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A B S T R A C T

The implementation of AI can suffer from a wide variety of failures. These failures can impact the performance of 
AI algorithms, impede the adoption of AI solutions in clinical practice, lead to workflow delays, or create un-
necessary costs. This narrative review aims to comprehensively discuss different reasons for AI failures in 
Radiology through the analysis of published evidence across three main components of AI implementation: (i) 
the AI models throughout their lifecycle, (ii) the technical infrastructure, including the hardware and software 
needed to develop and deploy AI models and (iii) the human factors involved. Ultimately, based on the identified 
errors, this report aims to propose solutions to optimise the use and adoption of AI in radiology.

1. Introduction

The implementation of AI-enabled solutions, either in synergy with 
human users or as a standalone tool, have exhibited wide performance 

variability in different clinical contexts and scenarios [1,2]. This high-
lights the importance of careful planning for the integration of AI in 
clinical workflows, of continued post-market surveillance, and of 
simultaneously investing on AI literacy building within healthcare 
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organizations [3,4]. Different challenges exist when implementing AI 
solutions in clinical radiology practice. In many cases, AI models present 
flaws when faced with unseen, real-world data and complex clinical 
scenarios [5]. In other cases, failures can occur due to trust mis-
calibration, resulting from a combination of overreliance on technology 
and/or lack of user experience, which may lead to wrong diagnoses, 
poor patient outcomes or, even, patient harm. AI erroneous result may 
also have the opposite effect, due to algorithmic aversion, which may 
lead to underutilization of already available reliable resources or create 
unnecessary costs [6,7]. Academic dissemination is prone to publication 
bias, thus shunning any negative results from research projects, further 
contributing to the “file drawer problem” commonly known in science 
[8,9]. Non-reporting of negative findings on AI implementation [10] 
inevitably results in unnecessary repeats of experiments or of studies 
that have failed before, and leads to suboptimal use of resources (time, 
funding, and human effort). Another form of implementation failure 
occurs when the AI tool is not aligned with the clinical care pathways of 
the institution, or when integration into existing workflows has not been 
adequately considered. Finally, simple shortcomings in infrastructure, 
like connectivity or compatibility between hardware or software may 
mean that AI implementation might stall despite a robust and fully 
tested AI product, a solid business case, an expert team. To understand 
AI implementation failures, it may be more effective to reverse-engineer 
success by identifying essential components for seamless AI integration 
and adoption and tracing back where errors occur. These essential 
components include:

a) The AI models employed across their lifecycle, from inception to 
decommissioning (see also Fig. 1).

b) The technical infrastructure. This is a sparsely studied area 
which can relate to a range of issues such as connectivity, interopera-
bility, compatibility, etc; therefore, it requires multidisciplinary 
collaboration and more attention. Frameworks such as the machine 
learning operations (MLOps) can be used to assist in standardised and 
seamless deployment practices and prevent AI Implementation mistakes 
related to infrastructure [11].

c) The human factors involved. Human factors relate to a complex 
system of factors affecting human performance, communication and 

collaboration, such as physical, cognitive, perceptual, emotional, pro-
cedural, and sociocultural [12].

