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Abstract

We develop a decision-support framework for cyber risk mitigation policies from the

perspective of an organisation with limited resources for security controls, upgrades, and

cyber insurance. To balance the conflicting optimisation objectives of the organisation

and the insurer, we propose a bi-level model that endogenously derives optimal strategies

for both parties, accounting for key uncertainties underlying a cyber attack. We find

that cyber insurance coverage increases with premium size, though this depends on the

effectiveness of system upgrades. Notably, the latter has an ambiguous impact on the

equilibrium budget allocation strategy and insurance contract design, meaning that higher

effectiveness does not necessarily mandate an analogous capital allocation.

Keywords: Cyber security, bi-level optimisation, insurance

1. Introduction

Advancements in computer information systems have increased the complexity of to-

day’s cyber-security environment, heightening the vulnerability of critical infrastructures

to cyber attacks, while threat actors are demonstrating a significantly expanding range

∗Corresponding author. Competing Interests Statement: The author(s) declare none.
Data Availability Statement: The authors provide replication materials openly via https://

www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/ioannis-kyriakou. Funding
Statement: This work was supported by the Society of Actuaries (SOA) Research Institute and the
Casualty Actuarial Society (CAS) under the research grant proposal “Bi-level Optimization of Cyber
Risk and Insurance Pricing”. The funder had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Email addresses: jackzhang_1997@outlook.com (Zixuan Zhang),
michalis.chronopoulos@city.ac.uk (Michail Chronopoulos), ioannis.kyriakou@city.ac.uk
(Ioannis Kyriakou)

1

https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/ioannis-kyriakou
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/ioannis-kyriakou


of intelligence-gathering techniques (He et al., 2024). The risk exposure and financial

consequences of cyber attacks for an organisation are evident in a wide range of ex-

amples. For instance, the SolarWinds hack compromised multiple government systems

along with many Fortune 500 companies globally (Oladimeji and Kerner, 2023). The

CryptoLocker ransomware attack caused an estimated loss of $3 million (Kelion, 2013),

and the 2016 Dyn cyber attack resulted in the disruption of major internet platforms and

services for large swathes of users in Europe and North America (Hilton, 2016). More

recently, the Marriott breach exposed personal details of approximately 5.2 million hotel

guests (Uberti, 2020), while the Twitter breach led to fraudulent tweets about Bitcoin,

generating over $100, 000 worth of Bitcoin deposits (Satter, 2023).

Each instance of a data breach or system failure that leads to substantial financial or

reputational damage heightens awareness among decision-makers about the inadequacies

of current policies in addressing cyber risks. The significant economic and societal im-

plications of cyber risk are well-recognised (e.g., see Biener et al., 2015; Cartagena et al.,

2020), emphasising the need for robust risk management solutions (e.g., see Eling and

Jung, 2018; Da et al., 2021; Liu et al., 2022; Braun et al., 2023). To address the risk

exposure and financial implications of cyber attacks, organisations must invest in and

maintain updated security controls. These are essential for patching asset vulnerabilities,

which helps minimise the expected present value of an attack’s impact by reducing an

asset’s attack surface or increasing the effort required to breach the asset. However, de-

livering reliable and robust security for organisations is a capital-intensive process that

typically requires a combination of various mitigation measures, and budget constraints

often render this strategy economically infeasible. Therefore, to further mitigate cyber

risk and improve network resiliency, organisations resort to cyber insurance (Kesan et al.,

2005; Böhme and Schwartz, 2010; Shetty et al., 2010; Pal et al., 2014; Biener et al., 2015).

They then face a dual challenge when improving their cyber-security posture: gauging

the financial impact of cyber breaches and determining the optimal allocation of capital

across defence methods and insurance.
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Overcoming these challenges requires novel techniques that combine risk assessment

and optimisation methods accounting for critical aspects of the attack itself, relevant

underlying uncertainties, and strategic interaction between the insurer and the insureds.

