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Abstract
This paper dealswith theBayesian safety assessment of autonomous vehicles (AV) using as a key safetymeasure the probability
of catastrophic failure per mile of driving (pfm), assumed a random variable. The paper takes the view that pfm may (and
typically will) vary due to changing road driving conditions. Accommodating this variation in a Bayesian inference on pfm
requires one to use a multivariate probabilistic model whereby the changeable pfm is captured explicitly for the different
driving conditions. The model that we use in this work is derived from our prior work and accounts for the uncertainties in
both—the operational profile (i.e., the likelihood of the different driving conditions) and the pfms, conditional on the respective
operating conditions. The concept of the “dynamic AV safety assessment (DyAVSA)” is presented in the work, too, whereby
the Bayesian predictions used at run time rely on the operational data collected by a fleet of AVs. DyAVSA benefits both:
(1) the AV vendors, for monitoring the safety changes of the entire AV fleet; (2) the owners/users of individual AVs, whose
safety assessment is personalized and different from the assessment of the AV fleet. DyAVSA thus offers a major change in
the AV safety management than is currently the case. It allows the AV users/owners to benefit from the aggregated safety
relevant data collected from a fleet of AVs. Our findings show that the benefits from DyAVSA for the owners/operators of
the individual AV instances may be significant: the safety predictions they can make by using the data collected by the entire
fleet of AV instances and shared among them, may differ considerably from the predictions the AV instances would be able
to make relying on own observations only. Sharing data would lead to a much more rapid reduction of uncertainty in the
pfms than would be the case if the AV instances relied on their own observations only. The presented DyAVSA, based on a
multivariate Bayesian safety assessment, can be applied to other complex intelligent systems such as robots, UAVs, etc.

Keywords Autonomous vehicle · Safety assessment · Bayesian inference · “Driving to safety”

1 Introduction

Autonomous vehicles (AVs)
1
and other intelligent systems,

which rely on machine learning (ML) or artificial intelli-
gence (AI) for some of its functionality (e.g., perception,
planning, etc.), have challenged many mature methods for

1 In this paper we adopt the term “autonomous vehicles (AV).” The
theory we develop would apply to Level 4 and Level 5 defined by
SAE [1] for “automated driving systems (ADS)” with a complex set
of driving tasks performed in sophisticated operational environments.
Autonomous vehicles are seen as a broad category of vehicles including
ADSas defined in [1], but also other types of vehicles, e.g. the unmanned
autonomous vehicles (UAV), robots, etc.
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safety assessment developed over the years for software-
based cyber-physical systems (CPS). A noticeable recent
example is the concept of “driving to safety”, formulated
in [2], which is used to assess the AV safety from the data
collected during driving an AV on the public roads. [2], and
other related studies, e.g., [3], demonstrated that the amount
of AV driving required for an AV to demonstrate levels of
safety comparable with the safety of man-driven vehicles is
very high (in excess of 10 s of millions of miles), an observa-
tion which motivated the search for alternative methods for
AV safety assessment, e.g. scenario—based testing.

While there is an ongoing active debate as to how AV
safety can be assured cost effectively, it is clear that it will
take years for vendors to demonstrate adequate AV safety
to the regulators [4] and more importantly to convince the
public that AVs are safe to be used on the public roads [5].

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-025-00252-4&domain=pdf
http://orcid.org/0000-0002-3434-5272


   14 Page 2 of 23 Journal of Reliable Intelligent Environments            (2025) 11:14 

Whatever form the AV safety assurance/certification takes
[6] this would be a pre-deployment safety assurance. Once
the national authority grants permission for the use of a
particular AV brand on the public roads, the vendors will
enter a post-deployment period of data collection from the
deployed AVs, which will be used to improve further the AV
functionality and, of course, to improve the AV safety. This
post-deployment cycle is not unique to AVs. It is routinely
followed in many safety—critical domains (nuclear [7], avi-
ation [8] to name a few). The periodic safety reviews are an
opportunity for the operators and/or vendors of the critical
systems to review the safety claim made for the particular
system in light of the new evidence that will have been col-
lected from the installed systems since the previous periodic
review. Should the review discover that the new evidence is
not supportive of the safety claims, corrective actions will
follow, which in turn may trigger a new cycle of certifica-
tion.2

How the post-deployment AV safety reviews will be
shaped in the future is yet to be seen. Waymo, a leading
AV manufacturer, acted decisively after an accident of their
robotaxi in Phenix, Arizona and recalled voluntary the entire
fleet of robotaxis. Some suggest that the transition from pre-
to post-deployment safety assessment should be more grad-
ual whereby the AV vendors should be allowed to deploy
a limited fleets of AVs after a preliminary safety assurance
and use the fleet of deployed AVs to collect operational data
and gradually improve the AV safety on the roads [9]. This
proposal for “continuous safety assessment” is appealing,
especially for AVs of high level of automation (e.g. Level
4 and Level 5 according to [1]) given the great uncertainty
about the operating conditions the AVs may be used in.

Some AVs may find themselves used mostly in “easy”
operating conditions (e.g., on roads with light traffic). Some
other AVs may be used in difficult operating conditions (e.g.,
in heavy traffic in urban areas and extreme weather). Fore-
seeing all possible operating conditions is difficult as the
evidence from the national authorities collecting statistics on
AV accidents suggest [10].

It is well known in safety engineering that safety is not
only a property of the system under assessment, but also of
the operating conditions in which the system is used. AVs
of Level 4 and 5 are examples of systems used in a highly
changeable operational environment, whichmakes the safety

2 In some cases, the boundary between the pre- and post-deployment
safety assurance may be less clear. For instance, the two crashes of
Boeing 737 MAX in 2018 and 2019, which led to the death of sev-
eral hundred of passengers, triggered the grounding of all MAX planes
worldwide for almost 2 years. A high-profile investigationwas triggered
shortly after the second crash, followed by a scrutiny of how the MAX
safety was assessed. A detailed account is available at: https://en.wiki
pedia.org/wiki/Boeing_737_MAX_groundings#2020.

assessment very difficult indeed. In recognition of this dif-
ficulty, the AV community adopted an approach to safety
assurance based on constraining the operational environment
by introducing the concept of Operational Design Domain
(ODD) [11]. ODD defines an “envelop” on the operating
conditions by restricting them to a subset of all operating
conditions that an AV may find itself in (e.g., the intensity
of the road traffic, the weather, the type of the road, etc.). A
safety claim linked to an ODD would apply only to the oper-
ating conditions within the stated ODD. Any accident which
takes place outside the ODDwill not affect adversely the AV
safety claim since the AV is not assured as safe outside the
ODD. A detection of “outside-of-ODD (out-OOD)” should
trigger a transition to a “safe state” (e.g., by stopping the AV
at earliest opportunity when it is safe to do so). Clearly both
detecting “out-ODD” and responding to it by taking the AV
to a safe state, may be subject to failure. Dealing with the
implications of imperfection in detecting and responding to
the event “out-ODD” is outside the scope of this paper. The
implications of “out-ODD” for safety assessment, however,
are briefly discussed later in the paper.

The contributions of this paper are:

• We propose and develop in detail a method for “contin-
uous safety assessment”, we called Dynamic AV Safety
assessment (DyAVSA) based on a multivariate Bayesian
inference procedure, which we developed in [12] and
recently adapted to the needs ofAV safety assessment [13].
To the best of our knowledge, this approach to continuous
safety assessment is innovative and has not been applied
before. A key element of the method is that operational
data (onmiles driven and accidents encountered) collected
by all deployed AV instances of a particular type of AV is
shared with all other deployedAV instances, thus allowing
each instance to benefit from the operational “experience”
of the entire AV fleet. This process could be facilitated by
the AV vendor who may serve as a collector of all oper-
ational data and subsequently share it with the entire AV
fleet.

• We demonstrate on a set of contrived examples3 the bene-
fits from the proposed DyAVSA procedure by comparing
the outcomes from applying the multivariate Bayesian
inference procedure differently: (1) by the vendor to
the data collected by the entire fleet of deployed AV
instances and using an operational profile “on average”
(i.e., accounting for the data collected from the entire AV
fleet); (2) by the individual AV instances to their “own
data” only, i.e., to the data about the miles driven and the

3 The attempt to identify a suitable “field dataset” on which DyAVSA
could be demonstrated unfortunately was unsuccessful as the analysed
databases of road accidents (in USA, UK and Germany) do not seem to
provide the level of details required by DyAVSA.
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accidents observed by the respective AV instance only. In
this case, the AV instances are not aware of the operational
data collected by the fleet of deployed AVs of the same
type, and (3) DyAVSA, i.e., by the AV instances using
own operational data to estimate their own “operational
profile” and using the fleet operational data (e.g., shared
by the AV vendor) to estimate the conditional probabili-
ties of accident per mile of driving in each of the operating
conditions defined by a given ODD.

Our findings demonstrate that DyAVSA can bring about
significant benefits for continuous post-deployment AV
safety assessment. The fleet data will allow for a much faster
reduction of the uncertainty about the conditional probabili-
ties of accident in different operating conditions than each of
the AV instances can achieve by counting on own observa-
tions only. The AV instances can, therefore, benefit from the
shared operational data among the fleet of AVs and conduct
individualized AV safety assessments. These may indicate
that some AV instances are driven in an operational profile,
for which the safety claim may be (or has been) violated.
Such a targeted safety assessment (via the use of DyAVSA)
will allow the AV vendor to change significantly the policy of
issuing advisories (i.e.,AV recalls) to only thoseAV instances
driven in operational environments leading to a safety claim
violation.

1.1 XxxxxAbbreviationsxxxxx

ODD—Operational Design Domain [11]. ODD consists of
a set of operating conditions.

OC—an operating condition, an abstraction used to define
an ODD. Typically, the operating conditions are linked to
(1) the AV driving conditions (e.g., on the motorway vs. in
rural/urban area), and to (2) weather conditions (sunny, rainy,
snow, etc.).

OCi—the i-th operating condition of an ODD.
Pfm—probability of failure/accident per mile of driving.

Ameasure of safety used in the “driving to safety” approach,
proposed in [2].

pfmi –probability of failure/accident per mile, conditional
on the mile being driven in operating condition OCi.

P(OCi)—probability of an AV driving a randomly chosen
mile in OCi.

1.2 Notations

X—r.v. random variable.
fx ( · )—probability density function of the r.v. X.
�—r.v. representing pfm.
�i—r.v. representing pfmi.
�i—r.v. representing P(OCi).
fθ ( · )—probability density function of �.

fθi ( · )—probability density function of �i.
E[�]—expected values of �.
E[�i ]—expected value of �i.
fψi ( · )—probability density function of � i.
E[ψi ]—expected value of � i.
fx ( · )∗ fy( · )—the convolution of the probability density

functions of two independently distributed random variables,
X and Y.