This paper aims to explore the reasons of AI implementation errors in 
Radiology and to discuss potential remedial actions to counteract these, 
by addressing all three essential components and their constituents, as 
described above. A diverse group of experts in medical imaging met 
online to agree the aim of the paper and discuss the definition of failure 
in this context. Failure of effective AI integration will consist in one or 
both of the following: a) when AI does not achieve performance com-
parable to or better than radiologists, when evaluated against the same 
reference standard, b) when AI introduces added costs or inefficiencies, 
including delays or workflow disruptions. The group members inde-
pendently hand-searched recent literature looking for verbal or con-
ceptual synonyms of failure within AI implementation (such as error, 
mistake, inefficiency, ineffectiveness, shortcoming, problem, challenge, 
delay, barrier, “reduced accuracy”, “does not work”, etc) in titles or 
abstracts and brought together published peer-reviewed papers which 
documented these AI failures in Radiology. Similarly, papers including 
solutions to these errors were searched. All eligible papers were then 
analysed by 3 group members, who assigned them to one of the 3 
components of AI implementation using consensus, and then compiled a 
complete draft based on these papers, which was live edited by the wider 
team. This paper offers the “bigger picture” of AI implementation errors 
and solutions in Radiology, addressing all essential components, as 
described above, and presented as a comprehensive narrative review of 
published research evidence. This is not an exhaustive list of either AI 
implementation failures or their solutions. This is not merely because of 
the known publication bias. It is also because it is not only difficult to 
define failure itself in an ever-expanding field, but also challenging to 
search for failure in a culture that mostly celebrates success. Doc-
umenting and understanding these failures is the first step towards 
resolving them in the present and preventing them in the future, for 
optimising the use and impact of AI in radiology.

2. Reasons for AI implementation failures

2.1. Issues with AI models throughout the lifecycle

The AI model lifecycle consists of six independent stages, which are: 
i) inception of the AI solution, ii) development, iii) internal and external 
testing, iv) deployment, v) operation, maintenance (post-market sur-
veillance and versioning) and re-evaluation and vi) decommissioning 
[13] (Fig. 1). Failures can be observed during all the above stages. These 
are described in detail further below.

2.1.1. Inception
Early stakeholder engagement—including patients and clinicians—is 

crucial during inception. Delays in engaging them can impact accept-
ability, usability and ergonomics, undermining effective implementa-
tion [14,15]. Their involvement is essential to ensure the model is 
genuinely driven by clinical needs (clinical pull), rather than shaped by 
technical convenience (technical push), as clinical scenarios are inher-
ently complex and multifactorial [16]. Moreover, involving all stake-
holders as early as possible enhances trust in AI models [14,17]. Trust 
can be further enhanced by identifying risks early from various per-
spectives (clinical, technical, legal, ethical, social, economic, etc) and 
proposing mitigations.

Ambiguity in defining intended use during the inception phase can 
create a misalignment with clinical needs and user expectations, 
potentially compromising patient safety and outcomes. Clear definition 
of intended use is therefore critical to avoid inappropriate or off-label 
use in unintended settings [18,19]. The intended use statement, a 
statement that developers are now required to provide in order to obtain 
Conformité Européenne (CE) mark, to comply with the EU AI Act or to 
obtain clearance from the US Food and Drug Administration (FDA), is 
still, in many cases, not publicly declared by manufacturers [20]. This Fig. 1. AI product lifecycle (Created with Biorender).
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can lead to misconceptions regarding the actual use of AI tools, and 
misuse of these solutions in clinical practice. In addition, this may lead 
to challenges in procurement of AI tools, increasing costs and deterring 
buyers.

2.1.2. AI development
AI tools can fail due to lack of robustness, limited generalisability 

and algorithmic bias. There are various types of algorithmic bias, often 
stemming from suboptimal training datasets [21] that inadequately 
represent patient subgroups across age, sex, race, and socioeconomic 
status [22–27]. Biases can arise from poor dataset composition, lack of 
fairness in model testing, and low data quality, potentially leading to 
selection bias, over- or underfitting for specific pathologies [28], and 
false predictions [25]. Consequently, model performance may drop 
when applied to previously unseen clinical data [29].

Ideally, datasets should be diverse and inclusive. Limitations of his-
torical datasets, governance issues related to protected characteristics, 
and data sharing restrictions can hinder model performance. Gender 
bias, for instance, can impair recognition of sex-specific clinical pre-
sentations, leading to underdiagnosis and worse outcomes, including 
increased morbidity and mortality for affected groups [30]. Such biases 
should not be amplified by AI integration [16], as flawed scaling could 
exacerbate harm. A recent US review found that imaging AI data 
(2015–2019) came mostly from just three states [31], and the UK Bio-
bank data contains only 6 % non-European ancestry participants [26]. 
Legal frameworks in some countries may also restrict inclusion of fea-
tures like ethnicity or race [32]. Balancing datasets prior to deployment 
helps reduce bias and improve model performance and patient outcomes 
[28]. Federated learning—training models across institutions without 
direct data sharing—offers a solution for building diverse models under 
stricter data governance regimes, assuming population variability across 
institutions [26].

