

City, University of London Institutional Repository

Citation: Martynov, P., Buzdalov, M., Pankratov, S., Aksenov, V. & Schmid, S. (2025). In

the Search of Optimal Tree Networks: Hardness and Heuristics. In: UNSPECIFIED (pp.
249-257). New York, NY, United States: ACM. ISBN 9798400714658 doi:
10.1145/3712256.3726425

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35542/

Link to published version: https://doi.org/10.1145/3712256.3726425

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

In the Search of Optimal Tree Networks: Hardness and Heuristics
Pavel Martynov

Jane Street

London, United Kingdom

Maxim Buzdalov

Aberystwyth University

Aberystwyth, United Kingdom

Sergey Pankratov

Institute of Science and Technology

Klosterneuburg, Austria

Vitaliy Aksenov

City St George’s, University of

London, United Kingdom

ITMO University

Saint Petersburg, Russia

Stefan Schmid

Technical University Berlin

Berlin, Germany

Abstract
Traffic in datacenters may follow some pattern: some pairs of

servers communicatemore frequently than others. Demand-oblivious

networks may perform poorly for such workloads, and demand-

aware networks optimized for traffic should be used instead. Unfor-

tunately, not all shapes of networks are feasible in real hardware.

Practical limitations are usually provided in the form of a topol-

ogy. For example, a network may be required to be a binary tree, a

bounded-degree graph or a Fat tree.

In this work, we consider a topology of a binary tree, one of

the most fundamental network topologies. We show that already

finding an optimal demand-aware binary tree network is NP-hard.

Then, we explore how various optimization techniques, includ-

ing simple local searches, as well as deterministic mutation and

crossover operators, cope with generating efficient tree networks

on real-life and synthetic workloads.

CCS Concepts
• Computing methodologies→ Discrete space search; •Math-
ematics of computing → Graph algorithms.

Keywords
demand-aware networks, binary trees, NP-hardness, heuristics

ACM Reference Format:
PavelMartynov,MaximBuzdalov, Sergey Pankratov, Vitaliy Aksenov, and Ste-

fan Schmid. 2025. In the Search of Optimal Tree Networks: Hardness and

Heuristics. In Genetic and Evolutionary Computation Conference (GECCO
’25), July 14–18, 2025, Malaga, Spain. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3712256.3726425

1 Introduction
Modern datacenters serve huge amounts of communication traffic

which impose stringent performance requirements on the underly-

ing network. Most of these datacenters are designed for uniform

(all-to-all) traffic independently of the actual traffic patterns they

serve, and typically rely on a fat-tree topology [31].

This work is licensed under a Creative Commons Attribution 4.0 International License.

GECCO ’25, July 14–18, 2025, Malaga, Spain
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1465-8/2025/07

https://doi.org/10.1145/3712256.3726425

This paper explores an alternative design which has recently re-

ceived attention: demand-aware networks, that is, networks whose
topology is optimized toward the traffic. These are made possible by

the recent advances in optical technologies [21, 24, 25, 32] that en-

abled easy reconfiguration of physical network topologies. See [8]

for an algorithmic taxonomy of the field.

In terms of topology efficiency, most existing algorithms provide

only approximated solutions [5–7, 22, 40]. The research on the

optimal demand-aware network topologies is currently limited. We

are aware of only two results providing optimal demand-aware

networks. The first one [23] shows that the problem is NP-hard

when a demand-aware network should be a graph of degree two,

i.e., a line or a cycle. The second one [39] shows that a problem

for a binary search tree topology can be solved in polynomial time.

This topology requires the following property: all nodes in the left

subtree have smaller identifiers than the root, while those in the

right subtree have larger identifiers. The construction algorithm is

polynomial and employs dynamic programming.

Given the limited existing work in this area, we decided to in-

vestigate the generic binary tree topology as the next step. This

topology is particularly appealing due to three main advantages.

First, each node only needs to maintain three connections. Second,

the network becomes planar. Finally, routing decisions are much

simpler compared to more complex topologies, such as Fat Trees.

In modern data centers, these advantages are less relevant because

nodes typically support a large number of simultaneous connec-

tions and are powerful enough to make routing decisions quickly.

However, in some uncommon cases, the binary tree topology can

still offer benefits. For example, it can be useful for coordinating

unmanned aerial vehicles [48] and for low-cost wireless mesh con-

nections [28], where low-degree nodes and a planar topology are

needed. Simple routing is also essential when using very basic

FPGAs as routing nodes [45].

By that, we continue the discussion on whether we can construct

the best (or a reasonably good) network under some constraints, e.g.,

bounded-degrees, given the distribution of requests over some time,

for example, a day or a month. Since usually the load in the network

is periodic, optimizing the network this way could lead to the better

network utilization, e.g., reducing the load over the edges, and,

thus, could improve the performance of the communication-heavy

computations in a datacenter, e.g., all-to-all communications in a

learning process of a machine learning model [49] or a MapReduce

computation [1].

249

https://orcid.org/0009-0003-4062-0802
https://orcid.org/0000-0002-7120-8824
https://orcid.org/0009-0000-2795-6035
https://orcid.org/0000-0001-9134-5490
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.1145/3712256.3726425
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3712256.3726425
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712256.3726425&domain=pdf&date_stamp=2025-07-13

GECCO ’25, July 14–18, 2025, Malaga, Spain Pavel Martynov, Maxim Buzdalov, Sergey Pankratov, Vitaliy Aksenov, and Stefan Schmid

Our contribution. We show that unlike the search tree variant,

the problem of finding an optimal binary tree is NP-hard. Then

we propose a set of optimization heuristics consisting of various

problem-dependent initialization, mutation and crossover opera-

tors, some of which are based on the algorithm from [39], and some

introduce entirely different ideas, such as the maximum spanning

tree construction heuristic. These operators are then employed

within a gray-box-like [46] optimization framework. We show that

our mutation-based heuristics work well on synthetic and real loads:

our generated binary tree networks outperform the binary search

tree networks constructed over random permutations of vertices,

ranging from 2% to 2.8× of improvement. The studied crossover

operators, however, did not result in any additional improvement.

Roadmap. In Section 2, we state the problem and discuss op-

timization algorithms. In Section 3, we prove that the problem is

NP-hard. In Section 4, we propose components that can be used

to implement local search with restarts, and show that these can

already find good enough solutions. Section 5 deals with our efforts

to design crossover operators, all of which appear to be of little use

for this problem. We conclude with Section 6.

2 Background
Demand Matrix. The demand of a network refers to the pattern of

usage and traffic on the network over a certain period of time. It is a

characterization of the amount and type of data that is transmitted

across the network at different times of the day, week, or month.

The demand is affected by various factors such as the type of

applications being used, the time of day, etc. The nature of the

demand for a network can vary widely depending on the specific

network and its usage patterns [3, 4, 18, 37].

In our chosen theoretical model, demand, or load, can be defined

as a square symmetrical demand matrix𝑊 of size 𝑛 × 𝑛 where 𝑛

is the number of hosts in the network. An integer𝑊𝑖 𝑗 numerically

denotes the amount of traffic between nodes 𝑖 and 𝑗 of the network—

we can think of it as the frequency of communication between these

two nodes, or the probability of sending a message. In this paper,

we abstract from the actual meaning of these numbers.

Static Optimal Networks. A static optimal network is a net-

work that is designed to provide the best possible performance and

efficiency for a particular set of conditions, without considering

changes in traffic patterns or usage over time.

Finding a static optimal network amounts to minimizing the sum∑
1≤𝑖, 𝑗≤𝑛𝑊𝑖 𝑗 ·𝐷𝑖 𝑗 where𝑊 is the demand matrix and𝐷 is a distance

matrix in the constructed network, subject to chosen constraints.

