominent approaches in 
emotion recognition, as shown in Table 2. These baseline methods incorporate a variety of architectures and 
techniques, each aiming to improve the accuracy of emotion detection in multimodal contexts. The method 
DialogueRNN18 employs a recurrent neural network architecture that effectively captures the sequential 
dynamics of dialogue. This approach yields competitive performance across both the IEMOCAP and MELD 
datasets. In contrast, DialogueGCN17 utilizes graph convolutional networks to model the interrelations among 
dialogue turns, showing notable results, especially in the recognition of emotions within the IEMOCAP dataset. 
IterativeERC20 introduces a novel iterative method for emotion recognition, which refines its predictions 
through multiple iterations, demonstrating effectiveness in identifying Happy and Sad emotions. Another 
approach, QMNN21, integrates quantum-inspired techniques for emotion detection across multiple modalities, 
although it does not outperform other methods in various emotional categories.

Fig. 6. IEMOCAP Vs. MELD.
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MMGCN19 employs a multimodal graph convolutional network framework, which enhances recognition 
capabilities for emotions such as Sadness and Excitement within the IEMOCAP dataset. Similarly, MM-DFN22 
achieves impressive scores in identifying Sad and Frustrated emotions, showcasing its ability to address complex 
emotional expressions effectively. The model MVN23 adopts a multi-view approach to extract diverse emotional 
signals, yielding satisfactory performance across different emotional categories. On the other hand, UniMSE24 
focuses on a unified multimodal self-supervised learning strategy, although its results are not comprehensive 
across all emotion classes. EmoCaps2 stands out by emphasizing the detection of nuanced emotional expressions, 
achieving significant scores, particularly in the Happy and Sad categories. The method GA2MIF25 enhances 
emotion recognition by leveraging both facial and contextual information, while MALN26 excels in recognizing 
multiple emotions, especially in the Frustrated class. Lastly, MultiEMO27 offers an advanced approach that 
performs exceptionally well in detecting Sad emotions, positioning it as a strong competitor in the field. Each of 
these methods contributes to the broader landscape of emotion recognition and serves as a valuable benchmark 
against which MultiCauseNet is assessed. Our comparative analysis indicates that, while many methods perform 
commendably, MultiCauseNet consistently surpasses them, particularly in recognizing challenging emotional 
states.

Emotion detection results discussion and SOA comparison
Table 2 presents a comprehensive comparison of various methods for emotion recognition on the IEMOCAP 
and MELD datasets. This table details the performance across several emotional categories, including Neutral, 
Happy, Sad, Angry, Excited, Frustrated, Surprise, Fear, and Disgust, along with the overall WF1. This format 
allows for a nuanced assessment of each method’s effectiveness. In the IEMOCAP dataset, our proposed model, 
MultiCauseNet, stands out with the highest WF1 score of 73.02, clearly outperforming all other methods. This 
performance underscores its strong capability to capture the complex emotional nuances present in the dialogue. 
For the Neutral category, MultiCauseNet achieves a score of 70.51, slightly edging out GA2MIF, which scores 
70.38. This indicates MultiCauseNet’s ability to accurately identify neutral emotional expressions, which are often 
challenging to discern. In the Happy category, MultiCauseNet excels with a score of 74.51, while the second-best 
model, EmoCaps, attains 70.91. This reflects MultiCauseNet’s effectiveness in recognizing positive emotional 
expressions. Regarding Sadness, MultiEMO leads with an impressive 85.49, but MultiCauseNet closely follows 
with 83.21, showcasing its strong competency in identifying sadness, a critical emotional state in dialogues. 
For the Angry category, MultiCauseNet records a score of 71.61, demonstrating robust performance alongside 
other leading models. In terms of Excited expressions, MultiCauseNet’s score of 77.52 is competitive, though 
EmoCaps reaches the highest at 78.41, indicating a potential area for future enhancement. In the Frustrated 
category, MultiCauseNet leads with 71.95, reflecting its adeptness at recognizing more nuanced emotional 

Dataset Method Neutral Happy Sad Angry Excited Frustrated Surprise Fear Disgust WF1

