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Abstract. This paper deals with the Bayesian safety assessment of autonomous 

vehicles (AV) using as a key safety measure the probability of catastrophic fail-

ure per mile of driving (pfm), assumed a random variable.  

The paper takes the view that pfm may (and typically will) vary due to chang-

ing road driving conditions. Accommodating this variation in a Bayesian infer-

ence on pfm requires one to use a multivariate probabilistic model whereby the 

changeable pfm is captured explicitly for the different driving conditions. The 

model that we use in this work is derived from our prior work and accounts for 

the uncertainties in both – the operational profile (i.e., the likelihood of the dif-

ferent driving conditions) and the pfms, conditional on the respective operating 

conditions. 

The concept of the “dynamic AV safety assessment (DyAVSA)” is presented 

in the work, too, whereby the Bayesian predictions used at run time rely on the 

operational data collected by a fleet of AVs. DyAVSA benefits both: i) the AV 

vendors, for monitoring the safety changes of the entire AV fleet; ii) the own-

ers/users of individual AVs, whose safety assessment is personalized and differ-

ent from the assessment of the AV fleet.  

DyAVSA thus offers a major change in the AV safety management than is 

currently the case. It allows the AV users/owners to benefit from the aggregated 

safety relevant data collected from a fleet of AVs. Our findings show that the 

benefits from DyAVSA for the owners/operators of the individual AV instances 

may be significant: the safety predictions they can make by using the data col-

lected by the entire fleet of AV instances and shared among them, may differ 

considerably from the predictions the AV instances would be able to make rely-

ing on own observations only. Sharing data would lead to a much more rapid 

reduction of uncertainty in the pfms than would be the case if the AV instances 

relied on their own observations only.  

The presented DyAVSA, based on a multivariate Bayesian safety assessment, 

can be applied to other complex intelligent systems such as robots, UAVs, etc. 

Keywords: Autonomous vehicle, Safety Assessment, Bayesian inference, 

“driving to safety”. 
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1 Introduction 

Autonomous vehicles (AVs)1 and other intelligent systems, which rely on machine 

learning (ML) or artificial intelligence (AI) for some of its functionality (e.g., percep-

tion, planning, etc.), have challenged many mature methods for safety assessment de-

veloped over the years for software-based cyber-physical systems (CPS). A noticeable 

recent example is the concept of “driving to safety”, formulated in [2], which is used to 

assess the AV safety from the data collected during driving an AV on the public roads. 

[2], and other related studies, e.g., [3], demonstrated that the amount of AV driving 

required for an AV to demonstrate levels of safety comparable with the safety of man-

driven vehicles is very high (in excess of 10s of millions of miles), an observation which 

motivated the search for alternative methods for AV safety assessment, e.g. scenario – 

based testing.  

While there is an ongoing active debate as to how AV safety can be assured cost 

effectively, it is clear that it will take years for vendors to demonstrate adequate AV 

safety to the regulators [4] and more importantly to convince the public that AVs are 

safe to be used on the public roads [5].  

Whatever form the AV safety assurance/certification takes [6] this would be a pre-

deployment safety assurance. Once the national authority grants permission for the use 

of a particular AV brand on the public roads, the vendors will enter a post-deployment 

period of data collection from the deployed AVs, which will be used to improve further 

the AV functionality and, of course, to improve the AV safety. This post-deployment 

cycle is not unique to AVs. It is routinely followed in many safety – critical domains 

(nuclear [7], aviation [8] to name a few). The periodic safety reviews are an opportunity 

for the operators and/or vendors of the critical systems to review the safety claim made 

for the particular system in light of the new evidence that will have been collected from 

the installed systems since the previous periodic review. Should the review discover 

that the new evidence is not supportive of the safety claims, corrective actions will 

follow, which in turn may trigger a new cycle of certification2.  

How the post-deployment AV safety reviews will be shaped in the future is yet to be 

seen. Waymo, a leading AV manufacturer, acted decisively after an accident of their 

robotaxi in Phenix, Arizona and recalled voluntary the entire fleet of robotaxis. Some 

suggest that the transition from pre- to post-deployment safety assessment should be 

more gradual whereby the AV vendors should be allowed to deploy a limited fleets of 

 
1  In this paper we adopt the term “autonomous vehicles (AV).” The theory we develop would 

apply to Level 4 and Level 5 defined by SAE [1] for “automated driving systems (ADS)” with 

a complex set of driving tasks performed in sophisticated operational environments. Autono-

mous vehicles are seen as a broad category of vehicles including ADS as defined in [1], but 

also other types of vehicles, e.g. the unmanned autonomous vehicles (UAV), robots, etc. 
2  In some cases, the boundary between the pre- and post-deployment safety assurance may be 

less clear. For instance, the two crashes of Boeing 737 MAX in 2018 and 2019, which led to 

the death of several hundred of passengers, triggered the grounding of all MAX planes world-

wide for almost two years. A high – profile investigation was triggered shortly after the second 

crash, followed by a scrutiny of how the MAX safety was assessed. A detailed account is 

available at: https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings#2020. 

https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings#2020
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AVs after a preliminary safety assurance and use the fleet of deployed AVs to collect 

operational data and gradually improve the AV safety on the roads [9]. This proposal 

for “continuous safety assessment” is appealing, especially for AVs of high level of 

automation (e.g. Level 4 and Level 5 according to [1]) given the great uncertainty about 

the operating conditions the AVs may be used in.  

Some AVs may find themselves used mostly in “easy” operating conditions (e.g., on 

roads with light traffic). Some other AVs may be used in difficult operating conditions 

(e.g., in heavy traffic in urban areas and extreme weather). Foreseeing all possible op-

erating conditions is difficult as the evidence from the national authorities collecting 

statistics on AV accidents suggest [10].  

It is well known in safety engineering that safety is not only a property of the system 

under assessment, but also of the operating conditions in which the system is used. AVs 

of Level 4 and 5 are examples of systems used in a highly changeable operational en-

vironment, which makes the safety assessment very difficult indeed. In recognition of 

this difficulty, the AV community adopted an approach to safety assurance based on 

constraining the operational environment by introducing the concept of Operational 

Design Domain (ODD) [11]. ODD defines an “envelop” on the operating conditions by 

restricting them to a subset of all operating conditions that an AV may find itself in 

(e.g., the intensity of the road traffic, the weather, the type of the road, etc.). A safety 

claim linked to an ODD would apply only to the operating conditions within the stated 

ODD. Any accident which takes place outside the ODD will not affect adversely the 

AV safety claim since the AV is not assured as safe outside the ODD. A detection of 

“outside-of-ODD (out-OOD)” should trigger a transition to a “safe state” (e.g., by stop-

ping the AV at earliest opportunity when it is safe to do so). Clearly both detecting 

“out-ODD” and responding to it by taking the AV to a safe state, may be subject to 

failure. Dealing with the implications of imperfection in detecting and responding to 

the event “out-ODD” is outside the scope of this paper. The implications of “out-ODD” 

for safety assessment, however, are briefly discussed later in the paper.  

The contributions of this paper are:  

• We propose and develop in detail a method for “continuous safety assessment”, we 

called Dynamic AV Safety assessment  (DyAVSA)  based on a multivariate Bayes-

ian inference procedure, which we developed in [12] and recently adapted to the 

needs of AV safety assessment [13]. To the best of our knowledge, this approach to 

continuous safety assessment is innovative and has not been applied before. A key 

element of the method is that operational data (on miles driven and accidents en-

countered) collected by all deployed AV instances of a particular type of AV is 

shared with all other deployed AV instances, thus allowing each instance to benefit 

from the operational “experience” of the entire AV fleet. This process could be fa-

cilitated by the AV vendor who may serve as a collector of all operational data and 

subsequently share it with the entire AV fleet.  



4 

• We demonstrate on a set of contrived examples3 the benefits from the proposed 

DyAVSA procedure by comparing the outcomes from applying the multivariate 

Bayesian inference procedure differently: i) by the vendor to the data collected by 

the entire fleet of deployed AV instances and using an operational profile “on aver-

age” (i.e., accounting for the data collected from the entire AV fleet); ii) by the indi-

vidual AV instances to their “own data” only, i.e., to the data about the miles driven 

and the accidents observed by the respective AV instance only. In this case, the AV 

instances are not aware of the operational data collected by the fleet of deployed 

AVs of the same type, and iii) DyAVSA, i.e., by the AV instances using own oper-

ational data to estimate their own “operational profile” and using the fleet opera-

tional data (e.g., shared by the AV vendor) to estimate the conditional probabilities 

of accident per mile of driving in each of the operating conditions defined by a given 

ODD.  

Our findings demonstrate that DyAVSA can bring about significant benefits for con-

tinuous post-deployment AV safety assessment. The fleet data will allow for a much 

faster reduction of the uncertainty about the conditional probabilities of accident in dif-

ferent operating conditions than each of the AV instances can achieve by counting on 

own observations only. The AV instances can, therefore, benefit from the shared oper-

ational data among the fleet of AVs and conduct individualized AV safety assessments. 

These may indicate that some AV instances are driven in an operational profile, for 

which the safety claim may be (or has been) violated. Such a targeted safety assessment 

(via the use of DyAVSA) will allow the AV vendor to change significantly the policy 

of issuing advisories (i.e., AV recalls) to only those AV instances driven in operational 

environments leading to a safety claim violation.  

1.1 Abbreviations 

ODD – Operational Design Domain [11]. ODD consists of a set of operating condi-

tions. 

OC – an operating condition, an abstraction used to define an ODD. Typically, the 

operating conditions are linked to i) the AV driving conditions (e.g., on the motorway 

vs. in rural/urban area), and to ii) weather conditions (sunny, rainy, snow, etc.).  

OCi – the i-th operating condition of an ODD. 

pfm – probability of failure/accident per mile of driving. A measure of safety used 

in the “driving to safety” approach, proposed in [2].  

pfmi –probability of failure/accident per mile, conditional on the mile being driven 

in operating condition OCi. 

P(OCi) – probability of an AV driving a randomly chosen mile in OCi. 

1.2 Notations 

X – r.v. random variable 

 
3  The attempt to identify a suitable “field dataset” on which DyAVSA could be demonstrated 

unfortunately was unsuccessful as the analysed databases of road accidents (in USA, UK and 

Germany) do not seem to provide the level of details required by DyAVSA. 
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𝑓𝑥(∙) - probability density function of the r.v. X. 

Θ - r.v. representing pfm 

Θ𝑖 - r.v. representing pfmi 

Ψ𝑖 - r.v. representing P(OCi) 

𝑓𝜃(∙) - probability density function of  

𝑓𝜃𝑖
(∙) - probability density function of i 

𝐸[] - expected values of  

𝐸[𝑖] - expected value of i 

𝑓𝜓𝑖
(∙) - probability density function of i 

𝐸[𝜓𝑖] - expected value of i 

𝑓𝑥(∙) ∗ 𝑓𝑦(∙) - the convolution of the probability density functions of two inde-

pendently distributed random variables, X and Y. 

Dir(X1, X2, …, X𝑛|a1, …, an) – the Dirichlet distribution of non-negative random 

variables X1, X2, …, X𝑛 

Beta(X|, ) – a Beta distribution of the r.v. X with parameters  and .  

𝐿(𝑁, 𝑟|𝑥) – the likelihood of observing r failures in N miles of driving, given the 

values of pfm is x (i.e., pfm = x) 

2 Motivation  

The traditional approach to post-deployment safety assessment relies on periodic safety 

reviews. These are used in many safety-critical industries. The approach, however, has 

limitations, which in the context of AV safety assessment are significant. For instance, 

the period of safety review (i.e., of operational data collection) is typically quite long 

(a year or longer). Responding to the indicators of potentially unsafe AV operation with 

such a long delay is itself a risk as actual accidents may result unless one acts upon 

early indications of unsafe operation. There is also an ongoing active debate as to what 

indicators of unsafe operation one should use with AVs: “near misses”, safety perfor-

mance indicators (SPI) [9] and “surrogate safety measures” (see Section 6 for further 

details) are only a few noticeable examples. In these circumstances it is not obvious 

how one should apply periodic safety reviews. 

A safety claim may take different forms. The current view with AV safety is that a 

safety claim must be linked to an ODD, but there are different views on how this link 

should be applied. One view would be that a safety claim must hold true in all operating 

conditions inside the defined ODD. Such an approach will require an extensive safety 

assessment even for conditions which are very unlikely to occur in real operation. 