We refer to the value of the sum above as the cost of the network,
which is a common model in the literature:

𝐶 (𝐷,𝑊) =
∑︁

1≤𝑖, 𝑗≤𝑛
𝑊𝑖 𝑗 · 𝐷𝑖 𝑗 . (1)

Fitness evaluation. If an algorithm or an operator does not

calculate the cost on its own, we use the classic algorithm for

finding lowest common ancestors (LCA) [2], which reduces the

problem to range minimum queries [9, 10]. After preprocessing in

𝑂 (𝑛 log𝑛) time and space, for each non-zero demand entry𝑊𝑖 𝑗 we

compute the distance between nodes 𝑖 and 𝑗 in the tree by finding

their LCA in time 𝑂 (1). This takes 𝑂 (𝑛 log𝑛 +𝑚𝐷) time, where

𝑚𝐷 is the number of non-zero𝑊𝑖 𝑗 entries where 𝑖 < 𝑗 .

Topological constraints. It is obvious that the optimal solution

in the absence of any constraints is the complete graph (a clique).

However, this topology is not scalable. For scalability reasons, it

seems natural to narrow down the possible network topology for

our statically optimal network. There exist several standard topolo-

gies: a line; a binary tree; a tree topology; and Δ-bounded topology,

more specifically, 3-bounded topology.

The algorithm from [39] constructs, for a given permutation of

vertex indices {1, 2, . . . , 𝑛}, the “optimal binary search tree”. The

name “binary search tree” refers to the construction strategy, which

results in construction of a tree that satisfies the search tree property

on the chosen order of vertices (that is, all vertices in the left subtree

are “less” than this vertex, and all vertices in the right subtree are

“greater”, with regards to the chosen order). The complexity of this

algorithm is 𝑂 (𝑛3). Note that this approach would produce the

optimal solution, if an appropriate order of vertices is supplied as

the permutation. This is, however, sufficiently unlikely for realistic

input sizes.

Our problem. In this work, we are interested in demand-aware

networks with the binary tree topology. Unlike [39], we do not

require an additional search property from the binary tree. We

show that a problem to find an optimal binary tree topology is

NP-hard and then we present optimization algorithms that achieve

better results than the optimal binary search tree.

Gray-box optimizers. When dealing with problems that have a

well-understood or transparent structure, one may benefit from spe-

cialized operators, either specialized construction heuristics (such

as using the algorithm from [39]) instead of random generation,

efficient deterministic local search operators [15] or crossovers that

constructively recombine best parts of different solutions [38, 44].

These approaches are currently collectively known as gray-box opti-

mization. A related concept is operators that re-evaluate individuals

quickly, including mutations [11, 12, 14, 16] and crossovers [13, 35].

When such operators are available, search algorithms tend to con-

verge to a format which amounts to running multiple local searches

and recombining local optima using higher-order operators, where

a prominent example is the design of the Lin-Kernighan-Helsgaun

family of optimizers [26, 44], which, among everything else, allows

such optimizers to be competitive in terms of wall-clock running

time with other specialized algorithms. For this reason, we will also

choose this route from the very beginning. We will first study local

searches in the form of combining various initializers and muta-

tions, and then turn to exploring possibilities offered by crossovers,

an opportunity which should not be missed [20, 27, 42].

3 NP-hardness
To prove that our problem is NP-hard, we consider a decision ver-

sion of the problem, which we call the Optimal Binary Tree Problem,

or OBT, and prove that it is NP-complete; the original version of

the problem is obviously not easier. Given the symmetric demand

matrix𝑊 and the required arranged cost𝐶 , the problem is to decide

whether there exists a binary tree such that its cost, according to (1),

does not exceed 𝐶 .

As OBT is in NP, we need to reduce another NP-complete prob-

lem to it. For that, we choose an NP-complete problem called Simple

250

In the Search of Optimal Tree Networks: Hardness and Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

Optimal Linear Arrangement Problem (OLA) [23]. Given an undi-

rected graph (𝑉 , 𝐸) with |𝑉 | = 𝑛 vertices, the problem is to decide

whether there exists a bijective function 𝜙 : 𝑉 → {1, . . . , 𝑛} such
that the sum of |𝜙 (𝑢) − 𝜙 (𝑣) | for each edge 𝑢𝑣 ∈ 𝐸 does not exceed

a number𝑊 . Now, we give the formal definitions of both problems.

Problem 1 (OBT). Let𝑊 = [𝑤𝑖 𝑗]𝑛×𝑛 be a symmetric demand
matrix. Let𝐶 be the required arrangement cost. For a connected undi-
rected graph𝐺 ,𝐷𝐺 (𝑖, 𝑗) denotes the shortest distance between vertices
𝑖 and 𝑗 .

Question: Does there exist a binary tree graph 𝐵, such that∑︁
𝑖> 𝑗

𝑤𝑖 𝑗 · 𝐷𝐵 (𝑖, 𝑗) ≤ 𝐶?

Problem 2 (OLA). Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with
|𝑉 | = 𝑛. Let𝑊 be the required cost of the bijection. Since 𝐺 is undi-
rected, we assume that edge 𝑢𝑣 is the same edge as 𝑣𝑢.

Question: Does there exist a bijective function 𝜙 : 𝑉 → {1, . . . , 𝑛},
such that ∑︁

𝑢𝑣∈𝐸
|𝜙 (𝑢) − 𝜙 (𝑣) | ≤𝑊 ?

Now we prove that OBT is NP-complete by reducing OLA to it.

Theorem 3.1. OBT problem is NP-complete.

Proof. It is clear that OBT lies in NP. To prove the NP-hardness,

we provide a reduction of OLA to OBT where OLA is known to be

NP-complete [23].

Consider an instance of OLA: a graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛

and |𝐸 | =𝑚 and the required bijection cost𝑊 . We build an instance

of OBT in the following manner (see a left graph on Figure 1b).

We introduce 𝑛 + 2 new vertices 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑛+2}. Some-

times we refer to a vertex ℎ𝑖 as 𝑣𝑛+𝑖 and it should be clear from the

context.

Then, we introduce two new sets of edges. 𝐿 = {(ℎ𝑖 , ℎ 𝑗) : ℎ𝑖 , ℎ 𝑗 ∈
𝐻 ; |𝑖− 𝑗 | = 1} is a set of edges for a line on vertices from𝐻 , shown in

blue on the left of Figure 1b. And 𝐼 = {(𝑣𝑖 , ℎ 𝑗) : 𝑣𝑖 ∈ 𝑉 , 𝑗 ∈ {2, 𝑛+1}}
is a set of edges connecting vertices from 𝑉 to the second and

penultimate nodes of 𝐻 , shown in red on the left of Figure 1b.

Also, we introduce a demand matrix𝑊 for 2 · 𝑛 + 2 vertices in

𝑉 ∪ 𝐻 :

𝑊𝑖 𝑗 =


1, for (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸.

𝑑1 = 𝑋 + 2 ·𝑚 + 1, for (𝑣𝑖 , ℎ 𝑗−𝑛) ∈ 𝐼 .

𝑑2 = (𝑛2 + 𝑛 + 1) · 𝑑1, for (ℎ𝑖−𝑛, ℎ 𝑗−𝑛) ∈ 𝐿.

0, otherwise.

(2)

Finally, we calculate the constant 𝐶 for our OBT problem.

𝐶 = (𝑛 + 1) · 𝑑2 + 𝑛 · (𝑛 + 1) · 𝑑1 + 𝑋 + 2 ·𝑚 (3)

Now we show the correctness of our reduction.

