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Abstract

Predictive maintenance represents a data-driven methodology that applies ma-

chine learning and analytics to foresee equipment failures before their occurrence,

thus reducing downtime and associated maintenance costs. Historically, the practice

of predictive maintenance, especially in the context of vehicles, has relied on anomaly

detection techniques applied to sensor data. In recent developments, vehicular predic-

tive maintenance has transitioned from leveraging raw sensor inputs directly to em-

ploying fault events recorded within On-Board Diagnostic systems (OBDs). Rather

than delivering raw sensor data, OBDs provide drivers and technicians with diag-

nostic information derived from various Electronic Control Units (ECUs) in vehicles,

typically represented as Diagnostic Trouble Codes (DTCs).

Despite their significance and widespread use in the automotive industry, the

application of conventional machine learning techniques to predictive maintenance

using DTCs presents considerable challenges: DTCs are non-numeric, the spectrum

of DTC codes is exceedingly vast, and they can coexist with additional attributes such

as fault-bytes and Electronic Control Units (ECUs). These challenges have prompted

researchers to examine a limited subset of DTCs at one time and to employ basic

algorithms. Moreover, most algorithms applied to DTCs are heavily reliant on repair

and warranty data to formulate problems within a supervised learning paradigm, such

as categorizing sequences of events as faulty or non-faulty. However, in the absence

of access to such data or clear indicators of vehicle non-operability, implementing

supervised learning techniques, which necessitate substantial quantities of labeled

data, can be difficult, if not infeasible.

This study initially re-conceptualized the task of vehicle fault prediction as a

self-supervised next-DTC prediction problem, introducing a novel architecture that

harnesses the strengths of deep learning models to directly confront the intrinsic



complexity of DTCs. This is achieved by learning dense representations of DTC events

through the use of neural embeddings, applied separately to each DTC attribute. Such

a method enables our models to utilize sequential algorithms such as LSTM layers,

thereby facilitating precise predictions of the subsequent event with consideration for

all three attributes per timestep.

The second approach proposes an architecture that combines Gated Recurrent

Units (GRUs) with an attention mechanism to succinctly encapsulate the complete

DTC sequence into low-dimensional embeddings, facilitating efficient representation

of multivariate event sequences, thereby enhancing accuracy, interpretability, and the

capability for semantic search of individual DTCs and their associated sequences.

The third approach consolidates the advantages of transformer and GRU models,

achieving a superiority of approximately 2% in the top-5 accuracy benchmark for the

next-DTC prediction task. This model illustrates that large models while achiev-

ing outstanding performance in state-of-the-art research, do not necessarily operate

optimally in domains constrained by data size.

Finally, we developed an improved variant of the DTC-TranGru model, referred to

as DTC-GOAT, which incorporates various optimization techniques to augment pre-

diction accuracy. Furthermore, we demonstrated how the ensemble approach, which

entails the combination of multiple models for next-DTC prediction, can enhance

top-5 accuracy outcomes compared to individual models.
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and the spatial-dropout layer improved the performance alone, we tried

enhanced versions of all the compared models by introducing minor

optimization changes used in our model. As highlighted by the bold

text, DTC-GOAT achieved the best results among all other models . 98

7.3 Top-5 accuracy results from an ensemble of multiple models compared

with individual models. Combining predictions from three models

boosts the top accuracy, and turns out to be higher than the top-5

accuracy achieved by individual models . . . . . . . . . . . . . . . . . 99

15



Chapter 1

Introduction

This dissertation examines the utilization of sequential algorithms and neural em-

beddings to enhance the representation of Diagnostic-Trouble Codes (DTC) and to

leverage them for predictive maintenance within an end-to-end self-supervised frame-

work. This chapter commences by sharing the motivation behind employing DTCs for

predictive maintenance and the necessity for a self-supervised methodology. Subse-

quently, the contributions of the dissertation are delineated, followed by a compilation

of papers published as part of this research.

1.1 Motivation

Industrial systems, ranging from small machines to vehicles, rely on maintenance

for their durability. In recent years, instead of fixing the machines after a fault

occurs, companies have begun to invest in various techniques that can prevent faults

in advance. The most popular approach to system maintenance, until recently, relied

on Preventive Maintenance [6]. Preventive maintenance involves scheduled, proactive,

and routine inspections of the system that help reduce faults and prevent them before

they arise. It seeks to minimise major breakdowns and failures by addressing small

problems ahead of time.

16



Conversely, predictive maintenance Predictive Maintenance [67, 86] employs ma-

chine learning algorithms to anticipate maintenance requirements and system failures

by scrutinizing historical data. This involves examining correlations and uncovering

complex patterns in data related to system failures, as well as activities undertaken

for diagnosis and repair. Preventive and corrective maintenance necessitates the en-

gagement of labour and resource allocation for periodic maintenance scheduling. In

contrast, predictive maintenance facilitates cost reduction [101], diminishes equip-

ment downtime [1], and extends the longevity of components [60]. Owing to these

advantages, predictive maintenance is being increasingly integrated across various

industries [78, 4, 68, 90].

More recently, advancements in industrial machines, especially vehicles, have led

to the development of embedded diagnostic systems called Electronic Control Mod-

ules (ECUs) [98], which produce diagnostic fault codes. These fault events, known

as Diagnostic Trouble Codes (DTC) [85], have begun to dominate traditional predic-

tive maintenance approaches, shifting the focus from sensory data [52] collected by

numerous sensors in these machines to events generated by the diagnostic modules.

Since fault events are non-numeric, they are difficult to use directly with machine

learning algorithms and require some form of numeric representation [83]. Obtaining

this representation is challenging due to the multiple attributes, each with a high

number of unique classes.

1.2 Role of DTCs in Predictive Maintenance

Diagnostic modules embedded within modern vehicles play a crucial role in monitoring

the health and performance of various automotive systems. These modules contin-

uously collect and analyze data related to vehicle operations, generating Diagnostic

Trouble Codes (DTCs) when anomalies or faults are detected. The systematic use of

these DTCs enables a proactive approach to vehicle maintenance, commonly referred
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to as predictive maintenance. By analyzing DTCs and their patterns, maintenance

teams can forecast component degradation and schedule repairs or replacements at

optimal times, thus avoiding unexpected failures. This approach contrasts with tra-

ditional reactive maintenance, which typically occurs only after a fault has disrupted

vehicle function.

Predictive maintenance driven by diagnostic data offers substantial advantages in

terms of cost efficiency, safety, and overall system reliability. Early fault detection

minimizes the likelihood of severe failures, which can lead to expensive repairs and

extended downtime. Timely interventions not only extend the lifespan of critical

components but also prevent secondary damage that may arise from neglected issues.

From a safety standpoint, predictive maintenance ensures the continuous functional-

ity of essential vehicle systems such as braking, steering, and engine control, thereby

reducing the risk of accidents linked to sudden malfunctions. The consistent per-

formance and reliability achieved through this method also contribute positively to

customer satisfaction and brand reputation, particularly in high-end automotive mar-

kets.

The integration of diagnostic systems and DTC analysis thus forms the foundation

of modern predictive maintenance strategies, enabling data-driven decision-making

that improves vehicle safety, reduces operational costs, and enhances long-term per-

formance.

1.3 Aim and Objective

The primary aim of this dissertation is to explore, evaluate, and develop end-to-end

self-supervised prediction algorithms [32], which can use these DTC events to facilitate

the identification of maintenance needs for vehicles in connected environments. Given

the limitations in current research and to achieve the broader objective, we intend to

explore the following goals.
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1. In the absence of warranty and repair data, when it is not feasible to frame the

problem using a supervised approach [40], how can Diagnostic Trouble Code

(DTC) fault events be effectively utilized for predictive maintenance?

2. Does the high cardinality of multi-attribute DTC events constrain the imple-

mentation of advanced end-to-end machine learning algorithms for the identi-

fication of potential issues in vehicles? This inquiry is explored in Chapter 4.

3. Can enhanced representations for DTC events and their associated attributes

be proposed and developed? How does this new representation facilitate the

application of machine learning and deep learning algorithms? This inquiry is

examined in Chapter 4.

4. Does the resulting new representation enable the reformulation of the prob-

lem into a more comprehensive end-to-end self-supervised next-DTC prediction

problem, rather than focusing solely on a collection of DTC events? This inquiry

is covered in Chapter 4.

5. Is it feasible to employ the developed algorithm in contexts where decision

explanations are essential, and can the outcomes of the models be practically

interpreted by field engineers? This inquiry is addressed in Chapter 5.

6. Can we integrate the approach to predict and retrieve similar DTC sequences

and individual DTC events, or is there a necessity for specialized models tailored

to different use cases? This inquiry is addressed in Chapter 5.

7. Considering the advancements of sequential prediction algorithms such as trans-

formers, can a larger model simply replace a smaller sequential model to enhance

the model’s accuracy? This inquiry is addressed in Chapters 6 and 7.
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1.4 Contributions

In this dissertation, we introduce a self-supervised learning methodology aimed at

predicting the subsequent multivariate Diagnostic Trouble Code (DTC) event within

a sequence thereof. This includes the development of various architectural frameworks

employing sequential prediction algorithms to enhance DTC event prediction accu-

racy. Our research further encompasses an improved representation of DTC events

and the implementation of sequential algorithms to predict the forthcoming DTC

event, encompassing all three attributes. .

The following constraints pertain specifically to the objects and questions delin-

eated in the preceding section:

• In instances where warranty and repair data, essential for supervised learn-

ing, are unavailable, we devised a self-supervised prediction methodology for

subsequent DTC events. This approach incorporates dense DTC event rep-

resentations via neural embeddings and the application of algorithms adept at

managing sequential dependencies, such as Recurrent Neural Networks (RNNs).

• To facilitate model interpretability and expedite semantic retrieval of DTC

sequences, we designed a dense DTC encoder architecture that yields a low-

dimensional representation of the DTC sequence. This compact representation

can be employed in various downstream applications, including retrieval tasks

and semantic searches.

• We propose a hybrid model integrating a lightweight transformer network with

Gated Recurrent Units (GRU) to enhance performance in next-DTC prediction

tasks, particularly in scenarios involving limited data, where deploying stan-

dalone large models is infeasible.

• We also present an optimized architecture of the Transformer-GRU model that

enhances information flow and interconnectedness, thereby improving next-
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DTC prediction efficacy. Additionally, we propose a straightforward ensemble

method to combine diverse architectures, thereby augmenting the performance

of the next-DTC prediction task.

1.5 List of Publications

As a part of this dissertation work, number of articles have been published in peer-

reviewed conferences. Part of this dissertation is based of these

• A. B. Hafeez, E. Alonso and A. Ter-Sarkisov, ”Towards Sequential Multivariate

Fault Prediction for Vehicular Predictive Maintenance,” 2021 20th IEEE Inter-

national Conference on Machine Learning and Applications (ICMLA), Pasadena,

CA, USA, 2021, pp. 1016-1021, doi: 10.1109/ICMLA52953.2021.00167,

• A. B. Hafeez, E. Alonso and A. Riaz, ”DTCEncoder: A Swiss Army Knife Ar-

chitecture for DTC Exploration, Prediction, Search and Model Interpretation,”

2022 21st IEEE International Conference on Machine Learning and Applications

(ICMLA), Nassau, Bahamas, 2022, pp. 519-524, doi: 10.1109/ICMLA55696.2022.00085.

• Abdul Basit Hafeez, Eduardo Alonso, and Atif Riaz. 2024. DTC-TranGru: Im-

proving the performance of the next-DTC Prediction Model with Transformer

and GRU. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied

Computing (SAC ’24). Association for Computing Machinery, New York, NY,

USA, 927–934. https://doi.org/10.1145/3605098.3635962

1.6 Dissertation Outline

The structure of this dissertation is as follows: Chapter 2 provides background in-

formation on PhD, Diagnostic Modules, and Diagnostic Trouble Codes. Chapter

21



3 offers a comprehensive literature review on sensor-based and DTC-based predic-

tive maintenance research. Chapter 4 discusses the development and implementation

of new representations for a novel approach to next-DTC prediction using end-to-

end self-supervised learning. In this chapter, we explain how these representations

can effectively handle high-cardinality features and sequential dependencies between

events, and can subsequently be fed into the proposed next-DTC prediction model,

which can potentially overcome the limitations of traditional supervised learning ap-

proaches. Chapter 5 highlights how the algorithm developed for the next-DTC pre-

diction problem can enable field engineers to understand the reasoning behind the

predictions and facilitate exploration tasks, such as retrieving similar DTC sequences

or individual DTC events. This chapter introduces an architecture that learns dense

representations of DTC sequences using the Attention mechanism and demonstrates

how these representations can be utilized for other use cases. In Chapter 6, we present

a hybrid architecture that combines Transformer and Gated Recurrent Unit (GRU)

architectures. Chapter 7 proposes a structural improvement of the model utilizing a

Transformer and GRU, aiming to enhance next-DTC prediction accuracy further. In

this chapter, we also suggest combining different models to advance the accuracy of

the DTC prediction task even more. Chapter 8 concludes the dissertation by sum-

marizing the key findings, discussing implications for the automotive industry, and

outlining avenues for future research.
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Chapter 2

Background

One of the sponsors of this PhD programme is Bosch Automotive, specifically the

Diagnostic Software Engineering Solutions Design team (now EPAS). As an industrial

PhD sponsored by Bosch Automotive, the scope and focus of this PhD were primarily

on the use of Diagnostic Trouble Codes for predictive maintenance in vehicles. It was

anticipated that by the end of the PhD, we would be obtaining data from the vehicles

in real-time, rather than data collected in the workshop; however, there were some

unexpected delays due to COVID and Bosch’s agreement with the customer.

A key limitation of the dataset used in this research is the absence of warranty

claims data, which is typically a crucial component in predictive maintenance ap-

plications. This scarcity of rich contextual information necessitated a reframing of

the problem, shifting focus towards the analysis of Diagnostic Trouble Codes (DTCs)

themselves as the main source of insight for predicting vehicle faults. By examining

the patterns and relationships within DTC sequences, researchers can identify po-

tential issues before they escalate into major failures, thereby facilitating proactive

maintenance strategies that mitigate costs associated with downtime and unforeseen

repairs. This approach acknowledges the unique characteristics of the dataset while

leveraging the inherent value of the DTC data to drive predictive insights in connected

vehicles.
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The subsequent sections provide foundational insights into diagnostic modules,

the application of Diagnostic Trouble Codes for predictive maintenance, connected

vehicles, and the dataset composition. To emphasize the self-supervised learning

paradigm utilized in the problem formulation of this dissertation within a machine

learning framework, this chapter culminates with an overview of machine learning

and its various categories, including supervised, unsupervised, and self-supervised

learning.

2.1 Fault Events-Based Predictive Maintenance

Many industrial machines, including connected cars, feature troubleshooting modules

that generate fault events, commonly referred to as Diagnostic Trouble Codes (DTCs).

In some cases, access to raw sensory data is severely limited or entirely absent, which

restricts traditional approaches to analyzing event data. This limitation has led to

the necessity for algorithms that can be applied to event-based systems.

The dataset utilised in this work is provided by Bosch Automotive Service Solu-

tions. Diagnostic data, stored in the memory of electronic modules and control units,

is collected either during a diagnostic session or streamed to the cloud periodically

in connected cars. When a car visits the workshop, these DTCs assist engineers in

identifying the causes of problems and determining if any module is malfunctioning.