While large datasets are traditionally favoured in AI development for 
generalisability, size alone isn’t sufficient, because quality of data is 
equally important. Some studies relying on large datasets may report 
lower diagnostic accuracy than those with smaller ones [33].

2.1.3. AI testing
Testing on both internal and external data has been widely used 

when developing AI algorithms in radiology to ascertain the robustness 
of their performance [21,34,35]. An AI model may have achieved high 
performance when tested on internal data, which has substantially 
decreased when faced with real-world unseen data [36]. Recent research 
has confirmed a decrease in AI tools’ algorithmic performance in radi-
ology of up to 24 %, when external testing was applied [37]. External 
testing can ensure robust model performance, reproducibility and gen-
eralisability when performing beyond the training cohort [38]. When 
performing external testing prior to clinical integration, it is crucial to: 
judiciously define the ground truth (or reference standard), avoid data 
contamination or leakage (training data kept separate to testing data), 
test large enough datasets to ensure statistical power for a given context, 
test appropriate, diverse use cases which reflect the actual patient 
population on which the solution will run, and choose the appropriate 
evaluation metrics [33,39].

A major challenge with AI testing is that it is often of limited scope. 
Typically testing assesses accuracy and sometimes generalisability using 
external testing, but not always explores fairness, robustness, safety, 
usability, productivity, acceptance, explainability. That is why failures 
can occur even when appropriate external testing has been performed, 
and the model may prove unreliable even when ran across multiple 
clinical sites without careful consideration of the population de-
mographics [40]. Therefore, testing on benchmarking external datasets 
across multiple sites is preferable [41], including sub-analysis of the 
results, to ensure consistently high performance and interoperability 
across different clinical contexts [42]. Employing specific frameworks to 
evaluate AI tools, including specific questions around intended use, is 

also important for testing [43]. Multifaceted testing beyond accuracy 
can also prevent mistakes in implementation from the outset.

2.1.4. Deployment of AI
Medical imaging AI solutions are being increasingly deployed and 

used in daily practice globally [1,44,45]. At the real-life deployment 
stage factors may arise that have not been encountered at the develop-
ment or testing phase. This could relate to variations in real-world data, 
such as anatomical variations [46–49], distinct, new or rare pathologies 
[50–52], atypical uptake of contrast media [53], complex post-operative 
findings [28], foreign objects [54], and image quality variations (image 
rotation, motion and other artefacts, differences in image brightness, 
resolution, and contrast) [55].

The performance of AI models may also be affected by the increasing 
complexity of clinical cases. For instance, the accuracy of AI tools 
applied for fracture detection in spine CT scans can be negatively 
affected by the type of pathology (e.g. presence of chronic fractures, 
osteophyte formation), their visibility on sagittal series and patient’s age 
[24]. In many cases algorithms performed worse than radiologists, 
despite detecting most fractures that were undetected by them [19] due 
to the complexity of the specific clinical context (in this case, vertebral 
fractures). Similar results have been observed when applied for the 
detection of major pathologies in head CT scans, where the type and 
number of brain haemorrhages and prior neurosurgery [56], or where 
location of large vessel occlusion significantly affected the model’s ac-
curacy [57].

Similarly, when using real-world cohorts, the performance of certain 
AI methods, such as radiomics feature extraction, can be considerably 
lower, as recent research on prediction and survival response indicates 
[58]. This has been also confirmed by recent research attempting to 
produce normative brain volume reports from real-world data [59]. 
Varying model sensitivities have been also observed depending on the 
detection probability threshold used by researchers [60].