Key uncertainties associated with an attack include the time required to exploit a vul-

nerability and the extent of the associated financial impact on the targeted organisation.

Both exploitation time and impact due to an attack are likely to vary randomly, as they

depend not only on the skills of the attacker but also on the organisation’s level of cy-

ber preparedness and response (Fielder et al., 2016). For example, Advanced Persistent

Threats (APTs) are origins of considerable cyber risk for organisations (Daly, 2009) that

typically breach their targets in phases by exploiting a series of system-, network-, or

even user-oriented vulnerabilities (Nisioti et al., 2021; Ahmed et al., 2022). The FireEye

M-Trends 2020 Special report found that the mean dwell time for 2019 in the USA was

60 days and in EMEA and APAC 54 days1.

An in-depth cyber risk assessment enables a more accurate evaluation of an organ-

isation’s security posture, helping to prevent potential denial of cyber insurance claims

(Panda et al., 2019) and cycles of under- or over-investment that elevate the regula-

tory risk of corrective policy actions, thus supporting efficient asset-liability management

(Kamiya et al., 2021; Eling and Jung, 2018). To this end, in this paper, we develop a

decision-support framework for optimal cyber-security investment. This incorporates the

serial nature of a cyber-security breach, the uncertainty in the time required to exploit

a vulnerability, and the strategic interaction between the organisation/defender and the

insurer.

We proceed with Section 2, which reviews related work, provides a detailed discussion

of our contributions, and summarises our main findings. In Section 3, we outline our

assumptions and notation. We then examine the firm’s optimisation problem in the

absence of cyber insurance, extending the analysis to allow for the interaction between

the defender and the insurer, and derive the optimal insurance policy design for the

1https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html.
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insurer. Section 4 presents policy implications based on numerical results, while Section

5 concludes the paper offering directions for further research.

2. Related work and advancements

Cyber insurance plays a critical role in an organisation’s portfolio of mitigation mea-

sures, making the interactions between insurers and insureds a key component of a

cyber-security investment strategy. However, this aspect is often overlooked in the cyber-

security economics literature, which primarily focuses on selecting controls to mitigate

system vulnerabilities. For example, models for the optimal selection of cyber-security

controls include Smeraldi and Malacaria (2014), who explore how to spend a security bud-

get optimally by employing methods that address overlapping controls exhibiting non-

linear relationships, such as optimisation algorithms, combinatorial optimisation, and the

classical Knapsack problem. Fielder et al. (2016) propose a methodology for investing in

such controls, considering a single value for a vulnerability and several implementation

levels for each control. The latter align with the information security levels introduced

in the seminal work of Gordon and Loeb (2002).

Building on prior work by Almohri et al. (2016), Khouzani et al. (2019) develop a

game-theoretic framework for analysing defender-attacker interactions. In this frame-

work, the defender chooses a plan to minimise security risk, while the attacker aims to

maximise it by exploiting the most effective attack path. This is modelled as a min-

max optimisation problem, where the attacker maximises and the defender minimises in

response to the attacker’s action. Additionally, Zheng et al. (2019) cast the problem of op-

timal control selection as a set covering problem. They first solve a deterministic version

to examine incentives for mitigating supply chain vulnerabilities and later introduce con-

straints and uncertainties in control efficacy. Expanding on Fielder et al. (2016), Panda

et al. (2020) propose an optimal control set for protecting healthcare employee groups

from social engineering attacks. However, a limitation of these optimisation models is

their failure to account for the serial nature of an attack and critical uncertainties, such as
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the exploitation time of a vulnerability and the associated costs once it is compromised.

As a result, these models often overlook the financial implications of such uncertainties

on an organisation’s assets.

