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Towards fair decentralized benchmarking of
healthcare AI algorithms with the Federated
Tumor Segmentation (FeTS) challenge

A list of authors and their affiliations appears at the end of the paper

Computational competitions are the standard for benchmarking medical
image analysis algorithms, but they typically use small curated test datasets
acquired at a few centers, leaving a gap to the reality of diverse multicentric
patient data. To this end, the FederatedTumorSegmentation (FeTS)Challenge
represents the paradigm for real-world algorithmic performance evaluation.
The FeTS challenge is a competition to benchmark (i) federated learning
aggregation algorithms and (ii) state-of-the-art segmentation algorithms,
across multiple international sites. Weight aggregation and client selection
techniqueswere comparedusing amulticentric brain tumordataset in realistic
federated learning simulations, yielding benefits for adaptive weight aggre-
gation, and efficiency gains through client sampling. Quantitative perfor-
mance evaluation of state-of-the-art segmentation algorithms on data
distributed internationally across 32 institutions yielded good generalization
on average, albeit theworst-case performance revealed data-specificmodes of
failure. Similar multi-site setups can help validate the real-world utility of
healthcare AI algorithms in the future.

Glioblastomas are arguably the most common, aggressive, and het-
erogeneous adult brain tumors. Despite the proliferation of multi-
modal treatment composed of maximal safe surgical resection,
radiation, and chemotherapy, the median survival is approximately 8
months, with less than 7% of patients surviving for over 5 years1. This
poor prognosis is largely on account of the pathological heterogeneity
inherently present in glioblastomas, leading to treatment resistance,
and thus grim patient outcomes. Radiologic imaging (i.e., magnetic
resonance imaging (MRI)) is the modality of choice for routine clinical
diagnosis and response assessment in glioblastoma patients, and
delineation of the tumor sub-regions is the first step towards any
computational analysis that can enable personalized diagnostics2.

While manual annotation is arduous because of the tumor het-
erogeneity, significant progress has been made in the field of auto-
matic segmentation of brain tumors3–5. Translating these research
results to real-life applications, however, remains anopen challenge, as
deep learning models struggle to maintain robust performance in
unseen hospitals, if their data was acquired from different imaging

devices and populations than the data formodel development6–10. This
canbe partially addressed by collecting diverse data centrally to train a
robust model that will generate acceptable results on unseen data.
However, this centralized data collection is hampered by various cul-
tural, ownership, and regulatory concerns like the Health Insurance
Portability and Accountability Act (HIPAA) of the United States and the
General Data Protection Regulation (GDPR) of the European Union
that restrict data sharing among institutions.

Federated learning (FL)11 is a promising approach to train robust
and generalizablemodels by leveraging the collective knowledge from
multiple institutions, while sharing only model updates with a central
server after local training to preserve privacy12. In the typical FL
workflow, local training at federated collaborators is performed
repeatedly inmultiple federated rounds, and at the end of each round,
the central server aggregates all received model updates into a global
model, which is used as the initialization for the next round of feder-
ated training. Hence, aggregation methods are a crucial technical
aspect of FL and an active field of research13,14. The pioneering FedAvg
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aggregation method11 uses weighted averaging of the updated model
parameters from each institution, where the weights are proportional
to the dataset size of each site. Building on top of this method, Briggs
et al.15 formulated a strategy of hierarchical clustering that groups sites
based on the similarity of local updates and then builds specialized
models to better handle data heterogeneity. Their results showcased
faster convergence, with substantial differences in the most hetero-
geneous settings compared to FedAvg. Another study showed how
data heterogeneity negatively affects convergence by introducing a
drift in local updates16. Their approach corrects the introduced drift
through variance reduction, resulting in fewer communication rounds
and more stable convergence. Although benchmarks for FL methods
exist, both for natural images17 and medical datasets18,19, only a single,
concurrent work19 follows the design principles of international com-
petitions, also known as challenges20,21. These principles require pri-
vate test datasets for a fair comparison of methods in a continuous
evaluation, and equal conditions for all challenge participants. To
guarantee equal conditions in the context of FL, it has to be ensured
that all algorithms implement FL correctly, in particular avoiding
(accidental) data leakage, and that constraints for communication or
computation resources are simulated reproducibly.

The central idea of FL—keeping the data distributed and sending
around algorithms—is not only a promising avenue for model devel-
opment, but can also be transferred to a model validation setting. In
such a collaborative, multi-site evaluation setting, existing models are
shared with clinical data owners for evaluation and the results,
including performance metrics and (anonymized) meta-information
about the local data, collected for subsequent analysis. This allows
validation on datasets that substantially exceed typical test datasets in
size and diversity, as clinicians may contribute data without having to
publicly release them. Thus, a multi-site evaluation can help to test
model robustness and generalizability in the wild, meaning real-world
data covering diverse patient population demographics and varying
acquisition protocols and equipment. Generalizing to distribution
shifts at test time is sometimes referred to as domain generalization,
and numerous approaches to this problem have been studied22. To
measure methodological progress in model robustness, several
benchmarks were proposed recently, which evaluate algorithms on
test datasets with shifts induced by synthetic image transformations23,
various real-world applications24, and multi-centric medical datasets18.
Competitions with realistic shifts between training and test distribu-
tion have so far been restricted to small-scale evaluations on a few
unseen domains25,26. Although multi-site evaluation has been used
before in FL studies27–30, its usefulness to benchmarking independently
of FL has only recently been explored31, and no large-scalemulticentric
results have been reported for challenges so far.

The rising interest of numerous studies on FL in
healthcare27–30,32–34 highlighted the need for a common dataset and a
fair benchmarking environment to evaluate both aggregation
approaches andmodel generalizability. To this end, we introduced the
Federated Tumor Segmentation (FeTS) challenge. The primary tech-
nical objectives of the FeTS challenge were:
1. Fair comparison of federated aggregation methods: Provide a

common benchmarking environment for standardized quantita-
tive performance evaluation of FL algorithms, using multicentric
data and realistic FL conditions.

2. Algorithmic generalizability assessment at scale: Evaluating the
robustness and generalizability of state-of-the-art algorithms
requires large-scale real-world imaging data, acquired at clinical
environments from diverse sites. A collaborative, multi-site
evaluation approach can assess practical applicability in real-
world scenarios.

These goals were reflected in two independent challenge tasks:
Task 1 focused on themethodological challenge of model aggregation

for FL in the context of tumor segmentation. The primary research
goal here was to push the limits of FL performance by innovating on
the aggregation algorithm. Additionally, we evaluated whether tumor
segmentation performance can be improved while also reducing the
federated training time by selecting a subset of collaborators for local
training. In Task 2, the objective was to developmethods that enhance
the robustness of segmentation algorithms when faced with realistic
dataset shifts. We investigated whether brain tumor segmentation can
be considered solved in real-world scenarios, and studied the pitfalls
associated with collaborative, multi-site evaluation for biomedical
challenges, along with potential strategies to address them. To
benchmark the best possible algorithms, FL was not a requirement in
training models for Task 2. An overview of the challenge concept is
given in Fig. 1.

In this work, we present the analysis of the FeTS Challenge results
and insights gained during the challenge organization. The contribu-
tions of our work are threefold: (1) We introduce a fair and common
benchmarking environment for evaluating technical solutions in the
context of FL: The FeTS Challenge Task 1 establishes a standardized
evaluation framework for comparing federated aggregation methods,
assessing their impact on tumor segmentation performance in FL
simulations with data from 23medical sites. This contribution sets the
stage for a more accurate and reliable evaluation of FL models in the
field. (2) We demonstrate how the biomedical competition format can
close the gap between research and clinical application: Unlike pre-
vious benchmarks or challenges that relied on small test sets or
simulated real-world conditions, the FeTS challenge Task 2 presents an
in-the-wild benchmarking approach that evaluates the accuracy and
investigates failure cases of segmentation algorithms on a large-scale.
We circulate the solutions provided by challenge participants across
multiple collaborating healthcare sites of the largest to-date real-world
federation28, replicating real-world conditions during evaluation. (3)
We find in Task 1 that adaptive aggregation algorithms and selective
client sampling improve the performance of tumor segmentation
models. The collaborative, multi-site validation study in Task 2 reveals
that these models generalize well on many testing institutions, but
their performance drops on others. This suggests that current algo-
rithmsmay not be robust enough for widespread deployment without
institution-specific adaptation.