Dir(X1, X2, . . . , Xn|a1, . . . , an)—the Dirichlet distribu-
tion of non-negative random variables X1, X2, . . . , Xn .

Beta(X|α, β)—aBeta distribution of the r.v. Xwith param-
eters α and β.

L(N , r |x)—the likelihood of observing r failures in N
miles of driving, given the values of pfm is x (i.e., pfm � x).

2 Motivation

The traditional approach to post-deployment safety assess-
ment relies on periodic safety reviews. These are used in
many safety–critical industries. The approach, however, has
limitations, which in the context of AV safety assessment are
significant. For instance, the period of safety review (i.e., of
operational data collection) is typically quite long (a year or
longer). Responding to the indicators of potentially unsafe
AV operation with such a long delay is itself a risk as actual
accidentsmay result unless one acts upon early indications of
unsafe operation. There is also an ongoing active debate as to
what indicators of unsafe operation one should use with AVs:
“near misses”, safety performance indicators (SPI) [9] and
“surrogate safety measures” (see Sect. 6 for further details)
are only a few noticeable examples. In these circumstances it
is not obvious how one should apply periodic safety reviews.

A safety claimmay take different forms. The current view
with AV safety is that a safety claim must be linked to an
ODD, but there are different views on how this link should
be applied. One view would be that a safety claim must hold
true in all operating conditions inside the definedODD. Such
an approach will require an extensive safety assessment even
for conditions which are very unlikely to occur in real oper-
ation. “Driving to safety”, proposed by [2], takes a different
approach and adopts as a measure of safety the probability of
accident (i.e., catastrophic failure) per mile of driving (pfm),
expected to be below a given threshold, e.g., lower than the
value of the same measure computed for human drivers. Pfm
is by definition a measure “on average”, aggregated over all
operating conditions, inside a given ODD. It is clear, that a
sufficiently low pfm value can be achieved if the AV is driven
mostly in “easy” conditions (with low pfm) and very rarely
(if at all) in road conditions with high risk of accident (i.e.,
high pfm). A rational assessor in such circumstances would
be tempted to achieve a safety target based on pfm by reduc-
ing the risk of accident in those operating conditions which
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an AV will spend most of its driving and possibly allocate
less effort on reducing the risk in conditions which are (very)
unlikely to occur in operation.4 Such an interpretation of a
safety claim is fine as long as the likelihood of the operating
conditions is stable (i.e., it does not change much over time
and across different AV instances). However, in reality, the
operating conditions vary. They may vary considerably. This
leads to the possibility that a safety claim established by the
AV vendor pre-deployment for an assumed mix of operat-
ing conditions,5 may be violated if/when the mix changes.
Different AV instances are very likely to be used in differ-
ent operating conditions, which may lead to violations of the
safety claim for some AVs. This, in turn, would put the pas-
sengers of the affected AV instances at unacceptably high
risk of road accidents.

In summary, given the operational conditions inwhich dif-
ferent AV instances are used and the intrinsic variability of
these conditions, it seems essential that a suitable monitor-
ing procedure is put in place which allows the AV instances
to conduct continuous run-time safety assessment and eval-
uate the impact of their current operational profile on the
safety claim. Should the safety claim be violated, the affected
AV instances should be stopped or at least notified of the
increased risk from a road accident.

In a recent study into “driving to safety” [13], we scruti-
nized the role of the model used in a Bayesian inference and
demonstrated that a univariatemodel, as proposed by [2], has
a fundamental weakness—it cannot account for the variation
of the likelihoodof accident in highly dynamic operating con-
ditions. We developed a multi-variate Bayesian inference,
aligned well with the concept of ODD and variable operat-
ing conditions. We demonstrated that an inference procedure
based on the proposed multivariate model is superior to any
univariate Bayesian inferences, including the “conservative
Bayesian inference” [15].

The newly developed multivariate Bayesian inference
accounts for the uncertainty in both: (1) the operational pro-
file an AV is driven in, which may change significantly over
time, and (2) the uncertainty about the pfm conditional on

4 Similar judgements of discarding rare events (i.e. that can occur in
unlikely operating conditions) are not unusual in safety assessment.
An extreme example is the Fukushima nuclear plant disaster, where
the impact of a tsunami was considered in the risk-assessment of the
nuclear plant, but the likelihood of extreme tsunamis was considered
very low, hence building a very high seawall—unnecessary. Shortly
before the earthquake in 2011, the error in seawall calculations (and the
assumptions made) was discovered by the national nuclear regulator,
but the operator did not rush to implement adequately high seawalls
[14].
5 The mix of operating conditions, e.g. defined by an ODD, together
with a probability distribution on the set of distinctly different operating
conditions is known in software reliability engineering (e.g., in software
testing) as “operational profile”, whichwe introduce formally in Sect. 3.

the operating conditions included in an ODD. The infer-
ence is split into two inference parts: (1) learning about the
evolving AV operational profile, and (2) learning about the
conditional pfms in the operating conditions included in the
ODD. These two stages of the Bayesian inference provide an
interesting possibility of updating the predicted operational
profile using one set of operational data, e.g., in line with
the AV own observations, and of updating the conditional
pfms using a different set of operational data. As a result of
this flexibility, the vendor and the AV instances can use the
developed multivariate inference differently. The vendor can
use the observations from the entire AV fleet for both—to
update the estimated operational profile and the conditional
pfms. The individual AVs can use the multivariate procedure
with the own observations only for both—to update the own
operational profile and the estimates of the conditional pfms.
The AV instances, however, can use the own observations to
update the own operational profile, but for the conditional
pfms the AV can use the observations of the entire AV fleet,
which will consist of much more extensive operational evi-
dence about the safe operation of the AV brand in each of
the operating conditions of a given ODD. We called the lat-
ter option of applying the multivariate Bayesian inference
relying on the fleet data “Dynamic AV Safety Assessment
(DyAVSA)”.

This flexibility with the data which can be fed into the
inference procedure is due to the nature of the multivari-
ate Bayesian inferences proposed in [13], which consists
of two relatively separate inference steps. In this paper we
study the difference between the predictions derived with
the multivariate Bayesian inference by the vendor and by
the individual AVs using different mixes of operational data
(own and/or from the AV fleet).

3 The systemmodel

3.1 Multivariate Bayesian inference

Now we formulate the problem of AV safety assessment as
a problem of Bayesian inference.

Consider that the measure of AV safety is the probability
of catastrophic failure (i.e., an accident) per unit of distance,
e.g., permile (or kilometer), of driving following the proposal
in [2]. Assume further that the probability of observing a
failure within a mile is not affected by the preceding miles
driven by the AV. In other words, we assume that observing
successive miles of driving (each resulting in a success of an
accident) can bemodelledmathematically as aBernoulli trial
of miles of driving selected at random from the population of
all miles with a probability of failure/accident per mile (pfm).
Let us further assume that pfm is a random variable, �, with
a probability density function, fθ ( · ), which captures the
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Fig. 1 Amodel of ODD as a partition of operating conditions {OC1, …
OCn}. Each OCi is characterized by a probability of failure (accident)
per mile of driving, pfmi. A vehicle (shown as a blue rectangle on the
left) is shown as driving along a “trajectory” (shown as a dashed curve),
which starts in OC1, crosses OC3, OC2, OC4, OC5, OC3, OC5 and
finishes in OC4 (Color figure online)

uncertainty about the value of pfm. fθ ( · ) is typically called a
measure of “epistemic uncertainty”, related to the assessor’s
knowledge (belief) about the value of pfm.

The concept of Operational Design Domain (ODD) [11],
informally introduced earlier, captures the idea that risks of
road accident may vary with the operating conditions. An
ODD is typically defined as a partition of different operating
(road) conditions, OCs, as follows:

OC � {OC1, OC2, …, OCm} such that iff i �� j then OCi

∩ OCj � ∅. This is illustrated below in Fig. 1.
Let us assume that each OCi includes a “homogeneous”

set of miles in the sense that for each of the miles included
in OCi the probability of catastrophic failure/accident per
mile can plausibly be assumed the same, pfmi. The pfmi can,
however, vary across OCi, (i � 1, 2, …, n).6

The recently developed model [12] (PPR-model), which
builds on thework byAdams [16], lands itself well to dealing
with the problem at hand under the assumptions we have
made so far. Appendix 1 provides the essence of the PPR-
model.

The model of Bayesian assessment with an ODD, thus,
leads to a double-stochastic multivariate model in which:

• we capture the likelihood of selecting a mile at random
from partitionOCi using a probability distribution defined
on the set of partitions OC, P(OCi ),7 and

6 We assume that each mile can be attributed reliably to a particu-
lar operating condition. This assumption, the implications of incorrect
attribution of miles/accidents on the prediction outputs is further dis-
cussed later in the paper together with ways of relaxing it.
7 A more refined definition of the partition model may require further
details, e.g., a state model of AV moving between the OCs in which
the OCs are states and the transitions between the OCs are defined
stochastically.

• the joint distribution fθ1, θ2, ..., θn (θ1, θ2, . . . , θn), which
characterizes the uncertainty in the value of pfmi in differ-
entOCi and possibly the stochastic dependencies between
the variates,�1, �2, . . . , �n , of the multivariate distribu-
tion, fθ1, θ2, ..., θn (θ1, θ2, . . . , θn).

To simplify the analysis, we make a couple of additional
assumptions:

• We ignore the details on how AV moves within OCi and
assume that each mile driven by an AV is chosen at ran-
dom from the respective OCi and model the selection as
a Bernoulli trial. This assumption is clearly simplistic.
Figure 1 shows an alternative model—a vehicle moving
along a trajectory through differentOCs. Later in the paper
(Sect. 5) we discuss further how stochastic state-based
models can replace the Bernoulli trial model.

• pfmi are assumed independently distributed random vari-
ables and we use the notation �i and fθi ( · ) for the
random variables and the probability density functions of
�i , respectively, for i� 1,…, n. In other words, we assume
that changes in fθi ( · ) do not affect fθ j ( · ), i �� j . We
discuss the implications of this assumption and ways of
relaxing it in Sect. 5 of the paper, too. Appendix 2 pro-
vides further details on the implications of the assumption
that pfms are independently distributed random variables
by constructing fθ1, θ2, ..., θn (θ1, θ2, . . . , θn) using Copula
to capture the dependencies between the variates �1, �2,
. . . , �n and their impact on aweighted sumof the variates.