𝑂𝐿𝐴 ⇒ 𝑂𝐵𝑇 : Suppose there exists a bijection function 𝜙 for 𝐺

with the cost ≤ 𝑋 then there exists a binary tree with the cost at

most 𝐶 .

We construct binary tree 𝐵 as shown on the right of Figure 1b:

vertices of 𝐻 form a line and vertices of 𝑉 are connected to the

named line in order 𝜙 , starting from the second vertex of 𝐻 . In

other words, vertex 𝑣𝑖 ∈ 𝑉 is connected to vertex ℎ1+𝜙 (𝑖) . Now to

show that this arrangement costs at most 𝐶:

• the sum of costs for edges in 𝐿 = (𝑛 + 1) · 𝑑2: each edge tra-

verses distance of 1 — the adjacent vertices in 𝐻 are mapped

to the adjacent vertices;

• the sum of costs for edges in 𝐼 = 𝑛 · (𝑛 + 1) · 𝑑1: for every
𝑣𝑖 ∈ 𝑉 , 𝐷𝐵 (𝑣𝑖 , ℎ2) + 𝐷𝐵 (𝑣𝑖 , ℎ𝑛+1) = 𝑛 + 1;

• the sum of costs for edges in 𝐸 ≤𝑊 +2 ·𝑚: each edge (𝑣𝑖 , 𝑣 𝑗)
traverses distance of |𝜙 (𝑖) − 𝜙 (𝑗) | + 2.

If we sum all these costs we get a value at most 𝐶 .

𝑂𝐵𝑇 ⇒ 𝑂𝐿𝐴: Suppose there exists a binary tree 𝐵 for matrix

𝑊 from Formula 2 with the cost of at most 𝐶 from Formula 3 then

there exists OLA with the cost at most𝑊 .

(1) Every edge from 𝐿 has the distance of exactly 1 over 𝐵. We

prove this by contradiction: if at least one edge in 𝐿 traverses

a distance of at least 2, then, all edges of 𝐿 traverse the

distance of at least (𝑛+ 2). Thus, the total cost of 𝐵 is at least

(𝑛+ 2) ·𝑑2 = (𝑛+ 1) ·𝑑2 + (𝑛2 +𝑛) ·𝑑1 +𝑊 + 2 ·𝑚+ 1 =𝐶 + 1,

which contradicts that the cost is at most 𝐶 .

(2) As a direct consequence, vertices in 𝐻 have to form a line

segment in 𝐵 and in the right order.

(3) At most one vertex from 𝑉 can be adjacent to ℎ𝑖 for 2 ≤ 𝑖 ≤
𝑛 + 1. Since 𝐵 is a binary tree, the maximum degree of ℎ𝑖 in

𝑏 is 3. By Statement 2, ℎ𝑖 is adjacent to ℎ𝑖−1 and ℎ𝑖+1, which
means only one vertex from 𝑉 can be adjacent to ℎ𝑖 in 𝐵.

(4) For some 𝑣𝑖 , the minimal possible value of 𝑥 = 𝐷𝐵 (𝑣𝑖 , ℎ2) +
𝐷𝐵 (𝑣𝑖 , ℎ𝑛+1) is 𝑛 + 1. We have three cases: 1) if 𝑣𝑖 is adjacent

to ℎ 𝑗 (2 ≤ 𝑗 ≤ 𝑛 + 1), then 𝑥 = 𝑛 + 1; 2) if 𝑣𝑖 is adjacent to ℎ1
or ℎ𝑛+2, then 𝑥 = 𝑛 + 3; 3) if 𝑣𝑖 is not adjacent to any vertex

in 𝐻 , then 𝑥 > 𝑛 + 1 since 𝐵 is a tree.

(5) In 𝐵 every vertex of 𝑉 is adjacent to one of the vertices in

{ℎ2, ℎ3, . . . , ℎ𝑛+1}. We prove this statement by contradiction:

if some vertex 𝑣𝑖 is not adjacent to one of vertices from

{ℎ2, ℎ3, . . . , ℎ𝑛+1}, then 𝑥 = 𝐷𝐵 (𝑣𝑖 , ℎ2) +𝐷𝐵 (𝑣𝑖 , ℎ𝑛+1) > 𝑛+ 1.

By Statement 4, all other vertices from 𝑉 contribute at least

(𝑛 + 1) · 𝑑1 to the cost for edges in 𝐼 . It follows that the total

cost of edges in 𝐼 is at least 𝑛 · (𝑛+1) ·𝑑1+𝑑1. By Statement 1,

the total cost of edges in 𝐿 is (𝑛+1) ·𝑑2. Hence, the total cost
of 𝐵 is at least (𝑛+1) ·𝑑2+𝑛 · (𝑛+1) ·𝑑1+𝑊 +2 ·𝑚+1 =𝐶+1,
which contradicts that the cost is at most 𝐶 .

(6) The arrangement cost of 𝐸 is∑︁
(𝑣𝑖 ,𝑣𝑗) ∈𝐸

𝐷𝐵 (𝑣𝑖 , 𝑣 𝑗) ≤𝑊 + 2 ·𝑚.

From Statements 1 and 5, the arrangement cost of 𝐿 and 𝐼 in

𝐵 is (𝑛 + 1) · 𝑑2 + 𝑛 · (𝑛 + 1) · 𝑑1. Subtracting that from𝐶 we

get the upper bound on the total cost of edges in 𝐸.

Thus, by Statement 5, every vertex 𝑣𝑖 ∈ 𝑉 is adjacent to some ℎ 𝑗

with 𝑗 ∈ {2, . . . , 𝑛+ 1}, and we can define 𝜙 (𝑖) = 𝑗 − 1. 𝜙 is bijective

by Statement 3 and 𝐵 being a tree. It follows from the above that∑︁
(𝑣𝑖 ,𝑣𝑗) ∈𝐸

|𝜙 (𝑖) − 𝜙 (𝑗) | =
∑︁

(𝑣𝑖 ,𝑣𝑗) ∈𝐸
(𝐷𝐵 (𝑣𝑖 , 𝑣 𝑗) − 2) =

∑︁
(𝑣𝑖 ,𝑣𝑗) ∈𝐸

𝐷𝐵 (𝑣𝑖 , 𝑣 𝑗) − 2 ·𝑚.

By Statement 6, the cost of 𝜙 does not exceed𝑊 . □

4 Local searches with restarts
In this section, we limit ourselves with optimization algorithms that

employ two type of operators: initializers, or zero-arity operators,

251

GECCO ’25, July 14–18, 2025, Malaga, Spain Pavel Martynov, Maxim Buzdalov, Sergey Pankratov, Vitaliy Aksenov, and Stefan Schmid

c

a

b

d

e

c ab d e

1 2 3 4 5G:

(a) A solution of OLA for graph𝐺 and labeling cost𝑊 = 7. The orange line represents indexing of vertices.

f g h k l

ca

L:

E:

I:

b d e

i j

f

g

h

k

l

i

j

c

a

b

d

e

1

2

3

4

5

(b) A solution of OBT, constructed from the OLA instance in (1a). Vertices 𝑎 to 𝑒 represent𝑉 . Vertices 𝑓 to 𝑙 represent 𝐻 and are highlighted
with light blue. On the left, edges of 𝐸 are highlighted with green and have demand 1 each. Edges of 𝐼 are highlighted with red and have demand
𝑑1 = 18. Edges of 𝐿 are highlighted with blue and have demand 𝑑2 = 558. The right graph is a binary tree with cost𝐶 = 3905 corresponding to the
bijection at Figure 1a.