Game-theoretic models that analyse interactions between insurers and insureds in-

clude Grossklags et al. (2008), Laszka et al. (2018), and Wang (2019). Specifically, Laszka

et al. (2018) employ a two-player signaling game to address information asymmetry be-

tween a potential client and an insurer, studying incentives for auditing clients before

calculating cyber insurance premiums. In the same line of work, Wang (2019) examines

the optimisation of a firm’s cyber-security investment decision, whereby a firm must de-

termine how much to invest in both knowledge and expertise, as well as in mitigation

measures. The findings indicate that the effectiveness of security spending on specific

threats may be diminished if other interdependent security measures are not simultane-

ously implemented. Insights on how cyber insurance may contribute to risk reduction

training are also provided, yet cyber insurance is not directly integrated within the prob-

lem of optimal capital allocation. Also, Chong et al. (2025) emphasise the importance of

conducting comprehensive cost-benefit analyses for budget-constrained firms that must

make informed capital allocation decisions to achieve a balanced cyber risk management

strategy integrating effectively cyber-security investment, insurance coverage, and reserv-

ing.

While the aforementioned literature considers risk mitigation through both cyber-

security measures and cyber insurance, the insurer’s decision-making, which, in turn,

influences a company’s optimal cyber-security investment, is often overlooked. This gap is

addressed by Zhang and Zhu (2022), who developed a Markov model to capture cyber risk

dynamics and defender decisions regarding mitigation measures, including both controls

and cyber insurance. In this framework, defenders receive financial compensation from

insurers for losses caused by cyber attacks in exchange for premiums. The defenders’

objective is to deploy an optimal combination of controls and cyber insurance to minimise

losses, favouring contracts with low premiums and high coverage. Conversely, insurers
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tend to offer contracts with high premiums and low coverage to maximise profits. Similar

to traditional insurance, insurers lack knowledge of local protections implemented by

defenders, which can result in inappropriate insurance contracts that significantly harm

insurers’ profitability.

Our work builds upon three key strands of literature: first, the valuation of serial

projects to assess security breach risks progressing in phases (Tsiodra et al., 2023); second,

the modelling of the optimal level of resources for securing information (Gordon and

Loeb, 2002); and third, the strategic interactions between a defender and an insurer, as

explored by Zhang and Zhu (2022). Our contribution is thus threefold. First, we extend

the traditional discounted cash flow approach by accounting for key uncertainties and

the impact of security upgrades on the likelihood of successful attacks. In doing so, we

enhance the applicability of the discounted cash flow approach not only for investment

decision-making but also for risk assessment and management in a cyber-security context.

Second, we develop a bi-level model that captures the strategic interactions between the

defender and the insurer. This allows the insured’s decision-making to depend on the

insurer’s choices, and vice versa, reflecting the interdependent nature of their strategies.

Third, by analysing the trade-off involved in allocating a finite budget between controls

and cyber insurance, we derive endogenous strategies for both parties.

Our findings indicate that the insurance company tends to offer higher coverage when

it receives a larger premium. However, this tendency also depends on the effectiveness

of system upgrades. For instance, if a small investment in system upgrades significantly

reduces claim frequency, the insurer might be willing to provide high coverage even with

a lower premium. Conversely, when the projected frequency of cyber attacks is high,

the insurer is inclined to offer lower coverage. In such cases, the defender may find it

more advantageous to allocate more capital to system upgrades rather than to insurance.

Interestingly, the effectiveness of system upgrades can have a non-monotonic influence

on the equilibrium budget allocation strategy and insurance contract design, i.e., greater

system upgrade effectiveness does not necessarily imply that the firm should allocate
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more resources towards them.

3. Model framework

3.1. Preliminaries

Consider an organisation/defender wishing to protect their systems from potential

hackers. Assume that the defender’s infrastructure consists of n ∈ N systems and net-

works, referred to as assets, that can be compromised by potential hackers (attackers).