Results
The FeTS challenge is a demonstration of international collaboration
for algorithmic benchmarking towards highlighting the impact and
relevance of methodological innovation: Our dataset comprised con-
tributions fromdata providers in 17 countries around the globe (Fig. 1),
enabling a diverse and comprehensive collection of samples. After its
first instantiation in 2021, the FeTS challenge was repeated in 2022
with a more consolidated setup and extended data. We focus on the
year 2022 in themainpart as the testing data sizewasmuch larger than
in 2021, but the findings are overall in line (results from 2021 are in the
Supplementary Note 5).

While the Brain tumor segmentation (BraTS) 2021 challenge3

already accumulated a large, multicentric dataset, the collaborative
multi-site evaluation (Task 2) in the FeTS challenge further increases
the size and diversity of the test set. Data from 24 de-centralized
institutions unseen during training were added to 8 institutions from
the BraTS challenge test set, which resulted in the inclusion of three
additional continents and scaled up the total number of test cases by
more than a factor of four. The challenge garnered participation from
teams across the globe, attesting to the worldwide interest and
engagement in the field of FL in healthcare. Our organizing team was
geographically dispersed across three continents, too, embodying the
collaborative spirit of this international effort. Specifically, in 2022, the
challenge attracted 35 registered teams in total, among whom 7 teams
successfully submitted valid entries for Task 1, while 5 teams made
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contributions for Task 2. For Task 2, we additionally evaluated 36more
models that had been submitted originally to the BraTS 2021 chal-
lenge, as this challenge used the same training images, albeit without
the information about institution partitioning (described in the
methods section).

Selective collaborator sampling improves efficiency and
performance
The combined results from the simulated FL experiments performed
by all participants for Task 1 provided valuable insights into FL meth-
ods that improve the efficiency of the federated algorithm while also
enhancing the overall segmentation performance, disproving the
initial assumption that these two objectives might negatively impact
each other. In particular, the natural limitation of the simulated FL
experiment time for Task 1 led the participants to explore ideasonhow
to select collaborators for which to perform local training in each
federated round. Training is in general as fast as the slowest colla-
borator, so the ideas here were based on the question: How do we
handle clients with long FL round times? In this challenge, simulated
timewas the largest for clients withmany samples, as their total time is
dominated by local training duration, making the time required for

transmittingmodel parameters negligible in comparison. Large clients
hence, play a double role in the Task 1 experiments, as they take the
most time but may also aid convergence through many local optimi-
zation steps on their rich data.

This dichotomy is reflected in the independent analyses manu-
scripts of the challenge participants35–49. While some teams experi-
mented with dropping slow collaborators35,38,43,45, they also found
that alternating between full participation and dropping slow clients
can be a beneficial compromise, which guarantees that all available
data are seen. Other teams focused on training on the largest
clients36, arguing that overfitting is less likely on those. Independent
of the exact strategy, all teams using selective client sampling con-
sistently reported that it benefits convergence speed without
damaging performance and in some cases even improving it. A
possible explanation is that in probabilistic sampling methods, the
contribution of sites with small datasets is uplifted while they are
overwhelmed by big sites in the baseline algorithm that always
selects all sites for training. Submissions that used selective colla-
borator sampling36,38,43,45 also landed among the top positions in the
Task 1 leaderboard (Table 1). Although other algorithm components
like the aggregation method also influence the ranking, this trend

Test on federated data

Task 2: Federated Evaluation: Algorithmic Validation 
Around the Globe

Train on centralized data

Generalization?

Task 1: Federated Learning: Benchmarking Innovative 
Aggregation Algorithms

Train on 
simulated 

federated data

Aggregate
models on 

server

Main Finding: Selective Sampling Boosts Performance & 
Alleviates Communication Cost

Main Finding: state-of-the-art models show good average 
performance but lack worst-case robustness 

Federated 
Round 1

Federated 
Round 2

Federated 
Round 3

Distribute model weights

= selected client

Fig. 1 | Conceptandmainfindingsof theFederatedTumorSegmentation (FeTS)
Challenge. The FeTS challenge is an international competition to benchmark brain
tumor segmentation algorithms, involving data contributors, participants, and
organizers across the globe. Test data hubs are geographically distributed while
training data is centralized. Participants include those from the 2021 and 2022
challenges. Task 1 focusedon simulated federated learning andweconsistently saw
an increase in performance by teams utilizing variants of selective sampling in their

federated aggregation. In Task 2, submissions are distributed among the test data
hubs for evaluation. As a representative example, the top-ranked model shows
good average segmentation performance (measured by the Dice Similarity coeffi-
cient, DSC) but also failures for individual cases. Cases with empty tumor regions
anddata siteswith less than40cases are not shown in the strip plot. Sourcedata are
provided as a Source Data file.
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showcases that these methods hold promise for simultaneously
improving convergence speed and performance.

Adaptive aggregation methods boost performance
In the context of Task 1, aggregation methods take the local model
updates from all clients that participated in the last federated training
round as input and compute a set of global model parameters from
them. Among the algorithms developed by participants in 2022, six of
seven were diverse variants of the following high-level approach: (1)
compute multiple normalized weighting terms for each collaborator;
(2) combine these terms using either additive or multiplicative aver-
aging; (3) output the average of all local models weighted by the
combined term of step 2.

Most efforts from the challenge participants concentrated on
steps 1 and 2, and only two teams37,38 also experimentedwith step 3, by
introducing adaptive optimization at the central server50. The most
popular weighting term (step 1) was proportional to the local dataset
size, as proposed in the FedAvg algorithm11. Beyond this simple base-
line, approaches that adapted the weighting based on the training
history (e.g., validation loss of the last round) or based on the inverse
parameter-space distance to the average model were explored.
Experiments in the independent analyses of the participants showed
that some of these adaptive aggregation terms could outperform
FedAvg36–38,42,49, but due to the heterogeneity of experimental setups,
there is not a single method that stood out. Combining multiple
weighting terms (step 2) proved beneficial for most teams, especially
combining the FedAvg term with adaptive terms. In the official chal-
lenge results (Table 1, with details for individual evaluation metrics in
Supplementary Note 2), methods that combine weighting terms
through multiplication (with subsequent normalization) obtained
better ranking scores, which is a trend that was also found by one team
in experiments for the FeTS challenge36. In conclusion, the combined
results of experiments performed by challenge participants and the
official challenge results produced a variety of methods that adapt the
influence of individual collaborators during training to aggregate
locally trained models more effectively.

Multi-site validation reveals mixed generalization
To investigate the influence of data characteristics and algorithmic
choices on segmentation performance in the wild, we conducted a
collaborative, multi-site evaluation (challenge Task 2). This evaluation
encompassed 41 models, which were trained in a centralized fashion
and deployed on cases from 32 institutions (also referred to as sites)
spanning six continents. Technical issues during the multi-site eva-
luation caused 5 institutions to run only a subset of models; details on

this are described in the next section. Our analysis revealed substantial
performance variations among different sites, with certain institutions
also exhibiting considerable variability across models (Fig. 2). While
most algorithmsdemonstrated good results for a large part of the sites
compared to an inter-rater DSC in the range of 0.83 averaged over
tumor regions5, reduced segmentation performance and hence a lack
of robustnesswas observed in several sites (including institution IDs 11,
16, 10, and 30), most commonly for the tumor core and enhancing
tumor regions. Zooming into the scores for the top-rankedmodel with
ID 15 (Fig. 3) shows that instances of failure were present regardless of
whether the respective institution was encountered during training,
prompting an investigation into dataset-specific and per-sample fac-
tors that impede generalization. This finding is not specific to the
model chosen for visualization and a particular tumor region,
respectively, as shown in Supplementary Figs. 7 and 12–14.

As a qualitative analysis, we inspected test samples with bad
segmentation metrics from the centralized subset and identified the
following common, tumor region-specific failure cases:

• Whole tumor (WT): hyperintensities due to other pathologies are
labeled as edema (ED) Fig. 4a.

• Enhancing tumor (ET): Small contrast enhancements not directly
connected to the largest lesion are missed (Fig. 4b). Moreover,
regions are labeled as ET although they are hyperintense both in
the T1 and T1-Gd sequences.

• Tumor core (TC): The necrotic/cystic component of the tumor is
unclear and seemingly random parts near the ET region are seg-
mented as necrosis (NCR) Fig. 4b, d.