“Driving to safety”, proposed by [2], takes a different approach and adopts as a measure 

of safety the probability of accident (i.e., catastrophic failure) per mile of driving (pfm), 

expected to be below a given threshold, e.g., lower than the value of the same measure 

computed for human drivers. Pfm is by definition a measure “on average”, aggregated 

over all operating conditions, inside a given ODD. It is clear, that a sufficiently low 

pfm value can be achieved if the AV is driven mostly in “easy” conditions (with low 

pfm) and very rarely (if at all) in road conditions with high risk of accident (i.e., high 

pfm). A rational assessor in such circumstances would be tempted to achieve a safety 
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target based on pfm by reducing the risk of accident in those operating conditions which 

an AV will spend most of its driving and possibly allocate less effort on reducing the 

risk in conditions which are (very) unlikely to occur in operation4. Such an interpreta-

tion of a safety claim is fine as long as the likelihood of the operating conditions is 

stable (i.e., it does not change much over time and across different AV instances). How-

ever, in reality, the operating conditions vary. They may vary considerably. This leads 

to the possibility that a safety claim established by the AV vendor pre-deployment for 

an assumed mix of operating conditions5, may be violated if/when the mix changes. 

Different AV instances are very likely to be used in different operating conditions, 

which may lead to violations of the safety claim for some AVs. This, in turn, would put 

the passengers of the affected AV instances at unacceptably high risk of road accidents.  

In summary, given the operational conditions in which different AV instances are used 

and the intrinsic variability of these conditions, it seems essential that a suitable moni-

toring procedure is put in place which allows the AV instances to conduct continuous 

run-time safety assessment and evaluate the impact of their current operational profile 

on the safety claim. Should the safety claim be violated, the affected AV instances 

should be stopped or at least notified of the increased risk from a road accident.  

In a recent study into “driving to safety” [13], we scrutinized the role of the model used 

in a Bayesian inference and demonstrated that a univariate model, as proposed by [2], 

has a fundamental weakness – it cannot account for the variation of the likelihood of 

accident in highly dynamic operating conditions. We developed a multi-variate Bayes-

ian inference, aligned well with the concept of ODD and variable operating conditions. 

We demonstrated that an inference procedure based on the proposed multivariate model 

is superior to any univariate Bayesian inferences, including the “conservative Bayesian 

inference” [15].  

The newly developed multivariate Bayesian inference accounts for the uncertainty 

in both: i) the operational profile an AV is driven in, which may change significantly 

over time, and ii) the uncertainty about the pfm conditional on the operating conditions 

included in an ODD. The inference is split into two inference parts: i) learning about 

the evolving AV operational profile, and ii) learning about the conditional pfms in the 

operating conditions included in the ODD. These two stages of the Bayesian inference 

provide an interesting possibility of updating the predicted operational profile using one 

set of operational data, e.g., in line with the AV own observations, and of updating the 

conditional pfms using a different set of operational data. As a result of this flexibility, 

 
4  Similar judgements of discarding rare events (i.e. that can occur in unlikely operating condi-

tions) are not unusual in safety assessment. An extreme example is the Fukushima nuclear 

plant disaster, where the impact of a tsunami was considered in the risk-assessment of the 

nuclear plant, but the likelihood of extreme tsunamis was considered very low, hence building 

a very high seawall - unnecessary. Shortly before the earthquake in 2011, the error in seawall 

calculations (and the assumptions made) was discovered by the national nuclear regulator, but 

the operator did not rush to implement adequately high seawalls [14]. 
5  The mix of operating conditions, e.g. defined by an ODD, together with a probability distri-

bution on the set of distinctly different operating conditions is known in software reliability 

engineering (e.g., in software testing) as “operational profile”, which we introduce formally 

in Section 3. 
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the vendor and the AV instances can use the developed multivariate inference differ-

ently. The vendor can use the observations from the entire AV fleet for both – to update 

the estimated operational profile and the conditional pfms. The individual AVs can use 

the multivariate procedure with the own observations only for both – to update the own 

operational profile and the estimates of the conditional pfms. The AV instances, how-

ever, can use the own observations to update the own operational profile, but for the 

conditional pfms the AV can use the observations of the entire AV fleet, which will 

consist of much more extensive operational evidence about the safe operation of the AV 

brand in each of the operating conditions of a given ODD. We called the latter option 

of applying the multivariate Bayesian inference relying on the fleet data “Dynamic AV 

Safety Assessment (DyAVSA)”.  

This flexibility with the data which can be fed into the inference procedure is due to 

the nature of the multivariate Bayesian inferences proposed in [13], which consists of 

two relatively separate inference steps. In this paper we study the difference between 

the predictions derived with the multivariate Bayesian inference by the vendor and by 

the individual AVs using different mixes of operational data (own and/or from the AV 

fleet).  

3 The system model  

3.1 Multivariate Bayesian inference  

Now we formulate the problem of AV safety assessment as a problem of Bayesian 

inference. 

Consider that the measure of AV safety is the probability of catastrophic failure (i.e., 

an accident) per unit of distance, e.g., per mile (or kilometer), of driving following the 

proposal in [2]. Assume further that the probability of observing a failure within a mile 

is not affected by the preceding miles driven by the AV. In other words, we assume that 

observing successive miles of driving (each resulting in a success of an accident) can 

be modelled mathematically as a Bernoulli trial of miles of driving selected at random 

from the population of all miles with a probability of failure/accident per mile (pfm). 

Let us further assume that pfm is a random variable, , with a probability density func-

tion, 𝑓𝜃(∙), which captures the uncertainty about the value of pfm. 𝑓𝜃(∙) is typically 

called a measure of “epistemic uncertainty”, related to the assessor’s knowledge (belief) 

about the value of pfm. 

The concept of Operational Design Domain (ODD) [11], informally introduced ear-

lier, captures the idea that risks of road accident may vary with the operating conditions. 

An ODD is typically defined as a partition of different operating (road) conditions, 

OCs, as follows:  

OC = {OC1, OC2, …, OCm} such that iff i  j then OCi  OCj = . This is illustrated 

below in Fig. 1.  
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Fig. 1. A model of ODD as a partition of 

operating conditions {OC1, … OCn}. 

Each OCi is characterized by a probabil-

ity of failure (accident) per mile of driv-

ing, pfmi. A vehicle (shown as a blue rec-

tangle on the left) is shown as driving 

along a “trajectory” (shown as a dashed 

curve), which starts in OC1, crosses OC3, 

OC2, OC4, OC5, OC3, OC5 and finishes 

in OC4. 

Let us assume that each OCi includes a “homogeneous” set of miles in the sense that 

for each of the miles included in OCi the probability of catastrophic failure/accident per 

mile can plausibly be assumed the same, pfmi. The pfmi can, however, vary across OCi, 

(i = 1, 2, …, n)6. 

The recently developed model [12] (PPR-model), which builds on the work by Ad-

ams [16], lands itself well to dealing with the problem at hand under the assumptions 

we have made so far. Appendix 1 provides the essence of the PPR-model. 

The model of Bayesian assessment with an ODD, thus, leads to a double-stochastic 

multivariate model in which:  

• we capture the likelihood of selecting a mile at random from partition OCi using a 

probability distribution defined on the set of partitions OC, 𝑃(𝑂𝐶𝑖)
7, and  

• the joint distribution 𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛), which characterizes the uncertainty in 

the value of pfmi in different OCi and possibly the stochastic dependencies between 

the variates, Θ1, Θ2, … , Θ𝑛, of the multivariate distribution, 𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛). 

To simplify the analysis, we make a couple of additional assumptions:  

• We ignore the details on how AV moves within OCi and assume that each mile 

driven by an AV is chosen at random from the respective OCi and model the selec-

tion as a Bernoulli trial. This assumption is clearly simplistic. Fig. 1 shows an alter-

native model – a vehicle moving along a trajectory through different OCs. Later in 

the paper (Section 5) we discuss further how stochastic state-based models can re-

place the Bernoulli trial model. 

• pfmi are assumed independently distributed random variables and we use the nota-

tion Θ𝑖 and 𝑓𝜃𝑖
(∙) for the random variables and the probability density functions of 

Θ𝑖, respectively, for i = 1,…, n. In other words, we assume that changes in 𝑓𝜃𝑖
(∙)  do 

 
6  We assume that each mile can be attributed reliably to a particular operating condition. This 

assumption, the implications of incorrect attribution of miles/accidents on the prediction out-

puts is further discussed later in the paper together with ways of relaxing it. 
7  A more refined definition of the partition model may require further details, e.g., a state model 

of AV moving between the OCs in which the OCs are states and the transitions between the 

OCs are defined stochastically. 
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not affect 𝑓𝜃𝑗
(∙), 𝑖 ≠ 𝑗. We discuss the implications of this assumption and ways of 

relaxing it in Section 5 of the paper, too. Appendix 2 provides further details on the 

implications of the assumption that pfms are independently distributed random var-

iables by constructing 𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛) using Copula to capture the depend-

encies between the variates Θ1, Θ2, … , Θ𝑛 and their impact on a weighted sum of the 

variates. 

𝑃(𝑂𝐶𝑖) may vary over time or be subject to epistemic uncertainty, which we capture 

by using a random variable, Ψ𝑖 with a probability density function 𝑓𝜓𝑖
(∙). Since the 

operating conditions form a partition of the space of miles, the constraint ∑ Ψ𝑖
𝑛
𝑖=1 = 1 

applies: a mile with certainty will be selected from one of the partitions8.  

We now express the joint distribution f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n), which captures the ep-

istemic uncertainty associated with the selection of a mile from the space of all miles. 

This distribution is known in software reliability engineering and safety as operational 

profile. A suitable analytic multivariate distribution which can be used here to capture 

the uncertainty in the operational profile and its variation over time is the Dirichlet 

distribution, which for n variates, Ψ𝑖…,Ψ𝑛 is defined as [17]: 

Dir(𝜓1, 𝜓2,…, 𝜓n;α)≡f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n;a1, …, an)      

=
Γ(∑ ai

n
i=1 )

∏ Γ(ai)
n
i=1

[∏ 𝜓i
ai-1n-1

i=1 ][1- ∑ 𝜓i
n-1
i=1 ]

an-1
          (1) 

Using the joint distribution f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n) we can now express the mar-

ginal distribution of the system pfm 𝑓𝜃
𝑊𝐵(𝑥) as follows (see Appendix 1 for further 

details): 

𝑓𝜃
𝑊𝐵(𝑥)

=  ∫ 𝑓𝜃|𝜓1,𝜓2,…𝜓𝑛
(𝑥|𝜓1, 𝜓2, … , 𝜓𝑛)f𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 𝜓2,…, 𝜓n;a1, …, an)𝑑𝜓1𝜓𝑥2 … 𝑑𝜓𝑛 

= ∫[𝑓𝜃𝜓1
(𝑥) ∗ 𝑓𝜃𝜓2

(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥)×f𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 𝜓2,…, 𝜓n)]𝑑𝜓1𝑑𝜓2 … 𝑑𝜓𝑛

 (2) 

Let us now consider how new operational evidence from driving an AV would affect 

the distribution 𝑓𝜃
𝑊𝐵(𝑥). Let us consider that we have received operational evidence in 

the form {(N1, r1), (N2, r2), …, (Nn, rn)} of the miles driven, Ni, and failures/accidents 

observed, ri, 0   ri  Ni, in each of the operating conditions, OCi. We can account for 

the new operational data by conducting a Bayesian inference in the following steps: 

• Step 1: Update the uncertainty related to the operational profile, f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 

𝜓2,…, 𝜓n|𝑁1, 𝑁2, … , 𝑁𝑛). Note that the updated operational profile is not affected by 

the number of failures/accidents that have been observed. The posterior distribution 

only depends on the number of miles driven in different operating conditions. For 

instance, if we capture the operational profile uncertainty using a Dirichlet distribu-

tion, Dir(𝜓1, 𝜓2,…, 𝜓n;α), then the new evidence (i.e. {(N1, r1), (N2, r2), …, (Nn, rn)}) 

 
8  Although dealing with “out of ODD” is outside the scope of the paper we note that accounting 

for “out of ODD” would simply add an additional partition, OCout-of-ODD. 
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will lead to a new Dirichlet distribution Dir(α𝒑𝒐𝒔𝒕), which is derived from Dir(α) by 

a simple modification of the parameters of the Dirichlet distribution: 

Dir(α𝒑𝒐𝒔𝒕)=Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝑛 + 𝑁𝑛)    (3) 

• Step 2: The conditional distributions, 𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) of failure/accident per mile in OCi 

will be updated to reflect the new evidence by conducting Bayesian inferences on 

conditional distributions 𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) in each of OCi as follows: 

𝑓𝜃𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) =

𝑓𝜃𝑖
(𝑥)×𝐿(𝑁𝑖 , 𝑟𝑖 |𝑥)

∫ 𝑓𝜃𝑖
(𝑥)×𝐿(𝑁𝑖 , 𝑟𝑖 |𝑥)𝑑

1
𝑥=0 𝑥

           (4) 

where 𝐿(𝑁𝑖 , 𝑟𝑖|𝑥) is the likelihood of observing 𝑟𝑖 accidents in 𝑁𝑖 miles. For Ber-

noulli trial a binomial likelihood is used,  𝐿(𝑁𝑖 , 𝑟𝑖|𝑥) = (
𝑁𝑖

𝑟𝑖
) 𝑥𝑟𝑖(1 − 𝑥)𝑁𝑖−𝑟𝑖. 