Figure 1: The example of OLA instance and an OBT instance reduced from OLA

that generate new solutions based on the problem instance only, and

mutation operators, or unary operators, that generate new solutions

based on one existing solution. Each of these operators may be

randomized and, given its inputs, may produce a large number

of solutions. We also delegate the responsibility of computing the

fitness of the solution to such an operator. More formally, both

initializers and mutation operators generate a sequence of pairs

⟨𝑇, 𝐹 ⟩, where 𝑇 is the solution and 𝐹 is its fitness value, equal to

the one computed by (1). Instead of such a pair, an algorithm can

return an empty value null, which can only happen if either the

time limit is exceeded or the search space is explored completely.

An initializer can then be used as an optimization algorithm

on its own, similar to random search, with a difference that it

can generate something better than just random solutions (for

instance, optimal binary search trees over random permutations of

vertices). However, we can iteratively improve a solution generated

with an initializer by repeatedly applying a mutation operator and

rejecting a solution if it becomes worse, which results in a local

search algorithm. If the mutation operator can no longer produce

more different offspring (i.e. it returns null), we may safely restart

the optimizer by sampling a new solution with an initializer and

beginning anew. We present our operators below.

4.1 Initializers
We use three operators as initializers, where two are considered

general-purpose initializers suitable for local searches, and one is

only treated as a separate optimizer.

Optimal binary search trees, random permutations. To
generate a tree, this initializer samples a random permutation over

{1, 2, . . . , 𝑛} and uses the algorithm presented in [39] to construct

using the sampled permutation as the ordering on the vertices. One

such invocation requires time 𝑂 (𝑛3).
Optimal binary search trees, all permutations. The previ-

ous approach can be optimized if the considered permutations are

not sampled at random, but rather iterated in the lexicographical

order, starting from a random permutation. For two permutations

𝜋1 and 𝜋2, such that 𝜋2 follows 𝜋1 in the lexicographical order, their

common prefix is large, which allows to avoid recomputing large

parts of data structures used in the algorithm above. This consid-

eration allows to construct optimal trees for all permutations in

time 𝑂 (𝑛! · 𝑛2), starting from a random permutation, as opposed

to a more naïve 𝑂 (𝑛! · 𝑛3) approach. This improvement in perfor-

mance, noticeable even for partial evaluations, is further assessed

in experiments. We use this initializer only on its own.

Maximum spanning tree. The algorithms listed above require

time of order Ω(𝑛3) to construct even one meaningful approxi-

mation, which can be too expensive for large networks. Thus, we

need alternative approaches which do not guarantee any kind of

optimality, but are still good as a starting point.

One such approach is to assign some potential value to each

potential edge (an unordered pair of vertices) and then to select

edges greedily according to this value, while keeping in mind that

we want to obtain a tree with a maximum vertex degree of 3: if the

next edge connects already connected parts of the tree, or is incident

to a vertex with degree 3, it is skipped. Connectivity tests in this case

are easily implemented by the Disjoint Set data structure [43], and

the overall algorithm resembles Kruskal’s algorithm [30] for finding

minimum spanning trees, subject to additional degree checks.

252

In the Search of Optimal Tree Networks: Hardness and Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

𝑣

𝑢

𝑣

𝑢

(a) Edge switch

(b) Random edge replacement

(c) The subtree swap operator

Distance decreases by 1 if the connection moves towards the vertex

Distance increases by 1 if the connection moves away from the vertex

(d) Optimal edge replacement: the main principle

4

2 6

1 3 5 7

(e) Optimal binary search tree based on random depth-first traversal

Figure 2: Mutation operators employed in this work

Such heuristics consider the demand matrix and treat each entry

𝑊𝑖 𝑗 as the weight of an edge between vertices 𝑖 and 𝑗 . In order to

minimize the sum of𝑊𝑖 𝑗 · 𝐷𝑖 𝑗 , where 𝐷𝑖 𝑗 is the distance between

vertices 𝑖 and 𝑗 in the resulting tree, we would aim at decreasing𝐷𝑖 𝑗

for large𝑊𝑖 𝑗 . This results in the algorithm for finding themaximum
spanning tree, with a constraint on the maximum vertex degree. As

this problem is NP-hard [34], we only hope for an approximation.

Our algorithm runs in time 𝑂 (𝑚𝐷 (log𝑚𝐷 + 𝛼 (𝑛))). We need

𝑂 (𝑚𝐷 log𝑚𝐷) to sort all the potential edges. Then, we add each

edge in disjoint sets with the complexity equal to the inverse Ack-

ermann function 𝛼 (𝑛), leading to 𝑂 (𝑚𝐷 · 𝛼 (𝑛)) in total. After this

part has concluded, we graph may still not be connected, either

because the demand graph is not connected or due to the degree

constraints. In this case, we can add arbitrary edges to make a tree,

because the particular choice of these edges will not influence the

cost of the tree. This part takes at most 𝑂 (𝑛) time, which does not

change the complexity in the real-life case (that is,𝑚𝐷 ≫ 𝑛).

This approach may be able to generate a good starting point

quickly. As the demand matrix may contain multiple equal values,

we sort the edges once and generate each new maximum spanning

tree by first shuffling the edges with equal weights.

4.2 Mutation Operators
We propose four mutation operators: edge switch, random and op-

timal edge replacement, subtree swap and optimal BST for random
depth-first traversal.

Edge switch. This operator samples an arbitrary edge (𝑢, 𝑣) in
the tree. Then, for each vertex 𝑖 different from 𝑣 that was adjacent

to 𝑢, the operator removes an edge (𝑢, 𝑖) and adds a new edge (𝑣, 𝑖),
and similarly, for each vertex 𝑗 different from 𝑢 that was adjacent

to 𝑣 , the operator removes an edge (𝑣, 𝑗) and adds a new edge (𝑢, 𝑗).
This way, the endpoints of the edge appear switched. The example

execution of this operator is illustrated in Fig. 2a.

Consider two connected components that would appear in the

tree if the edge (𝑢, 𝑣) was to be removed. Denote as 𝑈 the compo-

nent that contains vertex 𝑢, and as 𝑉 the component that contains

vertex 𝑣 . For any pair of vertices 𝑖, 𝑗 ∈ 𝑈 , the distance between 𝑖

and 𝑗 does not change as an effect of this operator, similarly it does

not change for any 𝑖, 𝑗 ∈ 𝑉 . For any 𝑖 ∈ 𝑈 \ {𝑢} and any 𝑗 ∈ 𝑉 \ {𝑣},
𝐷𝑖 𝑗 also remains unchanged, and the only changes are: 𝐷𝑖𝑢 and 𝐷 𝑗 𝑣

increase by 1, 𝐷𝑖𝑣 and 𝐷 𝑗𝑢 decrease by 1.

As a result, this operator can be implemented in time 𝑂 (𝑛 +
deg(𝑊,𝑢) + deg(𝑊, 𝑣)) including the recalculation of the cost: the

time 𝑂 (𝑛) is needed to mark the connected components 𝑈 and 𝑉 ,

and then we need to consider only the edges of the demand graph

that are adjacent to 𝑢 and 𝑣 . This operator is the only one in the

paper which requires time less than 𝑂 (𝑚𝐷), so we expect it to be

able to explore much more solutions compared to other operators.

Since the number of edges to remove is only 𝑛−1 for a given tree,
we can track which edges we have previously tried and give up by

returning null if all edges have been tried and no improvement

has been found, which facilitates restarts.