P(OCi ) may vary over time or be subject to epistemic
uncertainty, which we capture by using a random variable,
�i with a probability density function fψi ( · ). Since the
operating conditions form a partition of the space of miles,
the constraint

∑n
i�1 �i � 1 applies: a mile with certainty

will be selected from one of the partitions.8

We now express the joint distribution fψ1,ψ2, ...ψn (ψ1, ψ2,
. . . , ψn),which captures the epistemic uncertainty associated
with the selection of a mile from the space of all miles. This
distribution is known in software reliability engineering and
safety as operational profile. A suitable analyticmultivariate
distributionwhich can be used here to capture the uncertainty
in the operational profile and its variation over time is the
Dirichlet distribution, which for n variates, �i . . . �n…,�n

is defined as [17]:

Dir(ψ1, ψ2, . . . , ψn; α)

≡ fψ1,ψ2, ...ψn (ψ1, ψ2, . . . , ψn; a1, . . . , an)

8 Although dealing with “out of ODD” is outside the scope of the
paper we note that accounting for “out of ODD” would simply add
an additional partition, OCout-of-ODD.
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� �
(∑n

i�1 ai
)

∏n
i�1 �(ai)

[
n−1∏

i�1

ψ
ai−1
i

][

1 −
n−1∑

i�1

ψi

]an−1

(1)

Using the joint distribution fψ1,ψ2, ...ψn (ψ1,ψ2, . . . , ψn)

we can now express the marginal distribution of the system
pfm f W B

θ (x) as follows (see Appendix 1 for further details):

f W B
θ (x) �

∫

fθ |ψ1, ψ2, ...ψn (x |ψ1, ψ2, . . . , ψn)

fψ1,ψ2, ...ψn (ψ1,ψ2, . . . , ψn; a1, . . . , an)

dψ1ψx2 . . . dψn

�
∫

[
fθψ1(x) ∗ fθψ2(x) ∗ . . . ∗ fθψn (x) × fψ1,ψ2, ...ψn

(ψ1,ψ2, . . . ,ψn)]dψ1dψ2 . . . dψn

(2)

Let us now consider how new operational evidence from
driving an AV would affect the distribution f W B

θ (x). Let us
consider that we have received operational evidence in the
form {(N1, r1), (N2, r2), …, (Nn, rn)} of the miles driven,
Ni, and failures/accidents observed, ri, 0 ≤ ri ≤ Ni, in each
of the operating conditions,OCi. We can account for the new
operational data by conducting a Bayesian inference in the
following steps:

• Step 1: Update the uncertainty related to the opera-
tional profile, fψ1,ψ2, ...ψn (ψ1,ψ2, . . . ,ψn|N1, N2, . . . ,
Nn). Note that the updated operational profile is not
affected by the number of failures/accidents that have been
observed. The posterior distribution only depends on the
number of miles driven in different operating conditions.
For instance, if we capture the operational profile uncer-
tainty using a Dirichlet distribution, Dir(ψ1,ψ2, . . . , ψn;
α), then the new evidence (i.e. {(N1, r1), (N2, r2),…, (Nn,
rn)}) will lead to a new Dirichlet distribution Dir

(
α post

)
,

which is derived from Dir(α) by a simple modification of
the parameters of the Dirichlet distribution:

Dir
(
α post

)
= Dir(ψ1,ψ2, . . . ,ψn;α1 + N1, α2 + N2, . . . , αn + Nn)

(3)

• Step 2: The conditional distributions, fθi (x |Ni , ri ) of fail-
ure/accident per mile in OCi will be updated to reflect
the new evidence by conducting Bayesian inferences on
conditional distributions fθi (x |Ni , ri ) in each of OCi as
follows:

fθi (x |Ni , ri ) � fθi (x) × L(Ni , ri |x)
∫1x�0 fθi (x) × L(Ni , ri |x)dx

(4)

where L(Ni , ri |x) is the likelihood of observing ri acci-
dents in Ni miles. For Bernoulli trial a binomial likelihood

is used, L(Ni , ri |x) �
(
Ni

ri

)

xri (1 − x)Ni−ri .

If the prior fθi (x) is a Beta distribution, Beta(x ; α, β),
then the posterior distribution will be also a Beta distribu-
tion, Beta(x ; α + ri , β + Ni − ri ). Note that updating the
conditional distributions in each of the operating conditions
is affected by both the number of miles, Ni, and the number
of failures/accidents, ri, observed in the respective operating
condition OCi. This is the case since we have assumed that
the observations in OCi only affect the conditional probabil-
ity of failure, �i , but do not affect � j for the other operating
conditions.

• Step 3: derive fθψi (x |Ni , ri ) from fθi (x |Ni , ri ) using
(Eq. 11 of Appendix 1).

• Step 4: Using the distributions updated in Step 1 and Step
2 above we apply (2) and derive the marginal distribution

of the probability of system failure, f
W Bpost
θ (x |N1, r1, N2,

r2, . . . , Nn , rn) as follows:

f
W Bpost
θ (x |N1, r1, N2, r2, . . . , Nn , rn)

�
∫

[
fθψ1(x |N1, r1) ∗ fθψ2(x |N2, r2) ∗ . . .

∗ fθψn (x |Nn , rn)
]

Dir
(
α post)dx1dx2 . . . dxn

(5)

The symbol “*” is the convolution operator of indepen-
dently distributed random variables θψi with probability
density functions fθψi (x |Ni , ri ), respectively.

We call the last expression a “white-box” posterior distri-
bution of the marginal system pfm.

A more detailed discussion of the derivation can be found
in Appendix 1.

So far, we have not specified explicitly how the data
needed in the Bayesian inferences would be collected. The
counts

{(
N 1
1 , r

1
1

)
,
(
N 1
2 , r

1
2

)
, . . .

(
N 1
n , r

1
n

)}
could come from

an individual AV or from a fleet of AVs. The inference pro-
cedures will be the same irrespective of whether the counts
are collected for a single AV instance or for a fleet of AVs.

Let us now look at the differences between using the data
collected from an AV instance or from a fleet of AVs of the
same brand.

3.2 Safety assessment for the AV vendor

Let us consider the case of a fleet of L AV instances from
a given AV brand being deployed in operation. Each AV
instancewill be usedwithin the specifiedODD, but the opera-
tional profile,which applies to instanceAVm, i.e., f

(m)
ψ1,ψ2, ...ψn

123



Journal of Reliable Intelligent Environments            (2025) 11:14 Page 7 of 23    14 

(ψ1,ψ2, . . . ,ψn), may differ from the profile f (l)
ψ1,ψ2, ...ψn

(ψ1,ψ2, . . . ,ψn) which applies to instance AVl. For each
OCi the instance AVm will collect:

• The number of miles driven, N (m)
i , in OCi : some

miles will be without failure/accident, some—with fail-
ures/accidents.

• The number of miles with failures/accidents, r (m)
i for each

OCi .

These numbers will be periodically passed to the vendor9

(e.g., by installing on each AV a device dedicated to collect-
ing N (m)

i and r (m)
i and sending these over to the vendor).

The vendor will then be able to aggregate the observations
received from all AV instances and compute the following
sums:

Mi �
L∑

m�1

N (m)
i

ri �
L∑

m�1

r (m)
i

(6)

Mi and ri will be used by the vendor to conduct an infer-
ence to assess the pfm for the AV brand. Note that under this
scenario, the inference will account for the evidence (miles
driven and failures observed) collected from the entire fleet of
deployed AV instances and with the level of details required
by the multivariate model using the ODD. The posterior
distributions fθi ( · |Mi , ri ) will account for every piece of
operational data that has been seen inOCi by the fleet of AVs
deployed by the vendor. The operational profile (which we
will refer to as an “operational profile on average”), derived
with the Mi counts (the number of miles seen in operation
condition OCi calculated as shown in (3)), however, may
well differ from the operational profiles of all deployed AV
instances. If this is the case, the “operational profile on aver-
age” derived by the vendor, may not be useful to assess the
safety of any of the deployed instances.

With the aggregated Mi and ri counts, the vendor could
apply an inference on fθi ( · |Mi , ri ) and using (3), (4) and
(5) derive the posterior distributions of the AV brand, i.e.,
“on average” over the entire fleet of deployed AV instances.
Given the fact that the inference for the “operational profile
on average” using (3) may not be immediately useful to any
of the deployed AV, one wonders what benefits the inference

9 Clearly, some synchronization is needed between the vendor and the
deployed AV instances so that the counts collected by the instances for
a particular epoch of observation are accurately passed to the vendor.
We acknowledge that deploying a robust synchronization procedure is
an important implementation detail, but one which is outside the scope
of this paper.

conducted by the vendor can offer to the deployed instances.
Here are a couple of considerations.

• fθi ( · |Mi , ri ) would capture the current knowledge about
pfmi in OCi arrived at by using the data from the entire
fleet. This data is valuable and can be used not only to

derive f
W Bpost
θ (x |M1, r1, M2, r2, . . . , Mn , rn) for “the

operational profile on average”, but also for any other
operational profile, judged by the vendor as important.
For instance, the vendor may be interested in conducting a
safety assessment “on average” for a geographical region
in which the vehicles of the particular AV brand have seen
no or very little operational exposure to date. The vendor
may be able to define an anticipated operational profile
for that region (e.g., using any data that may be avail-
able for the man-driven vehicles in the region). Once the
anticipated operational profile is defined, the posterior dis-
tributions fθi (x |Mi , ri ) derived for observations collected
under a different operational profile, can be used to con-
struct the distribution of the system pfm “on average” for
the anticipated new (regional) operational environment.

• In extreme cases it is possible, of course, that the ODD
for the region of interest may only partially overlap with
the ODD, for which the operational data has been col-
lected, i.e., the anticipated ODD may contain OCs for
which no data has been collected from the deployed fleet.
For instance, in regions of extreme weather (e.g., polar
circle) there may beOCs for which data collected in mod-
erate climates will offer no observations. In this case, of
course, the benefits from reusing the available Mi and ri
counts may be limited.

Note that reusing the data from the AV fleet is only possi-
ble with an inference model where the conditional pfmi are
explicitly accounted for as separate random variables, �1,
�2, . . . , �n . A similar “extrapolation” from one operational
profile to another would require pfms being assessed under
the first operational profile.

• Knowledge about the operational exposure accumulated
by the fleet of AVs to date may be useful for the vendor
in the limited sense of finding out how the deployed AV
fleet is used “on average”. Comparing the “observed” pro-
file “on average” with the “target” profile (i.e., the one
for which the safety has been claimed) may itself provide
the vendor with either an assurance that the assumptions
made about the operational profile in the safety assess-
ment prior to AV deployment are (broadly) correct, or that
the assumptions are “biased”. The latter, in turn, may trig-
ger a safety review to check if the AV for the observed
“operational profile on average” is sufficiently safe even if
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the AV safety for the observed environment differs signif-
icantly from the one used before the AV fleet deployment.
Again, such an analysis is only possible if the inference is
based on a model, in which the operational profile and the
conditional pfms are derived from data separately.

