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Contemporary Mathematics

Exotic Spaltenstein Varieties

Daniele Rosso and Neil Saunders

ABSTRACT. We define a new family of algebraic varieties, called exotic Spal-
tenstein varieties. These generalise the notion of Spaltenstein varieties (which
are the partial flag analogues to classical Springer fibres) to the case of exotic
Springer fibres. We show that, for self-adjoint nilpotent endomorphisms of
order two, the top-dimensional irreducible components are in bijection with
semi-standard Young bitableaux, via constructing an explicit map. Moreover,
we are able to give a combinatorial formula for this top dimension. We con-
jecture that this description of the irreducible components holds for nilpotent
endomorphisms of arbitrary order. Finally, we mention some connections to
the Robinson-Schensted-Knuth correspondence.

1. Introduction

1.1. Classical Springer fibres and Spaltenstein Varieties. Spaltenstein
varieties are generalisations of the famous Springer fibres and can be defined for
any algebraic group. Let G be a complex reductive algebraic group and let = be any
element in the nilpotent cone N which is a singular subvariety of the Lie algebra
Lie(G). Let B be a Borel subgroup of G and let b = ) @ n be the Lie algebra of B,
where § is the Cartan subalgebra and n = [b, b]. There is a resolution of singularities
of NV, called the Springer resolution, and over each point € A its Springer fibre
can be defined as F, := {gB € G/B|grg~! € n}, which are subvarieties of the full
flag variety B := G/B.

In Type A, for G = GL,,, using the realisation of B as the variety of complete
flags of vector spaces

O=FpCF,CFCc---CF,=C"

where dim F; = i, we may identify the Springer fibre F, as the subvariety of B
stabilised by x, that is we have z(F;) C F;_1.

The geometry of these varieties is of great interest and plays a role in modern
representation theory. For example, Springer [20], showed that the top degree
cohomology of F, has an action of the symmetric group of degree n, which makes
it isomorphic to the Specht module S ’\”, where A is the Jordan type of the nilpotent
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element = and A" is the transpose partition. Moreoever, De Concini and Procesi [4]
showed that the total cohomology ring H*(F,,C) is isomorphic to a quotient of the
polynomial ring Clx, ..., z,] by a certain ideal of elementary symmetric functions,
for which there is an action of the symmetric group coming from an equivariant
surjection from the cohomology of the flag variety.

Spaltenstein varieties arise from replacing the Borel subgroup by a parabolic
subgroup P, and choosing a suitable Levi decomposition of Lie(P). Thus in type
A, for a fixed nilpotent element z and parabolic P, the Spaltenstein variety corre-
sponding to the triple (G = GL,, P, x) is defined to be:

Xp,={0=FyCF, CF,,C---CF,, =C"|
dim(F,,/Fs, ,) = o; and z(F,,) C F,, |}

i

and where (1, ..., aq) is a composition of n (that is, a sequence of non-negative
integers whose sum is n, see Definition 2.14) .

In type A, Spaltenstein [22] proved that the Springer fibres and Spaltenstein
varieties are pure dimensional - that is, all of the irreducible components have the
same dimension. Moreover, he showed that the irreducible components are in bi-
jection with semi-standard Young tableaux. Generalising De Concini and Procesi’s
results, Brundan and Ostrik [2] give a presentation for the cohomology of the Spal-
tenstein varieties, which can be viewed as an analogue of the Springer fibres sitting
inside the partial flag variety.

Outside of type A, little is known about the pure dimensionality of the Xp,
- Spaltenstein gave an example of an Xp, which is not pure dimensional for an
x € s0g. However, more recently in [12, Theorem A], Li proved that for a classical
group GG and fixed parabolic subgroup P and nilpotent element x, the Spaltenstein
varieties Xp, are pure dimensional if the Jordan type of x is an even or odd
partition - that is, of the form (1™13™s5™5 . ) or (2™24™46™s ...). By showing
that the Xp, are Lagrangian in a certain partial resolution of a Slodowy slice, he
is able to deduce further [12, Theorem C] that:

dim(Xp,) = 3(dimT*(G/P) — dim O,)

where T*(G/ P) is the cotangent bundle of G/P and O, is the nilpotent orbit of .

1.2. Kato’s Exotic Nilpotent Cone and Exotic Springer fibres. We
continue with the notation as above. The combinatorics of the Springer corre-
spondence in Type A are particularly nice in the sense that the orbits of GL,, on
the nilpotent cone are in bijection with partitions of n, which parametrise the ir-
reducible representations of its Weyl group (the symmetric group). This allowed
Spaltenstein to show that there is a surjective map from F, to std(\) (standard
Young tableaux of shape A), which implies that the irreducible components of F,
are in bijection with std(\).

For an algebraic group outside of type A, the action on the nilpotent cone of
its Lie algebra has disconnected stabilisers, which means that the Springer corre-
spondence needs the extra data of certain local systems on the nilpotent orbits, and
therefore the combinatorics becomes more complicated when trying to match with
the representations of its Weyl group.
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However, Kato’s exotic nilpotent cone 91 (see Definition 2.6 and [10]) is a vari-
ation on the Type C setting which retains some of the combinatorial features seen
in type A. In particular, the orbits of the action by the symplectic group Sp,,, on
I have connected stabilisers and are in bijection with the set Q, of bipartitions
of n, which parametrises the irreducible representations of the Weyl group of Type
C (signed permutations). This enabled the authors in [15] to define an explicit
map from the exotic Springer fibres (defined from a resolution of singularities of 91)
to standard Young bitableaux (SYB), which induced a bijection between the irre-
ducible components of the exotic Springer fibres and the set of SYB ([15, Theorem
2.12]). Ome consequence of this explicit map, was to recover Kato’s original result
that showed that the exotic Springer fibres were of pure dimension. In addition to
Kato’s results, the authors were able to further describe the geometric structure of
these fibres in low dimension, as either being projective spaces, or projectivised line
bundles over projective spaces, and also combinatorially describe when and how
the closures of these irreducible components intersected ([15, Section 8]).

Using a similar construction to Steinberg in [19], where he demonstrated that
the relative position of two Springer fibres sitting in the flag variety was determined
by the classical Robinson-Schensted correspondence, the authors further exploited
the map between the exotic Springer fibres and SYB to define an exotic Robinson-
Schensted correspondence that is a recursive bijection between pairs of SYB of the
same shape and elements of the Weyl group of type C ([16, Section 3]).

In this paper, we define exotic Spaltenstein varieties, which are the partial
flags/parabolic subgroups version of the exotic Spring fibres of Kato, and we study
their geometry. These varieties are not pure dimensional in general (see Example
2.21) but in analogy to the results of [22] and [15] we conjecture (see Conjecture
2.19) that the top dimensional irreducible components are in bijection with semi-
standard Young bitableaux, and we give a combinatorial formula for this dimension.

The main result of the paper is that we are able to prove that this is true in
the cases where the nilpotent endomorphism z is such that 2% = 0, see Theorem
2.23. We also provide some remarks about how a proof might proceed in general
(see Section 6).

Our bijection between top-dimensional components of exotic Spaltenstein va-
rieties and semi-standard Young bitableaux would give rise to an exotic Robinson-
Schensted-Knuth correspondence, which should be a generalisation of our exotic
Robinson-Schensted algorithm from [16], in a way that is analogous to the Type A
case studied in [18] (see Section 7).

Finally, we briefly make some remarks about how these results fit into the wider
context of studying varieties related to (the irreducible components of) Springer fi-
bres corresponding to nilpotent endomorphisms of a given order, or corresponding
to certain tableaux (or Young diagrams). It turns out that there are many results
related to Springer fibres corresponding to nilpotent elements of degree 2, and so our
work can be seen to be extending this area of research. While determining certain
topological properties such as smoothness of irreducible components of Springer fi-
bres and how the closures of these components intersect remain extremely difficult
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questions for these varieties, much work has been carried out for nilpotent endo-
morphisms corresponding to two-column tableaux, i.e. nilpotent endomorphisms of
degree 2. In [6], Fresse considers irreducible components corresponding to a nilpo-
tent endomorphism v of degree 2 that are fixed by the action of a standard torus
relative to a Jordan basis of u. He is able to use that result to give necessary and
sufficient conditions for the singularity of the components in that Springer fibre.
He then extends and solves the question of describing components that are fixed
by a torus to the case of nilpotent elements corresponding to hook, two-row and
two-column tableaux in [8]. Moreover, with Melnikov in [7], they are able to give a
criterion for when a component is singular in terms its Poincaré polynomial. Perrin
and Smirnov in [17] show that irreducible components of Springer fibres of types
A and D for nilpotent elements of degree 2 are normal varieties, and very recently,
Manour in [13] gives a combinatorial formula counting the number of two-column
tableaux corresponding to smooth components of a Springer fibre associated to a
degree two nilpotent element.

For nilpotent elements of degree greater than 2, there are several papers that
consider the number of Jordan blocks it has, or rows that the corresponding tableaux
possesses. Im, Lai and Wilbert in [9] gave a description for the irreducible com-
ponents of two-row Springer fibres in all classical types via cup and cap diagrams.
In an analogous setting to the two-row Springer fibres for the exotic case, Wilbert
and the second author in [21] studied exotic Springer fibres corresponding to 1-row
bipartitions and gave a cup and cap description for their irreducible components.
Finally, results for irreducible components and smoothness properties thereof, of
so-called two-column A-Springer fibres have also recently been obtained in work
of Connor, Griffin and Purohit in [5] and by Lacabanne, Vaz and Wilbert in [11]
for two-row A-Springer varieties. Thus our work in defining and studying exotic
Spaltenstein varieties fits well in the context of the existing literature and research
in this area of Springer theory.

Acknowledgments. D.R. was supported in this research by a Summer Fac-
ulty Fellowship and a Grant-in-Aid of research from Indiana University Northwest.
N.S. was supported by the London Mathematical Society’s Scheme 4 Research in
Puairs grant, ref. No. 41939.

2. Background and Notation

2.1. Symplectic Spaces and Isotropic Grassmannians. We let
N = {0,1,2,...,} be the set of nonnegative integers. All vector spaces will be
assumed to be over the field C of complex numbers. Throughout the paper, we
will have n € N and V will be a 2n-dimensional symplectic vector space, i.e. it is
equipped with a nondegenerate, skew-symmetric bilinear form (, ): V xV — C.
If W C V, we denote by W+ its perpendicular space with respect to the form (, ).

We define the symplectic group as the group of invertible linear transformations
of V preserving the form

Sp,y, = Sp(V) :={g € GL(V) | (gv, gw) = (v, w), Yv,w € V}.

DEFINITION 2.1. For 0 < k < n, we define the isotropic Grassmannian variety
of all k-dimensional isotropic subspaces of V' by

Gryo, = Gry (V) ={F CV | dim(F) =k, F C F*}.
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REMARK 2.2. Notice that Sp,,, acts transitively on Grj,,, and it follows from

[3, Prop 4.4] that Gr,t% is an irreducible projective variety of dimension k(2n —
k) — k(k2—1).

If we restrict the bilinear form to a subspace W C V| in general it might be
degenerate. So we will also need to consider degenerate skew-symmetric forms.

DEFINITION 2.3. Let W be a vector space of dimension d, with a skew-symmetric
bilinear form ( , ), possibly degenerate. Consider the radical rad{ , ) = {w €
W | (w,u) =0, Vu € W}. Then W/rad(, ) is a symplectic space with the induced
form on the quotient hence even dimensional. We say that 2r = dim (W/rad( , ))
is the rank of the bilinear form, clearly 0 < r < %.

In this case, for 0 < k < d — r, we can define the (degenerate) isotropic Grass-
mannian

Gryyy =Gy (W) ={F CW | dim(F) =k, F C F'}.
Note that for d = 2n and r = n, we recover the previous Definition 2.1.

LEMMA 2.4. The degenerate isotropic Grassmannian Gré‘z, forall0 <r < g

and 0 < k < d —r is an irreducible projective variety of dimension k(d — k)
k(k D (ke 7)(k r—1)

, with the last term being zero when k < r.

PRrROOF. We use the same idea as [14, §4.8]. Let {e1,...,eq} be a basis of W
with the property that eq,...,eq_2, is a basis of rad( , ), and such that (e;,e;) =
ditj2d—2r+1 forall 1 <4 < d—r. We embed W in a symplectic vector space W, of
dimension 2d — 2r, with basis {ej, ..., ea4_2,} and non degenerate skew-symmetric
bilinear form ( , )~ defined by (e;, €j)~ = 0itj24—2r+1 for all 1 <i < d—r. In this
way, the degenerate bilinear form on W becomes the restriction of the symplectic
form (, )~. Then the degenerate isotropic Grassmannian Gry- (W) can be identified
with a subvariety of the isotropic Grassmannian in W, more precisely

(2.1) Gri (W) = {F € Gr (W) | Fc W),

As in [14, §4.8], this is a Schubert variety in Gri- (W), i.e. the closure of a Schubert
cell. We can distinguish two cases. When k <, then (2.1) is the Schubert variety
Xiy,...ip for the index set i1 = d—-—k+1,...,i3 =d Whenr <k < d-r,
it’s the Schubert variety for the index set i1 =d—r—k+1,... i = d —2r
lk—ry1 =d—1+1,... 9 = d. In both cases, since the Schubert cell is isomorphic
to an affine space, it is irreducible and so it its closure.

To conclude the proof we just need to compute the dimensions of the Schubert
cells in the two cases. To do this, we will instead use the formulas from the proof
of [3, Prop 4.4] (it would also be possible to use [3, Prop 4.4] directly by first
translating the index set into a partition). Each index i; gives a dimension of
ij—j—#{<j|ic+1i; >2d—2r+ 1}, hence

dim X, o= (ij—j—#{<jie+i; >2d—2r+1})

=1

k+1)
i — ——
j=1

—#H{, ) |1 <l<j <k, ig+1i; >2d—2r+1}.
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When k <r,theni; =d—k+j,s0 #{({,7) |1 <L <j <k, ig+i; >2d—2r+1} =

) = @, and we get indeed that

k(k—1)
—
When k > r, thenij =d—-—r—k+jfor 1 <j<k—r,andi; =d—Fk+j for
k—r+1<j<kso#{(,j)|1<l<j<k, ig+i;>2d—2r+1} = (}) = "1
and with a short computation we get indeed that
k(k—1) n (k—=r)k—r—1)

2 2

dimXih___J- = k(d — k) —

k

dile'l’__”i = k(d — k) —

k

O
REMARK 2.5. Notice that if & = r + 1, the term W is again equal
to zero, so in the formula of Lemma 2.4, the third term can be ignored whenever
k<r+1.

2.2. Exotic Nilpotent Cone. Let V be a 2n-dimensional symplectic space
V', with symplectic group Sp,,, = Sp(V'), we identify its Lie algebra as follows

5P, = Lie(Spy,) = {z € End(V) | (xv,w) + (v,2w) =0, Yo,w € V}.