2.1.5. Post-market surveillance
Failures may occur long after initial deployment, due to innate 

changes in the performance of AI algorithms (called model drift) [61], 
equipment (software or hardware) changes or upgrades, the different 
personnel using the AI tools, the evolving patient demographics (data 
drift) [62], and the emergence of new pathologies (e.g. new virus strains 
or epidemics) that require continuously new diagnostic approaches 
[63]. The importance of documenting these failures can be reflected on 
the FDA Total Product Life Cycle approach, which requires real-world 
performance monitoring for any software used as a medical device 
(SaMD) [64]. In addition, post-market surveillance and human oversight 
are a requirement both by the recent EU AI Act [65] and the Medical 
Device Regulation [65,66]. Both periodic evaluation of the model’s 
performance by institutions and post-market surveillance performed by 
industry have been recommended but are often challenging to imple-
ment and are not always performed by AI vendors [67]. AI vendors 
support their value propositions, by promising their product could lead 
to cost reduction, workflow efficiency, workload reduction, and many 
more claims. However, it is now evident that many largely fail to pro-
vide sustained evidence on how their products meet clinical needs in the 
longer-term and deliver these values in clinical practice [68].

Continuous monitoring after deployment is also crucial in cases 
where adaptive clinical decision systems (CDS) have been implemented 
into clinical practice, since these decision support tools dynamically 
train themselves instead of relying on predefined data training, and this 
might naturally cause variations in the performance [69].

2.1.6. Product decommissioning
Another important aspect of the AI product lifecycle is decom-

missioning. This can occur at any point due to continued model inac-
curacies, induced workflow complexities, high or non-manageable 
maintenance costs [70,71]. During decommissioning, potential 
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challenges relate to safely managing any stored/archived data within 
the AI tool, ceasing accessibility of the vendor to further clinical data 
through pipelines set-up previously, and aligning with any local or na-
tional data storage/security requirements [72]. Importantly, AI gover-
nance principles must be followed throughout the lifecycle, from 
inception to product decommissioning [73].

2.2. Infrastructure issues

Another source of potential failures is related to AI infrastructure. 
Infrastructure relates to all hardware and software needed to develop 
and deploy AI solutions [74]. This includes the baseline Information 
Technology (IT) infrastructure but also extends to infrastructure relating 
to software and hardware designed to serve AI pipelines only. Most 
healthcare organisations build their own AI infrastructure which, as a 
bare minimum, includes on-premises computing and storage. However, 
because of often complex governance and the associated large up-front 
financial investment required, these systems, where available, remain 
largely segregated from those used in other clinical settings, reducing 
the possibility of continuity of care or healthcare data integration that 
could benefit both patients and organisations [75]. Other clinical set-
tings rely on inbuilt solutions, which, while easier to customise, cannot 
always be upgraded or maintained, as required for sustained impact.

2.2.1. Networks
A potential source of failures is related to the IT infrastructure of the 

clinical site and the strategies employed for AI implementation [75]. AI 
failures could be triggered either when integrating solutions locally on 
site, or when integrating them as a cloud-based software model. Proper 
data orchestration is crucial, and this should include Digital Imaging and 
Communications in Medicine (DICOM) and Health Level Seven (HL7) 
data [76] to ensure that the right data is sent to the appropriate AI tools. 
Moreover, interoperability across different infrastructure networks, to 
enhance and streamline information sharing, and a standards-based 
approach are to improve clinical integration [77].