• Finally, in addition to the analysis “on average”, the vendor
may conduct a run-time safety assessment of the individ-
ual vehicles following the procedure explained in Sect 3.3
using the data provided by the individual AVswith the ven-
dor. Should the safety of some AVs become inadequate,
the vendor may issue them with a warning. Such a “tar-
geted warning” campaign is quite different from what is
done by the car manufacturers at the moment.10

3.3 DyAVSA for safety assessment of individual AVs

The Bayesian inference discussed above using the observa-
tions from the entire fleet of data, especially the inference of
fθi (x | f leetdata), can be useful for the deployed instances.
A newly deployed AV instance could be bootstrapped by
the vendor at the time of deployment with prior distribu-
tions fθi (x), each of which may be the posterior distribution
derived by the vendor using the observations accumulated
from the entire fleet of previously deployed AV instances. In
other words, the newly deployed AV instance will be pro-
vided with up-to-date priors fθi (x), which account for the
evidence from the entire AV fleet of deployed AVs. Regard-
ing the operational profile of the newly deployedAV instance,
it can be the profile “on average” computed by the vendor to
date, or another profile, when there are reasons to trust the
alternative profile more than the profile “on average”.

From this point in time on, a newly deployed AVm, will
rely on the data it collects, N (m)

i and r (m)
i . Quite clearly,

the operational exposure of AVm will be limited in compar-
ison with the exposure of the entire AV fleet (one assumes
that the fleet will be large, of course). Accounting for own
observations only, however, will allow AVm to learn (e.g.,
to improve the confidence in the value of the chosen mea-
sure of safety) slowly in comparison with learning from the
experience of the entire AV fleet. Consider the following
scenario, in which the data collected by the vendor from all
AV instances is organized in epochs of observations: E1, E2,

…, En,… and
(
M (E)

1 , r (E)
1

)
,

(
M (E)

2 , r (E)
2

)
, . . . ,

(
M (E)

n ,

r (E)
n

)
represent the data accumulated by the vendor during

epoch E. M (E)
i , r (E)

i are the counts we defined in (6) for
epoch E. The vendor at the end of epoch E could broad-

cast
(
M (E)

1 , r (E)
1

)
,
(
M (E)

2 , r (E)
2

)
, . . . ,

(
M (E)

n , r (E)
n

)
to all

deployed AV instances. With these aggregated counts each

10 To recall the entire fleet of vehicles following a serious incident.

AV instance will be able to update the own distributions fθi
(x | f leetdata)11

(
M (E)

1 , r (E)
1

)
,
(
M (E)

2 , r (E)
2

)
, . . . ,

(
M (E)

n ,

r (E)
n

)(
M (E)

1 , r (E)
1

)
,

(
M (E)

2 , r (E)
2

)
, . . . ,

(
M (E)

n , r (E)
n

)
fθi

(x | f leetdata).
AVm will update its own operational profile using its own

observations only, i.e., if the operational profile, is expressed
as a Dirichlet distribution for AVm the profile will become:

Dirm
(
α post)

� Dir
(
ψ1,ψ2, . . . ,ψn;α1 + N (m)

1 , α2 + N (m)
2 , . . . , αn + N (m)

n

)

Thus, the posterior distribution of f
W Bpost
θ (x | f leetdata,

owndata) becomes:

f
W Bpost
θm f leet

(
x |M1, r1, M2, r2, . . . , Mn , rn ,

N (m)
1 , N (m)

2 , . . . , N (m)
n

)

�
∫

[
fθψ1(x |M1, r1) ∗ fθψ2(x |M2, r2) ∗ . . . ∗

fθψn (x |Mn , rn)
] × Dirm

(
α post)12

(7)

As indicated earlier, we call the assessment leading to (7)
“Dynamic AV Safety Assessment (DyAVSA)”.

If instead of using the fleet dataAVm only relied on its own
observations in updating the operational profile and the dis-
tribution of the conditional pfms, then the posterior marginal
distribution would be:

f
W Bpost
θmown

(
x |N (m)

1 , r (m)
1 , N (m)

2 , r (m)
2 , . . . , N (m)

n , r (m)
n

)

�
∫

[
fθψ1

(
x |N (m)

1 , r (m)
1

)
∗ fθψ2

(
x |N (m)

2 , r (m)
2

)
∗ . . . ∗

fθψn

(
x |N (m)

n , r (m)
n

)] × Dirm
(
α post

)

(8)

In summary, conducting a continuous safety assessment
of AV instances either using DyAVSA or counting on own
observations only will allow for monitoring how safety will
vary over the lifetime of individual AV instances. Continuous
safety assessment can be conducted in a decentralized fash-
ion, which brings advantages. For instance, if the vendor’s
server is down, then DyAVSA may temporarily be disabled,
too. In this case, the AVs can continue the assessment switch-
ing to using their own data only. As soon as the vendor’s
server is back up, DyAVSA can be enabled.

DyAVSA brings a clear advantage for the AV instances:
they can learn faster about the values of the conditional pfms

11 Using Beta distributions is not essential for the method. A different
type of distributions can be used for the conditional pfmi. In the latter
case the inferencewill rely on numericmethods to compute the posterior
distributions. Essential for the illustrations is only the assumption that
the respective conditional probabilities are independently distributed
random variables.
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in the different operating conditions than if they had counted
on the own observations only, which in turn will reduce the
uncertainties in the conditional pfms and of the marginal sys-
tem pfm.

Figure 2 below illustrates the data flow used in DyAVSA
and how the data exchanged between the AV instances, and
the vendor affects the predictions by an AV instance and by
the AV vendor.

The key elements in DyAVSA are:

• AVs-to-Vendor communication.TheAV instances send the
observations they have collected,

(
N (E)
1 , r (E)

1

)
,

(
N (E)
2 ,

r (E)
2

)
, . . . ,

(
N (E)
n , r (E)

n

)
, for each “epoch” E of observa-

tion respectively, to the Vendor Data Centre (VDC), where
the data is aggregated, anonymized as necessary, and used
by the vendor to derive the multivariate posterior “opera-
tional profile on average” and the conditional distributions
f Eθi ( · |Mi , ri ), in each of the operating conditions. This
communication is sufficient for the vendor to monitor the
safety “on average”, but also the safety of the individual
AVs.

• Vendor-to-AVs communication. The vendor shares with
the AV instances the distributions of the conditional pfms,
f Eθi ( · |Mi , ri ) (denoted as fθi ( · | f leetdata) in the figure)
in all operating conditions. These distributions can be used
by the individual AVs to compute the distribution of the
marginal system pfm for the particular AV. Note, that the
vendor does not share with the AV instances the opera-
tional profile “on average”, as this profile is of no use to
the individual AVs. In the absence of Vendor—to—AVs
communication, the AV instances will not be receiving f Eθi
( · | f leetdata), hence will be unable to benefit from the
observations collected by other AVs. In this case they still
can monitor their own safety relying only on the data they
have collected themselves. Under the “Individual AV per-
spective” the diagram shows two multivariate inferences
labelled “Own data only” and DyAVSA (“All fleet data”),
respectively, thus illustrating the differences between the
inferences based on locally collected data only or on data
shared by the vendor, respectively.

4 Contrived examples

We use several contrived examples to illustrate how the
multivariate Bayesian predictions are affected by whether
DyAVSA is used or not.

Let us assume that an ODD is used which splits the “space
of road conditions” into five non-overlapping operating con-
ditions (partitions) OC1, OC2, OC3, OC4, and OC5 and the
prior distributions of the conditional pfmi are defined as Beta
distributions with the following parameters:

fθ1(x) ≡ Beta(α � 2, β � 299),

fθ2(x) ≡ Beta(α � 2, β � 800),

fθ3(x) ≡ Beta(α � 2, β � 1500),

fθ4(x) ≡ Beta(α � 2, β � 1000), and

fθ5(x) ≡ Beta(α � 1, β � 400).

,

The parameters of the Beta distributions are chosen to
illustrate the possibility that OCs may differ both in terms of
expected pfmi and in terms of the uncertainty in the values
of the conditional pfmi in the respective OCs.

We assume that the vendor assessed the operational profile
and expressed it as a Dirichlet distribution Dir(ψ1, ψ2, . . . ,
ψn; α1 � 10, α2 � 10, α3 � 40, α4 � 30, α5 � 10). In the
examples used in this section this prior profile is assigned to
all AVs and to the vendor.

With the defined prior operational profile and distributions
fθi (x) of the conditional pfms the marginal prior distribution
of the system pfm can be derived using (2).

Now let us consider a fleet of 5 AVs (AV1 … AV5).
Table 1 shows two observations. In Observation 1 none

of the AVs experienced any accidents. InObservation 2AV3
observed two accidents—one in OC1 and one in OC2. The
other vehicles (AV1, AV2, AV4 and AV5) did not observe any
accidents.We chose the counts ofmiles driven inObservation
1 and Observation 2 to be identical for all AVs.

Each AV is assumed to have driven 100 additional miles
with both Observation 1 and Observation 2. Thus, both
observations consist of 500miles (the sumof themiles driven
by all AVs).

4.1 AV instance inference: own data only vs. data
from the fleet of AVs

In this sub-section we compare the Bayesian predictions by
AV instances for the following cases:

• An AV instance uses its own data only.
• An AV instance uses DyAVSA, defined above.

The predictions are derived from the observations
described above: Observation 1—with no failures observed,
and Observation 2—with some failures observed by AV3.
The results are captured in Fig. 3 (Observation 1) and Fig. 4
(Observation 2), respectively.

The plots show the distributions of the marginal sys-
tem pfm for the AV instances computed with and without
DyAVSA, and for the vendor. The marginal prior distribu-
tion of system pfm, the same for all AVs and the vendor, is
also shown.

We can make a few observations from Fig. 3:

• The impact of the fleet data is clearly visible—the poste-
riors by the AV instances based on fleet data differ more
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Fig. 2 DynamicAVSafetyManagement (DyAVSA) concept in compar-
ison with dynamic safety management by the AV vendor. The indexes
“E” referring to data collection epochs have been omitted to simplify

the figure. For the same reason we use fθi ( · | f leet data) as a shortcut
for the set of conditional distributions

{
fθi ( · |Mi , ri ), i � 1, . . . , n

}

Table 1 Observations by AV1 … AV5

AV ID N1 r1 N2 r2 N3 r3 N4 r4 N5 r5 Total

Observation 1 AV1 7 0 9 0 45 0 30 0 9 0 100

AV2 10 0 45 0 30 0 8 0 7 0 100

AV3 45 0 30 0 7 0 9 0 9 0 100

AV4 20 0 20 0 20 0 20 0 20 0 100

AV5 45 0 19 0 7 0 9 0 20 0 100

Vendor 127 0 123 0 109 0 76 0 65 0 500

Observation 2 AV1 7 0 9 0 45 0 30 0 9 0 100

AV2 10 0 45 0 30 0 8 0 7 0 100

AV3 45 1 30 1 7 0 9 0 9 0 100

AV4 20 0 20 0 20 0 20 0 20 0 100

AV5 45 0 19 0 7 0 9 0 20 0 100

Vendor 127 1 123 1 109 0 76 0 65 0 500

significantly from the priors than the AV posteriors based
on own data only.

