

City, University of London Institutional Repository

Citation: Popov, P. & Stankovic, V. (2025). Diverse Database Replication Based on

Snapshot Isolation – Performance Implications of Improved Dependability. Paper presented
at the 44th IEEE International Symposium on Reliable Distributed Systems, SRDS 2025, 29
Sep - 2 Oct 2025, Porto, Portugal.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35486/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Diverse Database Replication Based on Snapshot

Isolation – Performance Implications of Improved

Dependability
Peter Popov and Vladimir Stankovic

Centre for Software Reliability, Department of Computer Science, City St George’s, University of London
Email: P.T.Popov@citystgeorges.ac.uk, Vladimir.Stankovic.1@citystgeorges.ac.uk

Abstract—Numerous database replication schemes are built on

the crash failure assumption where majority of failures are self-

evident as defined in [1]. The study in [1] convincingly refuted this

common assumption showing that many of the faults in relational

Database Management Systems (DBMSs) cause systematic non-

crash failures. Similar results were obtained in the subsequent

study [2]. Consequently, the existing database replication

solutions, which typically use the same DBMS, are ineffective fault-

tolerant mechanisms. Conversely, using diverse DBMSs is a

suitable way of protecting against non-crash failures.

We have built a middleware-based database replication

protocol, DivRep, and deployed it with diverse database servers

(DivSQL), for improved fault tolerance. DivSQL provides strict

Snapshot Isolation (SI) guarantees, and assumes “incorrect

results” failure model (IRFM) – the most realistic one based on the

extensive experimental analyses of DBMS faults ([1, 2]). The

dependability gain comes with the inherent performance overhead.

We provide a comprehensive performance evaluation of DivSQL

using 3 diverse DBMSs (two are leaders in the field).

Keywords—database replication, dependability, design diversity,

performance evaluation.

I. INTRODUCTION

Database replication has proved as a practical way of
improving both dependability and performance. Traditional
replication schemes based on Read-Once-Write-All-Available
(ROWAA) approach [3] provide increased availability and guard
against crash failures by deploying non-diverse solutions, i.e.,
using relational Database Management Systems (DBMSs) from
a same vendor. The scalability is typically improved by
balancing the load among the deployed replicas.

However, two extensive studies with diverse DBMSs [1, 2]
showed that a significant proportion of software faults (“bugs”)
cause non-crash failures. In [1] a majority of the reported faults
for all 4 DBMSs studied led to “incorrect result” failures rather
than crashes (about 65% vs. 18%). Similar results were obtained
in [2]: over 50% of the reported bugs caused non-crash failures
in the 3 DBMSs tested – mostly incorrect answers or database
corruptions. The fact that bugs leading to non-crash failures are
difficult to detect, and thus probably underreported, is likely to
have contributed to the view that they are not a major problem.
It also implies that the reported figures probably underestimated

1 Firebird is the open-source descendent of InterBase, one of the first DBMSs

to implement Multi Version Concurrency Control (MVCC) – see the seminal
work on Snapshot Isolation [6] and here.

the true fraction of faults that cause non-crash failures.

The findings in [1] demonstrated that very few cases that
triggered a bug in one DBMS caused failures in another. They
showed that a pair of diverse servers achieves failure detection
rate of no less than 95%. Moreover, there were no coincident
failures in more than two of the servers. The results warrant the
choice of design diversity, i.e., diverse redundancy (when
tolerating design faults via deploying diverse (DBMS) products
in parallel), as a suitable way for improving dependability.

We have built a middleware-based database replication
scheme, DivSQL, which ensures strict consistency levels: both
strict 1-copy snapshot isolation (the correctness criterion based
on 1-copy snapshot isolation, 1-copy SI, [4]) and Conventional
Snapshot Isolation (CSI) [5] as seen in centralised DBMSs. The
latter is referred to as just Snapshot Isolation (SI) [6]. DivSQL
offers dependability assurance against software faults, i.e., high
failure detection rate, achieved by deploying two diverse
DBMSs. We use a leading commercial DBMS – Comm for short,
and open-source products: Firebird1 (FB) and PostgreSQL (PG).
The replication scheme is configurable to different regimes of
operation depending on the specific client requirements,
optimized for either dependability assurance (pessimistic
regime) or performance improvement (optimistic regime). To
improve fault tolerance, the pessimistic (Pess) regime features a
Comparator component that compares, within the transaction
boundaries, the results of SQL operations coming from different
DBMSs. The optimistic (Opt) regime implements a skip feature,
which improves performance by executing read operations only
on one of the DBMSs. The two regimes are complementary and
can be combined into a configurable quality of service, i.e., a
hybrid regime of operation2 (Sect. VI.B).

Intuitively, the application of design diversity for improving
dependability, e.g., through fault tolerance, is likely to exhibit
performance cost, which is precisely the focus of this paper. We
compared the performance of Pess and Opt regimes of operation
against single DBMSs, and non-diverse pairs. The results are
encouraging: when the individual performances of diverse
DBMSs are close, Pess regime is no more than 6% worse than
the faster single server, and Opt regime exhibits higher
throughput than the faster single server for some loads. Also, the
performance results of the two regimes estimate the bounds of
the performance attainable with the hybrid regime of operation.

2 The hybrid regime of operation has been conceived, but not yet implemented.

mailto:P.T.Popov@citystgeorges.ac.uk
mailto:Vladimir.Stankovic.1@citystgeorges.ac.uk
http://ibexpert.com/docu/doku.php?id=01-documentation:01-05-database-technology:database-technology-articles:firebird-interbase-server:multi-version-concurrency-control

DivSQL is deployed with a pair of diverse replicas (e.g., 1FB
and 1PG DBMS) in a single fault–tolerant node (DivSQL),
which is sufficient for achieving improved detection of non-
crash failures. Should a higher level of replication be required,
e.g., for better scalability, then DivSQL can be combined with
another database replication scheme, which is considered
adequate for a particular set of requirements. These can be
schemes optimised for scalability; be it eager database
replication, e.g., based on group communication primitives, or
lazy replication. In either case, DivSQL would replace a non-
diverse replica used by the chosen database replication scheme.
Such a “fusion” replication scheme will allow one to have both
high dependability assurance (via DivSQLs) and improved
performance (via the chosen scalable replication).

The main contributions of the paper are as follows: a) we
provide a novel middleware-based database replication protocol
for SI-based DBMSs, and proofs of its strict consistency; b) this
is the first (diverse) database replication approach that assumes
a realistic, experimentally-confirmed failure model (“incorrect
results” failure model – IRFM) which lies between the two most
studied ones: crash, and Byzantine, failure model, and c) this is
the first paper to provide comprehensive experimental evaluation
of an SI-based database replication with diverse relational
DBMSs (two of the chosen products are the leaders in the field).

The rest of the paper is organized as follows. We review
related work about database replication and design diversity in
Sect. II. Sect. III explains the replication model and provides
necessary definitions. Sect. IV describes our replication protocol.
In Sect. V we show the extensive experimental evaluation of
DivSQL performance against the single DBMSs and non-diverse
pairs. In Sect. VI we discuss the findings, and finally in Sect. VII
we present conclusions and state provisions for future work.

II. RELATED WORK

A. Database Replication

There exist numerous database replication solutions, both

commercial and academic. These solutions have been

categorized in different ways, e.g. middleware-based (black-

box) vs kernel-based (white-box) approaches (grey-box

solutions, whereby some internals of DBMSs are made use of,

exist too); based on where the transactions are executed

(primary-backup vs. multi-master approaches), or when the

transactions are executed on replicas (eager vs lazy) [7] [8];

either a full (every node stores a copy of all data items) or a

partial replication (each node has a subset of data items), etc.

Most database replication solutions, in academia and

industry, are based on crash failure model. The one from [4] is

a middleware-based solution, and it defines the correctness

criterion based on SI – 1-copy snapshot isolation, a strict

version of which DivSQL ensures.
There are, however, few research works on database

replication that assume Byzantine failure model, [2], [9], [10],
[11], [12]. In [2], HRDB, unlike our solution, provides 1-copy
serializable guarantees. HRDB is a primary copy replication
scheme and thus the performance of the replicated system is
dictated by the processing of the primary. The main premise is
Commit Barrier Scheduling (CBS), which allows the Shepherd

to execute transactions on the primary and ensure that all non-
faulty secondaries execute transactions in an equivalent serial
order. HRDB deals with the non-determinism of the locking
mechanisms in diverse replicas by requiring the primary is
sufficiently blocking – if the primary executes a pair of SQL
operations in parallel, it is ensured all non-faulty secondaries can
do so, too. The authors place trust into the Shepherd component,
which is also a single point of failure. The authors report HRDB
overhead of 17% compared to single server using TPC-C
workload, but use non-diverse servers (MySQL). Analogous to
CBS, Snapshot Epoch Scheduling (SES) protocol for SI DBMSs
is given in [9]. The evaluation is based on their own benchmark
– the results for loads up to 20 Clients are good, after which
performance degrades. The evaluation against TPC-C is not
given due to implementation issues (Sect. 6.4 in [9]).

