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ABSTRACT
Automatic object detection onboard drones is essential for facilitating autonomous operations. The advent of deep learning
techniques has significantly enhanced the efficacy of object detection and recognition systems. However, the implementation of
deep networks in real‐world operational settings for autonomous decision‐making presents several challenges. A primary
concern is the lack of transparency in deep learning algorithms, which renders their behaviour unreliable to both practitioners
and the general public. Additionally, deep networks often require substantial computational resources, which may not be
feasible for many compact portable platforms. This paper aims to address these challenges and promote the integration of deep
object detectors in drone applications. We present a novel interpretative framework, DetDSHAP, designed to elucidate the
predictions generated by the YOLOv5 detector. Furthermore, we propose utilising the contribution scores derived from our
explanatory model as an innovative pruning technique for the YOLOv5 network, thereby achieving enhanced performance
while minimising computational demands. Lastly, we provide performance evaluations of our approach demonstrating its ef-
ficiency across various datasets, including real data collected from drone‐mounted cameras and established public benchmark
datasets.

1 | Introduction

Autonomous and uncrewed drones have seen a surge in de-
mand in civilian applications such as agriculture [1] and search
and rescue [2] and defence applications such as automatic target
recognition (ATR) [3]. Object detection is often required to
enable a drone to undertake its tasks. Since the adoption of deep
neural networks (DNNs), there have been remarkable perfor-
mance gains in automatic object detection capabilities. None-
theless, deploying deep networks onboard drones remains
challenging due to their computational requirements and their
unpredictability when compared to traditional computer vision
algorithms.

The integration of algorithms into compact drone platforms
presents significant challenges related to memory and process-
ing capabilities, complicating their implementation. Because of
constraints in memory and power, achieving real‐time perfor-
mance with deep networks can be particularly challenging, and
in certain instances, it may be infeasible to accommodate the
entire deep network within the memory limits of specific drone
platforms. Network pruning seeks to enhance the efficiency of
deep networks by refining the network architecture while
striving to minimise any associated decline in performance.

On platforms equipped with adequate embedding hardware
(memory), the inherent closed‐box characteristics of deep
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networks continue to render them unreliable for deployment in
real‐world applications [4]. Enhanced trust can be fostered by
elevating the transparency of these networks. This process re-
sembles the act of unveiling the inner workings, thereby
enabling the human agent—whether a designer or an end
user—to understand the model's decision‐making mechanisms.
Explainable artificial intelligence (XAI) concept seeks to
enhance transparency by elucidating the rationale behind the
predictions generated by deep learning models. Techniques for
explainability can be employed to uncover biases within the
network [5], assist in debugging a network [6] and offer an
alternative approach for evaluating outcomes [7].

In this paper, we propose an innovative framework aimed at
explaining the individual bounding boxes predicted by the
YOLOv5 deep learning detector [8] based on DeepSHAP [9].
DeepSHAP is capable of attributing a contribution score to each
input within a deep neural network and has been applied in
multiple domains of computer vision. Notably, it has been uti-
lised in reinforcement learning for the autonomous navigation
of unmanned aerial vehicles (UAVs) [10], medical image anal-
ysis [11] and image classification [12]. The application of
DeepSHAP to automatic object detection remains unestab-
lished. This is primarily due to the necessity for object detectors
to provide justifications for both the classification and posi-
tioning of potentially multiple bounding box candidates, making
the straightforward implementation of DeepSHAP a complex
endeavour.

In the application of DeepSHAP, the contribution score is
propagated backward from the output layer to the input layer.
This process allows for the implicit calculation of each unit's
contribution within the network. The resulting scores indicate
the importance of each component of the model. By aggregating
the SHAP values derived from various samples, it becomes
possible to create a map that highlights the areas of the model
that hold substantial significance, as well as those that may be
considered redundant. One could generalise units to mean
weights, whole layers or even modules. In our work, we focus
on filter‐level pruning in convolutional nets.

Previous studies have introduced explainers specifically
designed for deep object detectors, and other literature has
suggested the application of XAI as a criterion for pruning in a
broader context. However, there is a notable absence of research
that has explored the convergence of these two areas. Conse-
quently, this paper aims to contribute to the field by examining
this intersection (Figure 1).

A major obstacle to the advancement of XAI is the absence of
established benchmarks and a lack of consensus within the
academic literature regarding the evaluation of novel explana-
tion techniques. Numerous studies assess the effectiveness of
their explanation methods by juxtaposing the generated expla-
nations with human‐annotated bounding boxes [4, 13–15]. In
this study, we present the wrapping game as a validation
method that employs semantic segmentation datasets to assess
the discriminative capabilities of our explainer in comparison to
the explainer developed by Karasmanoglou et al. based on layer‐
wise relevance propagation (LRP) [16] for general pruning
purposes. Additionally, here the following axiom is surmised: a

propagation‐based XAI method that offers a robust criterion for
pruning must also be allocating causal information correctly.
Specifically, this demonstrates that the contribution scores
derived from our explanatory framework not only serve as an
effective pruning criterion but also validate that our explainer
accurately allocates causal information.

We intend to propose a solution for object detection that em-
phasises explainability and pruning, designed to address the
diverse requirements of drones functioning in urban settings.
This initiative is motivated by the current deficiency of
explainable algorithms capable of achieving state‐of‐the‐art
performance across a wide array of datasets [17]. To support
our claims, we assess our explainability and pruning techniques
using two datasets derived from different drone platforms.
Additionally, we include an evaluation on the COCO2017 [18]
dataset to facilitate comparisons with future research
endeavours.

To meet the operational demands of drones in dense urban
environments, an object‐detection solution must satisfy two
requirements simultaneously: it must be light enough to run in
real time on constrained, battery‐powered hardware and trans-
parent enough that its decisions can be trusted by a remote
operator or safety auditor. Existing work treats these goals
separately. Pruning techniques reduce detector size, but the
pruning masks are chosen heuristically and give no indication
why particular filters are deleted; detector‐oriented XAI
methods such as Grad‐CAM, LRP and RISE reveal influential
features, yet they leave the heavy backbone untouched and thus
do not relieve the compute bottleneck. To our knowledge no
framework integrates an explanation‐guided pruning strategy
with a detector‐specific explainer. This paper fills that gap: we
present a joint explainability–pruning approach and evaluate it
on two drone datasets together with COCO 2017, demonstrating
state‐of‐the‐art accuracy, compactness and interpretability
across all three.

FIGURE 1 | Domain of the present paper. Conceptual landscape of
this study. Red circles mark the three broad research strands:
Explainability, object detection, and deep‐network pruning. Previous
works have exploited links in the between these broader area to
produce specialised frameworks. The green circle at the centre
represents our contribution, which combines all three strands in a
single framework.
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Our main contributions in this paper are as follows:

� A new explainable artificial intelligence (XAI) framework
has been developed for object detection methodologies,
aimed at querying bounding boxes that were either pre-
dicted or overlooked by the chosen YOLO‐based detector
architectures.

� A presentation of our YOLO detector explainer, which has
been trained on our proprietary self‐driving car dataset as
well as the Visdrone public dataset, illustrates the effec-
tiveness of our explainer in accurately attributing the con-
tributions of individual neurons within our network and
the corresponding input image.

� An assessment of the wrapping game analysis demonstrates
the effectiveness of our deep object detector explainer in
distinguishing between different objects.