As will be discussed in section 2.5, the abundance of attributes in the data often

makes it challenging for engineers to ascertain whether the current pattern will affect

other modules in the future, thus hindering them from taking proactive preventive

measures to save costs. By leveraging historical patterns, classifying a pattern within

the failure category, or predicting the next probable failure can aid engineers in pre-

venting major failures, which can be deemed the essence of event-based predictive

maintenance.
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2.2 Fault Detection in Connected Cars

In connected cars, there is a mechanism of bidirectional communication between the

systems inside the vehicle and the outside world, for example, cloud servers and edge

devices. This is enabled by the access to the internet and the ability to transfer the

data to make the communication effective.

Having the ability to communicate with other systems efficiently, companies have

started to log the data (sensor, fault events, other vehicle information) within the

car and even transfer it in the form of data streams to external systems, i.e., cloud

servers. This mechanism of connected communication can help in leveraging machine

learning and data analytic-based solutions for reducing fault counts and improving

the vehicle maintenance system through intelligent decisions.

2.3 On-Board Diagnostic and ECUs

OBDs (On-Board Diagnostics) and ECUs (Electronic Control Units) are essential

components in modern vehicles. The OBD system acts as a vehicle’s self-diagnostic

and reporting system, allowing for the monitoring and analysis of various functions,

including emissions control and engine performance. It gathers data from several

sensors and transmits it to the ECU, a computer responsible for managing specific

functions within the vehicle, such as the engine, transmission, brakes, and other vital

systems. The ECU processes the information from the OBD system, making real-time

adjustments to enhance the vehicle’s performance and efficiency.

2.4 Diagnostic Trouble Codes

Diagnostic Trouble Codes (DTCs) are alphanumeric codes generated by the OBD

system when it detects an issue with the vehicle’s systems or components. Each code
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corresponds to a specific fault or malfunction, making it easier for technicians to iden-

tify the problem. DTCs typically consist of five characters, with the first character

indicating the system affected (e.g., ”P” for powertrain issues, ”C” for chassis), fol-

lowed by numbers that pinpoint the exact nature of the problem. Mechanics use these

codes to diagnose and troubleshoot issues, ensuring efficient and accurate repairs.

2.5 Dataset Structure

Each observation in a dataset is an error code denoting a fault that occurred in some

module of the car. It has some attributes related to the car and the session where this

event was recorded. Examples of such attributes include the number of miles that

the vehicle has travelled and the time of the session. These attributes also help in

sorting these events by time and mileage. A few important attributes of the dataset

are mentioned below:

• Vin-id: ID of the vehicle.

• Mileage: Total distance travelled by the vehicle.

• DTC-ID: Id of the module generating the error log.

• Ecu (Module): Main module where the fault has occurred.

• Base-dtc: Sub-module where the fault has occurred.

• Fault-byte: Specific chip or location of the fault within sub-module.

• Session-datetime: Date and time of the session

• DTC-Status: Pending/Confirmed etc

• DDOO: It is the field that reflects the time passed since the record of error and

session (when data is captured)
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The dataset comprises diagnostic trouble code (DTC) sequences collected from

Jaguar Land Rover (JLR) workshops, with data provided and supported through

collaboration with Bosch, a key automotive supplier and research partner. Bosch, as

a leading provider of automotive electronics and diagnostic solutions, supplies critical

components such as electronic control units (ECUs) and diagnostic tools that enable

the collection and analysis of vehicle fault data. This collaboration facilitates access

to high-quality, real-world diagnostic datasets essential for advanced fault analysis

and reliability studies.

The initial dataset consisted of over 450,000 sequences obtained from a larger

pool of raw workshop data. A rigorous filtering process was applied to enhance data

quality and relevance. Specifically, sequences containing fewer than five events were

discarded due to insufficient length for temporal analysis. Immediate duplicate events

within sequences were removed to prevent redundancy, and DTC events missing both

timestamp and mileage information were excluded to maintain data integrity. After

the preprocessing and filtering, we were left with 250,000 sequences of DTCs, each

coming from a unique vehicle.

Following preprocessing, the dataset includes 486 unique base DTCs distributed

across 83 ECU classes and 64 fault byte identifiers. The number of classes and iden-

tifiers retained reflects the filtering criteria rather than manual selection. Sequence

lengths vary, representing diverse vehicle conditions and diagnostic histories across

multiple JLR car models.

2.5.1 Common classes and frequencies

The top 20 most frequently occurring base DTCs in the dataset include codes such as

U0001, U0046, and U0080. The code U0001 corresponds to issues on the high-speed

Controller Area Network (CAN) communication bus, indicating general communica-

tion failures within this critical vehicle network. U0046 signifies a communication

problem specifically within the “Vehicle Communication Bus C,” which is a sub-
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network responsible for data exchange between certain control modules. U0080 re-

flects a loss of communication on the CAN bus, representing interruptions in the data

flow between various vehicle control units. These communication-related DTCs are

among the most prevalent faults recorded, highlighting the importance of network

reliability in vehicle diagnostics.

Since the dataset contains 468 unique base DTC classes, only the top 20 most

frequent base DTCs are presented for clarity. Figure 2.5.1 shows the frequency distri-

bution of these top 20 base DTCs, highlighting the predominance of communication

bus-related faults, alongside other significant fault codes such as U0055 and U0011.

Figure 2.1: Top 20 most occurring base DTCs

The 20 most frequently occurring ECUs are showing in figure 2.5.1, each identified

by a standardized module name and its corresponding occurrence count. The most

prominent entries include the Anti-lock Braking System (ABS), Image Processing

Module A (IPMA), Instrument Panel Cluster (IPC), Parking Aid Module (PAM),

and Power Steering Control Module (PSCM)
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Figure 2.2: Top 20 most occuring ECUs

The fault bytes represent standardized diagnostic identifiers that encode specific

failure modes or error types detected by vehicle ECUs. As shown in figure ??, the

most common values include ’135’, ’129’, and ’130’

Figure 2.3: Top 20 most occurring fault-bytes

2.6 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that concentrates on

creating algorithms that learn patterns from data and improve their predictive capa-

bilities autonomously. While AI covers a wide array of methods designed to mimic

human intelligence, ML lays the mathematical and statistical groundwork allowing
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systems to identify patterns, make informed decisions, and predict future occurrences

based on previous data.

In predictive maintenance, ML is crucial for foreseeing equipment failures, op-

timizing maintenance schedules, and reducing downtime by evaluating sensor data,

operational logs, and past maintenance records.

2.6.1 Supervised Learning

Supervised learning is a paradigm within machine learning wherein the model is

trained utilizing a labeled dataset, denoted as (X, Y ), where X signifies the input

features and Y corresponds to the associated target labels. The algorithm’s objective

is to ascertain a mapping function f : X → Y that attenuates the deviation between

predicted and actual outputs. Illustrations of supervised learning comprise:

• Classification: Classification is the task of predicting discrete categories or

classes based on input data. The model learns from labeled examples to classify

new instances into predefined classes.

Figure 2.4: Example of classification with linear decision boundary

For example, a binary classification model predicts whether a machine will fail
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within a specified timeframe (e.g., ”fail” or ”no fail”) using features such as

vibration levels, temperature, and pressure.

• Regression: Regression involves predicting continuous numerical values based

on input data. The dataset is represented as (x, y), where x refers to the

dependent or input variables and y denotes the independent or output variable.

The model learns the relationship between these input variables and continuous

outcomes.

Figure 2.5: Simple example of fitting a Linear model for Regression task, here de-

pendent or input variable is on X-axis while output or Independent variable is on

Y-axis

Example of regression in prediction maintenance will include a regression model

estimating the remaining useful life (RUL) of a component based on historical

sensor data.

2.6.2 Unsupervised Learning

Unsupervised learning entails training models on datasets devoid of labeled outputs,

with the aspiration of identifying latent patterns, categorizing analogous data points,
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or detecting anomalies. The dataset is represented as X, where the lack of labels

differentiates it from supervised learning

Categories for unsupervised learning include the following.

• Clustering: Clustering is the process of grouping data points into clusters

based on their similarities, without prior knowledge of the categories. For in-

stance, techniques such as k-means clustering can group machines exhibiting

similar operational patterns, facilitating the identification of anomalous equip-

ment behavior.

Figure 2.6: Example of Clustering, with three different groups.

• Anomaly Detection: Anomaly detection aims to identify data points that

deviate significantly from normal patterns. Different algorithms are used to

detect unusual sensor readings that may signal impending failures.

32



Figure 2.7: Example of Anomaly reading of the regular sensory values

2.6.3 Self-Supervised Learning

Self-supervised learning is an emergent methodology in which models derive insights

from unlabeled data by establishing pretext tasks that generate pseudo-labels. This

technique is particularly beneficial in scenarios where labeled datasets are limited or

incur high acquisition costs.

• Predictive Task: Predictive tasks encompass both missing value prediction

and next event prediction, enhancing the model’s understanding of normal pat-

terns and future outcomes. For example, a model is trained to predict missing

sensor readings using partially masked input data. Additionally, the model fore-

casts future sensor values to identify deviations from expected patterns that may

indicate potential failures.
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Figure 2.8: Forecasting the future value depending on the previously observed read-

ings (or values)
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Chapter 3

Literature review

With the availability of IoT devices and sensor networks, the automotive sector now

maintains a log of data [37, 54, 31], either in batch access mode or, in the case of

connected cars, through a continuous stream of data. Access to vast amounts of

data logs from the vehicles enables companies to conduct real-time monitoring [27,

106] and efficient diagnosis of system components using data analytics and machine

learning.

Companies are focusing on using this data to identify patterns through machine

learning techniques [49, 33], making the processes of maintenance and repair more

efficient. The primary goal in executing these techniques is to apply machine learning

algorithms to past data, consisting of vehicle logs and workshop fixes, to correlate and

learn specific behaviours that typically lead to machine failure, degraded performance,

or a decline in product quality. Predictive maintenance is one of these techniques.

In the context of this work, we incorporate predictive maintenance research, es-

pecially in vehicles, into two main areas: (i) Sensor-based outlier detection methods;

and (ii) Diagnostic faults-based methods.
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3.1 Sensor-based Outlier detection methods

Contemporary systems, particularly within the automotive sector, possess numerous

sensors that record various parameters [21]. This data is continuously streamed to

disparate systems for analysis, facilitating the discernment of normal behaviour from

aberrant behaviour and pattern recognition within sensory readings.

This process is frequently termed Outlier Detection [43] and is a critical com-

ponent of predictive maintenance, which focuses on identifying abnormal patterns

or anomalies in sensor data. A number of research papers cited in the context em-

ploy diverse outlier detection methodologies to signal potential faults in industrial

systems more broadly [112, 70, 39], with a particular emphasis on vehicles [26, 93].

The sensory data, typically represented in numerical form, is input into anomaly de-

tection algorithms such as clustering [113] and support vector machines [28], which

derive meaningful patterns, thereby forecasting the timing of subsequent maintenance

requirements.

In addition to the traditional methods mentioned previously, the numerical rep-

resentation of sensory data allows for the application of a multitude of algorithms

aimed at detecting anomalies. For instance, [111] introduces a three-level hybrid

model grounded on the median filter, empirical mode decomposition, classification

and regression tree (CART), autoregression (AR), and exponential weighted moving

average (EWMA) for outlier detection in sensor data.

Ensemble models, which combine weak learners to enhance predictive outcomes,

have also been utilized for outlier detection in industrial machinery. [46] illustrates

the application of ensemble methods in outlier detection, where a sliding-window-

based ensemble method is deployed for streaming outlier detection. This method

combines clustering algorithms to form clusters based on data structures, which are

subsequently employed in a one-class classification algorithm to ascertain outliers.

Similarly, [7] leverage an Ensemble Learning Solution for Predictive Maintenance of
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Wind Turbines Main Bearing.

Deep learning techniques have been utilized in the domain of outlier detection.

For instance, [71] employed Recurrent Neural Networks to identify anomalies in air-

craft data. Another instance, [15], implemented a sparse autoencoder (SAE) network

to efficiently identify abnormal data and significantly decrease the false alarm rate.

Autoencoders have similarly been applied for anomaly detection in sensory datasets.

Furthermore, [105] integrated a deep learning method involving long short-term mem-

ory (LSTM) with a one-class support vector machine (SVM) to distinguish abnormal

data from normal vibration signals.

Besides parametric models, researchers have adopted non-parametric methods for

outlier identification in sensory data; for example, [95] utilized non-parametric tech-

niques such as kernel density estimators to detect distance- or density-based outliers

in a single pass over the data, maintaining limited memory requirements. In certain

contexts, as noted by [76], non-parametric learning has also been merged with unsu-

pervised learning to perform anomaly detection in machines operating on vibration

data.

These approaches demonstrate the application of outlier detection methods in

predictive maintenance, highlighting their potential for early fault detection and pre-

vention.

3.2 DTC based Predictive maintenance

With the availability of On-Board Diagnostic systems in vehicles, researchers have

shown interest in developing algorithms utilizing diagnostic trouble codes (DTCs),

which provide different information about the location and type of the fault. In

comparison to sensory data, modelling DTCs is a relatively difficult task as they work

on non-numeric attributes with a high number of unique categories (cardinality). As

a result, most of the research in the area has focused on developing simple models that

37



only consider individual or small groups of DTCs and that do not cater to complex

sequential dependencies of sequences.

Moreover, a significant number of algorithms applied to diagnostic trouble codes

(DTCs) rely on repair and warranty data [107] to reformulate the problem into a

supervised learning paradigm, which presents challenges in scenarios where such data

is absent.

For instance, the predictive maintenance task is often framed as a classification

problem [80], employing the Random Forest algorithm to classify data readouts within

specified time intervals into faulty and non-faulty categories. By utilizing DTCs as

event-based data, a predictive maintenance framework is proposed, delineating four

feature categories derived from DTCs. Several studies [100] integrate both onboard

diagnostic and historical warranty repair data to forecast warranty repair claims in

automotive units. This method involves the comparison of various machine learning

algorithms such as Support Vector Machines, Random Forests, and Decision Trees,

concluding that the Decision Tree approach demonstrates superior performance. Sim-

ilarly, the Associative Classification method [22] has been utilized to categorize DTC

data.

Examples of approaches focusing on a limited set of DTCs include the applica-

tion of Random Forest and Long Short-term Memory (LSTM) networks [24] to focus

on 6 DTCs associated with the components related to common rail fuel injectors.

This study employed one-hot encoding for processing the DTCs due to their limited

number, a method impractical for larger sets of DTCs. Another investigation [104]

concentrates on a single component, the starter motor, predicting its failure through

data mining techniques by developing and assessing three classification models, in-

cluding the AdaBoost and Random Forest algorithms, based on historical workshop

data, error codes, and operational data. Additionally, [75] assesses three algorithms,

namely regression tree (CART), C5.0, and C5.0 with boosting, to forecast failures of

major automotive systems such as air compressors in long-distance trucks. Neural
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networks, particularly long short-term memory networks (LSTMs), have been uti-

lized for DTC-based predictive maintenance, for instance, predicting failures in air

compressor components [10] within a specified prediction timeframe. Another ex-

ample [73] employs signals from the Engine Management System (EMS) CAN-bus

(Controller Area Network-bus) as input features with LSTM to classify the pre-DTC

sequence period into three pre-selected DTC classes.