2.2.2. Integration into picture archiving and communication system (PACS) 
and radiology information system (RIS)

The integration of AI solutions into the PACS of clinical sites repre-
sents an additional challenge. Most PACS currently allow only one way 
data transfer. This may result in misinterpretations by the referring 
clinicians, who have access to PACS, but may have not yet been trained 
to evaluate AI-enabled results from medical imaging [78]. Radiologists 
need to be given the option to modify the results before publication, 
interact with AI, and store the modified results into PACS. This could 
allow an interaction that would empower clinicians to reprocess data 
and generate new outcomes. Also, user-friendliness of AI infrastructure 
could involve a push-to-PACS function, so that radiologists do not have 
to manually retrieve AI results each time [79]. Seamless integration with 
both PACS and RIS is vital to minimise further errors between imaging 
data and patient scheduling [80]. With upcoming AI models producing a 
(partial) draft of the radiology report (report pre-population), it is 
important to integrate these pre-populated reports into the reporting 
system (RIS or other) and to allow radiologists to confirm or modify 
these accordingly. Many of these challenges can be overcome by the use 
of unified platforms that may enable software of different vendors into a 
central docking system for better integration or employ the widget 
approach, that allows the user to select AI solutions from a unified 
interface [81].

2.2.3. Hardware
The use of high-performance hardware is a requirement for AI 

functionality, for safe and efficient processing, storage and management 
of vast amounts of data. While central processing units (CPUs) serve as 
general-purpose processors and the core of computing systems, AI tasks 
typically require the parallel processing power of graphics processing 
units (GPUs), originally designed for rendering graphics but now 
essential for AI applications [82]. GPUs handle large data volumes 
efficiently and outperform CPUs in most AI tasks, including MRI image 
analysis [83,84]. Hardware used for AI in radiology should, therefore, 
have the capacity (memory and processing power) to perform complex 
computational processes simultaneously, while software used should 
allow seamless integration into existing workflows [85]. However, GPUs 
are costly and are in limited supply, with one company controlling 
around 80 % of the global GPU market [86,87]. This scarcity can 
compromise AI performance due to suboptimal computational re-
sources. It must be noted that there is limited published research on the 
failures observed due to infrastructure challenges/deficiencies in radi-
ology. With more clinical sites moving forward with AI deployment and 
AI models becoming more computationally intensive, this topic deserves 
more attention and ongoing research.

2.3. Human factors

As discussed in introduction, this is the third component of AI 
implementation success and/or failure. We will look at its different 
constituents, physical, cognitive, perceptual, emotional, procedural, and 
sociocultural, and how these might challenge AI use and deployment.

2.3.1. Socio – Cultural aspects
Social and cultural aspects of AI implementation and societal values 

and preferences should be considered when designing, training, 
deploying, and evaluating AI tools, to ensure they address local needs, 
mitigate perceived risks and harness benefits for the respective socio-
cultural context [88].

2.3.1.1. Resistance to change. It is natural for healthcare professionals to 
resist change, as it demands adjustments to established routines in high- 
stakes environments where time and resources are limited. This resis-
tance to culture change may be a major impediment for AI imple-
mentation [89]. Successful deployment requires substantial changes in 
the work habits, mindset, and organisational aspects of AI adopters [90]. 
End-users should consider the ethical challenges derived from AI inte-
gration [91], such as data privacy, model performance, patient safety 
and societal impact (e.g. sustainability, cost etc), and employ formal 
change management strategies, such as inclusion in the decision making 
and coproduction, to minimise resistance to change and foster long- 
lasting, meaningful AI innovations [90]. The importance of adopting 
change management strategies, and considering the potential failures 
that these may incur, is further exacerbated by research showing an 
inherent resistance to change among healthcare systems and healthcare 
professionals [92,93]. In essence, drastic change of current practices is 
necessary and more important than the attempt to incorporate AI into 
decade-old practices.