If the prior 𝑓𝜃𝑖
(𝑥) is a Beta distribution, 𝐵𝑒𝑡𝑎(𝑥; 𝛼, 𝛽), then the posterior distribution 

will be also a Beta distribution, 𝐵𝑒𝑡𝑎(𝑥; 𝛼 + 𝑟𝑖 , 𝛽 + 𝑁𝑖 − 𝑟𝑖). Note that updating the 

conditional distributions in each of the operating conditions is affected by both the 

number of miles, Ni, and the number of failures/accidents, ri, observed in the respec-

tive operating condition OCi. This is the case since we have assumed that the obser-

vations in OCi only affect the conditional probability of failure, Θ𝑖, but do not affect 

Θ𝑗 for the other operating conditions.  

• Step 3: derive 𝑓𝜃𝜓𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖) from 𝑓𝜃𝑖

(𝑥|𝑁𝑖 , 𝑟𝑖) using (A3 of Appendix 1). 

• Step 4: Using the distributions updated in Step 1 and Step 2 above we apply (2) and 

derive the marginal distribution of the probability of system failure, 

𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛 , 𝑟𝑛) as follows:  

𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑁1, 𝑟1, 𝑁2, 𝑟2, … , 𝑁𝑛, 𝑟𝑛) = 

 ∫[𝑓𝜃𝜓1
(𝑥|𝑁1, 𝑟1) ∗ 𝑓𝜃𝜓2

(𝑥|𝑁2, 𝑟2) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥|𝑁𝑛, 𝑟𝑛)]Dir(α𝒑𝒐𝒔𝒕)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑛  

 (5) 

The symbol “*” is the convolution operator of independently distributed random 

variables 𝜃𝜓𝑖 with probability density functions 𝑓𝜃𝜓𝑖
(𝑥|𝑁𝑖 , 𝑟𝑖), respectively. 

We call the last expression a “white-box” posterior distribution of the marginal sys-

tem pfm.  

A more detailed discussion of the derivation can be found in Appendix 1.  

So far, we have not specified explicitly how the data needed in the Bayesian inferences 

would be collected. The counts {(𝑁1
1, 𝑟1

1), (𝑁2
1, 𝑟2

1), … (𝑁𝑛
1, 𝑟𝑛

1)} could come from an 

individual AV or from a fleet of AVs. The inference procedures will be the same irre-

spective of whether the counts are collected for a single AV instance or for a fleet of 

AVs.  

Let us now look at the differences between using the data collected from an AV 

instance or from a fleet of AVs of the same brand.  
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3.2 Safety assessment for the AV vendor 

Let us consider the case of a fleet of L AV instances from a given AV brand being 

deployed in operation. Each AV instance will be used within the specified ODD, but 

the operational profile, which applies to instance AVm, i.e., 𝑓(𝑚)
𝜓1,𝜓2,…𝜓𝑛

(𝜓1 , 𝜓2,…, 

𝜓n), may differ from the profile 𝑓(𝑙)
𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 𝜓2,…, 𝜓n) which applies to instance 

AVl. For each 𝑂𝐶𝑖 the instance AVm will collect: 

• The number of miles driven, 𝑁𝑖
(𝑚)

, in 𝑂𝐶𝑖: some miles will be without failure/acci-

dent, some – with failures/accidents.  

• The number of miles with failures/accidents, 𝑟𝑖
(𝑚)

 for each 𝑂𝐶𝑖. 

These numbers will be periodically passed to the vendor9 (e.g., by installing on each 

AV a device dedicated to collecting 𝑁𝑖
(𝑚)

 and 𝑟𝑖
(𝑚)

 and sending these over to the ven-

dor). The vendor will then be able to aggregate the observations received from all AV 

instances and compute the following sums: 

𝑀𝑖 =  ∑ 𝑁𝑖
(𝑚)

𝐿

𝑚=1

 

(6) 

𝑟𝑖 =  ∑ 𝑟𝑖
(𝑚)

𝐿

𝑚=1

 

 

𝑀𝑖 and 𝑟𝑖 will be used by the vendor to conduct an inference to assess the pfm for 

the AV brand. Note that under this scenario, the inference will account for the evidence 

(miles driven and failures observed) collected from the entire fleet of deployed AV 

instances and with the level of details required by the multivariate model using the 

ODD. The posterior distributions 𝑓𝜃𝑖
(∙ |𝑀𝑖 , 𝑟𝑖) will account for every piece of opera-

tional data that has been seen in OCi by the fleet of AVs deployed by the vendor. The 

operational profile (which we will refer to as an “operational profile on average”), de-

rived with the 𝑀𝑖 counts (the number of miles seen in operation condition OCi calcu-

lated as shown in (3)), however, may well differ from the operational profiles of all 

deployed AV instances. If this is the case, the “operational profile on average” derived 

by the vendor, may not be useful to assess the safety of any of the deployed instances.  

With the aggregated 𝑀𝑖 and 𝑟𝑖 counts, the vendor could apply an inference on 

𝑓𝜃𝑖
(∙ |𝑀𝑖 , 𝑟𝑖) and using (3), (4) and (5) derive the posterior distributions of the AV 

brand, i.e., “on average” over the entire fleet of deployed AV instances. Given the fact 

that the inference for the “operational profile on average” using (3) may not be imme-

diately useful to any of the deployed AV, one wonders what benefits the inference 

 
9  Clearly, some synchronization is needed between the vendor and the deployed AV instances 

so that the counts collected by the instances for a particular epoch of observation are accu-

rately passed to the vendor. We acknowledge that deploying a robust synchronization proce-

dure is an important implementation detail, but one which is outside the scope of this paper 
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conducted by the vendor can offer to the deployed instances. Here are a couple of con-

siderations. 

• 𝑓𝜃𝑖
(∙ |𝑀𝑖 , 𝑟𝑖)  would capture the current knowledge about pfmi in OCi arrived at by 

using the data from the entire fleet. This data is valuable and can be used not only to 

derive 𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑀1, 𝑟1, 𝑀2, 𝑟2, … , 𝑀𝑛 , 𝑟𝑛) for “the operational profile on average”, 

but also for any other operational profile, judged by the vendor as important. For 

instance, the vendor may be interested in conducting a safety assessment “on aver-

age” for a geographical region in which the vehicles of the particular AV brand have 

seen no or very little operational exposure to date. The vendor may be able to define 

an anticipated operational profile for that region (e.g., using any data that may be 

available for the man-driven vehicles in the region). Once the anticipated operational 

profile is defined, the posterior distributions 𝑓𝜃𝑖
(𝑥|𝑀𝑖 , 𝑟𝑖) derived for observations 

collected under a different operational profile, can be used to construct the distribu-

tion of the system pfm “on average” for the anticipated new (regional) operational 

environment.  

In extreme cases it is possible, of course, that the ODD for the region of interest may 

only partially overlap with the ODD, for which the operational data has been col-

lected, i.e., the anticipated ODD may contain OCs for which no data has been col-

lected from the deployed fleet. For instance, in regions of extreme weather (e.g., 

polar circle) there may be OCs for which data collected in moderate climates will 

offer no observations. In this case, of course, the benefits from reusing the available 

Mi and ri counts may be limited.  

Note that reusing the data from the AV fleet is only possible with an inference model 

where the conditional pfmi are explicitly accounted for as separate random variables, 

Θ1, Θ2, … , Θ𝑛. A similar “extrapolation” from one operational profile to another 

would require pfms being assessed under the first operational profile.  

• Knowledge about the operational exposure accumulated by the fleet of AVs to date 

may be useful for the vendor in the limited sense of finding out how the deployed 

AV fleet is used “on average”. Comparing the “observed” profile “on average” with 

the “target” profile (i.e., the one for which the safety has been claimed) may itself 

provide the vendor with either an assurance that the assumptions made about the 

operational profile in the safety assessment prior to AV deployment are (broadly) 

correct, or that the assumptions are “biased”. The latter, in turn, may trigger a safety 

review to check if the AV for the observed “operational profile on average” is suffi-

ciently safe even if the AV safety for the observed environment differs significantly 

from the one used before the AV fleet deployment. Again, such an analysis is only 

possible if the inference is based on a model, in which the operational profile and 

the conditional pfms are derived from data separately.  

• Finally, in addition to the analysis “on average”, the vendor may conduct a run-time 

safety assessment of the individual vehicles following the procedure explained in 

section 3.3 using the data provided by the individual AVs with the vendor. Should 

the safety of some AVs become inadequate, the vendor may issue them with a 
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warning. Such a “targeted warning” campaign is quite different from what is done 

by the car manufacturers at the moment10.  

3.3 DyAVSA for safety assessment of individual AVs 

The Bayesian inference discussed above using the observations from the entire fleet of 

data, especially the inference of 𝑓𝜃𝑖
(𝑥|𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎), can be useful for the deployed in-

stances. A newly deployed AV instance could be bootstrapped by the vendor at the time 

of deployment with prior distributions 𝑓𝜃𝑖
(𝑥), each of which may be the posterior dis-

tribution derived by the vendor using the observations accumulated from the entire fleet 

of previously deployed AV instances. In other words, the newly deployed AV instance 

will be provided with up-to-date priors 𝑓𝜃𝑖
(𝑥), which account for the evidence from the 

entire AV fleet of deployed AVs. Regarding the operational profile of the newly de-

ployed AV instance, it can be the profile “on average” computed by the vendor to date, 

or another profile, when there are reasons to trust the alternative profile more than the 

profile “on average”. 

From this point in time on, a newly deployed AVm, will rely on the data it collects, 

𝑁𝑖
(𝑚)

 and 𝑟𝑖
(𝑚)

. Quite clearly, the operational exposure of AVm will be limited in com-

parison with the exposure of the entire AV fleet (one assumes that the fleet will be 

large, of course). Accounting for own observations only, however, will allow AVm to 

learn (e.g., to improve the confidence in the value of the chosen measure of safety) 

slowly in comparison with learning from the experience of the entire AV fleet. Consider 

the following scenario, in which the data collected by the vendor from all AV instances 

is organized in epochs of observations: E1, E2, …, En ,… and 

(𝑀1
(𝐸)

, 𝑟1
(𝐸)

), (𝑀2
(𝐸)

, 𝑟2
(𝐸)

), … , (𝑀𝑛
(𝐸)

, 𝑟𝑛
(𝐸)

) represents the data accumulated by the ven-

dor during epoch E. 𝑀𝑖
(𝐸)

, 𝑟𝑖
(𝐸)

 are the counts we defined in (6) for epoch E. The vendor 

at the end of epoch E could broadcast (𝑀1
(𝐸)

, 𝑟1
(𝐸)

), (𝑀2
(𝐸)

, 𝑟2
(𝐸)

), … , (𝑀𝑛
(𝐸)

, 𝑟𝑛
(𝐸)

) to all 

deployed AV instances. With these aggregated counts each AV instance will be able to 

update the own distributions 𝑓𝜃𝑖
(𝑥|𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎)11.  

AVm will update its own operational profile using its own observations only, i.e., if 

the operational profile, if expressed as a Dirichlet distribution for AVm the profile will 

become:  

 Dir𝑚(α𝒑𝒐𝒔𝒕)=Dir(𝜓1, 𝜓2,…, 𝜓n;𝛼1 + 𝑁1
(𝑚)

, 𝛼2 + 𝑁2
(𝑚)

, … , 𝛼𝑛 + 𝑁𝑛
(𝑚)

)  

Thus, the posterior distribution of 𝑓
𝜃

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎, 𝑜𝑤𝑛 𝑑𝑎𝑡𝑎) becomes: 

𝑓
𝜃𝑚𝑓𝑙𝑒𝑒𝑡

𝑊𝐵𝑝𝑜𝑠𝑡(𝑥|𝑀1, 𝑟1, 𝑀2, 𝑟2, … , 𝑀𝑛, 𝑟𝑛 , 𝑁1
(𝑚)

, 𝑁2
(𝑚)

, … , 𝑁𝑛
(𝑚)

) =  

 
10 To recall the entire fleet of vehicles following a serious incident. 

11  𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎 is a shortcut for (𝑀1
(𝐸)

, 𝑟1
(𝐸)

) , (𝑀2
(𝐸)

, 𝑟2
(𝐸)

) , … , (𝑀𝑛
(𝐸)

, 𝑟𝑛
(𝐸)

). It is a technical (im-

plementation) detail whether broadcasting (𝑀1
(𝐸)

, 𝑟1
(𝐸)

) , (𝑀2
(𝐸)

, 𝑟2
(𝐸)

) , … , (𝑀𝑛
(𝐸)

, 𝑟𝑛
(𝐸)

) will be 

more efficient (computationally and in terms of communication bandwidth) than broadcasting 

the conditional distributions 𝑓𝜃𝑖
(𝑥|𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎). 
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∫[𝑓𝜃𝜓1
(𝑥|𝑀1, 𝑟1) ∗ 𝑓𝜃𝜓2

(𝑥|𝑀2, 𝑟2) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥|𝑀𝑛, 𝑟𝑛)]× Dir𝑚(α𝒑𝒐𝒔𝒕)12   (7) 

 

As indicated earlier, we call the assessment leading to (7) “Dynamic AV Safety As-

sessment (DyAVSA)”.   