Certain researchers have performed feature reduction [89] on DTC data streams

using Principal Component Analysis (PCA) before implementing four classification

algorithms. They utilize a feedback binary feature representing the overall opera-

tional state of the system, with classification tasks executed using four algorithms,

including Decision Tree, Random Forest, k-Nearest Neighbors (kNN), and Support

Vector Machines (SVM), to determine the operational status of systems such as ig-

nition, exhaust, fuel, and cooling systems. Researchers [20] utilize a binary feature

(DTC-status) to apply a Variational Auto-Encoder for computing anomaly scores of

DTCs based on their status (active and non-active), enabling engineers to prioritize

and focus on the most critical ones.

In terms of understanding and interpretation, Bayesian Belief Networks (BBNs)

[45] are employed to guide vehicle diagnostics in a probabilistic framework. In such

networks, DTCs are represented as nodes, i.e., cause and action nodes, where the BBN

updates node probabilities based on new evidence, generating a novel action list for

engineers. Similarly, [47] employs BBNs for vehicle fault isolation. DTC fault event

datasets are also utilized to analyze ignition sources in fire cases [50], deviating from

traditional fire investigation methodologies. In one study [91], a graphical Bayesian

model is integrated with a rule-mining technique for predictive reliability mining to

facilitate early warning.
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Chapter 4

Sequential Multivariate DTC Fault

Event Prediction

The proliferation of onboard diagnostics (OBD) systems in modern vehicles has gener-

ated an enormous amount of data on diagnostic trouble codes (DTCs). Predicting the

next DTC (next-DTC prediction) is a critical task for vehicle manufacturers, repair

shops, and fleet operators to reduce downtime, improve maintenance efficiency, and

enhance customer satisfaction. However, this task is challenging due to the complex

nature of DTCs, which are often encoded as strings with varying lengths.

As shared in the literature review, studies have demonstrated the potential of

machine learning algorithms for DTC fault event based predictive maintenance, but

most approaches rely on simplified representations of DTCs, such as one-hot encoding

and are constraint to use simple algorithms.

4.1 Overview

In this work, we propose a predictive maintenance approach, named Sequential Mul-

tivariate Fault Prediction (SMFP), for predicting the next multivariate DTC fault in

an event sequence, using Long Short-Term Memory Networks (LSTMs) and jointly
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learned event embeddings. In SMFP, we predict the next DTC event at timestep

T + 1 given a sequence of multivariate DTC events up to the current timestep T .

This enables us to perform predictive maintenance by taking a proactive action of

checking or replacing the component predicted by SMFP. In addition, we use multi-

ple features of the predicted event to trace the location and granularity of the fault.

We perform an in-depth comparison of different architectural choices and contextual

preprocessing techniques, we provide an initial baseline for SMFP that achieves top-3

accuracy of 63% on predicting multivariate fault with 3 collective output layers, using

vehicle maintenance data as a case study.

The main contribution and finding of this chapter are:

1. An embedding mechanism, learned jointly with the prediction task, maps mul-

tivariate events into a continuous representation space, where similar events are

situated close to one another.

2. A multi-output model based on a Long Short-Term Memory (LSTM) network,

which is built upon the embeddings, manages the sequential dependencies be-

tween the multivariate events while simultaneously optimising the joint event

representation space within the embeddings.

3. A baseline for this new methodology is established by conducting an extensive

set of experiments with results and observations pertaining to various architec-

tures, embeddings, hyperparameters, and contextual preprocessing approaches

for SMFP.

The publication [34] related to this chapter is:

• Hafeez, A.B., Alonso, E. and Ter-Sarkisov, A. (2021). Towards Sequential Mul-

tivariate Fault Prediction for Vehicular Predictive Maintenance. 20th IEEE In-

ternational Conference on Machine Learning and Applications (IEEE ICMLA),

pp. 2016-2021, 13- 16 December, Pasadena, CA (virtual).doi: 10.1109/ICMLA52953.2021.00167
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In the next section, we define the methodology for learning joint event represen-

tations, SMFP with LSTMs, and several architectural choices. In section 4.3, we

present results from our experiments. We shall finish with a conclusion in section 4.4.

4.2 Methodology

In this section, we will first share the details about the dataset, the data preprocess-

ing and the problem. We will then discuss how LSTMs handle the sequential depen-

dencies of such multivariate events and how we use them in our work for performing

SMFP. Next, we describe how neural embeddings jointly represent multivariate events

and how they affect the overall architecture of the model, including the choice be-

tween multiple output layers (one for each feature) and a single output layer (with

concatenated raw features). Lastly, we compare different contextual preprocessing

approaches and their impact on sequential dependency modelling.

4.2.1 Dataset and preprocessing

Diagnostic data, which is located in the memory of electronic modules and control

units, is either collected in a diagnostic session or streamed to the cloud periodically.

DTC event data for this work is provided by Bosch Automotive Service Solutions [8],

which is a leading global supplier of diagnostic, repair shop equipment and spare parts

for vehicles. Before preprocessing (grouping) data, a single event row in a dataset

corresponds to a fault that occurred in a module of a car. Besides event related

information, each row has some attributes related to the car and the session where this

event is recorded, for example mileage and time. We initially preprocess the dataset

such that all observations (multivariate events) corresponding to one car are grouped

into one sequence, ordered by occurrence and mileage. This preprocessing produced

250,000 such sequences. We further preprocessed the data by separating individual

features f i from all the events of a sequence, to form feature vectors f⃗ i. These two
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different preprocessing steps are reflected in figure 4.1 and are used differently for

embeddings later.

In figure 4.1-b, we can see a single sequence containing multiple multivariate

events from a car. The first feature, which is at the highest granular level, can be

seen as the main control source of error like Transmission Module (TM), Object-

Detection Module (OD), Break-System Module (BS), etc. The second feature, which

is less granular, provides location information such as the part of the vehicle (pedal,

chassis area or power area). The third and lowest granular feature can be thought

of as fault-type, for example missing the high or low value of some chip. This single

arbitrary sequence with the last 5 multivariate events looks like [..., (TM,Power,01),

(OD,Camera,12), (BS,Pedal,29), (TM,Power,01), (TM,Battery,101)]. As illustrated

in the figure 4.1-b, the goal is to predict the next DTC event with all the three

features, given previous multivariate events. Next, we define this process formally.

4.2.2 Sequential Multivariate Fault Prediction

Let s = (eT , eT−1, .., e1) be a single such sequence containing multivariate fault events

from timestep T to timestep 1 (i.e., in descending order of occurrence), where et =

(f 1
t , f

2
t , f

3
t ) is an event at timestep t with three variables (features) and f i

t represents

the i-th feature of this event at timestep t. If we denote a sequence s = (eT , eT−1, .., e1)

compactly as sT :1 and θ be the parameters of the model that we aim to learn, then the

candidate event ẽ from all possible events E that maximises the following probability,

is selected as the next predicted event at timestep T + 1.

argmax
ẽ

P (sT+1 = ẽ|sT :1, θ) (4.1)
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Figure 4.1: (a) An initial preprocessing (grouping) of data resulting in a single se-
quence per vehicle ordered by occurrence and mileage. (b) A detailed view of a single
DTC event sequence having an event containing all three features at each timestep
(e.g., the last timestep shows a Transmission Module (TM) related fault in the bat-
tery component, with fault type 101). (c) Further preprocessing is done on (a) to
separate individual features for applying embeddings.

4.2.3 Sequential dependencies and recurrent neural networks

Since sequences consist of multiple DTC events up to timestep T , it is necessary to

capture sequential order and dependencies between events in order to predict the

next DTC event. Unlike regular feed-forward networks, Recurrent Neural Networks

(RNNs) [19] use a recurrent loop that acts as a memory and helps treat a history of

events as a latent hidden state (h). At timestep T , instead of modelling based on a

complete sequence sT :1, the goal is to efficiently store all the history in the current

hidden state hT and model following

P (sT+1|sT :1 = (eT , eT−1.., e1)) = P (sT+1|hT ) (4.2)
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The previous hidden state hT−1 and the current input timestep sT contribute to

calculating hT with different learned weights: the weights between the inputs and the

hidden layer Wsh, the bias weight for the hidden layer bh and the weights between

hidden states Whh. The hidden state hT is then computed with an activation function

a as

hT = a(sT , hT−1) = a(sT ·Wsh + hT−1 ·Whh + bh) (4.3)

Similarly, we have output weights Whq and a bias weight for the output layer bq.

We use Whq and hT to calculate the output YT as

YT = a(hT ·Whq + bq) (4.4)

Learning long-term dependencies with RNNs involves multiplying gradients, which

results in either very large exploding gradient values or very small vanishing ones [77].

LSTM networks, introduced in [42], are a type of RNNs that addresses the prob-

lem of remembering long-term dependencies in sequences by incorporating additional

components, namely a forget gate, an input gate, a cell state, and an output gate.

Three gates with their respective weight matrices for input layers (Wsf ,Wsi,Wso), bias

weights (bf ,bi,bo) and hidden layers weights (Whf ,Whi, and Who) are defined as

fT = a(sT ·Wsf + hT−1 ·Whf + bf ) (4.5)

IT = a(sT ·Wsi + hT−1 ·Whi + bi) (4.6)

OT = a(sT ·Wso + hT−1 ·Who + bo) (4.7)

The forget gate (fT ) provides a reset mechanism for the content of a cell state

CT . The input gate (IT ) helps to decide how much information should be read into

the candidate cell state C̃T , which has a weight Wsc with the input, a bias weight bc

and a weight Whc with the hidden layer. The output gate (OT ) channels how much

information should the network process, based on CT . LSTMs prevent unnecessary
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updates of content, by avoiding the linear transformation of the cell state CT and

replacing it by point-wise multiplication of the candidate memory and the gates.

C̃T = tanh(sT ·Wsc + hT−1 ·Whc + bc) (4.8)

CT = FT ⊙ C̃T + IT ⊙ C̃T (4.9)

4.2.4 Learning to represent events

Representing textual events numerically is required to apply deep learning algorithms

and calculate similarity metrics. Some representations are human-interpretable as

they use simple metrics like count, presence and absence, etc., of the events. For

example, in a Bag-Of-Words (BOW) model [66], the count of occurrences of each

word is used as a feature for training. In our case, we can denote a sequence of a

feature f 2 with the count of occurrences of its categories (Camera, Pedal, Chassis,

etc.). Similarly, One-Hot Encoding (OHE) [82] represents each event in a sequence

as an N -dimensional vector, where N is the cardinality of the event. Each vector

uses 1 only at the index of that particular word and 0 elsewhere. Unlike BOW,

OHE preserves the order of tokens but suffers from the curse of dimensionality (for

instance, f 2 of every event at each timestep will be replaced by a 486 dimensional

vector, where 486 is the cardinality of f 2). Other types of representation are derived

representations, produced by some algorithm or mathematical formula and hence

they might not be directly interpretable (for example, Frequency-Inverse Document

Frequency (TF-IDF), in [59]).

Neural embedding [87] is a type of derived representation that maps data to con-

tinuous low-dimensional representations learned using neural networks. They provide

meaningful representations [11] by preserving the similarity of events and mapping

each event to a continuous space, such that the events that appear together are close

in the new representation. There are many efficient embedding algorithms [88, 5, 96]

that produce representations with neural networks, for example, by predicting the
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next words given their context (words appearing together) like Word2Vec [99].

4.2.4.1 Representation with neural embeddings

Due to the high cardinality of features, for each feature f i, a neural embedding matrix

f i
EMB is learned jointly with a prediction task such that size(f i

EMB) < size(f i). A

linear projection (f i
EMB · f i

OHE) is applied to obtain a new reduced representation

of an OHE i-th feature (f i
OHE). In our study, there were two architectural choices

for learning joint embeddings (FEMB) for all three features and both have an impact

on the number of output layers and on the performance of the resulting architecture.

We briefly describe them next.

4.2.4.1.1 Feature concatenation and single entity embedding

In the first approach, we concatenated 3 raw features per time step (fconcat = f 1 ∥ f 2

∥ f 3) and used it to calculate an embedding for the event. We also used the OHE of

raw concatenation as outputs, which resulted in one output layer, as shown in figure

4.2.

4.2.4.1.2 Multi-input multi-output model with separate embeddings

The drawback of concatenating raw features is that if a feature is missing in the con-

catenation (fconcat), the whole concatenation becomes invalid. This problem reduces

the dataset size and the quality of the model and is expected to get worse as new

categories arise for each feature. To handle this issue, we changed the approach of

preprocessing the data as well as the architecture involving embedding layers. We

applied separate embedding layers to individual feature vectors f⃗ i. After obtaining

separate embeddings for each f⃗ i, all three embeddings were horizontally stacked to

form (FEMB), before passing to LSTMs. We then introduced separate output layers

for each feature. The architecture for this approach is depicted in figure 4.3.
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Figure 4.2: Architecture diagram with a single embedding for concatenated features
and a single output.

Since weights for these embeddings are learned jointly with the downstream pre-

diction task using LSTMs, they are optimized such that they retain sequential and

semantic similarities in the learned continuous representation space.

4.2.5 On context length and its influence

Theoretically, LSTMs can handle sequences of variable lengths with long-term de-

pendencies without encountering vanishing or exploding gradients. Despite this, due

to the large variations in the length of sequences and computational constraints, the

number of events to consider (i.e., context) to predict the next event is an impor-

tant decision for the architectural choice of an LSTM network. Moreover, within a

single sequence corresponding to one vehicle, there can be different unrelated event

sub-sequences. For example, if we aim to predict the next DTC event in a sequence

containing 15 total events, it is possible that only the last 7 events (a sub-sequence
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Figure 4.3: Architecture diagram for the approach of concatenating separate embed-
dings for every feature and multiple-outputs.

from t8 to T ) are related and will result in the failure of power. We compare taking

only the last N events to different sequence preprocessing techniques, in order to

ascertain if an LSTM can learn these relations without additional context.

Using the Fixed Window Split technique [79], we divided long sequences into

separate sequences after a fixed window size of N timesteps. For instance, if one

sequence has a length of 80, it will be divided into 8 sub-sequences with a split size

of N=10. The Sliding window approach is used in many areas of information theory

such as in time-series prediction [25] and NLP. In our study, for each sequence, we

took a fixed window of N timesteps of a sequence at a time and then slid this window

to the right with stride size 1.

We also used Overlapping windows, where for each window of size N , instead of

sliding it with stride size 1, we included the last M timesteps of the previous window

into the window, giving an effect of smooth overlap and transition. Finally, we used
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Last-N Timesteps, where we considered only the last N timesteps of each sequence. In

most of the approaches mentioned above, we had some sequences which were shorter

than the window size and had to be padded by 0.