• The case of AV1 provides an interesting insight. The pre-
dictions for AV1 based on own observations only aremore
optimistic than the prior. Looking at the number of miles
driven by AV1, we note that it spent only 7 miles in OC1,
less than the prior operational profile would suggest (“on
average”). Hence, AV1 benefits from the own observations
in two ways: it observes no failures, hence the conditional
probabilities of failure in OC1 will be predicted to get

“stochastically smaller”, and the newAV1 operational pro-
file (after driving additional 100 miles) will make OC1

even less likely than it was in the prior operational profile.
SinceOC1 is theworst OC (with the biggest expected prior
pfm of all OCs) the reduction of its weight in the opera-
tional profile stochastically reduces the posterior system
pfm for AV1.

• The results for AV3 are quite interesting, too. Its posterior
distribution of system pfm based on own data only is sig-
nificantly more pessimistic than the predictions of system
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Fig. 3 Illustration of the marginal system pfm of individual AVs using either own data only or the aggregated data for the entire fleet (as proposed
with DyAVSA) and the vendor for Observation 1 (no failures)

Fig. 4 Black-box vs. White-box inference of the marginal probability of catastrophic failure of individual AVs using either own data or fleet data
(DyAVSA) for Observation 2 (with failures of AV3)
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pfm based on the fleet data. This is a consequence of AV3

spending 45% of the driving in OC1, the worst operating
condition. As a result, the weight ofOC1 in the operational
profile increases significantly (the posterior probability of
selecting a mile from OC1 will become 55/200, e.g., more
than 27%). The number of additional miles driven in OC1

will only marginally reduce the conditional pfm1. In com-
parison, with the fleet data the posterior distribution of
the pfm1 will be more optimistic than with own data only.
Hence, with own data only the overall effect of the addi-
tional driving is that the posterior pfm3 is now worse (i.e.,
more pessimistic) than with the fleet data. Both predic-
tions (with own data only and with the fleet data) are more
pessimistic than the prior.

• AV2, AV4 and AV5 offer further interesting insight. The
posterior system pfm for AV4 andAV5 using own data only
are slightly more pessimistic than the predictions based on
the fleet data. The two posteriors for AV2 are not stochasti-
cally ordered—the posterior probability density functions
have a cross-over point: the tail of the predictions of the
system pfm with the fleet data is “thicker” than the predic-
tions with own data only.

Figure 4 only shows the posteriors for two of the AVs:
AV1, which did not experience any failures of its own, and
AV3 which experienced two failures inOC1 andOC2, respec-
tively.

The plots indicate patterns similar to those recorded with
Observation 1 (shown in Fig. 3):

• The posterior distributions based on own data of AV1 (and
of AV2, AV4 and AV5) are identical to those recorded in
Fig. 3, which is to be expected since these AVs did not
observe any failures of their own under Observation 2.
The posterior distributions recorded for AV3 based on own
observations are similar but slightly worse than the poste-
riors derived for AV3 with Observation 1.

• The predictions based on fleet data and own operational
profile are quite similar to the ones that we recorded with
Observation 1. The posterior distribution of system pfm
for AV3 based on own data is again worse than the predic-
tions based on the fleet data and is subject tomuch greater
uncertainty as evident from the spread of the probability
mass of the posterior distribution of pfm of AV3.

• Finally, the patterns that we observe for the vendor are also
similar to those recorded for Observation 1: the posterior
is worse than the prior due to the observed failures of AV3

and the complex interplay between the operational profile
(changed due to the additional miles driven) and how the
numbers of miles and accidents affect the predicted system
pfm.

We can conclude from Figs. 3 and 4 that the predictions
of the marginal pfm are quite sensitive to the data used in
the inference and indicate that DyAVSA can bring significant
advantages to the individual AVs. The results clearly indicate
that using the data collected from the entire fleet affects the
predicted distributions of themarginal systempfm of theAVs.

4.2 Conditional probability of failure inOC1–OC5:
prior vs posterior, AVs own data only vs. fleet
data

The next two figures, Figs. 5 and 6, provide further details on
how the distributions of the conditional pfmi in OC1–OC5

are affected by the data used in the inference: own data by
AV1, …, AV5 only or data collected by the entire fleet.

Figure 5 shows that using own data or fleet data makes a
considerable difference in all OCs. The magnitude is most
significant in OC1. Figure 5 also plots together (the bottom
right of the figure) the posterior distributions of the marginal
system pfm, computed by the AVs based on own data and by
the vendor using in full the fleet data.

Comparing the plots of the conditional pfms in OC1,
…, OC5 does not indicate visible differences between the
predicted fθi (x |owndata), computed by the AVs and fθi
(x | f leetdata), computed by the vendor. We would expect
that this would imply similarity to the predicted system pfm.
Surprisingly, however, the posterior system pfm (shown in the
bottom right plot of the figure) computed by AV3 (marked
with the arrow labelled “1” in the right-bottom plot in the
figure) stands out and is visibly more pessimistic than the
predicted system pfm of the other AVs and of the vendor,
which are close to one another. This observation suggests
that counting on the vendor predictions “on average” only
(labelled with “2” in the right-bottom plot of the figure) may
be misleading, as in this case the spread of safety predictions
by the individual AV instances may be significant (e.g. as is
with AV3) but will remain unseen.

Another noteworthy observation from Fig. 5 is that the
AVs predictions vary in terms of how they compare with
the prior distribution of system pfm: some of the posterior
distributions are more optimistic than the prior (i.e., the tails
of the respective distributions are “thinner” than the tail of
the prior), while other posteriors—are more pessimistic than
the prior (i.e. their tails are “thicker than the tail of the prior”).
These differences are due to the complex dependence of the
system pfm distribution on the operational profile of the AVs
(or the vendor) and how the additional miles of AV driving
have changed the distributions of the conditional pfms in the
operating conditions. Counting on the vendor’s predictions
alone will not allow one to see that individual AVs’ predicted
system pfm may be close and even violate a safety claim.
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Fig. 5 Bayesian predictions on the conditional pfmi in OC1–OC5 for Observation 1 (no failures): own data vs. fleet data

Fig. 6 Bayesian predictions on the conditional pfmi in OC1–OC5 for Observation 2 (failures observed): own data vs. fleet data
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Under Observation 2 (Fig. 6) the posterior distributions

f (3)
θ1

(
x |N (3)

1 , r (3)
1

)
and f (3)

θ2

(
x |N (3)

2 , r (3)
2

)
by AV3 of the

conditional pfms in OC1 and OC2, respectively, are visibly
different from the predictions of the other AVs and of the
vendor, which is expected as these are the two OCs in which
AV3 has observed accidents. Interestingly, while the poste-
riors for AV3 are visibly worse than the prior, the posterior
distributions of pfm1 and pfm2 by the vendor are more opti-
mistic than the prior. Clearly, a single failure by AV3 in both
OC1 andOC2 is insufficient tomake the two posteriors calcu-
lated by the vendor forOC1 andOC2, respectively, to become
more pessimistic than the priors (assumed in the example the
same for all AVs and the vendor) for theseOCs. This example
clearly shows the possibility for the “predictions on average”
to “smooth over” the impact of sudden “reverse of fortune”
when some AVs observe accidents in some of the OCs and
reiterates the point that we have already made above that the
predictions “on average” may be biased and hide important
information related to safety of individual AVs.

5 Discussion and threats to validity

The results from the contrived examples demonstrate that
the effect of the data used in the Bayesian inference may be
quite significant. We observed that multivariate probabilis-
tic models, which account for a variable operational profile,
bring the following advantages:

• The predictions are in tune with the needs of AV safety
assessment and account for fluctuations in operational pro-
files by individual AVs. The advantages of the multivariate
inference over a univariate inference are extensively dis-
cussed in our recent work [13].

• Forces assessors to collect operational data, which is suit-
able for porting a safety claim to a new operational profile
which may differ significantly from the profile for which
the data has been collected,

• Serves the needs of the AV vendors and of the individ-
ual AVs, which are quite different: the individual AVs,
via DyAVSA, may benefit considerably from the data
collected from a fleet of AVs, and accounts for the own
operational profile.

Clearly making use of DyAVSA would depend on how
reliably the AV can discriminate between different operating
conditions.Unreliable discriminationwill affect the accuracy
of counting themiles driven in different operating conditions,
the accuracy of the updates sent by AV instances to the ven-
dor servers, and the accuracy of the aggregation of the data
by the vendor servers shared with all AV instances. Like-
wise, failures to detect “out-of-ODD” may lead to incorrect

attributions of miles and accidents which are outside ODD to
some of the operating conditions.12 Such failures may affect
the predictions but are outside the scope of this paper. We
intend to address this concern in our future work.

DyAVSA is clearly dependent on the necessary com-
munication infrastructure such as a suitable mechanism for
sending observations from each AV instance to a centralized
collector (e.g., a server operated by the AV vendor) where
the data is aggregated as necessary (including addressing
the privacy concerns) and suitable mechanisms for sharing
the aggregated data among the deployed AV instances. We
acknowledge the importance of the implementation details,
e.g., the aggregated data should account for the needs of each
AV instance. Some instances will require frequent updates of
aggregated data, while other AV instances will be used less
intensively and therefore may require less frequent access
to the aggregated data. Clearly, the data sharing mechanism
should account for the needs of all AVs, especially if the
aggregated counts (of miles and accidents) only are shared.
Sharing the distributions of the conditional pfmi seems easier
to implement, as it will only require the aggregator to send
the current snapshot of the distributions of the conditional
pfmi.

A related concern is whether the current communication
technologies are good enough to allow a scalable DyAVSA
deployment with large fleets of AVs. Our preliminary calcu-
lations indicate that the current communication technologies
used in modern vehicles (e.g., 4G and 5G mobile networks)
provide plenty of bandwidth to allow scalable deployment
of DyAVSA with millions of AVs. We envisage that each
AV will require infrequent updates, say no more than once
a minute, and will likely require an exchange of a few
kilobytes of data with the vendors’ servers in each direc-
tion, as illustrated in Fig. 2. The current cloud computing
technologies have a typical communication bandwidth of
terabytes per second, which should easily meet DyAVSA
requirements. Via load balancing the vendor servers can
easily handle millions of connections with individual AV
instances. Technologies which require continuous commu-
nications between modern vehicles and a centralized service
exist, e.g., the Mobileye REM (Road Experience Manage-
ment),13 which offers “crowdsourced, continuously updated
map of the world”. REM uses a two-way communication
between Mobileye terminals installed on individual AVs and
the company’s cloud service. It seems that REM’s require-
ments for communication bandwidth exceed significantly the
requirements by DyAVSA.