The official FeTS challengewinnerwas determined among the five
original submissions to FeTS 2022. To compare with the previous
state-of-the-art brain tumor segmentation algorithms, we included the
BraTS 2021 models in a secondary ranking, which resulted in the ori-
ginal FeTS submissions being superseded; the highest three achieved
ranks 7 to 9 (Supplementary Table 2). Hence, models submitted to
BraTS 2021 maintained their state-of-the-art status, even on the FeTS
2022 test set. Methodological contributions on how to use the pro-
vided institution partitioning information during training, which was
unavailable for BraTS 2021 models, were not developed by the chal-
lenge participants and the submissions differed mostly in network
architecture, post-processing, and model ensembling approaches
(Table 2). The only algorithm targeting dataset shifts was model 10,
which adapts the batch normalization statistics at test time. Conse-
quently, it remains an open question whether information on data
shifts during training can enhance algorithmic robustness and
adaptability.

Table 1 | Algorithm characteristics and mean ranking scores of Task 1 submissions

Team Aggregation method lr schedule Client selection Score

DS PD LO LI Combination

FLSTAR ✓ ✓ ⊙ Constant 6 largest 2.75

Sanctuary ✓ ✓ ✓ ⊙ Polynomial Alternating: all; drop slow
clients

3.05

RoFL ✓ ✓ ⊙ + server optimizer Step All 3.35

gauravsingh ✓ ✓ ⊕ Constant 6 random 3.67

rigg ✓ ✓ ✓ ⊕ (weighted) Constant Randomly drop large clients 4.65

HT-TUAS ✓ ✓ ⊕ Constant 4 random 4.69

Flair ✓ Multiple gradient descent with
contraint

Constant All 5.85

Algorithm characteristics include the aggregationmethod, learning rate (lr) schedule, and client selection. Algorithms are listed in the order of ranking score contained in theScore column,with the
best on top. See the methods section for how the ranking score is calculated. A common pattern for aggregation methods is to compute multiple normalized weight terms (DS Dataset size, PD
(inverse) Parameter distance, LO Potential for local optimization, LI Local improvement) and combine them either through arithmetic mean (⊕) or multiplicative averaging (⊙). The weight term
abbreviations were introduced here as categories summarizing the main idea behind the weight terms, but the implementation details in the teams’ algorithms differed slightly, as described in the
methods section. Only one team chose a completely different aggregation approach (Flair). Selectively sampling clients was used by five teams to improve the convergence speed.
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Heterogeneous systems require pre-determined compatibility
solutions
The collaborative, multi-site evaluation process in Task 2 required lots
of time and coordination for software setup and resolving technical
issues. We initiated the setup process on a small subset of

collaborators to test the evaluation pipeline. Common problems
encounteredduring thesepreliminary testswere collected for later use
during the subsequent large-scale setup. After installation, a compat-
ibility test was conducted at each site, evaluating the performance of a
reference model on both toy cases and actual local test set data to

Fig. 3 | Performance of the top-rankedalgorithm for each institutionof the test
set (Task 2). Some institutions contributed distinct patients to both the training
and testing dataset (marked as seen during training), while others were unseen
before testing. Each gray dot represents the mean DSC score over three tumor
regions for a single test case, while box plots indicate the median (middle line),

25th, 75th percentile (box) and samples within 1.5 × interquartile range (whiskers)
of the distribution. The number of samples n per institution is given above each
box. Although median DSC scores are mostly higher than 0.9, institutions with
reduced performance or outlier cases exist both within the subset seen during
training and the unseen subset. Source data are provided as a Source Data file.

Fig. 2 | Aggregated results of challenge Task 2 per institution and model. The
figure visualizes test set sizes (left bar plot), mean DSC scores for each institution
and submitted model (heatmap; the mean is taken over all test cases and three
tumor regions), and mean DSC scores averaged per model (top bar plot). Models
are ordered bymeanDSC score and official FeTS2022 submissions aremarkedwith
ticks.White, crossedout tiles indicate evaluations that couldnot be completed. The

heatmap shows that the performances of the topmodels are close within each row
(i.e., institution) and vary muchmore between rows. While the drops in mean DSC
are moderate, they show that state-of-the-art segmentation algorithms fail to
provide the highest segmentation quality for some institutions. Source data are
provided as a Source Data file.
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address potential technical or data issues, respectively. Despite these
measures, the setup of the evaluation system across all sites spanned
several weeks. Numerous and diverse technical issues arose due to the
inherent heterogeneity of systems, which were fixed with remote
support through the organizers, mostly based on shared log files,
emails and video calls. This resulted in slow feedback loops and
revealed communication as a primary bottleneck. In contrast, infer-
ence time was not a major limitation and could be adapted to the
challenge time frame with suitable runtime limits. For example, the
total inference time for all 41 models on 100 subjects, using a single-
GPU reference hardware, amounted to 86 hours. In conclusion, our
experiences underscore the need for extensive technical monitoring
and support. The implementation of enhanced error reporting tools
holds the potential to accelerate the setup phaseby facilitating the fast
resolution of errors.

Ensuring compatibility with heterogeneous GPU hardware within
the federation emerged as an important consideration during the
challenge. To combat this, we recommended a specific base Docker

image for official submissions, which was executed successfully across
all participating sites. Several data contributors, however, reported
issues related to GPU compatibility on converted BraTS submissions,
resulting in themissingmodel evaluations from Fig. 2. This experience
highlights the importance of pre-determined compatibility solutions
and assessment of the diverse GPU hardware present in the cohort.

Reference Segmentation is not always the Gold Standard
Annotation quality is crucial in every challenge, but evenmore difficult
to control in a collaborative, multi-site evaluation as in Task 2. To
assess this aspect in the FeTS challenge, reference segmentations for
test samples that could be shared with the organizers after the chal-
lenge (1201 patients from 16 institutions) were screened for major
annotation errors through visual inspection by one of the challenge
organizers. In total,major annotation errors were detected in 125 cases
(10.4%), which were excluded from the final analysis. These were dis-
tributed across institutions, with a median of 5 erroneous cases
per site.

T2T1-Gd T2-FLAIR T2-FLAIR + prediction

ED
ET

a) T1

T2-FLAIRT1-GdT1 T1-Gd + prediction

NC
RED

b) T2

T2T1 T1-Gd T1 + reference

ED
ET

c) T2-FLAIR

T2T1 T1-Gd T1 + reference

NC
RED
ET

d) T2-FLAIR

Fig. 4 | Qualitative examples of common segmentation issues. Each row shows
one case with four MR sequences (T1, T1-Gd, T2, T2-FLAIR) and a segmentation
mask overlay in the rightmost column. a,bdepict errors in the test set prediction of
the top-ranked model (ID: 15), while (c, d) show training set examples with refer-
ence segmentation issues (c, d). a False positive edema prediction. The hyper-
intensity is not due to the tumor but a different, symmetric pathology, which is

distant from the tumor. b A small contrast enhancement is missed by the top-
rankedmodel. It is separate from the larger tumor in the lower right but should be
labeled as ET. c Since blood products are bright in T1 and T1-Gd, they can be
confused with ET. d The segmentation of non-enhancing tumor core parts is dif-
ficult and often differs between annotators. Label abbreviations: ED edema, NC
necrotic tumor core, ET enhancing tumor.
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Table 2 | Ranking and characteristics of all algorithms evaluated in Task 2

Model ID Rank Architecture Loss Post-processing Ensembling nnU-Net

15 1 U-Net, larger encoder CE, batch Dice,
region-based

ET (small to NCR) 10 Yes

35 2 U-Net, larger encoder,multi-scale skip block Focal loss, Jaccard,
region-based

– 30 No

37 3 U-Net CE, Dice, Top-K,
region-based

– 5 Yes

38 4 U-Net, residual blocks, transformer in
bottleneck

CE, Dice ET (small to NCR) 3 Yes
+ other

16 5 U-Net CE, Dice ET (drop disconnected), TC (fill surrounded),
WT (drop small components)

5 Yes

14 6 U-Net, larger encoder CE, batch Dice,
region-based

ET (small to NCR) 5 No

11 7 U-Net CE, Dice TC (fill surrounded) 5 Yes

54 8 CoTr, HR-Net, U-Net, U-Net++ CE, Dice, Hausdorff,
region-based

ET (small to NCR) 5 Yes
+ other

10 9 U-Net CE, Dice, region-based ET (small to NCR) 5 Yes

31 10 U-Net, larger encoder, residual blocks Dice, focal loss ET (small to NCR) 5 No