4.3 Experiments and Results

Our model predicts a multivariate event using three dense output layers. We use OHE

to represent actual output features (ground truth labels) of an event and a softmax

activation function [9] in output layers. These layers provide Kf i probabilities, where

Kf i is the cardinality of a particular feature f i. All output layers have cross-entropy

loss [64] as the measure of errors on predicted outputs. The overall loss is the sum

of the three individual losses for each feature f i. If ŷ denotes the predicted class, y

corresponds to an actual class, and Kf i is the size of the output layer for a particular

feature, the overall categorical cross-entropy loss [29] of all F features is calculated as

L(ŷ, y) =
F∑
f i

(−
Kfi∑
k

y(k) log( ˆy(k))) (4.10)

Binary classification [53] and multi-class classification [30] problems use accuracy

to evaluate the performance of the model. This metric measures the fraction of correct

predictions out of total predictions. Due to the high cardinality of features (70, 486,

and 84, respectively), we used a top-3 accuracy metric. This metric measures if the

actual values of all three features fall in their respective top-3 predictions, which are

probabilities sorted in descending order. For example, imagine that the actual fault

that occurred was Camera (f 2 in the event) and that the model assigns the highest

probabilities to Battery, Chassis, and Camera in descending order (i.e., Camera is in

the top-3 probabilities for this feature f 2): if the same stands true for the other two

features, then we count it as a true prediction.
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4.3.1 Experimental setup and hyperparameter tuning

We have trained our model using 250,000 sequences, each of which corresponds to a

unique vehicle. We performed training and test split of the dataset before applying

any contextual preprocessing technique. We kept aside 12,500 sequences for testing,

and 4,750 sequences for validation, and used the remaining 232,750 sequences for

training. Adam optimizer, with a learning rate of 0.001, was used for optimizing

the network. Data preprocessing, including ordering the sequences with mileage and

time, is done using Apache Spark [3] while the rest of the implementation uses Keras

[13].

Hyperparameter choices, which we explain in detail in individual result sections,

include (i) using one wide LSTM layer instead of two LSTM layers, (ii) using 60 to

240 units in each LSTM layer, (iii) whether to use a dense layer on top of the LSTM

layer (iv) dropout values (both recurrent dropout and dropout after LSTM layers),

and (v) the output size of the embedding (5 to 20 percent of the original feature

cardinality) for each feature. All hyperparameters are selected using Keras Tuner,

which provides different hyperparameter tuning algorithms like Random Search and

Bayesian Optimization [92]. Common hyperparameter choices are listed in Table 4.1.

Table 4.1: Common hyperparameter choices
Choice Values

Optimizer Adam (beta-1 = 0.9 & beta-2 = 0.999)
Learning rate 0.001

Dropout & Recurrent Dropout 0.1 to 0.3
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4.3.2 Comparing feature concatenation with separate em-

beddings and selecting embedding dimension

Before running all experiments with the different hyperparameters and architectural

choices, we evaluated the performance of two basic feature representation mecha-

nisms; concatenating all three features before applying embedding and concatenating

separately learned embeddings of each feature. The first row in Table 4.3.2 shows the

performance of SMFP with a single concatenated input feature and a single output,

while the second row reflects the result of a multi-input and multi-output model. We

achieve 63% top-3 test accuracy for the separate embedding concatenation approach,

while the alternative approach resulted in 51% top-3 test accuracy. Besides the differ-

ence in the results, the embedding concatenation approach is also flexible for feature

preparation, as explained in 4.2.4, so we have used separate feature embeddings in

all other experiments.

The impact and choice of embedding dimensionality, which is currently a much-

focused research area [109], depends on the cardinality of the feature being embedded.

Although embeddings avert the curse of dimensionality, a very low dimension can

also fail to find the latent features. With hyperparameter tuning, 10% of the original

feature cardinality (e.g., the cardinality of f 2 = 486 maps to 486·0.10 ≈ 48 dimensions

vector) was selected as the embedding dimension for the experiments.

Representation Type Top-3 Accuracy
Concatenated Features and Embedding 51%

Separate Embeddings 63%

Table 4.2: Results of single embedding of concatenated features and separate feature
embeddings, while keeping the other configurations constant
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4.3.3 Contextual preprocessing approaches

We experimented with the multiple contextual preprocessing designs, discussed in sec-

tion 4.2.5. We preprocessed all the 250,000 sequences. Each preprocessing approach

resulted in a different number of sub-sequences. For a single sequence corresponding

to one vehicle, while the Last-N Timesteps approach produces only one sub-sequence,

the Sliding Window and Overlapping Window approach produce a large number of

sub-sequences due to overlapping repeated events and hence they start to overfit very

early. We compared these alternatives to ascertain which one captures the context

better. As shown by Table 4.3.3, the Last-N Timesteps method reached the lowest

validation loss of 4.621 and the highest top-3 test accuracy of 61%.

Having good performance using Last-N Timesteps suggests that the LSTM can

learn dependencies between events as well as sub-sequence breakpoints within se-

quences, which is a concern that we discussed in section 4.2.5.

4.3.4 Using dense layer on top of LSTM layers

We also added a dense hidden layer (with 120 neurons) after the LSTM layers to the

best-performing preprocessing (Last-N Timesteps) to see if it would help in learning

more relations. But as shown in Table 4.3.3, it didn’t result in an improvement in

accuracy or validation loss. Despite the increment in the number of parameters, top-3

test accuracy scored 62% and validation loss 4.60.

4.3.5 Dropout and recurrent dropout

Dropout, originally introduced in [41], is a regularization technique used in deep learn-

ing to prevent overfitting and improve generalization. For each training iteration, the

dropout randomly selects a set of neurons to be deactivated. It prevents the network

from relying only on a few units and forces all units to learn independently. In [23],

it is argued that applying the same dropout mask at each time step is more efficient
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Method
LSTM
Lay-
ers

LSTM
Units

Dense
Layer

Dense
Units

Embedding
Output

Dimension

Drop
out

Train
Loss

Valid
Loss

Top-
3

Test
Acc

Last-N
Timesteps

1 120 0 -
10% ·

size(f i)
- 4.44 4.62 0.61

Last-N
Timesteps

2 64+84 0 -
10% ·

size(f i)
- 4.42 4.63 0.60

Last-N
(with
Dense
Layer)

1 120 1 120
10% ·

size(f i)
- 4.38 4.60 0.62

Last-N
Timesteps

1 120 0 -
10% ·

size(f i)
0.2,0.2 4.58 4.52 0.63

Fixed
Window

1 120 0 -
10% ·

size(f i)
- 5.43 5.20 0.50

Sliding
Window

1 120 0 -
10% ·

size(f i)
- 5.37 5.33 0.47

Overlapping
Window

1 120 0 -
10% ·

size(f i)
- 5.38 5.57 0.49

Overlapping
Window

2 64+84 0 -
10% ·

size(f i)
- 5.39 5.61 0.48

Table 4.3: Results with multiple contextual preprocessing approaches, different hy-
perparameters and architectural choices

than applying it randomly. The authors also suggest that recurrent activations should

be masked with a constant mask, which is often called recurrent dropout.

In Table 4.3.3, it can be seen that, without dropout, the validation error stopped

decreasing in all contextual preprocessing variations, while the training loss was still

lower than the validation loss, which showed overfitting in the network. Using recur-

rent dropout and dropout of 0.2, which means deactivating 20% of the units randomly

in the LSTM layer at the time of training, helped controlling overfitting in the net-

work. These dropouts produced the lowest validation error of 4.52 among all the

experiments.
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4.3.6 Comparing LSTM units and wider-deeper networks

The number of LSTM units corresponds to the size of the hidden state, where one

state captures one latent feature, for example, the presence or absence of an event

that leads to engine malfunction. For the first layer of the LSTM, a final value of

120 units in a single LSTM layer was selected using hyperparameter tuning. One

of the architectural choices for this study was to use a wider network instead of a

deeper network [2] by adding more units in the first layer instead of stacking a second

LSTM layer on top of the first layer. We noticed that the wider network showed

the same or slightly better performance than the deeper network. These results were

consistent across all preprocessing approaches in Table 4.3.3. To perform a balanced

comparison for two-layered LSTMs, we kept the number of LSTM parameters close to

the single-layered experiment, using 64 units in the first LSTM layer and 84 neurons

in the second layer.

4.4 Discussion and Conclusion

In this chapter, we propose a new event-based predictive maintenance approach,

Sequential Multivariate Fault Prediction (SMFP), which differs from the anomaly

detection approaches that rely on sensor data having numeric representations. We

show how complex multivariate events, which are non-numeric, can be mapped to

continuous representations by jointly learned embeddings. We propose an LSTM-

based architecture that uses these representations for SMFP.

Furthermore, set a baseline for SMFP and showed various contextual preprocess-

ing approaches and architectural choices including multiple-output modelling, embed-

dings on raw feature concatenations, and stacking separate embedding layers. Our

experiments achieve a baseline of 63% top-3 test accuracy for SMFP. We aim to fur-

ther improve these results by trying other algorithms such as Seq2Seq models and

Attention methods [97],[102].
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Chapter 5

Using learned DTC representation

for Interpretation, Search and

Exploration.

In our previous chapters, we proposed the SMFP model, which utilised LSTMs to

predict the next DTC event in a sequence of multivariate events [34]. We demon-

strated that the SMFP model achieved state-of-the-art results in terms of accuracy

and efficiency. However, there were some limitations associated with this approach.

In particular, the SMFP model did not offer any insight into how the predictions

were made or which individual DTCs and sequences contributed to its overall perfor-

mance. Moreover, retrieving specific DTCs and sequences from the predicted output

presented a challenging task.

To address these limitations, we propose an extension of the SMFP model, called

DTCEncoder. The DTCEncoder architecture uses neural embeddings and a recurrent

model, taking inspiration from the SMFP model while incorporating additional com-

ponents that facilitate the interpretation of results and efficient retrieval of individual

DTCs sequences. In this chapter, we will introduce the DTCEncoder architecture in

detail and demonstrate its effectiveness in enhancing accuracy and efficiency.
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5.1 Introduction

This chapter presents an attention-based DTCEncoder, which aims to learn low com-

pact representations of multivariate event sequences and hence enable interpretable

multivariate DTC event prediction. The contributions of this chapter are:

• A novel attention-mechanism based DTC sequence encoder, which produces

a compact representation of DTC sequence. These representations explicitly

incorporate information from all previous hidden states according to their im-

portance

• Improved performance of the next-DTC prediction method, along with increas-

ing interpretability.

• Demonstration on how compact representation can be used to reduce search

space for the semantic search of multivariate sequences, and performs event

and sequence level retrieval.

Following publication [36] is related to this chapter:

• A. B. Hafeez, E. Alonso and A. Riaz, ”DTCEncoder: A Swiss Army Knife Ar-

chitecture for DTC Exploration, Prediction, Search and Model Interpretation,”

2022 21st IEEE International Conference on Machine Learning and Applications

(ICMLA), Nassau, Bahamas, 2022, pp. 519-524, doi: 10.1109/ICMLA55696.2022.00085.

In section 5.2, we present the methodology for prediction, interpretation, and

efficient sequence representation learning. The experiments we carried out and their

results are described in the next section. We shall finish with conclusions.

5.2 Methodology

In this section, we will first briefly introduce the overall architecture of the DTCEn-

coder, followed by details of different components and downstream tasks.
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Figure 5.1: The overall architecture of the DTCEncoder. Component-1 on top pre-
dicts the next DTC with the encoding unit, which learns a low dimensional representa-
tion for each DTC sequence with the help of the attention mechanism, the GRU, and
the dense encoder. The interpretability module on the bottom right (Component-2)
utilizes context-vectors and attention-weights produced by component-1, to perform
dimensionality reduction and visualization. Component-3 on the bottom left corre-
sponds to ANN-based semantic search unit, which enables EDA and fast retrieval of
individual DTCs and sequences using hidden representation learned by component-1.

5.2.1 DTCEncoder motivation

In SMFP [34], we showed how LSTMs can predict the next DTC. A LSTM is a

Recurrent Neural Network (RNN) where a recurrent loop acts as a memory to handle

sequential dependencies. It overcomes the vanishing and exploding gradient problems

in RNNs, by introducing gates that channel access to the long-term memory.

The representations learned by LSTMs are typically high dimensional, for exam-

ple, 128 to 512 dimensional vectors. It is hard to interpret what an LSTM has learned

with these representations. Although different unsupervised learning techniques like

dimensionality reduction [63] can be used for the sake of interpretation, reducing a
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large dimensionality space usually causes loss in information, specially about the se-

quential nature of data. By applying the attention mechanism [72] on hidden states

of a special type of RNN, namely Gated Recurrent Units (GRU) and forcing the

information to pass through a dense bottleneck, the DTCEncoder learns a compact

low dimensional DTC representation (context-vector), which not only improves the

accuracy of the DTC prediction task but also provides interpretation and efficient se-

mantic search of DTC sequences (and individual DTCs). The overall architecture of

the DTCEncoder can be seen in figure 5.1 and the procedure is explained in Algorithm

1.

We are providing the specifics of the encoding mechanism in the next sub-section.

Algorithm 1 DTCEncoder

Require: s1 . . . sN
Ensure: Predicted DTC event (a1p,a

2
p,a

3
p) for s1 . . . sN

for epoch← 1 to N do
a1EMB, a

2
EMB, a

3
EMB ← EMB(a1OHE, a

2
OHE, a

3
OHE)

aEMB ← a1EMB ∥ a2EMB ∥ a3EMB {Concatenating the individual embeddings}
gru state ← GRU2(GRU1(aEMB))
lastSt , stWithoutLast ← slice(gru state)
Score,Context ← Attention(lastSt, stWithoutLast)
Dense1 ← Dense(Context)
DenseBottleneck ← Dense(Dense1)
a1pred ← Dense(DenseBottleneck)
a2pred ← Dense(DenseBottleneck)
a3pred ← Dense(DenseBottleneck)
Calculate loss
Optimize parameters of all layers

end for

5.2.2 Attention mechanism and Encoder

Unlike SMFP where prediction for the next DTC event is made using the last hidden

state of the LSTM, we use the Loung attention mechanism [61] to obtain a more

representative context-vector by taking a weighted sum of the hidden states from all

time steps, where the weights are calculated with an attention mechanism.
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Figure 5.2: The attention mechanism performs a dot product operation between all
hidden-states ht and the EOS hidden-state. The new context-vector ĉt is obtained by
performing the weighted sum of all hidden states. The new context-vector is passed
through dense layers with a decreasing number of neurons (Encoder), and finally to
the output layers of all three attributes.

We use the last T DTC events as training inputs and keep the event at timestep

(T + 1) as the target. The goal of the model is to predict this event as the next

DTC. Moreover, we append an end-of-sequence (EOS) token to all input sequences.

As figure 5.2 depicts, to obtain a new weighted context-vector, we first take a dot

product et = hEOS ·ht between each hidden state ht and the hidden state of the EOS

token. We then pass these scores to a softmax function
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αt,j =
exp(et,j)∑T
i=1 exp(et,i)

, (5.1)

where αt,j is the attention weight at timestep t for the hidden-state j, and et,j is

the attention-score (before applying softmax) for the same timestep.

Softmax is used to obtain attention weights for all hidden-states (ht) by normaliz-

ing the attention score. We calculate a weighted context-vector (ĉt) according to the

attention weights (α) produced by softmax, as shown in the equation below

ĉt =
T∑
i=1

α(t,i) · hi (5.2)

The new context-vector is passed through dense layers with a decreasing number

of neurons (encoder (E)) to obtain a compact encoding for the sequence. The output

of the final hidden dense layer (bottleneck) is then passed to the three dense output

layers, each corresponding to a different attribute of the DTC event.