The adversarial interactions are modelled as a sequence of attack phases, where phase

i = 1, 2, 3, . . . , n corresponds to the stage in which the attacker aims to compromise asset

i by exploiting any of its vulnerabilities, as illustrated in Figure 1. We, hence, assume

that in each phase the attacker can compromise only one asset, and that successful ex-

ploitation can lead to undesirable privilege escalation or lateral movement within the

defender’s infrastructure (Niakanlahiji et al., 2020; Provos et al., 2003).

The defender has the option to distribute budget K between enhancing the system

and purchasing cyber insurance at time 0. More specifically, the defender invests wK,

for w ∈ [0, 1], in a system upgrade and (1 − w)K in cyber insurance. The former aims

to decrease the likelihood of cyber attacks, while the latter offers coverage for a fraction

c ∈ [0, 1] of future losses stemming from such attacks. The loss of the ith attack is Li at

time

Tw
i =

i∑
j=1

τwj , (1)

where τwj is the jth random inter-attack duration with probability distribution generally

denoted by G(·) (identical for all j).

0 Tw
1 Tw

2 Tw
n−1 Tw

n

τw1 τw2 τwn. . .

L1 L2 L3 Ln

Figure 1: Sequential security breach.

The insurer determines the coverage level, c∗(w), based on the capital (1 − w)K
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the defender invests in insurance. Given the specifics of the insurance contract, the

defender sets optimally the equilibrium budget allocation strategy, w̃, with corresponding

equilibrium coverage level

c̃ = c∗ (w̃) .

Our framework can flexibly accommodate general duration probability distributions.

Consistent with Bentley et al. (2020), we adopt the intuitive compound Poisson process

with arrival intensity λ to model the impact of mitigations on attack frequency. Following

a system upgrade, the likelihood of successful cyber attacks diminishes, and the arrival

intensity becomes f(w)λ, where 0 < f(·) < 1 depends on the invested funds. Aligning

the mitigation models discussed in Gordon and Loeb (2002) with our context yields

f(w) =
1

(aw + 1)b
, (2)

where a > 0 and b ≥ 1 are parameters associated with the capital invested in system

upgrades. A higher value of a or b represents greater effectiveness of the system upgrade.

3.2. Equilibrium analysis

This section presents the analytical framework within which the objectives of the de-

fender and the insurer are combined to yield equilibrium decisions regarding investment in

system upgrades and insurance coverage. A diagrammatic overview of the bi-level frame-

work and the resulting equilibrium is provided in Figure 2. First (Level 1), we formulate

the defender’s value function, which we will use to derive the capital w∗(c) to be invested

in system upgrades. Second (Level 2), the insurer determines the coverage amount c∗(w).

This is then passed as input to w∗(c) to produce the equilibrium investment, w̃ ≡ w∗(c∗),

in system upgrades and the equilibrium coverage level, c̃ ≡ c∗(w̃).

Following from the previous section, the defender may choose to allocate wK to a

system upgrade and (1 − w)K to purchasing cyber insurance. This allocation provides

coverage for a portion of the future losses resulting from cyber attacks. In the event of the

defender incurring loss Li, the insurer reimburses cLi, where c ∈ [0, 1]; c = 0 corresponds

8



Level 1

Invest in system upgrades

w∗(c)

Level 2

Insurance coverage

c∗(w)

w̃ ≡ w∗(c∗)

c̃ ≡ c∗(w̃)

Figure 2: Diagrammatic representation of the bi-level framework capturing the strategic interaction
between the defender and the insurer.
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to no coverage, while c = 1 to full coverage. The defender’s PV of the loss in phase

i = 1, 2, 3, . . . , n is

Vi(w) = (1− c)Lie
−rTw

i .