51 11 HNF-Net CE, generalized Dice,
region-based

ET (small to NCR) 5 No

33 12 U-Net, multiple encoders CE, Dice, region-based ET (small to NCR) 4 No

46 13 U-Net CE, Dice, generalized Was-
serstein Dice

– 8 No

40 14 U-Net, larger encoder, residual blocks Dice, region-based ET (small to NCR) 4 No

27 15 U-Net, modality co-attention, multi-scale
skip block, transformer in bottleneck

CE, region-based ET (drop small components) – No

44 16 U-Net CE, Dice, region-based ET (convert to NCR based on auxiliary net-
work), drop small components

10 Yes
+ other

19 17 U-Net CE, Dice, batch Dice,
region-based

ET (small to NCR) 15 Yes
+ other

32 18 U-Net Batch Dice, region-based ET (small to neighboring label), drop small
components

5 No

42 19 – – – – –

18 20 HarDNet CE, Dice, focal loss,
region-based

– 3 No

48 21 U-Net, attention Dice, region-based – 1 No

25 22 U-Net, attention CE, Dice, region-based – 1 No

13 23 – – – – –

26 24 U-Net, multiple decoders CE, Dice, region-based TC (remove outside of WT), drop small com-
ponents, morph. closing

1 No

30 25 2-stage, 2D, CNN, U-Net, U-Net++, residual
blocks

Dice – 29 No

41 26 CNN, neural architecture search CE, Dice, region-based – 5 No

8 27 Swin Transformer CE, Dice, VAT, region-based – 1 No

12 28 U-Net Dice, region-based – 1 No

47 29 U-Net CE, Dice – 1 No

22 30 2D, U-Net, attention, residual blocks CE, Dice – – No

45 31 2-stage, U-Net, residual blocks CE, Dice, region-based ET (small to NCR) 5 No

52 32 U-Net, attention, residual blocks Dice, region-based – 5 No

36 33 2D, U-Net, residual encoder Dice – 1 No

23 34 2D, U-Net, residual encoder, transformer CE, Dice, region-based – 1 No

39 35 2-stage, U-Net – – 1 No

43 36 U-Net, multi-stage BCE fill holes 1 No

21 37 2D, U-Net++ Dice, boundary distance – 3 No

28 38 2-stage, CNN, Graph NN CE – 1 No

53 39 CNN, larger encoder, residual blocks Dice, boundary,
region-based

ET (small to NCR) 1 No

29 40 2D, U-Net Dice – 1 No

24 41 – – – – –

Four institutions were not used for ranking, as many models could not be evaluated on them due to technical problems. Brief explanations of the algorithm characteristics are provided in the
participants’ methods section. ‘-’ denotes that nothing was reported for this field. CNN convolutional neural network, (B)CE (binary) cross-entropy, VAT virtual adversarial training.
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A diversity of errors was observed, including empty or extremely
noisy masks, inaccurately hand-drawn masks, duplicate scans, and
image errors related to registration or skull-stripping. Twomore subtle
but common issues were the presence of bright blood products and
the extent of the tumor core (TC) region. In some patients, bleeding
can occur inside or outside of the tumor. Blood can be recognized as
hyper-intensity in T1. It was wrongly labeled as ET in 43 cases, possibly
because blood products also appear hyper-intense in the T1-Gd
sequence (Fig. 4c). Furthermore, the extent of the TC region as
defined in the BraTS annotation protocol compared to the clinical
lingo might be considered inherently subjective, because this region
may contain non-enhancing tumor parts, which are hard to distinguish
from the edematous/infiltrated regions (Fig. 4d). As inter-annotator
variations caused by this are consistent with the annotation protocol,
we did not consider cases with non-enhancing parts erroneous but
note that 46 cases might fall into this category. Both issues above
appear also in the training set, which could explain why the results did
not change significantly after excluding these cases. Our analysis fur-
ther highlights the common concern in the domain of medical image
segmentation, where the reference segmentations used for algo-
rithmic evaluation are not necessarily what can be considered the
ground truth. This is further exacerbated by considering the inter- and
intra-rater variability in creating such reference segmentations5, aswell
as even taking into consideration the variability in the interpretation of
the clinical response assessment for neuro-oncology criteria51.

Discussion
In the challenge task on FL (Task 1), the collective insights across
participating teams showed that improvements in segmentation per-
formance and training efficiency can coexist by leveraging selective
collaborator sampling methods. Trust in these results is further
cemented by the reproducible nature of Task 1, which reliably exhib-
ited the same pattern across teams leveraging this type of technique.

The Task 1 submissions also presented a variety of solutions for
adaptively aggregating the parameters of locally trained models.
Common patterns found in their algorithm characteristics show that
methods similar to FedAvg11 are still the predominant approach for
weight aggregation in FL. In 2022, one team deviated from this
approach by using an aggregation method motivated by multi-
objective minimization theory39, but reported inferior performance
compared to FedAvg. Another alternative approach, in which models
transfer and train sequentially from site to site instead of training
simultaneously while communicating only with a single trusted global
server, was explored in the 2021 instance of the FeTS challenge47. The
overall performance was consistently lower than the FedAvg-based
methods of simultaneous training, meaning the additional commu-
nication cost and security risk of every site communicating with every
other site is not a warranted alternative.

As a benchmark of FL algorithms in a challenge setting, the FeTS
challenge Task 1 also has limitations. The proposed evaluation proto-
col takes into account the final segmentation performance and the FL
efficiency of submitted algorithms through the segmentation metrics
and convergence score metric, respectively. The computation of the
convergence score was based on simulated federated round times,
which depended mostly on the number of data samples at each insti-
tution. While the total simulated FL runtime was limited for the FeTS
challenge, there may be different limiting factors for other applica-
tions, such as constraints on the total communication budget or the
communication bandwidth. Future challenges and FL benchmarks
should also take these aspects into account in their evaluation strate-
gies, to guarantee a fair and meaningful comparison of FL algorithms.

The challenge design for Task 1 focused on methodology for
federated weight aggregation and client selection and did not allow
modifying other aspects like the local optimization procedure or the
model architecture. These constraints were chosen to foster

innovation in these specific parts of the FL algorithm and to make
performance gains more attributable. We also wanted to keep the
complexity and hence the barrier to participation low. Furthermore,
simulating the total FL time becomes increasingly difficult if more
degrees of freedom are introduced in the methods. Nevertheless,
giving participants more flexibility in their algorithm design is an
interesting future direction of FL challenges, as it could shed light on
the relative importance of other algorithm components in FL for
medical images.

For the collaborative,multi-site validation (Task 2), we formulated
two research questions, asking whether brain tumor segmentation is
solved in the wild, and what are the pitfalls of competitions using
multi-site evaluation. In light of our results, we conclude the following.

The FeTS 2022 dataset possesses even higher diversity than
BraTS 2021, marking a significant step towards evaluation in the wild.
Existing BraTS models generalized well to unseen sites (in terms of
median performance), even though they were not specifically
developed for a multicentric deployment. This highlights how a large
and diverse training set like BraTS 2021 can be sufficient for good
out-of-sample generalization. However, different segmentation per-
formance levels were observed between evaluation sites, and for
many of these, individual test cases exhibited failures that were
visually confirmed as not related to inter-rater differences. All of this
indicates that the robustness and reliability of these models could be
further improved.

Our experience during the multi-site evaluation highlights chal-
lenges and opportunities for using this collaborative evaluation pro-
tocol in biomedical competitions: (i) Extensive communication and
coordination are necessary to organize such a competition,making it a
substantially time-consuming endeavor. (ii) From the annotation
quality results, it is clear that efficient tools for quality control are
needed, in particular for challenges with a large set of independent
data contributors and annotators. While this study relied on human
visual inspection, we also found that the DSC score between the pre-
diction of a state-of-the-art model (i.e., the BraTS 2021 winning solu-
tion) and the reference segmentation of the FeTS 2022 test set can
help to detect erroneous segmentations: When sorting the test sam-
ples by this score, the samples with the lowest 20.0% DSC scores
contained 54.4% of the samples with major annotation errors (Sup-
plementary Fig. 18). (iii) The scarcity of meta-data for the test set lim-
ited the scope of our analysis. Insights into dataset characteristics and
sources of failures observed in multi-site validation studies are only
possible with additional test-case-specific information like meta-data
or individual images and predictions, which often remain unavailable
due to privacy concerns.