5.2.3 Clustering and dimensionality reduction for the inter-

pretable visualization module

The sequence representation (context-vector) learned by the DTCEncoder is a 24-

dimensional vector and much smaller than the representation learned by a typical

RNN network, which usually is at least a 128 to 512-dimensional vector. Performing

dimensionality reduction from a hidden state of the RNN layer is difficult, as compared

to reducing a 24-dimensional vector. We apply the dimensionality reduction technique

t-SNE [62] to this 24-dimensional representation to further reduce it to 2 dimensions,

which can thus be visualized.

As seen in component-2 of figure 5.1, the interactive module of the DTCEncoder

applies the K-means clustering algorithm [38] to the event-context (EC) of all se-

quences and clusters them into K groups. These clusters provide two benefits: first,

they help to visualize the clusters in 2-dimensional space by enabling the same color-
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coding of sequences within a cluster; second, when performing a semantic search for

a long multi-variate DTC event sequence, they provide an added performance verifi-

cation metric for the retrieval mechanism and can also be used to improve retrieval

itself.

As shown in figure 5.3, we project the sequence onto 2-dimensions learned with t-

SNE and assign them colors according to their K-means clusters. We visualize them

such that upon moving the cursor onto each sequence, we can see the N previous

timesteps, the actual next timestep event that the model needed to predict (in blue),

and the prediction made by the model (in green). The clustering and dimensionality

reduction procedure is defined in Algorithm 2.

Since the representation learned by RNNs regards all sequential information, the

close sequences in this 2-dimensional space should be the ones that lead to the same

fault or have the same sequential context. This hypothesis is confirmed by zoom-

ing in on this interactive visualization, which shows that the sequences in the close

neighborhood are similar or have the same DTC at the last timestep. The attention

weights associated with the hidden state of each timestep show how important that

particular timestep is for the model to predict the next DTC. We use these attention

weights to enhance the interpretability module by highlighting DTC events in a way

that reflects their importance. As seen in the figure 5.3, the events that have higher

attention weights score a higher importance rank (10 being the most important),

with higher opacity than the other events. This interactive module provides a very

efficient way of seeing what the model has learned and which contextual similarities

are present in the dataset.

Algorithm 2 ANN with Annoy [94] Index

Require: All DTC sequences (s1 . . . sN)
Ensure: Annoy Index for DTCs
1: Retrieve context-vector or concatenated attribute embedding for all unique DTC

sequences (or faults)
2: Index ← build Index for all Sequences (or DTC events)
3: Return Index
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Algorithm 3 Clustering and t-SNE

Require: Encoded States for s1 . . . sN
Ensure: Clusters and Reduced dimension R2

K-means ← fit K-means to encoded states of all S
retrieve cluster from K-means
t-SNE ← fit t-SNE to encoded states of all S
Retrieve R2 representation for each S from t-SNE

5.2.4 Exploratory analysis and semantic search of DTCs and

DTC sequences

It is often helpful for engineers to search for similar DTCs (or DTC sequences) to

understand the semantics and context of the faults. Although possible, searching

for the exact match within the whole sequence dataset or finding patterns can be

computationally expensive, especially with the increase of data points and number of

attributes.

Instead of performing an exact search for sequential or individual DTCs, we pro-

pose to employ an Approximate Nearest Neighbors (ANN) [58] search on represen-

tations learned by two components, namely, (i) a concatenated attribute embedding

for individual DTCs, and (ii) a bottleneck encoder representation of the DTCEn-

coder (context-vector) for sequences. Searching DTCs with the ANN Index reduces

retrieval time and provides semantic information to find patterns in DTC sequences.

Component (3) of figure 5.1 provides a visual flow of the Indexing and exploratory

analysis pipeline.

ANN IPC U0055 135 CHCM U0046 129 ABS U0046 135

1 IPC U0055 130 CHCM U0046 135 ABS U0046 129
2 GWM U0055 135 CHCM U0046 130 ABS U0046 130
3 IPC U0001 135 PAM U0046 129 ABS U0046 136

Table 5.1: Top 3 neighbors of frequent occurring DTC faults

We build an ANN Index with an ANN algorithm called Annoy [94]. Annoy uses
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Figure 5.3: The interpretability module maps sequences to a 2-dimensional t-SNE
space and color codes them according to the K-means clusters learned on their
context-vector. This figure shows three different sequences in proximity by hovering
different positions in the interpretability module. Each sequence presents all input
events (black), the target event (blue), and the predicted event (green). The number
in front of input DTC events is an attention score, which signifies the importance
of the event between 1 (least important) and 10 (very crucial). It can also be seen
that items near in the visualization have common DTCs. For example, a few mod-
ules (IPMA, TCU, CCM, etc.) and sub-modules (u0001, u0046, u0055, etc.) appear
frequently in all three sequences.

a random projection to build a binary tree, which partitions the space such that it

keeps similar points close in the tree representation. We build an Annoy Index to

learn log(N) trees from the vectors of all N entities (sequences or individual DTCs)

and later use this Index to search K nearest neighbors for a DTC or a given sequence.

The procedure for semantic search is defined in Algorithm 3.

For individual DTCs, we retrieve the concatenated attribute embedding learned

by the embedding layer and apply an Annoy Index on it. Since the embedding learned

by the DTCEncoder is jointly optimized with the task in hand, i.e, the next fault

prediction, the nearest neighbors of the faults are the ones that appear in the same

context. Table 5.2.4 shows three nearest neighbors to a given DTC, comprising of

three attributes (module sub-module fault-type). For example, in the third column,

all three nearest neighbors share the same module attribute (ABS) and the same

sub-module (U0046).

For sequences, we learn an Annoy Index on the 24-dimensional bottleneck repre-
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Figure 5.4: Example of three similar sequences provided by ANN, for a selected DTC.
DTCs which are common in the selected DTC and similar DTCs are highlighted in
bold. For example, the selected sequence, the second, and the third similar sequence
all contain specific DTCs (e.g., vision peripherique b2a02 08) and end in the same
DTC event (tableau de bord b1411 7b)

sentation (context-vector) of all the DTC sequences. At the time of query, we retrieve

a representation of the query sequence by passing it to the encoder and perform an

ANN search for such sequence. As seen in figure 5.4, the most similar sequences

retrieved by the Index are the ones that have more DTCs in common or end in the

same faults (DTCs).

5.3 Experiments and Results

In this section, we first share details about the dataset. Next, we explain the experi-

mental setup and hyperparameter choices. Finally, we present the results of different

experiments.
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5.3.1 Dataset

We used the same dataset provided by Bosch Automotive from [3] to train the DT-

CEncoder. As defined in section 5.1 and depicted in figure 5.5, each sequence contains

multivariate fault events and corresponds to unique vehicles. Out of 250,000 fault se-

quences, we used 232,750 sequences for training, 12,500 separate sequences for testing,

and 4,750 different sequences for validation.

Figure 5.5: Single sequence showing multivariate DTC events from time t-k to time
t. The goal is to predict the multivariate event at time t + 1.

5.3.2 Experimental setup and hyperparameter tuning

The hyperparameters and model parameters defined in this section are opted with the

Hyperband [55] hyperparameter tuning method using keras-tuner [74]. The attribute

embedding sizes that we considered, along with the sizes selected by tuner, are men-

tioned in table 5.2. We took the last 10 timesteps of each sequence and padded the

shorter sequences with 0, which were later masked (ignored) by subsequent layers.

Apart from the embedding size, other hyperparameter choices (e.g., number of GRU

units in each GRU layer) are listed in table 5.2. We used Adam optimizer [51] with

a learning rate of 0.0066.
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Table 5.2: Hyper-parameter and parameter choices
Choice min max final

Attribute-1 (module) embedding 4 24 6
Attribute-2 (base-dtc) embedding 4 32 12

Attribute-2 (fault-byte) embedding 12 56 8
GRU layers recurrent-dropout 0.1 0.5 0.3

GRU layers dropout 0.1 0.5 0.2
GRU layer units 128 256 224

Dense first layer units 32 128 64
Learning rate 1e-4 0.1 0.006

We used two GRU layers with 128 GRU cells each. To improve generalization,

we used a recurrent-dropout of 0.3 and a dropout of 0.2 in encoder layers. For dense

output layers, we used a softmax as an activation function. In GRU layers, we used

tanh as the activation function. We used categorical cross entropy loss for all outputs.

5.3.3 Results

Architecture Validation Loss Top-5 test accuracy

SMFP 4.50 76.15%
DTCEncoder (GRU) 4.36 79.21%

Without Attention and Encoder 4.49 76.0%
DTCEncoder (LSTM) 4.59 75.20%
DTCEncoder (RNN) 4.71 73.0%

Table 5.3: Ablation study and results of DTCEncoder in comparison with the
SMFP’s.

The main focus of the proposed model was to provide an interpretable and unified

architecture for multiple DTC-related tasks. Besides achieving the main objective

of interpretability, the DTCEncoder also improved the previous baseline on the next

event prediction task. We compared the performance of the DTCEncoder only against

the LSTM architecture used in the SMFP approach introduced previously, since, as

far as we know as of writing this chapter, there is no other model that performs such

a task.
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In earlier chapters, Top-3 accuracy was used as an evaluation metric to report the

model’s predictive performance. From this chapter onward, Top-5 accuracy is adopted

to provide a more appropriate assessment, particularly in light of the large number of

output classes. This change does not alter the evaluation methodology but reflects an

effort to offer a more comprehensive view of model performance. The adjustment was

made in response to academic feedback highlighting that Top-3 accuracy alone may

underrepresent the model’s predictive effectiveness in multi-class prediction scenario,

where the number of unique classes are quite high.

We achieved the lowest validation loss of 4.36 and top-5 accuracy of 79% with our

architecture, in contrast to a validation loss of 4.52 and top-5 test accuracy of 76%

with the architecture used by the SMFP model. The top-5 prediction accuracy of

79%, achieved for three combined high cardinality attributes, is different and more

complex to attain than the accuracy metric used in a binary classification task.

As a part of the ablation study and to understand the importance of the DT-

CEncoder’s core components, we removed the attention module and the dense layers

preceding the output layers. As shown in table 5.3.3, the model was not able to meet

the performance of the actual DTCEncoder architecture. We also used different re-

current networks like LSTM and simple RNN cells without gating, and we found that

LSTMs started to overfit quite early and RNNs were not able to learn the patterns

accurately.

5.4 Discussion and Conclusion

In this chapter, we have presented a unified architecture for multi-attribute sequential

DTC event prediction, which interprets the model, learns to represent DTC sequences

and can be used to perform semantic analysis at both sequence and individual DTC

event levels. This model encodes a DTC sequence into a low-dimension represen-

tation, which encapsulates the sequential information that can be used for different
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downstream tasks. Along with enabling multiple functionalities, it surpasses the per-

formance of SMFP shared in the previous chapter.

Although some solutions for representing non-numeric (high cardinality) attributes

and sequential dependencies have been proposed with neural embeddings and RNNs,

such models still lack interpretability. This model makes the next DTC prediction

mechanism interpretable with a unified architecture and automatically improves the

performance of the other components (e.g., interpretation, semantic search) with the

increase of performance in the encoder component, and thus it does not require to

maintain and retrain separate models for all downstream tasks.
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Chapter 6

Hybrid model to improve the

next-DTC prediction accuracy

with Transformer and GRU

In preceding chapters, we presented architectures incorporating embedding compo-

nents and sequential networks capable of managing the sequential and multivariate

dependencies present in DTCs. The SMFP model employed LSTMs to address these

complexities, while the DTCEncoder utilized the attention mechanism to further en-

hance accuracy and provide a dense, reusable representation of the complete DTC

sequence.

Nevertheless, as previously noted, this methodology is constrained by limited

datasets. Our proposed DTC-TransGRU architecture seeks to mitigate these chal-

lenges by integrating a small transformer model with a GRU network. This innovative

approach enables the model to effectively capture both short-term and long-term de-

pendencies, while also achieving greater computational efficiency compared to large,

standalone transformer models.
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6.1 Overview

There has been an increase in the adoption of recently introduced sequential models

in other domains, like transformers, because of their strengths. These model require

a lot of data and computation power for training, which is not in abundance in all

cases. In the DTC-based research, we came across the use of a Transformer-decoder

[81] approach with a small-GPT-2 [84] architecture along with embeddings to perform

the DTC prediction task. Running our data through such a large model resulted in

very bad top-5 accuracy, which resonates with the results of the paper. This motivated

us to look at exploring a smaller but hybrid model, which can benefit from both the

representation capability of the transformer, along with used a different model to

compensate for the weakness of the small transformer model.

This chapter presents a hybrid model, where we combine Transformer [103] and

GRU [12] to boost the performance of the next DTC prediction task. We applied

the transformer layer to learn the representation of DTC events before passing it to

a single GRU layer and witnessed a 2% increase in the top-5 accuracy benchmark

of the next-DTC prediction task. Our proposed model achieves a top-5 accuracy

of 81.4% and a loss of 4.33, which is better than the standalone transformer and

recurrent neural network models. We believe that the combined embeddings of all

three attributes reflect in complex dependencies, which benefit from the transformer’s

ability to examine the context at a particular timestep against events at different

timesteps, in multiple ways with the help of multiple heads. Moreover, GRU reinforces

the model’s understanding of the temporal dynamics in the sequence.

Following publication [35] is related to this chapter:

• Abdul Basit Hafeez, Eduardo Alonso, and Atif Riaz. 2024. DTC-TranGru: Im-

proving the performance of the next-DTC Prediction Model with Transformer

and GRU. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied

Computing (SAC ’24). Association for Computing Machinery, New York, NY,
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USA, 927–934. https://doi.org/10.1145/3605098.3635962

The rest of the chapter is structured as follows: in section 6.2 provides details

about the methodology used by DTC-TranGru for the next DTC prediction task.

The experiments and results are presented in section 6.3. We close the paper with a

discussion of our approach and future work.

6.2 Methodology

This section provides details of the proposed architecture, which combines the Trans-

former and the GRU layer to predict the next event with all three attributes per

timestep.

6.2.1 DTC-TranGru Model

The overall architecture of the DTC-TranGru model is shown in figure 6.1 and the

pseudocode is provided in algorithm 4. It is composed of the following main compo-

nents.

6.2.1.1 Embedding Layer

Due to the high cardinality of DTC event’s attributes, we introduced and used neural

embeddings to learn low-dimensional representations of attributes in the previous

chapters. In our model, we start similarly with creating independent embedding

layers for each input attribute to capture the semantic representation of the input

tokens. These embedding layers are then concatenated along the feature dimension to

create a unified embedding representation. In the DTC-TranGru architecture, before

passing the combined embeddings to the next module, we apply a 1D spatial dropout

[110], with a dropout rate of 0.1, to these combined embeddings.
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Figure 6.1: Architecture diagram for the DTC-TransGru. The left side of the figure
shows pre-transformer operations, where DTC-TransGru starts by applying separate
embedding layers to each attribute, and concatenates the individual embedding layers
before passing them to spatial-1d dropout [110]. In the next step, positional encoding
is calculated on the embeddings before piping them to the two consecutive encoder
layers of the transformer. A transformer encoder block, which has two encoder layers,
is shown in the middle of the figure and the right side of the figure depicts post-
transformer operations. The transformer encoder layer is followed by a GRU layer,
before being passed to each individual dense softmax output layer.

