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Abstract 

Multimodal bioimaging is increasingly recognized for 
its potential to integrate multiple types of information. 
This is particularly relevant in interventional cardiology, 
where structural imaging may be fused with 
complementary data, such as metabolic or 
electrophysiological data. Automating the preprocessing 
steps required for image alignment and registration is 
crucial to accelerate procedures in clinical settings. 

This study explores the feasibility of using a multi-task 
deep neural network for the automatic segmentation of 
the left ventricle from cardiac computerized tomography 
scans and the prediction of a landmark position required 
for image alignment. The model, based on a 3D UNet 
architecture, simultaneously performs the segmentation 
of the left ventricle and the localization of its apex, and it 
was trained and tested on the segmented images of the 
Multi-Modality Whole Heart Segmentation dataset, where 
the apex position was manually annotated by an expert. 

The network achieved an average Dice score of 0.91 
and an average Euclidean distance of 11.28mm for the 
segmentation and the landmark detection, respectively. 
These results suggest that, with some improvements, the 
proposed technique could be used as a preprocessing step 
when aligning the volumetric image of a cardiac chamber 
to another structure. 
 
1. Introduction 

Cardiac imaging plays a crucial role in the diagnosis 
and treatment of cardiovascular diseases. However, 
different imaging techniques may provide different 
insights on cardiac anatomy and its functionalities. 
Indeed, structural imaging such as computed tomography 
(CT) or cardiac magnetic resonance (CMR) provides 
detailed anatomical information, but they can fail in fully 
capturing functional information. On the other hand, 

complementary functional techniques like the 
electroanatomical (EA) mapping may support in 
enhancing the cardiac electrophysiological information, 
even though with less accurate anatomical background. 
Hence, the integration of all this information into a single, 
multimodal image is often desired [1]. Indeed, hybrid 
imaging, e.g., PET/CT or SPECT/CT, has improved 
diagnostic robustness in coronary artery disease by 
combining perfusion data with coronary anatomy [2]. 
Similarly, the fusion of CMR-derived scar maps with EA 
maps has refined ablation strategies for ventricular 
tachycardia [3].  

In this scenario, deep learning methods may offer a 
paradigm shift, enabling end-to-end architectures to 
address multiple tasks like image segmentation and 
landmark detection concurrently. Notably, 3D UNet-
based models represent one of the best choices for 
automatic cardiac segmentation [4]; however, the 
integration of auxiliary tasks (e.g., landmark prediction) 
remains unexplored. 

In light of these premises, in this work we propose a 
3D multi-task deep neural network for the simultaneous 
segmentation of the left ventricle and the detection of its 
apex in cardiac CT scans. The model, built on a 3D UNet 
architecture, is assessed on a public dataset, 
demonstrating its potential as an automated preprocessing 
step for multimodal pipelines.  

 
2. Methods 

2.1. Dataset 

The Multi-Modality Whole Heart Segmentation dataset 
[5], [6], [7], [8] was used in this study. It comprises 
anonymized clinical magnetic resonance imaging (MRI) 
and CT scans for whole heart segmentation, which were 
performed in-vivo during routine clinical procedures. 
Consequently, the image quality was not uniform across 



the dataset. 
CT scans were acquired during routine cardiac CT 

angiography, covering the whole heart from the upper 
abdomen to the aortic arch, with slices acquired in the 
axial view. The dataset includes 20 labeled images, 
originally conceived for the training set, and 40 
unlabelled images, in turn conceived for the test set.  

The in-plane resolution was on average 0.429×0.429 
mm, while the slice thickness was either 0.625 mm 
(fifteen images) or 0.45 mm (five images). Image size 
was 512×512 in the 2D plane, with the number of slices 
varying from 177 to 363.  

Given the purpose of this study, only the labeled 
images were considered, for which the dataset provides 
manual segmentation of seven whole heart substructures, 
including the left ventricle blood cavity, which we 
focused on for the segmentation. To pursue the research 
goal, in addition to the provided segmentation, we added 
the annotation of a landmark indicating the apex of the 
left ventricle to each image of the selected dataset. This 
landmark was marked by an expert on CT scans via the 
ITK-SNAP application [9], in the form of a small sphere 
centered on the selected pixel. 