The work in [10] is similar to ours in that DBMSs offering
SI are used, but Byzantine failure model is assumed. Notably, in
their performance analysis of Byzantine behavior (Sect. 7.4) they
used an “incorrect result” failure (DivSQL guards against those)
and justify the choice by the failure being a more realistic one
than a more demanding Byzantine failure. The authors do not
deploy diverse DBMSs for their performance evaluation; they
use a single DBMS product – PostgreSQL. The reported
overhead (20% to 35%) for the write-intensive workload (TPC-
C), as well as the improved performance for the read-only
workload (using only read-only transaction types from TPC-C),
when compared to the single DBMS is not sufficiently realistic
– the inevitable differences in the individual performances of
diverse DBMSs would have likely impacted these results, and
thus the conclusions made likely do not apply more generally.

In [11], the authors propose a Byzantine fault-tolerant
deferred update replication protocol, and consider a set of
Byzantine client attacks (on the certification step of the protocol)
for which they provide countermeasures and a simulation model
to evaluate them. They do not provide (experimental) evaluation
of the protocol, however.

In the early solution of Byzantine fault-tolerant databases
[12] all operations are serialised: this provides high consistency
level at the major expense of precluding concurrent transactions.

B. Design Diversity

Design diversity was conceived more than 40 years ago, and
its use to improve fault tolerance has been researched
extensively. A survey of effectiveness of design diversity can be
found in [13], and its design aspects can be found in [14]. Due to
its high cost the industry has been reluctant to use design
diversity for guaranteeing sufficient levels of dependability
except for safety-critical applications e.g., protection systems in
nuclear industry, avionics, etc. Proliferation of off-the-shelf
software gave rise to the use of diversity as a realistic possibility
for dependability improvement. However, the results of
assessing the potential dependability gains, and more so the
consequent performance overhead, are still scarce, and
especially regarding the software we are interested in – DBMSs.

Gashi et al. [1] discuss architectural issues and difficulties
that arise when using design diversity in the context of DBMSs.
Use of rephrasing rules, as a “data diversity” mechanism, for
failure diagnosis and state recovery was studied in [15].

III. REPLICATION AND SYSTEM MODEL

Each DivSQL contains two DBMS replicas (we use terms
‘DBMS’ and ‘replica’ synonymously in the rest of the paper).
DivSQL uses full, middleware-based replication and guarantees
data consistency by enforcing eager, multi-master approach [7].
It assumes IRFM failure model. The replication middleware
supports interactive transactions and replication is done at the
level of SQL operations. Hence, runtime dependence between
SQL operations within a transaction – a realistic, and favorable
trait, since in general SQL operations are not known at the
transaction start – is allowed. Clients wait for response to an
operation before sending the next one. DivSQL implements
active replication [16] – all SQL operations are executed on both
replicas in the Pess regime, which enables a straightforward
comparison of diverse DBMS results. DivSQL employs DivRep
replica control protocol. Fig. 1 shows DivSQL architecture.

Fig. 1 DivSQL system architecture.

Database transactions are sequences of read (r) and write (w)
operations and each transaction starts with a begin (b) operation
and ends successfully with a commit (c) or must abort (a) and
roll back to the state before it started. Begins, commits and aborts
are all transaction boundary operations.

We assume that each DBMS offers snapshot isolation (SI)
[6]. A transaction executing in SI operates on a snapshot of
committed data, taken upon the transaction’s begin. Hence, SI
guarantees that all reads of a transaction see a consistent snapshot
of the database. The changes performed during a transaction are
seen by the subsequent reads within that same transaction. SI
does not exhibit any of the anomalies from the SQL standard
(Dirty Read, Non-repeatable Read, or Phantom Read). The
concurrency control mechanism of a DBMS implementing SI
raises an exception only due to write-write conflicts. These
conflicts occur when concurrent transactions attempt to write to
the same data item (e.g., a table row). Two transactions, Ti and
Tk, are concurrent if the following holds: TiBegin < TkCommit <
TiCommit. The absence of conflicts between readers and writers
in SI improves performance and makes it more appealing than
the traditional serializable isolation level. SI is offered in leading
commercial and open-source relational DBMSs (MSSQL,
Oracle, PostgreSQL etc.), as well as in some NoSQL ones, e.g.,
MongoDB. There exist solutions to change database application
executing under SI in such a way that serializability is guaranteed
[17]. Also, executing many typical workloads, including several
TPC benchmarks, under SI provides the same results as if they
were executed under serializable isolation level.

Real-world DBMSs implement SI using write locks together
with multi-versioning, instead of, for example, an optimistic
concurrency control mechanism that checks for write-write

conflicts in the end of transactions (thus, use First-Updater-Wins
[18] rule rather than First-Committer-Wins). Our approach
assumes the former.

We distinguish two types of transactions: read-only, which
have only read operations, and write transactions that have at
least one write and zero or more read operations.

Some academic proposals for database replication (e.g. [2],
[9], [10], [11]) considered Byzantine failure model for DBMSs
– the most general model in which components of a system fail
in arbitrary ways (in addition to crashing they can process
requests incorrectly, corrupt their state, produce inconsistent
outputs due to malicious intent, etc.). Non-crash failure models
must be addressed, and we have contributed to the development
of novel protocols that consider those. However, the IRFM
failure model assumed by DivSQL lies between crash and
Byzantine failures models. In addition to crash failures, it guards
against failures of SELECTs (e.g., erroneous omission of a row)
– referred to by some as “logic bugs” [19], and DELETEs,
INSERTs and UPDATEs wrongly changing the database state.
It is likely the most suitable failure model for majority of
applications based on the compelling evidence that non-crash
failures are dominant in DBMSs [1, 2]. Our approach is thus
based on a failure model with practical relevance. Further
research is needed to establish how likely DBMSs and the clients
exhibit more challenging Byzantine behaviour.

Client applications access our system using JDBC interface.
Our JDBC driver implements the client side of DivRep protocol.
We use different SI-enabled DBMSs, and their JDBC drivers, in
DivSQL. We configured our prototype implementation to run
one of the 3 pairs: 1Comm1FB, 1Comm1PG or 1FB1PG.

IV. DIVERSE REPLICATION PROTOCOL (DIVREP)

A. DivRep Architecture

A (diverse) database replication protocol – DivRep – ensures
data consistency in DivSQL. DivRep uses mechanisms directly
supported by off-the-shelf DBMSs. Thus, our solution can be an
add-on, does not require changes of off-the-shelf DBMSs or to
provide extensions that duplicate a core functionality of the
existing products as is the case with some replication protocols.

 For every client connected to a DivSQL a Transaction
Manager (TraManager) is provided. In turn, every TraManager
communicates to the database replicas via a replication manager
(RepManager), one for each DBMS. Since we envisage DivSQL
to consist of a pair of DBMSs, there are 2 RepManagers per
every TraManager. Fig. 2 presents a pseudocode of DivRep
executing in the Pess regime in a TraManager, while Fig. 3 does
so for a RepManager. The correctness of DivRep is ensured
when an arbitrary number of replicas are deployed, not only two.
Thus, we use the pronouns “all” and “both” interchangeably.

A TraManager accepts operations submitted by a particular
client. It deals in a specific way with every operation depending
on its type, e.g., transaction boundaries are treated differently
than the reads and writes. Transaction execution occurs in
parallel on the two DBMSs.

The execution of a begin operation is as follows: first, the
variable indicating that a particular transaction should abort is

Fig. 2 The pseudo code of a TraManager execution in DivRep in Pess regime

reset, i.e., its value is set to false; then the global mutex,

contended for by all TraManagers, is acquired; the begin is sent
to all DBMSs for transaction snapshots to be created – this is
done directly through each replica’s SQL API, without sending
it first to RepManagers. No commit or begin operation can
execute unless the TraManager holds the mutex, and thus

consistent snapshots (unchanged by any other transaction
commit) are taken on both replicas; the mutex is released;

finally, the control is returned to the client. If an exception is
raised during the processing of a begin, the transaction abort is
flagged, which subsequently triggers the Abort function (Fig. 2).
The mutex could be replaced with an atomic broadcast

primitive, or Paxos commit [20], but such a choice would
introduce an unnecessary complexity for the two-channel
replication proposed by DivSQL.

 The execution of reads and writes is treated in the same way
in TraManager. First, the operation is placed in the queues of
both RepManagers. Once the faster response is received (i.e., a
DBMS has successfully executed the operation, passed to it by
the respective RepManager (Fig. 3)), it is returned to the client –
this reduces SQL operation latency observed by the client. The
client then sends the following operation, possibly using the
results of the previous one. Thus, DivSQL allows dependence
among SQL operations – interactive transactions.