6.2.1.2 Positional Encoding

The transformer layer, which will be detailed in 6.2.1.3, does not retain positional

information of the sequence it works on. It hence needs some mechanism to pass the

information relating to the temporal order of the events in the sequence. Researchers

have introduced different positional encoding techniques [18], to be used with the

transformer layers, to keep particulars about the order dynamics. Hence, we pass the

output of the spatial dropout layer to the positional encoding layer.

We use the same positional encoding approach that was used in the original trans-

former model [103], which utilizes sine (sin) and cosine (cos) functions to create po-
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sition embeddings for each token in a sequence. For each position t, it computes

sin(t/10000(2d/T )) and cos(t/10000(2d/T )) to generate distinct position embeddings,

where d is the embedding dimension and T is the sequence length.

6.2.1.3 Transformer Layer

As opposed to SMFP, instead of passing embeddings directly to the recurrent layer,

we set a transformer layer in front of the recurrent layer. In order to achieve that,

we first pass the concatenated embeddings to the positional encoding layer followed

by the transformer layer, which captures different complex contextual dependencies

in the input sequence. The workings of the transformer layer are briefly described

below.

Apart from the need for positional encoding, the standard transformer model

employs multiple encoder layers, where each encoder layer is comprised of multi-head

attention, residual-feed-forward dense layers, and layer-normalization. Depending on

the use case, it may also use multiple decoder layers. The encoder layers process the

input sequence to generate contextualized representations, while the decoder layer

consumes these representations along with its previous output, to generate the next

output in the sequence. The attention mechanism used in the encoder and decoder

layers is different, where the encoder uses multi-head self-attention and the decoder

uses masked self-attention.

The self-attention mechanism in the transformer model works by taking three

inputs, i.e., the query matrix (Q), the key matrix (K), and the value matrix (V ).

The query matrix (Q) represents the current token for which the model wants to

find the relevant information in the input sequence, whereas the key matrix (K)

behaves as a memory by holding the tokens in the input sequence to look up relevant

information. Finally, the value matrix (V ) maintains the associated features (i.e.,

values) for each token in the input sequence.

If we consider dk to be the number of dimensions used to represent each key in
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the key matrix K, we can write the attention mechanism in the transformer formally

as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6.1)

By learning a weight matrix for each of these, we can perform a scaled dot-product

attention mechanism, which corresponds to a single head in a multi-head attention

mechanism. A single head, say ith head in multi-head attention can be written as

headi = Attention(QWQi, KWKi, V WV i) (6.2)

Within the multi-head attention of the encoder layer, the input sequence is si-

multaneously analyzed by several attention heads. This allows the model to grasp

various interdependencies among tokens and also allows computation to be performed

in parallel, hence making it computationally more efficient. Now, we can represent

multi-head attention with the help of the learned matrix WO as follows

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headn)WO (6.3)

In neural networks having a large number of layers, gradients often become ex-

tremely small as they are propagated backward through layers, resulting in a problem

called vanishing gradient. Residual connections make training deep models easier [48]

by ensuring that gradients can flow smoothly, preventing issues like vanishing gradi-

ents, and allowing deep networks to learn effectively. Similarly, a layer-normalization

[108] technique makes sure that the values passed between layers aren’t too extreme,

enabling smoother gradients, faster training, and better generalization accuracy. As

shown in figure 6.2, which depicts the detailed view of an encoder layer of the DTC-

TranGru’s transformer layer, the output from multi-head attention undergoes layer-

normalization operation along with residual connection.

Subsequently, the output proceeds through a Feed-Forward Neural Network (FFN),
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which employs two sequential linear transformations separated by a ReLU activation,

before going through another residual connection and layer-normalization operation.

The FFN in the transformer model can be represented as:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (6.4)

The first layer in FFN takes the first layer-normalization’s output and projects it

up to 256 dimensions. In order to go through the second residual connection, which

requires the addition of the first layer normalization layer and the second FF1 dense

layer, the second layer reduces the dimension down to 38 (concatenated embedding

size).

This comprehensive process executed within the encoder layer effectively captures

local and global relationships between tokens, facilitating the learning of meaningful

representations.

In DTC-TranGru, we used two such encoder layers and 4 attention heads to learn

the representation of the DTC sequence.

6.2.1.4 GRU Layer

As shown in figure 6.3, the transformer layer produces an output that has N timesteps,

where each timestep has a dimensionality equal to EMB-SIZE. To make the output of

the transformer compatible with the dense output layer, researchers typically remove

the time dimension by either summing, averaging, or applying 1-D Global average

pooling to the output of the transformers.

As shown in figure 6.3, unlike the conventional approaches, which work by getting

rid of the time dimension, we pass the output of the transformer layers to a Gated

Recurrent Unit (GRU) network.

A GRU layer is a type of recurrent neural network (RNN) that is designed to

counteract the vanishing gradient issue. It incorporates two gates, the reset gate,

and the update gate, which play a pivotal role in regulating the internal information
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Figure 6.2: Detailed view of the encoder layer of the DTC-TranGRU’s transformer
block. Each layer shows its output dimension next to its name. It can be seen
that there are two residual connections, two dense layers in FFN, and two layer-
normalization layers. The dimension of the output is scaled up to 256 in the first
dense layer, FF1, and, to perform the second residual addition, it is scaled down to
the size of the combined embeddings (38) in FF2.

flow of the unit. The reset gate in the GRU helps to decide what information from

the recent time steps to forget, whereas the update gate controls the threshold of

the new information to add. Through this mechanism of gate control, GRUs effec-

tively capture distant dependencies in sequences, all while maintaining computational

efficiency.
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Figure 6.3: The transformer layer returns N timestep outputs (each containing EMB-
SIZE latent dimensions), which typically are averaged, summed, or go through the
GlobalAveragePooling1D layer to make it compatible with the dense output layer.
Instead of doing this, we applied a GRU layer on top of the transformer, where each
Ni dimension in the N dimensional transformer is passed to the ith timestep of the
GRU. Since the last hidden state of the GRU incorporates all the latent information
about the previous timesteps, it is passed to the individual dense output layers of
each attribute.

The way GRU works, it incorporates all temporal dynamics of the sequence and

summarizes the information of all preceding timesteps into the current hidden state.

In the DTC-TranGRU, this last state of the GRU layer is extracted and passed

to separate output softmax layers for each attribute, enabling the prediction of the

next event. Applying the GRU layer not only allows us to pass the output of the
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Algorithm 4 DTC-TranGru

Require: seq1 . . . seqN
Ensure: DTC event (attr1,attr2,attr3) for seq1 . . . seqN
for epoch← 1 to N do
a1EMB ← EMB(a1OHE)
a2EMB ← EMB(a2OHE)
a3EMB ← EMB(a3OHE)
aEMB ← CONCAT (attr1EMB, attr

2
EMB, attr

3
EMB)

gru state ← 1DSpatialDropout(aEMB)
pos enc ← POSITIONAL ENCODING(aEMB)
enc ← pos enc
for encoder layer ← 1 to N do
multihead ← multiheadn(enc)
l norm 1 ← Layer Norm(pos enc + multihead)
ffn l1 ← Dense(multihead)
ffn l2 ← Dense(ffn l1)
ffn l2 ← Dropout(ffn l2)
l norm 2 ← Layer Norm(ffnl2 + l norm 1)
enc ← l norm 2

end for
GRU OUTPUT ← GRU(enc)
attr1pred ← Dense(GRU OUTPUT )
attr2pred ← Dense(GRU OUTPUT )
attr3pred ← Dense(GRU OUTPUT )
loss← ComputeLoss(attr1pred, attr

2
pred, attr

3
pred)

OptimizeParameters(loss)
end for

transform to the output layers but also learns contextual dependencies associated

with the events.

To calculate the loss and performance of the model, we used cross-categorical loss

[29] for the output layer of each attribute and summed the individual loss of all three

attributes with equal weights as follows

L(ŷ, y) =
A∑
ai

(−
Kai∑
k

y(k) log( ˆy(k))), (6.5)

where Kai is the number of unique classes in a given attribute ai, A represents the
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number of total attributes, ŷ represents the predicted class, and y denotes the actual

class.

6.3 Experiments and Results

This section starts with providing details about the DTC event dataset used for

training DTC-TranGru and of the experimental setup. It concludes by reflecting on

the results of all experiments performed.

6.3.1 Dataset and Data Preprocessing

This research used vehicular DTC sequence data provided by Bosch Automotive.

The dataset comprises of a total 250,000 sequences, where each sequence belongs to

a unique vehicle and has three attributes at each timestep.

For each DTC sequence, the events were first ordered by the time of occurrence.

Individual attributes for each sequence are vectorized and tokenized separately. This

preprocessing step is shown in figure 6.4, which manifests 2 DTC sequences before and

after the pre-processing step. There are 83 unique classes in the first attribute (ECU),

419 in the second attribute (base-dtc), and 64 in the third attribute (fault-byte).

All sequences were restricted to the last N DTC events, and those having less than

N DTC events were padded with a special token (‘0‘). We then split the data into

validation, test, and training sets. Out of 250,000 sequences, we kept 12500 sequences

separate for testing, 4750 for validation, and used 232,750 event sequences for training

the DTC-TranGru.

6.3.2 Experimental setup and hyperparameter tuning

The hyperparameters and parameter choices, which are shown in table 6.3.2, are

selected by running the Hyperband [55] hyperparameter tuning method available in

the python keras-tuner [74] library.
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Figure 6.4: An example of two DTC fault sequences with 3 DTCs each, undergoing
the preprocessing step. Each attribute is vectorized and separated so that it can then
be passed to its independent embedding layer. The choice of the number of events
is just for the sake of illustration, otherwise, all of the DTC sequences used in this
experiment consist of 5 DTC events at least.

The major parameter to consider for the transformer layer was the number of heads

used in the multi-head attention layer, for which we obtained the best performance

with 4 heads, while in the GRU layer, 128 GRU units showed the best result. Placing

dropouts, including recurrent-dropout, did not make much of a difference in the GRU

layer in our experiments. However, introducing a 1D spatial dropout after embedding

layers provided slightly better results. A learning rate of 0.0052 provided the best

result using the Adam optimizer [51].

For the first dense layer of the FFN in the encoder layer, we tried dimension sizes

between 96 and 256 with hyperparameter tuning and found that 256 neurons have

the best results. Since the second residual connection in the encoder layer adds the
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output of the second FFN dense layer to the output of the first normalization layer,

it constraints the dimension of the second dense layer, which requires it to be equal

to the size of the combined encoding. Hence, there is no need to experiment with the

size of the second dense layer.

Choice min max final

Learning rate 1e-4 0.1 0.005
Number of heads 1 6 4

Number of encoder layers 1 5 2
FFN Dimension 128 256 256

Attribute-1 (module) embedding 4 24 6
Attribute-2 (base-dtc) embedding 12 56 24

Attribute-3 (fault-byte) embedding 4 32 8
Spatial dropout after embeddings 0.0 0.5 0.1

GRU layer units 96 256 128

Table 6.1: Parameters and hyper-parameter choices along with the selected values.
The main parameters to consider for DTC-TranGru were the total number of heads
in the multi-head attention mechanism and the number of encoder layers to use in
the transformer. The main hyperparameter choice corresponded to the selection of
the appropriate learning rate.

We used RELU [69] as an activation function in the GRU layer. For the dense

output layers, the softmax activation function was used to provide a probability of

occurrence of each DTC event’s attribute.

6.3.3 Results

Table 6.3.3 shows the results of the ablation study and the comparison of the DTC-

TranGru model with other next-DTC prediction models. We can see that the DTC-

TranGru achieved better results than all other models including the DTCEncoder

introduced in the previous chapter, which uses the attention mechanism along with

the GRU layer to predict the next DTC in the sequence.

DTC-TranGru was also compared with the standalone transformer model, and the

LSTM-based SMFP model introduced in chapter 4, as a part of the ablation study.
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Architecture Validation Loss Top-5 Test Accuracy

SMFP 4.50 76.15%
DTCEncoder 4.36 79.21%

Transformer Only 4.47 78.3%
Transformer-Decoder (small-GPT2) 7.6 40%

DTC-TranGru (w/o positional-encoding) 4.49 78.5%
DTC-TranGru (w/o 1D-spatial dropout) 4.35 79.5%

DTC-TranGru 4.33 81.4%

Table 6.2: Comparison of the results achieved by DTC-TranGru compared with
SMFP, DTCEncoder, [81] and standalone models. Results for DTC-TranGRU with-
out the 1D-spatial dropout layer after concatenated embeddings and without posi-
tional encodings are also compared. The best results, achieved by DTC-TranGru, are
highlighted in bold.

Table 6.3.3 shows that the DTC-TranGru performs better than these standalone

models. We argue that the standalone transformer model works well with generative

approaches, where there is an abundance of training data and variety in the output

is considered beneficial. In the problem at hand, however, we do not have a large

amount of data available and it is required to strictly follow the sequential order for

the prediction of the next DTC event. The recurrent nature of GRU’s hidden states

incorporates precise contextual dependencies.

To test if having a GRU layer alone after the transformer can keep positional in-

formation intact, we experimented with removing the positional encoding layer from

the transformer. However, the accuracy of the model decreased with the removal of

the positional encoding layer. It indicates that although a GRU layer reinforces se-

quential information, it is still relevant to have positional encoding in the transformer

layer.

We also compared the result of DTC-TranGru with and without the 1D-spatial

dropout layer, which was applied after the concatenated embeddings layer. As shown

in table 6.3.3, we witness a slight increase in the performance of the model with

the usage of 1D-spatial dropout. We assume that employing this dropout layer after

combined embeddings forces the model to learn generalizable representations for event
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attributes and reduces over-reliance on specific combinations of attributes.

Given the size of the dataset and the nature of the task, it was obvious that the

Transformer-Decoder model [81], which is based on a smaller version of the GPT-2

model [84] (often referred to as small-GPT-2), would overfit. But for the sake of com-

pleteness and accurate comparison, we modified the model used in the Transformer-

Decoder [81] by reducing the number of encoder layers from 12 to 6 and of FFN

dense layer neurons from 1024 to 512. This modification was done due to computa-

tion constraints and to reduce the overall parameters in the original model. As seen

in table 6.3.3, the resulting model overfits very early and hence underperforms the

DTC-TranGru model by quite a large margin. It achieves a top-5 accuracy of 40%

only, with a validation loss of 7.6. As discussed previously, this might be due to model

overfitting and being overly complex for the task and size of the dataset.

6.4 Discussion and Conclusion

In this chapter, we present a transformer and GRU-based architecture to improve the

performance of the next DTC prediction task. In the proposed architecture, instead

of using standalone recurrent or transformer models, we combine these individual

models by passing the encoding learned by the transformer to the GRU layer. We

show that our model provides better results as compared to the standalone models

and improves the top-5 prediction accuracy benchmark by 2%, as it achieves a top-5

accuracy of 81.4% and reduces validation loss to 4.33, where the prediction of the

next DTC includes predicting three different attributes for the next DTC prediction.

We believe that the self-attention mechanism and the encoder layer in the trans-

former help DTC-TranGru learn to represent the DTC sequence in a way that incorpo-

rates multiple hidden patterns among the DTC faults, with the help of multiple heads.

Furthermore, the GRU layer takes the representation learned by the transformer to

strengthen the contextual and order semantics of the DTC sequence. Combined, both
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these models provide DTC-TranGru with the ability to understand the context better

for each DTC via encoding learned by the transformer and simultaneously taking into

account the sequential dependencies in the form of hidden states of GRU.