Edge replacement: random. A mutation which is similarly mi-

nor in structure, but more disruptive in the terms of cost changes,

is to remove a randomly chosen edge and to connect the two com-

ponents of the tree with a different edge. The example execution of

this operator is illustrated in Fig. 2b. When sampling the replace-

ment edge, we check whether adding this edge violates the degree

constraint: as there is always a constant fraction of edges in each

component with degree two or less, resampling invalid edges does

not affect the running time. After this operator, we evaluate the cost

from scratch in 𝑂 (𝑛 log𝑛 +𝑚𝐷) time. As the number of possible

actions is 𝑂 (𝑛3), our implementation never gives up sampling.

Edge replacement: optimal. We may employ the structure of

our cost function to reconnect the components optimally after an

edge is removed. To do this, we consider moving the connection

253

GECCO ’25, July 14–18, 2025, Malaga, Spain Pavel Martynov, Maxim Buzdalov, Sergey Pankratov, Vitaliy Aksenov, and Stefan Schmid

point of the new edge in one of the components to one of the adja-

cent vertices (see Fig. 2d). If we split for a moment the vertices of the

affected component (the left-hand-side component in Fig. 2d) into

those which have their distance to the connection decreased, and

those where this distance is increased, we may note that the cost is

decreased by the total demand between the vertices from the first

group and the entire second component (the right-hand-side com-

ponent in the figure), and increased by the total demand between

the vertices from the second group and the second component.

We can easily maintain this demand change while each connec-

tion point traverses its respective component by moving along the

edges, as in depth-first search, with a relatively easy preprocessing

in 𝑂 (𝑚𝐷 + 𝑛) that amounts to computing the total demand in all

subtrees assuming an arbitrary vertex to be chosen as a root. As all

the changes require only the demand values, but not the particular

distances, we can perform component traversals independently of

each other. As a result, in 𝑂 (𝑚𝐷 + 𝑛) time we are able to find the

edge that connects the two components remaining after removing

any given edge, such that the resulting tree has the minimum pos-

sible cost. There are only 𝑛 − 1 possible actions, so we remember

which edges have been tested without an improvement and give

up if no improvement is possible.

Subtree swap. We also employ a less local mutation operator,

subtree swap, which bears the resemblance with crossover and

mutation operators used in tree-based genetic programming [29].

In our case, we sample two different vertices 𝑣1 and 𝑣2 that are

not adjacent to each other, which will be the root vertices of the

subtrees to be swapped. Then, we search for the vertices 𝑢1 and

𝑢2, such that 𝑢1 is adjacent to 𝑣1, 𝑢2 is adjacent to 𝑣2, and the path

from 𝑣1 to 𝑣2 in the tree passes through 𝑢1 and 𝑢2. This can be

done straightforwardly with a single depth-first search call in time

𝑂 (𝑛). After that, we remove edges (𝑣1, 𝑢1) and (𝑣2, 𝑢2) and add

edges (𝑣1, 𝑢2) and (𝑣2, 𝑢1). This is illustrated in Fig. 2c. Due to the

complexity of determining the exact changes, we compute the cost

from scratch in 𝑂 (𝑛 log𝑛 +𝑚𝐷) time.

For a small number of vertices in the tree, i.e., 𝑛 ≤ 10
3
, we track

which pairs of vertices have been tried without an improvement,

so that the operator can sample these pairs without replacement

and give up when all pairs have been tried.

Optimal BST for random depth-first traversal. Our last op-
erator takes an existing solution, chooses an arbitrary vertex with

degree at most 2, and performs a random depth-first traversal of the

tree, which then imposes an ordering on vertices. It then runs the

algorithm from [39] to construct an optimal binary search tree for

this ordering (see Fig. 2e for an illustration). Note that the original

solution can also be represented as a binary search tree for this

ordering by construction, as a result, the operator never constructs

a solution which is worse than the original one.

Unlike the previous operators, this operator is capable of deep

structural changes while offering some quality guarantees, so we

expect very good results from using this operator. This comes at a

price, however, as its running time is 𝑂 (𝑛3). For very big graphs

we can only afford few invocations, so it is possible that using

cheaper operators, on their own or in addition to this operator, can

be overall better.

4.3 Experiments
Based on the heuristics outlined in Sections 4.1–4.2, we test the

following local search algorithms:

• “MST”: repeated calls to the maximum spanning tree heuris-

tic, with edges of equal weights randomly shuffled between

the calls.

• “BST/rand”: the construction of optimal binary search trees

using randomly generated permutations of vertices.

• “BST/next”: the construction of optimal binary search trees

using lexicographical enumeration of permutations of ver-

tices, starting with a random one.

• algorithms denoted with the notation “𝐴 + 𝐵”, where 𝐴 de-

notes the initializer used (either MST or BST), and 𝐵 is the

mutation operator. For the basic mutation operators, the

names are “switch” for the edge switch mutation, “subtree”

for the subtree swap mutation, “replaceR” for the random

edge replacement mutation, “replaceO” for the optimal edge

replacement mutation, “bstMut” for the BST mutation for a

random depth-first traversal.

As 𝐵, we also use “random” for a compound operator mutation

that on each call chooses one of “switch”, “subtree” or “replaceO”

operators, subject to being able to sample new individuals, and

“replaceOB” that applies “replaceO” while possible and “bstMut”

otherwise. As “bstMut” is very expensive compared to other oper-

ators, we do not use it as a part of the “random” operator, and in

“replaceOB” we resort to “bstMut” only when absolutely necessary.

We thus have 14 algorithms of the form “𝐴 + 𝐵”, examples being

“MST+random” or “BST+subtree”, in addition to three initializer-

only algorithms. To investigate their performance, we use two

groups of tests, where each test is essentially a demand graph: the

synthetic test and the real-world tests.

The synthetic test is adapted from [4] where they test the prop-

erties of dynamically adjusting demand-aware networks. They are

characterized by the set of possible vertex pairs between which a

message is assumed to be passed, and the temporal locality parameter

𝛼 : the previous request pair is chosen again with probability 𝛼 while

a random pair is chosen otherwise. In the context of this work, the

temporal behavior is not considered, so the demand matrix ele-

ment𝑊𝑖 𝑗 is equal to the number of messages passed between 𝑖

and 𝑗 in the test. In this work, we use tests generated in the same

manner with the same number of vertices 1023 and the temporal

locality parameter 𝛼 = 0.5, as our preliminary experiments showed

no difference in relative performance of considered algorithms for

𝛼 ∈ [0; 0.9].
The following six real-world tests, adapted from their respective

sources similarly to the above, are used:

• The small and the large test from [37], which we refer to

as “Facebook” (𝑛 = 100 vertices, 𝑚𝐷 = 2990 edges) and

“FacebookBig” (𝑛 = 10000,𝑚𝐷 = 151677).

• Two tests from [24] referred to as “ProjecToR” (𝑛 = 121,

𝑚𝐷 = 2322) and “Microsoft” (𝑛 = 100,𝑚𝐷 = 1431).

• “HPC”, a test from [18] (𝑛 = 544,𝑚𝐷 = 1620).

• “pFabric”, a test from [3] (𝑛 = 100,𝑚𝐷 = 4506).

To run the experiments, we used a computer with an Intel®

Core™ i7-8700 CPU clocked at 3.20 GHz, with 12 cores and 64 giga-

bytes of memory available. The computations were performed in

254

In the Search of Optimal Tree Networks: Hardness and Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

Table 1: Local searches: median costs (fitness values) and numbers of queries for all tests. The e-notation is used to save space.
In each column, grey are the best entry and entries with statistical significance 𝑝 ≥ 0.05 in comparison with the best entry, and
yellow is the best entry for algorithms using initializers only (first three algorithms).