Since the arrival of attacks follows a Poisson process, the time intervals between successive

attacks are exponentially distributed, i.e., τwj ∼ Exponential(f(w)λ), implying that Tw
i ∼

Gamma(i, f(w)λ) (see equation 1). The distribution and density functions of Vi(w) are

given, respectively, by

ΘVi
(vi) = 1− 1

Γ(i)
γ

(
i,
λ

r
ln

Li

vi

)
, (3)

θVi
(vi) =

λi

rviΓ(i)

(
1

r
ln

Li

vi

)i−1(
vi
Li

)λ
r

. (4)

(More details are deferred to the appendix.) The resulting mean and variance are

E[Vi(w)] = Li

i∏
j=1

E
[
e−rτwj

]
= Li

(
λ

λ+ r

)i

, (5)

Var[Vi(w)] = E
[
V 2
i (w)

]
− E [Vi(w)]

2 = L2
i

[(
λ

λ+ 2r

)i

−
(

λ

λ+ r

)2i
]
. (6)

The PV over all losses is

V (w) = (1− c)
n∑

i=1

Lie
−rTw

i , (7)

with expectation

E [V (w)] = (1− c)
n∑

i=1

Li

(
f(w)λ

f(w)λ+ r

)i

. (8)

The defender’s optimisation problem is to derive the value of w that minimises the ex-

pected loss for a given c:

w∗(c) = argmin
w∈[0,1]

E [V (w)] . (9)
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On the other hand, the insurer focuses on designing cyber insurance contracts. The

insurer’s profit is the premium revenue minus the losses ceded by the firm due to cyber

attacks. Specifically, the insurer receives (1 − w)K at time 0, but incurs cost cLi when

the firm experiences loss Li due to a cyber attack. The PV of the insurer’s profit is given

by

S(w) = (1− w)K − c

n∑
i=1

Lie
−rTw

i . (10)

As suggested by (10), the PV of the insurer’s profit depends on the firm’s budget allo-

cation plan w. In response, the insurer determines the level of coverage, c, based on the

premium received. Here, we assume that the insurer is risk-averse and seeks to achieve a

positive profit from the insurance contract with probability α, i.e., P(S > 0) = α. Intu-

itively, this condition implies that the premium is greater than the cost of the insurance

coverage with probability α. Therefore, the insurer’s required level of coverage satisfies

(1− w)K = inf {Z ∈ R : P (Z ≤ v) ≥ α}

= VaRα (Z) , Z = c
n∑

i=1

Lie
−rTw

i , (11)

where Value at Risk (VaR) measures riskiness by examining the left tail of the PV distri-

bution and is positively homogenous. A confidence level 0 ≤ α ≤ 1 reflects the insurer’s

level of risk-aversion, with a larger (smaller) α indicating a more (less) conservative in-

surer. Without loss of generality, we adopt the VaR as the risk measure; however, this

is not restrictive, and other risk measures or utility functions may be used. Rearranging

(11), we obtain the insurer’s required level of coverage as a function of w:

c∗(w) =
(1− w)K

VaRα (
∑n

i=1 Lie−rTw
i )

. (12)
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By substituting (12) into equation (7), the PV of the firm’s loss becomes

V ∗(w) =

(
1− (1− w)K

VaRα (
∑n

i=1 Lie−rTw
i )

) n∑
i=1

Lie
−rTw

i , (13)

and the equilibrium budget allocation strategy then follows as

w̃ = argmin
w∈[0,1]

E [V ∗(w)] . (14)

Finally, the equilibrium insurance coverage, c̃ = c∗ (w̃), is obtained.

4. Budget allocation and frequency reduction effects on cyber insurance and

system upgrades: a numerical study

This section explores the effects of budget allocation ratios, attack frequency, and

the frequency reduction parameter on the equilibrium strategies of a defender and an

insurer. We examine how these factors influence the insurance coverage level and the

expected present value of losses. We highlight the interplay between system upgrades

and insurance, revealing non-monotonic relationships and strategic trade-offs that arise

from variations in attack frequency and system upgrade effectiveness.