IEMOCAP

DialogueRNN18 59.91 32.83 76.20 64.21 71.83 60.94 - - - 55.43

DialogueGCN17 56.76 50.87 75.76 60.26 71.71 60.04 – – – 56.41

IterativeERC20 63.31 52.17 75.19 62.45 71.23 58.92 – – – 57.42

QMNN21 54.29 38.71 67.30 61.58 66.71 64.19 – – – 53.14

MMGCN19 63.73 41.34 77.67 67.00 73.33 61.32 – – – 59.11

MM-DFN22 65.42 43.22 79.98 71.77 73.56 68.33 – – – 62.56

MVN23 63.88 57.75 74.30 66.96 71.50 65.21 – – – 61.14

UniMSE24 – – – – – – – – – –

EmoCaps2 65.48 70.91 84.06 67.99 78.41 64.76 – – – 70.15

GA2MIF25 70.38 45.15 83.50 71.29 74.99 65.49 – – – 67.46

MALN26 65.10 54.50 80.80 70.10 78.00 70.40 – – – 68.01

MultiEMO27 66.08 64.77 85.49 71.88 77.31 70.10 – – – 71.59

MultiCauseNet [Our] 70.51 74.51 83.21 71.61 77.52 71.95 – – – 73.02

MELD

DialogueRNN18 – 55.51 25.33 46.76 – – 48.59 2.00 10.33 41.14

DialogueGCN17 – 52.95 26.32 42.03 – – 46.37 1.98 12.37 40.67

IterativeERC20 – 55.95 21.62 49.88 – – 52.65 5.31 21.24 41.78

QMNN21 – 53.18 15.50 42.17 – – 51.76 1.00 – 39.33

MM-DFN22 – 54.24 53.78 47.82 – – – – – 35.95

MVN23 – 52.44 20.82 44.55 – – 53.18 12.70 23.50 38.56

UniMSE24 – – 43.52 58.54 – – 62.19 1.03 - 40.90

EmoCaps2 – 56.90 43.52 56.54 – – 62.19 3.03 15.65 42.87

GA2MIF25 – 52.10 28.18 49.52 – – 48.08 – – 39.89

MALN26 – 65.55 41.00 55.00 – – 59.60 23.20 20.33 49.62

MultiEMO27 – 63.15 39.51 56.41 – – 59.98 30.67 42.34 47.08

MultiCauseNet [Our] – 66.98 51.29 59.41 – – 63.21 31.32 35.43 53.67

Table 2. Performance comparison on IEMOCAP and MELD datasets. Significant values are in bold.
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expressions. Other methods, including MultiEMO and MALN, also exhibit commendable performance across 
various emotional classes. MultiEMO achieves a WF1 score of 72.96, excelling particularly in the Sad category, 
while MALN demonstrates strong results, especially in the Frustrated class, with a WF1 of 69.80.

MultiCauseNet is also evaluated on well known MELD dataset, MultiCauseNet attains a high WF1 score 
of 53.67, marking an advancement over prior methods. For example, MultiEMO scores 47.08, and MALN 
achieves 49.62, highlighting the clear improvement offered by MultiCauseNet. In the Neutral category, 
it achieves the highest score of 66.98, surpassing both MALN at 65.55 and MultiEMO at 63.15. This result 
underscores its effectiveness in recognizing neutral expressions in multimodal dialogues. In the Sad category, 
MultiCauseNet scores 51.29, closely following MM-DFN, which records 53.78. This performance illustrates its 
capability to discern sadness effectively within dialogues. For the Angry class, MultiCauseNet achieves a score 
of 59.41, outpacing earlier methods such as UniMSE and MALN, which reflects its robustness in detecting 
anger. Additionally, MultiCauseNet excels in the Surprise class with a score of 63.21 and performs adequately 
in the Fear category, scoring 31.32. Overall, the results indicate that MultiCauseNet delivers improvements in 
the weighted F1 score over existing methods across both datasets. The improved performance is attributed to 
its capability to capture the intricacies of different emotions within multimodal contexts, leading to enhanced 
recognition across a variety of emotional classes.