If an exception is received, however, the transaction is set to
abort, triggering the Abort function. Without occurrence of an
exception, the processing continues by TraManager waiting for
the responses from both DBMSs. Once both are collected, the
Comparator function is initiated (Fig. 2) in the Pess regime. Like
the Abort function, the Comparator executes asynchronously
with TraManager and the respective RepManagers. It first does

I) Upon SQL operation OP from Ti

II) switch(OP)
A) case: OP is a begin operation

1) reset transaction abort /* set transaction abort to false */

2) obtain the mutex /* among all TraManagers */

3) send begin to all DBMSs /* create snapshots on the DBMSs */

4) wait until all DBMSs begin the transaction

5) release the mutex

6) return control to the client

B) case: OP is a read or a write operation

1) put OP into the queues of RepManagers /* each DBMS is served by a RepManager */

2) receive the faster response for the OP

3) if the faster response is not an exception

a) return the response to the client

4) else

a) set transaction abort /* further execution of the transaction is prevented */

b) notify the client of the exception

5) wait for all responses to be received

a) if exception raised && transaction not set to abort

i) set transaction abort /* further execution of the transaction is prevented */

ii) notify the client of the exception

b) else

i) do compare responses /* start Comparator function */

C) case: OP is an abort operation

1) set transaction abort /* further execution of the transaction is prevented */

D) case: OP is a commit operation

1) if transaction not set to abort

a) wait until all available replicas “vote” (complete all operations) and the Comparator

“votes” (compares all operations’ responses)

i) obtain the mutex

ii) send commit to all DBMSs /* directly access their SQL API */

iii) wait until all DBMSs commit the transaction

iv) release the mutex

v) clear RepManagers queues

vi) return control to the client

Abort Function /* executed by a TraManager */

I) if transaction set to abort

A) abort transaction on all DBMSs /* directly access their SQL API */

B) wait until all DBMSs abort the transaction

Comparator Function /* executed by a TraManager asynchronously (e.g., in a separate thread) */

I) compare the responses from all DBMSs

A) if a mismatch found

1) set transaction abort /* further execution of the transaction is prevented */

2) notify the client of an exception (“data inconsistency occurred”)

Fig. 3. The pseudo code of a RepManager execution in DivRep in Pess regime

metadata checks (e.g., number of rows), and then pair-wise
comparison, value by value, of the corresponding DBMS
responses. If it finds a mismatch the transaction abort is set,
indicating to the client that “data inconsistency” exception
occurred. To compare the effects of write operations the
middleware generates control read (control SELECT)
operations. A control read is constructed by parsing the
respective write operation and it is sent straight after the write to
retrieve the modified tuples, and no others. Since the underlying
DBMSs offer SI and execution order of boundary operations is
the same on both servers, the algorithm provides necessary
replica determinism. If no failure occurs the replicas produce the
same results. The result comparison of all operations (reads,
control reads, and writes for which the number of modified rows
is usually returned to the client) is completed before the commit.

 The control reads impose more roundtrips between the
middleware and the replicas. This could be alleviated using e.g.,
SQL extensions for data-change operations (DELETE, INSERT,
UPDATE) as in DB2 [21], which return a result set with
modified rows. Alternatively, already fully-implemented
approaches might be used: writeset extraction via triggers or
transaction log, or the RETURNING clause in PG or the OUPUT
clause in MSSQL. But these will, at best, need special treatment
due to the use of diverse DBMSs.

The transaction duration is likely to be prolonged due to the
use of the Comparator function. The actual delay is, however,
likely to be negligible because the results’ comparison in DivRep
is performed in parallel with the operations’ executions on the
DBMSs. Thus, in many cases, all except the result of the last
operation will have been compared before the slower server
completes all operations. The assumption of the minimal delay
depends on the performance characteristics of the Comparator
and the sizes of the results. Hashing the results of (control) reads
could minimize processing time needed for comparison.

Once the commit operation is submitted, TraManager checks
if a transaction abort has been already set. If it has not, once the
“votes” from all replicas (confirming that all reads and writes
have finished) and the Comparator “vote” (confirming no result
inconsistency was found) are collected, the mutex is acquired.

Like with a begin operation execution, no commit or begin from
other transactions can execute while the TraManager holds the

mutex. This guarantees the order of the commits and begins is

the same on all replicas. After all replicas have acknowledged
that the commit has been executed, the mutex is released. The

queues of the RepManagers are then cleared, preparing them for
the execution of the next transaction, and the control is returned
to the client. Thus DivRep executes a variant of atomic commit
([22]) protocol (AC-DR): once both replicas and the Comparator
have “voted”, DivRep ends the transaction on both replicas. A
replica either successfully completes all operations in a
transaction or it raises an exception. The middleware regards the
former as a “vote” [22] for commit and the latter as an abort
“vote”. Likewise, only if Comparator reports no inconsistencies
between the respective results, a commit “vote” is recorded.

If an exception occurs during the processing of a transaction,
TraManager notifies the client that the transaction needs to abort.
As a result, the Abort function is triggered by the client (in
typical use of transactions this is indeed client’s responsibility) –
the function submits aborts to all DBMSs through the respective
SQL API without sending them via the RepManagers (abort is
executed asynchronously for each DBMS). If the client submits
an abort operation as part of its workflow, the TraManager
triggers the Abort function by setting transaction abort, too.

To minimise the performance overhead DivRep aborts the
transaction on both replicas as soon as a write-write conflict or a
result inconsistency is reported, instead of performing agreement
phase once both replicas have finished all SQL operations and
the comparison of the results has been completed. It is possible
that the replica on which the write-write conflict was not raised
is still executing an operation, and the RepManager is therefore
blocked. In this case, one could cancel the execution of the
currently running operation on the non-aborting DBMS. The
trade-off between successful cancelling of a running SQL
operation and performance benefits it can bring is mute, since the
action must be done asynchronously. Also, the cancel
functionality must be supported by both the DBMS and the
connectivity layer. We have not implemented the cancel feature.

The part of DivRep protocol executed on RepManagers (Fig.
3) is simpler than the TraManager execution – RepManagers
execute only read and write operations. While there are
unexecuted operations in a particular RepManager queue and the
corresponding transaction is not set to abort, the processing

I) while (non-empty queue && transaction not set to abort)

A) fetch an operation (OP) from the RepManager queue

B) switch(OP)

1) case: OP is a read operation

a) send OP to the respective DBMS

b) wait for a response /* either fetched data or an exception */

c) return response to the TraManager

2) case: OP is a write operation

a) send OP to the respective DBMS

b) wait for a response /* data or an exception */

c) if no exception raised

i) obtain the writeset – send respective control read /* this operation may result in an

exception, which would be stored in the writeset itself */

ii) return the writeset to the TraManager
d) else

i) return exception to TraManager /* write-write conflict */

3) default: /* unsupported operation */

https://www.postgresql.org/docs/current/dml-returning.html
https://learn.microsoft.com/en-us/sql/t-sql/queries/output-clause-transact-sql

proceeds as follows. If it is a read, the operation is sent to the
DBMS, the response (either data or the exception due to
unsuccessful execution) is fetched and returned to the
TraManager. The processing of a write operation differs from the
processing of a read in that RepManager must explicitly initiate
the extraction of the writeset using control reads. The writeset,
identically to the result of a read operation, is sent to the
Comparator function of the TraManager for validation (the
Comparator runs in a separate thread). If a bug manifests itself
while a control read is executed (see I)B)2)c) in Fig. 3), DivRep
treats it as any other failure, aborts the transaction to ensure
consistency on the two DBMSs.

In practice SI is implemented using locks for write operations
(Sect. III). Since we use multi-master approach, and transactions
execute concurrently on the DBMSs in DivSQL, different
orderings of (conflicting) SQL operations may ensue, and
possibly lead to a distributed deadlock (the replicas must, in any
case, agree on the transaction outcome via the atomic
commitment). Thus, an integral part of DivRep is NOWAIT
configuration parameter, set on a DBMS, and used for resolution
of distributed deadlocks. NOWAIT exception is raised as soon
as the DBMS detects that a transaction attempts to modify a data
item for which an incompatible lock is held by a concurrent
transaction. The feature is typically implemented as part of the
first phase of a 2-Phase Locking protocol. The use of NOWAIT
resolves consistently the consequences of non-determinism
between the DBMSs. Many DBMSs (e.g., Firebird, MSSQL,
Oracle, PostgreSQL, etc.) offer NOWAIT functionality, though
the respective implementations and intended use differ (e.g.,
NOWAIT can be configured on the level of the DBMS, DB
connection, or SQL operation).

NOWAIT is enabled on only one DBMS in DivRep. This
asymmetric configuration of NOWAIT precludes inconsistent
decision by NOWAIT on different DBMSs. DivRep uses a
NOWAIT feature to immediately report the write-write conflicts
raised by one of the DBMSs, not both. Thus, most write-write
conflicts will typically be reported by NOWAIT-enabled DBMS
while on the other replica transaction blocking might ensue.
Also, potentially high abort rate is curtailed by setting NOWAIT
only on one DBMS. Whether NOWAIT exception will be raised
or not depends on the individual speed of, and transaction
ordering on, the two DBMSs. It is possible that the DBMS with
NOWAIT disabled raises a write-write exception – these
exceptions will trigger transaction aborts by DivSQL too, and
consistent state across the DBMSs will be preserved.