Synthetic Facebook FacebookBig HPC Microsoft ProjecToR pFabric

Algorithm Cost Queries Cost Queries Cost Queries Cost Queries Cost Queries Cost Queries Cost Queries

MST 3.09e5 2.93e7 4.20e4 5.11e7 1.32e7 5.37e5 2.83e6 3.74e7 1.96e5 9.18e7 2.15e6 5.87e7 3.94e5 3.34e7

BST/rand 1.23e6 5.44e3 3.78e4 5.85e6 9.54e6 4.00e0 5.48e6 5.02e4 1.90e5 5.36e6 2.04e6 3.04e6 3.53e5 5.57e6

BST/next 1.26e6 8.29e5 3.88e4 6.86e7 9.56e6 7.19e3 5.65e6 2.77e6 2.12e5 7.01e7 2.21e6 4.89e7 3.55e5 6.67e7

MST+switch 3.31e5 4.33e8 4.20e4 3.64e9 1.38e7 3.38e7 2.90e6 9.09e8 1.90e5 4.14e9 2.09e6 3.63e9 3.98e5 3.49e9

MST+subtree 1.89e5 8.11e7 3.64e4 1.32e8 9.82e6 1.83e6 2.13e6 1.18e8 1.76e5 2.71e8 1.88e6 1.70e8 3.54e5 9.07e7

MST+replaceR 1.17e5 6.20e7 3.71e4 1.30e8 1.35e7 1.68e6 2.36e6 9.72e7 1.84e5 2.59e8 1.96e6 1.71e8 3.56e5 9.60e7

MST+replaceO 1.13e5 5.12e7 3.60e4 1.37e8 1.12e7 2.01e6 2.21e6 9.36e7 1.77e5 2.57e8 1.89e6 1.71e8 3.52e5 9.99e7

MST+bstMut 1.10e5 5.18e3 3.55e4 5.64e6 9.35e6 5.00e0 1.93e6 3.94e4 1.76e5 5.08e6 1.88e6 2.97e6 3.49e5 5.66e6

MST+replaceOB 1.10e5 8.54e4 3.55e4 5.83e6 9.17e6 5.87e5 1.94e6 2.19e5 1.75e5 5.46e6 1.87e6 3.00e6 3.48e5 5.59e6

MST+random 1.14e5 8.03e7 3.49e4 1.56e8 9.20e6 2.76e6 2.00e6 1.22e8 1.74e5 3.11e8 1.86e6 2.07e8 3.45e5 1.15e8

BST+switch 1.09e6 2.01e8 3.67e4 2.30e9 9.42e6 4.72e5 5.29e6 2.08e8 1.88e5 1.40e9 2.01e6 1.11e9 3.49e5 2.55e9

BST+subtree 3.12e5 7.57e7 3.59e4 1.29e8 9.38e6 1.47e6 2.85e6 1.12e8 1.77e5 2.65e8 1.89e6 1.70e8 3.48e5 9.13e7

BST+replaceR 2.80e5 6.41e7 3.78e4 1.30e8 9.46e6 1.41e6 3.66e6 1.00e8 1.97e5 2.67e8 2.09e6 1.66e8 3.55e5 9.29e7

BST+replaceO 2.46e5 3.70e7 3.63e4 1.35e8 9.39e6 5.27e5 3.24e6 7.78e7 1.81e5 2.42e8 1.95e6 1.60e8 3.52e5 1.08e8

BST+bstMut 1.10e5 4.77e3 3.56e4 5.74e6 9.51e6 4.00e0 1.92e6 4.01e4 1.76e5 5.19e6 1.88e6 3.10e6 3.48e5 5.56e6

BST+replaceOB 1.10e5 2.45e5 3.55e4 5.87e6 9.35e6 4.81e5 1.93e6 4.50e5 1.76e5 5.56e6 1.88e6 3.08e6 3.48e5 5.51e6

BST+random 1.18e5 8.32e7 3.50e4 1.57e8 9.25e6 2.27e6 2.14e6 1.21e8 1.74e5 3.20e8 1.86e6 2.10e8 3.45e5 1.13e8

Improvement 64.41% 7.47% 3.91% 31.78% 8.45% 8.63% 2.16%

only five parallel runs, each allocated two cores using the taskset
utility, to reduce core sharing effects. All algorithms were imple-

mented in Java and ran using the OpenJDK VM version 17.0.13. The

code is available in a GitHub repository
1
.

For each algorithm and each test we conducted 10 independent

runs with a time limit of two hours (7200 seconds). Note that all

mentioned algorithms are capable of running for indefinite amount

of time, except for “BST/next” which may terminate after testing

all permutations of vertices, but none of the tests were sufficiently

small for this to happen.

The results are presented in Table 1. We show median costs and

number of generated solutions (queries) for each combination of a

test and an algorithm. The medians are chosen instead of means,

because the distributions of randomized search heuristic outcomes

are typically far from being normal [17]. For all comparisons we

use an R [36] implementation of the Wilcoxon rank sum [33, 47]

non-parametric test. Using it, we now answer some of the research

questions.

Does the local search improve the results? By comparing

results of “MST”-based operators with “MST”, and “BST”-based

operators with “BST/rand”, in most cases we answer positively at

the significance level of 𝑝 < 9.1 · 10−5. There are exceptions though.
“MST+switch” is worse in the case of FacebookBig, HPC and the

synthetic test, “MST+replaceR” is worse in the case of FacebookBig,

“BST+replaceR” is worse in the case of Microsoft and pFabric, all at

𝑝 = 5.41 · 10−6. There are also four less significant comparisons of

both signs involving the same mutation operators. This indicates

that “switch” and “replaceR” operators may be slow to produce

1
https://github.com/mbuzdalov/tree-for-network/releases/tag/v1/

improvements, while initializers produce better solutions quicker

by just resampling, with some parallels in theoretical research [19].

Is edge switch faster than other mutations? In most cases,

using edge switch resulted in more queries than using other mu-

tations at the significance level of 𝑝 = 5.41 · 10−6, which follows

from the ability of edge switch to recompute fitness faster. The

only exception is “BST+switch” on FacebookBig, where it is quite

common for edge switch to produce less queries. However, this can

be easily explained by edge switch getting into the local optimum

faster than other mutations, which forces the slow BST initializer

to work more often.

BST: random or lexicographical enumeration? The number

of queries is always bigger for “BST/next” than for “BST/rand”, but

the quality is always worse. This is at 𝑝 = 5.41 · 10−6 for all tests
except FacebookBig, which shows the same trends, but with a less

confident 𝑝 < 0.0015. So, with bigger computational budgets, using

“BST/rand” seems preferrable.

Edge replacement: Is optimal better than random? Yes,

“BST+replaceO” is better than “BST+replaceR”, and “MST+replaceO”

is better than “MST+replaceR”, at 𝑝 < 9.1 · 10−5.
What to use? For the mutation operators, the obvious choices

are the compound operators “random” and “replaceOB”, where

either of these is always a winner at 𝑝 < 0.05. This indicates that

just using a single mutation operator is not enough for the best

result, and different neighborhood structures of different mutation

operators may help each other to get out of local optima. For the

initializers, MST and BST are typically close, but in our experiments

MST wins slightly more often.

What are the improvements from using local search? The
improvements compared to sampling best initializers for the same

computational budget are given in the last row of Table 1.

255

https://github.com/mbuzdalov/tree-for-network/releases/tag/v1/

GECCO ’25, July 14–18, 2025, Malaga, Spain Pavel Martynov, Maxim Buzdalov, Sergey Pankratov, Vitaliy Aksenov, and Stefan Schmid

5 Crossovers
We also considered using crossover operators in the setup common

to gray-box optimization, i.e. to recombine local optima. To that end,

we employ the local search algorithm, but also maintain the best

solution and, once the restarted local search produces yet another

local optimum, we run a crossover operator with the best solution

and this local optimum.