We begin by exploring how the allocation of resources between system upgrades and

cyber insurance influences key outcomes, such as insurance coverage levels and expected

losses. Table 1 illustrates the impact of the exogenous budget allocation ratio w on

optimal investment in insurance coverage, the expected PV of losses retained by the

defender and the VaR of losses transferred to the insurer. For example when a = 0.5,

the insurer provides higher coverage as the premium (1 − w)K increases. However, this

increased insurance coverage does not necessarily lead to smaller losses from cyber attacks

for the firm. In fact, we observe a non-monotonic relationship with w, particularly for

high attack frequencies (see cases λ = 1 or 2).

Given these first remarks, in Figure 3 we more closely examine how the insurance

coverage level (left panel) and the expected PV of losses (right panel) vary with w for
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c∗(w) Expected PV VaR0.95

λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2

w = 0 0.6442 0.3600 0.1972 1.7789 6.4000 16.0570 2.7898 4.9525 9.1040
w = 0.25 0.5305 0.2995 0.1639 2.0867 6.2267 14.8644 3.3035 8.0023 14.5815
w = 0.5 0.3839 0.2178 0.1200 2.4642 6.2576 14.0795 4.0214 5.3794 16.7193
w = 0.75 0.2068 0.1182 0.0652 2.8843 6.4132 13.5977 4.7814 7.4354 8.9871
w = 1 0 0 0 3.3333 6.6667 13.3333 5.6318 6.0900 12.4678

Table 1: Impact of budget allocation ratio, w, on optimal insurance coverage level, the expected PV of
losses retained by the defender and the VaR of losses transferred to the insurer. Parameter values used
are r = 0.1, K = 5, L = 1, a = 0.1K/L, b = 1, α = 0.95.

different values of a. The upper panel reveals a notable trend: when a is small (i.e., the

effectiveness of a system upgrade is low), a decreases in w (that is, an increase in the

budget proportion allocated to purchasing insurance) leads to an increase in the level

of insurance coverage. This occurs because a low a value implies that investing in a

system upgrade yields only marginal reductions in the frequency of cyber attacks and

subsequent losses, making insurance a more efficient option. Additionally, the insurer is

inclined to offer more extensive coverage when a higher premium is charged. However,

as shown in the top-left panel, the coverage level also depends on the frequency of cyber

attacks. Intuitively, proportional coverage becomes costly for the insurer when the attack

frequency is high; consequently, a lower coverage level is set in such a case.

Interestingly, the top-right panel demonstrates that when a is small and the frequency

of cyber attacks (λ) is low (high), opting for insurance (a system upgrade) becomes a more

appealing prospect for the defender. This inclination arises because a high λ prompts

the insurer to offer minimal coverage in the absence of a system upgrade. In such a case,

investing in system upgrades results in a more significant reduction in expected losses

from cyber attacks compared to purchasing insurance. Consequently, the equilibrium

budget allocation ratio w̃ is close to 1. Conversely, when λ is low, the expected number

of cyber attacks and associated loss remain minimal even if the company does not invest

in self-protection. Under these circumstances, the insurer is willing to provide a higher

coverage, making insurance a more appealing investment for the company. Thus, w̃

approaches 0.
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When a is large, the impact of w on the insurer’s decision and the expected PV of

losses becomes more ambiguous, as exhibited in the bottom panel of Figure 3. As shown

in (2), larger a implies that investing in a system upgrade can lead to a more significant

reduction in the frequency of future cyber attacks. Interestingly, the bottom-left panel

indicates that as w increases, the insurer may be willing to offer better insurance coverage

(for w < 0.25) even if it receives a smaller premium. This counter-intuitive result can be

attributed to the fact that the insurer benefits from either increased premium or reduced

total claim amount, as indicated in (10). When a is large, the decrease in the expected PV

of future claims resulting from the defender’s investment in system upgrades surpasses

the comparatively smaller premium received. The bottom-right panel also shows that

the firm is more likely to benefit from a bigger investment in system upgrades when a is

large.