12 A related problem, that may affect the inference, is reliability of
data communication, including failures due to malicious activities. We
assume that sufficiently reliable and secure data communication will be
used making negligible the adverse effect of data miscommunication.
13 https://www.mobileye.com/technology/rem/.
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Among the threats to the validity of our results we would
like to acknowledge the assumptions that our work relies
upon:

• The proposed method of multivariate Bayesian inference
relies on several assumptions:

• the conditional pfms of driving in different operating con-
ditions are assumed independently distributed random
variables. This assumption seems plausible butmay in fact
turn out to be difficult to justify. The problem is not newand
has been discussed in the past, e.g., in [18]. Conceivably,
a failure may be traced to a fault, which can be triggered
in more than one operating condition, thus promoting the
idea that beliefs about conditional pfms in operating condi-
tions should be dependent. Technically, the independence
assumption can be relaxed, e.g., by using suitably chosen
Copulas14 [19] to capture the dependencies between the
random variables (in this case—the conditional pfms in
different operating conditions). In Appendix 2 a detailed
discussion is provided about applying a Gaussian Copula
to capture possible dependencies among the distributions
of the conditional pfms. We also illustrate the implications
of dependency among the distributions of the conditional
pfm for the distribution of a weighted sum of the depen-
dent variates aligned with an operational profile captured
by a Dirichlet distribution. Scoping a credible procedure
to elicit the parameters of these Copulas, however, is out-
side the scope of this paper. We intend to look at this
problem in our future work. We envisage two important
aspects of this future work: (1) is it plausible to assume
that the dependencies captured by a Copula will remain
unaffected over time? Such a view would be consistent
with the spirit of Copulas—a Copula functional can be
applied to anymarginal distributions (in our case—to prior
and posterior distribution of pfms.), and (2) how can one
elicit the parameters of a Copula applied tomarginal distri-
butions which represent epistemic uncertainty, and more
importantly, for which the dependence may be difficult to
“measure”. Contrary to typical applications of Copulas,
e.g., in finance to represent dependencies between risks of
different stocks,which are directly observable andmeasur-
able, in our case Copula will capture dependences among
epistemic uncertainties, which are difficult to capture. On
the one hand, there is a clear intuition behind dependence,
e.g., changes of driving policy may affect the true pfms
in several operating conditions (i.e., there is a “common
factor” affecting several pfms). Whether this implies that
one should opt for modelling the dependence between
the respective marginal distributions (i.e., the epistemic

14 Copulas are a specific way of modelling the dependence between
random variables. The interested reader may check https://en.wikipe
dia.org/wiki/Copula_(probability_theory) for further details.

uncertainties) or just let the Bayesian inference eventu-
ally update the marginal uncertainties is unclear. Further
detailed analysis is needed to understand the phenomenon
(of “common factors”) andwhat the best way ofmodelling
it is. We also envisage that adding dependence among
the distributions of the pfms may be a way of introduc-
ing a degree of conservatism in Bayesian predictions. As
our illustrations in Appendix 2 show assuming significant
degree of positive correlation between the distributions
of the pfms leads to an increase of the tail of the mea-
sure of interest—the distribution of system probability
of accident per mile (i.e., the weighted sum of pfms).
If adding dependence will be a way of introducing con-
servatism in predictions, it may be useful to leave the
decision about the degree of conservatism to the stake-
holders—the AV vendors or individual AV owners/users.
Again, it seems that further extensive research and analysis
is needed before DyAVAS adopts a model of dependence
among the marginal distributions of pfms. Without such
research adopting dependence among the marginal distri-
butions of pfms will in our opinion be premature.

• Bayesian inference is undertaken under the assumption of
reliable recording of the counts of miles driven, and acci-
dents observed in different operation conditions. Clearly,
there may be errors due to various factors, e.g. misclassifi-
cation of OCs, or due to failures to detect “out-of-ODD”,
which in turn may lead to attributing accidents (and miles
without accidents) that occur “out-of-ODD” to some of
the operational OCs defined in an ODD. Conceptually,
accounting for these possibilities is straightforward—one
needs to allow for misclassifications of OCs. This con-
cern is conceptually similar to the following two concerns:
(1) “oracle perfection” in software testing and its impact
on software reliability assessed via software testing [20],
and (2) the checker coverage in asymmetric architectures
such as “primary—checker” (e.g. an AV safety monitor)
and its impact of reliability assessment of the asymmetric
architecture, a concern which has been studied in the past,
including in own work [21]. We intend to address these
concerns in our future work, too.

• We assume that the AV operational profile is adequately
captured by a Dirichlet distribution. Although this type
of multivariate distribution has been used by many15 in
the past and, more importantly, seems quite plausible for
the task, it may in some circumstances be inadequate. A
promising alternative way of modelling the operational
profile would be using state-based models, e.g., Markov
and semi-Markov ones, in which the operating conditions
(OC1,…,OCn), defined for a given ODD, appear as states

15 https://en.wikipedia.org/wiki/Dirichlet_distribution#Bayesian_mo
dels.
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of a state-based model of the operational profile. A similar
approach has been taken in our recent work [22].

• In this work we relied on the prior work by others [2],
whereby the key parameter of interest is the pfm of driv-
ing and on the critical assumption that success/failure of
driving a set of randomly chosen miles can be modelled
as a Bernoulli trial. Clearly the successive miles of driv-
ing may not be quite like a Bernoulli trial, although the
recent work [23] provides a rationale suggesting that the
implications of the assumption for the mathematical rigor
are insignificant. An alternative approach to modelling AV
driving would be to consider the duration (in miles) in the
same operating condition and see the AV driving as a tra-
jectory via different OCs defined by an ODD. We took
this approach in a recent study [22, 24]. Such a model
may reveal a different insight. Developing this alternative
approach in detail is also an area for future research.

• Finally, a separate strand of research deals with the obser-
vations from “microscopic traffic simulation” tools, e.g.
[25], which differs conceptually from our work as it seems
to rely on a different safety measure. Adopting a different
safety measure may reveal a different insight, too, an area
for future research.

6 Related research

An idea somewhat related to DyAVSA are the Safety Per-
formance Indicators (SPI) [9], the authors of which argue
that SPIs must be quantitative, and their assessment should
be done by collecting “operational data”, i.e., data from the
deployedAVs.Themain advantageofSPIswouldbe that they
can provide “early warnings” of possibly insufficient safety
and thus would allow the AV vendor to improve over time
the safety of the AV brand. For instance, if an SPI is related
to failures to detect a pedestrian on the road, the AV vendors
may act upon such data without having to wait for an actual
accident. The key difference between SPIs and DyAVSA,
apart from the purpose and the scope of data collection, is that
DyAVSA allows different stakeholders, including the own-
ers/drivers of individual AVs to benefit from the operational
data collected by a fleet of AVs and the fact that DyAVSA
provides a complete computational procedure to make use
of the collected data in targeted run-time safety assessment
while with the SPIs the AV vendor is left to decide how to
make use of them.

An alternative approach to Bayesian assessment is offered
in [26]. This work offers a hierarchical Bayesian inference
and builds on a previous publication relying on the use of
extreme values theory for safety assessment of AV [27].

An important work is [28], which provides a theoretical
Bayesian hierarchical extreme value model integrating sev-
eral conflict indicators such as the modified time to collision

(MTTC), the post encroachment time (PET), and the decel-
eration rate to avoid a crash (DRAC) and demonstrates that
the multivariate model outperforms the respective univariate
and bi-variate models which use fewer measures of interest.
The paper builds on a multivariate Bayesian inference and
in this sense is similar to the approach developed in [13]
and used in the presented paper. There are, however, signifi-
cant differences, too. The variates used in [28] are “conflict
indicators”, while in own work the conditional pfms of driv-
ing in different operating conditions are used. While in own
work (following the development in [13]) we assume that
the variates are independently distributed random variables,
the model developed in [28] treats the indicators as stochas-
tically dependent random variables. There is also similarity
between the conclusions reported in [28] and [13]—in both
cases the multivariate models are said to be superior in terms
of the prediction accuracy to their univariate counterparts
(and a bi-variate prediction model referred to in [28]).

A separate strand of related work deals with the “surro-
gate safety measures” (SSM). As the name suggests SSM
are looking for useful ways of evaluating road safety in the
absence of accident data, which are typically rare. SSM are
used to address a variety of use cases, among them the impact
of AV and connected AV (CAV) [25] on road safety. A recent
survey summarizing the advances with SSM is provided in
[29]. SSM focus is very different from the focus of the work
presented here. The main premise in SSM related studies is
that the scarcity of accident data makes safety assessment
difficult. The approach taken in this paper is radically differ-
ent. Themultivariate Bayesian inference, onwhichDyAVSA
is based, can take any observations, including no accidents
at all, to derive predictions about the chosen measure of AV
safety. The scope of SSM is also different from the scope of
the current work: SSM are used to assess how a large fleet
of AV/CAV on the public roads in the future can affect the
road safety of all participants in the road traffic. The scope
of our work is entirely focused on the benefits that sharing
observations (miles driven and accidents observed or lack
thereof) among the AVs of a fleet of AVs can bring to the
owners/users of the individuals AVs.

There is a conceptual similarity between aforemen-
tioned Mobileye Road Experience Management (REM) and
DyAVSA although the focus of data sharing is different.
REM is focused on constructing an up-to-date road map
using the data coming from AV instances and sent to a
cloud-servicewhere the data is aggregated, andmaps are con-
structed. Part of the constructed road map is then shared with
the AVs based on their current location. DyAVSA instead
collects and shares data useful for predicting the conditional
pfms and foreseeing violations of a safety claim.

Finally, DyAVSA is based on a multivariate Bayesian
assessment, a topic extensively developed by many over
the years, other methods based on Bayesian reasoning have
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been widely used in risk assessment of various systems. An
authoritative text on Bayesian risk assessment is [30], which
provides a foundational introduction to Bayesian Belief Net-
works (BBN) and contrast them with alternative formalisms
of dealing with uncertainty in risk assessment such as statis-
tics and causal reasoning.Avery extensive literature exists on
the use of BBN for risk assessment in safety critical systems.
The seminal work by Littlewood and Strigini [31] deals with
infeasibility of demonstrating ultra-high software reliability
via testing. A similar conclusion was reached by Butler and
Finelli [30] at approximately the same time.

Among the examples of using BBN in other related
domains, e.g. in maritime operations, we would like to
acknowledge the contributions of Zaili Yang: [32] on BBN
based risk assessment of seaports, and [33] on BBN—based
risk assessment of the operations of maritime autonomous
surface ships. In [34] Jingbo Yin applies a BBN risk assess-
ment to cargo operations at seaports.