Meaningfully crossing over graphs, even trees, is notoriously

difficult [41], especially if constraints are to be satisfied. We tested

three crossover operators:

• Random edge subsampling. Edges of both parents are com-

bined, and a new solution is constructed by sampling a ran-

dom edge, checking whether it is possible to add it to the

solution while avoiding cycles and vertices of degree greater

than 3, and adding it if allowed. It is not always possible

to construct a tree in this way, so in the case of failure, we

retry for 10 times, and if still failing, we add random allowed

edges to the last solution.

• Greedy edge subsampling. Similar to the maximum spanning

tree initializer, we sort all edges of the demand matrix in the

decreasing order, breaking ties at random, and then traverse

these edges twice. On the first pass, we only try adding edges

that are present in either of the parent. On the second pass,

if needed, we consider also edges that are not present in

the parents. Finally, if the solution is still not a tree, we add

random allowed edges.

• Partition crossover (PX). Following the ideas from [38, 44], we

take each edge that exists in both solutions to the result and

try to find, for each of the remaining connected components,

which solution to take all edges from. Unlike in [38, 44], we

don’t have a polynomial algorithm for finding the optimal

recombination quickly, so we perform branch-and-bound

instead, which is still often feasible. The underlying opti-

mization problem is NP-hard even in the simple case when

the common edges are all connected.

We performed a single run of the resulting algorithm, with a

time limit of 600 seconds, for a selection of instances and base local

search combinations. We recorded the best individuals produced

by crossover operators, and also how the crossover offsping fare

compared to their parents: better (<), equal to one of the parents

(=), stricly between the parents (∈), or worse than both parents (>).

For the partition crossover, we also recorded the average number

of connected components (CC). Table 2 presents the results.

A quick conclusion from Table 2 is that these crossover operators

do not help much. Edge subsampling crossovers are rarely capable

of improving over the parents, and if they are, they still do not

produce the best result of the run and seem to be able to improve

bad solutions only. While it is also clear that the greedy crossover

produces better results than the random crossover, neither of these

is really usable in the described framework.

The partition crossover is more capable than edge subsampling

crossovers, but in most of the cases the number of connected com-

ponents was 1 or 2, and the chance of producing an improvement

was small. For the synthetic test, the number of components was

much higher, so we could not finish the single crossover run within

the time limit, but what we obtained looks promising.

Table 2: Crossovers: costs and other statistics

Best cost Xover vs parents

Base algorithm Xover All Xover < = ∈ >

Synthetic

MST+switch Random 3.37e5 4.80e5 0 0 10 8775

MST+replaceO Random 1.15e5 1.96e6 0 0 0 355

BST+switch Random 1.10e6 2.47e6 0 0 0 377

BST+replaceO Random 2.63e5 2.27e6 0 0 0 161

MST+switch Greedy 3.42e5 3.43e5 4 1 4004 4166

MST+replaceO Greedy 1.14e5 3.58e5 0 0 0 366

BST+switch Greedy 3.63e5 3.67e5 6 0 364 5

BST+replaceO Greedy 2.46e5 3.74e5 0 0 0 153

MST+switch PX 3.91e5 3.91e5 1 0 CC: 107

MST+replaceO PX 1.20e5 1.21e5 1 2 CC: 16.3

BST+switch PX 1.10e6 – 0 359 CC: 1

BST+replaceO PX 2.61e5 2.69e5 3 167 CC: 3.5

Facebook

MST+switch Random 42590 43090 0 13 9.6e4 2.2e5

MST+replaceO Random 36093 44054 0 0 0 1.9e4

BST+switch Random 36804 43682 0 0 0 2.4e5

BST+replaceO Random 36446 46787 0 0 0 2.5e4

MST+switch Greedy 41311 41476 5 14 1.4e5 1.7e5

MST+replaceO Greedy 36134 41217 0 0 0 2.0e4

BST+switch Greedy 36928 40428 0 0 0 2.3e5

BST+replaceO Greedy 36477 44566 0 0 0 2.5e4

MST+switch PX 39245 39245 68 3.3e5 CC: 1.4

MST+replaceO PX 35992 35992 6 2.0e4 CC: 1.0

BST+switch PX 36789 36789 19 2.5e5 CC: 1.0

BST+replaceO PX 36566 – 0 2.5e4 CC: 1.0

Microsoft

MST+switch Random 1.90e5 1.91e5 1 0 179 6.3e5

MST+replaceO Random 1.78e5 1.88e5 0 0 0 3.9e4

BST+switch Random 1.89e5 2.09e5 0 0 1 3.4e5

BST+replaceO Random 1.82e5 2.05e5 0 0 0 3.0e4

MST+switch Greedy 1.90e5 1.91e5 4 53 8.5e4 4.5e5

MST+replaceO Greedy 1.77e5 1.85e5 0 0 0 3.8e4

BST+switch Greedy 1.88e5 1.89e5 2 9 5.8e4 2.7e5

BST+replaceO Greedy 1.81e5 1.88e5 0 1 3.0e3 2.7e4

MST+switch PX 1.86e5 1.86e5 104 6.6e5 CC: 1.4

MST+replaceO PX 1.77e5 1.77e5 7 4.0e5 CC: 1.1

BST+switch PX 1.88e5 1.88e5 34 3.4e5 CC: 1.0

BST+replaceO PX 1.82e5 – 0 3.2e4 CC: 1.0

6 Conclusion
We showed that the construction of an optimal demand-aware

binary tree network is NP-hard, and that gray-box local search

optimizers are capable of producing significant improvement over

existing algorithms on synthetic and real-world workloads.

The future work may include investigation of other (less local)

mutation and crossover operators, including a closer inspection of

possibilities offered by partition crossover. Finally, we would like

to generalize our algorithms for 𝑘-ary trees and more complicated

networks with bounded degrees.

Acknowledgments. Research was supported by the German

Research Foundation (DFG), grant 470029389 (FlexNets).

256

In the Search of Optimal Tree Networks: Hardness and Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

References
[1] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and T. N. Vijaykumar. 2013.

MapReduce with communication overlap (MaRCO). J. Parallel and Distrib. Com-
put. 73, 5 (2013), 608–620.

[2] Alfred Aho, John Hopcroft, and Jeffrey Ullman. 1973. On finding lowest common

ancestors in trees. In Proceedings of 5th ACM Symposium on Theory of Computing.
253–265.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal near-optimal data-

center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),

435–446.

[4] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the com-

plexity of traffic traces and implications. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 4, 1 (2020), 1–29.

[5] Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid. 2018. rDAN:

Toward robust demand-aware network designs. Inform. Process. Lett. 133 (2018),
5–9.

[6] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network

designs of bounded degree. Distributed Computing 33, 3-4 (2020), 311–325.

[7] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2022. Demand-aware network

design with minimal congestion and route lengths. IEEE/ACM Transactions on
Networking 30, 4 (2022), 1838–1848.

[8] Chen Avin and Stefan Schmid. 2019. Toward demand-aware networking: A

theory for self-adjusting networks. ACM SIGCOMM Computer Communication
Review 48, 5 (2019), 31–40.

[9] Michael Bender and Martín Farach-Colton. 2000. The LCA Problem Revisited. In

LATIN 2000: Theoretical Informatics. Number 1776 in Lecture Notes in Computer

Science. Springer, 88–94.