The proposed algorithm works well on both IEMOCAP and MELD datasets, however, it would be rational 
to see the performance gap on these datasets. Figure 7 illustrates a comparison of emotion classification scores 
between the IEMOCAP and MELD datasets across six emotion classes: Neutral, Happy, Sad, Angry, Excited, 
and Frustrated. The performance is measured in percentages, with IEMOCAP scores represented in blue and 
MELD scores in red. Starting with the Neutral emotion, MultiCauseNet performs better on MELD as compared 
to IEMOCAP, achieving a score close to 80%, while IEMOCAP lags with around 60%. This suggests that 
MultiCauseNet works better on MELD in terms of Neutral emotion. A similar trend can be seen for happy 
emotions. For the Sad emotion, the trend reverses, and MultiCauseNet works with IEMOCAP significantly 
better as compared to MELD. On IEMOCAP score of 80% is achieved while for MELD it is just around 5%, this 
is the highest performance gap of 75% for all attained scores. Similarly, for the Angry emotion, MultiCauseNet 
demonstrates superior performance on IEMOCAP, scoring approximately 70%, compared to MELD’s much 
lower score. This highlights IEMOCAP’s strength in identifying anger. In terms of the Excited emotion, 
IEMOCAP again shows stronger performance, while MELD lags, however, the performance gap in this case is 
much lower than sad and angry. Finally, for the Frustrated emotion, both datasets show similar performance, with 
scores close to 60%, indicating that they are equally effective at detecting frustration. Overall, the comparison 
reveals that MultiCauseNet excels on IEMOCAP in detecting Sad, Angry, and Excited emotions, while MELD 
performance is better in recognizing Neutral and Happy emotions. For the Frustrated emotion, both datasets 
exhibit comparable performance.

Analysis of confusion matrices
The confusion matrices visualize the performance of a classification model by showing how well the predicted 
labels match the true labels. The rows of the confusion matrix represent the true labels, while the columns 
represent the predicted labels. Ideally, the diagonal elements (where the predicted labels match the true 

Fig. 7. Performance comparison on IEMOCAP and MELD.
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labels) should have the highest values, indicating correct predictions, while off-diagonal elements represent 
misclassifications.

IEMOCAP confusion matrix
The IEMOCAP dataset confusion matrix (Fig. 8 Left) shows the performance of the classifier on six emotions: 
Neutral, Happiness, Sadness, Anger, Excitement, and Frustration.

• Neutral: The model correctly classified 205 instances of the “Neutral” emotion, but it also confused 40 in-
stances as “Happiness” and 25 instances as “Sadness”. These errors are likely due to overlapping emotional 
expressions between “Neutral” and other emotions.

• Happiness: The model correctly classified 376 instances as “Happiness”, but it misclassified 50 instances as 
“Sadness” and 30 as “Anger”, indicating that the model may struggle with distinguishing happiness from other 
emotions.

• Sadness: For the “Sadness” emotion, 258 instances were classified correctly, but 30 were incorrectly classified 
as “Happiness” and 15 as “Neutral”, showing a potential challenge in distinguishing these emotions.

• Anger: The model correctly classified 164 instances of “Anger”, though 20 were misclassified as “Happiness” 
and 15 as “Sadness”. This highlights some overlap between expressions of anger and other emotions.

• Excitement: The model classified 76 instances of “Excitement” correctly, but misclassified several instances, 
including 10 each as “Happiness” and “Anger”.

• Frustration: The model struggled the most with “Frustration”, correctly classifying only 51 instances and 
confusing it with other emotions such as “Happiness” and “Anger”.

MELD confusion matrix
The MELD dataset confusion matrix (Fig. 8 right) highlights performance on six emotions: Joy, Sadness, Anger, 
Surprise, Fear, and Disgust.

• Joy: The model correctly classified 429 instances of “Joy”, but 71 were misclassified as “Fear” and 50 as “Sur-
prise”, showing some overlap between joy and other positive or neutral emotions.

• Sadness: “Sadness” was correctly classified 278 times, though it was confused with “Fear” (93 instances) and 
“Disgust” (60 instances), highlighting the difficulty in distinguishing between negative emotions.