The DTC-TranGru and related recent approaches have opened the door to decode

the complex dependencies and patterns in the sequence of events, both in terms of

representation and modeling. The DTC-Encoder specifically shows that with smaller

and domain-specific datasets, a small transformer network with few encoder layers

can learn robust representations in contrast to a huge model. Furthermore, these

presentations learned by the transformer’s encoder layer might further be used by

different networks suitable to the problem. We believe that with the availability of

more data, and the ability to incorporate metadata about vehicles and their condi-

tions, there will be a chance for researchers to better predict the next possible faults

expected in the vehicles and predict the need for maintenance ahead of time.
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Chapter 7

Enhancing predictability with

Optimized connections in

Transformer-GRU architecture and

with Ensemble of models.

In the preceding chapter, we introduced a model based on the Transformer-GRU

architecture, which incorporates a GRU layer subsequent to a compact transformer

network, with the intent of enhancing the predictive accuracy for the next-DTC mode.

Due to the constraints imposed by the limited dataset, which preclude the applica-

tion of larger models, we investigated the potential for further optimization of the

Transformer-GRU architecture.

Through experimentation, it was observed that rather than overshadowing the

transformer representation by placing a GRU layer immediately after it, synchronizing

the two can yield a more enriched context for the output dense layer. This chapter

delineates the optimized architecture that enhances the Transformer-GRU framework

and presents the associated results, including an ablation study.

Additionally, we examine the implementation of an ensemble model to amalga-
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mate the predictions from various individual models, thereby alleviating the inherent

limitations of each model when used in isolation and achieving superior overall per-

formance. The ultimate objective is to devise a robust and interpretable predictive

maintenance system capable of effectively managing complex sequential dependencies

in DTCs, despite the limited availability of data.

7.1 Introduction

The approach introduced in the previous chapter, utilizing a hybrid model combining

transformer and Gated Recurrent Unit (GRU) architectures to predict the next DTC

in a sequence, demonstrated superior performance compared to existing approaches,

achieving a top-5 accuracy of 81.4% in predicting the next DTC event, including

its associated features. However, the complex nature of vehicle diagnostics and the

potential for further improvements motivated us to explore additional enhancements

to this model.

In this Chapter, we have made the following two main contributions:

1. Architectural Refinements: We introduce several modifications to the DTC-

TranGru architecture, including better alignment and optimized combination

of transformer output with GRU output, introduction of an EOS token, and

strategic placement of 1D spatial-dropout layers. These changes enhanced the

model’s ability to capture complex dependencies in DTC sequences. Our ar-

chitecture was able to reduce the validation loss to 4.28 and achieve the top-5

accuracy of 82.13%.

2. Ensemble Approach: We develop an ensemble approach that combines our en-

hanced DTC-GOAT model with two complementary architectures. This com-

bination of models leverages the strengths of different approaches, leading to

better top-5 accuracy of 83.15%, which is greater than individual architectures.
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Figure 7.1: Overall architecture of DTC-GOAT. Pre-transformer layers shown on the
left side of the figure are common with DTC-TranGru [35]. This includes individual
embedding layers for each feature (attribute), followed by concatenation along the
time axis, 1D spatial-dropout, and positional encoding. The middle and right part of
the figure depicts the true difference between the proposed model and DTC-TranGru,
where we pass all but the last timestep (EOS token) from the Transformer output to
the GRU layer and concatenate the last transformer timestep with the hidden state
of the last timestep from GRU, before passing it to all 3 dense layers. The figure
shows that we introduce a 1D spatial-dropout before the GRU layer.

The rest of this chapter is organized as follows. Section 2 details our methodol-

ogy, including the DTC-GOAT architecture and the ensemble approach. Section 3

presents our experimental setup and results. Section 4 discusses the implications of

our findings, and Section 5 concludes the paper with suggestions for future work.

7.2 Methodology

This section provides details of our proposed architecture, which we call DTC-GOAT.

We share how our model enhances the DTC-TranGru model by incorporating different

architectural changes. Furthermore, we provide details about our ensemble approach

for predicting the next DTC event in the sequence. In both contributions, the core
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idea remains to predict the next Diagnostic Trouble Code (DTC) event in a sequence

but with improved accuracy and robustness.

7.2.1 DTC-GOAT - Building blocks

Our architecture has some common layers with DTC-TranGru, but differs in how

these layers are connected, and introduces some new layers along with changes in

parameters, enabling increased capacity of the model with better alignments and

connections across the layers. Figure 7.1 presents a high-level overview of the new

architecture and Algorithm 5 provides implementation details for it.

The subsections ahead describe important blocks in our architecture.

7.2.1.1 Pre-Transformer layers

We employ three separate embedding layers, one for each feature of the DTC event.

Every layer has a different embedding size depending on the number of unique classes

of that particular feature. We combine these embedding layers across time dimension

and pass these to a 1D spatial-dropout layer, which applies the dropout across a time

dimension.

Since the transformer layer does not cater for the positional information of the

tokens, we apply the positional encoding technique described in the original trans-

former model [103] to concatenated embeddings, before passing it to the transformer

block.

7.2.1.2 Transformer block

We use two transformer encoder layers, each starting with a multi-head attention

layer consisting of 3 heads. It is followed by residual connection combining posi-

tional encoding (or the previous encoder layer’s output) with multi-head attention’s

output. Afterwards, the output of the residual connection is passed to the first layer-

normalization operation, which is followed by a Feed-Forward Network (FFN) block
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Algorithm 5 DTC-GOAT

Require: seq1 . . . seqN
Ensure: DTC event (feat1,feat2,feat3) for seq1 . . . seqN
for epoch← 1 to N do
f 1
EMB ← EMB(f 1

OHE)
f 2
EMB ← EMB(f 2

OHE)
f 3
EMB ← EMB(f 3

OHE)
fEMB ← CONCAT (feat1EMB, feat

2
EMB, feat

3
EMB)

pos enc ← POSITIONAL ENCODING(fEMB)
pos enc ← 1DSpatialDropout(pos enc)
enc ← pos enc
for encoder layer ← 1 to N do
multihead ← multiheadn(enc)
l norm 1 ← Layer Norm(pos enc + multihead)
ffn l1 ← Dense(l norm 1)
ffn l2 ← Dense(ffn l1)
l norm 2 ← Layer Norm(ffn l2 + l norm 1)
enc ← l norm 2

end for
LAST TIMESETP ← enc[:,−1, :]
ALL BUT LAST TS ← enc[:, : −1, :]
spatial dropout ← 1DSpatialDropout(ALL BUT LAST TS)
GRU OUTPUT ← GRU(spatial dropout)
CONCATENATED ← CONCAT ([GRU OUTPUT,LAST TS])
feat out1 ← Dense(CONCATENATED)
feat out2 ← Dense(CONCATENATED)
feat out3 ← Dense(CONCATENATED)
loss← Loss(feat out1, feat out2, feat out3)
OptimizeParameters(loss)

end for

consisting of two dense layers, the first one with 256 dimensions and the second one

with 52 dimensions.

After the FFN block, we have a residual connection between the output of the

first layer normalization operation and the second FFN dense layer, followed by the

second and final normalization layer. Figure 7.2 presents a detailed view of the single

encoder layer of the transformer block.
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Figure 7.2: Detailed view of transformer encoder layer. The encoder layer receives
either a 52-dimensional combined positional encoding vector or the output of the
previous encoder layer as an input. This input is passed to the multi-head attention
layer and added to the output of the multi-head attention layer to act as a residual
connection. This added residual connection is then passed to the first layer normal-
ization operation. After layer normalization, we employ a Feed-Forward Network
(FFN) block, which first increases the dimensionality of the input to 256 dimensions
before bringing it back to the original size of 52 dimensions.

7.2.1.3 Transformer to GRU Layer

As seen in figure 7.5 as a part of preprocessing, we introduce an end-of-sequence (EOS)

token at the end of each feature’s sequence at (N + 1)th index. In many transformer

architectures, the representation associated with the EOS token is argued to entail

enough information about all timesteps to be used solely to perform downstream

tasks, e.g., classification in BERT [16].

We pass the output of the transformer excluding the last timestep (EOS) to the

1D spatial-dropout first and eventually to the GRU layer.
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Figure 7.3: This figure shows the detailed view of how the Transformer and the GRU
outputs are combined using an EOS token. The last timestep in transformer output
corresponds to the EOS token, and we pass all but this timestep of transformer output
to the 1D spatial-dropout layer followed by the GRU layer. The last timestep from
the transformer is then concatenated with the hidden state of the last timestep from
the GRU layer and is then passed to each dense layer for individual features.
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7.2.1.4 Combining Transformer and GRU outputs

For the GRU, we used one layer with 256 units. With the input of N timesteps

coming from the transformer, ignoring the EOS token, the GRU produces N hidden

state vectors. Since the last hidden dimension of the GRU is believed to contain all

the essential information from the complete sequence, we use this hidden state and

ignore other timesteps from the GRU.

As seen in figure 7.3, we concatenate this last hidden dimension of GRU (256-

dimension) with the representation of EOS (52-dimension), which is the last timestep

of transformer output, to get a 308-dimensional vector.

7.2.1.5 Dense output layers

This concatenated vector is then passed to the output block. In the output block, we

have 3 output dense layers, each corresponding to an individual feature for the DTC

event. We use softmax as an activation function in each layer, and the categorical

cross-entropy function to calculate the loss. Total loss is calculated by summing the

individual feature losses with same weights

L(ŷ, y) =
F∑
F i

(−
Kfi∑
k

y(k) log( ˆy(k))), (7.1)

where Kf i represents the number of unique classes in feature (attribute) fi, F denotes

the number of total features, while ŷ is the predicted class, and y represents the actual

class.

7.2.2 Ensemble of Models

As a second contribution to our work, we propose an ensemble approach [17] for

predicting the top-5 accuracy of the next DTC. As shown in figure 7.4, instead of

taking the class with the highest probability for each feature from one individual
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Figure 7.4: We first pass the test dataset to three different models (DTCEncoder,
DTC-TranGru, and DTC-GOAT) to get three sets of predictions, and then for each
feature, we take the average of probabilities for all class predictions across three
models. These average class probabilities are then used to calculate top-5 accuracy.

model, we first take the average of the probabilities from all 3 models, across features.

After the average prediction is computed for each feature, we calculate top-5 accuracy,

which counts how many times the actual class for each feature has simultaneously

existed in the top 5 predicted classes from the model.

Algorithm 6 shows how the feature level average is calculated using predictions

with three different models.

Algorithm 6 Ensemble Approach

Require: test pred1, test pred2, test pred3
Ensure: Ensemble predictions (average pred)
for f ← 1 to F do
for row ← 1 to N do
average pred[f ][row] ← (test pred1[f ][row] + test pred2[f ][row] +

test pred3[f ][row])/3
end for

end for
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7.3 Experiments and Results

In this section, we will provide details about the data, data preprocessing, and exper-

imental setup for the DTC-GOAT, and share the results of the experiments at the

end of the section.

7.3.1 Dataset and Data Preprocessing

We used a dataset provided by Bosch Automotive, which consisted of 250k sequences,

each corresponding to a unique vehicle and containing a varying number of multivari-

ate DTC fault events.

As a part of preprocessing, the events within each sequence were sorted as per the

time when they occurred. As seen in figure 7.5, we form a separate vector of each

feature for all sequences to facilitate the application of a separate embedding layer

per feature. We also append a special EOS token at the end of each feature sequence.

We trim longer sequences to the last N timesteps, which in our case was 10

timesteps, and pad the shorter sequences with a special token (‘0‘). For the train-test

split, we kept 4, 750 sequences for validation purposes, 12,500 as testing data and the

rest of 232, 750 sequences were used as training data.

7.3.2 Experimental setup and hyperparameter tuning

We tried multiple hyperparameters and parameters mentioned in table 7.3.2 for our

model, and the final parameters were selected with Hyperband [55] hyperparameter

tuning method, executed with keras-tuner [74] python library. For the ablation study,

apart from comparing with related models, we also compared with modified versions

of these models, which were enhanced by adding the 1D spatial-dropout layer before

recurrent layers and changing the parameters to the ones obtained in our experiments.

The goal was to perform a true comparison and show that the results we achieved
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Figure 7.5: The figure shows 2 unique DTC sequences before and after preprocessing.
In the preprocessing step, we first separate each feature into separate vectors, keeping
the original time order. We restrict the number of DTCs to 3 for the example, but
in the original dataset each sequence has at least 5 DTC events. Each feature vector
is appended with an end-of-sequence (EOS) token, to reinforce the completion of the
sequence and to concatenate the representation of this token with GRU’s output.

are not influenced by these optimizations only.

On the model level, the main choice was the learning rate; we used a min value

of 1e−4 and a max value of 0.1 as the learning parameter, and we got the best

performance with the value of 0.0005. Another important choice was the value for

dropout in 1D spatial-dropout layers in the model, for which we tried the values up

to 0.5, but found the best value to be 0.1.

In the transformer block, we experimented with 2 to 5 encoder layers and found

two encoder layers to be best performing. We saw that 3 heads performed most

optimally in the multi-head attention layer, and 256 dimensions were the best per-

formance for the first layer of the FFN block. Unlike DTC-TranGru, in our case, the

GRU layer gave the best result with 256 units.

We used the RELU [69] activation function in the GRU layer and softmax in the
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Choice min max final

Learning rate 1e-4 0.1 0.005
Number of heads 1 6 3

Number of encoder layers 1 5 2
FFN Dimension 128 256 256

Feature-1 (module) embedding 4 24 8
Feature-2 (base-dtc) embedding 12 56 32

Feature-3 (fault-byte) embedding 4 32 12
Spatial dropout after embeddings 0.0 0.5 0.1

GRU layer units 96 256 256

Table 7.1: Min and max values of hyperparameters and parameters tried with Hyper-
band. Some of the important choices include learning rate, number of encoder layers,
number of heads in multi-head attention, embedding size and the number of GRU
layer units.

output dense layers.

7.3.3 Results

We compare the proposed model with several others, including our first architec-

ture SMFP that introduces the next-DTC prediction problem and implements an

LSTM-based architecture utilizing neural embeddings. Another comparison involves

our second model (DTCEncoder) that encodes DTC, applying long-attention [61] to

GRU outputs and utilizing a dense bottleneck for compact representations. Addition-

ally, we compare our proposed model with a modified small-GPT-2 [84] transformer

decoder architecture [81], before comparing it to DTC-TranGru, which employs a

GRU immediately after the transformer [103] and uses the GRU output solely in the

final layers.

The results of the experiments and comparisons with other architectures can be

seen in table 7.3.3. It shows that our model DTC-GOAT was able to achieve the

best test top accuracy of 82.13% and the lowest validation loss of 4.28. As a part

of the ablation study, we also show that the parameter changes and optimization

borrowed from our architecture did improve other architectures slightly, but did not
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surpass the metrics of our architecture. We show that allowing the direct influence

of transformers representation on the output via concatenation of EOS token with

GRU, instead of passing transformer’s representation indirectly via GRU, results in

an increment of model capacity. The concatenation of the last hidden state of the

GRU and the transformer’s output for the EOS token’s index acts similarly to a skip

connection and provides a better flow of information through the network.