If instead of using the fleet data AVm only relied on its own observations in updating 

the operational profile and the distribution of the conditional pfms, then the posterior 

marginal distribution would be: 

𝑓
𝜃𝑚𝑜𝑤𝑛

𝑊𝐵𝑝𝑜𝑠𝑡 (𝑥| 𝑁1
(𝑚)

, 𝑟1
(𝑚)

, 𝑁2
(𝑚)

, 𝑟2
(𝑚)

, … , 𝑁𝑛
(𝑚)

, 𝑟𝑛
(𝑚)

) = 

∫[𝑓𝜃𝜓1
(𝑥|𝑁1

(𝑚)
, 𝑟1

(𝑚)
) ∗ 𝑓𝜃𝜓2

(𝑥|𝑁2
(𝑚)

, 𝑟2
(𝑚)

) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥|𝑁𝑛

(𝑚)
, 𝑟𝑛

(𝑚)
)]× 

Dir𝑚(α𝒑𝒐𝒔𝒕)  (8) 

In summary, conducting a continuous safety assessment of AV instances either using 

DyAVSA or counting on own observations only will allow for monitoring how safety 

will vary over the lifetime of individual AV instances. Continuous safety assessment 

can be conducted in a decentralized fashion, which brings advantages. For instance, if 

the vendor’s server is down, then DyAVSA may temporarily be disabled, too. In this 

case, the AVs can continue the assessment switching to using their own data only. As 

soon as the vendor’s server is back up, DyAVSA can be enabled.  

DyAVSA brings a clear advantage for the AV instances: they can learn faster about 

the values of the conditional pfms in the different operating conditions than if they had 

counted on the own observations only, which in turn will reduce the uncertainties in the 

conditional pfms and of the marginal system pfm.  

Fig. 2 below illustrates the data flow used in DyAVSA and how the data exchanged 

between the AV instances, and the vendor affects the predictions by an AV instance 

and by the AV vendor.  

The key elements in DyAVSA are:  

• AVs-to-Vendor communication. The AV instances send the observations they have 

collected, (𝑁1
(𝐸)

, 𝑟1
(𝐸)

), (𝑁2
(𝐸)

, 𝑟2
(𝐸)

), … , (𝑁𝑛
(𝐸)

, 𝑟𝑛
(𝐸)

), for each “epoch” E of observa-

tion respectively, to the Vendor Data Centre (VDC), where the data is aggregated, 

anonymized as necessary, and used by the vendor to derive the multivariate posterior 

“operational profile on average” and the conditional distributions 𝑓𝜃𝑖

𝐸(∙ |𝑀𝑖 , 𝑟𝑖), in 

each of the operating conditions. This communication is sufficient for the vendor to 

monitor the safety “on average”, but also the safety of the individual AVs. 

• Vendor-to-AVs communication. The vendor shares with the AV instances the dis-

tributions of the conditional pfms, 𝑓𝜃𝑖

𝐸(∙ |𝑀𝑖 , 𝑟𝑖) (denoted as 𝑓
𝜃𝑖

(∙ |𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎) in the 

figure) in all operating conditions. These distributions can be used by the individual 

AVs to compute the distribution of the marginal system pfm for the particular AV. 

Note, that the vendor does not share with the AV instances the operational profile 

“on average”, as this profile is of no use to the individual AVs. In the absence of 

Vendor – to - AVs communication, the AV instances will not be receiving 

 
12  We omitted the indexes referring to epochs from (7) to simplify the expression. All counts 

𝑀𝑖 , 𝑟𝑖   and 𝑁1
(𝑚)

 are aggregated during the respective epoch.  
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𝑓𝜃𝑖

𝐸(∙ |𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎), hence will be unable to benefit from the observations collected 

by other AVs. In this case they still can monitor their own safety relying only on the 

data they have collected themselves. Under the “Individual AV perspective” the di-

agram shows two multivariate inferences labelled “Own data only” and DyAVSA 

(“All fleet data”), respectively, thus illustrating the differences between the infer-

ences based on locally collected data only or on data shared by the vendor, respec-

tively.  

 

Fig. 2. Dynamic AV Safety Management (DyAVSA) concept in comparison with dynamic safety 

management by the AV vendor. The indexes “E” referring to data collection epochs have been 

omitted to simplify the figure. For the same reason we use 𝑓𝜃𝑖
(∙ |𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎) as a shortcut for 

the set of conditional distributions {𝑓𝜃𝑖
(∙ |𝑀𝑖 , 𝑟𝑖), 𝑖 = 1, … , 𝑛}.  

4 Contrived examples  

We use several contrived examples to illustrate how the multivariate Bayesian predic-

tions are affected by whether DyAVSA is used or not.  

Let us assume that an ODD is used which splits the “space of road conditions” into 

five non-overlapping operating conditions (partitions) OC1, OC2, OC3, OC4, and OC5 

and the prior distributions of the conditional pfmi are defined as Beta distributions with 

the following parameters13: 

𝑓𝜃1
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 299), 

𝑓𝜃2
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 800), 

 
13 Using Beta distributions is not essential for the method. A different type of distributions can 

be used for the conditional pfmi. In the latter case the inference will rely on numeric methods 

to compute the posterior distributions. Essential for the illustrations is only the assumption 

that the respective conditional probabilities are independently distributed random variables.  
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𝑓𝜃3
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1500),  

𝑓𝜃4
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1000), and   

𝑓𝜃5
(𝑥) ≡ 𝐵𝑒𝑡𝑎(𝛼 = 1, 𝛽 = 400). 

The parameters of the Beta distributions are chosen to illustrate the possibility that 

OCs may differ both in terms of expected pfmi and in terms of the uncertainty in the 

values of the conditional pfmi in the respective OCs.  

We assume that the vendor assessed the operational profile and expressed it as a 

Dirichlet distribution Dir(𝜓1, 𝜓2,…, 𝜓n;α1 = 10, α2 = 10, α3 = 40, α4 = 30, α5 =
10). In the examples used in this section this prior profile is assigned to all AVs and to 

the vendor. 

With the defined prior operational profile and distributions 𝑓𝜃𝑖
(𝑥) of the conditional 

pfms the marginal prior distribution of the system pfm can be derived using (2).  

Now let us consider a fleet of 5 AVs (AV1 … AV5).   
 AV ID N1 r1 N2 r2 N3 r3 N4 r4 N5 r5 Total 

O
b

se
rv

at
io

n
 1

 AV1 7 0 9 0 45 0 30 0 9 0 100 

AV2 10 0 45 0 30 0 8 0 7 0 100 

AV3 45 0 30 0 7 0 9 0 9 0 100 

AV4 20 0 20 0 20 0 20 0 20 0 100 

AV5 45 0 19 0 7 0 9 0 20 0 100 

Vendor 127 0 123 0 109 0 76 0 65 0 500 

O
b

se
rv

at
io

n
 2

 AV1 7 0 9 0 45 0 30 0 9 0 100 

AV2 10 0 45 0 30 0 8 0 7 0 100 

AV3 45 1 30 1 7 0 9 0 9 0 100 

AV4 20 0 20 0 20 0 20 0 20 0 100 

AV5 45 0 19 0 7 0 9 0 20 0 100 

Vendor 127 1 123 1 109 0 76 0 65 0 500 

Table 1. Observations by AV1 … AV5.  

Table 1 shows two observations. In Observation 1 none of the AVs experienced any 

accidents. In Observation 2 AV3 observed two accidents – one in OC1 and one in OC2. 

The other vehicles (AV1, AV2, AV4 and AV5) did not observe any accidents. We chose 

the counts of miles driven in Observation 1 and Observation 2 to be identical for all 

AVs.  

Each AV is assumed to have driven 100 additional miles with both Observation 1 

and Observation 2. Thus, both observations consist of 500 miles (the sum of the miles 

driven by all AVs). 

4.1 AV instance inference: own data only vs. data from the fleet of AVs 

In this sub-section we compare the Bayesian predictions by AV instances for the 

following cases: 

• An AV instance uses its own data only.  

• An AV instance uses DyAVSA, defined above. 
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Fig. 3. Illustration of the marginal system pfm of individual AVs using either own data only or 

the aggregated data for the entire fleet (as proposed with DyAVSA) and the vendor for Obser-

vation 1 (no failures). 

The predictions are derived from the observations described above: Observation 1 – 

with no failures observed, and Observation 2 – with some failures observed by AV3. 

The results are captured in Fig. 3 (Observation 1) and Fig. 4 (Observation 2), respec-

tively.  

The plots show the distributions of the marginal system pfm for the AV instances 

computed with and without DyAVSA, and for the vendor. The marginal prior distribu-

tion of system pfm, the same for all AVs and the vendor, is also shown.  

 

We can make a few observations from Fig. 3:  

• The impact of the fleet data is clearly visible – the posteriors by the AV instances 

based on fleet data differ more significantly from the priors than the AV posteriors 

based on own data only. 

• The case of AV1 provides an interesting insight. The predictions for AV1 based on 

own observations only are more optimistic than the prior. Looking at the number of 

miles driven by AV1, we note that it spent only 7 miles in OC1, less than the prior 

operational profile would suggest (“on average”). Hence, AV1 benefits from the own 

observations in two ways:  it observes no failures, hence the conditional probabilities 

of failure in OC1 will be predicted to get “stochastically smaller”, and the new AV1 

operational profile (after driving additional 100 miles) will make OC1 even less likely 
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than it was in the prior operational profile. Since OC1 is the worst OC (with the 

biggest expected prior pfm of all OCs) the reduction of its weight in the operational 

profile stochastically reduces the posterior system pfm for AV1.  

• The results for AV3 are quite interesting, too. Its white-box posterior distribution of 

system pfm based on own data only is significantly more pessimistic than the predic-

tions of system pfm based on the fleet data. This is a consequence of AV3 spending 

45% of the driving in OC1, the worst operating condition. As a result, the weight of 

OC1 in the operational profile increases significantly (the posterior probability of 

selecting a mile from OC1 will become 55/200, e.g., more than 27%). The number 

of additional miles driven in OC1 will only marginally reduce the conditional pfm1. 

In comparison, with the fleet data the posterior distribution of the pfm1 will be more 

optimistic than with own data only. Hence, with own data only the overall effect of 

the additional driving is that the posterior pfm3 is now worse (i.e., more pessimistic) 

than with the fleet data. Both predictions (with own data only and with the fleet data) 

are more pessimistic than the prior.  

• AV2, AV4 and AV5 offer further interesting insight. The posterior system pfm for 

AV4 and AV5 using own data only are slightly more pessimistic than the predictions 

based on the fleet data. The two posteriors for AV2 are not stochastically ordered – 

the posterior probability density functions have a cross-over point: the tail of the 

predictions of the system pfm with the fleet data is “thicker” than the predictions with 

own data only.  

 

Fig. 4. Black-box vs. White-box inference of the marginal probability of catastrophic failure of 

individual AVs using either own data or fleet data (DyAVSA) for Observation 2 (with failures 

of AV3).  

Fig. 4 only shows the posteriors for two of the AVs: AV1, which did not experience 

any failures of its own, and AV3 which experienced two failures in OC1 and OC2, re-

spectively.  
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The plots indicate patterns similar to those recorded with Observation 1 (shown in Fig. 

3):  

• The posterior distributions based on own data of AV1 (and of AV2, AV4 and AV5) 

are identical to those recorded in Fig. 3, which is to be expected since these AVs did 

not observe any failures of their own under Observation 2. The posterior distribu-

tions recorded for AV3 based on own observations are similar but slightly worse than 

the posteriors derived for AV3 with Observation 1.  