To continue the FeTS challenge Task 2 (generalization) in the
future, the existing infrastructure can be re-used, decreasing the initial
setup effort. However, changes in staff, hardware, or software at
individual sites are potential hurdles for maintaining a multi-site
benchmark over a long time. Benchmarking initiatives like MedPerf31

can help in the technical maintenance of challenges with multi-site
evaluation. From the 41 evaluated models, only 5 were original sub-
missions to Task 2, from which a single team addressed distribution
shifts methodologically. To increase participation and innovation in
future competitions, we think it is essential to emphasize the gen-
eralization aspects of Task 2 more and to provide researchers with
more opportunities to study distribution shifts in the training data.
Balancing the training set with respect to the number of cases per
institution could be helpful, for example, or additional meta-data on
imaging or patient characteristics for each case. Similarly, balanced
test data collection is another future direction. Although the FeTS
challenge’s test set is large, the number of cases varies widely per site
and geographical region. Therefore, future efforts should aim to col-
lect more samples for currently under-represented regions or patient
populations.
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If the aforementioned hurdles associated with collaborative,
multi-site validation can be addressed, the reward is a drastic increase
in dataset size and diversity, as the distributed setup enables data-
sharing from collaborators in a privacy-preserving manner not possi-
ble in conventional centralized setups. Multi-site evaluation is there-
fore well suited for the concept of a phase 2 challenge (competition),
which takes place after a phase 1 challengewith a relatively smaller and
less diverse dataset has been concluded. Such phase 2 challenges
enable the identification of sites among the large federation in which
state-of-the-art algorithms show reduced performance and further
analysis of where they fail and why.

Methods
This research complies with all relevant ethical regulations. Informed
consent in signed formwasobtained fromall subjects at the respective
institutions that contributed training and validation data, and the
protocol for releasing the data was approved by the institutional
review board of the data-contributing institution. The provided train-
ing and validation data describe mpMRI scans, acquired from: Uni-
versity of Pennsylvania (PA, USA), University of Alabama at
Birmingham (AL, USA), HeidelbergUniversity (Germany), University of
Bern (Switzerland), University of Debrecen (Hungary), Henry Ford
Hospital (MI, USA), University of California (CA, USA), MD Anderson
Cancer Center (TX, USA), Emory University (GA, USA), Mayo Clinic
(MN, USA), Thomas Jefferson University (PA, USA), Duke University
School of Medicine (NC, USA), Saint Joseph Hospital and Medical
Center (AZ, USA), Case Western Reserve University (OH, USA), Uni-
versity of North Carolina (NC, USA), Fondazione IRCCS Instituto
Neuroligico C. Besta, (Italy), Ivy Glioblastoma Atlas Project, MD
Anderson Cancer Center (TX, USA), Washington University in St. Louis
(MO, USA), Tata Memorial Center (India), University of Pittsburg
Medical Center (PA, USA), University of California San Francisco (CA,
USA), Unity Health, University Hospital of Zurich.

This section describes the FeTS Challenge 2022. A description of
how the FeTS Challenge 2021 differed from it is provided in the Sup-
plementary Note 5.

Challenge datasets
Data sources. We leverage data from the BraTS challenge4,5,52–54, and
from 32 collaborators of the largest to-date real-world federation28.
The following sections apply to both of them unless otherwise noted.
Both sources containmpMRI scans routinely acquired during standard
clinical practice along with their reference annotations for the eval-
uated tumor sub-regions. These are augmented with meta-data of the
scans’ partitioning in an anonymizedmanner. Each case describes four
structural mpMRI scans for a single patient at the pre-operative base-
line timepoint. The exactmpMRI sequences included for each case are
(i) native T1-weighted (T1), (ii) contrast-enhanced T1 (T1-Gd), (iii) T2-
weighted (T2), and (iv) T2 Fluid Attenuated Inversion Recovery
(T2-FLAIR).

Data preprocessing. The preprocessing pipeline from the BraTS
challenge is applied in the FeTS challenge, too. Specifically, all input
scans (i.e., T1, T1-Gd, T2, T2-FLAIR) are rigidly registered to the same
anatomical atlas (i.e., SRI-2455) using the Greedy diffeomorphic regis-
tration algorithm56, ensuring a common spatial resolution of 1 mm3.
After registration, brain extraction is done to remove any apparent
non-brain tissue, using a deep learning approach specifically designed
for brain MRI scans with apparent diffuse glioma57. All preprocessing
routines have been made publicly available through the Cancer Ima-
ging Phenomics Toolkit (CaPTk)58–60 and the FeTS tool61.

Annotation protocol. The skull-stripped scans are used for annotating
the brain tumor sub-regions. The annotation process follows a pre-
defined clinically approved annotationprotocol3,4, whichwasprovided

to all clinical annotators, describing in detail the radiologic appearance
of each tumor sub-region according to the specific provided MRI
sequences. The annotatorswere given the flexibility to use their tool of
preference for making the annotations, and also follow either a com-
plete manual annotation approach or a hybrid approach where an
automated approach is used to produce some initial annotations fol-
lowed by theirmanual refinements. The summarized definitions of the
tumor sub-regions communicated to annotators are:
1. The enhancing tumor (ET) delineates the hyperintense signal of

the T1-Gd sequence compared to T1, after excluding the vessels.
2. The tumor core (TC) representswhat is typically resectedduring a

surgical operation and includes ET as well as the necrotic tumor
core (NCR). It outlines regions appearing dark in both T1 and T1-
Gd images (denoting necrosis/cysts) and dark regions in T1-Gd
and bright in T1.

3. The farthest tumor extent, also called whole tumor (WT), consists
of the TC as well as the peritumoral edematous and infiltrated
tissue (ED). WT delineates the regions characterized by the
hyperintense abnormal signal envelope on the T2-FLAIR
sequence.

The provided segmentation labels have values of 1 for NCR, 2 for
ED, 4 for ET, and 0 for everything else.

For the BraTS data, each case was assigned to a pair of annotator-
approver. Annotators spanned across various experience levels and
clinical/academic ranks, while the approvers were the 2 experienced
board-certified neuroradiologists (with more than 13 years of experi-
ence with glioma). Annotations produced by the annotators were
passed to the corresponding approver, who was then responsible for
signing off these annotations. Specifically, the approver would review
the tumor annotations in tandem with the corresponding mpMRI
scans, and send them back to the annotators for further refinements if
necessary. This iterative approach was followed for all cases until their
annotations reached satisfactory quality (according to the approver)
for being publicly available and noted as final reference segmentation
labels for these scans.

Collaborators from the FeTS federation were asked to use a semi-
automatic annotation approach, leveraging the predictions of an
ensemble of state-of-the-art BraTS models. Specifically, collaborators
were supplied with the FeTS tool61, containing pre-trained models of
the DeepMedic62, nnU-Net63, and DeepScan64 approaches trained on
the BraTS data, with label fusion performed using the Simultaneous
Truth and Performance Level Estimation (STAPLE) algorithm65,66.
Refinements of the fused labels were then performed by neuror-
adiology experts at each site according to the BraTS annotation
protocol4. Sanity checks to ensure the integrity and quality of the
annotations were performed in a preceding FL study28.

Training, validation, and test case characteristics. Training and
Validation sets for the FeTS challenge were gathered from the BraTS
dataset, sampling a specific subset of radiographically appearing
glioblastomawhile excluding caseswithout anapparent enhancement.
The exact numbers can be found in Table 3. Training cases encompass
the mpMRI volumes, the corresponding tumor sub-region annota-
tions, as well as a pseudo-identifier of the site where the scans were
acquired. In contrast, validation cases only contain the unannotated
mpMRI volumes. We provided two schemas to the participants for
partitioning the provided data and used a third partitioning internally
for re-training submissions before the test set evaluation (details in
Supplementary Fig. 1):
1. Geographical partitioning by institution (partitioning 1, 23 sites)
2. Artificial partitioning using imaging information (partitioning 2,

33 sites), by further sub-dividing each of the 5 largest institutions
inpartition 1 into three equally largeparts after sorting samples by
their whole tumor size.
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3. Refined geographical partitioning (partitioning 3, 29 sites), which
was generated as a refinement of the geographical partitioning
(partitioning 1), by subdividing the largest institution into seven
parts. This institution comprises a system of hospitals in close
geographical proximity, which were combined for partitioning 1.
For partitioning 3, they were re-grouped into seven pseudo-
institutions.