� A newly developed framework for pruning DNN detectors
utilising the contribution metrics provided by DetDSHAP
as a criterion. This approach significantly enhances the
efficiency of the YOLOv5 detector while maintaining
minimal performance degradation.

� A comprehensive quantitative examination of the impact of
our pruning methodology on the efficiency and quality of
our deep object detection system.

2 | Background and Motivation

This section provides the conceptual background that motivates
ourmethod. Section 2.1 reviews recentworkonexplainable object
detection, highlighting what current saliency and relevance ap-
proaches can, and cannot, show. Section 2.2 then surveys pruning
methods that rely on explanation signals, summarising their
strengths and limitations when applied to large detector back-
bones. Finally, Section 2.3 introduces the SHAP/DeepSHAP
framework that underpins our own explainer and explains why it
is well suited to serve as a joint explanation–pruning criterion.
Together, these three subsections expose the gap ourworkfills: no
existing approach couples a detector‐specific explainer with an
explanation‐driven, filter‐level pruning strategy.

2.1 | XAI for Object Detection

Explainers for deep detectors fall into three possible types.
Perturbation‐based surrogate methods—such as RISE, D‐RISE
and KernelSHAP—estimate saliency by masking or shuffling
the input and fitting a simple surrogate model. Gradient‐based
single‐layer methods (e.g., Grad‐CAM) back‐propagate first‐or-
der derivatives only to the final convolutional block, while
propagation‐based all‐layer methods (notably LRP and its vari-
ants) redistribute the detector's output score through every
layer. All three types of explainer ultimately produce a saliency
map—a heat‐map that highlights how strongly each pixel in-
fluences the network's prediction [19]. Much of the detector‐
oriented literature adapts a saliency technique originally
developed for classification and repurposes it for bounding‐box
tasks [4, 14, 16, 20]. The following paragraphs review key ex-
amples from each type in turn.

In ref. [13], the authors propose to use Randomised Input
Sampling for Explanation (RISE) to provide insights from any
type of classifier—even those not based on DNNs. Their method
involves creating a surrogate interpretable model to represent a
single instance. The surrogate model in this case is a weighted
average on a new dataset consisting of perturbed samples. These
perturbed samples are given to the closed box model to produce
the output probability for the target class—this score is provided
as the weighting. RISE was adapted to D‐RISE by Petsiuk et al.
[14] for use with detection style architectures. Their method is
consistent with RISE, except the weights for the weighted
average are calculated using a new similarity metric. This sim-
ilarity metric is meant to measure how different a detected box
prediction from a perturbed image is from the original.

This approach is proposed in our previous work in ref. [4] to
adapt KernelSHAP [12], which is a method for generating SHAP
values and will be explained in detail below, to explain de-
tections made by Uncrewed Aerial Vehicle (UAV) platforms.
This kind of explainer also creates a surrogate model, in this
case, the surrogate is a linear model. Our approach in that paper
and the approach in ref. [14] are completely model agnostic.
Moreover, both works provide quantitative evidence that sup-
ports their explainers' fidelity which is often omitted by other
authors. Nonetheless, they only access the input and the output
of the model and thus these approaches cannot be used to probe
into the inner workings of the deep detector model.

LRP occupies the third type: it explains a detector's output by
propagating relevance scores backwards through every layer,
thereby accessing the network's internal structure [21]. Early
work applied LRP to Single Shot Detector (SSD) via Contrastive
Relevance Propagation (CRP) [22], but SSD has since been
surpassed by stronger architectures such as YOLOv5 [23]. Kar-
asmanoglou et al. [16] therefore extended LRP to YOLOv5,
producing visually appealing heat‐maps; yet, as they themselves
note, the fidelity of those maps was not quantified, and LRP's
gradient roots make it vulnerable to saturation—a phenomenon
in which the explainer is susceptible to allocating important
features receive near‐zero relevance [24].

In summary, perturbation methods are model‐agnostic but
blind to internal feature flow, gradient methods discard negative
evidence, and current propagation methods suffer from satura-
tion and lack quantitative validation. These limitations leave
room for a sign‐aware, layer‐consistent explainer that can
double as a principled pruning signal—the gap our DetDSHAP
framework is designed to fill.

2.2 | Pruning by Explaining

This section examines the various pruning methodologies,
specifically those that utilise explainability as a criterion for
pruning. Explanation‐guided pruning methods can be grouped
along two axes: the importance metric used to score weights or
filters and the scope of pruning: local (applied to one or two
dense layers) versus global (applied across the entire backbone).
Table 1 contrasts representative papers along these two di-
mensions. The narrative below will begin with an overview of a
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contemporary pruning framework before discussing key exam-
ples from each cell of the table.

Pasandi et al. [27] describe pruning as a four‐stage cycle: first
a baseline network is fully trained; next a pruning objective is
set—for example, a target compression ratio, a FLOP budget, or
an allowable accuracy loss; redundant weights or filters are then
removed according to a chosen importance metric; and, finally,
the pruned model is fine‐tuned. Competing methods differ
chiefly in the metric used to score redundancy, the granularity
of removal, and the frequency with which this train–prune–tune
loop is repeated.

Yeom et al. [25] introduced the use of LRP as a criterion for
model pruning. Their research validates this approach across
multiple scenarios, offering valuable insights into the pruning
of deep networks, albeit with a focus primarily on classifi-
cation tasks. The authors demonstrated that the LRP criterion
can achieve enhanced compression performance across
various datasets in comparison to conventional methods.
However, it is important to note that LRP may exhibit ten-
dencies toward over‐saturation, which is not ideal for a
pruning criterion. Furthermore, this work presents evidence
suggesting that LRP may not be appropriate for deep object
detection tasks, indicating that DeepSHAP serves as a more
effective criterion.

An alternative approach to LRP is proposed by Sabih et al. [17],
who advocate for the utilisation of DeepLIFT (Deep Learning
Important FeaTures) as a criterion for model pruning. Deep-
LIFT, developed by Shrikumar et al. [24], addresses the chal-
lenge of model saturation that affects LRP and other gradient‐
based techniques. Like LRP, DeepLIFT analyses the contribu-
tions of all neurons within the network and the input features
through a backpropagation mechanism. However, the key
distinction of DeepLIFT lies in its method of comparing each
neuron's activation to a reference activation, thereby assigning
contribution scores based on the observed differences.

Establishing a reference point for DeepLIFT poses challenges
due to its significant impact on the quality of the generated
explanations. For instance, in the case of the MNIST dataset, a
black image composed entirely of zeros is utilised as the refer-
ence for image analysis, while for CIFAR10, the recommenda-
tion is to employ a blurred variant of the image. This particular
trait of DeepLIFT somewhat undermines the necessity for the
explainer to maintain consistency, potentially leading to failures
when it encounters unfamiliar data.

Lundstrom et al. [26] utilise Integrated Gradients as a criterion
for pruning. Integrated Gradients [28] can be viewed as an
extension of DeepLIFT, with the standard reference being an
image of zeros. The target network employed in their study is
AlexNet [29], which has been trained on a dataset derived from
the Mars Rover [30].

Both, Sabih et al. [17] and Yeom et al. [25] implement their
criteria within a global pruning framework. In contrast, Lund-
strom [26] restricts pruning to the dense layers of their network,
where the majority of parameters for AlexNet are concentrated.
Unlike global pruning, local pruning involves applying pruning
techniques to specific sections of the model, such as individual
layers or uniformly across each layer, which generally results in
less effective pruning outcomes [31, 32]. The findings of Lund-
strom et al. [26] indicate that critical neurons tend to specialise
in particular classes. This specialisation likely explains why
Yeom et al. [25] observed that employing positive relevance to
determine their criterion yielded the most favourable results.