• The predictions based on fleet data and own operational profile are quite similar to 

the ones that we recorded with Observation 1. The posterior distribution of system 

pfm for AV3 based on own data is again worse than the predictions based on the fleet 

data and is subject to much greater uncertainty as evident from the spread of the 

probability mass of the posterior distribution of pfm of AV3.  

• Finally, the patterns that we observe for the vendor are also similar to those recorded 

for Observation 1: the posterior is worse than the prior due to the observed failures 

of AV3 and the complex interplay between the operational profile (changed due to 

the additional miles driven) and how the numbers of miles and accidents affect the 

predicted system pfm. 

We can conclude from Fig. 3 and Fig. 4 that the predictions of the marginal pfm are 

quite sensitive to the data used in the inference and indicate that DyAVSA can bring 

significant advantages to the individual AVs. The results clearly indicate that using the 

data collected from the entire fleet affects the predicted distributions of the marginal 

system pfm of the AVs. 

4.2 Conditional probability of failure in OC1 – OC5: prior vs posterior, 

AVs own data only vs. fleet data 

The next two figures, Fig. 5 and Fig. 6, provide further details on how the distributions 

of the conditional pfmi in OC1 – OC5 are affected by the data used in the inference: own 

data by AV1, …, AV5 only or data collected by the entire fleet.  

Fig. 5 shows that using own data or fleet data makes a considerable difference in all 

OCs. The magnitude is most significant in OC1. Fig. 5 also plots together (the bottom 

right of the figure) the posterior distributions of the marginal system pfm, computed by 

the AVs based on own data and by the vendor using in full the fleet data.  

Comparing the plots of the conditional pfms on OC1, …, OC5 does not indicate visible 

differences between the predicted 𝑓𝜃𝑖
(𝑥|𝑜𝑤𝑛 𝑑𝑎𝑡𝑎), computed by the AVs and 

𝑓𝜃𝑖
(𝑥|𝑓𝑙𝑒𝑒𝑡 𝑑𝑎𝑡𝑎), computed by the vendor. We would expect that this would imply 

similarity to the predicted system pfm. Surprisingly, however, the posterior system pfm 

(shown in the bottom right plot of the figure) computed by AV3 (marked with the arrow 

labelled “1” in the right-bottom plot in the figure) stands out and is visibly more pessi-

mistic than the predicted system pfm of the other AVs and of the vendor, which are 

close to one another. This observation suggests that counting on the vendor predictions 

“on average” only (labelled with “2” in the right- bottom plot of the figure) may be 

misleading, as in this case the spread of safety predictions by the individual AV 
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instances may be significant (e.g. as is with AV3) but will remain unseen.  

 

 

Fig. 5. Bayesian predictions on the conditional pfmi in OC1 – OC5 for Observation 1 (no failures): 

own data vs. fleet data.  

Another noteworthy observation from Fig. 5 is that the AVs predictions vary in terms 

of how they compare with the prior distribution of system pfm: some of the posterior 

distributions are more optimistic than the prior (i.e., the tails of the respective distribu-

tions are “thinner” than the tail of the prior), while other posteriors – are more pessi-

mistic than the prior (i.e. their tails are “thicker than the tail of the prior”). These dif-

ferences are due to the complex dependence of the system pfm distribution on the op-

erational profile of the AVs (or the vendor) and how the additional miles of AV driving 

have changed the distributions of the conditional pfms in the operating conditions. 

Counting on the vendor’s predictions alone will not allow one to see that individual 

AVs’ predicted system pfm may be close and even violate a safety claim. 

Under Observation 2 (Fig. 6) the posterior distributions 𝑓𝜃1

(3)
(𝑥|𝑁1

(3)
, 𝑟1

(3)
)  and 

𝑓𝜃2

(3)
(𝑥|𝑁2

(3)
, 𝑟2

(3)
) by AV3 of the conditional pfms in OC1 and OC2, respectively, are 

visibly different from the predictions of the other AVs and of the vendor, which is ex-

pected as these are the two OCs in which AV3 has observed accidents. Interestingly, 

while the posteriors for AV3 are visibly worse than the prior, the posterior distributions 

of pfm1 and pfm2 by the vendor are more optimistic than the prior. Clearly, a single 

failure by AV3 in both OC1 and OC2 is insufficient to make the two posteriors calculated 

by the vendor for OC1 and OC2, respectively, to become more pessimistic than the pri-

ors (assumed in the example the same for all AVs and the vendor) for these OCs. This 

example clearly shows the possibility for the “predictions on average” to “smooth over” 
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the impact of sudden “reverse of fortune” when some AVs observe accidents in some 

of the OCs and reiterates the point that we have already made above that the predictions 

“on average” may be biased and hide important information related to safety of indi-

vidual AVs.  

 

 

Fig. 6. Bayesian predictions on the conditional pfmi in OC1 – OC5 for Observation 2 (failures 

observed): own data vs. fleet data. 

5 Discussion and threats to validity  

The results from the contrived examples demonstrate that the effect of the data used in 

the Bayesian inference may be quite significant. We observed that multivariate proba-

bilistic models, which account for a variable operational profile, bring the following 

advantages: 

• The predictions are in tune with the needs of AV safety assessment and account for 

fluctuations in operational profiles by individual AVs. The advantages of the multi-

variate inference over a univariate inference are extensively discussed in our recent 

work [13]. 

• Forces assessors to collect operational data, which is suitable to porting a safety 

claim to a new operational profile which may differ significantly from the profile 

for which the data has been collected,  

• Serves the needs of the AV vendors and of the individual AVs, which are quite dif-

ferent: the individual AVs, via DyAVSA, may benefit considerably from the data 

collected from a fleet of AVs, and accounts for the own operational profile.  

Clearly making use of DyAVSA would depend on how reliably the AV can 
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discriminate between different operating conditions. Unreliable discrimination will af-

fect the accuracy of counting the miles driven in different operating conditions, the 

accuracy of the updates sent by AV instances to the vendor servers, and the accuracy 

of the aggregation of the data by the vendor servers shared with all AV instances. Like-

wise, failures to detect “out-of-ODD” may lead to incorrect attributions of miles and 

accidents which are outside ODD to some of the operating conditions14. Such failures 

may affect the predictions but are outside the scope of this paper. We intend to address 

this concern in our future work.  

DyAVSA is clearly dependent on the necessary communication infrastructure such 

as a suitable mechanism for sending observations from each AV instance to a central-

ized collector (e.g., a server operated by the AV vendor) where the data is aggregated 

as necessary (including addressing the privacy concerns) and suitable mechanisms for 

sharing the aggregated data among the deployed AV instances. We acknowledge the 

importance of the implementation details, e.g., the aggregated data should account for 

the needs of each AV instance. Some instances will require frequent updates of aggre-

gated data, while other AV instances will be used less intensively and therefore may 

require less frequent access to the aggregated data. Clearly, the data sharing mechanism 

should account for the needs of all AVs, especially if the aggregated counts (of miles 

and accidents) only are shared. Sharing the distributions of the conditional pfmi seems 

easier to implement, as it will only require the aggregator to send the current snapshot 

of the distributions of the conditional pfmi.  

A related concern is whether the current communication technologies are good 

enough to allow a scalable DyAVSA deployment with large fleets of AVs. Our prelim-

inary calculations indicate that the current communication technologies used in modern 

vehicles (e.g., 4G and 5G mobile networks) provide plenty of bandwidth to allow scal-

able deployment of DyAVSA with millions of AVs. We envisage that each AV will 

require infrequent updates, say no more than once a minute, and will likely require an 

exchange of a few kilobytes of data with the vendors’ servers in each direction, as il-

lustrated in Fig. 2. The current cloud computing technologies have a typical communi-

cation bandwidth of terabytes per second, which should easily meet DyAVSA require-

ments. Via load balancing the vendor servers can easily handle millions of connections 

with individual AV instances. Technologies which require continuous communications 

between modern vehicles and a centralized service exist, e.g., the Mobileye REM (Road 

Experience Management)15, which offers “crowdsourced, continuously updated map of 

the world”. REM uses a two-way communication between Mobileye terminals installed 

on individual AVs and the company’s cloud service. It seems that REM’s requirements 

for communication bandwidth exceed significantly the requirements by DyAVSA.  

Among the threats to the validity of our results we would like to acknowledge the 

following: 

• The proposed method of multivariate Bayesian inference relies on several 

 
14  A related problem, that may affect the inference, is reliability of data communication, includ-

ing failures due to malicious activities. We assume that sufficiently reliable and secure data 

communication will be used making negligible the adverse effect of data miscommunication.  
15  https://www.mobileye.com/technology/rem/  

https://www.mobileye.com/technology/rem/
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assumptions: 

─ the conditional pfms of driving in different operating conditions are assumed in-

dependently distributed random variables. This assumption seems plausible but 

may in fact turn out to be difficult to justify. The problem is not new and has been 

discussed in the past, e.g., in [18]. Conceivably, a failure may be traced to a fault, 

which can be triggered in more than one operating condition, thus promoting the 

idea that beliefs about conditional pfms in operating conditions should be depend-

ent. Technically, the independence assumption can be relaxed, e.g., by using suit-

ably chosen Copulas16[19] to capture the dependencies between the random var-

iables (in this case - the conditional pfms in different operating conditions). In 

Appendix 2 a detailed discussion is provided about applying a Gaussian Copula 

to capture possible dependencies among the distributions of the conditional pfms. 

We also illustrate the implications of dependency among the distributions of the 

conditional pfm for the distribution of a weighted sum of the dependent variates 

aligned with an operational profile captured by a Dirichlet distribution. Scoping 

a credible procedure to elicit the parameters of these Copulas, however, is outside 

the scope of this paper. We intend to look at this problem in our future work. We 

envisage two important aspects of this future work: i) is it plausible to assume 

that the dependencies captured by a Copula will remain unaffected over time. 

Such a view would be consistent with the spirit of Copulas – a Copula functional 

can be applied to any marginal distributions (in our case – to prior and posterior 

distribution of pfms.), and ii) how can one elicit the parameters of a Copula ap-

plied to  marginal distributions which represent epistemic uncertainty, and more 

importantly, for which the dependence may be difficult to “measure”. Contrary to 

typical applications of Copulas, e.g., in finance to represent dependencies be-

tween risks of different stocks, which are directly observable and measurable, in 

our case Copula will capture dependences among epistemic uncertainties, which 

are difficult to capture. On the one hand, there is a clear intuition behind depend-

ence, e.g., changes of driving policy may affect the true pfms in several operating 

conditions (i.e., there is a “common factor” affecting several pfms). Whether this 

implies that one should opt for modelling the dependence between the respective 

marginal distributions (i.e., the epistemic uncertainties) or just let the Bayesian 

inference eventually update the marginal uncertainties is unclear. Further detailed 

analysis is needed to understand the phenomenon (of “common factors”) and 

what the best way of modelling it is. We also envisage that adding dependence 

among the distributions of the pfms may be a way of introducing a degree of con-

servatism in Bayesian predictions. As our illustrations in Appendix 2 show as-

suming significant degree of positive correlation between the distributions of the 

pfms leads to an increase of the tail of the measure of interest – the distribution of 

system probability of accident per mile (i.e., the weighted sum of pfms). If adding 

dependence will be a way of introducing conservatism in predictions, it may be 

 
16  Copulas are a specific way of modelling the dependence between random variables. The in-

terested reader may check https://en.wikipedia.org/wiki/Copula_(probability_theory) for fur-

ther details  

https://en.wikipedia.org/wiki/Copula_(probability_theory)
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useful to leave the decision about the degree of conservatism to the stakeholders 

– the AV vendors or individual AV owners/users. Again, it seems that further 

extensive research and analysis is needed before DyAVAS adopts a model of de-

pendence among the marginal distributions of pfms. Without such research adopt-

ing dependence among the marginal distributions of pfms will in our opinion be 

premature. 

─ Bayesian inference is undertaken under the assumption of reliable recording of 

the counts of miles driven, and accidents observed in different operation condi-

tions. Clearly, there may be errors due to various factors, e.g. misclassification of 

OCs, or due to failures to detect “out-of-ODD”, which in turn may lead to attrib-

uting accidents (and miles without accidents) that occur “out-of-ODD” to some 

of the operational OCs defined in an ODD. Conceptually, accounting for these 

possibilities is straightforward – one needs to allow for misclassifications of OCs. 

This concern is conceptually similar to the following two concerns: i) “oracle 

perfection” in software testing and its impact on software reliability assessed via 

software testing [20], and ii) the checker coverage in asymmetric architectures 

such as “primary - checker” (e.g. an AV safety monitor) and its impact of relia-

bility assessment of the asymmetric architecture, a concern which has been stud-

ied in the past, including in own work [21]. We intend to address these concerns 

in our future work, too. 