Testing datasets were also gathered from BraTS and the FeTS
federation collaborators but were not shared with the challenge par-
ticipants. Access to the centralized test datasetswas exclusive toTask 1
organizers, while the datasets for Task 2 remained decentralized
throughout the competition, inaccessible for theTask 2organizer. This
collaborative, multi-site evaluation approach scaled up the size and
diversity of the test dataset compared to the BraTS 2021 challenge
significantly (Supplementary Fig. 11).

Performance evaluation
Predictions of the submitted segmentation algorithms were required
to follow the format of the provided reference segmentations. Seg-
mentation quality is assessed on the ET, TC, and WT sub-regions,
corresponding to the union of labels {4}, {1, 4}, and {1, 2, 4}, respec-
tively. For each region, the predicted segmentation is compared with
the reference segmentation using the following metrics:

• Dice similarity coefficient (DSC), which measures the extent of
spatial overlap between the predictedmasks (Ŷ ) and the provided
reference (Y), defined by

DSC=
2jY \ Ŷ j
jY j+ jŶ j

: ð1Þ

DSC scores range from 0 (worst) to 1 (best). The DSCs of the
three individual tumor regions can be averaged to obtain a
mean DSC.

• Hausdorff distance (HD), which quantifies the distance between
the boundaries of the reference labels against the predicted
label. This makes the HD sensitive to local differences, as
opposed to the DSC, which represents a global measure of
overlap. For brain tumor segmentation, local differences may be
crucial for properly assessing segmentation quality. In this
challenge, the 95th percentile of the HD between the contours of
the two segmentation masks is calculated, which is more robust
to outlier pixels:

HD95ðŶ ,Y Þ= max
P95% dðŷ,Y Þ, P95% dðy, Ŷ Þ

ŷ 2 Ŷ y 2 Y

( )
, ð2Þ

where dða,BÞ= minb2B jja� bjj is the distance of a to set B.
Lower distances correspond to more accurate boundary
delineations.

• Convergence Score is an additional metric used for Task 1 only. It
measures how quickly algorithms are able to reach a desired
segmentation performance. Methods with fast convergence allow
to stop training earlier, thus saving communication and compu-
tation resources and enhancing the efficiency of federated train-
ing. To calculate the convergence score, in each round of an FL
experiment, the mean DSC on a fixed validation split (20%) of the
official training data and the simulated round time T are com-
puted. Details on how T is simulated are in the FL framework
methods. Over the course of an experiment, this results in a DSC-
over-time curve. The validationDSC can in some cases decrease at
later times (e.g., due to overfitting or randomness in the
optimization), but as the model with the best DSC is used as the
finalmodel, such a decrease should not be penalized. Therefore, a
projected DSC curve is computed as DSCprojðtÞ= maxt 0 ≤ t DSCðt0Þ.
The final convergence scoremetric is calculated as the area under
that projected DSC-over-time curve. Higher values of this metric
indicate enhanced convergence and, thus, the best FL approach.
To standardize the time-axis for the convergence score among the
Task 1 participants, all FL experiments performed during the
challenge were limited to one week of simulated total time, which
was a realistically feasible duration based on the experience from
the FeTS initiative28. The FL runs were terminated once the
simulated time exceeded one week and the model with the
highest validation score before the last roundwas used as the final
model, to make sure that a long last round exceeding the time
limit does not benefit the participant.

Task 1: federated training (FL weight aggregation methods)
Model architecture. To focus on the development of aggregation
methods, we needed a pre-established segmentation model archi-
tecture. Based on current literature indications,wepickedU-Net67 with
residual connections, which has shown robust performance across
multiple medical imaging datasets57,63,68–71. The U-Net architecture
consists of an encoder, comprising convolutional layers and down-
sampling layers (applying max-pooling operation), and a decoder of
upsampling layers (applying transpose convolution layers). The
encoder-decoder structure contributes in capturing information at
multiple scales/resolutions. The U-Net also includes skip connections,
which consist of concatenated featuremaps paired across the encoder
and the decoder layers, to improve context and feature re-usability,
boosting overall performance.

Federated learning framework. We employ the typical aggregation
server FL workflow14, in which a central server (aggregator) exchanges
model weights with participating sites (collaborators), which are
simulated for the FeTS challenge Task 1 on a single machine using the
real-world multicentric data described in the challenge datasets
methods. This process is repeated in multiple FL-based training
rounds. At the start of a single round, each collaborator locally vali-
dates the model received from the aggregator. Each collaborator then
trains thismodel on their local data to update themodel gradients. The
local validation results along with the model updates of each site are
then sent to the aggregator, which combines all model updates to
produce a new consensus model. This model is then passed back to
each collaborator and a new federated round begins. Following
extensive prior literature33,63,71,72, the final model for each local insti-
tutional training is chosen based on the best local validation score at
pre-determined training intervals, i.e., rounds.

To guarantee fair competition, all challenge participants were
required to use an implementation of this FL framework based on

Table 3 | Overview of the number of cases and institutions in
the training, validation, and test sets

Training Validation Test (Task 1) Test (Task 2)

Source BraTS21 BraTS21 BraTS21 BraTS21
+ FeTS

No. cases 1251 219 570 2625

No. sites 23a n/a n/a 32

Access Public
(img, seg)

Public (img) Organizers Data owners

The centralized, multi-centric data from the Brain Tumor Segmentation Challenge 2021
(BraTS21)3 is used for benchmarking FLmethods (Task 1). Additionally, for Task 2 the testing data
is augmented with distributed data from the FeTS initiative28, increasing size and geographical
diversity drastically. img imaging data, seg reference segmentations.
abased on partitioning 1.
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PyTorch and openFL73,74 provided by the organizers. Modifications
were allowed in the following components:

• Aggregation method: Participants could customize how weights
from the current training round are combined into a
consensus model.

• Collaborator selection: Instead of involving all collaborators in
each round, participants can selectively sample collaborators, for
example based on validation metrics or round completion time.

• Hyperparameters for local training: In each FL round, participants
could adjust the values of two essential FL parameters, the
learning rate of the stochastic gradient descent (SGD) optimizer,
and the number of epochs per round.

Efficiency is an important practical aspect of FL with its inherent
communication and computation constraints. As described in the
evaluation section, we take this into account in the FL benchmarking
framework by limiting wall clock runtime and by evaluating the con-
vergence scoremetric, both ofwhich require the realistic simulation of
FL round durations. Tomake this simulation as realistic as possible, we
used a subset of the real-world times measured in the FeTS initiative28.
Note that the simulated time is different from the program runtime; it
is rather an estimate of thewall time such an FL experimentwould take
in a real federation similar to the FeTS initiative. Specifically, we sub-
divide simulated time into: training time Ttrain, validation time Tval,
model weight download Tdown and upload time Tup. In each round, the
simulated time for each collaborator k is

Tk =Tdown, k +Tup, k +Tval, k � Nval, k +T train, k � Ntrain, k ð3Þ

and the total time for each round ismaxkfTkg. To simulate a realistic FL
setup, Tx,k was sampled from a normal distribution:
Tx, k � N ðμx, k ,σx, kÞ, where x can be replaced with train/val/down/up.
The parameters of the normal distribution are fixed but different for
each client k, and based on time measurements in a previous real-
world FL study, which used the same model28. Random seeds
guarantee that these are identical for all FL experiments, so that all
participants use the same timings.

Ranking. Before evaluating the submissions on the Task 1 test set, all
algorithms were re-trained by the organizers, to ensure reproducible
results and to prevent data leakage between federated sites. As the
participants should develop generalizable FL algorithms that do not
overfit on a particular collaborator, the unseen, refined geographical
partitioning (partitioning 3) was used. Then, based on the measured
metric values, a ranking methodology akin to the BraTS challenges
was employed. All teams are ranked for each of the N test cases, 3
tumor regions, and 2 segmentation metrics separately, yielding
N ⋅ 3 ⋅ 2 rankings. Additionally, the teams’ performance was evaluated
based on the convergence score, which was incorporated into each
case-based ranking with a factor of 3, due to the importance of effi-
ciency in FL. This results in a total of N ⋅ 3 ⋅ 3 ranks summed per team.
The final ranking was determined by summing all individual rankings
per team.