The primary objective of pruning is typically to facilitate the
compression of deep networks for deployment on hardware
systems. Nevertheless, the studies discussed in this section do
not adequately assess their criteria within a practical context
involving portable robotic platforms. Only the work by Lund-
strom et al. [26] utilises a dataset obtained from a machine
vision platform, yet it employs an outdated architecture. In our
research, we illustrate that our approach can successfully prune
deep object detectors using realistic data collected from both
ground‐based and aerial drones.

Because existing work is either local in scope or evaluated only
on image classifiers, none of these metrics guarantees both
computational savings and detector‐specific interpretability for
large backbones. Hence our adoption of DetDSHAP as a global,
sign‐aware criterion for pruning object detectors.

2.3 | SHAP and DeepSHAP

In this section, we provide a concise overview of SHapley Ad-
ditive exPlanations (SHAP) as introduced by Lundberg [12].
They propose that any explanation for a model's prediction can
be conceptualised as a surrogate model. This surrogate model
serves as an interpretable approximation of the original model.
As illustrated in Equation (1), this surrogate model can be
represented as a linear model g. In this expression, zʹ is a feature
vector of size M of a given instance and the weights ϕ, are the
contribution of each feature to a given outcome. Features may
include elements from a table, pixels from an image, or units
within a deep learning network.

g( zʹ) = ϕ0 +∑
M

j=1
ϕjzj́ (1)

Lundberg et al. introduce KernelSHAP, which is summarised in
Section 2.1. This method is characterised as a perturbation‐
based technique that creates a dataset indicating the presence
or absence of a specific feature zj́ , along with the corresponding

predictions made by the network for each combination of

TABLE 1 | Explanation‐guided pruning methods classified by
importance metric and pruning scope.

Reference
Importance
metric Scope

Yeom et al. [25] LRP relevance Global

Sabih et al. [17] DeepLIFT
attribution

Global

Lundström
et al. [26]

Integrated
gradients

Local (dense
layers)
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features. The surrogate model utilised in this approach is a
linear model that is trained using the dataset produced.

Lundberg [12] successfully utilised DeepLIFT to develop
DeepSHAP. They argue that incorporating an input can be
interpreted as assigning it its actual value rather than its refer-
ence value. Consequently, DeepLIFT can be regarded as an
efficient approximation technique for the SHAP values ϕ. In a
related study, Chen et al. [9] suggest employing a background
distribution to signify the reference value. This is achieved by
calculating SHAP values for each baseline within a sample
group and averaging the resulting attributions. We adopt this
methodology as it addresses the invariance constraint to which
DeepLIFT is vulnerable. Furthermore, the authors in ref. [9],
demonstrate that this approach yields estimated SHAP values
that are more closely aligned with the true SHAP values.

DeepSHAP is applied by He et al. [10] to elucidate the workings
of a deep neural network deep neural network DNN designed
for autonomous navigation. This approach enables the genera-
tion of saliency maps, which highlight the significant features
within images captured by a 2D camera that contribute to the
decision‐making process of the deep network. Additionally, the
authors explore the impact of various units within their network
on the overall output.

3 | Methodology

This section outlines the primary principles of this paper.
Initially, we present our explanatory model designed to generate
SHAP values, which elucidate the causal information associated
with individual bounding boxes generated by architectures
based on the YOLOv5 detector. Subsequently, we utilise this
explanatory model to develop an innovative pruning framework
aimed at optimising our trained models.

3.1 | DeepSHAP for Object Detection (DetDSHAP)

In this sub‐section, we present our method for model explana-
tion. When provided with an image I, a deep detection network
f , and a target bounding box T, the explainer generates a SHAP
map that illustrates the relationship between I and T as inter-
preted by f . Notably, the bounding box T is not restricted to
those predicted by the model; it can also be the groundtruth
bounding box or any hypothetical box specified by the devel-
oper. This flexibility significantly enhances the developer's
ability to investigate and analyse their network.

Algorithm 1 provides a comprehensive overview of the DetD-
SHAP algorithm, which is structured into three primary phases.
The initial phase involves executing a forward pass through the
detection network, during which the forward activations are
recorded. Specifically, for any layer that is an activation function
(e.g., ReLU, sigmoid or tanh), the algorithm saves both the pre‐
activation input and the post‐activation output. This recording is
essential for the later stages of backpropagation when attrib-
uting contributions. The second phase entails the initialisation

of the forward pass output to eliminate information that is
irrelevant to T, a process that is elaborated upon in this section.
The concluding phase, which results in the generation of the
SHAP map, consists of a backward pass that utilises the back‐
propagation rule set of DeepSHAP. Additionally, we enhance
this framework with our proprietary backpropagation rule,
which will be detailed later in this section.

In the initialisation phase, following the forward pass, the pre-
dictions used for computing the initial contribution ϕi are those
generated directly by the deep network under investigation.
Notably, these predictions are not randomly generated or exter-
nally selected; rather, they reflect the network's own output when
processing the provided inputs. In our experiments (outlined in
Section 4.2), the entire training set is employed to generate these
predictions. This comprehensive approach ensures that ϕi is
derived from a full representation of the input distribution,
thereby eliminating potential biases or omissions that could result
from random sampling. Consequently, this methodology re-
inforces the robustness of the subsequent attribution analysis.

ALGORITHM 1 | DetDSHAP Framework

Input: Fully trained deep network F, Target bounding box T,
Image I.
Output: SHAP Map ϕ
Step 1: Forward Pass
xi = I
for layer in F do
xi = layer(xi− 1)
if layer is type activation then
save(xi− 1, xi)

end if
end for
Step 2: Initialise prediction based on T
ϕi = Initialise(xi,T)
Step 3: Backwards pass
for layer in reversed(F) do

ϕi = apply_rule(layer,ϕi)
end for
ϕ = ϕi return ϕ

Object detectors differ from image classifiers in that they must
identify and localise one or more objects within an image, rather
than merely assigning a class score. In the context of YOLOv5,
the task T encompasses a class score c, a bounding box repre-
sented as b = [x, y,w, h], and an objectness score o. To refine the
prediction P generated by the function f , it is necessary to
preprocess this information to eliminate any irrelevant data,
which is categorised as attribution noise. This preprocessing
phase is referred to as the initialisation step, resulting in the
initial contribution denoted as ϕi. Depending on whether the
detection task involves a single class or multiple classes, we
employ two distinct methodologies.

In the context of a single‐class detector, the primary objective is
to ascertain the elements that influence the predicted bounding
box. To achieve this, we begin by initialising P through the se-
lection of boxes that exhibit a high degree of similarity to the
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target box. The similarity between the target box Tbox and the
predicted box Pbox is quantified through a specific calculation of
Intersect over Union (IoU) Equation (2).

IoU(Tbox,Bbox) =
Area of Overlap of (Tbox,Bbox)
Area of Union of (Tbox,Bbox)

(2)

The initial contribution of each box is denoted as ϕij in Equa-
tion (3). In this notation, i refers to the layer index and j in-
dicates the filter index. In practice, for layers where the output
represents predicted boxes—as is the case at the output layer—
each filter corresponds directly to a specific predicted box.
Hence, ϕij can be interpreted both as the contribution of the jth
filter at layer i and, equivalently in this scenario, as the contri-
bution of a specific predicted box.