─ We assume that the AV operational profile is adequately captured by a Dirichlet 

distribution. Although this type of multivariate distribution has been used by 

many17 in the past and, more importantly, seems quite plausible for the task, it 

may in some circumstances be inadequate. A promising alternative way of mod-

elling the operational profile would be using state-based models, e.g., Markov and 

semi-Markov ones, in which the operating conditions (OC1, …, OCn), defined for 

a given ODD, appear as states of a state-based model of the operational profile. 

A similar approach has been taken in our recent work [22]. 

─ In this work we relied on the prior work by others [2], whereby the key parameter 

of interest is the pfm of driving and on the critical assumption that success/failure 

of driving a set of randomly chosen miles can be modelled as a Bernoulli trial. 

Clearly the successive miles of driving may not be quite like a Bernoulli trial, 

although the recent work [23] provides a rationale suggesting that the implications 

of the assumption for the mathematical rigor are insignificant. An alternative ap-

proach to modelling AV driving would be to consider the duration (in miles) in 

the same operating condition and see the AV driving as a trajectory via different 

OCs defined by an ODD. We took this approach in a recent study [22, 24]. Such 

a model may reveal a different insight. Developing this alternative approach in 

detail is also an area for future research.  

─ Finally, a separate strand of research deals with the observations from “micro-

scopic traffic simulation” tools, e.g. [25], which differs conceptually from our 

work as it seems to rely on a different safety measure. Adopting a different safety 

measure may reveal a different insight, too, an area for future research. 

 
17  https://en.wikipedia.org/wiki/Dirichlet_distribution#Bayesian_models. 

https://en.wikipedia.org/wiki/Dirichlet_distribution#Bayesian_models
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6 Related research  

An idea somewhat related to DyAVSA are the Safety Performance Indicators (SPI) [9], 

the authors of which argue that SPIs must be quantitative, and their assessment should 

be done by collecting “operational data”, i.e., data from the deployed AVs. The main 

advantage of SPIs would be that they can provide “early warnings” of possibly insuffi-

cient safety and thus would allow the AV vendor to improve over time the safety of the 

AV brand. For instance, if an SPI is related to failures to detect a pedestrian on the road, 

the AV vendors may act upon such data without having to wait for an actual accident. 

The key difference between SPIs and DyAVSA, apart from the purpose and the scope 

of data collection, is that DyAVSA allows different stakeholders, including the own-

ers/drivers of individual AVs to benefit from the operational data collected by a fleet 

of AVs and the fact that DyAVSA provides a complete computational procedure to 

make use of the collected data in targeted run-time safety assessment while with the 

SPIs the AV vendor is left to decide how to make use of them.  

An alternative approach to Bayesian assessment is offered in [26]. This work offers 

a hierarchical Bayesian inference and builds on a previous publication relying on the 

use of extreme values theory for safety assessment of AV [27].  

An important work is [28], which provides a theoretical Bayesian hierarchical ex-

treme value model integrating several conflict indicators such as the modified time to 

collision (MTTC), the post encroachment time (PET), and the deceleration rate to avoid 

a crash (DRAC) and demonstrates that the multivariate model outperforms the respec-

tive univariate and bi-variate models which use fewer measures of interest. The paper 

builds on a multivariate Bayesian inference and in this sense is similar to the approach 

developed in [13] and used in the presented paper. There are, however, significant dif-

ferences, too. The variates used in [28] are “conflict indicators”, while in own work the 

conditional pfms of driving in different operating conditions are used. While in own 

work (following the development in [13]) we assume that the variates are independently 

distributed random variables, the model developed in [28] treats the indicators as sto-

chastically dependent random variables. There is also similarity between the conclu-

sions reported in [28] and [13] – in both cases the multivariate models are said to be 

superior in terms of the prediction accuracy to their univariate counterparts (and a bi-

variate prediction model referred to in [28]). 

A separate strand of related work deals with the “surrogate safety measures” (SSM). 

As the name suggests SSM are looking for useful ways of evaluating road safety in the 

absence of accident data, which are typically rare. SSM are used to address a variety 

of use cases, among them the impact of AV and connected AV (CAV) [25] on road 

safety. A recent survey summarizing the advances with SSM is provided in [29]. SSM 

focus is very different from the focus of the work presented here. The main premise in 

SSM related studies is that the scarcity of accident data makes safety assessment diffi-

cult. The approach taken in this paper is radically different. The multivariate Bayesian 

inference, on which DyAVSA is based, can take any observations, including no acci-

dents at all, to derive predictions about the chosen measure of AV safety. The scope of 

SSM is also different from the scope of the current work: SSM are used to assess how 

a large fleet of AV/CAV on the public roads in the future can affect the road safety of 
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all participants in the road traffic. The scope of our work is entirely focused on the 

benefits that sharing observations (miles driven and accidents observed or lack thereof) 

among the AVs of a fleet of AVs can bring to the owners/users of the individuals AVs.  

There is a conceptual similarity between aforementioned Mobileye Road Experience 

Management (REM) and DyAVSA although the focus of data sharing is different. REM 

is focused on constructing an up-to-date road map using the data coming from AV 

instances and sent to a cloud-service where the data is aggregated, and maps are con-

structed. Part of the constructed road map is then shared with the AVs based on their 

current location. DyAVSA instead collects and shares data useful for predicting the 

conditional pfms and foreseeing violations of a safety claim. 

Finally, DyAVSA is based on a multivariate Bayesian assessment, a topic exten-

sively developed by many over the years, other methods based on Bayesian reasoning 

have been widely used in risk assessment of various systems. An authoritative text on 

Bayesian risk assessment is [30], which provides a foundational introduction to Bayes-

ian Belief Networks (BBN) and contrast them with alternative formalisms of dealing 

with uncertainty in risk assessment such as statistics and causal reasoning. A very ex-

tensive literature exists on the use of BBN for risk assessment in safety critical systems. 

The seminal work by Littlewood and Strigini [31] on demonstrating infeasibility of 

demonstrating ultra-high software reliability via testing. A similar conclusion was 

reached by Butler and Finelli [30] at approximately the same time.  

Among the examples of using BBN in other related domains, e.g. in maritime oper-

ations, we would like to acknowledge the contributions of Zaili Yang: [32] on BBN 

based risk assessment of seaports, and [33] on BBN - based risk assessment of the op-

erations of maritime autonomous surface ships. In [34] Jingbo Yin applies a BBN risk 

assessment to cargo operations at seaports. 

We already acknowledged the value of Copula in capturing the dependencies be-

tween the distributions of random variables. A few examples are included in Appendix 

2. We would like also to acknowledge other examples relevant to the multivariate 

Bayesian inference DyAVSA is based. [35] offers a generic Bayesian hierarchical Cop-

ula model. In comparison with the alternative models used for Bayesian inference using 

layers of a hierarchy, the authors claim that their approach provides increased flexibility 

and allows Copulas (e.g., Archimedean and Gaussian) to be adapted as required by the 

specific context. Although [35] is focused on dealing with clusters of data sources, there 

is conceptual similarity with the multivariate inference used in DyAVSA: the model 

used in DyAVSA can be seen as a 2-layered model: the “upper” layer deals with the 

operational profile uncertainty, while the “lower” layer deals with the uncertainty of 

the pfms.  

A recent reprint [36] deals with a problem which is highly relevant to a possible 

extension of DyAVSA and the multivariate inference it relies upon. The author of the 

reprint reports on the effect of using Copula on the distribution of a sum of non-inde-

pendent random variables. Similarly to our own observations presented in Appendix 2, 

the author concludes that the impact of dependence among the margins of a Copula 

may impact significantly (in excess of 10%) the high quantiles (i.e., the tail) of the 

distribution of the sum.  
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7 Conclusions and future work 

This paper proposes the Dynamic AV Safety Assessment (DyAVSA), an approach to 

run-time AV safety assessment of a particular AV product, whereby the data on miles 

driven and failures/accidents observed, are collected by individual AV instances, and 

passed to a centralized AV Vendor Server for safety monitoring. Under DyAVSA the 

individual AV instances can monitor their own safety using the operational data col-

lected from the entire fleet of AVs of the same brand collected by the AV vendor.  

We demonstrate that a two-stage Bayesian inference procedure, we developed recently 

[12] and adapted to the needs of AV safety assessment [13], can serve the run-time 

safety assessment needs of different stakeholders: i) the AV vendors, can collect data 

from the entire deployed AV fleet of AVs and assess the safety of the fleet “on aver-

age”; ii) should the vendor periodically share the aggregated measurements with all 

deployed AVs instances, then the users/owners of individual AV will be able to monitor 

the safety of their own AVs themselves relying on the data records of accidents/suc-

cesses for a given ODD aggregated for the entire fleet of AVs and using their unique 

operational profile. We illustrated the advantages of the proposed method over the al-

ternatives – relying on the predictions “on average” made by the vendor, or on the pre-

dictions by the AV instances relying on their own operational data only. To the best of 

our knowledge a concept similar to DyAVSA has not been used before.  

We already identified in the previous section a few areas for future development to 

address some of the recognized threats to validity of our work and findings, among 

them relaxing the assumptions on which the multivariate inference is based upon – that 

the miles of AV driving can be modelled as a Bernoulli trial and that the conditional 

probabilities of accident per mile of driving in different driving conditions are inde-

pendently distributed random variable.  

Developing a highly efficient computation procedure which would allow for fast 

multivariate inference aligned with the needs of run-time safety assessment is another 

area of research which we intend to address in the future.  

In passing we mentioned that a safety claim, linked implicitly to a given ODD should 

address the following concerns affecting the AV safety: i) detecting reliably “out-of-

ODD (OoODD)”, and ii) accounting the impact on AV safety of unreliability of re-

sponding to OoODD. Both detecting OoODD itself and the implemented response to a 

detected OoODD, may be subject to failure. The impact of both failures should be ac-

counted for in a complete safety analysis [6], and we intend to address this problem in 

our future research.  

Acknowledgement 

This work has been partially supported by the Intel Collaborative Research Institute 

on safety of autonomous vehicles (ICRI-SAVe).  

 



28 

8 References 

1. SAE International, J3016 : Taxonomy and Definitions for Terms Related to Driving 

Automation Systems for On-Road Motor Vehicles. 2021, SAE International: Vernier, Geneva, 

Switzerland. p. 41. 

2. Kalra, N. and S. Paddock, Driving to safety: How many miles of driving would it take to 

demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and 

Practice, 2016. 94: p. 182-193. 

3. Wachenfeld, W. and H. Winner, Die Freigabe des autonomen Fahrens, in Autonomes 

Fahren: Technische, rechtliche und gesellschaftliche Aspekte, M. Maurer, et al., Editors. 

2015, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 439-464. 

4. European Commission, COMMISSION IMPLEMENTING REGULATION (EU) 2022/1426 

as regards uniform procedures and technical specifications for the type-approval of the 

automated driving system (ADS) of fully automated vehicles. Official Journal of the European 

Union, 2022. 

5. Favarò, F., et al. Building a Credible Case for Safety: Waymo's Approach for the 

Determination of Absence of Unreasonable Risk. 2023. 38 DOI: 

https://doi.org/10.48550/arXiv.2306.01917. 

6. Standards&Engagement, ANSI/UL 4600: Evaluation of Autonomous Products. 2023, ANSI. 

7. IAEA, Periodic Safety Review for Nuclear Power Plants, in Specific Safety Guide No. SSG-

25. 2013, International Atomic Energy Agency: Viena. p. 128. 

8. EASA, Annual Safety Review 2023. 2023: European Union Aviation Safety Agency. 

9. Johansson, R. and P. Koopman, Continuous Learning Approach to Safety Engineering. , in 

CARS - Critical Automotive applications: Robustness & Safety. 2022, HAL: Zaragoza, Spain. 

p. 5. 

10. NHTSA SGO Incident Reports ADS January 202. Standing General Order on Crash 

Reporting, 2021. 

11. British Standards Institute, B.S.I., PAS 1883:2020 Operational Design Domain (ODD) 

taxonomy for an automated driving system (ADS) - Specification. 2020, BSI Standards 

Limited: London. UK. p. 26. 

12. Pietrantuono, R., P. Popov, and S. Russo, Reliability assessment of service-based software 

under operational profile uncertainty. Reliability Engineering & System Safety, 2020. 204: 

p. 107193. 

13. Popov, P., Why Black-Box Bayesian Safety Assessment of Autonomous Vehicles is 

Problematic and What Can be Done About it? IEEE Transactions on Intelligent Vehicles, 

2024. (under review): p. 13. 