We already acknowledged the value of Copula in captur-
ing the dependencies between the distributions of random
variables. A few examples are included in Appendix 2. We
would like also to acknowledge other examples relevant
to the multivariate Bayesian inference DyAVSA is based.
[35] offers a generic Bayesian hierarchical Copula model. In
comparison with the alternative models used for Bayesian
inference using layers of a hierarchy, the authors claim that
their approach provides increased flexibility and allows Cop-
ulas (e.g., Archimedean and Gaussian) to be adapted as
required by the specific context. Although [35] is focused on
dealing with clusters of data sources, there is conceptual sim-
ilarity with the multivariate inference used in DyAVSA: the
model used in DyAVSA can be seen as a 2-layered model:
the “upper” layer deals with the operational profile uncer-
tainty, while the “lower” layer deals with the uncertainty of
the pfms.

A recent reprint [36] deals with a problem which is highly
relevant to a possible extension of DyAVSA and the mul-
tivariate inference it relies upon. The author of the reprint
reports on the effect of using Copula on the distribution of a
sum of non-independent random variables. Similarly to our
own observations presented in Appendix 2, the author con-
cludes that the impact of dependence among the margins of a
Copula may impact significantly (in excess of 10%) the high
quantiles (i.e., the tail) of the distribution of the sum.

7 Conclusions and future work

This paper proposes the Dynamic AV Safety Assessment
(DyAVSA), an approach to run-time AV safety assessment
of a particular AV product, whereby the data on miles driven
and failures/accidents observed, are collected by individual
AV instances, and passed to a centralized AV Vendor Server

for safety monitoring. Under DyAVSA the individual AV
instances can monitor their own safety using the operational
data collected from the entire fleet of AVs of the same brand
collected by the AV vendor.

We demonstrate that a two-stage Bayesian inference pro-
cedure, we developed recently [12] and adapted to the needs
of AV safety assessment [13], can serve the run-time safety
assessment needs of different stakeholders: (1) the AV ven-
dors, can collect data from the entire deployed AV fleet of
AVs and assess the safety of the fleet “on average”; (2) should
the vendor periodically share the aggregated measurements
with all deployed AV instances, then the users/owners of
individual AVs will be able to monitor the safety of their
own AVs themselves relying on the data records of acci-
dents/successes for a given ODD aggregated for the entire
fleet of AVs and using their unique operational profile. We
illustrated the advantages of the proposed method over the
alternatives—relying on the predictions “on average” made
by the vendor, or on the predictions by the AV instances
relying on their own operational data only. To the best of our
knowledge a concept similar to DyAVSA has not been used
before.

We already identified in the previous section a few areas
for future development to address some of the recognized
threats to validity of our work and findings, among them
relaxing the assumptions on which the multivariate inference
is based upon—that the miles of AV driving can be modelled
as a Bernoulli trial and that the conditional probabilities of
accident per mile of driving in different driving conditions
are independently distributed random variable.

Developing a highly efficient computation procedure
which would allow for fast multivariate inference aligned
with the needs of run-time safety assessment is another area
of research which we intend to address in the future.

In passingwementioned that a safety claim, linked implic-
itly to a given ODD should address the following concerns
affecting the AV safety: (1) detecting reliably “out-of-ODD
(OoODD)”, and (2) accounting the impact on AV safety
of unreliability of responding to OoODD. Both detecting
OoODD itself and the implemented response to a detected
OoODD, may be subject to failure. The impact of both fail-
ures should be accounted for in a complete safety analysis [6],
and we intend to address this problem in our future research.

8 Appendix 1: Multivariate Bayesian
inference

A multivariate Bayesian assessment applicable to systems
with multiple operating conditions, e.g., demand space parti-
tions, partition testing, autonomous vehicles used in different
operating conditions OC1, OC2, …, OCn, as defined by an
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operational design domain (ODD), etc., can use a double-
stochastic multivariate model, developed recently [12] and
adapted to the needs of a AV used with a defined ODD [13].
The model and the Bayesian inference procedure included in
this appendix are derived from [13].

The model captures:

• A partition of operating conditions OC � {OC1,OC2, …,
OCm} such that iff i �� j thenOCi ∩OCj � ∅ defined with
a probabilistic measure on OC, P(OCi ), and

• In each OCi the AV drives a sequence of miles. Each mile
may be either successfully completed or lead to an acci-
dent. We model the driving in OCi as Bernoulli process
with a parameter pfmi, which is treated as a random vari-
able, �i . A joint distribution fθ1, θ2, ..., θn (θ1, θ2, . . . , θn),
characterizes the uncertainty in the values of pfmi in dif-
ferent OCi and the stochastic dependencies between the
variates,�1, �2, . . . , �n , of the multivariate distribution,
fθ1, θ2, ..., θn (θ1, θ2, . . . , θn).

To simplify the analysis, we make an additional simpli-
fying assumption that �1, �2, . . . , �n are independently
distributed random variables. fθi ( · ) denotes the probability
density function of �i , for i � 1,…, n. In other words, we
assume that changes in fθi ( · ) do not affect fθ j ( · ), i �� j .

P(OCi ) may vary over time or be subject to epistemic
uncertainty, which we capture by using a random variable,
�i with a probability density function fψi ( · ). Since the
operating conditions form a partition of the space of miles,
the constraint

∑n
i�1 �i � 1 applies: a mile with certainty

will be selected from one of the partitions.
The joint distribution fψ1,ψ2, ...ψn (ψ1, ψ2, . . . , ψn) cap-

tures the epistemic uncertainty associated with the selection
of a mile from the space of all miles. A suitable analytic
multivariate distribution which can be adopted here is the
Dirichlet distribution, which for n variates, �i…,�i . . . , �n

is defined as [17]:

Dir(ψ1,ψ2, . . . ,ψn; α) ≡ fψ1,ψ2, ...ψn (ψ1, ψ2, . . . , ψn; a1, . . . , an)

��
(∑n

i�1 ai
)

∏n
i�1 �(ai)

[
n−1∏

i�1

ψ
ai−1
i

][

1 −
n−1∑

i�1

ψi

]an−1

(9)

where α is a vector a1, . . . , an and defines the parame-
ters of the Dirichlet distribution. The sum of the variates
∑n

1 �i � 1.

Ifwe denote: A �
n∑

j�1
a j , then themoments of the variates

of the Dirichlet distribution can be expressed as:

E[�i ] � ai
A
,

Var(�i ) � ai (A − ai )

A2(1 + A)
,

Cov
(
�i , � j

) � −aia j

A2(1 + A)
, j �� i , j

The marginal distribution of each variate, �i , is a Beta
distribution, Beta(ψ ;ai, A-ai), [17].

Now, let us consider the case of an ODD known with cer-
tainty, i.e., P(OC1) � ψ1, P(OC2) � ψ2, . . . P(OCn) �
ψn , whereψi (i � 1, . . . n) are known constants. The random
variable �, which represents pfm, is then the weighted sum
of the random variables � i, weights being the probabilities
ψ1, ψ2, . . . , ψn , respectively.

�ψ1,ψ2, ...,ψn �
n∑

i�1

�iψi (10)

We have already assumed that �i are independently dis-
tributed random variables. Note that the products, �

ψi
i �

�iψi , are themselves independently distributed randomvari-
able. Let us denote the probability density function of �

ψi
i

as fθψi (x). Then fθψi (x) can be derived from fθi ( · ) using
a standard transformation:

fθψi (x) � 1

|ψi | fθi
(

x

ψi

)

(11)

Now we can express the probability density function of
�ψ1,ψ2, ...,ψn as follows:

(12)fθ |ψ1, ψ2, ...ψn (x |�1 � ψ1, �2 � ψ2, . . . , �n � ψn) � fθψ1 (x)

∗ fθψ2 (x) ∗ . . . ∗ fθψn (x)

where the “*” sign indicates a convolution of the respective
probability density functions.

Finally, we can now remove the condition that the opera-
tional profile is known with certainty (captured by �1 � ψ1,
�2 � ψ2, . . . , �n � ψn) using the joint distribution defined
by Eq. (9):

f W B
θ (x)

∫

fθ |ψ1, ψ2, ...ψn (x |ψ1, ψ2, . . . , ψn)fψ1,ψ2, ...ψn

(ψ1,ψ2, . . . , ψn; a1, . . . , an)dψ1ψx2 . . . dψn

�
∫

[
fθψ1(x) ∗ fθψ2(x) ∗ . . . ∗ fθψn (x)

×fψ1,ψ2, ...ψn (ψ1,ψ2, . . . ,ψn)
]
dψ1dψ2 . . . dψn (13)

The integration in the last expression (13) is done with
respect to all dimensions ψ1, ψ2 . . . ψn of the ODD. One
can see that Eq. (13) provides us with the marginal dis-
tribution of system pfm and accounts for the epistemic
uncertainty of both the operational profile—this is captured
by the joint distribution fψ1,ψ2, ...ψn (ψ1,ψ2, . . . ,ψn)—and
the conditional probabilities of catastrophic failure in parti-
tions fθi (x). Clearly, the latter will affect the convolution,
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fθψ1(x) ∗ fθψ2(x) ∗ . . . ∗ fθψn (x), representing the distribu-
tion of the sum �ψ1,ψ2, ...,ψn expressed by Eq. (12).

We labelled Eq. (13)with “WB” to signify the fact that this
distribution is derived using a “white box” model of both the
ODD and how likely the AV is to fail in each of the operating
conditions.

The marginal distribution of system pfm, f W B
θ (x), can be

used in different ways. Apart from allowing for computing
the moments, e.g., the expected value of the system pfm, one
can compute the risk that the true probability of failure per
mile can turn out to be badly wrong (e.g., exceed a given
threshold), by looking at the tail of the distribution of system
pfm:

P(� ≥ T ) � 1∫
T
f W B
θ (x)dx (14)

9 Appendix 2: Using Copula tomodel
dependencies between pfms

In this sectionwe illustrate the impact of relaxing the assump-
tion that the conditional probabilities of accident per mile of
driving (pfms) in different operating conditions are indepen-
dently distributed random variables. This is done by adopting
a Copula functional to define a structure of dependence
between the pfms (the marginals). We use the resulting Cop-
ula functional to assess the impact of dependence on the
distributions of a weighted sum of the uncertain pfms by
comparing the distribution of the sum assuming the pfms
independently and non-independently distributed random
variables, respectively.

Definition: A function C : [0, 1]d → [0, 1] is called d-
copula (or copula for short), if C is the distribution function
of a d-dimensional random vector U � (U1, . . . , Ud) with
standard uniform marginals, i.e. P[Uk ≤ uk] � uk for all
k ∈ {1, . . . , d} and uk ∈ [0, 1].