It is evident that DivSQL represents a single point of failure.
Standard techniques, such as primary-backup replication [23] or
a decentralised DivSQL could alleviate this problem. DivSQL is
relatively simple and, thus, we have high confidence in its being
implemented correctly, i.e., free of design faults. The effects of
other faults, e.g., that can be attributed to hardware issues, are
adequately modelled as crashes. Assuming crash behaviour for
DivSQL, therefore, becomes plausible, thus making DivSQL
suitable for integration into a highly scalable, and/or highly
available, replication solution – the “fusion” approach (Sect. I).

B. DivRep Optimistic Regime

In Opt regime no adjudication of the responses from the
diverse DBMSs occurs. Also, a skip feature is implemented in

the middleware as follows. Before a replica (DBMS 1), executes
a read operation, DivRep checks if a response to this operation
has already been received from the other replica (DBMS 2). If
so, then DBMS 1 does not execute the operation, i.e., skips it.
The write operations are executed on all replicas, i.e., they cannot
be skipped. The functionality of looking up the next operation
and the skip feature is implemented in the RepManagers, which
relays to the DBMSs the operations for execution. If a read
operation is to be skipped, then the RepManager simply does not
pass it to the respective DBMS for execution. Clearly, this
regime does not offer the same dependability assurance as the
Pess one. It may, however, be adequate in many cases.

There might exist systematic differences between the times it
takes diverse DBMSs to execute the same operation, e.g., due to
the respective execution plans being different, the concurrency
control mechanisms being implemented differently, etc. In the
Pess regime, the skip feature is not used and the best that
DivSQL can do during transaction execution is to process SQL
operations as fast as the faster of the two servers can. However,
DivSQL waits for both servers to complete all operations and
performs adjudication of the respective responses, and thus
diversity cannot bring any performance gains. When the Opt
regime is used, however, the systematic difference might lead to
improved performance. If the mix of operations within a
transaction is such that both servers ‘skip’ reads, then the
transaction might take DivSQL less time than either of the
DBMSs it consists of.

C. Correctness and Liveness of DivRep

DivRep ensures strict consistency – it produces transaction
execution histories equivalent to a history of a centralized SI
scheduler. DivRep guarantees strict 1-copy SI, a criterion based
on 1-copy-SI [4], as well as Conventional Snapshot Isolation [5],
the strictest SI level for (replicated or centralised) DBMSs.
Respective proofs are given in the Appendix. Thus, DivRep
provides (read-only) transactions with the most recent snapshot,
a property commonly unavailable in other replication solutions,
which permit stale data to be read. Informal reasoning about
DivRep correctness and liveness follows.

First, the replicas start execution from the same state, i.e., the
changes of all transactions that committed (the data item versions
they installed) are visible upon a transaction begin by any client
– this is ensured via using the mutex for all begins and commits.

Second, if two transactions (with conflicting writesets)
overlap from the client’s perspective they overlap in the global
schedule produced by DivRep (all concurrent transactions on
one DBMS are concurrent on the other, too), and if a transaction
is aborted due to an exception raised (due to a write-write
conflict, or else) the schedule observed on the client and the
schedule produced by DivRep is the same, and all conflicting
transactions ordered in the same way on both DBMSs. The
execution from the client’s perspective is the same as the
execution in DivSQL. This resembles Commitment Ordering
that like DivRep uses atomic commitment but ensures global
serializability in replicated databases [24].

DivRep is correct under assumption that once a replica has
voted for commit (II.D.1.a in Fig. 2), the commit is guaranteed
to succeed on the given replica.

DivSQL ensures correctness in an asynchronous network
model, and like in [10] we need a form of synchrony to guarantee
liveness [25]. We assume eventual synchrony – DivSQL
guarantees the clients make progress during periods when the
delay to deliver a message is bounded.

V. EXPERIMENTAL RESULTS

A. Test Harness and Implementation

We conducted extensive performance evaluation with
DivSQL. We used 3 DBMSs (a commercial, and two open-
source), 2 of which are leaders in the field: the commercial –
Comm, Firebrid v5.0 – FB and PostgerSQL v17 – PG. Notably,
our work has not aimed at performance ranking individual
DBMSs, but instead focuses on evaluation of DivSQL: the
intrinsic dependability assurance overhead of Pess regime, and
the potential for performance improvement via Opt regime.

The DBMSs were deployed on ESXi Virtual Machines
(VMs) with modest resources: 4 CPUs – 2.8GHz each, 16GB
RAM, and 512GB SSD disks. The VMs ran Windows Server
2016 OS. The client application ran on one of the 4 VMs.

We implemeted DivSQL, and its JDBC driver, in Java
(v23.0.1). In JDBC, SQL write operations (DELETEs,
INSERTs, UPDATEs) return the number of modified rows. In
Pess regime, comparison of the results from all SQL operation
types is done: reads – result sets; writes – the count of modified
rows; and control reads – the rows modified by the respective
write. Thus, all the responses are checked for consistency.

As an assurance of correcteness of our approach, we compare
the full database states, value by value, on both DBMSs after
each experiment. We identified no inconsistencies in this way.

We instrumented the code with configurable fine-grained
logging: by default, we log transaction-related data on the client
side, and we optionally log at SQL operation level (on either, or
both, client and DivSQL side). We used only the former in our
comparison of DivSQL against single DBMSs (Sect. V.B and
V.D) and non-diverse DBMS pairs (Sect. V.C), though the
results remained unaffacted by the chosen logging level.

For the performance evaluation, we use our own
implementation of TPC-C (based on the SQL common to all
chosen DBMSs), the industry-standard benchmark for OLTP.
TPC-C is, thus, dominated by write transactions; only about 8%
of the transactions are read-only. We have implemented TPC-C
using either standard, or prepared, SQL statements. In our
evaluation, we used the latter implementation due to its well-
known performance. Control SELECTs were generated using
prepared statements too, by parsing, and string manipulation of,
the respective write operation only once in the beginning of the
experiment – an additional performance benefit. We used TPC-
C databases with 20 Warehouses. The minimum mean of TPC-
C Think Times distribution were scaled down to the following
values (in seconds): 1, 1, 0.8, 0.3 and 0.3 respectively for New-
Order (NO), Payment (P), Delivery (D), Order-Status (OS), and
Stock-Level (SL) transactions (TPC-C specifies 12, 12, 10, 5 and
5 seconds, respectively). We ran experiments with shorter, or no,
Think Times, and the abort rate was, unsurprisingly, intolerable;

this is due to a high contention exhibited in the workload, and
especially via the Payment transaction.

Our focus is on the comparison of DivSQL performance, in
both Pess and Opt regime, against the performances of single
DBMSs (“1 DBMS”). When comparing to the DivSQL in the
Pess regime 1 DBMS performance represents the lower bound
for DivSQL. The 1 DBMS experiments use respective DBMS’s
JDBC driver, have a thread per connection to communicate with
the server, and incur overhead executing through our
middleware. The throughput results for single DBMS
experiments were equivalent with, or without, the use of the
mutex, an essential feature for our replication protocol to ensure

consistency, but unneeded when running 1 DBMS experiments.
Unlike in the Pess regime, and the same as in the Opt regime, we
have not executed control SELECTs with 1 DBMS experiments
– this caters for a fair comparison.

We also implemented TPC-C in a separate codebase, using
prepared statements (as for DivSQL), to test single DBMSs
without any of our replication code (Single_Server codebase).
These results were similar to the ones obtained for 1 DBMS
experiments where we used DivSQL codebase. This increases
our confidence in the middleware being implemented efficiently.

Notably, the performance of individual DBMSs is, in
general, going to differ, and potentially considerably so. The
difference will affect how much one can limit the performance
overhead of DivSQL, dictated by the slower DBMS, when using
the Pess regime, and how much of improvement, if any, one can
observe with the Opt regime. We used DBMSs without any
optimisations, except the following FB parameters:
DefaultDbCachePages and FileSystemCacheSize.

They were set to optimise the use of memory for the architecture
(“SuperServer”) we used. We did this to bring closer the FB
performance to that of the other DBMSs.

We used transactions per minute (tpm), adapted from the
TPC-C’s tpmC (number of new orders per minute under response
time constraints), as the main performance metric, as well as
mean transaction latency.

We used no vendor-specific SQL extensions from any of the
DBMSs – achieving full vendor-agnostic SQL compatibility is
outside of the scope of this work. In general, non-determinism in
the results returned by a DBMS is possible, either since no
specific ordering of results is used, or due to use of non-
deterministic functions available in DBMSs (e.g., to generate
timestamps). We preclude this by i) using ORDER BY clauses

(some are, in any case, a part of the TPC-C implementation) in
cases where more than one row/cell is returned (many SQL
operations of the TPC-C implementation return a single row,
however), and ii) generating timestamps on the client side,
instead of invoking respective server-side functions.