• Anger: The model correctly classified 250 instances of “Anger”, though 60 were misclassified as “Surprise” and 
50 as “Fear”, reflecting some overlap in negative, high-arousal emotions.

Fig. 8. Confusion matrix.
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• Surprise: With 250 correct classifications, the model performed moderately well in detecting “Surprise”. 
However, 40 instances were misclassified as “Joy” and 40 as “Fear”, suggesting that surprise might share some 
characteristics with other emotions.

• Fear: The model classified “Fear” correctly 250 times, but misclassified many instances, particularly with 
“Sadness” (93 instances) and “Disgust” (50 instances).

• Disgust: The model had the most difficulty with “Disgust”, with only 210 correct classifications and significant 
confusion with “Fear” (50 instances) and “Anger” (30 instances).

Across both datasets, the model demonstrates strong performance in identifying certain emotions like 
“Happiness” and “Joy”. However, it struggles more with negative emotions such as “Anger”, “Fear”, and “Disgust”. 
Misclassifications likely arise due to the overlapping characteristics of these emotions.

Emotion cause pair extraction results
Table 3 presents a comprehensive comparison of various models’ performance on two prominent datasets, 
the ECF and ConvECPE datasets, concerning two tasks: Cause Recognition and Pair Extraction. The methods 
compared include MuLT47, MMGCN19, MM-DFN22, UniMSE24, GA2MIF25, and MultiCauseNet (Ours). Each 
model is evaluated across the standard metrics of Precision (P), Recall (R), and F1 score (F1), which offer 
insights into their ability to accurately detect and extract causality in the datasets. For the ECF dataset, the results 
reveal that the proposed MultiCauseNet model outperforms all previous methods across both tasks. In terms of 
Cause Recognition, MultiCauseNet achieves an impressive Precision of 63.88, Recall of 62.83, and F1 score of 
65.12. This marks a clear improvement over the next best model, GA2MIF, which records an F1 score of 57.61. 
Similarly, in the Pair Extraction task, MultiCauseNet achieves F1 score of 55.12, outperforming GA2MIF’s 51.26, 
the next closest competitor. The gains seen in Pair Extraction underscore the model’s robustness in capturing 
intricate causal relationships. On the ConvECPE dataset, MultiCauseNet continues to lead in Cause Recognition, 
achieving the highest Precision, Recall, and F1 scores at 88.92, 88.21, and 84.51, respectively. This is particularly 
notable given the challenging nature of this dataset, where prior models, such as GA2MIF, managed to achieve 
an F1 score of 78.71, significantly lower than MultiCauseNet’s performance. While GA2MIF exhibits relatively 
strong performance on Pair Extraction with a Recall of 48.59 and an F1 score of 47.40, MultiCauseNet once 
again sets the highest F1 score at 51.34, indicating that it excels at not only recognizing causes but also extracting 
causal pairs effectively. Earlier methods like MuLT47 and MMGCN19 show decent performance, particularly 
in Cause Recognition, but fall short in Pair Extraction, suggesting potential gaps in capturing relationships 
across modalities or extracting more subtle causal links. Similarly, while MM-DFN22 and UniMSE24 show 
promise in their results, especially in the ConvECPE dataset, they are consistently outperformed by GA2MIF 
and MultiCauseNet. In conclusion, the results suggest that MultiCauseNet introduces a marked improvement in 
both Cause Recognition and Pair Extraction across two challenging datasets. Its F1 scores, particularly in Pair 
Extraction, indicate that it outperforms state-of-the-art models, providing a more nuanced understanding and 
extraction of causal relationships from data.

Ablation study
In this section, we conduct a comprehensive ablation study to assess the contributions of various components 
of the proposed multimodal emotion–cause pair extraction framework. The goal is to evaluate the individual 
impact of each module, including the multimodal feature extraction techniques, graph-based representations, 
and attention mechanisms, on the overall performance of the system. The ablation experiments were carried out 
on two datasets: IEMOCAP and MELD, which consist of multimodal dialogues annotated with emotions and 
cause-effect pairs. We report the performance in terms of weighted F1-score (WF1) and accuracy (ACC) for 
both emotion recognition and cause extraction tasks.