Figure 3: Impact of exogenous budget allocation ratio, w, on the insurance coverage level (left) and the
expected PV of losses (right) for a = 0.5 (top) and a = 2.5 (bottom).
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In Figure 4, we examine the influence of cyber attack frequency on the equilibrium

strategies of both the defender and the insurer. The left panel shows a decline in the

equilibrium insurance coverage level as the frequency of cyber attacks increases. Notably,

this coverage level approaches zero when λ becomes exceedingly high. This is because

an increase in λ raises both the expected number of cyber attacks experienced by the

firm and the claims processed by the insurer. To counterbalance this escalating claim

frequency and amount, the insurer may choose to either increase the premium charged

or decrease the coverage ratio. However, when λ is high, the premium (see the first term

in equation 10) becomes relatively small compared to the claim amount (see the second

term in equation 10), making higher premiums less effective. More importantly, this

reduces the budget available for system upgrades, leading to weaker frequency reduction.

Consequently, the insurer benefits more by offering lower coverage, enabling the firm to

allocate more funds for system upgrades. This, in turn, helps curb the frequency of cyber

attacks, ultimately benefiting the insurer as well.

Figure 4: Impact of frequency parameter, λ, on insurance coverage level (left) and equilibrium budget
allocation ratio (right).

From the right panel of Figure 4, the equilibrium budget allocation ratio w̃ increases

with λ in all cases, indicating that the firm invests more in system upgrades as the

frequency of attacks rises. For example, when a = 0.5, the firm tends to allocate its

entire budget to purchasing insurance (system upgrades) when λ < 0.45 (λ > 1.7). As

discussed earlier, when λ is low, the insurer is willing to offer substantial coverage for
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losses, such as c̃ = 65% for a = 0.5 and c̃ = 90% for a = 5. This makes investing in

insurance a more attractive option for the firm. However, as the frequency of attacks

increases, the insurer has less incentive to provide high coverage levels, even with high

premiums. Consequently, the effectiveness of loss reduction through insurance diminishes,

making it more advantageous for the firm to allocate a larger portion of its budget to

system upgrades. When λ becomes extremely high, the insurance company provides

minimal coverage, and w̃ approaches 1.

Finally, we investigate the impact of the frequency reduction parameter a. As illus-

trated in Figure 5, there is a non-monotonic relationship between a and the equilibrium

strategies of both the firm and the insurer. Specifically, the equilibrium budget allocation

ratio (coverage level) initially rises (falls) and then decreases (increases) with increasing

a. Intuitively, when a is small, investing in system upgrades does not significantly re-

duce the frequency of future cyber attacks. Thus, the firm must allocate more resources

to purchasing insurance, resulting in a lower value for w̃. However, as a increases, the

system upgrade effectiveness in reducing losses becomes more pronounced; even a small

increase in w can substantially decrease the frequency of future attacks, as implied by

(2). Consequently, the firm may decide to allocate a larger budget to these upgrades. In

response to the marked decrease in premiums, the insurer may reduce the coverage level.

When a reaches a high value, the projected frequency of attacks diminishes significantly,

potentially approaching zero. This limits the possibility for further loss reduction despite

additional investments in system upgrades. Conversely, the insurer faces reduced claim

amounts and is inclined to offer higher coverage. Therefore, higher coverage through

increased premiums (see right panel for a > 1.25) could outweigh the marginal reduction

in attack frequency, causing w̃ to decrease as a increases.

5. Conclusions

In today’s digital landscape, cyber insurance has become increasingly essential due

to the growing threat of cyber attacks and data breaches. It provides businesses with
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Figure 5: Impact of attack frequency reduction parameter, a, on equilibrium budget allocation ratio
(left) and insurance coverage level (right).

financial protection in the event of a cyber incident, helping to mitigate costs, such

as forensic investigations, legal fees, customer notifications, and credit monitoring for

affected individuals. Without insurance, these expenses can be substantial and potentially

devastating for a business. Additionally, cyber insurance incentivises businesses to adopt

robust cyber-security measures and protocols. Insurers often require policyholders to

meet specific security standards, such as conducting regular assessments and providing

employee training, to qualify for coverage. By encouraging proactive risk management

practices, cyber insurance reduces the likelihood and severity of cyber incidents.