For the ensemble approach, it can be seen in the table 7.3.3 that the top-5 accu-

racy achieved by the ensemble model is 83.15%, which is higher than the accuracies

achieved by individual models. This reaffirms our assumption that in the situation

where the dataset is limited and having a large model isn’t possible, we can use multi-

ple small models to get better results. Since each model learns different features and

focuses on different latent patterns, taking the average probability for each feature

has the potential to reduce uncertainty and hence boost the overall top-5 accuracy.

Architecture Validation Loss Top-5 Test Accuracy

SMFP 4.50 76.15%
SMFP (Opt) 4.49 76.23%
DTCEncoder 4.36 79.21%

DTCEncoder (Opt) 4.35 79.32%
Transformer-Decoder 7.6 40%

Transformer-Decoder (Opt) 7.54 41.4%
DTC-TranGru 4.33 81.4%

DTC-TranGru (Opt) 4.32 81.47%
DTC-GOAT 4.28 82.13%

Table 7.2: Experiment results for DTC-GOAT compared with other models, like
SMFP, DTCEncoder, Transformer Decoder model [81], DTC-TranGru. For the ab-
lation study and to analyse whether changes in parameters and the spatial-dropout
layer improved the performance alone, we tried enhanced versions of all the compared
models by introducing minor optimization changes used in our model. As highlighted
by the bold text, DTC-GOAT achieved the best results among all other models
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Architecture Top-5 Test Accuracy

DTCEncoder 79.32%
DTC-TranGru 81.47%
DTC-GOAT 82.13%

Ensemble of Models 83.15%

Table 7.3: Top-5 accuracy results from an ensemble of multiple models compared
with individual models. Combining predictions from three models boosts the top
accuracy, and turns out to be higher than the top-5 accuracy achieved by individual
models

7.4 Discussion and Conclusion

This chapter introduces a model incorporating several optimizations and changes

to the architecture of Transformer-GRU architecture we introduced in chapter 7 to

improve the top-5 accuracy of the next-DTC prediction task. The optimizations we

propose include combining the output of the transformer model and the GRU model in

a better way using the EOS token. We argue that since the output of the transformer

is now reaching separately to the output layer with the help of the EOS token’s

representation concatenation with the GRU output, instead of being shadowed by

GRU, it increases the model capacity and doesn’t overfit early as opposed to other

models.

We also introduce an ensemble approach of combining multiple models to attain

the class probabilities of each feature in DTC predictions, which gives a better top-5

accuracy of 83.15% as compared to the individual participating models in the ensem-

ble approach. We believe that making use of multiple small models, which might all

have learned different patterns, is useful to increase the accuracy of the task where

data is limited and it is not possible to build a very large model.
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Chapter 8

Conclusion

This dissertation presents a comprehensive examination of the issues associated with

Next-Event Prediction in Diagnostic Trouble Code (DTC)-based predictive mainte-

nance for vehicles. It diverges from the constraints of traditional methods, which

often depend on simplistic algorithms and suffer from limited data availability, by

introducing an innovative architecture that utilizes deep learning models to address

the intrinsic complexity of DTCs directly.

This study and problem formulation are of significance as the increasing installa-

tion of diagnostic modules in vehicles signals a shift in predictive maintenance towards

the usage of DTC fault events, along with warranty and repair data. This method-

ology eliminates the limitation of concentrating on a select few DTCs and proves

beneficial even in scenarios where warranty and repair data are lacking.

8.1 Significance

The development of the proposed next DTC prediction framework represents a signif-

icant advancement in the field of predictive maintenance. By accurately forecasting

upcoming diagnostic trouble codes based on historical fault sequences, the model en-

ables earlier detection of emerging issues and supports more informed maintenance
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scheduling. This proactive approach not only enhances vehicle reliability and opera-

tional safety but also has the potential to reduce maintenance costs and downtime.

As such, the methodology introduced in this work could contribute to a paradigm

shift in how predictive maintenance is implemented across automotive and related

domains. Furthermore, individual models shared in each chapter provide details on

the applicability and comparison of different models, along with suggestion on how

to improve the performance of the prediction task in limited dataset scenario

8.2 Contributions

Through our study, we have demonstrated the effectiveness of combining sequential

dependencies with high-level representations, as embodied in architectures such as

SMFP, DTC-TranGru and DTCEncoder. Our experiments and methodologies en-

able end-to-end supervised learning, which can leverage state-of-the-art sequential

algorithms instead of relying only on simple algorithms, achieving improved accuracy

and robustness in predicting the next event with all three attributes per timestep.

The contributions of this dissertation can be summarized as follows:

• Sequential Next-DTC prediction problem: In Chapter 4, we introduced

a self-supervised deep learning methodology for predicting the next Diagnostic

Trouble Code (DTC) event, thereby effectively addressing the intrinsic com-

plexities of DTCs. Our models exploit sequential dependencies through the

application of algorithms such as Long Short-Term Memory (LSTM) layers to

enable precise predictions of subsequent events encompassing all three attributes

per time step.

Moreover, we proposed top-3 and top-5 accuracy metrics for evaluating model

performance, establishing a baseline with the results of the SMFP model intro-

duced in Chapter 4.
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• DTC Representation: In the inaugural architecture discussed in Chapter 4,

we demonstrated the employment of neural embeddings for representing multi-

ple high cardinality attributes within DTC events. The representation of DTC

events as dense features facilitated the application of end-to-end self-supervised

learning via sequential algorithms.

We elucidated how utilizing separate embedding layers introduces flexibility in

class representation within a single attribute, allowing concatenation to form

a comprehensive representation of the entire DTC event. This methodology,

presented in Chapter 4, updates embedding weights in conjunction with the

overall DTC prediction framework via a joint learning approach, supported by

multiple output dense layers corresponding to each attribute of the DTC event.

• Interpretability and Retrieval: In the second approach detailed in Chapter

5, we achieved a compact representation of DTC sequences using an atten-

tion mechanism alongside a bottleneck dense layer, showcasing various applica-

tions for these dense representations. We illustrated how the learned compact

DTC sequence representations can assist engineers in retrieving comparable se-

quences, thereby facilitating the development of repair strategies.

Additionally, we demonstrated how these representations can be employed for

clustering sequences into distinct groups, aiding in the identification of common

issues and further refinement of retrieved analogous sequences. We also provided

an example of layman’s interpretation of the model’s decision using attention

weights to highlight the significance of each DTC event in the final prediction.

This approach not only enables varied applications of compact representations

but also enhances the DTC prediction’s top-5 accuracy benchmark.

• Hybrid Transformer-Gru model to further Enhance model accuracy:

Due to data limitations and the unavailability of additional data within the

timeframe, we explored alternative methodologies requiring minimal data. This
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necessitated examining state-of-the-art sequential algorithms such as Trans-

formers. In Chapter 6, we demonstrated that combining a small Transformer

with another sequential algorithm can still yield favorable results.

We showed that employing a GRU layer subsequent to a Transformer was ef-

fective in our case, outperforming standalone Transformer models.

• Pushing the Next-DTC prediction accuracy further with architectural

improvements and Ensembles: In Chapter 7, we introduced architectural

improvements to the previously discussed transformer-GRU model. We demon-

strated that implementing modifications, such as combining the Transformer

representation with GRU without overshadowing, enhances model performance.

These incremental changes are crucial in scenarios with limited datasets where

each minor improvement matters.

Consistent with this theme, we presented a straightforward ensemble approach

leveraging multiple DTC prediction models to average each attribute’s top-class

prediction, thereby enhancing the overall top-5 prediction accuracy.

8.3 Limitations

A primary limitation of this study is the size of the dataset available for experi-

mentation. The objective of this doctoral research was to evaluate the proposed

algorithms on a real-time dataset sourced from connected vehicles, rather than on

datasets extracted from workshop sessions, which are also constrained by the number

of diagnostic trouble code (DTC) sequences.

Beyond the total size of the dataset, i.e., the number of sequences, there was

significant variability in the DTC events among individual vehicles. As detailed in

Chapter 4, an attempt was made to employ a windowing approach to leverage longer

sequences to augment the dataset’s size; however, due to the adequate presence of

sequences with extensive DTC events, the strategy proved minimally effective.
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Another limitation of this work is the inability to obtain warranty and repair

data for the vehicles, necessitating the recasting of the problem into a self-supervised

learning framework. This limitation likely impeded the potential benefits of cross-

comparison with actual repairs, and it would have been insightful to identify which

DTCs were triggered and whether they resulted in actual failures. It is posited that

further advancements could have been achieved if there had been an opportunity to

apply these methodologies to other DTC events. However, the lack of access to addi-

tional datasets from the company and public sources constrained the full realization

of this research’s value.

8.4 Future work

Despite this dissertation yielding several useful models, published papers, and a patent

application, time constraints suggest that there remains significant scope for further

work, particularly once additional datasets become available. Potential avenues for

future exploration are outlined below.

8.4.1 Changes for large and imperfect datasets

In more extensive datasets, which are not curated specifically for research purposes

like ours, issues such as class imbalance in the DTCs may arise. It would be beneficial

to investigate metrics (e.g., F1 score) and loss functions (e.g., focal loss [56]) that are

more resilient to imbalanced datasets. Furthermore, with the availability of longer

DTC sequences, it would be worthwhile to experiment with larger sequence sizes to

assess how the proposed algorithms perform with increased contextual information.
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8.4.2 Combining warranty and repair data to enhance super-

vised learning performance

It may be advantageous to integrate or repurpose the representations acquired from

a self-supervised learning approach, such as next-DTC prediction, to improve the

performance of DTC classification tasks, including distinguishing between faulty and

non-faulty sequences utilizing warranty and repair data.

8.4.3 Predicting when will the next DTC occur

This thesis predominantly addresses the ’What’ aspect of the next-DTC prediction

problem. Another potential improvement lies in incorporating the ’When’ aspect

into predictions by including features such as time and mileage at the event’s occur-

rence. Although precise prediction of event timing was not initially required in our

use case, this addition could be instrumental in forecasting the necessity for future

maintenance.

8.5 Personal Reflection

This PhD commenced in February 2020 and was among the inaugural cohort of In-

dustrial PhDs under the EIT-City Industrial PhD initiative [14]. The inception of this

PhD occurred during a particularly challenging period marked by the simultaneous

events of Brexit and the COVID-19 pandemic. Due to Brexit aftereffects, EIT Digital

later left the project, which produced some funding issues, but with the support of

supervisors, our research lab CITAI, and the City St George’s University of London,

the funding was covered.

The industrial collaborator for this project, Bosch Automotive (currently an ETAS

subunit), aimed to implement the outcomes of this research on data obtained from

connected vehicles in real-time. However, the advent of COVID-19 presented chal-
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lenges related to data acquisition, customer retention, and data sharing frameworks,

which were further complicated by Brexit. Despite these impediments and the limited

availability of data, the research team succeeded in reframing the problem through

a novel approach. This method was deemed unique by Bosch’s internal patent advi-

sory team and attracted several proof of concept (POC) requests from other clients.

Initially, there was strong anticipation of acquiring warranty and repair data from

customers to support the analysis of Diagnostic Trouble Codes (DTCs) and enhance

the problem framing with more actionable feedback to refine the algorithms. Unfortu-

nately, the warranty and repair data were only made available towards the conclusion

of this PhD project. Consequently, Bosch has initiated another studentship aimed

at exploring how the existing research can be leveraged alongside the newly acquired

warranty and repair data.

At the outset of the project, Bosch employed aggregation-based metrics for the

development of DTC co-occurrence and prediction models, including some algorithms

that did not account for sequential dependencies, such as association rule mining [114].

Beyond advancing Bosch’s existing models, the objective of this PhD was to develop

artificial intelligence or machine learning algorithms. Therefore, the focus shifted

towards utilizing DTC data without the aid of feedback indicators, such as warranty

and repair data, in a novel manner diverging from current count/aggregation-based

methodologies and association mining.

The initial research detailed in Chapter 4 involved developing a methodology

to represent multivariate Diagnostic Trouble Code (DTC) events characterized by

high cardinality, or a significant number of unique classes for each attribute. We

introduced the use of neural embedding techniques to create dense representations

for each DTC attribute class, thereby facilitating the application of machine learning

algorithms that require numerical data formats. This representation method allowed

the implementation of a self-supervised learning strategy, wherein the presence of

labels is unnecessary. Given the absence of feedback labels in the form of warranty
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and repair data, the self-supervised learning paradigm was deemed more suitable. We

employed sequential algorithms such as recurrent neural networks (e.g., Long Short-

Term Memory Networks, LSTMs) on top of the learned neural embeddings to predict

the three attributes of the DTC event at each time step. This approach was published

in IEEE ICMLA [34], and a patent application [44] has been filed for this innovation.

Subsequently, we examined various methodologies to enhance this model, focus-

ing on both accuracy and applicability. As detailed in Chapter 5, we investigated

the development of a method that not only provides a concise representation of indi-

vidual Diagnostic Trouble Codes (DTCs) but also encapsulates the entire sequence.

This comprehensive representation can be utilized in various applications, such as

expediting the retrieval of similar fault sequences. This capability assists engineers

in determining if any other vehicle has previously exhibited the same pattern. Fur-

thermore, the attention mechanism integrated into the model enables engineers to

interpret which faults significantly influenced the mode’s decision-making process.

This approach is more comprehensible for engineers compared to existing scientific

methods of interpretability, such as SHAP [57].

To enhance model accuracy, we integrated the latest state-of-the-art models, such

as transformers, with recurrent models like GRUs, resulting in hybrid models that

further improved accuracy. In the model presented in Chapter 6, we demonstrated

that utilizing a large SOTA model in its entirety is not advantageous for scenarios

with data limitations. However, employing a significantly smaller version of these

models can still positively impact performance.

In the last work, shared as Chapter 7, we demonstrated that model performance

can be enhanced by optimizing the existing architecture through a thorough under-

standing of its limitations and the implementation of ingenious architectural improve-

ments. Additionally, we illustrated that leveraging the performance of various models

through a straightforward ensemble method can effectively maximize data utility for

performance advancement.
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In addition to attracting interest from Bosch customers, we have also observed

researchers drawing inspiration from our work and pursuing a similar direction in

using a sequential approach to predict DTC events. This is evidenced by a citation

from Amazon [115], where they propose different techniques, such as time-aware event

sequence embedding, for event log-based predictive maintenance. Researchers from

Augsburg [65], in collaboration with BMW, are also employing sequential algorithms

inspired by our use of transformers and have cited both the SMFP and DTC-Transgru

models from our work.

It is our assessment that the disruptions caused by the COVID-19 pandemic,

Brexit, and the departure of the EIT led to challenges in the research process. How-

ever, considering that this PhD was industry-oriented, we succeeded in developing

models that garnered substantial interest from customers. These models were de-

signed with a focus on addressing the specific problem at hand, rather than con-

structing overly complex solutions which would not have served the needs of our

industrial partner effectively.

In conclusion, the Industrial PhD program provided a distinct and valuable expe-

rience for both the student and the supervisor, owing to its fundamental differences

from a traditional research doctorate. While emphasizing the innovation of solutions

in the DTC prediction domain, it was equally critical for the candidate to develop

solutions that would be beneficial to the industrial partner. We contend that there is

significant potential for the enhancement and expansion of these models, and further

reflections on this matter are presented in the subsequent section.
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