The adjoint action of Spy,, on sp,,, can be interpreted as the restriction of the
Spay,-action on gl,, = End(V) given by conjugation. This action gives a direct sum
decomposition of Spy,,-modules gly,, = sp,, ® S, where S can also be described
directly as

S ={z € End(V) | (xv,w) = (v, zw), Yv,w € V}.

Finally we let A" := {x € End(V) | ¥ = 0, for some k} be the nilpotent cone of
the Lie algebra of GLg,, = GL(V).

DEFINITION 2.6. The exotic nilpotent cone is the (singular) variety 9 := V X

(SNN).

When it is not clear from the context, we might specify the underlying vector
space and write S(V'), N (V) or 9(V).

If kK € N, a composition of k is a finite sequence « = (a1, as,...,q,) such
that for all 1 < ¢ < m, «; is a positive integer, and Z:’;l a; = k. We denote this
by o] = kor aF k. If a = (a1,a9,...,am), then (o) := m, the length of the
composition is the number of its parts.

A partition of k is a composition of k where the integers are weakly decreasing,
that is A = (A1, ..., Ap) is such that Ay > ... > X\, > 0 and S0\ = k. We
denote it by A F k or |A\| = k. On occasion it will be convenient for us to consider
a partition to have some (or even infinitely many) parts of size zero appended to
its end, this does not change the length of the partition which is the number of
nonzero parts.

DEFINITION 2.7. If W is a vector space and x € End(W) is a nilpotent trans-
formation, its Jordan canonical form gives a partition of dim(W') by considering the
sizes of the Jordan blocks (in weakly decreasing order). We denote this partition
by J(z) and we call it the Jordan type of x.
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If we have two partitions u, v (of potentially different integers), we define two
new partitions p+v := (u1+v1, ua+ve,...), and pUr which is the unique partition
obtained by reordering the sequence (u1, ..., fe(y), V1, - - -, Vi) to make it weakly
decreasing. A bipartition of n is a pair (u,v) of partitions such that |u| + |v| = n.
We denote the set of all bipartitions of n by Q,,.

The set Q,, is important for us because of the following result.

THEOREM 2.8 ([1, Thm 6.1]). The orbits of the symplectic group Sp,,, on the
exotic nilpotent cone N are in bijection with Q.

More precisely, following Section 2 and Section 6 of [1] we can say that, given
a bipartition (u,v) € Q,, the corresponding orbit @, ,) contains the point (v,x)
if and only if there is a ‘normal’ basis of V' given by

{vij,v5; 11 <i < l(p+v),1 < j < pi+vi},

with (vij,v}) = 6i,i0540, v = Zf(:“l) v;,, and such that the action of = on this

basis is as follows:

TV =
0 if j=u+uy

FU s — Vi, j—1 if ] 2 2 % ,U;j-l-l if j S j2z; + v; — 1
1) . . 1]
0 if j=1

in particular the Jordan type of x is (p 4+ v) U (u + v).

DEFINITION 2.9. Similarly to Definition 2.7, if (v, 2) € Qy,,,), as defined above,
we say that the bipartition (p,v) is the exotic Jordan type of (v,x) and we denote
it by eJ(v, x) = (u,v).

Associated to a partition A = ();); there is a Young diagram consisting of \;
boxes on row i. We say that A is the shape of the diagram. In the same way,
a bipartition gives a pair of diagrams. If a Young diagram is filled with positive
integers, we call it a Young tableau, and similarly, if we fill a pair of diagrams with
positive integers we call it a bitableau.

EXAMPLE 2.10. The bipartition (u,v) = ((3,1),(2,2,1)) corresponds to the

pair of Young diagrams D:H, , notice that we follow the usual conven-

tion of left-justifying the boxes in the second diagram, however we instead right-
justify the boxes in the first diagram (equivalenty, we apply a vertical reflexion to
a usual diagram). The reason for this comes from the look of normal bases, as in
11
2

\3\3; 1
— 13

Example 2.11. An example of a bitableau in that shape would be

ExAMPLE 2.11. Consider the bipartition (u,v) = ((3,1),(2,2,1)), and a point
(v,2) € Q). Then we can represent the ‘normal’ basis as
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'+’11 ‘U12 v1 14 |V15

-
Vazf22 [V21

*
15

with the action of & given by moving one block left (and zero if there is nothing
further left), and v = w13 + v91 is given by the sum of the boxes just left of the
dividing wall on the upper half of the diagram. Notice that the wall divides the
two diagrams corresponding to the partitions that form the bipartition (the one on
the left of the wall is facing backwards) and that the bipartition is repeated twice
since J(z) = (p+v) U (p+v).

* *
[V14) Y1312 (V11

2.3. Exotic Spaltenstein varieties. We are now going to define the main
object of study of this article and state our main conjecture about the irreducible
components of exotic Spaltenstein varieties, which we will be able to prove in the
case where 22 = 0.

Let @ = (a1, 9,...,04,) F n be a composition, we define a composition of
2n with 2m parts, & = (a1, @2, ..., Qmy Uy Qm—1, ..., 1) F 2n. We also define,
q; = 23:1 &; for i = 0,...,2m. We denote by F*(V) the variety of partial
symplectic flags of type «v in V', that is each Fy € F*(V) is a sequence of subspaces

Fo=0=FCFs C---CFs, C-CFay, , CFay, =V)

such that dim(Fs, /Fs,_,) = &; and F5- = Fy,,_, forall 1 <i < 2m.

Notice that Fy, = F, = F;- is a maximal isotropic subspace of V.

DEFINITION 2.12. Given (v,2) € M, and o = (aq,...,amn) E n, we define the
exotic Spaltenstein variety

Clwy ={Fe=(0CFs, C---CFs,, =V)eF* V) |vEF,, x(Fs,) C Fa,_,}.

2m = 3

REMARK 2.13. Notice that for certain choices of v, x and « the variety could
be empty. It is clear that if eJ(v,x) = eJ(v/,2’), then there is an isomorphism of
varieties C&w) ~ C(O;,J,) given by the Sp,,,-action. When o = 1™, then the partial
flags are actually complete flags and this variety is an exotic Springer fibre, as
defined by Kato in [10] and studied by the authors in [15, 16].

Let (v,xz) e M, if F, € C(C:w), for all i =0,...,m, since Fj5, and F(j- = Fy
are both invariant under x, we can consider the restriction of x to F,j- /F&,, which is
a symplectic vector space of dimension 2(n — &;) (since Fy, is isotropic, the bilinear
form descends to the quotient and is nondegenerate because we restrict to F, al ). It

can be easily verified that z|p. . € N(Fg /Fs,) NS(F5 /Fs,).

2m—1

DEFINITION 2.14. Let oo = (a1, g, . ..,y ) E 0 be a composition. Let (v,z) €
N, eJ(v,z) = (u,v). Define the following maps,

O iChy = Qs Ferred (v Faalpp,)  VO<i<m

P . C(o;@) — H On—a;
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Fors ((0,0) = @™(F,), ™ (F,),..., 0" (F.), ®°(F,) = (1, v)) -

This map assigns to each partial flag in the exotic Spaltenstein variety a se-
quence of bipartitions, such that the total size increases by «; boxes at each step.
Notice that in general there is no guarantee that the shape of ®(F,) will con-
tain the shape of ®'T1(F,). If the sequence of bipartitions is nested at each step,
we can identify the sequence with a bitableau of shape (u,v), where at each step
i=m—1,m —2,...,0 we fill the boxes that have been added with the number
m — i.

EXAMPLE 2.15. (1) Let n = 2, (u,v) = (12,0) = <B, (Z)>, and (v,x) €

O(y,v), then we have a basis {v11,v21,v5;,v];} for V, with v = vy1 + va1.
If « = (2), and Fy = (0 C F, C V) with F» = Cuvy; + Cuvgy (or any
subspace of V' containing v), then F, € C{, 4> and since Fs-/Fy = 0 we

have ®(F,) = (((Z), 0), (H, @)) . This sequence is nested and corresponds
:
to the bitableau <, 0.

(2) With (u,v) as above, if « = (1,1) and F, = (0 C F; C Fy, C Fi+ C
V) with Fy = Cv, F» = Cuv11 + Cugy, then since v € F; we have that
v+ F} is zero in the quotient Fi-/F), which is a 2 dimensional space,

while Fy-/Fy = 0, so B(F.) = ((@,@), ., (H @)) . This sequence

of bipartitions is not nested, hence it does not correspond to a bitableau.
(3) Now let (u,v) = (0,2) = (0, | ]), and (v,z) € O, then we have a
basis {v11, V12, 0}, 051} for V,and v =0. f & = (2), and F, = (0 C F; C
V) with Fy = Cvy; +Cofy, then F, € C&’z), and since F3-/F; = 0 we have
®(F,) = ((0,0), (0, ] ), which is a nested sequence corresponding to

the bitableau (,[1]1]).

DEFINITION 2.16. Let oo = (a1, ..., au,) E n, we say that a bitableau of shape
(n,v) € Q, is semistandard with content « if for all 4 = 1,...,m it contains «;
boxes with the number i, such that the numbers are strictly increasing along rows
(right to left in the first tableau, left to right in the second tableau) and weakly
increasing down columns. Equivalently, if we consider the bitableau as a nested
sequence of bipartitions, it is semistandard if at each step we add a vertical strip
to each of the two Young diagrams (no two boxes added are in the same row of the
same diagram).

We denote by 7%, be the set of all semistandard bitableaux of shape (u,v) and
content a.

REMARK 2.17. Notice that our convention is the transpose of the usual con-
vention for semistandard tableaux (usually they are taken to be increasing strictly
down columns and weakly along rows) but it matches the convention used in [18].
In Example 2.15, the bitableau in case (1) is semistandard, while the one in case
(3) is not.
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Let A = (\;); - n be a partition, we define N(\) =3".(i — 1)\ If (u,v) € Qy

is a bipartition and « = (a1, ..., ) F n is a composition, we define
(07 1 %
(2.2) Ay = 2N(p+v) + v = 5 > (af — ).

i=1
REMARK 2.18. Recall that N(A) is the dimension of the Springer fibre over a

nilpotent element of Jordan type A, while when @ = 1™, we have d&l;) =2N(u+
v) + |v| is the dimension of the exotic Springer fibre over a pair (v,z) € N with

eJ(v,x) = (u,v).
CONJECTURE 2.19. Let T € T, be a semistandard bitableau of shape (,v)

and content o, and let (v,x) € Q, ). Then ®=1(T) is an irreducible component
of Ca),x) of dimension dj; ,, and all irreducible components of dimension dy; , are of
this form. All other irreducible components of Cz’v 2) have dimension strictly lower

than dj; .

REMARK 2.20. In the case of complete flags, when o = 1", the variety is an
exotic Springer fibre and the result is true (see [15]). In that case all irreducible
components have the same dimension, but in general C(%’z) is not pure dimensional,
as the following example shows.

ExaMPLE 2.21. Let n = 3, (u,v) = (0,21), @ = (1,2), then v = 0 and we
have Fy € C¢ if Fo = (0 C [y C F3 = F3- C Fi* C V) with F} € ker(z) and
z(F3) C Fi. The subvariety of Cf, ) where F1 C Im () is an irreducible component
of dimension df, ,» =2(1) +3 - 3(1* =1) = 5(2* =2) =2+3 -0~ 1 =4, in fact

1]2]
0, 0
an irreducible locally closed subvariety, whose closure is an irreducible component

of dimension 3, for these flags the corresponding sequence of bipartitions is still

nested, b (((2),@), (@751) ’ (Q), )) _ (@, % 1 ‘)

but the resulting bitableau is not semistandard. o

it equals ®~1 < - The subvariety of Cf, ) where Fy ¢ Im (z) however is

2.4. Strategy for the proof of Conjecture 2.19. We induct on m, the
number of parts of the composition a = (a3, aa,...,q,) E n. For m = 0, then
n = 0 as well and the statement is trivial (all the varieties involved are one single
point), so we can assume that m > 1.

Let (u,v) € Qn, a = (1,02,...,ap) F n, (v,x) € Q,,), and let B =
((utmd plmdy o (ul) pl90)) be a sequence of bipartitions such that (pld,vll) €
Qn—g,, for i =m,...,0 and (u®, %) = (u,v). Then if § # ®~1(B) C CS, we
have a map

p:® (B — Gri1 (ker(x) N (Clz]v)t);
F, — F,,.
Define (p/,v") = (uY, vy = ®1(F,) = eJ (v + Fal,m|F§_1/Fal)7 o = (ag,...,qm),
and B’ = ((pt™, vim), 0 (ul, 000)). We let

B, = imp = {F € Gry, (kex(z)(Cla]v) )| eJ (v + F,alpoyp) = (/1) }
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For any F € BEEZ,’_VD)/’;)‘L,), we then have that

pH(F)={F, 7 (B) | F,, = F}

(2.3) = {F € Czjmxlﬂw) C FY(FL/F) | (@™ (F.),...,0°(F,)) = B’}

where the isomorphism is given by
(F(ga F1/7 e 7F2/m717 F2/m) — (F()afla v 7F2m737f2m72>;

F,=F//F VYi=0,...,2m—2.
In conclusion, the map p is a fibre bundle, and from (2.3), it follows that the fibres
are p~1(F) = ®~1(B’), which by inductive hypothesis is an irreducible variety of
dimension lesser or equal to dfj,/yl,,, with equality if and only if the sequence B’ is
actually a semistandard tableau. Thus Conjecture 2.19 would be a consequence of
the following result.

CONJECTURE 2.22. For all (u,v) € Q,, and for all (1/,v') € Q,_q, the variety

BEEZ}VV)/’)Q()X,) 18 irreducible, and we have

dim 8555573"%') a3 d‘(aw') - d?u’w’)’
with equality if and only if (1',v') is obtained from (u,v) by removing ay boxes in a
vertical strip in each diagram (no two of the boxes are in the same row of the same
diagram,).

In Section 5, we will prove that Conjecture 2.22 holds when 22 = 0, hence our
main result for this paper is the following.

THEOREM 2.23. Let a F n, (u,v) € Qp, and (v,z) € O, ), with z* = 0. For
al T €7y, @ 1(T) is an irreducible component of Clo.zy of dimension dj; , and
all irreducible components of dimension dj; , are of this form. All other irreducible

components of C& ) have dimension strictly lower than dj; ,,.

3. Computing Jordan types

It will be important for us to compute the Jordan type of a linear transformation
when restricting to (or quotienting by) invariant subspaces. Recall that if V' is any
vector space (not necessarily symplectic) and z € End(V) is a nilpotent linear
transformation, then J(x) = A, where for all j > 1, 337 _, A = dim(ker(z7)). Here
A" denotes the transposed partition, with \! = #{k | \x > j}. Equivalently, we
have that the number of boxes in the j-th column of the Young diagram of J(x) is
A, = dim(ker(z7)) — dim(ker(2z/ 1)) for all j > 1.