NOWAIT was set on one of the DBMSs in a DivSQL pair.
Each experiment comprises the same sequence of 100,000
transactions and was repeated 3 times. Also, we ran hundreds of
experiments during the implementation – they are all consistent
with the presented results. The VMs on which DBMSs ran were
restarted, and the databases restored, between experiments.

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf

B. TPC-C Workload – Comparison with Single DBMSs

The throughput (tpm) values for single servers (1Comm,
1FB, and 1PG) executing through our replication middleware
code, and DivSQL (1Comm1PG and 1FB1PG, in Opt and Pess
regimes) are given in Fig. 4 (1Comm1FB findings are consistent
to the presented results and are omitted for paper length reasons).

Under 50 Clients load, 1Comm1PG Pess, made up of the two
faster DBMSs, exhibits very modest performance overhead
when compared to the fastest single DBMS (PG): just 6%.
1Comm1PG Opt is, however, faster than 1PG for the loads of 1,
5, 20 and 40 Clients – this confirms diversity potential for
performance improvement. The opposite is true for 10, 30 and
50 Clients experiments. The differences are, however, not
statistically significant in most cases: the p-value of Welch’s
two-sided t-test was greater than the confidence level of 0.05
indicating insufficient evidence to conclude a significant
difference. Only for the following 2 comparisons the p-value was
lower than the confidence level: 30 Clients, 1Comm1PG Pess vs
1PG – 0.009758; 50 Clients, 1Comm1PG Opt vs 1PG – 0.03873.
Also, Coefficient of Variation (CV=std.dev./mean) values are all
(significantly) less than 1 – this confirms low variability.

The transaction latencies are, on average, longer on DivSQL.
For the 50 Clients experiment, the overhead of 1Comm1PG Pess
compared to 1PG is about 20% when all transaction types are
considered, and for 1Comm1PG Opt is 9%. Looking at average
latency per transaction type, the overhead ranges 6%-46% for the
Pess, and about 6%-30% for the Opt, regime. Notably,
1Comm1PG Opt exhibits shorter average latency for Delivery, a
read-write transaction type – it is 3% faster on average than the
1PG, the faster of the two DBMSs. The average latency for all
transactions, and for each of the 5 types, is faster on 1Comm1PG
Opt than the individually slower DBMS – 1Comm. Similar
results hold for the other DivSQL pairs.

The specific mix of SQL operations – high proportion of
writes, interleaved with only short sequences of reads (usually
only 1 or 2 SELECTs before a write is executed in a transaction)
– precludes the skip feature being effective. Thus, the Opt regime
is limited in performance gain it achieves.

The abort rate was no higher than 3.6% for single DBMS
experiments, and no higher than 5.9% for DivRep (in both Pess
and Opt regimes, including FB pairs) for the loads from 1 to 50
clients. Once we increased the load to 100 Clients, DivSQL with
1Comm1PG Opt exhibited average abort rate of 5.6%, while for
1Comm1PG Pess it was 8.4%, likely intolerable in most real-
world applications (albeit TPC-C not specifying a threshold; and
the rate recorded after we reduced Think Times by about an order
of magnitude). Using FB, the slowest DBMS, in DivSQL
increases the abort rate further. Thus, we did not perform 100
Clients experiment systematically with all configurations.
Majority of aborts occurred for Payment transactions.

As expected (Sect. IV.A), NOWAIT exceptions were the
most numerous ones raised: e.g., under 50 clients load, 33-69%
more numerous than the other exceptions due to write-write
conflicts, depending on the diverse pair and the regime used, and
which DBMS in the pair had NOWAIT enabled.

The aborts are initiated by the client application, e.g., once
notified of a concurrency conflict, as is indeed the standard

practice, instead of initiating abort from DivSQL. This results in
an additional network hop (between DivSQL and DBMSs) when
compared with experiments using Single_Server codebase in
which client communicates directly with a chosen DBMS.

Notably, when using Single_Server codebase, under
demanding load with 100 Clients (1k transactions each), the
mean throughput for 1PG was 4867.5 tpm. The mean throughput
for 1Comm1PG DivSQL (when, clearly, we used our fully-
fledged replication codebase) under the same load in Opt regime
was 4431.8 tpm, and in Pess 4233.2 tpm. This is a modest
overhead of 9%, and 13%, respectively, compared to 1PG
experiment without use of any replication code. Similar results
were obtained when comparing the DivSQL with 1Comm
executed using Single_Server codebase (its throughput is similar
to 1PG’s). This comparison is an ultimate test of DivSQL
performance, since it is compared to a “1 DBMS” configuration
executing without any replication code, an approach not
standardly used in evaluation of replicated databases.

We used our fine-grained logging on SQL operation level to
estimate the overhead of Comparator function. We compared the
transaction end timestamps with the respective end timestamps
of the last SQL operation in the given transaction – the
differences were small. This shows that, for the workloads we
used, the Comparator function overhead is negligible.

We observed no result inconsistency raised by the
Comparator during the experiments, unlike during our testing
phase where we purposefully ran Pess regime experiments with
the inconsistent initial states on the two DBMSs in DivSQL and
observed the Comparator indeed reporting inconsistencies. Also,
once we excluded the use of the mutex, allowing different

sequences of begins and commits on the two DBMSs, the
Comparator function detected the inconsistencies between the
DBMSs’ results and the transaction was aborted. Both offer an
additional assurance DivRep is implemented correctly.

C. TPC-C Workload – Comparison with Non-diverse Pairs

Replicated DBMSs solutions use more resources than
centralized counterparts. Thus, a useful performance evaluation
of DivSQL is against replicated solutions that use DBMSs from
the same vendor. We compared 1Comm1PG against the non-
diverse pairs of both the faster (PG), and the slower (Comm),
single server. We used TPC-C workload and the most
demanding load of 50 Clients, each executing 2k transactions. In
both cases non-diverse pairs (2PG, 2Comm) were deployed
using our replication code, including the mutex to ensure data

consistency. We enabled NOWAIT on only one of the 2 non-
diverse DBMSs: we set server-wide lock_timeout parameter

in one of the PGs, or the connection-level Lock_Timeout on a

Comm. The average throughput of 2PGs in Opt regime was
2447.2 tpm – negligibly faster than 1Comm1PG Opt (2438 tpm)
and 4% faster than 1Comm1PG Pess (2338.6 tpm). 2Comm Opt
result (2441.6 tpm) was even closer to that of the diverse pair.

D. Read-only Workload – Comparison with Single DBMSs

We have derived a read-only workload based on the TPC-C,

as in [10]: OS and SL transactions were executed at 50%. We

executed experiments with 100 Clients (1k transactions each).

The tpm values for individually faster single servers (1Comm

Fig. 4 Throughput for different single DBMS and DivSQL (in Pess and Opt regime) configurations (“Comm” refers to the commercial DBMS used).

and 1PG; we do not report 1FB results) executing through our
replication middleware, and DivSQL (1Comm1PG, in Opt and
Pess regime) are as follows: 7860.2 (1PG), 7853.4 (1Comm),
7843.2 (1Comm1PG Opt), 7805.8 (1Comm1PG Pess). The
average transaction latencies, in msec, were as follows: 1PG ~ 8;
1Comm ~ 9; 1Comm1PG Opt ~ 10 and 1Comm1PG Pess ~ 15.

Since this is a read-only workload, we have not used the
mutex for begins and commits synchronisation, in any of the 2

single DBMS, or the DivSQL, configurations. This is analogous
to [10] (see Fig 2 in their paper). We kept the Think Times the
same as in the TPC-C experiments (Sect. V.A).

The effectiveness of the skip feature, used with the Opt
regime, is limited in the specific read-only workload we used.
This is due to both OS and SL transactions being made up of a
small number of SELECT operations: 3 and 2 respectively. The
slower DBMS starts the execution of at least the first SQL
operation, and likely all of them, in the transaction. This
precludes the skip feature to be triggered and dynamically
balance the load. This holds for the original TPC-C workload,
too, but the effect is less pronounced since the two transaction
types jointly contribute about 8% of the executions in TPC-C.

VI. DISCUSSION

A. Potential DivRep Optimisations

Here we describe possible DivRep optimisations. They have
not yet been implemented in our solution.

DivRep guarantees strict consistency among the replicas by
imposing the same order of begins and commits on both. We can
optimise the algorithm, when executing in either the Pess or the
Opt regime of operation, in the following ways.

Firstly, we could relax the requirement that the order of begin
operations is identical on the DBMSs. If no commit is executed
in between a sequence of begins, different orderings of begins

are allowed on different replicas. For example, assume three
transactions T0, T1 and T2 executing over two replicas Rx and Ry.
A schedule of the transaction boundary operations on Rx is: c0,
b1, b2, c1, c2. An equivalent order of transaction boundaries: c0,
b2, b1, c1, c2 is allowed on Ry. Thus, a different sequence of
begins is allowed to execute in parallel on the DBMSs, though
any commit must be synchronised and it would be blocked until
the begins are executed on both DBMSs. The equivalent
histories of transaction boundaries are preserved in this way.