2.3.1.2. Publication mishaps, reporting discrepancies, and a black-box 
culture. As mentioned in introduction, publication bias represents a 
significant challenge for educating practitioners, patients and the public 
around AI. Withholding information about failing AI systems, processes 
and practices can mislead clinicians and the public to believe that AI is 
infallible, or that we need not question its results, leading to AI over- 
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reliance [4]. This lack of adequate published evidence on AI failures may 
misrepresent and underplay the real-world challenges associated with 
AI adoption, leaving radiologists and other healthcare professionals 
exposed to unnecessary risks and duplication of effort. It also creates 
unrealistic expectations of error-free AI, undermines the value of human 
intelligence as a critical actor to AI evaluation, erodes the foundations of 
human-AI collaborative work [94], may also create a culture of blame, 
denial and algorithmic aversion in more experienced readers, and result 
into suboptimal integration in clinical practice, with direct impact on 
patient outcomes [95,96]. Another important drawback associated with 
AI-related publications refers to the black-box culture and the associated 
lack of open-source code provision in manuscripts, which prevents 
testing of the reproducibility of their results [97,98]. In addition, eval-
uation of different AI models in the literature has shown that use of 
metrics is often haphazard, lacks scientific justification, and, in many 
cases fails to provide the readers with the true performance of the model 
[33]. It should be noted that better algorithmic performance metrics 
does not necessarily translate to optimal clinical outcomes. Many radi-
ology studies have been designed as retrospective cohort studies, having 
limited external validation and being prone to bias. In addition, most of 
them use a narrow range of techniques and selection of cases [99]. 
Finally, despite the considerable increase in the AI-enabled Radiology 
clinical trials, many studies report findings from single-centre datasets, 
providing little information on demographic data, and report varying 
operational efficiency, thus their findings should be interpreted with 
caution [100,101].

Any AI failures must be adequately reported by researchers, and 
appropriate steps must be taken, using multi-institutional, multina-
tional, multimodal datasets to this direction [5]. Supporting these ob-
servations, a recent umbrella review assessing adherence to the 
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) 
—currently the highest level of evidence on the topic—identified the 
item related to failure analysis as one of the 11 most underreported 
items [102]. Notably, more than 75 % of AI studies failed to report this 
critical information. As mandated by the CLAIM guidelines, authors 
should provide detailed information about algorithmic failures. Unfor-
tunately, true adherence to CLAIM is still low, as authors fail to report all 
required details in their manuscripts, despite reference to the CLAIM 
checklist in their methods [102].

2.3.2. Physical aspects and ergonomics
A vital aspect of AI implementation is our ability to smoothly inte-

grate these tools into clinical practice while preserving efficiency. This 
includes optimal strategies to ensure a good level of ergonomics, since 
physical environment is crucial for professionals’ efficiency and efficacy 
[103]. Errors could increase if users are required to become familiar 
with different, complex interfaces, and this could also limit user 
acceptance [78]. The interface employed by AI tools should be simple, 
user-friendly, accessible, and ideally fully integrated into one platform 
[104,105] within the reporting environment, otherwise image reporting 
and other tasks may be too laborious for adoption.

2.3.3. Emotional and perceptual challenges, human-AI interaction and 
automation bias

If not thoughtfully and holistically integrated, the daily use of AI 
tools in clinical practice could impact emotional wellbeing of end-users. 
Recent studies report that radiologists using AI solutions exhibited 
higher levels of burnout compared to those who did not use AI in 
practice due to workflow complexities, lack of training, and impact on 
decision making [106]. This, in turn, might cause radiologists to be 
prone to mistakes during their daily practice.

Optimising human-AI interaction is crucial for improving system 
performance and ensuring clinician well-being. While autonomous AI 
can sometimes outperform human-AI collaboration in specific use cases 
[107], its expanding use within multidisciplinary teams may introduce 
tensions and power imbalances during handovers [108]. Building trust 

and transparency for the interaction between practitioners and AI is 
essential for seamless collaboration. Enhancing human situation 
awareness is also key to anticipating and mitigating the impact of 
changes in real time [12].

Suboptimal human-AI interaction can lead to reduced efficiency, 
such as increased reading times [106,109], and performance issues due 
to systematic errors from overreliance on AI [95]. Studies show that 
incorrect AI outputs can raise false positive and negative rates among 
radiologists [31,109,110–112], with less experienced clinicians being 
more susceptible to automation bias [6,113]. In some cases, AI may 
impair radiologists’ ability to detect both normal and pathological 
findings, potentially affecting treatment and patient outcomes [114].