LEMMA 3.1. Let 0 C U C W C V be subspaces, and let x € End(V) be a
nilpotent linear transformation with ©(U) C U, (W) C W. Then we can consider
the restriction to the subquotient, and J(x|w ) = p where

pt = dim(2* (W) NU) +dim(ker(z*) N W) — dim(z* (W) NU) — dim(ker(z* 1) N W)

PROOF. We know that pf = dim (ker(z|y,¢r)?) — dim (ker(z|yw/7)*~!). Since
2'(U) C U, we have that (z*)"1(U) D U. It follows that

ker(x|W/U)i ~ ((mi)*l(U) nNw) /U
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S0
dim(ker(z|yy)") = dim ()" (U)NW) — dim(U).
But, considering the map z* : (z*) "' (U) N W — U we get an isomorphism
()" U)NW) [(ker(z") N W) = 2" (W)NU
hence
dim ((z")""(U) N W) = dim(z" (W) N U) + dim(ker(z") N W).
In conclusion, we have
pt = dim (ker(z|w,)") — dim (ker(z|ywo) ")

= (dim ((z") "' (U) N W) = dim(U)) — (dim ((z*~")"(U) N W) — dim(U))

=dim ((z")""(U) N W) = dim ((z" ")~ (U) N W)

= dim(z*(W) N U) 4 dim(ker(z*) N W) — dim(z*~* (W) N U)

— dim(ker(z"~ 1) N W).
O

LEMMA 3.2. Let x be a nilpotent transformation on a vector space V', and let
F C ker(z). Define

(3.1) aj = dim(F NIm (27)) 5 >0.

Then J(x|y,p) is obtained from J(z) by removing (aj_1 — a;) boves at the bottom
of column j for all 7 > 1. (Notice that these boxes form a vertical strip i.e. no two
of them are in the same row)

Proor. This follows directly from applying Lemma 3.1 to U = F, W =V and
comparing the result to dim(ker(z7)) — dim(ker(2’/~1)). O

LEMMA 3.3. Let x be a nilpotent transformation on a vector space V', and let
F D Im (z). Define

(3.2) b; = dim (F + ker(z7)), j > 0.

Then J(x|r) is obtained from J(x) by removing (b; — bj_1) bozes at the bottom of
column j for all j > 1. (Notice that these bozxes form a vertical strip i.e. no two of
them are in the same row)

PROOF. As in the previous proof, this follows directly from applying Lemma
3.1toU =0, W = F and using that dim(F + ker(z’)) = dim(F) + dim(ker(z7)) —
dim(F Nker(z7)). O

LEMMA 3.4. Let V be a 2n-dimensional symplectic space, and x € End(V') such
that x € S. Then Im (27) = ker(29)* for all j > 0.

PROOF. Let w € Im (27), so w = x’/u for some v € V. If z € ker(2?), then
(w,2) = (¥9u,z) = (u,272) = 0 so Im (27) C ker(2?)L and equality follows from
the fact that they have the same dimension. ([

LEMMA 3.5. Let V be a 2n-dimensional symplectic space, and x € SN N.
Suppose F C ker(x), which is equivalent to F+ D Im (z), then

J(=lv/p) = J(x|p1).
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PROOF. Let (a;); be defined as in (3.1) for F', and (b;); be defined as in (3.2)
for the space F+. Then (F Nim(2?))* = F+ + ker(z7) hence we have

aj_1 — a; = dim(F Nim(2/~1)) — dim(F N im(2?))
= (2n — dim(F* + ker(z771))) — (2n — dim(F* + ker(z%)))
= bj — bj,1
and the result then follows from Lemma 3.2 and Lemma 3.3. O

If 0 C F C Ft C V is an isotropic subspace of V, and (v,x) € N, in order to
compute eJ (v + F,xlpyy F) we will need to use the following result due to Travkin
[23, Theorem 1 and Corollary 1] and Achar-Henderson [1, Theorem 6.1].

THEOREM 3.6. If (v,2) € (W), then eJ(v,z) = (u,v) if and only if
J(zlw) = (p+v)U(p+v)=(u +vi,pn + v, o+ v, pio + va,...)
and
I (zlwyclape) = (p1 +v1, 2 + v1, po + va, ps + v, ..0).

We want to apply this theorem to W = F1/F, so we will need the next
two lemmas, that tell us how to find J (z|w) = J (x|FL/F) and J (@|w/czpp) =

I (2lre j(Piclaw))-

LEMMA 3.7. Let V be a symplectic vector space, x € SNN, and 0 C F C
FL CV withz(F) =0 and z(F+) C F+. Let

af =dim(F na’(F)), j>0

then J(z|p1 ) is obtained from J(x|y/r) = J(z|p1) by removing (a;_; —aj) bozes
from the bottom of column j for all j > 1.

PROOF. We can either apply Lemma 3.2 to the quotient F+ — FL/F and
look at the dimensions

dim(F Nim(z|p.)?) = dim(F Nz (F1))
to get the result, or use Lemma 3.1 (with U = F, W = F1).

LEMMA 3.8. Let V be a symplectic vector space, (v,z) €N, and 0 C F C F+ C
V with z(F) =0, x(FY) C F+, ve FL. Let

b; = dim((F + Clz]v) N2/ (F1)), j>0

then J(@|p1 ) piclape) @8 obtained from J(x|y p) = J(z|p1) by removing (b;_; —b’)
bozes from the bottom of column j for all j > 1.

PROOF. This follows by applying Lemma 3.1 to U = F+Clzjv C F- =W. 0O

4. Computing J (x\FL/F), J ($|FL/F+C[I]U) and eJ (v + F,Z‘|FL/F)

For this section, we fix x € 91 NS and we apply the results of Section 3. In
particular we will look at the special case where 22 = 0. We start with some general
lemmas that we will need later.

DEFINITION 4.1. For each j > 0, we define a map Im (z7) x Im (2/) — C
denoted by ((, ));, as follows. If u,w € Im (27), let z € V such that u = 27z, then

({uw, w))j = (2, w).
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LEMMA 4.2. For each j > 0, the pairing (( , )); is well defined, and it is a non-
degenerate skew-symmetric bilinear form on Im (x7) (which is an even dimensional

space).

PROOF. To see that this pairing is well defined, let u,w € Im (27) and suppose
21,29 € V are such that u = 292, = 2725. We also let y € V be such that 7y = w.
Then

<21,w> = <Zlamjy> = <szlvy> = <.’E‘72’2,y> = <227x]y> = <2:2,’UJ>.
The fact that ((, )); is a skew-symmetric bilinear follows directly from the definition
because if u,w, z,y € V, with 272 = u and 27y = w, then
<<u7w>>j = (z,w) = —(w,2) = _<$jy’z> = _<y’sz> =—(y,u) = _<<wau>>j;

also, for a, 8 € C we have 27 (az) = au and 27 (By) = Bw, so

((au, fw)); = {az, fw) = af(z,w) = af((u, w));.
Finally, suppose that there is v € Im (27) such that ((u,w)); = 0 for all w €
Im (27), and let z € V with 272 = u. Then 0 = ((u, w)); = (z,w) for all w € Im (z7)
so z € (Im (gcj))L = ker(27) (by Lemma 3.4), hence u = 27z = 0. This proves that
the form is indeed nondegenerate. O

In particular, ((, ))o = (, ), and when j = 1 we might omit the index and
just denote ((, )1 = ((, )). We denote the perpendicular with respect to the form
((, )); by 1L;. So, if W C Im (27), then

Wi = {u € Im (27) | ((u,w)); =0, for all w € W}.

In particular 1l y=_ is the perpendicular with respect to ( , ), and when j =1 we
write 1l =11,.

LEMMA 4.3. Let F C V be a subspace, then for all j > 0, 2/(F+) = (F N
Im (27))*.

PROOF. Let u € xj(Fl), then there is z € F1 such that 27z = w, hence
for all w € F NIm(27) we have ((u,w)); = (z,w) = 0, so u € (F N Im (27))Ls.
Viceversa, if u € (F N Im(27))%, then u € Im(27), so there is z € V with

u = 27z, and we have that for all w € F NIm(z?), 0 = ((u,w)); = (z,w), so
z € (FNIm(27))t = F+ + Im(2/)+ = F* + ker(27). This shows that (F N
Im (27)) C 27 (F*+ + ker(27)) = 27 (F*) which concludes the proof. O

The next two lemmas will specifically be relevant in the case where 22 = 0.
LEMMA 4.4. Ifv €Im(x), v ¢ F, then FNx(F1) = (F + Cv) Nz(Ft) if and
only if
Fnz(F*) ¢ (Co)t.
PROOF. Since FNz(F+) C (F+Cv)Nz(F+), we have equality exactly when the

two spaces have the same dimension. Notice that F Nz (F+) = FNIm (z) Nx(F1)
and, since v € Im (z),

(F4Cv)Nna(Fr) = (F+Cv)NIm (z) N2(F*) = (FNIm(z)) + Cv) N z(F*).
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Hence F Nz(F+) = (F + Cv) Nz(F1) if and only if

dim (F N2(F*)) = dim ((F + Cv) Nz(F))
> dim (FNIm (z) Nz(F*)) = dim ((F N Im (z)) + Cv) Nz(F+))

— dlm( (FNIm(z) Nz Fl)) ) = dim <(((Fﬂlm (z)) 4+ Cv) ﬂm(Fl))lL)
<:>d1m(FﬂIm (FJ')) )
= dim (((F 1 1m () + Co))* + (o(F) ")

< dim (z(F*) + (F N Im(2)))
= dim (((F NIm (z))™ N (Cv)™) + (FNIm(z)))

< dim (z(F*')) + dim (F N Im (z)) — dim (F N Im (z) N z(F))
= dim ((z(F*) N (Cv)*) + (F NIm(z)))

< dim (z(F )) + dim (F N Im (z)) — dim (F N 2( (F4) )) = dim (x(FJ‘)ﬁ ((Cv)l)
+ dim (F NIm (z)) — dim (z(F*) N (Co)* ﬂFﬂIm( )

<= dim (x(F )) + dim (F N Im (z)) — dim (F N a( ) = dim (LU(FJ') N ((CU)M')
+ dim (FNIm(x)) — dim (x(F )N (Cv)t N FNIm (z))

(4.1)

< dim (z(F")) — dim (z(F*) N (Co) ™)
=dim (FNz(F*)) — dim (FNz(F*) N (Co)*)

Now, since (Cv)*- is a codimension 1 subspace of Im (z) we have that each of the two

sides of the inequality are either equal to 0 or 1. Since v € F, hence v € F NIm (z),
we have that

(FNIm(z)) + Cv # FNIm(z)
(FNIm (2)) + Cv)™ # (FNIm(z)"
((F N I (@)™ 1 (Co)™ # (P T ()
2(FH) N (Co)™ # a(FH),
hence the LHS of (4.1) is 1. Therefore, the RHS equals the LHS if and only if
Fna(Ft) # Fnz(FH)n(Co)t
which is equivalent to F' N x(F+) ¢ (Cv)*. O
LEMMA 4.5. IfvEIm(x), v € F, then FNz(F*) = (F 4 Cv) Nz(F*) if and

only if
(v+ F)Nz(Ft) =0.
PROOF. Notice that v ¢ Im (), so in particular v € z(F1). Since additionally

v € F, we have that (F + Cv) Nz(Ft) = Fnz(Ft) if and only if for all u € F,
u+v g x(FL). O
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4.1. Computing J (Z‘|F¢/Fk) . We consider now any isotropic subspace F}, €

Cri (ker(z)N(C[z]v)1), using the subscript to emphasize the dimension k = dim(Fy,).
We assume that 2 = 0 and we separate two cases.

4.1.1. = 0. In this case, J(z) = (1?*), and Im (27) = 0 when j > 0, hence,
using Lemma 3.2 we have ag = k, a; = 0 for j > 0 and so J(z|y/p,) = J(.T|FkL) =
(127=k). Further, using Lemma 3.7 we have aj = k, aj = 0 for j > 0, and so

3 (#lrgm,) = (1202%).

4.1.2. x # 0, 22 = 0. In this case, since x € S, J(z) = AU\, with A\ = (2"21™1),
2ny +n; = n, we then have J(x) = (22"212"1). Let ky = dim(Fy N Im (z)),
k1 = dim (Fg/(Fr NIm (2))), so k = k1 + k. Using Lemma 3.2 we have ap =
k = ki + ks, a1 = ko, a;j = 0 for j > 1. We remove a9 — a1 = ki boxes from
the first column and a; — as = ko boxes from the second column, which gives
Jalv/r,) = Halps ) = (220 Fa12n—butha),

Then, to use Lemma 3.7 we need to know dim(Fy N z(Fjt)) and, by Lemma
4.3, Fy, Nz (F{) is the radical of the bilinear form ((, )) restricted to Fj, N Im (z).
Therefore, Fy, N Im (z)/F, Nz(Fj-) is a symplectic space with form ((, )), hence
even dimensional, say dim (Fj, NIm (z)/F; Nx(F;)) = 2h. We then have from
Lemma 3.7 that aj, = k = k1 + ka, a} = ko — 2h, a/, = 0 for j > 1, so we need

J
to remove ki + 2h boxes from the first column and ke — 2h boxes from the second

column which results in J (I|F¢/Fk) = (22n2—2k2+2h 21 —2k1+2ke —4h)

4.2. Computing J (m|F¢/Fk+C[z]v) . We consider F}, as above, computing the

Jordan type will then give us, using Theorem 3.6, eJ (v + Fy, x|F,§/Fk)' There are

six cases to consider.
42.1. =0, v=0. In this case, u =0, v = A = 1", so we have

] (aflp,;/mcmv) _; (x\F,;/Fk) — (12n-2%) and hence eJ (v v Fk,x|F¢/Fk) _

(@,1"=%) by Theorem 3.6.
422 x=0,v#0. Inthiscase, u = A =1" v = ().

(a) Tfv € Fy, then by = k, b} = 0 for j > 0, 50, by Lemma 3.8, J (IlF,g/FHC[z]v) —

J ($|F¢/Fk> _ (12n72k)7 and eJ (U + Fk,x\Fki/Fk) = ((Z), ]_”fk;).

(b) If v & Fj, then by = k + 1, b; = 0, so by Lemma 3.8, J (.T|FkL/Fk+C[I]U> =

(12n—2k—1), and eJ (’U + Fk’$|F,j'/Fk) = (1n—k,@).

423. x #0, 22 =0, v = 0. In this case, p = 0, v = A = 2"21™, s0 we
have J (x|Fk%/Fk+C[ac]v) =J (x‘Fkl/Fk> = (22n2—2k2+2h12n1—2k1+2k2—4h)
el (11 + Fk.,x|Fk+/Fk) = (), 2n2—ka+h ma—ki+ka=2h) by Theorem 3.6.

4.24. x #0, 22 =0, 0 # v € Im(x). In this case, p = 12, v = 1"27™  with
ng > 0.