Also, a sequence of commits (CommitSeq) belonging to non-
conflicting transactions (for which the respective writesets are
disjoint) can be executed in different orders on the two replicas.
Analogous to the preceding optimisation, the synchronisation
“granularity” changes from a single commit operation to a
sequence of commits. Ensuring that any begin is blocked until
the CommitSeq members are executed ensures the same reads-
from relations on both DBMSs.

Finally, it is unnecessary to synchronize the commits of read-
only transactions. There are two possibilities. A transaction
commit will not be synchronized with the commits and begins of
concurrent transactions if the transaction has no writes (in [10] a
transaction is assumed read-only until the first write), or DivRep
checks that the transaction’s writeset is empty. The latter is
similar to the functionality of other replication schemes [4], [26],
[27] and can be performed using triggers or transactional logs,
available in many DBMSs (MSSQL, Oracle, PostgreSQL, etc.).

B. DivSQL Hybrid Approach

DivSQL can be configured to run in different regimes of
operation depending on the specific client requirements. The
Pess regime offers improved fault–tolerance, by comparing the
results of SQL operations from different DBMSs, while the
complementary Opt regime is meant to deliver performance
improvements by executing (most of) the read operations only
on one DBMS.

4
7

.2

4
9

.4

5
1

.2

5
0

4
7

.8

5
1

.4

5
0

.9
9

2
3

9
.8

2
4

5
.2

2
5

2
.8

2
4

4
.8

2
4

1
.2

2
5

3
.4

2
5

2
.6

4
8

1

4
7

3
.2

5
0

4
.8

4
8

7
.6

4
7

8
.6

5
0

4
.4

4
9

9
.8

9
7

9
.6

1
0

0
4

.8

1
0

1
1

9
7

7

9
6

01
0

1
4

.4

1
0

0
9

.4

1
3

6
5

.4

1
4

4
4

1
4

9
0

.2

1
3

9
9

1
3

9
9

.6

1
4

4
8

1
4

7
5

.2

1
9

0
7

.8

1
9

8
8

.6

1
9

9
9

.8

1
7

9
4

.4

1
8

1
6

.22
0

0
1

1
9

8
5

.6

2
3

3
0

.2

2
4

3
8

.8

2
4

7
8

.4

2
1

3
5

.7

2
1

1
8

2
4

3
8

2
3

3
8

.6

0

500

1000

1500

2000

2500

1 5 10 20 30 40 50
Load

T
ra

n
s
a

c
tio

n
s
 p

e
r

m
in

u
te

 (
tp

m
)

Configuration

1Comm

1FB

1PG

CommPG_Opt

CommPG_Pess

FBPG_Opt

FBPG_Pess

Throughput for different single DBMS and DivSQL configurations

These two regimes are not mutually exclusive – they can be
combined into a configurable quality of service. By deploying
learning capabilities, e.g., via Bayesian inference [28], DivSQL
may process the individual SQL operations switching
intelligently between the different regimes. The switch between
the regimes will be driven by confidence gradually built by
DivSQL that a particular type of operation is unlikely to cause a
mismatch between the responses of the deployed diverse
replicas. Before the predefined level of confidence is reached,
whenever DivSQL receives an operation, it will process it under
the Pess regime. As the number of instances of the same type of
operation (i.e., the same operation with different parameter
values) grows, and no mismatches are observed between the
DBMSs’ responses, so will the confidence that the particular
type of operation is unlikely to lead to mismatches between the
diverse replicas. Eventually, the predefined level of confidence
will be reached, from which point DivSQL will execute the
subsequent instances of the same operation type under the Opt
regime. A mismatch between the DBMS responses during the
learning period will either lead to DivSQL processing all future
instances of the operation under the Pess regime or require a
significantly greater number of identical responses to reach the
predefined level of confidence.

When multiple applications execute against the same
DivSQL, and some of them are not subjected to runtime
assessment using the learning capabilities, a special care must be
taken. This is because data inconsistencies might be introduced
with the applications that do not use the hybrid approach, and
determining the switching point between the two regimes, for
applications that seek improved dependability, could be
invalidated. To prevent this, DivSQL can initiate periodic
consistency checks, after the switch between the regimes had
occurred and executing in the Opt regime is taking place. This
will also help reveal the cases where, despite the initial execution
in the Pess regime, an inconsistency is triggered after the
switching point.

Learning capabilities could also be used for determining
which DBMS is faster for a particular type of read.
Consequently, the read would be executed only on the faster
DBMS. The load of the reads would be divided between the
replicas once DivSQL learns which is the fastest for all the reads.
This could be more efficient than the skip feature because no read
operation would be executed on more than one replica. Some
feedback data would need to be provided to the load balancing
technique so that changes in latencies, e.g., a faster DBMS starts
to work more slowly under different workload, are detected. The
technique resembles ROWA(A), but is more flexible, since
DivSQL would have alternatives in deciding on which DBMS to
execute a particular read operation e.g., using additional load
balancing information a read could execute on a slower DBMS
in the cases when it is being subjected to a lighter load.

VII. CONCLUSIONS AND FUTURE WORK

We presented design and implementation of DivSQL, a
novel middleware-based database replication solution, and its
replica control protocol (DivRep), for SI-enabled DBMSs.
DivSQL assumes realistic IRFM failure model, adopted based
on the convincing experimental evidence [1, 2]. DivSQL ensures
stringent consistency for replicated SI-enabled DBMSs: strict 1-

copy-SI, based on 1-copy-SI [4], and Conventional Snapshot
Isolation [5], and we provide respective proofs.

A comprehensive experimental evaluation of DivSQL using
3 DBMSs is provided. When the performances of the individual
servers are similar, DivSQL in Pess regime exhibits overhead of
only 6% compared to the faster single DBMS. This is a tolerable
overhead given the dependability assurance DivSQL offers
through deployment of diverse DBMSs.

When DivSQL Opt is used, it performs better on average for
some loads than the faster of the two diverse DBMSs. To further
improve the performance of DivSQL Opt, we plan to leverage
the inherent diversity in performance of individual DBMSs for
intelligent load balancing (Sect. VI.B). We will investigate
criteria for choosing diverse DBMSs, i.e., choose the ones
known to use different approaches to complex operations and
exhibit systematic differences.

Deferred update technique (e.g. [29], [30]) has been used for
performance improvement, and we plan to explore it for
DivSQL. A challenge is a suitable comparison of changes made
by diverse replicas, and doing it in an efficient way since the
overhead of the writeset comparison in the certification phase in
the end of transaction might be significant.

To improve scalability of DivSQL, we will explore the
possibilities of connecting multiple DivSQL nodes using a
complementary replication protocol, that achieves high
scalability, into a “fusion” solution.

We plan to evaluate DivSQL performance using other
workloads, and under different isolation levels, e.g., read-
committed – the default in many DBMSs, as well as analyse
whole (transaction and operation) latency distributions, rather
than only averages, which is often missing in the studies of this
kind. Also, we plan to compare DivSQL against existing fault-
tolerant SI-based database replication solutions, e.g., Byzantium
[10], and Snapshot Epoch Scheduling [9].

We plan to evaluate diversity effectiveness using the
measurements on the SQL operation level, e.g., show proportion
of faster responses coming from either of the two DBMSs in
DivSQL, and absolute and relative gains achieved in this way.

We plan to conduct a performability-style analysis, and
evaluate the loss attributed to “incorrect results” failures using
fault-injection.

OLTP applications are increasingly executed against
memory-resident databases that improve performance of
transaction processing, pointed out back in 2008 by Stonebraker
et al. [31], e.g., in-memory tables have been available in MSSQL
since v14. We plan to evaluate DivSQL using those DBMSs.

ACKNOWLEDGEMENT

We thank the anonymous reviewers and our shepherd,
Fernando Pedone, for providing valuable feedback on earlier
versions of this paper. This work was partially supported by the
EPSRC DIDERO-PC project EP/J022128/1.

REFERENCES

[1] Gashi, I., P. Popov, and L. Strigini, Fault tolerance via diversity for off-
the-shelf products: a study with SQL database servers. IEEE

Transactions on Dependable and Secure Computing, 2007. 4(4): p. 280-

294
[2] Vandiver, B., et al., Tolerating byzantine faults in transaction processing

systems using commit barrier scheduling, in Proceedings of 21st ACM

SIGOPS Symposium on Operating Systems Principles. 2007, ACM:
Stevenson, Washington, USA. p. 59-72.

[3] Bernstein, A., V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems. 1987, Reading, Mass.: Addison-
Wesley.

[4] Lin, Y., et al. Middleware Based Data Replication Providing Snapshot
Isolation. in ACM SIGMOD International Conference on Management

of Data. 2005. Baltimore, Maryland: ACM Press.

[5] Elnikety, S., W. Zwaenepoel, and F. Pedone. Database Replication
Using Generalized Snapshot Isolation. in Proceedings of the 24th IEEE

Symposium on Reliable Distributed Systems (SRDS'05). 2005. IEEE

Computer Society.
[6] Berenson, H., et al. A Critique of ANSI SQL Isolation Levels. in

SIGMOD International Conference on Management of Data. 1995. San

Jose, California, United States: ACM Press New York, NY, USA.
[7] Gray, J., et al. The Dangers of Replication and a solution. in ACM

SIGMOD International Conference on Management of Data. 1996.