Equation (3) assigns a value to ϕij, based on the Intersection over
Union (IoU) between the target bounding box Tbox and the pre-
dicted bounding box P(j,box). The threshold parameter thr ranging
from 0 to 1. Our research indicates that a threshold value of
thr = 0.7 is effective in the majority of scenarios. Subsequently,
the initial contribution for P is determined through Equation (4),
whereM represents the total number of predictions. The resulting
SHAP values illustrate the units that significantly impact the
localisation of T as exemplified in Figure 2.

Figure 2 contrasts DetDSHAP with a Grad‐CAM implementa-
tion adapted from [20]. Grad‐CAM is applied to the car class‐
score channel of YOLOv5: because three valid car detections
are present (Figure 3d), the explainer is run once per box and
the resulting heat maps are averaged. Owing to the ReLU used
in Grad‐CAM, negative evidence is discarded, and the spatial
resolution is limited by the 32 × stride of the final feature map.
DetDSHAP, by contrast, conditions on a single target box (the
foreground vehicle) and propagates SHAP relevance through
every layer while retaining both positive and negative
contributions.

The visual difference is clear. Grad‐CAM produces a broad, low‐
resolution blob centred on the bonnet and windscreen
(Figure 3e,f). DetDSHAP yields a far crisper map (Figure 3b,c):
high‐relevance pixels trace the bonnet edges, grille and head-
lights in red, whereas specular snow patches that mislead the
detector appear in blue. These properties make DetDSHAP the
more informative and object‐specific explainer.

ϕij = {
Pj, IoU(Tbox,P(j,box)) ≥ thr

0, otherwise
(3)

ϕi =∑
M

j=0
ϕij (4)

FIGURE 2 | This figure illustrates a comparison of the DetDSHAP map generated using our approach with a saliency map generated from a
GradCAM‐based framework that was proposed in ref. [20]. Both utilise an image in our proprietary dataset as input.
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In the context of a multi‐class problem, our methodology yields
SHAP values that indicate the units significantly impacting the
class scores. Initially, we implement the procedures utilised in a
single‐class approach to facilitate the localisation of the SHAP
computation. Subsequently, we assign a value of one to both the
objectness score and the score corresponding to our target class.
The SHAPvalues obtained reflect units that not only play a crucial
role in the localisation of T but also in the classification of T.

Figure 3 illustrates an instance of the SHAP maps produced
through this methodology. This particular example demon-
strates the explainer's ability to differentiate between a rider and
their motorcycle. In Figure 3c, the map pertains to the

“motorcycle” class, highlighting that the focus of attention is
primarily on the vehicle. Conversely, in Figure 3d, which cor-
responds to the “person” class, it is evident that the silhouette of
the rider plays a more significant role in the detection process.

After the initialisation phase, it is possible to perform back-
propagation utilising the rules established by DeepSHAP. In the
course of backpropagation, the influence of each unit in the
network is assessed. Should the user focus solely on the input's
contribution to the prediction, they have the option to omit this
data to save memory. Nevertheless, this information can be
leveraged to illustrate the attention of specific layers as
demonstrated in Figure 4.

FIGURE 3 | An example of multi‐class explanation for Yolov5 trained on Visdrone2021. (a) Shows the image with the target bounding boxes of a
person and a motorcycle. (b) Shows the area of interest around the bounding box, (c) The SHAP map generated for the motorcycle, and (d) map for
the rider.

FIGURE 4 | Red arrows indicate feature‐aggregation skip routes, the black frame marks the main feed‐forward path, and the green arrows link
lower‐level features to the detection head. The six insets show DetDSHAP maps extracted after successive layers. Feature extraction is performed by
repeated Bottleneck‐C3 blocks and a SPPF (Spatial Pyramid Pooling–Fast) module, both introduced in the original YOLOv5 design [8].

7 of 19

 17518792, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.70042 by C

ity U
niversity O

f L
ondon, W

iley O
nline L

ibrary on [14/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In conventional DeepSHAP, each nonlinear module registers a
backward hook that approximates the local gradient by
comparing the module's output activations on the actual input x
and a background input x0. Specifically, let y(x) be the module's
output at activation x, and define Δy = y(x) − y(x0),Δx = x−
x0. The hook then scales the incoming relevance ϕin by the ra-
tio Δy/Δx:

ϕout =
Δy
Δx

ϕin. (5)

However, when |Δx| is very small this ratio becomes numeri-
cally unstable (or undefined), which we found leads to explod-
ing relevance values and invalid saliency maps on YOLO‐style
networks.

To address this, we implement a custom backward hook for the
SiLU activation that falls back to the exact analytic derivative
whenever |Δx| is below a small threshold ε = 10−6. Recall that:

SiLU(x) = x σ(x), where σ(x) =
1

1 + e−x (6)

is the sigmoid function. The true derivative of SiLU with respect
to x is

d
dx

SiLU(x) = σ(x) + x σʹ(x) = σ(x)[1 + x (1 − σ(x))], (7)

where

σʹ(x) = σ(x) (1 − σ(x)). (8)

In our hook, we compute a scaling factor

g(x) =
⎧⎪⎨

⎪⎩

Δy
Δx

, if |Δx| ≥ ε,

σ(x)[1 + x (1 − σ(x))], if |Δx| < ε,
(9)

and then propagate relevance as

ϕout = g(x) ϕin. (10)

By switching to the analytic SiLU derivative from Equation (7)
in regions where |Δx| is too small, we avoid division‐by‐zero and
ensure that relevance propagation remains stable. This modifi-
cation makes DetDSHAP robust enough to generate valid sa-
liency maps on both YOLOv5 and YOLOv11 object detectors.

YOLO‐based detection networks generate predictions of offsets
relative to predefined anchor boxes, which may be either posi-
tive or negative. In instances where an offset is negative, it is
essential to assign a higher value of ϕ to the weights that in-
fluence the negativity of that offset. To address this, we suggest
implementing a specific rule that is applied to the final con-
volutional layers preceding the detection layer, as illustrated by
the green arrows in Figure 4.

The rule under consideration is articulated in Equation (11),
drawing inspiration from theLRP‐ab rule as outlinedby Sebastian
et al. [33]. In this equation, the term aj ⋅ wjk represents the degree
to which filter j (in the ith layer) influences the relevance of filter k
(in the (i + 1)th layer); here, a denotes the activations obtained
during the forward pass and w the network's learnt weights. The
expression aj ⋅ w+

jk corresponds to the positive contribution, while
aj ⋅ w−

jk indicates the negative contribution. The denominator is
essential for adhering to the conservation principle established by
LRP. Depending on the sign of the activation from the preceding
layer (aj), the incoming contribution (ϕk) is adjusted by either the
positive or negative relevance.