(a) If v € F, then b’ = a;, for all j > 0, so, by Lemma 3.8,
J <x|F]€J—/Fk+C[I]U) =7 (x|F;j'/Fk> = (22ram2hat2h2mm2t2le =) fand

el (v + Fkvx|F,j/Fk) = (@, 2n2—kathm—kitha=2h)

and hence
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(b) If v & Fy, and (F +Cv)Nx(FL) 2 Fr,Na(Fih) (by Lemma 4.4 this means that
FyNa(F) C (Cv)t), then we have by = k+1 = aj+1, and b} = ks —2h+1 =
a'l + 1. Hence J(l‘|FkJ_'/Fk+(C[w]v) = (22n2—2k'2+2h—112n1—2k1+2k2—4h+1) and we
now demonstrate how to obtain that
eJ (v + Fk7x|F¢/Fk) = (1m2—hketh qrmitna—ki=h) hy using Theorem 3.6.
We want to find the exotic Jordan type eJ (v + F,x|p1 /r) = (1/,v/). Since
J ($|F§-/Fk) — (22n2—2k2+2h12n1—2k1+2k2—4h) — (M/ + V') U (Nl 4 l//), we have
oy my— ey —htl T Vg tmg—ky —hp1 = 0, hence g7 oy, = 0. Then, from
J(@|pt sy sclage) = (2527 2RePhml2mem2in ke =) — (1) 0, iy 17, )
we get that M;L1+n2—k1—h+1 +V;L1+n2—k1—h =1, hence u;“_s_m_kl_h = 1. Induc-
tively we haveu; =0 for all j > ny — ko + h, and l/j/. =1fornyg—ke+h<j<
n1+mns—ki1 —h-+1. Then, since ,u;w_kﬁh—l—y?’w_kﬁh =2, we get /L;w_kﬁh =1
and then inductively ,u; = 1/]’. =1foralll1 <j<ng—ky+h.
(c) Ifv & Fy, and (Fj,+Cov)Na(F) = FyNa(F) (by Lemma 4.4 this means that
Fpna(F) ¢ (Cv)t), then we have by = k+1 = aj+1, and b] = ko —2h = a}.
Hence J(2|p1 /g, pcpa)e) = (22027 2R2 2R 2m =22k =4h=1) and with Theorem

3.6 and a similar inductive argument as above, which we will omit, we get
eJ (1} + F, CC‘FL/F) — (17114*71271617h7 1n27k2+h)'

4.25. 2 # 0, 22 =0, v € ker(z) \ Im (z). In this case, p = 1"2F™ p = 172
with ni,ne > 0. The various possibilities for eJ (v + F,x|FL/F) in this case are
the same as in Section 4.2.4 and depend in the exact same way on whether v € Fy,
and whether (F, + Cv) Na(Fi) = F, Nx(F-) (with the difference that we will use
Lemma 4.5 instead of Lemma 4.4 to verify the condition).

4.2.6. #0, 22 =0, v & ker(z). In this case, p = 2"21™ v = (), with ny > 0.
Since F}, C ker(z), we always have that v € F}, and since v € F,, C Fi-, zv € x(Fb).
Also, since v =v1 2+ 4+ VUny 2+ Vngt1,1°* + Unitna,1, a0d TV = V1 1+ +VUpy 1,
then

k+1 ifxve Fy
dim(Fy, +C = dim(Fy + Cv 4 Cav) = .
im(Fy, [x]v) im(Fy, v V) {k Lo e d Fy
(a) If zv € Fy, then dim((Fj, + Cav + Cv) Nz (F)) = dim((Fy + Cv) Nz(F)) =
dim(Fy, Nz (Fi)) = k2 — 2h because for any ¢ # 0, (cv + ker(z)) N Im (z) = 0.
It follows that in this case b, = k + 1, b} = ko — 2h, so, like in 4.2.4(c),
Heli s cpga) = (220242012002 2ha—th1) and o] (v 4 Pl ) =
(17L1+7L2—k:1—h’ 1n2—k2+h).

(b) If zv € F}, then by the modular property of lattices of vector spaces we have
(Fy + Cav + Cv) Na(F{) = ((Fy + Cv) Na(F)) + Cav, hence

dim(F}, 4+ Clz]v) = dim((Fy + Cav 4+ Cv) N2 (Fib))
= dim(((Fy + Cv) Nz(F)) + Cav)
= dim(Fy N z(F) + Cav)
=ko —2h + 1.
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It follows that in this case by = k +2, by = ko —2h + 1, s0, J(2|pL /5, 1cape) =
(22n2=2k2+2h=112n1=2k1+2k2—=4h) and by Theorem 3.6 and a similar inductive

argument as above, we get eJ (v + Fkaﬂﬂj/n) = (2r2—hzthni—kitka=2h ()

5. Proof of Conjecture 2.22 when z? = 0

For notational simplicity, we let a; = k, so to prove the conjecture we want to
describe the variety

ngg,’ijy);il‘,) = {F € Grf (ker(z) N (Clz]v)™*) | eJ (v + Fk,x\Fki/FJ =, v}

for all the possible cases of (u,v) and (u',v’) that we found in Section 4. More
precisely, we want to show its irreducibility and compute its dimension, and to do
that we will need some more fibre bundles.

5.1. More Fibre Bundles. Given any F}, € BEEZ,’VV)})Q)OZ,), we have a filtration

DEFINITION 5.1. For ¢ > 0, we define two maps

7t Gry (ker(z) N (Clz]v)*) — H Gr;(ker(x) N (Clz]v)* NIm (z))
Jj=0
8(F) = FNIm (x);
75+ Gre(ker(x) N (Clz]v)t NIm (z)) — H Grjl(ker(x) N (Clzjv)t NIm (x))
Jj=0
s (U)=UnUL.
REMARK 5.2. If F, € B{")") | with dim(F} N Tm (z)) = k2 as in Section

wv')al)
4.1.2, then by Lemma 4.3 we have

T2 (7F(Fp)) = (Fp NnIm () N (Fx N Tm (2)) 2 = Fy N a(FL).

If we have a subspace U C ker(z) N (C[z]v)* NIm (x), dim(U) = u, and F N
Im (z) = U, we can consider the following subspaces in the quotient space ker(z) N

(Clx)v)t/U: F = F/U, and Im (z) = ((ker(z) N (C[z]v)* NIm (x))/U. We then
have
(5.1) (7)) ~Y(U) = {F € Gr{ (ker(z) N (Clz]v)L) | FNIm (z) = U}

~ {F e Grj_,((ker(z) N (Clz]v)1)/U) | FNIm (z) = 0}
which is empty when ¢ — u + dim((ker(x) N (C[z]v)* NIm (z)) — u > dim(ker(z) N
(Clx]v)t) —u and otherwise is an open dense subvariety of the isotropic Grassman-
nian Gry_, ((ker(z) N (C[z]v)*)/U). This shows that the map ¢ is a fibre bundle
over any given Grj(ker(z) N (Clz]v)* NIm (x)).

Similarly, if we have an isotropic subspace S C S, with respect to ({ , ))
restricted to ker(z) N (C[z]v)t N Im (z), with dim(S) = s, and if U C ker(x) N
(Clz]v)*: NIm (z), with U N U+ = S, then UL + U = S*. We have then

(78)~1(S) = {U € Gry(ker(z) N (Clz]v)t NIm (z)) | UNUL = S}
(5.2) = {U € Gry(ker(z) N (Clz]v)* NIm (z)) | SC U € sS4}
=~ Gry_s(S1/S)
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This fibre is empty when £—s > dim((ker(x)N(C[z]v)*NIm (x))) —2s and otherwise
is isomorphic to a Grassmannian. This shows that the map 7% is a fibre bundle
over any given Gr#‘ (ker(z) N (Clz]v)* NIm ().

REMARK 5.3. In the computations of do‘ ) it will be helpful to use the fact
that N(1") =n(n—1)/2 and N(2"21™) = (n2 +n1)(n2 —|—n1 — 1)/2+n2(n2 —-1)/2,
also since k = a1, we have £ >, (a? — ;) = 2k(k — 1) + 3 sz( ;).

We now examine all the different possible cases for the proof of Conjecture 2.22
when 22 = 0.

5.2. (u,v) = (0,1™). In this case we have x = 0 and v = 0, so ker(x) N
(Clz]v)t = V. By Section 4.2.1, no matter the choice of Fj, € Gry(V), we have
(W', v') = (0,1"7F).

Therefore
0, o
B = Gr(ker() N (Clalo)) = Crf (V) = Gy,

is an irreducible variety of dimension k(2n — k) — 2k(k — 1) by Remark 2.2. We
also have

(04 o’ n n 1
Guw) = Ay = 2N (") + 17 = 5 Z(Oé? - ;)

i>1

1
o ELCE FR IR S )

:n(n—1)+n—(n—k)(n—k—1)—(n—k)—%kz(kz—l)
:nz—(n—k)z—%k(k:—l)
:k(2n—k)—%k(k—1)

and the shape (0, 1"7%) is obtained from (), 1") by removing k-boxes that are all
in different rows.

EXAMPLE 5.4. We show the two diagrams with n = 5 and k = 3, as well as
the boxes removed marked with an x.

(0,17%) — (@H) co1m= o],

. (g,v) = (1™,0). In this case we have z = 0 and v # 0, so ker(z) = V

and ( [ Jv)+ = (Cv)?t is a 2n — 1 dimensional subspace. By Section 4.2.2, we have
(', v'") = (0,1"%) when v € Fy, and (¢/,v") = (1"7% ()) when v & F}.

5 3.1. Suppose that (¢/,') = (0,1"7F), so that v € F}, (which implies k& > 1),
then F},/Cv is a k — 1-dimensional isotropic subspace of ker(z) N (C[z]v)*/(Cv) =
(Cv)+/(Cv), which the restriction of (,) makes into a symplectic space of dimension
2n — 2. Hence
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BEE(})WIEZ%)M) = {F}, C ker(z) N (Clz]v)* | Fy € FiF, v € Fy}

~ {Fy/(Cv) C (Cv)*/(Cv) | Fi/(Cv) C (Fi/(Cv))*"}
= Gréﬂ((CU)L/(CU)) = Grlimnfz
is an irreducible variety of dimension (k—1)(2n—2— (k—1)) — 5(k—1)(k—2) =
(k—1)(2n —k —1) — 2(k — 1)(k — 2) by Remark 2.2.
We then have

’

o o : ((A™,0),a)
dfin gy = dip,in-ry — dim By 7%y oy

_ n 1 2 n—k n—k 1 2
=2V () 0 Y0 0 - 2N+ S0 - a)

- <(k1)(2nk1);(k1)(k2))
:n(n—1)—(n—k)(n—k—1)—(n—k)—%k(k—l)—(k—l)@n—k—l)

+ %(k —1)(k—2)

=n—k.

This shows that if 1 < k < n, dim ngé:’g)_’g){a,) < d‘("ln’@) - d?@:ln,k) and in fact the

shape (0, 1"7%) is not contained in (17,0). In the case when k = n (which means
that m = 1 and there is a single space in the flag) then

() ((T0).a) /
dim By yn=ky oy = dim By gy 0y’ = diin,0) = dip,0)

and (§,1"%) = (0,0) is indeed obtained from (17,)) by removing k boxes in
different rows.

EXAMPLE 5.5. We show the two diagrams with n = 5 and k£ = 3, where the
diagrams are not nested, and the case with n = k = 5, with the boxes removed
marked with an x.

(@,1nk><@,H>¢(1n,w) ol wncane=|ol,

5.3.2. Suppose that (u/,v') = (1"7* (), so that v ¢ F), which implies k < n.
Then F}, is a k-dimensional isotropic subspace of ker(z) N (Clz]v)t = (Cv)t which
is a 2n — 1-dimensional space with the restriction of the form (,) having rank 2n—2,
sor =n — 1. We then have

ngzpk):g))’a/) = {Fk C ((CU)J'| Fk C F]j" v ¢ Fk}

which is an open dense subvariety of
1L 1 -1
Gry, (((CU) ) = Grz,znq

hence it is irreducible of dimension k(2n — 1 — k) — 2k(k — 1) by Lemma 2.4 (there
is no third term because k < mn — 1).
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In this case, we have:

, 1 e 1
(1m0) = d(in-r 9y = 2N(1") = 5 Y (af — ) = (2N(1"F) - 3 > (o —ai)

i>1 i>2

:n(n—l)—%(kQ—k;)—(n—k)(n—k—l)

:k(2n—k—1)—%(k2—k)

which agrees with the dimension of the variety and the shape (1"7%, () is obtained
from (1™, 0) by removing k-boxes that are all in different rows.

EXAMPLE 5.6. We show the two diagrams with n = 5 and k = 3, as well as
the boxes removed marked with an x.

(1", 0) = (H@) camo= ol

5.4. u =0, v=2"21". In this case we have x # 0, > = 0 and v = 0, so
(Clz]v)* =V and ker(x) is a 2n; + 2ny-dimensional space where the restriction of
(,) has rank 2ny (r = ny). We define kq, ko, and h as in Section 4.1.2, by Section
4.2.3 we have that (u/,v') = ((),2nz—kethm—kitka=2h) = T, describe the variety

BEEZ ,’”y);;x 21,) we use the ideas from Section 5.1. We start by describing the variety

X (ka, h) == {F}, € Grj (ker(x)) | dim(FNIm (z)) = ko, dim(FyNz(F)) = ka—2h}
LEMMA 5.7. For 0 < k < ny + 2ns, the variety X (ka, h) is nonempty if and
only if the following inequalities are satisfied:

k
(5.3) max{0,k —n1} < ko < min{k, 2ns}; max{0, ke —na} < h < 52

PROOF. If the variety is nonempty, then for all Fy, € X'(kq, h) we have
0 < dim(Fy NIm (z)) = k2 < dim(Im (x)) = 2na,
k1 = dim(Fy/Fr NIm () >0, so ke =k — k1 <k,
Fi/(FpNIm (x)) € G:rkll"1 (ker(z)/FrNIm (x)), so k1 < mny, and kg = k—k; > k—ny,
0 < dim(Fj, NTm (z)/Fx Nx(FF)) = 2h < dim(F), N Tm (z)) = ko,
Since Fr, NIm (z) C (F Na(F))*, we have kg < 2ns — (k2 — 2h), which implies
0<ng—ko+h, soh>ky—ns.

Viceversa, if all the inequalities are satisfied, we can define Fy, = span{uy, ..., ux}.
Here we choose w1, . .., uk,—2p to be linearly independent vectors in Im () such that
((ui,uj)) = 0forall 1 <4, j, < ka—2h, then we choose ug, 2, . . ., U, to be linearly
independent vectors in (span{uy, . .., ug,—2n}*) \span{us, ..., ux, 25}, and finally
we choose Ug,+1,-..,u, to be linearly independent vectors that are not in Im (z),
such that (u;,u;) =0 for all ks +1 < 14,5, < k. Then F, € X(ko,h) # 0. O
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Observe that
X (kg, h) = {F}, € Grj (ker(x)) | dim(F, NIm (z)) = ko,
dim(Fy Nx(Fir)) = kg — 2h}
= () (wh) ™ (Grs_on (ker(@) N (ClaJo) ™ NI (2)))

= () (mh) ™t (Gt (Im (2)) ) -

The base Grt_% (Im (z)) is an isotropic Grassmannian, which (since
dim(Im (x)) = 2ny), is irreducible of dimension

(k‘g — 2h)(2n2 — ko + Qh) — %(k‘g — Qh)(k‘g —2h — 1).