Impact of multimodal feature extraction
The first ablation study investigates the effectiveness of integrating multimodal inputs from text, audio, and 
video. We tested the following configurations:

• Text-Only (T): Uses only the textual embeddings generated by BERT14.
• Text-Audio (T+A): Combines text features from BERT and audio features extracted by Wav2Vec15.

Methods

ECF dataset ConvECPE dataset

Cause recognition Pair extraction Cause recognition Pair extraction

P R F1 P R F1 P R F1 P R F1

MuLT47, 2019 55.19 54.21 53.29 41.32 37.55 38.12 75.15 71.43 73.05 44.61 52.59 48.74

MMGCN19, 2021 57.55 55.83 54.39 36.10 37.29 38.18 78.57 74.52 76.07 42.18 42.67 42.11

MM-DFN22, 2022 54.28 56.35 55.17 37.90 39.08 38.10 79.84 71.91 76.90 46.79 50.60 48.64

UniMSE24, 2022 56.55 57.09 56.73 44.48 54.25 49.08 80.37 73.09 75.58 44.24 49.33 46.69

GA2MIF25, 2023 57.41 59.23 57.61 47.25 55.16 51.26 81.42 75.36 78.71 46.54 48.59 47.40

MultiCauseNet [Ours] 63.88 62.83 65.12 53.27 59.10 55.12 88.92 88.21 84.51 52.51 49.44 51.34

Table 3. Results on the ECF and ConvECPE datasets.
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• Text-Video (T+V): Combines text features from BERT and video features extracted using Vision Transform-
ers (ViT)16.

• Full Model (T+V+A): Integrates text, audio, and video features.

The results are summarized in Table 4. It is evident that using only textual features yields suboptimal performance, 
particularly in cause extraction, where audio and visual cues play a significant role in understanding the nuances 
of emotional triggers. By integrating both audio and video inputs (T+V+A), the model achieves significant 
improvements, with a 16.92% increase in WF1 for IEMOCAP as compared to Text only modality and a 23.83% 
increase for MELD. This highlights the importance of leveraging multimodal data to capture the complexity of 
human emotions and their causes.

The ablation results demonstrate the synergistic effect of combining textual, audio, and visual modalities. 
Specifically, the full model (T+V+A) provides a more holistic representation of the emotional context and 
significantly improves the emotion–cause pairing process by leveraging both auditory cues (e.g., tone, pitch) and 
visual signals (e.g., facial expressions).

Effectiveness of graph-based representation
We also investigated the effect of the graph-based representation, where the system constructs a graph with 
nodes representing the features extracted from each modality and edges capturing the relationships between 
emotions and causes. The experiments compared:

• Without Graph Representation (No Graph): The system directly classifies emotion and cause-effect pairs 
without constructing the multimodal graph.

• With Graph Representation (Graph): The proposed system with a multimodal graph structure that encodes 
the interrelationships between features and emotions.

As shown in Table 5, the graph-based representation leads to significant performance gains, particularly for 
cause extraction. For example, on the IEMOCAP dataset, the WF1 for cause extraction improved by 9.85% 
when using graph-based representations. This validates the importance of capturing the dependencies between 
different emotional triggers and their corresponding causes, which are inherently multimodal.

Impact of attention mechanisms
The proposed framework leverages GATs to dynamically assign weights to nodes within the multimodal graph, 
emphasizing the most relevant features during the emotion–cause extraction process. To evaluate the importance 
of attention mechanisms, we conducted experiments by removing the GAT module:

• Without Attention (No Attn): This configuration omits the GAT and uses a standard GCN for message 
passing between nodes.

• With Attention (GAT): The full model that incorporates GAT to selectively focus on key features in the 
multimodal graph.

The results, presented in Table 6, show that the attention mechanism plays a crucial role in improving emotion 
recognition and cause extraction. By using GATs, the model achieves a 6.1% improvement in WF1 on the 

Model IEMOCAP (WF1) MELD (WF1)

Without attention (no attn) 68.82 48.03

With attention (GAT) 73.02 53.67

Table 6. Ablation results for attention mechanisms. Significant values are in bold.