ϕij =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
k

aj w+jk
∑ jʹajʹ w+jʹk

ϕk, if ak ≥ 0,

∑
k

aj w−
jk

∑ jʹajʹ w−
jʹk

ϕk, if ak < 0,

(11)

The DetDSHAP explainer is compatible with newer YOLO re-
leases such as YOLOv11. To demonstrate this, we generated
saliency maps from two YOLOv11 models; one fine‐tuned on
Visdrone2021 and one on our single‐class vehicle detection
dataset. The aforementioned maps were generated using the
same target boxes shown in Figures 2 and 3. In Figure 5, the
DetDSHAP map for YOLOv11 exhibits a noticeably crisper
separation between rider and motorcycle: the red positive‐
relevance regions around the bike's contours no longer bleed

FIGURE 5 | An example of multi‐class explanation for Yolov11 trained on Visdrone2021. The DetDSHAP Maps shown here are generated for the
same targets shown in 3b. (a) and (b) illustrate the map generated for the object “Motor”, (c) and (d) illustrate the map for the “Person”.
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into the rider's seat, and the rider's silhouette is more sharply
confined. Likewise, in Figure 6, the YOLOv11 vehicle map
shows even higher fidelity to the car's grille and headlight fea-
tures than its YOLOv5 counterpart. These enhancements are
expected as different weight sets will learn slightly different
feature filters, yet they confirm that DetDSHAP consistently
produces high‐resolution, object‐specific relevance maps across
detector versions.

3.2 | DetDSHAP Pruning Framework

In this subsection, we present a framework for globally pruning
individual filters in the YOLOv5 detector. For context, Figure 7
shows a generalised overview of the pruning process of DNNs,
and Algorithm 2 presents a step‐by‐step breakdown of our
proposed framework. Our approach emphasises the global
pruning of individual filters within the network. Throughout
the pruning procedure, we systematically reduce the model by a
specified quantity (r) until a designated pruning objective,
denoted as O, is achieved. Each iteration in this process is
termed a pruning step, during which filters are evaluated and
ranked based on our established criterion, leading to the
removal of those with the lowest rankings. Following each
pruning step, the model undergoes fine‐tuning to recover any
potential decline in performance.

Before each pruning step, let b be a batch of |b| images. For the
nth image xn ∈ b, we collect all of its filter‐level SHAP values
into the matrix ϕn (defined in Equation (12)). Here, I is the total
layers and Ji is total filters in layer i. We then aggregate these
per‐image matrices over the batch by summing absolute values
element‐wise. Φb is the batch‐importance matrix whose entries
(Φb)ij (Equation (13)) give the total contribution of filter j in
layer i across all images in b. Filters are ranked by these values
and the r lowest are pruned.

Φn = [ϕij(xn)] i = 1,…, I
j = 1,…, Ji

(12)

(Φb)ij =∑
|b|

n=1

⃒
⃒
⃒ϕij(xn)

⃒
⃒
⃒ (13)

ALGORITHM 2 | Pruning Framework

Input Fully trained deep network F, training data X, pruning
objective O, magnitude of pruning step r.
Output Optimised deep network F
For batch b in X do
Step 1: for each image xn ∈ b, compute the matrix Φn as in

Equation (12).
For xn in b do
compute SHAP ϕn values w.r.t xn for F

end for
Step 2: form Φb via Equation (13).
Step 3: Remove r lowest contributing filters in F with

smallest ϕb
Step 4: fine-tuning and check objective
fine-tune F and X
if O is True then
break

end if
end for
return F

In accordance with our pruning criterion, we employ the
contribution scores derived from our DetDSHAP explainer, as
detailed in Section 3.1. Consequently, at the initiation of the
pruning process, we compute the SHAP values for a selected
batch of samples (b) from the dataset. Each sample consists of
an image paired with its corresponding label, which encom-
passes the 2D coordinates and class labels for all objects present
in the image. Although this label typically reflects the model's
prediction, our methodology allows us to utilise the ground-
truth label for the calculation of SHAP values. This capability
enhances our framework, enabling the pruning process to be
based on the groundtruth rather than the model's predictions,
which is a common limitation in conventional pruning
methods.

FIGURE 6 | Illustrated here is the DetDSHAP map generated for the target vehicle shown in Figure 2. The map was produced to interpret the
prediction made by YOLOv11. In (a), the map is overlaid on the input image; in (b), the plain map is shown.
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After generating the SHAP values for each image within a batch,
the subsequent task involves determining the rankings of the
filters. Research indicates that neurons exhibit a tendency to
specialise, suggesting that the negative SHAP values associated
with one instance may also be relevant to a nearby instance.
Consequently, filters are ranked according to the magnitude of
their contributions, with lower rankings assigned to those filters
whose SHAP scores are nearest to zero. The ultimate filter rank,
denoted as ϕb, is computed by aggregating the absolute SHAP
values |ϕi| from each individual sample i.

Once the DetDSHAP ranking identifies filter j in layer i for
removal, our PyTorch implementation performs two steps: (1) it
rebuilds the convolutional module at layer i with its j‐th output
channel excised (shifting all higher channels down by one), and
(2) it mirrors that change in layer i + 1 by deleting the corre-
sponding j‐th input channel to keep the tensor shapes aligned.
Because modern detectors like YOLOv5 use nonlinear
architectures—for example skip‐connections through
Bottleneck‐C3 modules constructed in tight loops—simply
removing channels can break the graph. To handle this, we first
generate an explicit layer‐connectivity graph that records
exactly which convolutional modules feed into each other
(including those inside the C3 and SPPF blocks). Our custom
pruning framework then uses that graph to propagate each
channel removal across all affected modules.

The batch‐aggregated scores in Equation (13) have an immedi-
ate interpretation: given the additive property of SHAP values
(Φb)ij quantifies how much the network's bounding‐box pre-
diction would change, on average, if filter j at layer i were
removed. Filters whose contribution oscillates near zero across
the data distribution are therefore redundant both spatially
(they seldom activate) and semantically (they seldom help or
hinder any detection), so pruning them should preserve mAP.
Conversely, filters that consistently carry large positive or
negative relevance are retained. DetDSHAP ranking is thus
data‐driven, sign‐aware, and box‐specific—three characteristics
absent from magnitude‐only or gradient‐only pruning heuristics
described in Section 3.1. This intuition underpins the empirical
results reported in Section 4.2.

4 | Experimental Results

In this section, we detail the results of the performance
analysis performed on our DetDSHAP‐based explainer and
pruning frameworks. Table 2 illustrates the models employed

in each experiment, along with the corresponding datasets on
which they were trained. For the Visdrone dataset, which
presents significant challenges, we utilised YOLOv5l. In
contrast, our self‐driving dataset required only YOLOv5s.
Additionally, for the COCO2007 dataset, we implemented a
pretrained YOLOv5m sourced from [8] to ensure reproduc-
ibility. Figure 8 presents samples of each of the dataset
employed in this paper.

We initially employ our recently developed wrapping game to
assess the discriminatory effectiveness of our DetDSHAP
explainer in comparison to the LRP‐based method proposed by
Karasmanoglou et al. [16]. For the purposes of this specific
experiment, we exclusively utilise YOLOv5s which has been
trained on our self‐driving car dataset in order to reduce the
computational expenses associated with our preliminary anal-
ysis. The analysis is not exteded to YOLOv11 given that the
baseline method of Karasmanoglou et al. does not currently
support the v11 codebase.

The subsequent sub‐sections examine the efficacy of our
DetDSHAP‐based pruning framework. Initially, we explore the
trends in pruning performance, illustrating the impact of
increasing pruning magnitude on the quality and efficiency of
the pruned deep model. For comparative analysis, we also assess
the effectiveness of the pruning using the LRP‐based explainer
as described in ref. [16]. We choose three pruned networks and
subject them to additional training, subsequently comparing
their detection performance with that of their unpruned
equivalents.