Over every point S € Grtfgh(hn (z)), we have (752)71(S) ~ Gron(S-/S) by
(5.2), so each fibre is irreducible of dimension
2h(2ns — 2ks + 2h)

hence (752)~1 (Grt_gh(lm (x))) is irreducible, being a fibre bundle with irre-

ducible fibres over an irreducible base.
Again, for each U € (mh?)~! (Grﬁ;_%(lm (z))), we consider (7§)~(U) which

by (5.1) is isomorphic to an open dense subvariety of Gry, (ker(z)/U). Notice that
ker(z)/U is a vector space of dimension 2n; + 2ny — ko and the restriction of ()
has rank 2n;, hence each fibre (7¥)~1(U) is an irreducible subvariety of dimension

dim Gryi"3 vony ks = K1(2n0 4201 — ky — k) — Sk (kg — 1).

In conclusion X (ks, h) is an irreducible variety of dimension
(5.4) (k2 — 2h)(2na — ko + 2h) — 4 (ko — 2R) (ko — 2h — 1) 4 2h(2ns — 2ko + 2h)+
+ k1(2n2 + 2711 — k2 — kl) — %k‘l(kl — 1)

For (p,v) = (0,2"21™), (u/,v') = (), 2n2—kethma—kitk2=2h) we compute the
difference :

(5.5) df,,, —d&, »n—dimX(ky, h) =

, 1 ,
= 2N(2%1™) + 2ng + o — 5 D (0f — a;) — 2N (2r2kathym—hitha 2k

i>1

— (2(ng — kg + h) +ny — k1 + kg — 2R) + % > (0f —ai) = (5.4)
i>2

= (n1 +n2)(n1 +ne — 1) + na(ne — 1) + 2ng + nq — %k(k -1)
—(ni+na—ki—h)(ni+ns—k1—h-1)
—(ng—kz-f—h)(ng—kg-i-h—l)
—(2(ng —ka+h)+ny — k1 + ka —2h) — (5.4)

= h(2n1 — 2k1 + 1).

Since h > 0 and n; > kq, this difference is always > 0 and is equal to zero if and
only if h = 0.
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Notice that for fixed 0 < n} < nj; + ng, 0 < nb < ng such that n} + 2n) + k =
n1 + 2n9, we have

0,2"21"1), )
B(( ’ ’ = X k h
(0,2"2171),a/) H ( 2, )
max{0,k—n1}<ko<min{k,2no}
max{O,k:g—nz}ghg’CT2
k‘z*h:n27’ﬂ;

- 11 X (h+ng —nb, h).
max{0,nz—nj—njL}<h
h<min{k—(na—nbj),na—ns}
Where the inequalities follow from (5.3), together with the fact that ny, = no—ko+h
and nj =ny — ky + k2 — 2h by Section 4.2.3.

LEMMA 5.8. Suppose that X (ko, h) # 0 # X (ka+1, h+1), then X (ka+1, h+1) C

X (ks h).

PRrROOF. Let Fj, € X(ka+1,h+ 1) # (), such that Fy, = span{u,...,ux}, with
F, Naz(Fi) = span{uy, ..., uky—2n—1}, Fr NIm (z) = span{uq, ..., up,41}. Since
X(ka, h) # 0, we have k —ny < kg, so k— (kg + 1) < ny, it follows that there exists
a vector w & Im (z), w € Fi- ¢ Fy.. Also, X(k2,h) # () implies that A > 0, hence
2h +2 > 0 and ug,+1 € Fr NIm(2) \ Fy, Nz(F). For all @ € C, define a new
space Fy' to be spanned by the same vectors as Fj, except that uj,41 is replaced
by uk,+1 + aw. Then for all & # 0 we have F' € X(ka,h), which shows that

Fk:F]?EX(k‘Q,h). (I

By (5.5), since h(2ny — 2k + 1) = h(2n1 + 2ny — 2n, — 2k + 2h + 1), and by
Lemma 5.8, we have that for b’ > h, X(h' + ng —nf, h') is contained in the closure
mv)a)
wov')sel)

X (h + ng — nb, h), for the minimal possible value of h, i.e. h = max{0,no—nj—nb}.

of X(h + ng —nh, h) as a positive codimension subvariety. Therefore B§E

This proves that BEEZ ,’VV),’)Q L,) is an irreducible variety of dimension dim X (h 4+ ng —

nh, h) with h = max{0,ns — nj —nb}.

Now, the minimal & is h = 0 if and only if ny < n} +nj if and only if the shape
(0,2721™1) is obtained from (),2"21™) by removing boxes in a vertical strip. In
((pyv),0) = d%
. ((M,)V,)va/? (‘u,,z/) . . .
by removing boxes from different rows and is strictly lower otherwise.

conclusion, dim B — d‘(x,;, V) exactly when the shape is obtained

EXAMPLE 5.9. Here ny = 2, ng = 3, k = 4. In the first example n} + nf, =
04 2 < 3 = ny so some boxes are removed from the same row, while in the second
example nj +nby =2+ 1 =3 > ny so the boxes are removed from different rows.

(@,2"51"/1) = (@, ) C (0,2"1™) = |0, ; 0, xx|];
L X
L] X
’ ’ ‘ X
(0,2721™) = | 0, | C (0,2m21m) = | 0, , 0, [x

[« ]



24 DANIELE ROSSO AND NEIL SAUNDERS

5.5. =172, vy =1™1%"2  In this case we have ¢ # 0, 2> = 0 and 0 # v €
Im (), so ker(z) C (C[z]v)t and ker(z) N (Clz]v)t = ker(x) is a 2n; + 2na-
dimensional space where the restriction of (,) has rank 2n; (r = n;). We define kq,
ko and h as in Section 4.1.2. According to Section 4.2.4, there are three possibilities
for (u',v"), which we now examine separately.

5.5.1. Suppose that (u/,1/) = (9,2"21™) = (@), 2n2~k2thqmi—kitka=2h)  Thep
by Section 4.2.4, we have v € Fy, NIm (z), which implies that ko > 1. Notice that
there are two possibilities, either v € FyNa(Fi), or v € (FpNIm (2))\ (FyNa(FL)).
We define the following varieties

X(ka, h) = {Fy € Gri (ker(z)) | dim(Fy NIm (z)) = ko,
dim(Fy Nz (F)) = ko — 2h,v € Fy Na(FH)};

V(kg, h) = {F} € Gri (ker(x)) | dim(Fj, NIm (x)) = ko,
dim(Fy, N2 (Fib)) = ko — 2h,v € (F, NIm () \ (Fx Nz(F{H) ).

If v € FyNa(F), then ko —2h > 1, and (FyNa(F))/Co € Grt_Qh_l(C(v)lL/(Cv).
It follows that we have a description as an iterated vector bundle

1z, 1) = ()7 (757) 7 (Gt (C) /) ).
The base is an isotropic Grassmannian, hence an irreducible variety of dimension
(5.6) (ko —2h —1)(2ny — ko + 2h — 1) — L (ko — 2h — 1) (ko — 2k — 2).

Over every point S € Grthhfl(C(v)ﬂ/(Cv), we have (752)71(S) ~ Gry,(SL/S)
by (5.2), so each fibre is irreducible of dimension

2h(2ny — 2ks + 2h).

inally over a point U € (m5%)~ T —oh— v v) |, we have that (7)™
Finall U € (m52)~" (Gries_an_1 (C(v)*/C have that (7%)=1(U

is isomorphic to an open subvariety of Gré‘1 (ker(z)/U). Exactly as in the previous

section, then, each fibre (7¥)~!(U) is an irreducible subvariety of dimension

dim Gré_:,gn1+2n27k2 = k1(2ﬂ2 +2nq — ko — kl) — %kl(kl — 1)

In conclusion X! (ks, k) is an irreducible variety of dimension

(5.7) (ko —2h —1)(2ng — ka +2h — 1) — 3 (ko — 2k — 1)(ks — 2h — 2)+
+ 2h(2n2 — 2ko + 2h) + ]{31(27’LQ +2n1 — ko — k‘l) - %I{il(kl — 1).

For (p,v) = (172, 1m+4n2) (p/ V') = ((),2n2—kethmi—kithk2=2h) we compute the
difference :
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(5.8) d,,, —df,  —dim X" (ky, h)

1
=2N(2" 1) Hng = 5 D (0F — ay) — 2N (2R thymkitha 2k

i>1
1
= (2(n2 = k2 +h) + 01— k1 + ko —20) + 5 > (0f — o) = (5.7)
i>2
= (m + nz)(nl + Nng — 1) + nz(’ng — 1) —|—n2 + ny — %k(k) — 1)
—(711 +no — kq —h)(n1+n2—k1 —h—l)
_(n2—k2+h)(n2_k2+h—1)
— (2(712 — ko + h) +n1 — k1 + ko — 2h) — (57)
:2h(n1 —k1+1)+n2—k2+h
Since h > 0, ny > k1, and no — ko + h > 0, this difference is always > 0 and is
equal to zero if and only if h = 0 and ng — ko + h = 0 (which implies that ne = ko).
Now we want to describe Y(ka, h), notice that if v € (Fi,NIm (2))\ (FxNx(FL)),
that means h > 1. Since Fj, Nz(F-) = (B, NIm (2))1, if v € (F, NIm (2)) \ (Fx N
z(F)), then Fy Nx(Fk) C (Co)t, with Cv ¢ Fj, Na(F). Also the bilinear
form ((, )) restricted to the (2ny — 1)-dimensional space (Cv)*- C Im (z) has rank
2n5 — 2 (r = ny — 1). It follows that Fi, Na(Fib) € Z := {S € Grpy_y,((Cv)L) | SN
Cv = 0} which is an open dense subvariety of Gréf%((@v)ﬂ-), hence irreducible
of dimension

dim G2, 5, 1 = (ko — 2h)(2ny — 1 — ko + 2h) — §(ka — 2h) (ks — 2h — 1).
(There is no third term because k—r = kg—2h—(n2—1) = —(na—ka2+h)—h+1 < 0).
It follows that

V(ka, h) = {Fy. € (n7) " (n32) "1 (2) | v € 7F (Fy)}-
Over every point S € Z, we consider only the points U € (752)71(S) such that
v € U, i.e. we are choosing U/(S + Cv) € Grap—1(S*/(S + Cv)), so each fibre is
irreducible of dimension

dim Grop—1,20, —2(ky—2n) -1 = (2 — 1)(2n2 — 2(k2 — 2h) — 1 — (2h — 1))

= (2h — 1)(2ng — 2ka + 2h).
Finally, over a point U € (752)~1(Z), (with v € U) we have that (7¥)~1(U)

is isomorphic to an open dense subvariety of Grﬁ1 (ker(z)/U) so, as in previous
sections, it is irreducible of dimension
dim Gré‘:énl+2n27k2 = k1(2n2 +2n1 — ko — k’l) — %k‘l(k’l — 1).

In conclusion Y(ka, h) is an irreducible variety of dimension
(5.9) (k2 —2h)(2ny — 1 — kg + 2h) — (ko — 2R) (ks — 2h — 1)+
+ (Qh — 1)(2’17,2 — 2ko + Qh) + k‘l(2n2 +2n1 — ko — kl) — %k‘l(/ﬁ — 1).

For (p,v) = (172, 1m+4n2) (p/ V') = ((),2n2—kethmi—kitk2=2h) we compute the
difference :
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(5.10) df, ) — df, ) — dimYV(ka, h)

1
=2N@™1™) 4 ng = 5 > (aF — ;) — 2N (2rehethym—hitha—2hy
i>1
1
— (2(77,2 — ko + h) +n1 — ki + ko — 2h) + 52(0(3 — Oéi) - (59)

i>2
= (n1 +n2)(n1 +n2 — 1) + na(ng — 1) + no +ny — 5k(k — 1)
—(n1+mne—ki—h)(ng +ng— ki1 —h—1)
—(na—ka+h)(ng—ka+h—1)
—(2(ng —ka+h)+ny — k1 + ks —2h) — (5.9)
=2h(ny — k1) +ng — ka + h.

Since h > 1, ny > ki1, and ny — ko + h > 0, this difference is always > 0 and is equal
to zero if and only if n; = ky and ny — ks + h = 0. For fixed 0 < nf < ny + no,
0 < nh < ngy such that n} + 2n} + k = ny + 2ng, we have

1n271n1+712 a
B ) = 1T X (kg, h)
((0,2"21™1),07)
max{1l,k—n1}<k:<min{k,2ns}
max{O,k27n2}§h<k72
k’Q—hi’nQ—né

H H Y(kz, h)

max{1l,k—n1}<ks<min{k,2ns}
max{l,k27n2}§h§k72
ko—h=ns—n)

1 /
= H X (h+n2—nh,h)
max{0,na—n}—nL}<h
1—n2+n'2§h
h<min{k—(n2—nj),n2—nH—1}

11 I Y(h+ns —nbh) | ;

max{l,n2—nj—ns}<h
h<min{k—(ns—nb),na—ns}

where the inequalities follow from the same reasoning as Lemma 5.7, plus the
observations that ko > 0, in X' (ko, h) we have ko —2h > 0, and in Y (ko, h) we have
h > 0.

LEMMA 5.10. If X (ko h) # 0 # X (ky + 1,h + 1), then X' (ky + 1,h +1) C

X1(ko,h); if V(ka,h) # 0 # V(ka + 1 h+ 1), then Y(ky +1,h +1) C Y(k2, h); if
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Xl(kg,h) #+ 1] #+ y(k‘g +1,h—|—1), then y(kg +1,h—|—1) C Xl(kg,h); ile(kQ,h) #+

0 7é y(k@,h), then Xl(kg,h) C y(kg, h)

Proor. This is entirely analogous to the proof of Lemma 5.8, by choosing for
each case an appropriate basis and a vector to be deformed, details are omitted. [

Lemma 5.10 then implies, like it happened in Section 5.4, that there is one
irreducible piece (either X!(kq,h) or Y(k2,h)) of maximal dimension that con-
tains all the other ones in its closure as positive codimension subvarieties, hence

EE;;:;:Z;Q)/’)O‘) is irreducible. Notice that by (5.8) and (5.10) we have that if

ny = ng — ko + h > 0, then even the piece of maximal dimension will be of dimen-
sion strictly less than d((lu,V) — d?}:w,), and the shapes are not nested (0, A 1”/1) 04
(172 1m+72)  When n), = 0, we have that the piece of maximal dimension is
X*(ng,0) if and only if A = 0 is the minimal h, if and only if nj > ns, and
otherwise it is Y(2ne — nf,ne — n}) if and only if ny > nj. If nf > ng, then

. ((1"2,1"1+n2),o¢) 1 _ Ja o
dlm B((Q),ln/l),a’) = dlm X(n27 0) - d(ﬂ,l/) — d(#/yy/

ny > n) we have that the minimal h, is h = ny — n/, which gives

)- Otherwise, with nj = 0 and

h =ng —n}
h:ng—(nl—]ﬁ)—(kg—2h)
h=ns —niy+ki—ks+2h
O=ng—kog+h—ny+k

0= —nq + kl
ny = kla
. . (am2zamitr2y o) o / I _ Ja o'
so that indeed dim B((@J"i),a/) =dimY(2ng — nfj,np —ny) =df, - Al oy

EXAMPLE 5.11. Here n; = 2, ng = 3, k = 4. In the first example nj = 2,
ny = 1> 0, so the diagrams are not nested, in the second example n} =4, n}, =0
so the diagrams are nested and the boxes are removed from different rows of the
two tableaux.