2.3.4. Cognitive aspects and annotation or interpretation errors
Data labelling by human experts is required for supervised learning 

training of AI models in medical imaging. Annotators use labelling to 
mark medical images as normal or abnormal, with different pathologies, 
so that the AI algorithms can then be trained to discriminate them. 
However, labelling mistakes resulting from differing levels of observer 
experience, cognitive fatigue, lack of attention, or reduced concentra-
tion can cause AI inaccuracies [33]. The same is true for image inter-
pretation tasks. Incomplete or inconsistent labelling causes 
reproducibility concerns for the AI model and those who use it [5]. 
Employing self-supervised learning approaches for image annotation 
tasks could serve as a remedy for lack of reproducibility [115], with 
recent research showing that these strategies can outperform all super-
vised methods [116]. Extending this paradigm further to image inter-
pretation, AI combining computer vision and natural language 
processing has been proposed as the ultimate quality assurance tool to 
review a radiologist’s report, identifying discrepancies between medical 
imaging and documentation [117].

2.3.5. Procedural aspects

2.3.5.1. Workflow efficiency: An AI promise still waiting to be fulfilled.
One of the biggest promises of AI in medical imaging is its potential to 
improve efficiency of clinical workflows and reduce turnaround times, 
critical at a time when waiting lists are expanding and staffing shortages 
are increasing [118]. In this context, it is expected that AI tools will help 
radiologists reduce their cognitive load and dedicate less time per ex-
amination. However, this is not always the case; certain AI tools may 
lengthen reading times of radiologists [119], for instance when normal 
examinations are falsely flagged as pathologic [18]. The implementation 
of AI tools in clinical practice may not therefore always realise the po-
tential for increased patient throughput. Their minimal impact on 
streamlining clinical workflows [120], without observed differences in 
the workload and stress of radiologists may suggest that adoption of AI 
tools may occasionally create new challenges for medical imaging pro-
fessionals [27,110]. Important to ensure any performance evaluation 
window is long enough to allow ample time for human and AI interac-
tion before drawing any definitive conclusions. This underlines the need 
of post market surveillance.

2.3.5.2. Regulation and policy. There is currently a wealth of regulatory 
frameworks globally. While regulation plays a crucial role in the 
implementation of AI, as it can ensure safe use and monitoring of AI 
tools in clinical practice, its complexity may also prove challenging for 
deployment in clinical contexts. Robust regulation can prevent failures 
caused due to suboptimal data protection, insufficient testing of AI al-
gorithms, and help manage accountability concerns [121]. Regulatory 
frameworks must be optimised in national contexts and harmonised at 
an international level, covering the whole AI lifecycle in healthcare. 
Failures due to an algorithmic drift should be monitored with robust 
post market surveillance, and algorithms updated accordingly under 
pre-determined change control plans [122].
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3. What can we do about it?

In the above exploration of AI failures (see Fig. 2 for a holistic view) 
specific remedial action was proposed when supported by respective 
research evidence. This section proposes some more universal solutions 
to AI errors, from both published evidence and own expertise.

3.1. AI education and literacy

Appropriate AI education is a key step to prevent, recognise or cor-
rect AI failures within radiology. Training should focus not only on the 
theoretical principles of AI and its applications, but also explicitly 
discuss the sources/mechanisms of failures [4]. This educational pro-
vision should support the development of essential perceptual skills, 
critical reflection, knowledge and understanding of related governance 
and appropriate use of AI without overreliance on technology. Cus-
tomised training can enable radiologists and other healthcare pro-
fessionals anticipate, recognise, and manage AI failures in practice. As 
outlined in the EU AI Act, qualified professionals must provide human 
oversight after AI deployment [123]. The vital role of AI literacy for 
successful implementation has been widely discussed within the medical 
imaging field [124,125], and specific digital competencies are now a 
requirement for radiographers to practise in the UK [126]. Moreover, AI 
literacy has been widely promoted by key professional bodies and 
statements [65]. Formal, personalised, academically-accredited educa-
tional provisions employing an interprofessional approach [127,128] 
will help practitioners gain deeper understanding of AI failures and 
safely navigate the new AI era.