We conclude with an examination of our deep learning‐based
detector networks following the pruning process. The net-
works utilised in this study are all based on the YOLOv5 ar-
chitecture and have been trained on our proprietary self‐driving
car dataset, in addition to two publicly accessible datasets:
Visdrone [35] and COCO2017 [18]. The efficiency of the deep
network is assessed through two distinct metrics. The first
metric involves the count of network parameters, which serves
to evaluate the extent of compression achieved by the pruning
framework. The second metric pertains to the number of
Floating point OPerations per Second (FLOPs) necessary for
conducting an inference. We illustrate the enhancements in
both metrics and present the final results as detailed in Equa-
tion (14). Here, “Score” refers interchangeably to (i) the total
number of network parameters or (ii) the number of floating‐
point operations (FLOPs) required per inference. The “Score”
may also refer to the qualitative metrics discussed below.

FIGURE 7 | Generalised pruning framework [27].

10 of 19 IET Radar, Sonar & Navigation, 2025

 17518792, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.70042 by C

ity U
niversity O

f L
ondon, W

iley O
nline L

ibrary on [14/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



improvement = 1 −
Score on pruned Model
Score on original Model

(14)

In our research, the efficacy of our deep networks is assessed
based on their detection capabilities. To quantitatively evaluate
the performance of our pruned networks, we employed four
widely recognised metrics: MAP@0.5, MAP@0.5–0.95, Average
Recall (AR), and F1 Score. Precision is determined using the

formula presented in Equation (15), where a detection is clas-
sified as a true positive if the classification is accurate and the
IoU between the predicted bounding box and the groundtruth
exceeds a specified threshold. Specifically, a true positive is
identified when there is an IoU of 50% between the predicted
box and the actual groundtruth. The precision is subsequently
averaged across all classes to derive the mean average precision
(MAP). In the second metric, MAP@0.5–0.95 follows a similar
methodology but considers a range of IoU values between 50%

FIGURE 8 | Examples from the three datasets used in the experiments: Simple AD (left), Visdrone (centre), and COCO2017 (right). The
COCO2017 images show objects of interest for this study.

TABLE 2 | This table shows the models and datasets used in our experimental evaluation.

Model Dataset
Experiments

Wrapping game Pruning trends Post pruning performance Pruning versus design
YOLOv5s Our dataset [34] ✓ ✓ ✓
YOLOv5l Visdrone ✓ ✓
YOLOv5m COCO2017 ✓ ✓ ✓
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and 95%. The IoU has been previously defined in Equation (2).
Additionally, we report the average recall, which is calculated as
the ratio of true positives to the total number of groundtruth
boxes. The final metric, the F1 score, is computed as outlined in
Equation (16), incorporating both recall and precision into its
evaluation.

precision =
∑TP

∑ (TP + FP)
(15)

F1 = 2 ⋅
precision ⋅ recall
precision + recall

(16)

4.1 | The Wrapping Game

In this subsection, we present our results from assessing the
discriminatory performance of our DetDSHAP‐based explainer
alongside the LRP‐based explainer developed by Kar-
asmanoglou et al. [16], which we designate as YOLO‐LRP. To
facilitate this evaluation, we introduce a novel methodology
termed the wrapping game. Our methodology draws inspiration
from the pointing game proposed by Zhang et al. [15], which
serves as a tool for examining the discriminatory effectiveness of
explainers in image deep network classifiers. In their frame-
work, the most prominent pixel, identified as the highest
contributor from a given attention map, is extracted. Subse-
quently, it is assessed whether this pixel resides within a
human‐annotated groundtruth represented by a 2D bounding
box. A hit is recorded if the pixel is contained within the
groundtruth; otherwise, it is classified as a miss. The overall
score is calculated by dividing the number of hits by the total of
hits and misses. Our analysis of the wrapping game for both
explainers is illustrated in Figures 9 and 10.

The pointing game inherently lacks the necessity for a
comprehensive explanation to elucidate the complete context of
the object in question. Consequently, it can only assess
discrimination capabilities to a somewhat restricted extent. In
our proposed evaluation framework, we create a mask derived
from the explanation map, which facilitates the measurement of
the IoU against a groundtruth of instance segmentation. We
implement our wrapping game analysis utilising the YOLOv5s
model, trained on our self‐driving dataset.

The creation of this mask occurs in two distinct phases. Initially,
we compute the contribution of each pixel within the image.
Subsequently, we employ Sklansky's Algorithm [36] to process
all pixels that exceed a specified contribution threshold,
resulting in the formation of a polygon.

The criterion employed for selecting pixels in Sklansky's Algo-
rithm is defined as a percentage of the most relevant pixel.
Figure 9 illustrates the variation in the average IoU as the
threshold value is incremented. The IoU score rises until it at-
tains a maximum, corresponding to the mask nearing its
optimal configuration, after which it starts to decline. The ul-
timate metric is determined as the maximum IoU achieved.

The reliance on groundtruth to guide the methodology can
introduce biases stemming from the performance of the deep
network, which is not ideal. Although Zhang et al. [15] did not
address this issue, our study explores the instance segmentation
performance by examining various ranges of model confidence.
We establish a prediction threshold by selecting a value between
two specified bounds, and we apply the wrapping game to all
instances where the model confidence falls within this
threshold. This approach enables us to gain a more compre-
hensive understanding of the explainer's discriminatory power
while also considering the impact of the deep network detector
model's performance on the explanations generated by our
method.

The trends in Figures 9b and 10b show the wrapping game
analysis when considering different levels of model confidence
(prediction_thr). These settings reveal a distinct relationship
between the performance of the model and the Intersection over
Union (IoU) score. Both explainers demonstrate enhanced
scores in contexts where the model displays elevated confidence
levels. This finding is consistent with the premise that a model's
confidence is intrinsically linked to its ability to differentiate a
particular instance from its surrounding environment.

Figure 10 presents the Wrapping Game analysis for the LRP‐
based framework. Although the explainer initially demon-
strates strong performance, as shown in the Confidence‐
Agnostic Analysis (Figure 10a), its discriminative ability de-
clines significantly on instances where the model's confidence is
low (Figure 10b). This limitation is particularly critical, as ex-
planations are most valuable in low‐confidence scenarios, where
understanding the model's decision‐making process is essential.

The evaluation shown in Figure 9 highlights that the proposed
DetDSHAP explainer achieves a reasonable IoU score on the
dataset, albeit not as high as that achieved by YOLO LRP.
However, unlike YOLO LRP, the DetDSHAP framework
maintains its effectiveness even in instances where the model's
confidence is low. This resilience makes DetDSHAP better
suited for addressing the crucial low‐confidence scenarios,
where reliable explanations are indispensable.

4.2 | Pruning Performance

In this study, we evaluate the efficacy of our pruning framework
and conduct a comparative analysis of its performance using
DetDSHAP as a criterion in contrast to LRP. Our framework is
applied to prune a variety of deep detector networks, and we
illustrate the relationship between performance quality and
structural efficiency through plotted data. These visual repre-
sentations are displayed in Figures 11–16. Each figure comprises
two distinct plots: the left plot depicts the network's perfor-
mance relative to the reduction in GFLOPS, while the right plot
illustrates the network's performance in relation to the per-
centage of parameters pruned. In the context of pruning deep
network classifiers, the authors of ref. [25] report pruning 5% of
their network's parameters and subsequently fine‐tuning for 10
epochs at each pruning stage. In our approach, we select varying
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parameters tailored to each dataset to optimise performance for
each specific scenario.