14. NAIIC, The Fukushima Nuclear Accident Independent Investigation Commission, in The 

National Diet of Japan 2012. p. 82. 

15. Zhao, X., et al., Assessing safety-critical systems from operational testing: A study on 

autonomous vehicles. Information and Software Technology, 2020. 128: p. 106393. 

16. Adams, T., Total Variance Approach to Software Reliability Estimation. IEEE Transactions 

on Software Engineering, 1996. 22(9): p. 687-688. 

17. Albert, I. and J.-B. Denis Dirichlet and multinomial distributions: properties and uses in 

Jags. Unité Mathématiques et Informatique Appliquées, 2012. 28. 

18. Klotz, J., Statistical Inference in Bernoulli Trials with Dependence The Annals of Statistics, 

1973. 1(2): p. 373–379. 

19. Nelsen, R.B., An Introduction to Copulas. Springer Series in Statistics. 2006: Springer New 

York, NY. 272. 

20. Littlewood, B. and D. Wright, A Bayesian Model that combines disparate evidence for the 

quantitative assessment of system dependability", In - Mathematics of Dependable Systems, 

II, (V Stavridou, Eds.), pp. 243-258, Clarendon Press, Oxford, 1997. 1997. 

https://doi.org/10.48550/arXiv.2306.01917


29 

21. Popov, P. and L. Strigini, Assessing Asymmetric Fault-Tolerant Software, in IEEE 21st 

International Symposium on Software Reliability Engineering. 2010, IEEE: San Jose, CA, 

USA, . p. 41-50. 

22. Buerkle, C., et al., Road Hazards on Road Intersections and Stochastic Modelling of their 

Effect on Safety of Autonomous Vehicles, U.o.L. City, Editor. 2023 (under review). p. 18. 

23. Salako, K. and X. Zhao, The Unnecessity of Assuming Statistically Independent Tests in 

Bayesian Software Reliability Assessments. IEEE Transactions on Software Engineering, 

2023. 49(4): p. 2829-2838. 

24. Buerkle , C., et al., Modelling road hazards and the effect on AV safety of hazardous failures, 

in IEEE 25th International Conference on Intelligent Transportation Systems (ITSC'2022). 

2022: Macau, China. p. 1886-1893. 

25. Papadoulis, A., M. Quddus, and M. Imprialou, Evaluating the safety impact of connected and 

autonomous vehicles on motorways. Accident Analysis & Prevention, 2019. 124: p. 12-22. 

26. Kamel, A., T. Sayed, and C. Fu, Real-time safety analysis using autonomous vehicle data: a 

Bayesian hierarchical extreme value model. Transportmetrica B: Transport Dynamics, 2022. 

11(1): p. 826-846. 

27. Reyad, P., et al., Real-Time Crash-Risk Optimization at Signalized Intersections. 

Transportation Research Record, 2022. 2676(12): p. 32-50. 

28. Fu, C., T. Sayed, and L. Zheng, Multivariate Bayesian hierarchical modeling of the non-

stationary traffic conflict extremes for crash estimation. Analytic Methods in Accident 

Research, 2020. 28: p. 100135. 

29. Wang, C., et al., A review of surrogate safety measures and their applications in connected 

and automated vehicles safety modeling. Accident Analysis & Prevention, 2021. 157: p. 

106157. 

30. Fenton, N. and M. Neil, Risk Assessment and Decision Analysis with Bayesian Networks (2nd 

ed.) 2018, NY: Chapman and Hall/CRC. 

31. Littlewood, B. and L. Strigini, Validating Ultra-High Dependability for Software-Based 

Systems, in PDCS 2nd year Report. 1991, PDCS. 

32. Yang, Z., S. Bonsall, and J. Wang, Fuzzy Rule-Based Bayesian Reasoning Approach for 

Prioritization of Failures in FMEA. IEEE Transactions on Reliability, 2008. 57(3): p. 517-

528. 

33. Chang, C.-H., et al., Risk assessment of the operations of maritime autonomous surface ships. 

Reliability Engineering & System Safety, 2021. 207: p. 107324. 

34. Khan, R.U., et al., Seaport infrastructure risk assessment for hazardous cargo operations 

using Bayesian networks. Marine Pollution Bulletin, 2024. 208: p. 116966. 

35. Zhuang, H., L. Diao, and G.Y. Yi, A Bayesian hierarchical copula model. Electronic Journal 

of Statistics, 2020. 14(2): p. 4457-4488. 

36. Schneider, W. On the distribution of the sum of dependent standard normally distributed 

random variables using copulas. 2021. 10 DOI: https://doi.org/10.48550/arXiv.2107.00007. 

37. Sklar, M.J. Fonctions de repartition a n dimensions et leurs marges. 1959. 

38. Gijbels, I. and K. Herrmann, On the distribution of sums of random variables with copula-

induced dependence. Insurance: Mathematics and Economics, 2014. 59: p. 27-44. 

39. Elfadaly, F.G. and P.H. Garthwaite, Eliciting Dirichlet and Gaussian copula prior 

distributions for multinomial models. Statistics and Computing, 2017. 27(2): p. 449-467. 

9  Appendix 1: Multivariate Bayesian inference 

A multivariate Bayesian assessment applicable to systems with multiple operating con-

ditions, e.g., demand space partitions, partition testing, autonomous vehicles used in 

different operating conditions OC1, OC2, …, OCn, as defined by an operational design 

domain (ODD), etc., can use a double-stochastic multivariate model, developed 

https://doi.org/10.48550/arXiv.2107.00007
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recently [12] and adapted to the needs of a AV used with a defined ODD [13]. The 

model and the Bayesian inference procedure included in this appendix are derived from 

[13].  

The model captures: 

• A partition of operating conditions OC = {OC1, OC2, …, OCm} such that iff i  j 

then OCi  OCj =  defined with a probabilistic measure on OC, 𝑃(𝑂𝐶𝑖), and  

• In each OCi the AV drives a sequence of miles. Each mile may be either successfully 

completed or lead to an accident. We model the driving in OCi as Bernoulli process 

with a parameter pfmi, which is treated as a random variable, Θ𝑖. A joint distribution 

𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛), characterizes the uncertainty in the values of pfmi in differ-

ent OCi and the stochastic dependencies between the variates, Θ1, Θ2, … , Θ𝑛, of the 

multivariate distribution, 𝑓𝜃1,𝜃2,…,𝜃𝑛
(𝜃1, 𝜃2, … , 𝜃𝑛). 

To simplify the analysis, we make an additional simplifying assumption that 

Θ1, Θ2, … , Θ𝑛 are independently distributed random variables. 𝑓𝜃𝑖
(∙) denotes the 

probability density function of Θ𝑖, for i = 1,…, n. In other words, we assume that 

changes in 𝑓𝜃𝑖
(∙)  do not affect 𝑓𝜃𝑗

(∙), 𝑖 ≠ 𝑗.  

𝑃(𝑂𝐶𝑖) may vary over time or be subject to epistemic uncertainty, which we capture 

by using a random variable, Ψ𝑖 with a probability density function 𝑓𝜓𝑖
(∙). Since the 

operating conditions form a partition of the space of miles, the constraint ∑ Ψ𝑖
𝑛
𝑖=1 = 1 

applies: a mile with certainty will be selected from one of the partitions.  

The joint distribution f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n) captures the epistemic uncertainty 

associated with the selection of a mile from the space of all miles. A suitable analytic 

multivariate distribution which can be adopted here is the Dirichlet distribution, which 

for n variates, Ψ𝑖…,Ψ𝑛 is defined as [17]: 

Dir(𝜓1, 𝜓2,…, 𝜓n;α)≡f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n;a1, …, an)      

=
Γ(∑ ai

n
i=1 )

∏ Γ(ai)
n
i=1

[∏ 𝜓i
ai-1n-1

i=1 ][1- ∑ 𝜓i
n-1
i=1 ]

an-1
      (A1) 

where α is a vector a1, …, an and defines the parameters of the Dirichlet distribution. 

The sum of the variates ∑ Ψ𝑖
𝑛
1 = 1. 

If we denote: 𝐴 = ∑ 𝑎𝑗
𝑛
𝑗=1 , then the moments of the variates of the Dirichlet distri-

bution can be expressed as: 

𝐸[Ψ𝑖] =
𝑎𝑖

𝐴
,  

𝑉𝑎𝑟(Ψ𝑖) =
𝑎𝑖(𝐴−𝑎𝑖)

𝐴2(1+𝐴)
,  

𝐶𝑜𝑣(Ψ𝑖 , Ψ𝑗) =
−𝑎𝑖𝑎𝑗

𝐴2(1+𝐴)
, 𝑗 ≠ 𝑖, j 

The marginal distribution of each variate, Ψ𝑖, is a Beta distribution, Beta(𝜓;ai, A-ai), 

[17]. 

Now, let us consider the case of an ODD known with certainty, i.e., 𝑃(𝑂𝐶1) =
𝜓1, 𝑃(𝑂𝐶2) = 𝜓2, …  𝑃(𝑂𝐶𝑛) = 𝜓𝑛, where 𝜓𝑖  (𝑖 = 1, … 𝑛) are known constants. The 

random variable Θ, which represents pfm, is then the weighted sum of the random var-

iables Θi, weights being the probabilities 𝜓1, 𝜓2, … , 𝜓𝑛, respectively.  

Θ𝜓1,𝜓2,…,𝜓𝑛
=  ∑ Θ𝑖𝜓𝑖

𝑛
𝑖=1            (A2) 

 We have already assumed that Θ𝑖 are independently distributed random variables. 
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Note that the products, Θ𝑖
𝜓𝑖 = Θ𝑖𝜓𝑖 , are themselves independently distributed random 

variable. Let us denote the probability density function of Θ𝑖
𝜓𝑖 as 𝑓𝜃𝜓𝑖

(𝑥). Then 𝑓𝜃𝜓𝑖
(𝑥) 

can be derived from 𝑓𝜃𝑖
(∙) using a standard transformation:  

𝑓𝜃𝜓𝑖
(𝑥) =

1

|𝜓𝑖|
𝑓𝜃𝑖

(
𝑥

𝜓𝑖
)               (A3) 

Now we can express the probability density function of Θ𝜓1,𝜓2,…,𝜓𝑛
 as follows:  

𝑓𝜃|𝜓1,𝜓2,…𝜓𝑛
(𝑥|Ψ1 = 𝜓1, Ψ2 = 𝜓2, … , Ψ𝑛 = 𝜓𝑛) = 𝑓𝜃𝜓1

(𝑥) ∗ 𝑓𝜃𝜓2
(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛

(𝑥) 

          (A4) 

where the “*” sign indicates a convolution of the respective probability density func-

tions.  

Finally, we can now remove the condition that the operational profile is known with 

certainty (captured by Ψ1 = 𝜓1, Ψ2 = 𝜓2, … , Ψ𝑛 = 𝜓𝑛) using the joint distribution de-

fined by (A1): 

𝑓𝜃
𝑊𝐵(𝑥) ∫ 𝑓𝜃|𝜓1,𝜓2,…𝜓𝑛

(𝑥|𝜓1, 𝜓2, … , 𝜓𝑛)f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n;a1, …, 

an)𝑑𝜓1𝜓𝑥2 … 𝑑𝜓𝑛 

= ∫[𝑓𝜃𝜓1
(𝑥) ∗ 𝑓𝜃𝜓2

(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥)×f𝜓1,𝜓2,…𝜓𝑛

(𝜓1, 𝜓2,…, 𝜓n)]𝑑𝜓1𝑑𝜓2 … 𝑑𝜓𝑛

 (A5) 

The integration in the last expression (A5) is done with respect to all dimensions 

𝜓1, 𝜓2 … 𝜓𝑛 of the ODD. One can see that (A5) provides us with the marginal distribu-

tion of system pfm and accounts for the epistemic uncertainty of both the operational 

profile – this is captured by the joint distribution f𝜓1,𝜓2,…𝜓𝑛
(𝜓1, 𝜓2,…, 𝜓n) – and the 

conditional probabilities of catastrophic failure in partitions 𝑓𝜃𝑖
(𝑥). Clearly, the latter 

will affect the convolution, 𝑓𝜃𝜓1
(𝑥) ∗ 𝑓𝜃𝜓2

(𝑥) ∗ … ∗ 𝑓𝜃𝜓𝑛
(𝑥), representing the distribu-

tion of the sum Θ𝜓1,𝜓2,…,𝜓𝑛
 expressed by (A4).  

We labelled (A5) with “WB” to signify the fact that this distribution is derived using 

a “white box” model of both the ODD and how likely the AV is to fail in each of the 

operating conditions.  

The marginal distribution of system pfm, 𝑓𝜃
𝑊𝐵(𝑥), can be used in different ways. 