Montreal, Canada: SIGMOD.
[8] Wiesmann, M., F. Pedone, and A. Schiper. Database Replication

Techniques: a Three Parameter Classification. in 19th IEEE Symposium

on Reliable Distributed Systems (SRDS'00). 2000. Nurnberg, Germany:
IEEE.

[9] Vandiver, B., Detecting and Tolerating Byzantine Faults in Database

Systems, in Programming Methodology Group. 2008, Massachusetts
Institute of Technology: Boston. p. 176.

[10] Garcia, R., R. Rodrigues, and N. Preguica, Efficient middleware for

byzantine fault tolerant database replication, in Proceedings of the sixth
conference on Computer systems (EuroSys '11). 2011, ACM: Salzburg,

Austria. p. 107-122.

[11] Pedone, F. and N. Schiper, Byzantine fault-tolerant deferred update
replication. Journal of the Brazilian Computer Society, 2012. 18(1): p.

3-18.

[12] Molina, H.G., F. Pittelli, and S. Davidson, Applications of Byzantine
agreement in database systems. ACM Trans. Database Syst., 1986.

11(1): p. 27-47.

[13] Littlewood, B., P. Popov, and L. Strigini, Modelling Software Design
Diversity - A Review. ACM Computing Surveys, 2001. 33(2): p. 177-

208.

[14] Strigini, L., Fault Tolerance Against Design Faults, in Dependable
Computing Systems: Paradigms, Performance Issues, and Applications,

H. Diab and A. Zomaya, Editors. 2005, John Wiley & Sons. p. 213 -

241.
[15] Gashi, I. and P. Popov. Rephrasing Rules for Off-the-Shelf SQL

Database Servers. in Sixth European Dependable Computing

Conference (EDCC '06). 2006.
[16] Wiesmann, M., et al. Understanding replication in databases and

distributed systems. in Proceedings of 20th International Conference on

Distributed Computing Systems (ICDCS'2000). 2000. Taipei, Taiwan:
IEEE Computer Society Los Alamitos.

[17] Fekete, A., et al., Making Snapshot Isolation Serializable. ACM

Transactions on Database Systems (TODS), 2005. 30(2): p. 492 - 528.
[18] Fekete, A., E. O'Neil, and P. O'Neil, A read-only transaction anomaly

under snapshot isolation. ACM SIGMOD Record, 2004. 33(3): p. 12-14.

[19] Rigger, M. and Z. Su, Finding bugs in database systems via query
partitioning. Proc. ACM Program. Lang., 2020. 4(OOPSLA): p. Article

211.
[20] Gray, J. and L. Lamport, Consensus on transaction commit. ACM Trans.

Database Syst., 2006. 31(1): p. 133–160.

[21] Behm, A., S. Rielau, and R. Swagerman. Returning Modified Rows –
SELECT Statements with Side Effects. in Proceedings of the Thirtieth

International Conference on Very Large Data Bases. 2004. Toronto,

Canada: Morgan Kaufmann.

[22] Skeen, D. Nonblocking commit protocols. in Proceedings of ACM

SIGMOD International conference on management of data. 1981. Ann

Arbor, Michigan: ACM Press, New York, NY, USA.

[23] Budhiraja, N., et al., The primary-backup approach, in Distributed

systems (2nd Ed.). 1993, ACM Press/Addison-Wesley Publishing Co. p.

199–216.
[24] Raz, Y., Serializability by commitment ordering. Information Processing

Letters, 1994. 51(5): p. 257-264.

[25] Fischer, M.J., N.A. Lynch, and M.S. Paterson, Impossibility of
distributed consensus with one faulty process. J. ACM, 1985. 32(2): p.

374–382.

[26] Kemme, B. and S. Wu. Postgres-R(SI): Combining Replica Control with
Concurrency Control based on Snapshot Isolation. in International

Conference on Data Engineering. 2005. Tokyo, Japan: IEEE Computer

Society.
[27] Patino-Martinez, M., et al., MIDDLE-R: Consistent database replication

at the middleware level. ACM Transactions on Computer Systems

(TOCS), 2005. 23(4): p. 375-423.
[28] Gorbenko, A., et al., Dependable composite web services with

components upgraded online, in Architecting Dependable Systems III.

2005, Springer-Verlag. p. 92–121.
[29] Pedone, F., R. Guerraoui, and A. Schiper, The Database State Machine

Approach. Distributed and Parallel Databases, 2003. 14(1): p. 71-98.

[30] Kemme, B. and G. Alonso, A new approach to developing and
implementing eager database replication protocols. ACM Transactions

on Database Systems (TODS) 2000. 25(3): p. 333 - 379.

[31] Harizopoulos, S., et al., OLTP through the looking glass, and what we
found there, in Proceedings of the 2008 ACM SIGMOD international

conference on Management of data. 2008, Association for Computing

Machinery: Vancouver, Canada. p. 981–992.

APPENDIX A – DIVREP CORRECTNESS

This section contains the proof of correctness of DivRep
when either of the following two criteria for consistency of
replicated databases are considered: 1-copy-SI [4] and
Generalized/Conventional Snapshot Isolation (GSI/CSI) [5]. We
include the relevant parts of each criterion, in Sect. “DivRep
Correctness Based on 1-copy-SI” and Sect. “DivRep Correctness
Based on CSI/GSI”, respectively, to aid reader’s comprehension.
The correctness of DivRep is not limited to the use of two
replicas in DivSQL – it is ensured for an arbitrary number of
replicas.

A. DivRep Correctness Based on 1-copy-SI

Lin et al. [4] defined criteria for correctness of replicated
databases when each of the underlying replicas guarantees SI.
The correctness criterion, referred to as 1-copy snapshot
isolation (1-copy-SI), guarantees that an execution of
transactions over a set of replicas produces a global schedule that
is equivalent to a schedule produced by a centralised database
system which offers snapshot isolation. The authors provide the
following three definitions to formalise 1-copy-SI correctness:

Definition 1 (SI-Schedule). Let T be a set of committed
transactions, where each transaction Ti is defined by its readset
RSi and writeset WSi. An SI-schedule S over T is a sequence of
operations o {b, c}. Let (oi < oj) denote that oi occurs before
oj in S. S has the following properties.

i. For each Ti T: (bi < ci) S.

ii. If (bi < cj < ci) S, then WSi ∩ WSj = {}.

The read and write operations are excluded from Definition 1
because the transaction boundary operations, begin (b) and
commit (c), implicitly determine the logical time of their
executions: a begin of transaction Ti indicates when its reads
have taken place and similarly the commit of Ti indicates when
the write operations take effect. This reasoning is based on the
characteristics of SI (see Sect. III).

Definition 2 (SI-Equivalence). Let S1 and S2 be two SI-
schedules over the same set of transactions T. S1 and S2 are SI-
equivalent if for any two transactions Ti, Tj T the following
holds:

i. if WSi ∩ WSj ≠ {} : (ci < cj) S1 (ci < cj) S2.

ii. if WSi ∩ RSj ≠ {} : (ci < bj) S1 (ci < bj) S2.

Definition 2 is based on the equivalence definitions as
specified for the non-replicated database systems using
serializability theory. Condition i. ensures that the order of
committed transactions with overlapping writesets is the same in
both schedules. Thus, the final writes (a write performed by a
committed transaction after which no other committed
transaction modified the same data item) are the same in the two
schedules and each prefix of the partial order of committed
transactions in both schedules is an SI schedule. Condition ii.
ensures that if in one schedule a transaction, Tj, reads data
modified by a committed transaction, Ti, the same will be true
for the other schedule – the begin of Tj will follow the commit of
Ti.

In order to define 1-copy-SI criterion the authors of [4]
assume the following:

• Each replica produces SI schedules.

• Replication is based on ROWA approach: each transaction is
executed on a local replica and only its writes are propagated
to the remaining ones. To formalise the ROWA approach the
authors use a mapper function rmap. The input to the

function is a set of transactions T and a set of replicas R. Each
update transaction is transformed into a set of transactions

{Ti
k|Rk R}, one for each replica. Only one of these

transformed transactions contains both, the read and the write
set of the original transaction - this is the local transaction.
The rest of the transactions are remote and consist of only the
writeset of the transaction. Every read transaction, on the
other hand, has a single transformation into a local
transaction.

Definition 3 (1-Copy-SI). Let R be a set of replicas following

ROWA approach. Let T be a set of submitted transactions for

which Ti T committed at its local site. Let Sk be the SI-schedule
over the set of committed transactions Tk at replica Rk R.

Then R ensures 1-copy-SI if the following is true:

i. There is ROWA mapper function, rmap, such that k T k =

rmap (T, R)

ii. There is an SI-schedule S over T such that for each Sk and Ti
k,

Tj
k T k being transformations of Ti, Tj T:

a. if WSi
k ∩ WSj

k ≠ {} : (ci
k < cj

k) Sk (ci < cj) S,

b. if WSi
k ∩ RSj

k ≠ {} : (ci
k < bj

k) Sk (ci < bj) S.