According to the Sklar’s theorem [37] if H is a d-
dimensional distribution function with “margins”, F1, . . . ,

Fd , then there exists a d-copula C such that for all x ∈ R
d
H

(x1, . . . , xd) � C(F1(x1), . . . , Fd(xd)).
In our formulation of AV safety assessment problem, F1

(x1), . . . , Fd(xd) would be the marginal probability distri-
butions (“margins”) of the uncertain conditional pfms, �1,
�2, . . . , �n , of AV driving in operating conditionsOC1, …,
OCd , and H(x1, . . . , xd)—would be the joint distribution
of the margins �1, �2, . . . , �n , in the general case of their
being non-independently distributed. The Sklar theorem fur-
ther asserts that if the margins F1(x1), . . . , Fd(xd) are all
continuous, then C is unique.

Copulas can take different forms (https://en.wikipedia.
org/wiki/Copula_(statistics)). In this appendix we use a
Gaussian16 Copula to illustrate the impact of the strength
of dependence among the margins �1, �2, . . . , �n on their
weighted sum. In other words, we look at the distribution of
the sum S � w1�1 +w2�2 + . . . +wd�d , where wi , i ∈ [1,
. . . d], represent the weights of the random variables �i , i ∈
[1, . . . d], respectively.

We also look at the impact of the uncertainty in theweight-
ing coefficients, Wi by assuming them random variables;
following the assumptionmade inAppendix 1 that aDirichlet
distribution is used to capture their joint distribution.

9.1 Effect of dependence amongmargins
on distribution of their sum

In this appendix we take the contrived examples developed
in the paper with 5 operating conditions, OC1–OC5, with
Beta distributed�1, �2, . . . , �5 and use a Gaussian Copula
with an increasing coefficient of correlation, ρij between all
pairs ofmargins, (�1, �2), . . . , (�4, �5). The illustration is
done under the assumption that the same level of correlation
applies to all pairs of margins, i.e., if the correlation is set to
0.1, then the following covariance matrix is used to define
ρij, used in generating a copula17:

ρi j � [0.1, 0.0, 0.0, 0.0, 0.0;

0.0, 0.1, 0.0, 0.0, 0.0;

0.0, 0.0, 0.1, 0.0, 0.0;

0.0, 0.0, 0.0, 0.1, 0.0;

0.0, 0.0, 0.0, 0.0, 0.1];

The joint distribution of dependent �1, �2, . . . , �5 is
defined for values of the correlation ρij from the set {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Although hypothetically the
correlation may be negative, there is no reason to expect neg-
ative correlation between the distributions of the conditional
pfms, hence negative correlation has been excluded from the
analysis presented here. �1, �2, . . . , �5 were defined as
Beta distributed with parameters as follows:

�1: Beta(2, 299)
�2: Beta(2, 800)

16 The choice of Gaussian copula is motivated by its wide use in other
studies, e.g. [38, 39], and the fact that the sole purpose of this appendix
is an illustration of the magnitude of the difference between the dis-
tribution of the sum of margins computed under the assumption of
independence and the presence of dependence.
17 The specific format of the covariance matrix is as required in the
MATLAB function mvnrnd() used in the calculations conducted in this
appendix. The full MATLAB script(s) used in the calculations can be
found at: https://openaccess.city.ac.uk/id/eprint/35206/.
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�3: Beta(2, 1500)
�4: Beta(2, 1000)
�5: Beta(1, 400)

These are the parameter values of the prior distributions
used in the contrived examples of the paper.

Once the joint distribution of�1, �2, . . . , �5 was defined
for a given degree of correlation (0.1–0.9), as described
above, a Monte Carlo simulation was used to generate sam-
ples of 200,000 random vectors (x1, x2, . . . , x5) from the
respective joint distributions. Each vector was used to com-
pute the weighted sumw1x1+w2x2+ · · ·+w5x5. The weights
used in this illustration are set equal to the expected values of
the variates used in the Dirichlet distribution of the contrived
examples, computed using the formula:

wi � ai
∑5

i�1 ai

With the parameters of the prior Dirichlet a1 � 10, a2 �
10, a3 � 40, a4 � 30, a5 � 10, the values of the respective
weights are as follows: w1 � w2 � w5 � 10/100 � 0.1, w3

� 40/100 � 0.4 and w4 � 30/100 � 0.3.
The parameters of the posterior Dirichlet distribution are

different: a1 � 137, a2 � 133, a3 � 149, a4 � 106,
a5 � 75, which leads to w1 � 137/(137 + 133 + 149 + 106 +
75) � 137/600 � 0.228333333. Similarly, w2 � 133/600 �
0.221666667, w3 � 149/600 � 0.248333333, w4 � 106/600
� 0.176666667, and w5 � 75/600 � 0.125.

The200,000 instances of theweighted sum, derived for the
sample of random vectors, were used to estimate the experi-
mental distribution of the sum, under the increasing degrees
of correlation (0.1–0.9). Similar calculations are conducted
with both the prior and posterior distributions as used in the
contrived examples in the paper.

With the increase of the correlation coefficient the variance
of the sum (�1 + �2 + . . . + �5) increases, too, as is shown
in Table 2 below, which is to be expected.

The variance of the weighted sum computed for the pri-
ors is slightly greater than the weighted sum computed for
the posterior distributions. This is due to the impact of the
change in the uncertainty about the variables �1, �2, . . . ,
�5 represented by the marginals of the joint distribution and
due to the changed operational profile.

The cumulative distribution functions (cdf s) computed
with the parameters described above for prior and posterior
distributions, respectively, are shown in Fig. 7 below. The
plots indicate a visible increase of the spread of the distri-
butions moving from the prior to the posterior, which was
already captured by the variances of the respective distribu-
tions reported in Table 2, above.

Table 2 Effect of correlation of the margins on the distribution of the
sum (without weights) of the prior marginal distributions: Beta(2, 299),
Beta(2, 800), Beta(2, 1500), Beta(2, 1000), Beta(1, 400)

Prior marginal distributions:
Beta(2, 299), Beta(2, 800), Beta(2, 1500), Beta(2, 1000), Beta(1,
400)

Correlation Variance

No correlation 6.343472e-07

0.1 8.338104e-07

0.2 1.037454e-06

0.3 1.252600e-06

0.4 1.454592e-06

0.5 1.674819e-06

0.6 1.909173e-06

0.7 2.128853e-06

0.8 2.373866e-06

0.9 2.591027e-06

Posterior marginal distribution
Beta(2, 306), Beta(2, 809), Beta(2, 1545), Beta(2, 1030), Beta(1,
409)

Correlation Variance

No correlation 1.440540e-06

0.1 1.740738e-06

0.2 2.038486e-06

0.3 2.357392e-06

0.4 2.709229e-06

0.5 3.015632e-06

0.6 3.403947e-06

0.7 3.736954e-06

0.8 4.086776e-06

0.9 4.468203e-06

9.2 Combined effect of Copula and of the uncertain
operational profile

In the final part of this Appendix, we compute the distri-
bution of the weighted sum of the margins assuming that
the weights are now assumed uncertain and modelled as ran-
dom variables with joint distribution represented by the prior
andposteriorDirichlet distributions, respectively. Thedepen-
dency between the conditional pfms is captured by a Copula
functional and we apply the same Copulas as in 10.1 to: (1i)
the prior distributions of the conditional probabilities of acci-
dent per mile of driving, and (2) to the posterior distributions.
Theoperational profiles, too, are theones assumed in theprior
Dirichlet (10, 10, 40, 10, 30) and Dirichlet (137, 133, 149,
106, 75) used in the contrived examples, respectively.

The calculations are done using the generated 200, 000
samples from the respective joint distributions (assuming
independence of the margins and a correlation coefficient of
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Fig. 7 Cdfs of the distributions of the weighted sum of the conditional probabilities of accident per mile assuming a fixed operational profile (weights
used in the weighted sum computation are set to the expected values of the variates of the prior and posterior Dirichlet, respectively)

Fig. 8 Impact of dependency among the margins on the marginal
probability of accidents per mile (a Gaussian Copula is applied to
prior distributions). The figure on the left plots the cdfs, derived from
the Monte Carlo generated sample of 200,000 random vectors of the
system probability of accident per mile of driving for different degrees

of dependence among the margins: starting with “independence” and
increasing the correlation between 0.1 and 0.9. The figure on the right
plots the magnitude of the “error” of assuming “independence” among
the margins in comparison with the cases of positive correlation among
them using a Gaussian Copula

Fig. 9 Impact of dependency amongmargins on themarginal probability of accidents permile (aGaussian Copula applied to posterior distributions).
The arrangement of the plots on the left and on the right is as in Fig. 8 above, but the Copula is applied to the posterior marginal pfms

between 0.1 and 0.9, as described above). Dirichlet distribu-
tion is applied using discretization with 20 values in each of
its 5 dimensions, which in turn leads to 3876 distinct points
of the Dirichlet distribution (which represent a vector of 5
values—each representing a specific value of the probability
of the operating conditions OC1–OC5). Each of these points
would account (as a result of Dirichlet discretization) for a
slice of the probability mass of the Dirichlet distribution.
These probabilities will be used as weights of the margins in
the sum.

The distribution of the weighted sum for a given set of
weights is computed directly using the Monte Carlo simu-
lated 200,000 instances sampled from the joint distribution
with dependencies between the margins. This distribution is
weighted with the mass associated with the vector of weights
and added to the marginal distribution of the weighted sum.
Once all 3876 vectors of weights (i.e., points of discretization
of the Dirichlet distribution) are accounted for, the marginal
distribution of the weighted sum of the margins consistent
with the Dirichlet distribution will be derived.

For each of the snapshots—prior and posterior distri-
butions—we show cdfs of the marginal distribution of the
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weighted sum of the Copula margins. We also computed
the deviation of the sums derived with Copulas from the
case assuming “independence” between the margins (see
Appendix 1).

Clearly, introducing dependency between the margins via
aGaussian Copulawith the particular dependencies structure
does not lead to stochastic ordering between the cdf s of the
system probability of accident per mile of driving computed
under “independence” and with any degree of correlation
between the margins. Figures 8 and 9 show a clear trend that
the cdf s with correlation tend to be stochastically smaller at
the beginning of the distributions (for values closer to 0 end
of the distribution support) while their tails tend to become
stochastically greater than the distribution under “indepen-
dence”.

It is also clear from Figs. 8 and 9 that with the increase
of the correlation parameter pij, between the margins, the
distribution of the weighted sum of the dependent margins
deviates more strongly from the sum under “independence”,
and becomes quite noticeable for the highest value of pij �
0.9. For the much smallest values of pij (0.1 or 0.2), however,
the deviation of the sums with “dependence” from the sum
under “independence” is quite small.
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