Apart from allowing for computing the moments, e.g., the expected value of the system 

pfm, one can compute the risk that the true probability of failure per mile can turn out 

to be badly wrong (e.g., exceed a given threshold), by looking at the tail of the distri-

bution of system pfm: 

𝑃(Θ ≥ 𝑇) = ∫ 𝑓𝜃
𝑊𝐵(𝑥)𝑑𝑥

1

𝑇
          (A6) 

 

10 Appendix 2: Using Copula to model dependencies between pfms 

In this section we illustrate the impact of relaxing the assumption that the conditional 

probabilities of accident per mile of driving (pfms) in different operating conditions are 

independently distributed random variables. This is done by adopting a Copula func-

tional to define a structure of dependence between the pfms (the marginals). We use the 

resulting Copula functional to assess the impact of dependence on the distributions of 

a weighted sum of the uncertain pfms by comparing the distribution of the sum 
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assuming the pfms independently and non-independently distributed random variables, 

respectively. 

Definition: A function 𝐶: [0, 1]𝑑 → [0, 1] is called d-copula (or short copula), if C is 

the distribution function of a d-dimensional random vector 𝑼 = (𝑈1, … , 𝑈𝑑) with stand-

ard uniform marginals, i.e.  ℙ[𝑈𝑘 ≤ 𝑢𝑘] = 𝑢𝑘 for all 𝑘 ∈ {1, … , 𝑑} and 𝑢𝑘 ∈ [0, 1]. 
According to the Sklar’s theorem [37] if H is a d-dimensional distribution function 

with “margins”, 𝐹1, … , 𝐹𝑑, then there exists a d-copula C such that for all 𝑥 ∈ ℝ̅𝑑 

𝐻(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)). 

In our formulation of AV safety assessment problem, 𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑) would be 

the marginal probability distributions (“margins”) of the uncertain conditional pfms, 

Θ1, Θ2, … , Θ𝑛, of AV driving in operating conditions OC1, …, OCd, and 𝐻(𝑥1, … , 𝑥𝑑) 

– would be the joint distribution of the margins Θ1, Θ2, … , Θ𝑛, in the general case of 

their being non-independently distributed. The Sklar theorem further asserts that if the 

margins 𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑) are all continuous, then C is unique.  

Copulas can take different form (https://en.wikipedia.org/wiki/Copula_(statistics)). 

In this appendix we use a Gaussian18 Copula to illustrate the impact of the strength of 

dependence among the margins Θ1, Θ2, … , Θ𝑛 on their weighted sum. In other words, 

we look at the distribution of the sum 𝑆 =  𝑤1Θ1 + 𝑤2Θ2 + ⋯ + 𝑤𝑑Θ𝑑, where 𝑤𝑖 , 𝑖 ∈
[1, … 𝑑], represent the weights of the random variables Θ𝑖 , 𝑖 ∈ [1, … 𝑑], respectively. 

We also look at the impact of the uncertainty in the weighting coefficients, 𝑊𝑖 by 

assuming them random variables; following the assumption made in Appendix 1 that a 

Dirichlet distribution is used to capture their joint distribution. 

10.1 Effect of dependence among margins on distribution of their sum 

In this appendix we take the contrived examples developed in the paper with 5 op-

erating conditions, OC1 – OC5, with Beta distributed Θ1, Θ2, … , Θ5 and use a Gaussian 

Copula with an increasing coefficient of correlation, ρij between all pairs of margins, 
(Θ1, Θ2), … , (Θ4, Θ5). The illustration is done under the assumption that the same level 

of correlation applies to all pairs of margins, i.e., if the correlation is set to 0.1, then the 

following covariance matrix is used to define ρij, used in generating a copula19: 

 ρij = [0.1,0.0,0.0,0.0,0.0; 

   0.0, 0.1,0.0,0.0,0.0; 

   0.0,0.0, 0.1,0.0,0.0; 

   0.0,0.0,0.0, 0.1,0.0; 

   0.0,0.0,0.0,0.0, 0.1]; 

The joint distribution of dependent Θ1, Θ2, … , Θ5is defined for values of the correla-

tion ρij from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Although hypothetically 

 
18  The choice of Gaussian copula is motivated by its wide use in other studies, e.g. [38], [39], 

and the fact that the sole purpose of this appendix is an illustration of the magnitude of the 

difference between the distribution of the sum of margins computed under the assumption of 

independence and the presence of dependence. 
19  The specific format of the covariance matrix is as required in the MATLAB function 

mvnrnd() used in the calculations conducted in this appendix. The full MATLA script(s) used 

in the calculations can be found at: https://openaccess.city.ac.uk/id/eprint/35206/.  

https://en.wikipedia.org/wiki/Copula_(statistics)
https://openaccess.city.ac.uk/id/eprint/35206/
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the correlation may be negative, there is no reason to expect negative correlation be-

tween the distributions of the conditional pfms, hence negative correlation has been 

excluded from the analysis presented here. Θ1, Θ2, … , Θ5 were defined as Beta distrib-

uted with parameters as follows:  

Θ1: Beta(2, 299) 

Θ2: Beta(2, 800) 

Θ3: Beta(2, 1500) 

Θ4: Beta(2, 1000) 

Θ5: Beta(1, 400) 

These are the parameter values of the prior distributions used in the contrived exam-

ples of the paper.  

Once the joint distribution of Θ1, Θ2, … , Θ5 was defined for a given degree of corre-

lation (0.1 – 0.9), as described above, a Monte Carlo simulation was used to generate 

samples of 200,000 random vectors (x1, x2, … , x5) from the respective joint distribu-

tions. Each vector was used to compute the weighted sum w1x1 + w2x2 +  … + w5x5. 

The weights used in this illustration are set equal to the expected values of the variates 

used in the Dirichlet distribution of the contrived examples, computed using the for-

mula:  

w𝑖 =
a𝑖

∑ a𝑖
5
𝑖=1

 

With the parameters of the prior Dirichlet a1 = 10, a2 = 10, a3 = 40, a4 =
30 , a5 = 10, the values of the respective weights are as follows: w1 = w2 = w5 =10/100 

= 0.1, w3 = 40/100 = 0.4 and w4 = 30/100 = 0.3. 

The parameters of the posterior Dirichlet distribution are different: a1 = 137, a2 =
133, a3 = 149, a4 = 106 , a5 = 75, which leads to w1 = 137/(137 + 133 + 149 + 106 

+ 75) = 137/600 = 0.228333333. Similarly, w2 = 133/600 = 0.221666667, w3 = 149/600 

= 0.248333333, w4 = 106/600 = 0.176666667, and w5 = 75/600 = 0.125. 

 

The 200,000 instances of the weighted sum, derived for the sample of random vec-

tors, were used to estimate the experimental distribution of the sum, under the increas-

ing degrees of correlation (0.1 – 0.9). Similar calculations are conducted with both the 

prior and posterior distributions as used in the contrived examples in the paper. 

With the increase of the correlation coefficient the variance of the sum (Θ1 + Θ2 +
⋯ + Θ5) increases, too, as is shown in Table 2 below, which is to be expected.  

Table 2. Effect of correlation of the margins on the distribution of the 
sum (without weights) of the prior marginal distributions: 

Beta(2, 299), Beta(2, 800), Beta(2, 1500), Beta(2, 1000), Beta(1, 400) 
Correlation Variance 

No correlation 6.343472e-07 
0.1 8.338104e-07 
0.2 1.037454e-06 
0.3 1.252600e-06 
0.4 1.454592e-06 
0.5 1.674819e-06 
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0.6 1.909173e-06 
0.7 2.128853e-06 
0.8 2.373866e-06 
0.9 2.591027e-06 

Posterior marginal distribution 
Beta(2, 306), Beta(2, 809), Beta(2, 1545), Beta(2, 1030), Beta(1, 409) 

Correlation Variance 
No correlation 1.440540e-06 

0.1 1.740738e-06 
0.2 2.038486e-06 
0.3 2.357392e-06 
0.4 2.709229e-06 
0.5 3.015632e-06 
0.6 3.403947e-06 
0.7 3.736954e-06 
0.8 4.086776e-06 
0.9 4.468203e-06 

The variance of the weighted sum computed for the priors is slightly greater than the 

weighted sum computed for the posterior distributions. This is due to the impact of the 

change in the uncertainty about the variables Θ1, Θ2, … , Θ5 represented by the marginals 

of the joint distribution and due to the changed operational profile.  

The cumulative distribution functions (cdfs) computed with the parameters de-

scribed above for prior and posterior distributions, respectively, are shown in Fig. 7 

below. The plots indicate a visible increase of the spread of the distributions moving 

from the prior to the posterior, which was already captured by the variances of the re-

spective distributions reported in Table 2, above. 

 

   

Fig. 7. Cdfs of the distributions of the weighted sum of the conditional probabilities of accident 

per mile assuming a fixed operational profile (weights used in the weighted sum computation are 

set to the expected values of the variates of the prior and posterior Dirichlet, respectively). 

10.2 Combined effect of Copula and of the uncertain operational profile 

In the final part of this Appendix, we compute the distribution of the weighted sum 
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of the margins assuming that the weights are now assumed uncertain and modelled as 

random variables with joint distribution represented by the prior and posterior Dirichlet 

distributions, respectively. The dependency between the conditional pfms is captured 

by a Copula functional and we apply the same Copulas as in 10.1 to: i) the prior distri-

butions of the conditional probabilities of accident per mile of driving, and ii) to the 

posterior distributions. The operational profiles, too, are the ones assumed in the prior 

Dirichlet(10, 10, 40, 10, 30) and Dirichlet(137, 133, 149, 106, 75) used in the contrived 

examples, respectively.  

The calculations are done using the generated 200, 000 samples from the respective 

joint distributions (assuming independence of the margins and a correlation coefficient 

of between 0.1 and 0.9, as described above). Dirichlet distribution is applied using dis-

cretization with 20 values in each of its 5 dimensions, which in turn leads to 3876 dis-

tinct points of the Dirichlet distribution (which represent a vector of 5 values – each 

representing a specific value of the probability of the operating conditions OC1 – OC5). 

Each of these points would account (as a result of Dirichlet discretization) for a slice of 

the probability mass of the Dirichlet distribution. These probabilities will be used as 

weights of the margins in the sum.  

The distribution of the weighted sum for a given set of weights is computed directly 

using the Monte Carlo simulated 200,000 instances sampled from the joint distribution 

with dependencies between the margins. This distribution is weighted with the mass 

associated with the vector of weights and added to the marginal distribution of the 

weighted sum. Once all 3876 vectors of weights (i.e., points of discretization of the 

Dirichlet distribution) are accounted for, the marginal distribution of the weighted sum 

of the margins consistent with the Dirichlet distribution will be derived.  

For each of the snapshots – prior and posterior distributions – we show cdfs of the 

marginal distribution of the weighted sum of the Copula margins. We also computed 

the deviation of sums derived with Copulas from the case assuming “independence” 

between the margins (see Appendix 1).  

 

   

Fig. 8. Impact of dependency among the margins on the marginal probability of accidents per 

mile (a Gaussian Copula is applied to prior distributions). The figure on the left plots the cdfs, 

derived from the Monte Carlo generated sample of 200, 000 random vectors. of the system prob-

ability of accident per mile of driving for different degrees of dependence among the margins: 

starting with “independence” and increasing the correlation between 0.1 and 0.9. The figure on 

the right plots the magnitude of the “error” of assuming “independence” among the margins in 

comparison with the cases of positive correlation using a Gaussian Copula.  
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Fig. 9. Impact of dependency among margins on the marginal probability of accidents per mile 

(a Gaussian Copula applied to posterior distributions). The arrangement of the plots on the left 

and on the right is as in Fig. 7 above, but the Copula is applied to the posterior marginal pfms.  

Clearly, introducing dependency between the margins via a Gaussian Copula with 

the particular dependencies structure does not lead to stochastic ordering between the 

cdfs of the system probability of accident per mile of driving computed under “inde-

pendence” and with any degree of correlation between the margins. Fig. 8 and Fig. 9 

show a clear trend that the cdfs with correlation tend to be stochastically smaller at the 

beginning of the distributions (for values closer to 0 end of the distribution support) 

while their tails tend to become stochastically greater than the distribution under “inde-

pendence”.  

It is also clear from Fig. 8 and Fig. 9 that with the increase of the correlation param-

eter pij, between the margins, the distribution of the weighted sum of the dependent 

margins deviates more strongly from the sum under “independence”, and becomes quite 

noticeable for the highest value of pij = 0.9. For the much smallest values of pij (0.1 or 

0.2), however, the deviation of the sums with “dependence” from the sum under “inde-

pendence” is quite small.  

 

 