 
2.2. Data preprocessing and augmentation 

A set of different transformations was initially applied. 
After loading the CT scans and assuring that they were in 
the same format, the left ventricle’s mask was extracted 
from the provided segmentation. The landmark 
coordinates were obtained by computing the sphere 
center, which was added with ITK-SNAP onto the mask. 
Then, a heatmap was obtained by applying the Euclidean 
distance transform, with zeros representing the landmark 
location, followed by a logarithmic transform to highlight 
the landmark more. Finally, heatmaps were rescaled in 
the range [0,1] by applying the min-max normalization. 

Data augmentation was implemented on the training 
set via random cropping. Specifically, sub-volumes of 
size 128×128×128 were extracted while ensuring a 
balance between positive and negative samples, where the 
positive ones were regions containing the target label 
(i.e., the left ventricle), while the negative samples 
represented background or non-target regions. Their ratio 
was set to 1:1. 

 
2.3. Network architecture 

The proposed deep learning model is a multi-task 
network based on a 3D UNet architecture implemented 
within the MONAI framework, which includes both 
segmentation of the left ventricle and landmark 
localization, inspired by the work reported in [10]. Its 
architecture is represented in Fig. 1. 

The network takes as input the CT scan as a 3D tensor, 

which is then fed into the encoding section, composed of 
five levels for feature extraction and landmark detection.  

Each level includes an encoding block formed by two 
residual units and a downsampling stage, performed with 
a strided convolution with a stride of 2, which takes the 
initial feature maps from 32 up to 512. Moving to the 
decoding section, there are upsampling stages performed 
with a transpose convolution, always with a stride of 2, 
followed by two residual units (i.e., the decoding block). 
Finally, a last convolutional layer is applied to reduce the 
number of channels. Two different activation functions 
are then employed for the two tasks: a softmax function 
for the segmentation of the left ventricle, and a sigmoid 
function for the landmark heatmap. To enhance model 
generalization, dropout regularization is incorporated 
with a probability of 0.1. The skip connections between 
the encoder and the decoder part of the network, indicated 
by the dashed lines in Fig. 1, preserve spatial information, 
which is crucial for accurate segmentation and landmark 
localization. 

 
2.4. Training and evaluation strategy 

A 10-fold cross-validation was performed. 
Specifically, for each fold, labeled images in the dataset 
were partitioned into training, validation, and test sets 
following an 80/10/10 split, resulting in sixteen images 
for training, two for validation, and two for the test set. 
We ensured that no repetitions were allowed, so that in 
each fold the testing subjects couldn’t also be present in 
the training and/or validation set. 

After several preliminary tests aimed at evaluating the 
behaviour of the losses during the training process, it was 
decided that the implemented UNet would be trained for 
1000 epochs in each fold. The loss for the segmentation 
task was a weighted sum of the Dice loss and the Cross 
Entropy loss (DiceCELoss), while for the landmark 
prediction, the Mean Squared Error Loss (MSELoss) was 
chosen. The total loss used for backpropagation was 
computed as the weighted sum of the individual losses for 
the segmentation task and the landmark position 
prediction task, with the weight being ⍺=1 for the 
segmentation task, and β=10 for the landmark prediction. 
Validation was performed every other epoch, during 
which the model was saved every time it reached a new 
minimum value in the total loss. 

A sliding window inference was applied in the 
validation loop, with an overlap between the sub-volumes 
of 25%, to revert to the original image size, given that the 
network was exposed to sub-volumes (i.e., patches) 
during training rather than the entire image. The network 
gave a heatmap as output for the landmark prediction, 
from which the landmark’s coordinates in pixels were 
extracted by taking the coordinates of its minimum value. 

To evaluate the performance of the network, two 
metrics have been adopted: the Dice score for the 



segmentation task and the Euclidean distance (i.e., L2 
distance) for the landmark coordinates. Given the 
different resolutions of the images, we multiplied every 
coordinate for the corresponding resolution before 
computing the Euclidean distance. 

 

 
Data analysis was performed with Python v3.9.16, 

using the Microsoft Visual Studio Code IDE on a high-
performance computing (HPC) cluster, with a 
computational node made of 4 NVIDIA A100 GPUs. 
Each GPU is configured with 6912 CUDA cores and 80 
GB of high-bandwidth memory, providing enough space 

for the computational workload. PyTorch and MONAI 
were used for the deep learning model implementation 
and the processing of medical images, respectively. 
 
3. Results and discussion 

In Table 1, the runtime for the training, the epoch at 
which the best model was saved, and the corresponding 
loss are reported for each fold. Overall, the runtime was 
16342±466 s, and the lowest loss reached 0.0869±0.025, 
with the single values being consistent across folds. 