In this paper, we examine a firm tasked with allocating its limited resources between

upgrading its security infrastructure and purchasing cyber insurance. By assessing the

risks associated with security breaches and considering the uncertainty in the time re-

quired to exploit vulnerabilities in the firm’s security infrastructure, as well as the strate-

gic interactions between the firm and an insurer, we derive the optimal strategies for both

parties endogenously. Our findings indicate that insurance coverage tends to increase with

a higher premium; however, this relationship depends on the system upgrade effective-

ness. If a minor investment in system upgrades results in a significant reduction in claim

frequency, the insurer may still offer high coverage even if the premium decreases. Con-

versely, when the frequency of cyber attacks is high, the insurer provides lower coverage,

prompting the firm to allocate more capital to system upgrades rather than insurance.
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Furthermore, the system upgrade effectiveness can exert a non-monotonic influence on

the equilibrium budget allocation strategy and insurance contract design.

Future research directions could involve extending our framework to incorporate al-

ternative optimisation objectives, utilising risk measures, such as Value at Risk and Con-

ditional Value at Risk (CVaR). This would enable an analysis of how risk preferences

influence the optimal budget allocation problem, particularly in relation to the decision-

maker’s level of risk-aversion. Additionally, a utility-based approach could be adopted to

quantify these preferences and describe the objective functions of different market par-

ticipants. Last but not least, the pricing of cyber insurance is inherently complex, as

the dynamic and evolving nature of cyber threats undermines the reliability of historical

data for forecasting future losses (e.g., expected loss or VaR). Future enhancements in

contract design may incorporate more advanced underwriting practices, dynamic pricing,

and exclusions, as well as information asymmetry, adverse selection or negotiation (Wang,

2019; Awiszus et al., 2023; Arce et al., 2024).

Appendix

Define, for any i ≥ 1, Ti = τ1+ τ2+ · · ·+ τi with general distribution function FTi
(·).

Consider i = 1. We have for V1 = L1e
−rT1 that

ΘV1(v) = P
(
L1e

−rT1 ≤ v
)
= P

(
T1 ≥

1

r
ln

L1

v

)
= 1− FT1

(
1

r
ln

L1

v

)
.

Assuming τj ∼ Exponential(λ) for all j, we get that

ΘV1(v) = 1−
(
1− e−

λ
r
ln

L1
v

)
=

(
v

L1

)λ
r

, (15)

with associated density function

θV1(v) =
λ

r
L
−λ

r
1 v

λ
r
−1, (16)
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and resulting mean and variance

E [V1] =

∫ L1

0

vθV1(v) =
λ

λ+ r
L1, (17)

Var [V1] =

∫ L1

0

(v − E [V1])
2 θV1(v) =

[
λ

λ+ 2r
−
(

λ

λ+ r

)2
]
L2
1. (18)

For the general n-phase attack, Vn = Lne
−rTn with

ΘVn(v) = 1− FTn

(
1

r
ln

Ln

v

)
.

Since Tn ∼ Gamma(n, λ), we get that

ΘVn(v) = 1− 1

Γ(n)
γ

(
n,

λ

r
ln

Ln

v

)
, (19)

θVn(v) =
λn

Γ(n)

(
1

r
ln

Ln

v

)n−1

e−
λ
r
ln Ln

v
1

rv
=

λn

rvΓ(n)

(
1

r
ln

Ln

v

)n−1(
v

Ln

)λ
r

,

from which

E [Vn] = Ln

n∏
j=1

E
[
e−rτwj

]
= Ln

(
λ

λ+ r

)n

and (20)

Var [Vn] = L2
n

[(
λ

λ+ 2r

)n

−
(

λ

λ+ r

)2n
]
. (21)
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