 

Model IEMOCAP (WF1) MELD (WF1)

Without graph (no graph) 66.47 46.20

With graph (graph) 73.02 53.67

Table 5. Ablation results for graph-based representation. Significant values are in bold.

 

Model IEMOCAP (WF1) MELD (WF1)

Text-only (T) 62.45 43.34

Text-audio (T + A) 68.12 49.48

Text-video (T + V) 67.21 50.02

Full model (T + V + A) 73.02 53.67

Table 4. Ablation results for multimodal feature extraction. Significant values are in bold.
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IEMOCAP dataset and 11.74% improvement on MELD. This demonstrates that dynamically weighting the 
importance of different features enables the model to better capture the subtle cues that distinguish between 
emotions and their underlying causes.

Multimodal vs. unimodal analysis
Finally, we compare the performance of the full multimodal model (T+V+A) with unimodal systems that use 
only a single modality (text, audio, or video). As expected, unimodal models perform worse than the multimodal 
system, especially on tasks where emotion cues are not easily captured by a single modality. For instance, 
visual cues from facial expressions and body language, along with auditory signals, are essential for accurately 
determining the causes of emotions such as frustration or excitement.

The ablation results highlighted in Table 7 shows the advantages of using a multimodal approach for emotion 
recognition and cause extraction. Integrating text, audio, and video features, along with the graph-based 
representation and attention mechanisms, significantly improves the model’s ability to capture the intricate 
relationships between emotions and their causes. The ablation study results provide a detailed understanding 
of the contributions of each component in the proposed multimodal framework. The findings demonstrate 
that integrating multimodal features, using graph-based representations, and employing attention mechanisms 
are critical to achieving superior performance in emotion–cause pair extraction. These components work 
synergistically to capture the complexities of human emotions and their triggers, paving the way for more 
accurate and insightful emotion recognition systems.

Impact of extraction of emotion–cause pairs
This subsection evaluates the effectiveness of the proposed approach in accurately extracting emotion–cause pairs 
from multimodal dialogues. The ablation study examines how well the model identifies not only the emotions 
present in the dialogue but also the specific causes linked to these emotions. Results in Table 8 demonstrate that 
leveraging multimodal features significantly enhances the precision and recall of cause extraction, particularly 
in complex dialogues where the emotional triggers are subtle and context-dependent.

The ablation results highlighted in Table 7 show the advantages of using a multimodal approach for emotion 
recognition and cause extraction. Integrating text, audio, and video features, along with the graph-based 
representation and attention mechanisms, significantly improves the model’s ability to capture the intricate 
relationships between emotions and their causes. The ablation study results provide a detailed understanding 
of the contributions of each component in the proposed multimodal framework. The findings demonstrate 
that integrating multimodal features, using graph-based representations, and employing attention mechanisms 
are critical to achieving superior performance in emotion–cause pair extraction. These components work 
synergistically to capture the complexities of human emotions and their triggers, paving the way for more 
accurate and insightful emotion recognition systems.

Conclusions
In this paper, we introduced MultiCauseNet, a novel framework designed for the extraction of emotion–cause 
pairs from multimodal data sources, including text, audio, and video. Our approach addressed the complex 
interplay between emotions and their causes by leveraging feature extraction techniques and attention 
mechanisms, resulting in a more comprehensive understanding of emotional contexts. The proposed framework 
incorporates state-of-the-art models, such as BERT, Wav2Vec, and ViT to extract rich features from each 
modality. We constructed a multimodal graph representation that captures the intricate relationships between 
emotional triggers and their corresponding causes. By employing Graph Attention Networks GATs, we effectively 
prioritized relevant features and modelled the dynamic relationships within the data, enabling the model to 
focus on significant emotional interactions adaptively. Our experimental results demonstrated MultiCauseNet’s 
superior performance on benchmark datasets such as IEMOCAP and MELD, surpassing existing methodologies 

Model ICAP (W ECP) ICAP (WO ECP) MELD (W ECP) MELD (WO ECP)

Text-only 62.45 57.14 43.34 37.97

Audio-only 61.43 55.43 42.11 37.54

Video-only 60.11 54.89 40.54 35.14

Full model (T + V + A) 73.02 67.38 53.67 46.66

Table 8. Impact of emotion–cause pair extraction. Significant values are in bold.