Medical imaging professionals should view AI failures as learning 
opportunities to improve algorithms and deployment strategies. 
Creating an open repository of AI erroneous cases with analyses of 

causes and suggestions for improvement, would be invaluable for 
training future professionals, while enhancing human-AI interaction. 
Moreover, future AI development could be accelerated through re-
positories enabling crowdsourced testing by individuals with diverse 
expertise [129].

3.2. Continuous monitoring of AI

As previously mentioned, many AI failures occur after the deploy-
ment in clinical practice, and these can be often overlooked by end-users 
if evaluation occurs only at one timepoint. Post-market surveillance, a 
continuous evaluation of AI systems performance, is reinforced by the 
EU AI Act, mandating that AI vendors develop specific monitoring sys-
tems to continuously assess AI performance after clinical integration 
[130]. Continuous monitoring of deployed AI systems will also enhance 
practitioner and patient trust in AI technologies and help maintain high 
standards of care delivery [65]. Research dissemination and published 
evidence of AI tools’ performance should also report longitudinal eval-
uations of these tools in clinical practice.

3.3. Standardising reporting of AI studies

CLAIM offers a straightforward, standardised way for researchers to 
ensure consistent reporting of AI-related studies in medical imaging 
[34]. Similarly, researchers can also benefit from other important 
guidelines for standardised reporting of prediction model studies, such 
as the recently updated Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis Artificial Intelli-
gence (TRIPOD + AI) statement [131] or Developmental and 
Exploratory Clinical Investigations of DEcision support systems driven 
by Artificial Intelligence (DECIDE AI) [132] for the early-stage clinical 

Fig. 2. AI failures related to human factors, models and infrastructure (Created with Biorender).
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evaluation of AI-driven decision support systems. Finally, the SPIRIT AI 
AND CONSORT AI guidelines [133] should be used instead for stan-
dardizing the reporting of randomized clinical trials.

3.4. Multiprofessional collaboration and AI leadership

To effectively manage integration of AI into clinical practice, and 
minimise failures, it is important to build strong, collaborative AI teams. 
Collaboration should focus on the inclusion of all key stakeholders of the 
medical imaging AI ecosystem, adopting a multidisciplinary approach to 
harness the benefits of AI and mitigate any potential risks [134]. Thus, it 
will be possible to gain more insights into areas where understanding or 
research is lacking, like AI infrastructure, as described above. Further-
more, effective leadership is required to bring together and coordinate 
all different aspects of AI implementation (people, processes, product, 
and technology) [135] to maximise success of AI solutions despite the 
complexities of clinical practice. This is strengthened by recent research 
highlighting leadership errors as the most important cause of AI failures 
within companies [136].

3.5. Funding and business cases

Finally, financial constraints within organisations may result in 
premature AI project termination and incomplete implementation. 
Optimal allocation of financial resources, robust business cases, and 
proper reimbursement of healthcare systems will ensure the necessary 
capital investment for infrastructure, training of professionals and 
recruitment of experts required to realise the promised organisational 
efficiencies and clinical efficacy, and ensure the longevity of AI 
deployment and monitoring [137]. More recently the FUTURE.AI proj-
ect consortium proposed specific solutions for different AI challenges, 
which could offer a roadmap for streamlining AI implementation across 
healthcare and medical imaging, in particular [42].

4. Conclusion

AI can revolutionise medical imaging and other healthcare disci-
plines. The success of its implementation, though, relies on many fac-
tors; the knowledge and understanding of its potential errors and 
inadequacies; the lifelong learning of human observers so they can 
reskill to address these challenges; the collaborative spirit of multidis-
ciplinary teams guided by open-minded leaders; the careful coordina-
tion of processes, people, products and infrastructure; and a culture 
change, where failure is celebrated as an opportunity to learn and 
expand our understanding of the capabilities of AI for human benefit.
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