[10] Michael A. Bender, Martín Farach-Colton, Giridhar Pemmasani, Steven Skiena,

and Pavel Sumazin. 2005. Lowest common ancestors in trees and directed acyclic

graphs. Journal of Algorithms 57, 2 (2005), 75–94.
[11] Anton Bouter, Tanja Alderliesten, and Peter A.N. Bosman. 2021. Achieving

Highly Scalable Evolutionary Real-Valued Optimization by Exploiting Partial

Evaluations. Evolutionary Computation 29, 1 (2021), 129–155.

[12] Anton Bouter, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman. 2017.

Exploiting linkage information in real-valued optimization with the real-valued

gene-pool optimal mixing evolutionary algorithm. In Proceedings of Genetic and
Evolutionary Computation Conference. 705–712.

[13] Maxim Buzdalov. 2023. Improving Time and Memory Efficiency of Genetic

Algorithms by Storing Populations as Minimum Spanning Trees of Patches. In

Proceedings of Genetic and Evolutionary Computation Conference Companion.
1873–1881.

[14] Maxim Buzdalov and Benjamin Doerr. 2017. Runtime analysis of the (1+ (𝜆, 𝜆))
genetic algorithm on random satisfiable 3-CNF formulas. In Proceedings of Genetic
and Evolutionary Computation Conference. 1343–1350.

[15] Francisco Chicano, Darrell Whitley, and Andrew M. Sutton. 2014. Efficient

identification of improving moves in a ball for pseudo-Boolean problems. In

Proceedings of Genetic and Evolutionary Computation Conference. 437–444.
[16] Kalyanmoy Deb and Christie Myburgh. 2017. A population-based fast algorithm

for a billion-dimensional resource allocation problem with integer variables.

European Journal of Operational Research 261, 2 (2017), 460–474.

[17] Joaquin Derrac, Salvador Garcia, Daniel Molina, and Francisco Herrera. 2011. A

Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology

for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm and
Evolutionary Computation 1, 1 (2011), 3–18.

[18] Department of Energy, US 2016. Characterization of the DOE Mini-apps. De-

partment of Energy, US. https://crd.lbl.gov/divisions/amcr/computer-science-

amcr/cag/research/past-research/characterization-of-doe-mini-apps-draft/

[19] Benjamin Doerr and Carola Doerr. 2016. The Impact of Random Initialization

on the Runtime of Randomized Search Heuristics. Algorithmica 75, 3 (2016),

529–553.

[20] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus

Wagner, and Carola Winzen. 2011. Faster black-box algorithms through higher

arity operators. In Proceedings of Foundations of Genetic Algorithms. 163–172.
[21] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali

Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular

data centers. In Proceedings of the ACM SIGCOMM 2010 Conference. 339–350.
[22] Klaus-Tycho Foerster, Manya Ghobadi, and Stefan Schmid. 2018. Characterizing

the algorithmic complexity of reconfigurable data center architectures. In Proceed-
ings of the 2018 Symposium on Architectures for Networking and Communications
Systems. 89–96.

[23] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. 1976. Some Simpli-

fied NP-Complete Graph Problems. Theor. Comput. Sci. 1, 3 (1976), 237–267.
[24] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile reconfigurable data

center interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference. 216–
229.

[25] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.

Longtin, Himanshu Shah, and Ashish Tanwer. 2014. Firefly: A reconfigurable

wireless data center fabric using free-space optics. In Proceedings of the 2014 ACM
conference on SIGCOMM. 319–330.

[26] KeldHelsgaun. 2000. An Effective Implementation of the Lin-Kernighan Traveling

Salesman Heuristic. European Journal of Operational Research 126, 1 (2000), 106–

130.

[27] Thomas Jansen and IngoWegener. 2002. The analysis of evolutionary algorithms—

A proof that crossover really can help. Algorithmica 34 (2002), 47–66.
[28] Eun-Seok Kim and Celia A Glass. 2015. Perfect periodic scheduling for binary

tree routing in wireless networks. European Journal of Operational Research 247,

2 (2015), 389–400.

[29] John R. Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. MIT Press, Cambridge, MA, USA.

[30] J. B. Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Amer. Math. Soc. 7, 1 (1956), 48–50.
[31] Charles E. Leiserson. 1985. Fat-trees: Universal networks for hardware-efficient

supercomputing. IEEE Trans. Comput. 100, 10 (1985), 892–901.
[32] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.

Voelker, George Papen, Alex C. Snoeren, and George Porter. 2014. Circuit Switch-

ing Under the Radar with REACToR. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 1–15.

[33] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether one of Two

Random Variables is Stochastically Larger than the Other. Annals of Mathematical
Statistics 18, 1 (1947), 50–60.

[34] Christos H. Papadimitriou and Umesh V. Vazirani. 1984. On two geometric

problems related to the traveling salesman problem. Journal of Algorithms 5
(1984), 231–246.

[35] Erik Pitzer and Michael Affenzeller. 2021. Cheating Like The Neighbors: Loga-

rithmic Complexity For Fitness Evaluation In Genetic Algorithms. In Proceedings
of IEEE Congress on Evolutionary Computation. 1431–1438.

[36] R Core Team. 2013. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.

org/

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123–137.

[38] Danilo Sipoli Sanches, Darrell Whitley, and Renato Tinós. 2017. Improving an

exact solver for the traveling salesman problem using partition crossover. In

Proceedings of Genetic and Evolutionary Computation Conference. 337–344.
[39] Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bern-

hard Haeupler, and Zvi Lotker. 2016. SplayNet: Towards Locally Self-Adjusting

Networks. IEEE/ACM Transactions on Networking 24, 3 (2016), 1421–1433.

doi:10.1109/TNET.2015.2410313

[40] Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, and Yueping Zhang.

2010. Proteus: a topology malleable data center network. In Proceedings of the
9th ACM SIGCOMMWorkshop on Hot Topics in Networks. 1–6.

[41] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks

Through Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127.
[42] Dirk Sudholt. 2017. How Crossover Speeds up Building Block Assembly in

Genetic Algorithms. Evolutionary Computation 25, 2 (2017), 237–274.

[43] Robert Endre Tarjan and Jan van Leeuwen. 1984. Worst-case Analysis of Set

Union Algorithms. J. ACM 31 (1984), 245–281.

[44] Renato Tinós, Darrell Whitley, and Gabriela Ochoa. 2020. A New Generalized

Partition Crossover for the Traveling Salesman Problem: Tunneling between

Local Optima. Evolutionary Computation 28, 2 (2020), 255–288.

[45] Kizheppatt Vipin. 2019. AsyncBTree: Revisiting Binary Tree Topology for Effi-

cient FPGA-Based NoC Implementation. International Journal of Reconfigurable
Computing 2019, 1 (2019), 7239858.

[46] Darrell Whitley, Francisco Chicano, Gabriela Ochoa, Andrew M. Sutton, and

Renato Tinós. 2019. Next generation genetic algorithms. In Proceedings of Genetic
and Evolutionary Computation Conference Companion. 1113–1136.

[47] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[48] Daifeng Zhang and Haibin Duan. 2019. Switching topology approach for UAV

formation based on binary-tree network. Journal of the Franklin Institute 356, 2
(2019), 835–859.

[49] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. 2017.

ZipML: Training linear models with end-to-end low precision, and a little bit

of deep learning. In International Conference on Machine Learning. PMLR, 4035–

4043.

257

https://crd.lbl.gov/divisions/amcr/computer-science-amcr/cag/research/past-research/characterization-of-doe-mini-apps-draft/
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/cag/research/past-research/characterization-of-doe-mini-apps-draft/
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1109/TNET.2015.2410313

	Abstract
	1 Introduction
	2 Background
	3 NP-hardness
	4 Local searches with restarts
	4.1 Initializers
	4.2 Mutation Operators
	4.3 Experiments

	5 Crossovers
	6 Conclusion
	References