In the initial scenario, we implement pruning on the YOLOv5s
model, which has been trained using data collected from our

self‐driving car platform. During each pruning iteration, we
select a batch of 10 samples to establish the filter rankings and
subsequently prune 2.5% of the total filters, followed by 10
epochs of fine‐tuning after each pruning step. This process is
executed utilising our DetDSHAP method to derive the filter

FIGURE 9 | The above plots illustrate the wrapping game analysis of the proposed DetDSHAP framework with YOLOV5. (a) Analysis across all
instances in the set. (b) Analysis considering the model's confidence in a given instance.

FIGURE 10 | The above plots illustrate the wrapping game analysis of the proposed YOLO LRP framework with YOLOV5. (a) Analysis across all
instances in the set. (b) Analysis considering the model's confidence in a given instance.

FIGURE 11 | This figure displays the pruning trend when using DetDSHAP as a criterion to prune YOLOv5s trained on our self‐driving car
dataset.
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FIGURE 12 | This figure displays the pruning trend when using LRP as a criterion to prune YOLOv5s trained on our self‐driving car dataset.

FIGURE 13 | This figure displays the pruning trend when using DetDSHAP as a criterion to prune YOLOv5l trained on the Visdrone dataset.

FIGURE 14 | This figure displays the pruning trend when using LRP as a criterion to prune YOLOv5l trained on the Visdrone dataset.

FIGURE 15 | This figure displays the pruning trend when using DetDSHAP as a criterion to prune YOLOv5s trained the COCO2017 dataset.

FIGURE 16 | This figure displays the pruning trend when using LRP as a criterion to prune YOLOv5s trained the COCO2017 dataset.
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rankings. For comparative purposes, we also apply the same
methodology using the LRP explainer as referenced in ref. [16].
The results of this analysis are illustrated in Figures 11 and 12,
respectively.

Figure 11 indicates that DetDSHAP can discard almost all the
redundant capacity in a single‐class detector without harming
accuracy. Pruning 80% of the parameters removes roughly 40%
of the FLOPs yet the mAP curve remains flat. Indeed, perfor-
mance only begins to fall once 95% of the parameters have been
removed ‐ this equates to a reduction of around 80% in FLOPs.
The gentle slope confirms that the DetDSHAP score really does
reflect filter utility for this task.

In contrast, the LRP baseline behaves very differently
(Figure 12. Employing this criterion leads to an immediate
decline in performance after the first 10% of filters. There are
instances where performance improves—this is attibuted to
subnetworks with favourable initialisations temporarily
enhancing performance. Ultimately throughout the pruning
process the performance fails to recover above 50% of the initial
performance level. Notably, when 80% of the parameters are
pruned, the model's performance is entirely compromised.

Figure 13 shows the effect of DetDSHAP ‐ guided pruning on
the large YOLOv5l model trained for the VisDrone 10‐class task.
Because this backbone is much deeper than YOLOv5s and each
image contains many objects of widely varying scale, we prune
10% of the filters per iteration while keeping the batch size fixed.
Despite the higher pruning rate, DetDSHAP can remove more
than 60% of the parameters—a 22% drop in FLOPs—before any
noticeable mAP loss occurs, and mAP stays within 3 pp of the
baseline until 93% of filters are gone (≈60% FLOP reduction).
This confirms that the relevance scores retain their discrimi-
natory power even in a challenging multi‐class setting.

Figure 14 contrasts the same experiment using LRP relevance as
the pruning metric. LRP performs slightly better here than on
the single‐class scenario (Figure 12), possibly because its rele-
vance is biased toward class‐score channels; nevertheless, the
initial accuracy dip and the steeper decline beyond 30% pruning
leave it consistently below the DetDSHAP curve across the
useful compression range. DetDSHAP therefore remains the
preferred criterion for large, multi‐class detector backbones.

Our final experiment applies DetDSHAP‐guided pruning to
YOLOv5m trained on COCO 2017. Because the dataset covers
80 object classes—with each image averaging 7.2 instances—we
increase the sampling pool to 100 images per pruning step to
give every class a fair chance of influencing the filter ranks. The
pruning rate is set to 5% per iteration and followed by 10 epochs
of fine‐tuning, as before.

Figure 15 shows that DetDSHAP holds the detector's mAP
essentially constant until about 25% of the parameters are
removed, yielding a 10% FLOP reduction. Accuracy then de-
grades gracefully, but once pruning exceeds 60% of the param-
eters the mAP falls by roughly 40 pp. This steep tail suggests
that extreme compression is limited by class imbalance and by
the very small objects prevalent in COCO. Accuracy then de-
grades gradually, but once pruning exceeds 60% of the

parameters the mAP falls by roughly 40 pp. Figure 16 plots the
same experiment with LRP relevance: that curve drops sooner
and more steeply, confirming the pattern seen on VisDrone.
Future work will explore class‐balanced sampling and focal
regularisation during the rank‐accumulation step to stabilise
importance estimates in such diverse datasets.

The trend observed in our final scenario is illustrated in the
plots presented in Figure 15. In this scenario, it is evident that
the decline in performance is more pronounced. Specifically, at
the point where 50% of the parameters have been pruned, each
equality metric experiences a reduction of approximately 40%.
However, it remains feasible to prune roughly 25% of the pa-
rameters, which corresponds to a 10% enhancement in the
GFLOPs, while exerting minimal impact on the quality perfor-
mance of the deep network detector.

Using LRP as a criterion may yield more favourable outcomes in
multi‐class scenarios. This is particularly evident when con-
trasting the trends observed in our single‐class dataset (as
illustrated in Figure 12) with those from the Visdrone 10‐class
dataset. Such observations suggest that the underlying
explainer exhibits a bias towards the class score. Although LRP
demonstrates enhanced performance, there is a significant
initial decline in the network's quality. Consequently, the
quality throughout the subsequent pruning process remains
inferior compared to when DetDSHAP is employed as the cri-
terion. This pattern is similarly reflected in Figure 16.
Furthermore, this latter scenario indicates that it is possible to
prune beyond DetDSHAP when using LRP as the criterion;
however, this extension is limited to approximately 10% beyond
DetDSHAP, and at this juncture, the original performance of the
network is severely compromised, rendering it likely unusable.

4.3 | Post‐Pruning Network Performance Quality

In this sub‐section, we conduct a thorough examination of the
impact of our pruning framework on the performance quality of
the YOLOv5 detection models used in this research. We have
selected three deep detection models for further development
during the pruning process. Each pruned model undergoes an
additional fine‐tuning phase for 200 epochs. The quality of our
final network, along with their mean average precision (mAP),
is presented in Table 3, where we also include efficiency scores.
These efficiency scores encompass not only the number of pa-
rameters and floating‐point operations per second FLOPs but
also the inference times measured on an NVIDIA GeForce RTX
2060S. To enhance our analysis, we present the Precision‐Recall
curves (PR curves) for the models trained on the three datasets
employed in this study. This graphical representation of preci-
sion against recall serves as a critical evaluation of the perfor-
mance quality of the object detection models. A deep detection
network is deemed effective if it maintains high precision while
recall increases.