’ ! ‘
(@’2%1”1) = @’7 ¢ (1712, 1n1+n2) — , :

(@7271/2 1n’1) _ @7 - (1n2, 1n1+n2) _ @’ 7

5.5.2. Suppose that (p/,v/) = (172,172 = (1n2~hketh qnitne—ki=h) it}
ny = ng — ka + h > 0. Then by Section 4.2.4, we have v ¢ F}, and (Fj + Cv) N
z(Fih) 2 FNz(F{), or equivalently that Fy Nx(Fi) C (Cv)*, by Lemma 4.4. In
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this case we have that ko < 2ns. We define the variety

X2(ky, h) = {F} € Gri(ker(z)) | dim(F}, NIm (z)) = ko,
dim(Fy, Nx(Fi)) = ko — 2h, v & Fy, FpNa(FF) C (Co)lt}.

Notice that (Cv) is a 2ny — 1-dimensional space, and the restriction of ({,)) to
it has rank 2ny — 2 (r = ny — 1). It follows that Fy Na(Fl) € Z == {9 €
Gréf%((Cv)l) | SNCv = 0}, which is nonempty because ns — ka2 + h > 0 implies
that ko —2h < 2ny —1, so it is an open dense subvariety of Grﬁf%((@v)ﬂ), hence
irreducible of dimension

dim Gry."25, 0 ) = (ko — 20)(2n2 — 1 — kg + 2h) — §(ky — 2h) (k2 — 2k — 1).
‘We then have
X2 (kg h) = {Fy, € (m) "M (m52)7H(2) | v & 71 (F3)}

Over every point S € Z, we consider only the points U € (752)~1(S) such that
v ¢ U, i.e. we are choosing U/S € Grap(S1/9), such that U/S N Cv/S = 0
(where Cv/S is the image of Cv under the projection onto S--/S) so each fibre, if
nonempty, is an open subvariety of a Grassmannian, hence irreducible of dimension

dim Gr2h72n2_2(k2_2h) = 2h(2n2 - 2k2 + 2h)

This fibre is nonempty if and only if it is possible to choose U/S that does not
contain Cv/S, if and only if

2h < 2ny — 2(ky — 21)
2h < 2no — 2ko + 4h

0 < 2ng — 2ks + 2h

0 <ng—ko+ h.

Finally, over a point U € (752)~1(Z), (with v € U) we have that (7%)~1(U) is
isomorphic to an open subvariety of Gré‘1 (ker(z)/U) so, as in previous sections, it
is irreducible of dimension

dim Gré‘”1

ot 2my—ky = K1(2n2 + 211 — kg — k1) — ski(k1 —1).

In conclusion X?(ks, h) is an irreducible variety of dimension

(5.11)
(k2 — 2h)(2ng — 1 — ko + 2h) — 3(ko — 2h)(ky — 2h — 1) + 2h(2ny — 2ka + 2h)+
+ k1(2n2 + 2711 — k2 — kl) — %kl(kl — 1)

For (p,v) = (172, 1™m+m2) (y/,v') = (1n2—keth prmitna=ki—=h) we compute the
difference :
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(5.12) df, ) —df, ) — dim X2 (ky, h)

=2N(2"1™) + ny +ny — % D (0f — a;) — 2N (2rzkathym—hithe—2h)
i>1

~ (o na =k =)+ 5 3 (0f — )~ (511

= (n1 +n2)(n1 +n2 — 1) + na(ng — 1) + no +ny — $k(k — 1)
—(ni+mna—ki—h)(ng +ng— ki —h—1)
—(na—ka+h)(ng—ke+h—1)
—(n1+n2— k1 —h) —(5.11)

= 2h(ny — kq).

Since h > 0 and n; > kq, this difference is always greater or equal to zero and
it equals zero if and only if h = 0 or ny; = k;.

For fixed 0 < n} < ny 4+ ng, 0 < nby < ny such that n} + 2nf + k = ny + 2no,
we have

((@m2,1m142) ) 2
B 1n 1ninty oy = 11 A% (2, 1)
max{0,k—n1 }<ko<min{k,2n,—1}
max{07k2—n2+l}§h§k72
kg*h:ngfn;
- H X2%(h +ny —nb, h).
max{0,nz—nj—nbH}<h
h<min{k—(na—nb),na—ns}

Again, the inequalities follow from Lemma 5.7 and from the fact that ko < 2nq
and ny — ka + h > 0. As in previous sections, we have that if X2(kq,h) # 0 #
X2(ky + 1,h + 1), then X2(ky + 1,h + 1) C X2(kg, h), so there is one irreducible
piece of maximal dimension that contains all the other ones in its closure as positive
codimension subvarieties. By (5.12), the piece of maximal dimension is X?(h+ny—
nf, h) for minimal h, which equals zero if and only if n} 4+ n}, > ny. Otherwise, if
ny + nb < ng, then the minimal h is h = ng — n} — nf which gives us

h =ng —n} —nl

h=mng—(n1 —ki1)— (ks —2h) — (ng — k2 + h)

h=ng—ni+ki—ko+2h—ng+kys—nh

0=-n1+k

ny = kl.
So in either case h(ny — k1) = 0 when h is minimal and we have indeed that
((172,171472) )
((1n/2’1n/1+n’2)7a/)

diagram of (1"/2,1"/1"’”/2) is always obtained by removing a vertical strip from
(1n27 1™ +n2).

5.5.3. Suppose that (p/,v/) = (1727™1,172) = (1mtne—hki=h qna—kath) it
ny = ny — k1 + k2 — 2h > 0. Then by Section 4.2.4, we have v & F}, and (F) +

is an irreducible variety of dimension d‘("#’y) - d?;;/,l/’) and the
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Cv) Nz(Ft) = Fy Na(F{), or equivalently that Fy, Nz (Ft) ¢ (Cv)tt, by Lemma
4.4. In this case we have that ko < 2ns.
We define the variety

A3(kg, h) = {Fy € Gry-(ker(z)) | dim(Fy NIm (z)) = k2,
dim(Fy, Nx(FiH)) = ko — 2h, v & Fy, FpNa(F) ¢ (Co)t}.
Notice that F, Nx(Fh) € Z :={S € Gré_%(lm ()| S ¢ (Cv)yt, SNCv = 0}

which is impossible if ko — 2h = 0, and otherwise, when ko — 2h > 0, is an open
dense subvariety of Gr%f%(lm (2)), hence irreducible of dimension

(k‘g — 2h)(2n2 — ko + Qh) — %(k‘g — Qh)(k‘g —2h — 1).
We then have
X3 (ko h) = {Fx € (1) (x5*)"1(2) | v & 7 (Fr)} = (nf) ' (752) 1 (2)

because, if S € Z, since S ¢ (Cv)*L, then Cv & S, hence for all U € (n52)~1(S) =
Grap(S*/S) automatically Cv ¢ U. So we get, for each S € Z, that the fibre is
irreducible and

dim(ﬂ§2)_1(5) = dim GrQh,2n272(k272h) = 2]7,(2”2 - 2k2 + Qh)

Finally, over a point U € (752)~! (Z), we have that (7§)~*(U) is isomorphic to an
open dense subvariety of Grlrkl1 (ker(z)/U) so, as in previous sections, it is irreducible
of dimension

: J_nl
dim Grk1 2n142n2—ka

=k1(2ne +2ny — ko — ky) — %kl(kl —-1).
In conclusion X3(ks, h) is an irreducible variety of dimension
(5.13)
(k2 — 2h)(2ny — ko + 2h) — (k2 — 2h) (ke — 2h — 1) + 2h(2na — 2ko + 2h)+
+Ek1(2n2 +2n1 — ko — k) — %kl(kl —1).
For (u,v) = (172, 1™F72) (i, V') = (1mtnz=ki—h jn2=ka+h) we compute the dif-
ference :

(5.14) dg, y —df, ) —dim X% (ky, )

1
= 2N(2"21™) +np 1 — 5 ) (of —ay) — 2N (2Rt hama

i>1

—(ng — k h 1 a2 — ;) — (5.1

(n2 2+)+2i222(1 ) —(5.13)

:(n1+n2)(n1+n271)+n2(n271)+n2+n1f%k(kfl)
—(n1+mn2—ki —h)(ni+na—k1 —h—1)
—(n2g—ka+h)(ng —ka+h—1)
— (ng — ko + h) — (5.13)
(5.15) = (2h+1)(n1 — k1).

Since h > 0 and n; > kq, this difference is always greater or equal to zero and it
equals zero if and only if n; = k.
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For fixed 0 < n} < ny + no, 0 < nb < ny such that n} + 2nf + k = ny + 2no,
we have

B2 II X3 (ks h)

(1"1"2,1m2),07)
max{0,k—n1}<ks<min{k,2n,—1}
maX{O,kg—n2}§h<k72
kg*h:nzf’ﬂ;

3 /
= H X (kg,l{?g —n2+n2).
max{k—n1,n2—nhH}<ks
ko<min{k,2ns—2nj,2ns—1}

As in previous sections, the inequalities follow from Lemma 5.7 plus the stricter
inequalities that we found in this section, also if X3(ko,h) # 0 # X3 (ke +1,h+ 1),
then X3 (ko + 1,h +1) C X3(kg, h). It follows that there is one irreducible piece of
maximal dimension that contains all the other ones in its closure as positive codi-
p((1"2,1m172) )
(@"1772,172),a7)
we have that the piece of maximal dimension is X3 (ko, k2 — ng + nj) for minimal
ky. Notice that the shape (11172, 172) is contained in the shape (172, 1™1%72) (and
hence obtained by removing boxes appropriately) if and only if ny > nf + nb,

mension subvarieties and hence is an irreducible variety. By (5.14)

ng > nj +nk
ng —nj —nhH >0
2ng —ng+ny —ny —nj —2n5+nh —k+k>0
n—ng—ny—n+ny+k>0

k—mny > mng —n

if and only if max{k — ny,n2 — nh} = k — ny, if and only if the minimal ks is
ko = k — nq, if and only if

/4}2 =k - ni1
ko = ki + ko —ng
0= k?1 — N1
ny = ]{71
n ni+mn ’
and as a conclusion dim 358"’11"5171"2;:3/)) =df, ) —d(, ) if and only if the shape

is obtained by removing boxes as desired, and is strictly lower otherwise.

EXAMPLE 5.12. Here ny = 2, ng = 3. In the first example k = 2, n} + nf, =
2+ 2 > 3 = ng, so the diagrams are not nested, in the second example k = 5,
ny +nb =14+1=2 < ny, so the diagrams are nested and the boxes are removed
from different rows of the two tableaux.

(174475, 174 = EH 7 (e = |
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’ ’ ’ .
(17L1+TL27 1”1) — (H’ D) C (1n2’ 1n1+n2) — , , 7

5.6. u=1"1"2 p =172, Here ni,ny > 0. In this case we have z # 0, 22 = 0
and v € ker(z) \ Im (z), so ker(z) N (C[z]v)* = ker(z) N (Cv)t is a 2ny + 2np — 1-
dimensional space where the restriction of (,) has rank 2n; —2 (r =ny — 1). We
define k1, ko and h as in Section 4.1.2. According to Section 4.2.5, there are three
possibilities for (u/, "), which we now examine separately.

5.6.1. Suppose that (u/,1/) = (9,2"21™) = (@, 2n2~Fkathqmi—kitka=2h)  Thep
by Section 4.2.4, we have v € F \ Fi NIm (x), which implies that k; > 1. We define
the following variety

X4(ky, h) = {Fy € Grif (ker(z) N (Clz]v)t) | dim(F, N Im (z)) = ko,
dim(Fy, Nx(Fi)) = ko — 2h,v € Fy, \ Fj, N Im (z)}.

Then

X, ) = {Fi € ()7 (eb?) ™ (Grib_pn(m (2))) | v € R},

The base of the iterated fibre bundle is the isotropic Grassmannian Gréﬂh(lm (2))
which is irreducible of dimension

(k‘g — 2h)(2n2 — ko + 2h) — %(k‘g — Qh)(k‘g —2h — 1)

Over each point S € Gréf%(lm (z)), we have (m52)~1(S) =~ Grap,(S*/S), so each
fibre is irreducible of dimension

2h(2ny — 2ks + 2h).

Finally, for each U € (752)~1 (Grﬁ;f%(Im (ac))), we only consider the points F' €

(m¥)~1(U) such that v € F, so we are choosing
F/(U + Cv) € Gry, _(ker(z) N (Clz]v)* /(U + Cv)) = Gri,™ or, vons ka2

which is irreducible of dimension (k1 —1)(2no+2n1 —ka—k1 —1) — %(k‘l —1)(k1 —2).
In conclusion, X*(kq, h) is an irreducible variety of dimension

(516) (kg — 2}7,)(2’/12 — ko + 2h) — %(k‘g — Qh)(k’z —2h — 1)
+ 2h(2ny — 2ko + 2R) + (k1 — 1)(2n2 + 201 — ko — k1 — 1) — 2(k1 — 1) (k1 — 2).
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For (u,v) = (1™tn2 1n2) (y/ v') = (), 2m2—kethima—kitka=2h) we compute the
difference :

(5.17)  d?, ) —d%, . — dim X% (ks h)

_ no 1My 1 2 no—ko+hiny—ki1+ka—2h
= 2N (2"21 )—i—ng—iZ(ai—ai)—QN(Q 1 )
i>1
1
= 2(ng — ka +h) = (n1 — k1 + k2 = 2h) + 5 > (0f — o) — (5.16)
i>2
= (n1 + ng)(nl + no — ].) + TLQ(nQ — ].) —+ ng — %k(k — ].)
—(n1 +no — kq —h)(n1+n2—k1 —h—l)
—(ng —ka+h)(ng—ka+h—1)
— 2(TL2 — ko + h) — (Tll — k1 + ko — 2h) — (516)
= (2]7, -+ 1)(n1 — kl) —+ (TLQ — kQ + h)

which is always greater or equal to zero and equals zero if and only if ny = k1 and
ng — ko +h =0.