Task 2: multi-site evaluation of generalization in the wild
Organization. In the trainingphase, theparticipantswere provided the
training set including information on the data origin. They could
explore the effects of data partitioning and distribution shifts between
contributing sites, to develop tumor segmentation algorithms that
generalize to institutional data not present in the training set. Note that
training on pooled data was allowed in Task 2, enabling the develop-
ment of methods that optimally exploit meta-information of data
origin.

In the validation phase, participants could evaluate theirmodel on
the validation set to estimate in-distribution generalization. For

domain generalization there may be better model selection strategies
than an in-distribution validation set75, which opened up further
research opportunities for the participants.

Participants could submit their inference code as Docker
containers76 to the Synapse challenge website at https://www.synapse.
org/fets. The latest submission before the deadline was chosen as the
final submission. All submissions were tested in an isolated environ-
ment on cloud computing infrastructure at DKFZ, which ensures a
secure and compliant processing framework and safeguards the host
infrastructure from potential malicious attacks. This included the fol-
lowing steps:
1. Convert Docker submissions to singularity container77, as Docker

was not allowed on some of the evaluation sites’ IT departments.
2. Run a compatibility testing pipeline, which evaluates the con-

tainer on a small training subset, using the same software as
during the testing phase (described below).

3. Monitor theGPUmemoryconsumption and inference time,which
were limited to ensure functionality in the federation.

4. Update the challenge website with the results of the test run and,
if successful, upload the container to cloud storage.

Step 2 could also be executed by the participants locally to debug
their submission.

In the testing phase, the MedPerf tool31 was used to evaluate all
valid submissions on datasets from the FeTS federation, such that the
test data are always retained within their owners’ servers.

Assessmentmethods (Ranking). The accuracyof thepredicted tumor
segmentations is measured with DSC and HD95 (Eqs. (1) and (2)). To
assess the robustness of segmentation algorithms to cross-institution
shifts, we evaluate algorithms per testing institution first and rank
them according to their per-institution performances. Specifically, on
institution k of K, algorithms are ranked in the first step on all Nk test
cases, three regions, and two metrics, yielding Nk ⋅ 3 ⋅ 2 ranks for each
algorithm. The average over test cases is then used to produce per-
institution ranks for each algorithm (rank-then-aggregate approach)
and region-metric combination. The final rank of an algorithm is
computed from the average of its K ⋅ 3 ⋅ 2 per-institution ranks. Ties are
resolved by assigning theminimum rank. This schemewas chosen as it
is similar to the BraTS ranking method4. Moreover, our ranking
method weights each testing institution equally, as they represent
distinct dataset characteristics and we want to avoid a strong bias of
the ranking to sites with many test cases.

Description of participants’ methods
As described in the results, for task 1 most participants chose a multi-
step approach, which computes several independent, normalized
weighting terms pi (step 1) and combines them into an overall weight �p
(step 2). The latter was done either by additive or multiplicative aver-
aging, defined as

�pk
add =

X
i

βip
k
i or �pk

mul =
Y
i

pk
i ð4Þ

where pk
i is the weighting term for collaborator k and βi are averaging

weights (hyperparameters). The �pk are then normalized and used to
aggregate local model parameters wk

t across K collaborators into a
global model wg

t for each FL round t:

wg
t + 1 =

XK
k = 1

�pkwk
t ð5Þ

The weighting term that all participants incorporated in their solution
was proposed by McMahan et al.11: pk

FedAvg =Nk=
P

kNk , where Nk is the
number of local samples. Most teams introduced additional adaptive
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aggregation methods, which change the weighting pk(t) over the
course of federated training rounds t.

A summarizing description of the methods contributed by the
participating teams is provided below, ordered alphabetically by
team name. For Task 2, only the five official submissions are included
here. Key components in which the algorithms differ are also pre-
sented in Table 1 for Task 1 and Table 2 for Task 2. The algorithm
characteristics for Task 2 that stood out in the participants’ method
descriptions were the network architecture, the loss function, post-
processing steps applied to the model’s predicted segmentation
mask, the number of models used in the final ensemble (ensemble
size) and whether they used the nnU-Net framework for their
implementation. A complete list ofmembers for each team is given in
the Supplementary Note 4.

Team Flair39—Task 1. This team presented additional dataset splits of
varying sizes for prototyping and tested howa federated versionof the
multiple gradient descent algorithm, which formulates FL as multi-
objective optimization78, performs on the problem. This weight
aggregation method ensures that gradient steps are taken only in a
direction that does not harm the model performance on individual
clients, while also not deviating from the FedAvgweights bymore than
a hyperparameter ϵ. Full client participation was used in all rounds.

Team FLSTAR36—Task 1. This team tested how various aggregation
strategies improve the learning performance in the context of the non-
IID and imbalanced data distribution of the FeTS challenge data (par-
titioning 2). Their final model used a (normalized) multiplicative
average of FedAvg weights pk

FedAvg and local validation loss for aggre-
gating the clients’ parameters: pk

Lval
ðtÞ= 1

Z Lðwk
t Þ, where Lðwk

t Þ is the
validation loss after local training and Z a normalization factor. This
term can be interpreted as measuring the potential for local optimi-
zation, as clients with high loss can still improve more than low-loss
clients. For client selection, only the 6 largest sites from partitioning 2
were used, as they were less prone to overfitting.

Team Gauravsingh41—Task 1. This team implemented an aggregation
method inspired by Mächler et al.44, which uses an arithmetic mean of
two (normalized) terms for each client weighting factor: (1) local dataset
size as in FedAvg, (2) ratio of local validation loss (here negative DSC)
after and before local training pk

CostWAvgðtÞ= Z�1 � DSCðwk
t Þ=DSCðwg

t Þ,
where Z normalizes across clients. For client selection, they randomly
subdivided all clients into groups of 6 clients and iterated through the
groups in each federated round, so that 6 clients are used per round.
Every four rounds, the clients were re-grouped.

TeamGraylight Imaging79—Task 2. This team built upon the 3D nnU-
Net framework, incorporating a customized post-processing step
specifically designed for the TC region. The post-processing method,
denoted as FillTC, involves relabeling voxels surroundedbyTC toNCR.
This iterative post-processing is sequentially applied to each 2D slice,
first in the axial direction and subsequently in the coronal and sagittal
directions. The rationale behind this approach is grounded in clinical
expertise, suggesting that significant tumors typically lack voids of
healthy tissue. Furthermore, if a given region is surrounded by NCR or
ET, it is deemed to be part of the TC.

Team HPCASUSC80—Task 2. This team built their model upon a 3D
U-Net and added improvements inspired by the BraTS nnU-Net (2020)
paper63. They used region-based training, which uses the WT, TC, and
ET regions as labels during training instead of NCR, ED, and ET. Fur-
ther, they increased the batch size to 24 and used batch normalization
layers instead of instance normalization. Data augmentation consisted
of random mirroring, rotation, intensity shift, and cropping.

Team HT-TUAS40—Task 1. This team introduced a cost-efficient
method for regularized weight aggregation, building upon their pre-
vious year’s submission42. For parameter aggregation, the average of
FedAvg weighting and a parameter-distance (similarity) weighting was
used. Similarity with the average model parameters �wt =

1
K

P
kw

k
t is

measured with the absolute difference between individual local para-
meters and average parameter tensors pk

simðtÞ= 1
Z j�wt �wk

t j�1, where
the absolute value is applied element-wise. Additionally, the team
scaled the individual client weights with a regularization term that is
proportional to the parameter difference between the current and
previous round. For client selection, they randomly sampled 4 sites per
roundwithout replacement and restarted the sampling once all clients
participated.

Team NG research81—Task 2. This resubmission from the BraTS 2021
challenge, makes heavy use of model ensembling. The ensemble
comprises five models of diverse architectures, both convolutional
and transformer-based, which are combined withmean softmax. Their
models were refined by several strategies: Randomized data augmen-
tations, incorporating affine transforms, mirroring, and contrast
adjustment, were employed during training to enhance model
robustness. Furthermore, a post-processing step was integrated,
selectively discarding ET predictions falling below a specified volume
threshold, similar to Isensee et al.63.