From the condition i., we infer an existence of an rmap
function that maps committed transactions as a subset of the set
of submitted ones. Condition ii. ensures equivalence between a
schedule produced by a replica, Sk, and the global schedule, S,

over the set of all transactions T. Due to the use of ROWA
approach, the definition of equivalence as stated in Definition 2
has to be modified. The condition i. from the Definition 2 holds
between every Sk and S for all committed transactions, because
the writes are executed on all replicas. But, the reads-from
relation of a schedule Sk is the same as in S (condition ii. from
Definition 2) for only the subset of the readsets obtained at the
replica Rk. There are two consequences of the 1-copy-SI
definition:

• The position of the begin operations of remote transactions is
arbitrary since they do not include read operations.

• The position of the commits of the read-only transactions is
arbitrary since they do not include any write operations.

The following text until the end of the subsection gives proof
of DivRep with respect to 1-copy-SI. The following definition,
Strict 1-copy-SI, is based on 1-copy-SI [4] – Definition 3. We
use the definition of SI-Equivalence Definition 2 for formalising
Strict 1-copy-SI. The difference is in removing the ROWA
restriction, where reads are executed only at a local site. We are
interested only in the set of committed transactions [3].

Definition 4 (Strict 1-copy-SI). Let S be a set of schedules,

R a set of replicas and T a set of submitted transactions. Let Sk
be an SI-schedule over the set of committed transactions on

replica Rk. We say that R provides Strict 1-copy-SI if all

schedules from S are pairwise SI-equivalent.

Assumption 1: The underlying replicas provide SI, which is
implemented using Strict 2-Phase Locking and multiversioning.

Assumption 2: Once all the write locks are acquired, all write
(and read) operations are executed, and a replica has voted for
commit, the commit is guaranteed to succeed on the given
replica3.

Proposition 1: All replicas commit the same set of
transactions.

Proof: After a transaction is submitted, it commits either on
all replicas or at none. This follows from the fact that a
transaction termination is performed using an atomic
commitment protocol, AC-DR (see II.C. and II.D. in Fig. 2),
where all replicas agree on an outcome, commit or abort, i.e.,
uniform agreement is guaranteed (Assumption 2 ensures
commits are successful on all replicas that voted for commit).

Q.E.D.

Theorem 1. DivRep guarantees Strict 1-copy-SI.

Proof: Assume it does not. Then there exists a pair of

schedules (S1, S2) S and a pair of transactions (Ti, Tj) T for
which the following holds:

i.WSi ∩ WSj ≠ {} : (ci < cj) S1 and (c j< ci) S2.

or

ii.WSi ∩ RSj ≠ {} : (ci < bj) S1 and (bj < ci) S2.

Both i. and ii. are impossible because Proposition 1. holds
and the transaction boundary operations are executed atomically
in DivRep – the same order of transaction boundary operations
is executed on the replicas (see II.A.2-4 for begins, and II.D.1.a.i-
iv for commits, in Fig. 2).

Q.E.D.

The above proof holds for both Pess and Opt regime of
DivRep. In the Opt regime, some of the reads might be skipped,
but the uniform agreement and the identical order of transaction
boundary operations is maintained.

B. DivRep Correctness Based on CSI/GSI

Elnikety et al. [5] defined Generalised Snapshot Isolation
(GSI) – a correctness criterion for replicated databases that offer
snapshot isolation. GSI is an extension to the snapshot isolation
(SI) as found in centralized databases. The authors formalize the
SI used in centralised databases as Conventional Snapshot
Isolation (CSI), in which the transaction reads the latest snapshot
in the whole (replicated/centralised) database, not only the latest

3 A commit execution on a SI DBMS can, in principle, fail and throw an
exception for reasons different than SI write-write conflicts or “incorrect

results”, i.e., the failure model DivRep guards against (IRFM). Such a

subtle Byzantine failure is outside the scope of DivRep: a replica that
initially "voted” for commit during the certification subsequently aborts the

transaction. This is an unlikely event, confirmed by our extensive empirical

snapshot available locally on a replica (Prefix-Consistent
Snapshot Isolation (PCSI)) – this is the strictest form of GSI.
DivRep ensures CSI, a special, most demanding, case of GSI.

To model the timing relationships between transactions the
following definitions in a transaction, Ti, are given:

• snapshot(Ti) – the time when Ti’s snapshot is taken.

• start(Ti) – the time of the first operation of Ti.

• commit(Ti) – the time of commit of Ti.

• abort(Ti) – the time of abort of Ti.

In addition, they showed that serializability can be
guaranteed under GSI by ensuring that either a static property,
which can be checked by examining the transactional profile, or
a dynamic one, which checks the intersection between the
readsets and writesets of overlapping transactions, is satisfied.

In CSI each transaction sees the last snapshot regarding its
starting time, i.e., snapshot(Ti) = start(Ti).The definitions of GSI
and CSI, and the corresponding definitions of impacting
transactions, are as follows:

Generalised Snapshot Isolation (GSI) Definition:

• G1. (GSI Read Rule)

 Ti, Xj such that Ri(Xj) h :

1. Wj(Xj) h and Cj h;

2. commit(Tj) < snapshot(Ti);

3. Tk such that Wk(Xk), Ck h :

commit(Tk) < commit(Tj) or snapshot(Ti) < commit(Tk);

• G2. (GSI Commit Rule)

 Ti, Tj such that Ci, Cj h : (Tj impacts Ti);

Definition of Impacting Transactions for GSI:

• Ti impacts Tj iff:

snapshot(Ti) < commit(Tj) < commit(Ti) and

writeset(Ti) writeset(Tj) {}

Conventional Snapshot Isolation (CSI) Definition:

• C1. (CSI Read Rule)

 Ti, Xj such that Ri(Xj) h :

1. Wj(Xj) h and Cj h;

2. commit(Tj) < snapshot(Ti);

evidence: after running, literally, billions of transactions under different
configurations and workloads, our commit exception handler, which

merely exits the application/middleware, has caught no such exception.

IRFM – DivRep’s realistic failure model – was chosen based on
comprehensive experimental evidence of the faults that occur in practice.

3. Tk such that Wk(Xk), Ck h :

commit(Tk) < commit(Tj) or start(Ti) < commit(Tk);

▪ C2. (CSI Commit Rule)

 Ti, Tj such that Ci, Cj h : (Tj impacts Ti)

Definition of Impacting Transactions for CSI:

• Ti impacts Tj iff:

start(Ti) < commit(Tj) < commit(Ti) and

writeset(Ti) writeset(Tj) {}

CSI states that the last snapshot, committed on any of the
database replicas, in respect to the transaction start time, is
available. CSI is a special case of GSI as the latter does not
specify which database snapshot should a transaction observe,
i.e., snapshot(Ti) = start(Ti) in CSI. The difference between GSI
and CSI could be illustrated with the following example. Let
history h = Wi(Xi), Ci, Wj(Xj), Cj, Rk(Xi), Wk(Yk), Ck. The history
is not permitted by CSI because Tk reads an “old” snapshot,
snapshot(Ti), instead of the last one, snapshot(Tj). However, h is
a GSI history since snapshot(Tk) = commit(Ti) is allowed.

The following text until the end of the subsection provides
proof of DivRep with respect to CSI.

Assumption 1: Underlying replicas ensure CSI

Theorem 1: DivRep ensures CSI

• DivRep ensures conditions C1.1 and C1.2 of CSI (see
above) because the underlying replicas are assumed to
guarantee CSI where only updates of committed
transactions are visible i.e., no dirty reads are allowed.

• DivRep guarantees condition C1.3 of CSI – every
transaction observes the last committed snapshot on any
replica.

 Assume C1.3 was not ensured. Then it is possible for a
transaction to read an “old” snapshot (we denote this
property C1.3):

 Ti, Tk, Xj such that Ri(Xj) h and Wk(Xk), Ck h:
commit(Tj) < commit(Tk) and commit(Tk) < start(Ti);

o C1.3 is possible only if a replica produces such a
schedule since in DivRep every transaction starts
atomically on all replicas using the mutex and an

identical order of begins and commits is ensured (see
Fig. 2: II.A.2-4 for begins, II.D.1.a.i-iv for commits).

o However C1.3 contradicts Assumption 1.

• DivRep enforces C2 (CSI Commit Rule)

 Assume it does not. Then it is true that impacting transactions
are allowed (we denote the property C2):

 Ti, Tj such that Ci, Cj h :

start(Ti) < commit(Tj) < commit(Ti) and

writeset(Ti) writeset(Tj) {}

This is impossible since replicas provide snapshot isolation

and a transaction will be aborted by DivRep if an “impact”

i.e. write-write conflict, has been detected on any of the

replicas (see I.B.2.d in Fig. 3); the abort is propagated to the

other replica(s).
Q.E.D.