For fixed 0 < n} < ny + no, 0 < nb < ny such that n} + 2n + k = ny + 2no,
we have

ni+n n
B ) = 11 X4 (ky, h)
(0,2"21"1),a’)
max{0,k—n1}<ko<min{k—1,2ns}
max{07k27n2}§h§k72
kQ*h:’ﬂz*TLé

4 /
= H X (kg,kg —n2+n2)
max{k—n1,n2—nb}<ks
ko<min{k—1,2no—2n5}

As before, if X4(ka, h) # 0 # X* (k2 +1,h+1), then X4 (ko +1,h+1) C X4(ka, h).
It follows that there is one maximal dimensional piece that contains the others in its
171 +ng 11712 ),Oé)
0,2"2171),0/)

and its dimension is the dimension of X*(kq, k2 — na + nb) for minimal ko. If nf, =

ng — ko + h > 0, then all pieces are strictly lower dimensional than d?ﬂ v~ d?;;, )
and the shape of (u/,v’) is not contained in the shape of (u,r). Otherwise, when
nhy = 0, then n = n}| + k so we have that the minimal ko is k — ny if and only if

k—mny > no,

closure as positive codimension subvarieties, hence BEE is irreducible,

kE—mn12>no

kE>mno+ng

n—mnj >2ns+n; —no

n—ni>n—ns

ng > n’l
if and only if the shape (u’,7') is contained in the shape of (u,v). Also notice
that ko = k — ny, is equivalent to n; = kj so that indeed when n) < ny we have
dim B((1"1+n2 172),a

((0,272171),07)
lower otherwise.

) — dim X4 k—ny,k—ny —ny) = g, )= d?;;’,u’)’ and is strictly
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EXAMPLE 5.13. Here n; = 2, ng = 3. In the first example k = 4, n| = 2,
ny, = 1 > 0, in the second example k = 4 and, while nf, = 0, n} =4 > 3 = ng,
o in both cases the diagrams are not nested. In the third example k = 6, n}, = 0
and nj = 2 < 3 = ng, so the diagrams are nested and the boxes are removed from
different rows of the two tableaux.

o |
0,217 = (0,1 | ¢ e = | [ ]

@0,2721") = | 0,— | ¢ Q"2 1me) =

(0’271’2 1n'1) _ (@’H) c (1711+n27 1n2) _ ,E ,

5.6.2. Suppose that (p/,v/) = (172, 172Fm) = (1n2—hketh qnitna—ki=h) it}
ny = ng — ko + h > 0. Then by Section 4.2.4, we have v ¢ Fj, and (Fy + Cv) N
z(Fih) 2 F,Nz(F), or equivalently that (v+ Fy) Na(Fi-) # 0, by Lemma 4.5. In
this case we have that k1 > 1 (otherwise if Fj, C Im (z), then (v+ Fy) NIm (z) = 0).
Notice that since v ¢ Im (), the condition that v & Fy, (v+ Fy) Na(FL) # 0 is
only possible if z(Fi-) ¢ F}, equivalently,

(FO\Fr #0 <= z(FH)\ Fena(FL) #0
— dim(z(F)) > dim(F), N2(F)).

Since z(Fit) = (Fy, N Im (x))* by Lemma 4.3, the dimension condition can be
expressed as

2ng — ko > kg —2h <= 2n9 —2ko +2h >0 <= no— ko +h >0
which has to be satisfied. We define the variety
X5(ka, h) = {Fy € Gry (ker(z) N (Clz]v)t) | dim(Fy NIm (z)) = k2,
dim(Fy Nx(Fib)) = kg — 2h, v & Fy, (v+ F) Na(F) # 0}
which we can write as
X0 (k, ) = {Fi € (nh) 7 (m?) ! (Grib_on(m (2))) | v & i,
(v+ Fi) N (w7 (Fy)) ™ # 0}

The base of the iterated fibre bundle is the isotropic Grassmannian Gréfzh(Im (2))
which is irreducible of dimension

(ko — 2h)(2ns — ko + 2h) — (ko — 2R) (ke — 2k — 1).
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Over each point S € Gri_%(lm (z)), we have (752)1(S) ~ Grap,(S*/S), so each
fibre is irreducible of dimension

2h(2ns — 2ky + 2h).

Finally, for each U € (x52)~1 (Gr,ﬁ_%(lm (x))), we only consider the points F' €
(7F)~Y(U) such that v ¢ F, (v+ F) N (U)* #£ 0.

Suppose L = (v+ F)N(U)* # 0 and w € L, then w € (U)X \ FNnUY =
(U)*\UNU, viceversa given w € (U)1\UNUY, we have that L # () if and only
ifw=wv+f with f € F,if and only if w—v € F. L (if nonempty) is an affine space
of dimension equal to dim F N U = dimU N U and all points in L are of the
form w 4w, with w € L and v € UNU. Tt follows that if w,w’ € (U)*\UNU,
then (U + C(w —v))/U = (U + C(w’' —v))/U if and only if w —w’ € U NUL.

So, we have an isomorphism of varieties

D= {(w,D) |we (U)*\UNUH)/(UNT),
De Grﬁl_l(ker(x) N (Clz]v)t /(U 4 C(w —v)),v & D}

~{Fe(m) " (U)|vgF, (v+F)n(U)" #0}

given by (w, D) — D, where D is any pre-image of D under the projection ker(z)N
(Clx)v)t /U — ker(z) N (Clz]v)*+ /(U + C(w — v)).

The variety D is by definition a fibre bundle with the map (w, D) — w, with
base () \UNUL)/UNUL = (U)\ 752 (U))/xh2(U), which is an irreducible
variety of dimension dim((U)4) — dim(U NUY) = 2ngy — kg — (ko — 2h) = 2ny —
2ko + 2h (isomorphic to a vector space minus the origin), and fibre isomorphic to
an open dense subvariety (to guarantee that v € D) of

Gry,_y (ker(z) N (Clalo): /(U + C(w —v)) = Gr™ b o4y

which is irreducible of dimension (k1 —1)(2na+2n1 —ka— k1 —1) — %(k‘l —1)(k1 —2).
In conclusion, X®(ky, h) is an irreducible variety of dimension

(5.18)
(k‘Q — 2h)(2n2 - kQ + Qh) —
+2n2—2k2+2h+(k1 —

(ko — 2h) (ko — 2h — 1) + 2R (2ny — 2ks + 2h)+
)(2712 + 2711 - ]{72 — kl - 1) - %(/ﬁ - 1)(/€1 — 2)

For (p,v) = (172 1m2) (i, v') = (1n2—keth (mtne—ki—h) we compute the dif-
ference:
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(5.19)  df,,) —d, . —dim X% (ky, )

1
= 2N(2M1™) 4o — 5 > (0F = ay) — 2N (2R thmhitkem2hy
i>1
1
= (m+na =k —h)+ 3 Z(a? — ;) — (5.18)
i>2
=(n1+mn2)(n1+n2—1)+na(ne —1) +ng — %k(k‘ —-1)
—(n1 +n2—k1—h)(n1 +ng — ky —h—l)
7(n27k2+h)(n27k2+h71)
— (n1 + no — kl - h) - (518)
= (2]1, + 1)(711 - k‘1)
which is always greater or equal to zero and equals zero if and only if n; = k;. For
fixed 0 < nj < ng +nz2, 0 < nb < ng such that nf + 2nh + k = ng + 2n2, we have

1nl+n2 1n2) Oz) 5
Bl = 11 X5 (ka, h
(17 175475, ar) (K2, h)
max{0,k—n1 }<ko<min{k—1,2ns}
max{O,szng}Shg%"
kQ*h:’ﬂz*TLIQ

5 /
= H X (kg,kg —n2+n2)
max{k—n1,n2—nb}<ko
ko<min{k—1,2no—2n5}

As before, if X5(ka, h) # 0 # X5(ka+1,h+1), then X5 (ka+1,h+1) C X5(ko, h). Tt
follows that there is one irreducible piece of maximal dimension that contziins all the
(Am1772,172) )
Bl ey
is an irreducible variety. By (5.19) we have that the piece of maximal dimension is
X5 (kg, ko —ng+nf) for minimal ky. Notice that the shape (172, 1"1172) is contained
in the shape (1”172 1"2) (and hence obtained by removing boxes appropriately)

if and only if ng —nj —nbH >0

other ones in its closure as positive codimension subvarieties, hence

ng—n’l—n’QZO
2n2—n2+n1fnl—nll—Qn’QJrn/kaJrkZO
n—ng—ny—n+ny+k>0

k—mny >ng —nj

if and only if max{k — ny,na — nb} = k — nq, if and only if the minimum possible
ko is ko = k — nq, if and only if

kg =k—- ny
ko =k1 + ko —mnq
0= kl — N
ny = k1
and as a conclusion dim BESZ;J}TZ;‘Z;?)) =dg, ) - d?‘;,y,) if and only if the shape

is obtained by removing boxes as desired and is strictly lower otherwise.
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EXAMPLE 5.14. Here nq = 2, ny = 3. In the first example k = 2, n} + nj, =
2+ 2 > 3 = ng, so the diagrams are not nested, in the second example k = 5,
nj +nhy =1+ 1= 2 < ny, so the diagrams are nested and the boxes are removed
from different rows of the two tableaux.

(171'1’ 1n'1+n’2) _ H7E ¢ (1n1—i-n27 1n2) _

5.6.3. Suppose that (u/,1/) = (12171 172) = (1mtn2=ki=h qn2—kath) ith
ny = ny — k1 + k2 — 2h > 0. Then by Section 4.2.4, we have v € F}, and (Fj +
Cv) Nz(F) = Fy Na(F), or equivalently that (v + Fy) Nz(F) = 0, by Lemma
4.5. We define the variety

XS(ka, h) = {Fy € Gry (ker(z) N (Clz]v)t) | dim(Fy NIm (z)) = k2,
dim(Fy Nz(FH)) = ko — 2h, (v+ Fy) Nz(FL) =0}

which we can write as

XO(ka, h) = {F € (xF) 1 (eh?) ! (Grib_op (I (2))) | (0 + F) 0 (e (F) ™ = 0},

The base of the iterated fibre bundle is the isotropic Grassmannian Grf;f%(Im (x))
which is irreducible of dimension

(k‘g — 2h)(2n2 — ko + 2h) — %(k‘g — Qh)(k‘g —2h — 1)

Over each point S € Gry._,,(Im (z)), we have (782)=1(8) ~ Grop(S1L/S), so each
fibre is irreducible of dimension

2h(2ns — 2k + 2h).

Finally, for each U € (752)~! (Grﬁ;zh(Im (95))), we only consider the points F' €
(7F)~1(U) such that (v + F) N (U)* = 0, which is an open dense subvariety of

Gri, (ker(z) N (Clajv)t /U) ~ G

k1,2n142n2—1—ko
which is irreducible of dimension ki (2ne +2n; — kg — k1 — 1) — %kl (k1 —1).
In conclusion, X% (ky, h) is an irreducible variety of dimension
(520) (kg — 2}7,)(2’/12 — ko + 2h) — %(k‘g — Qh)(k’z —2h — 1)+
+ 2h(2n2 — 2]€2 -+ Qh) —+ k1(2n2 + 27L1 — kQ — ]{71 — ].) - %kl(kl — 1)
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For (p,v) = (172 1m2) (i, v') = (1matnz—ki=h na=k2+h) we compute the dif-
ference:

(5.21)  df,,) —d, . —dim X%(ky, )

1
= 2N(2"1™) +np — 5 D (0f — ;) — 2N (2r Rtk ymshitha 2k
i>1

— (ng —ky+h) + % ;(a? — ;) — (5.20)
=(n1+n2)(n1+ne—1)+na(ne—1) +ng — %k(k -1)
—(np+na—ki—h)(ni+ns—k1—h-1)
—(ng—ka+h)(ng—ka+h—1)
— (n2 — ko + h) — (5.20)
=2h(n1 — kq).

Since h > 0 and n; > kq, this difference is always greater or equal to zero and it
equals zero if and only if h =0 or ny = k.

For fixed 0 < n} < ny 4+ ng, 0 < nby < ny such that n} + 2nf + k = ny + 2no,
we have

((Amtr21m2) 0y 6
B((17L3+,L/2711L/2)7a,) = H X° (2, h)
max{0,k—nq}<ks<min{k,2no}
max{(),kgfnz}ghgICT2
kg—h:ng—nf‘,

= H XO(h +ny —nb, h).
max{0,n2—nj—nb}<h
h<min{k—(n2—nb),n2—nhH}

As in previous cases, if X6(kg, h) # 0 # X%(ka+1,h+ 1), then X6(ka +1,h+1) C
X6(ko,h). It follows that there is one irreducible piece of maximal dimension that
contaiJrrls all the other ones in its closure as positive codimension subvarieties, hence

(1"1F72,172) )

(172171772 o)
is X%(h 4+ ny — nb, h) for minimal A. This minimal h equals zero if and only if
ny + nb > ng. Otherwise, if n} + nf < no, then the minimal h is h = ny — n) — n)
which gives us

is an irreducible variety. By (5.21), the piece of maximal dimension

h =ng —n} —n
h=mny— (n1— k1) — (k2 — 2h) — (ng — k2 + h)
h=no—ni+ki —ka+2h—no+ks—h
0=-—n1+k
ny = kq.
T2 172) q)

. . . ’
is of dimension d% d¢

So we always have that B () ~ A vy

((1"1+72.172),00)

5.7. u=2"21" v = (. Here ng > 0. In this case we have z # 0, 2 = 0 and
v € ker(z), so ker(z) N (C[z]v)*+ = ker(z) N (Cv)t is a 2n; + 2ny — 1-dimensional
space where the restriction of (,) has rank max{2n; — 2,0} (r = max{n; — 1,0}).
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We define k1, ko and h as in Section 4.1.2. According to Section 4.2.6, there are
two possibilities for (¢, "), which we now examine separately.

5.7.1. Suppose that (u/,1') = (17271 172) = (1mtn2—ki=h qna—kath) They
by Section 4.2.6, we have 0 # xv € F}, and since we know that zv € x(FkL) we
necessarily have that zv € Fj, N x(F), hence we have ky — 2h > 0 and n} =
ny — ki + ko —2h > 0.

We define the variety

X7(ka, h) = {Fy € Gry(ker(z) N (Clz]v)t) | dim(Fy NIm (x)) = ko,
dim(Fy Nx(FiH)) = kg — 2h,2v € F Nx(FiH)}

If zv € F,Na(Fi), then (F, Na(FL))/Cav € Gré_%_l(({:(m‘v)l/(&cv). It follows
that we have a description as an iterated vector bundle

X7 (hkz, 1) = () 7 (m5) 7 (Gt o (Co) ™ /Cav))
The base is an isotropic Grassmannian, hence an irreducible variety of dimension
(5.22) (ko — 2k —1)(2ny — ko + 2h — 1) — 3(ky — 2h — 1) (ko — 2k — 2).

Over every point S € Gr,f;f%((@xv)ﬂ/@xv), we have (752)~1(S) ~ Gry,(S1/9),
so each fibre is irreducible of dimension

2h(2ny — 2ks + 2h).