In Table 2 the performance of the network on the 
images of the test sets are reported for each fold. These 
results indicate that the model achieved consistent and 
robust performance in the segmentation task, while 
landmark prediction proved to be more challenging and 
exhibited greater variability. 

This aspect was also evident from the network's output 
behavior, an example of which is illustrated in Fig. 2, 
both for the segmentation and the apex detection tasks. 
Specifically, for this image, the resolution is 
0.365×0.365×0.625. The target coordinates in pixels are 
(388, 364, 72), while the output of the network predicted 
the location at (372, 364, 72). Once we converted these 
coordinates in mm by multiplying them by their 
corresponding resolution, we got an L2 distance of 5.84 
mm, which reflected a suitable performance in the 
prediction of the landmark site. 

 
 
Figure 1. Model architecture, based on a 3D UNet. Input is 
represented at the top, followed by the encoding block (light 
purple), the decoding block (light green), the last 
convolutional layer, and the two outputs of the network. 
Skip connections between the encoding and decoding 
blocks are represented with the dashed lines. 

 

Table 1. Training statistics, in terms of runtime, epoch at 
which the best model was saved, and its corresponding loss, 
are reported for each fold. 

Fold Runtime [s] Epoch Loss 
Fold_1 16590 922 0.1041 
Fold_2 16201 970 0.0780 
Fold_3 16517 728 0.0648 
Fold_4 16805 390 0.1420 
Fold_5 16133 678 0.0834 
Fold_6 17192 856 0.1002 
Fold_7 16110 644 0.0789 
Fold_8 15505 762 0.0508 
Fold_9 16010 978 0.0919 
Fold_10 16361 976 0.0754 

 Table 2. Performance metrics for the test set, in terms of 
Dice score and L2 distance, are reported for each fold. 

 Dice [a.u.] L2 [mm] 
 Img1 Img2 Img1 Img2 

Average 0.9087 11.2795 
Fold_1 0.9184 0.9624 8.7636 3.0449 
Fold_2 0.9642 0.9013 22.3705 6.6150 
Fold_3 0.6943 0.9545 19.8319 9.4532 
Fold_4 0.9134 0.9014 8.0671 18.0404 
Fold_5 0.9624 0.7691 13.1799 12.8581 
Fold_6 0.9285 0.9538 5.8437 4.2656 
Fold_7 0.9680 0.8973 10.2139 23.6336 
Fold_8 0.9643 0.9026 14.2407 17.1018 
Fold_9 0.9353 0.9028 7.0416 6.2903 
Fold_10 0.8647 0.9156 11.4108 3.3227 

 



Although the landmark prediction results exhibit non-
negligible errors, with an overall mean distance of 11.28 
mm, some considerations can be drawn. A possible 
explanation is that the network might be more inclined to 
predict a whole region of interest, rather than a specific 
point. Moreover, the manual process for annotating the 
apex could be biased by the presence of a single expert 
and might be imprecise for some images, especially when 
the apex area is smooth and large. This finding, however, 
doesn’t limit the application of this methodology as a pre-
processing step for image alignment, given the need for 
multiple landmarks. 

Finally, a notable limitation of this study is the dataset 
size, which restricts the generalizability of the results and 
led to suboptimal training of the deep neural network. 
 
4. Conclusion 

This study proved the feasibility of using a multi-task 
network for the segmentation of the left ventricle and the 
prediction of the coordinates of its apex. The proposed 
model achieved a high segmentation accuracy and a 
suitable landmark localization performance. 

The results suggest that the proposed technique could 
serve as an effective preprocessing step for aligning the 
volumetric image of a cardiac chamber with a functional 
image of the same cardiac structure. This capability is 
particularly relevant for generating multimodal images in 
cardiac electrophysiological or structural studies, to 
automate the image fusion process. 

Future developments of this work will focus on a 
larger dataset, also considering a higher number of 
landmarks needed to perform an accurate alignment. 
Refinements in the data pre-processing stage will also be 
considered, as well as potential variations in the network 
architecture to predict the locations of the landmarks 
more precisely. Finally, annotating the landmarks by 
multiple experts could improve training and, 
consequently, enhance network performance. 
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Figure 2. Performance of the network on a test image. On the 
left, a slice of the CT with the ground truth left ventricle mask 
in shaded red and the ground truth location of the apex, 
always in red. On the right, the same slice with the predicted 
mask in shaded blue and both the ground truth location of the 
apex (in red) and the predicted one (in blue). 
 