Team rigg35—Task 1. This team developed FedPIDAvg, an aggregation
method that is inspired by a proportional-integral-derivative con-
troller. Compared to the predecessor method44, it adds the missing
integral term. The aggregation weight for each client is hence the
weighted sum of three terms, normalized with factors Z as necessary:

(1) local dataset size identical to FedAvg pk
P =p

k
FedAvg, (2) cost reduction

(or local improvement), i.e., the difference between local loss of the

previous and current round, pk
DðtÞ= 1

ZD
ðLðwk

t�1Þ � Lðwk
t ÞÞ, (3) sumof the

local loss over the past 5 rounds pk
I ðtÞ= 1

ZI

P5
i = 1 Lðwk

t�iÞ, which indicates

how much room for improvement remains. Selective sampling was
also incorporated, by modeling the sample distribution across clients
with a Poisson distribution and randomly dropping outliers, i.e., large
clients.

Team RoFL37—Task 1. This team focused on tackling data hetero-
geneity among collaborators and the communication cost of training,
exploring a combination of server-side adaptive optimization and
judicious parameter aggregation schemes. Server optimizers50 rewrite
the model aggregation equation Eq. (5) in the form of a stochastic
gradient descent (SGD) update: wg

t + 1 =w
g
t � λsΔt , where λs is a server

learning rate and Δt the aggregated model update. SGD can then also
be replaced with other optimizers. Team RoFL’s final submission uses
Adam82 as the server optimizer and takes a two-phase approach: in the
first phase, aggregation in Δt is performed with FedAvg. In the second
phase, the client learning rate is decreased while the server learning
rate λs increased. Furhermore, the model updates are aggregated with
a multiplicative combination of FedAvg weights and a term computed
per scalar parameter that is proportional to the inverse absolute dif-
ference between local and average model parameter, as in ref. 42. Full
client participation was used in all FL rounds.

Team Sanctuary38—Task 1&2. The solution for Task 1 incorporates
three key components. Firstly, model updates are aggregated through
inverse distance weighting83, where the inverse L1 distance between
the current and the average model parameters is employed to weight
the updates contributed by each site. pk

distðtÞ= 1
Z k �wt �wk

t k�1 Here,
�wt =

1
K

P
kw

k
t is the uniformly averagedmodel and Z normalizes across

collaborators. This aggregation weight is computed for each tensor in
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the model and combined with the FedAvg weight and a weight inver-
sely proportional to the local training DSC, which penalizes overfitting
clients and lifts the weight of clients with potential for local optimi-
zation. To mitigate the impact of slow clients on training efficiency, a
client pruning strategy is implemented. In even FL rounds, full client
participation is used. In odd FL rounds, the simulated round time of
each client from the previous is used to select a subset of clients, by
dropping clients that exceed a time threshold, which is set to 0:75 � �t,
where �t is the average round time. Additionally, the team adopted a
polynomial learning rate schedule to enhance training convergence.

For Task 2, they based their submission on the nnU-Net con-
tribution for BraTS 202063, extending it with test-time adaptation
through batch normalization (BN) statistics. Unlike the conventional
approach of collecting and freezing BN statistics during training, their
method leverages testdata information todynamically correct internal
activation distributions, particularly addressing domain shift issues. In
their approach, test-time BN recalculates BN statistics (mean μ and
standard deviation σ per filter map) based on the batch at prediction
time. As the algorithm utilized a batch size of 1 during testing, it is
similar to instance normat test time. Furthermore, the teamemployed
an ensemble strategy involving six models trained on distinct training
data folds. Each of these models underwent adaptation using test-
time BN.

Team vizviva84—Task 2. This team employed an encoder-decoder
architecturebasedonvolumetric vision transformers. In this setup, the
encoder partitions a 3D scan into patches, subsequently processing
them through layers that amalgamate the outputs of 3D Swin trans-
former and 3DCSwin transformer blocks85,86. For the decoder, 3D Swin
transformer blocks and patch expansion layers are utilized to recon-
struct the processed information. The training strategy involves a
combination of cross-entropy and Dice loss. Additionally, to bolster
the model’s resilience against adversarial examples, virtual adversarial
training introduces an extra loss term.

Additional information on Task 2 algorithms. In the FeTS challenge
2022, Task 2, not only official challenge submissions were evaluated,
but also 36 models submitted originally to the BraTS challenge 20213.
These models are the subset of BraTS 2021 submission that could be
converted semi-automatically to the container format used in the FeTS
Challenge 2022. Since all of these were described in scientific pub-
lications previously, we provide the references to the papers insteadof
describing eachmethod here in detail in Supplementary Table 4. In the
following, Table 2 is supplemented with references and short
descriptions of the Task 2 algorithm characteristics:

Architecture. The most common backbone used by the submissions
was U-Net67. Several variations to the basic U-Net were introduced by
the teams: Some used larger encoders, with more filters per convolu-
tion or more convolutional blocks per stage. Adding residual con-
nections to convolutional blocks69 was also common. Several
algorithms extended the U-Net with different kinds of attention
modules. Examples include inserting a transformer in thebottleneckof
the U-Net or re-weighting featuremaps with attention restricted to the
channel/spatial dimensions. Some participants used other CNNs than
U-Net, for instance HR-Net87, HNF-Net88, U-Net++89, and HarDNet90.
Recent hybrid CNN/transformer networks like CoTr91, Swin
transformer85 were incorporated in some submissions. Finally, a few
teams utilized skip connection blocks that combined features from
multiple stages or explored splitting the segmentation task into two
stages, first segmenting a coarsewhole tumor region and then refining
the segmentation of this cropped region.

Loss. The most common loss functions were Dice (computed either
per sample or per batch) and cross-entropy. Similar to the Dice loss,

some teamsoptimizeddifferentiable versions of segmentationmetrics
(Jaccard index, generalized Dice, boundary distance, and the general-
ized Wasserstein Dice loss92). Two less common loss functions were
TopK loss, which considers only the K pixels with the highest loss, and
the focal loss, which down-weights the loss for pixels that are classified
correctly with high softmax scores. Finally, one team used virtual
adversarial training93 as an auxiliary, regularizing loss term.Most losses
can be calculated either region-based (for each of WT, TC, ET) or for
the exclusive labels (ED, NCR, ET).

Post-processing. Techniques that refine a model’s segmentation
output based on prior knowledge specific to the three brain tumor
regions were popular in the challenge. Dropping small connected
components from the finalmask (or replacing themwith neighboring
predictions) can help to reduce false positives. Morphological
operations like closing or hole filling were also applied by some
teams. Since TC usually is a compact core withinWT, post-processing
methods enforced this property, by removing TC parts that extend
beyond WT or filling holes inside TC. Finally, potential confusion
between ET and NCR was counteracted by converting ET output
regions to NCR if they are very small (or for one team, if an auxiliary
network suggests this).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training and validation data of the FeTS challenge have been
deposited in the Synapse platform under accession code syn29264504
[https://www.synapse.org/Synapse:syn29264504] (registration required
for download) and, as they are identical to the BraTS 2021 data, are also
available via TCIA under DOI 10.7937/jc8x-9874 [https://www.
cancerimagingarchive.net/analysis-result/rsna-asnr-miccai-brats-2021/]
(free access). The reference segmentations for the validation data aswell
as the centralized testing data for the challenge are protected and are
not available because they will be re-used in future competitions, which
are only fair if evaluation sets are not public. Furthermore, decentralized
testing data from the federated institutions are protected and are not
available due to data sharing restrictions of the individual institutions.
The challenge results data generated in this study are published as a
source data file. The source data file contains raw data underlying each
figure, two example training cases, and the full challenge metric results
for both tasks. Source data are provided with this paper.

Code availability
To enable reproducibility, all tools, pipelines, and methods have been
released through the Cancer Imaging Phenomics Toolkit (CaPTk)58–60,
MedPerf (https://github.com/mlcommons/medperf/tree/fets-challenge)31

and the FeTS tool (https://github.com/FETS-AI/Front-End/). Challenge-
specific instructions are available on the challenge website (https://www.
synapse.org/fets). Challenge-specific code for developing and testing
algorithms, creating the analysis figures in the article and computing the
rankings are publicly available (https://github.com/FETS-AI/Challenge)94.
That repository consists of components with different licenses, ranging
from BSD-style to Apache-2, all approved by the open-source initiative.
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