In the first column of Table 3, we present the final outcomes of
our pruned YOLOv5s model, specifically tailored for our self‐
driving car dataset. The results indicate that following addi-
tional fine‐tuning, there is only a negligible decrease in the
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mAP@0.5–0.95 score, along with a slight enhancement in the
mAP@0.5. This is noteworthy given that there has been a
reduction of more than 80% in the number of parameters and a
40% decrease in GFLOPS. Furthermore, Figure 17a illustrates
the precision‐recall curves for the models trained on our self‐
driving car dataset. The comparison reveals minimal variation
in the PR curve between the unpruned and pruned models,
despite the significant reductions in parameters and FLOPs
detailed in Section 4.2. As previously mentioned, our self‐
driving car dataset is relatively straightforward, contrasting
with more complex scenarios, which is reflected in our findings.

The findings presented in the second column of Table 3 indicate
that a comparable outcome can be achieved for a network
trained on the more complex Visdrone dataset. Notably, we
successfully decreased the number of parameters in our
YOLOv5l network by nearly 50% and reduced the GFLOPs by
16%, all while maintaining performance levels that are not
significantly compromised. Additionally, Figure 17b illustrates
the precision‐recall curve for our models evaluated on the Vis-
drone dataset.

In the context of Visdrone, we further illustrate the confusion
matrices obtained from both the pruned and unpruned models
in Figure 18. The predominant class detected in this dataset for
both models is ‘car’, which exhibits the least decline in the True
Positive (TP) rate and is the most frequently occurring class
within the dataset. However, a significant drawback of the
pruned model is the increased proportion of false negatives, as
depicted in Figure 18. This suggests a decline in recall perfor-
mance; nevertheless, an evaluation of the PR curve in
Figure 17b indicates that this decline is not considerable.

Table 3 presents the outcomes of pruning the YOLOv5m model,
which was trained on the COCO2017 dataset. Additionally,
Figure 17c illustrates the precision‐recall (PR) curves for both
the pruned YOLOv5m model and the unpruned version. In this
analysis, we also include the PR curve for a YOLOv5s model
trained on the same dataset. The data indicates that, in contrast
to the other scenarios discussed in this section, there is a notable
decline in the network's performance, with a reduction
exceeding 10% in the mean average precision (mAP) at the
0.5–0.95 threshold. Nevertheless, the PR curves depicted in
Figure 17c reveal that the pruned YOLOv5m model outperforms
the YOLOv5s model on average across all classes. However, it is
important to note that the performance diminishes in the class
with the lowest performance. This trend is also evident in
Figure 17b and is likely attributable to class imbalance, which
affects the filter rankings. These rankings are crucial as they
dictate which components of the network should be pruned,
and in our proposed methodology, they are derived from sam-
ples taken from the dataset. Future research could explore more
advanced sampling techniques to mitigate the bias in filter
rankings towards any specific class.

4.4 | Pruning Verses Design

A frequently neglected aspect in the existing literature is the
comparative effectiveness of pruning versus initiating with a
more straightforward architecture. In this section, we explore
this issue by contrasting our pruned YOLOv5m, which has been
trained on the COCO2007 dataset, with YOLOv5s which has
undergone training on the same dataset. For this analysis, we

TABLE 3 | The performance comparison between the unpruned and pruned YOLOv5 models. All measurements were taken on NVIDIA GeForce
RTX 2060 super.

Self‐driving car data Visdrone COCO2017

YOLOv5s
YOLOv5s
pruned

%
change YOLOv5l

YOLOv5l
pruned

%
change YOLOv5m

YOLOv5m
pruned

%
change

mAP50−95 70.7 68.8 −2.69 23.1 22.1 −3.90 44.1 39.1 −11.90

mAP50 94.7 94.8 þ0.11 39.6 38.6 −2.52 63.5 58.6 −7.71

Params(M) 7.01 1.30 −81.46 46.3 23.9 −48.38 21.2 6.5 −69.34

GFLOPs512 10.08 5.91 −41.36 69.4 58.2 −16.14 48.9 33 −32.52

Infer
Time(ms)

1.62 1.22 −25.0% 6.40 5.67 −11.4% 5.38 4.38 −18.59%

FIGURE 17 | The plots in this figure depict the precision‐recall curves before and after pruning for the YOLO networks developed for each dataset
used in this study. For the plots in (b) and (c), the solid lines denote the average trend for all classes in their respective dataset, and the dotted lines
represent the best and worst cases across all classes.
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restricted our focus to publicly available pretrained models from
ref. [8] to eliminate any biases that might arise from our custom
implementation.

The bar graph presented in Figure 19 illustrates the comparative
performance of our pruned YOLOv5m against its unpruned
counterpart and YOLOv5s. The performance metrics for the
unpruned models are sourced from ref. [8]. Initially, YOLOv5m
comprised 21.2 million parameters, which we subsequently
reduced to 6.5 million parameters through pruning. This figure
is significantly lower than the parameter count of YOLOv5s.
Furthermore, our pruned YOLOv5m demonstrates superior
performance in both mAP metrics.

YOLOv5s demonstrates superior performance in GFLOPs when
compared to our pruned YOLOv5m. This discrepancy can be
attributed to our pruning criterion, which predominantly
emphasised the upper layers nearer to the model's output.
However, if the objective of pruning is to minimise the FLOPs
required during inference, it would be more advantageous to
concentrate on pruning the lower layers that are closer to the
model's input. Future research will aim to modify the pruning
framework to prioritise these layers, thereby enabling a more
aggressive reduction of FLOPs.

5 | Conclusion

This research illustrated the intersection of explainability and
pruning within the YOLOv5 framework. The DetDSHAP
methodology was proposed as a means to investigate a neural
network, thereby enhancing comprehension of its decision‐
making processes and enabling designers to identify the con-
straints of their deep learning models. This concept was further
developed by showcasing DetDSHAP as a viable criterion for
pruning, resulting in the removal of a substantial portion of the
parameters from deep networks with negligible impact on
performance—nearly 50% on the Visdrone dataset and over 80%
on the single‐class self‐driving car dataset. Additionally, the

pruning framework presented in this chapter demonstrated that
a large network could achieve greater memory efficiency
compared to a similarly performing smaller network. Ulti-
mately, through the analysis of the wrapping game and the
demonstrated efficacy as a pruning criterion, it can be confi-
dently asserted that DetDSHAP accurately allocates causal
information.

Improvements can be made to the existing pruning framework
to enhance the quality of models following the pruning process.
In a manner akin to the findings of Yeom et al. [25], the crite-
rion proposed here emphasises layers that are situated closer to
the network's output, which consequently diminishes its effec-
tiveness in minimising the number of floating‐point operations
per second (FLOPS). Furthermore, the authors suggest that
modifying the selection process for samples used in determining
filter ranks could lead to a reduced decline in performance after
pruning. This could involve strategies such as ensuring a bal-
ance in class labels among the samples, as well as considering
the positioning and dimensions of their bounding boxes. A
deeper exploration of this topic will form the foundation for
future research, as examining the model's responses to various
data groupings may yield insights into its operational behaviour
and facilitate the development of comprehensive explanations,

FIGURE 18 | Confusion matrix of the unpruned YOLOv5l network trained on the Visdrone dataset.

FIGURE 19 | This plot shows the performance quality and structure
efficacy of our pruned YOLOv5m model compared to two other models
released by [8]. Training and evaluation are conducted on the
COCO2017 dataset.
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similar to those identified by Lapuschkin et al. [37]. Such ex-
planations offer a more integrated perspective on the model's
decision‐making processes.
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