 

Model IEMOCAP (WF1) MELD (WF1)

Text-only 62.45 43.34

Audio-only 61.43 42.11

Video-only 60.11 40.54

Full model (T+V+A) 73.02 53.67

Table 7. Ablation results for multimodal vs. unimodal performance. Significant values are in bold.
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in emotion–cause extraction accuracy. The integration of temporal attention mechanisms facilitated the 
alignment of multimodal features, allowing us to effectively capture emotions’ evolving nature. Furthermore, 
the hybrid architecture combining Transformers with GATs provided both global contextual understanding and 
localized relational modelling, thereby enhancing the model’s overall effectiveness.

Limitations and future directions
While this study presents a novel multimodal framework for emotion–cause pair extraction, certain limitations 
must be recognized. First, the model’s reliance on benchmark datasets like IEMOCAP and MELD may not 
fully capture the diversity of real-world scenarios. This dependency could affect the model’s ability to generalize 
effectively, especially in contexts where cultural and linguistic differences shape emotional expressions. Secondly, 
the framework’s performance is closely tied to the quality and completeness of multimodal data. Issues such as 
low-resolution images, noisy audio, or unclear text inputs could impede accurate emotion–cause pair extraction. 
Additionally, managing missing or misaligned data across modalities remains a significant challenge, potentially 
undermining the model’s robustness. Thirdly, although the temporal attention mechanism improves the 
interpretation of dynamic emotions, it may struggle with long-range dependencies in complex interactions. This 
limitation could reduce accuracy in extended dialogues where lengthy intervals separate emotions and their causes. 
Furthermore, integrating advanced models like BERT, Wav2Vec, and ViT increases computational complexity. 
High resource demands may restrict the framework’s use in environments with limited computational power, 
such as mobile or edge devices. Finally, this study primarily focuses on the technical aspects of the proposed 
method, with limited validation in practical domains like mental health or human-computer interaction. Future 
research could address these challenges by incorporating more diverse datasets, enhancing model efficiency, and 
conducting real-world evaluations to broaden the framework’s applicability.

Looking ahead, several avenues for future research can further enhance the understanding and application 
of emotion–cause pair extraction. First, the incorporation of additional modalities, such as physiological 
signals or contextual metadata, could provide deeper insights into emotional states and their underlying causes. 
Exploring more sophisticated graph structures and attention mechanisms may improve the model’s ability to 
capture complex relational dynamics and temporal dependencies. Additionally, addressing the challenges of 
data scarcity and variability across different cultural contexts will be essential for developing robust models 
that generalize well in diverse scenarios. Future work could focus on transfer learning approaches to leverage 
knowledge from well-annotated datasets and apply it to new domains with limited labelled data. Furthermore, 
real-time emotion–cause pair extraction systems could be developed for applications in dynamic environments, 
such as customer service or therapy sessions, where understanding emotional triggers is crucial. Lastly, 
incorporating user feedback mechanisms into the model can facilitate continuous learning and adaptation 
to evolving emotional expressions and contexts. Overall, these future directions aim to refine and extend the 
capabilities of multimodal emotion recognition systems, ensuring they remain relevant and effective in capturing 
the complexities of human emotions.

Data availability
Our experiments utilized two benchmark datasets for emotion recognition: the Multimodal EmotionLines 
Dataset (MELD)4 and the Interactive Emotional Dyadic Motion Capture Database (IEMOCAP)46. MELD is 
available online at https://github.com/declare-lab/MELD/ while IEMOCAP is available at  h t t p s :  / / w w w .  k a g g l e  . 
c o m / d  a t a s e  t s / s a m  u e l s a m  s u d i n n  g / i e m  o c a p - e  m o t i o n  - s p e e c  h - d a t a b a s e. We also used cause-effect pair extraction 
datasets ConvECPE https://github.com/NUSTM/MECPE and ECF  h t t p s :   /  / p a p e r s w i t h c o d  e .  c o  m / t  a  s k / e m  o t i  o n  - c 
a  u s  e - p  a i r - e x t r a c t i o n.
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