Finally over a point U € (m5?)~! (Gr%72h71((va)L/Cmv)), we have that, when

ny > 1, then (7§)~(U) is isomorphic to an open dense subvariety of
i Lni—1
Gy, (ker(x) N (ClaJv)* /U) = Gryi) o, Lony -1k

which is irreducible of dimension ki (2ng +2n; — ko — k1 — 1) — %k‘l (k1 —1). Notice
that if n; = 0, then necessarily k; = 0 and (7§)~*(U) is a single point, so the
formula for the dimension works in this case as well. In conclusion, X7(ks, h) is an
irreducible variety of dimension

(5.23) (kg — 2h — 1)(2ng — ko + 2h — 1) — L(ky — 20 — 1)(ky — 20 — 2)+
+ 2h(2n2 — 2]€2 -+ Qh) + k1(2n2 + 27L1 — kQ — ]{71 — ].) - %kl(kl — 1)
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For (p,v) = (2"21™1, (), (u',v') = (1mtnz—ki=h qna—ka+h) we compute the differ-
ence:

(5.24) dg, , —dd, ) —dim X7 (ky, h)
— 21m1 1 2 2—ko+hni—ki+k2—2h
=2N(2"1™) - o Z(ai —a;) — 2N (2" 1" )
i>1
1
- (712 - ]{12 + h) + 5 Z(O&? - Oé,') - (523)
i>2

= (n1 +n2)(n1 +n2 — 1) + na(ny — 1) — L1k(k — 1)
—(ni+na—ki—h)(ni+na—k1—h-1)
—(ng—ka+h)(neg—ka+h—1)

— (ng — ko + h) — (5.23)
(5.25) =h(2n; —2k; +1)+no — ko + h.

Since h > 0, n; > k1, and ny — ko + h > 0 this difference is always greater or equal
to zero and it equals zero if and only if h = 0 and ny — ky + h = 0, (which means
Nng = k‘g)

For fixed 0 < n} < ny 4+ ng, 0 < nb < ng such that n} + 2nf + k = ny + 2no,
we have

B0 I1 X7 (kz, h)

((1n/1+71/2 .’171'2 ),O/) =
max{0,k—n1 }<ke<min{k,2ns}
max{O,k27n2}§h<k72
k}g*h:ngf’né

= H X"(h+ny —nb, h)

max{0,n2—nj—ns}<h
h<min{k—(n2—nb)),na—ns—1}

As in previous cases, if X7 (kg, h) # 0 # X7 (ks +1,h+1), then X7(ky +1,h+1) C
X7(ka, h). Tt follows that there is one irreducible piece of maximal dimension that
contains all the other ones in its closure as positive codimension subvarieties hence

(@"17.0).2) g jrreducible. Notice that by (5.24) we have that the piece of

((@"1F72,172),07)
maximal dimension is X' (h 4+ ng — nb, h) for minimal h.
If nf, = ny — ko + h > 0, then all pieces are strictly lower dimensional than
) — d‘()‘;,vy,) and the shape of (¢, ") is not contained in the shape of (u,v).
Otherwise, if ny = 0, we have that the minimal & is max{0,ns — n}}, and this
equals zero if and only if n} > ng, if and only if the shape (1"/1 ,0) is obtained from

(2"21™1 ) by removing boxes with no two of them being in the same row.
272171 0),cr)

1hnh 11h) o)
equal to d?u,u) —d‘(’;;,,y,) with equality if and only if the shape is obtained by removing

boxes in the appropriate way.

In conclusion, BEE is an irreducible variety of dimension less or

EXAMPLE 5.15. Here n; = 2, ng = 3. In the first example k = 4, nj = 2,
ny =1 > 0, so the diagrams are not nested. In the second example k = 6, and,
while n, = 0, n} = 2 < 3 = ny, so some boxes are removed from the same row,
while in the third example k = 4, nf, = 0 and nj = 4 > 3 = ng, so the boxes are
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removed from different rows of the two tableaux.

(17+me, 172) = @D ¢ (2m21.0) = 0

X
X
(1mtme 1m2) = (HV)) C(2™1™,0) = O | xlx[ 0]
| X
X
X
X
(1”1"‘”27 1”2) = 7[2) C (2”2 1”1,0) =[] 7@ ) ?77®
K

5.7.2. Suppose that (u/,') = (2"21™,()) = (2r2~kethpm—kitha=2h () " ith
ny =mns — ke + h > 0. Then by Section 4.2.6, we have 0 # v € Fy,. We define the
variety

X8(ka, h) = {Fy € Gri (ker(z) N (Clz]v)t) | dim(Fy NIm (z)) = ko,
dim(F), Nx(Fib)) = ko — 2h, 20 & Fi}.
Notice that, since zv € x(Fi-) = (F, N Im (z)), we have Fy, NIm (z) C (Cav)Lt.
Also the bilinear form ({ , )) restricted to the (2ny—1)-dimensional space (Czv)*- C
Im (z) has rank 2ns — 2 (r = ny — 1). It follows that Fy Nz(F) € Z =
{S € Gr,ﬁ_%(((&w)l) | SN Cxv = 0} which is an open dense subvariety of
Grs_op ((Czv) L), hence irreducible of dimension

dim G2, 5, 1 = (ko — 2h)(2ny — 1 — ko + 2h) — §(ka — 2h)(ky — 2h — 1).

Over every point S € Z, we consider only the points U € (7T§2)71(S) such that
xv ¢ U, and U C (Czv)* ie. we are choosing U/S € Gray((SH N (Czv)t)/S),
such that U/SNCzv/S = 0 (where Cav/S is the image of Cxv under the projection
SEN(Cav)t — (SN (Cav)t)/S) so each fibre, if nonempty, is an open subvariety
of a Grassmannian, hence irreducible of dimension

dlm Grzh,72n2_2(k2_2h)_1 = 2h(2n2 — 2]€2 + 2h — ].)

This fibre is nonempty if and only if it is possible to choose U/S that does not
contain Czv/S, if and only if
2h < 2ng — 2(kg —2h) — 1
2h < 2ng9 — 2ky +4h —1
1 < 2ng — 2ke + 2h
1/2 < ng — ko + h.

which is equivalent to ne — k2 + h > 0 since those are all integers.
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Finally, over a point U € (752)=1(Z), (with U C (Czv)!- and zv ¢ U) we have
that, when n; > 1, (7¥)~(U) is isomorphic to an open dense subvariety of

Gry, (ker(z) N (Clajv) - /U) = Grp s Lo 1,

which is irreducible of dimension k1 (2ng + 2ny — ko — k1 — 1) — %k:l(kl —1). If
n1 = 0, then necessarily k; = 0 and (75)~1(U) is a single point, so the formula for
the dimension works in this case as well. In conclusion, X®(ko, h) is an irreducible
variety of dimension

(5.26) (ko — 2h)(2n2 — ko + 2k — 1) — (ks — 2h) (ko — 2k — 1)
+2h(2ng — 2ky + 2h — 1) + k1 (2na + 20y — ko — k1 — 1) — 1k (ky — 1).

For (p,v) = (22171, (), (u',v') = (2n2—hethimi—kitka=2h () we compute the dif-
ference:

(5.27) ¢,y = Al — dim X3 (ky, )

= 2N(2n2 1”1) _ %Z(a? _ ai) _ 2N(2n2—k2+h1n1—k1+k2_2h)

i>1

+ % ;(a? — o) — (5.26)
=(n1+n2)(ny+ne—1)+ng(ng —1) — %k(k -1
—(ni+na—ki—h)(ni+ns—k1—h-—1)
— (ne — ko + h)(n2 —ka+h—1)—(5.26)
= h(2ny — 2k + 1).

Since h > 0 and n; > k; this difference is always greater or equal to zero and it
equals zero if and only if h = 0.

For fixed 0 < n} < ny 4+ ng, 0 < nby < ny such that n} + 2nf + k = ny + 2no,
we have

B0 11 X5 (ky, h)

((2"2171,0),0")
max{0,k—n1 }<ks<min{k,2no}
max{O,kz—ng—i-l}ghngQ
szh:ngfn;

8 /
= H X% (h+ng —nj, h)
max{0,n2—nj—ns}<h
h<min{k—(n2—np),no—no—1}

As in previous cases, if X8(ka, h) # 0 # X3(ka +1,h+ 1), then X8(ky +1,h+1) C
X8(ka, h). Tt follows that there is one irreducible piece of maximal dimension that
C()(I(lzt%iilwsl %1)1 i)he other ones in its closure as positive codimension subvarieties hence

(@"21"1%),01)
is X8(h + na — nb, h) for minimal h i.e. h = max{0,ny — n} —nb}. The minimal
his h = 0 if and only if ny < n} + nb if and only if the shape (2721"1,0) is
obtained from (2"21™ () by removing boxes in a vertical strip. In conclusion,

is irreducible. By (5.27) we have that the piece of maximal dimension

dim BEEZ,‘Z/),’;?;,) =d, -~ d((x;;’,.u’) e%actly when the Sh.ape is obtained by removing
boxes from different rows and is strictly lower otherwise.
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EXAMPLE 5.16. Here ny = 2, ny = 3, k = 4. In the first example n| + n}, =
0+ 2 < 3 = ng so some boxes are removed from the same row, while in the second
example nj +nby =2+ 1 =3 > ny so the boxes are removed from different rows.

(2"9’1”'1»@):( ’(D)C(?"?l”%@): Loy, Ix]x[0 s
|| | X |
L X
, , X
@517 0) = | 10 c @=1m.0) = ol |0
L || | X |
L | X |

6. Extending to any z‘ =0

In this section we outline how our computations for the proof of the case of
22 = 0 could be extended to any nilpotent . We are not able to carry it out in
this paper, but it should be the basis for future work.

Suppose that zf = 0, z*~1 # 0 for some £ > 0, then A = (¢™-..2"21™) for
some n; > 0 and J(z) = (62”"' e 22”212"1). For any isotropic subspace 0 C F}, C
F- C V with Fy, C ker(z), we define k; := dim(F), NIm (27 ~1)) — dim(F}, N Im (z79))
for j =1,...,¢. Then by Lemma 3.2 we have that

J (x‘V/Fk) =J (x|Fk) — (g2ne—/€z (¢ — 1)2n271—7€e71+kz .. 22n2—/€2+7€312n1—/€1+k2) )

Now, notice that since Im (x) C Fi-, for all j we have that Im (27) C 27~ 1(Fy).
We have then a filtration of subspaces

L C RN (FH) C FenIm(27) € Fyna?d Y (FF) € B, nIm (2971 ¢ -

By Lemma 4.3, 7 (Fi-) = (F, N Im (xj))ll‘j, so (F, NIm (z7)) / (Fr Nad (FH)) isa
symplectic space with non-degenerate skew-symmetric bilinear form given by the re-
striction of ((, ));. We denote the dimension dim (Fj, N Im (27)) / (Fj, Nz (Fib)) =
2h; (so the h we used in the previous sections would actually become h;).

Then, we apply Lemma 3.7 and, since

ke —2hp_q ifj=/+¢
a;;l—ag-z kj+2hj—2hj_1 1f1<]<€,
ky + 20, if =1

we obtain that
J (xlF,j/Fk> — (anl_Qk[“’th—l (g _ 1)2n£—1—2k2—1+2ké—4h2—1+2h2—2
([ _ 2)2n272*2k572+2k571+2he73*4he72+2h571 .

. 22n272k2+2k3+2h174h2+2h3 12”172k1+2k274h1+2h2)

The difficulty then lies in computing J (ac| FL/F, +CMU> because there are many
different possibilities in general for how v can fit within the various subspaces
involved in the computation and we do not know how to treat it in general. The
case-by-case approach we used for ¢ = 1,2 quickly becomes unwieldy for ¢ > 2.



44 DANIELE ROSSO AND NEIL SAUNDERS

7. Exotic Robinson-Schensted-Knuth correspondence

The Robinson-Schensted correspondence is a combinatorial bijection between
permutations and pairs of standard Young tableaux of the same shape, and it was
given a geometric interpretation by Steinberg (see [19]) in terms of varieties of
pairs of flags in Type A. In [18], one of the authors generalized the construction to
pairs of partial flags, obtaining the Robinson-Schensted-Knuth (RSK) correspon-
dence between matrices with nonnegative integer entries and pairs of semistandard
Young tableaux of the same shape. We now outline how Conjecture 2.19 similarly
implies an exotic Robinson-Schensted-Knuth correspondence that generalizes the
one obtained for complete flags in [16].

DEFINITION 7.1 (Partial exotic Steinberg Variety). Let «, 8 be compositions
of n, we define the ezxotic Steinberg variety of type (a, 8) to be

3% = {(Fo, F, (v,2)) € FH(V) x FA(V) x N | Fy €C, ,, FLeCl, )

Notice that for « = § = 1", we obtain the exotic Steinberg variety of [15, Def.
6.1].

DEFINITION 7.2 (Relative Position). Let « = (a,...,am) En,

B = (B1,---,Be) En, F € FY(V), F' € FP(V). We define a matrix A4 =
A(F, F') = (aij)1<i<om,1<j<2e by

which we call the relative position of the partial flags F' and F”.

REMARK 7.3. Notice that the row sums of A(F, F’) are
&= (a1,Q9,. .., Qm, Qn, -« - ,aq) and the column sums are

B = (B1,B82,--,B8¢ Be, ..., 01). Also, since Fot = Fs,, _, and FéL = Féw it
J -—J
follows that

(7.1) A2m41—3,2041—5 = G5 5.
For a, B E n, we define M®? to be the set of matrices with nonnegative integer
entries, with row sums &, column sums 5 and satisfying (7.1).

REMARK 7.4. The set M®# parametrizes the orbits of the diagonal action
of Spy,, on F(V) x FA(V). Also, we can identify M*# with the double cosets
W \W/Wpg, where W is the Weyl group of Type C (signed permutations) and W,
W3 are parabolic subgroups.

Let 0 : 3%F — F(V) x FP(V) defined by 0(F,, F., (v,z)) = (F, F’), then for
A e M*P we define 357 = 0-1(A).

On the other hand, for any bipartition of n, (u,r), and composition « F n, we
let SYB® (1, v) be the set of all semistandard bitableaux of shape (i, v) and content
. Then for any T € SYB®(u,v), T € SYBP(u, v), we can consider the subvariety

390, = {(F.F',(v,2)) € 3*7 | ®(F) =T, ®(F') =T'}.

CONJECTURE 7.5. The variety 3% (if nonempty) is pure dimensional of di-

mension 2n® — 3 37" (0? —a;)— 3 Ele (8% —B;) and its irreducible components are

{BZ’ﬂ | A€ M%PY. The irreducible components of 3%° can also be parametrized
as

{355 | (1,v) € Qu, T € SYB*(u,v), T' € SYB? (1, 1)}
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This would follow from Conjecture 2.19 and give a geometrically defined bijec-
tion
M*Pe— [ SYB*(n,v) x SYB?(u,v)
(1,v)€Qn

given by A + (T,T") if and only if Si’ﬂ = 3%% We expect that its combinatorial
description should be a ‘semistandardization’ of the algorithm of [16], analogously
to what was done in [18] for the RSK correspondence in Type A.

EXAMPLE 7.6. Let n = 2, and « = § = (2), then there are three pairs of
semistandard bitableaux of the same shape with contents « and [, which are

wnwm. (@) @) (@8 C)

It can then be checked that the geometric correspondence matches these respectively
to the following matrices of relative positions (which comprise the set M (2)’(2)):

TRENT!
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