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 A B S T R A C T

Shrinkage methods are widely used in big data to achieve sparse variable selection and reduce overfitting. 
However, these methods, such as LASSO (Tibshirani, 1996), often struggle when faced with highly correlated 
predictors. In this paper, we examine a recently developed machine learning estimator that is robust to 
highly correlated variables, providing superior out-of-sample performance compared to traditional shrinkage 
techniques. We establish the asymptotic properties of this estimator under general conditions, including i.i.d. 
sub-Gaussianity. Empirically, we demonstrate the practical benefits of this approach in selecting factors to 
construct hedged portfolios, achieving significantly higher Sharpe ratios compared to benchmarks such as 
LASSO, Ridge, and Elastic Net in an out-of-sample context.
 

1. Introduction

Recent advancements in big data analytics have significantly pro-
pelled high-dimensional statistical research, offering new approaches 
to tackle the curse of dimensionality commonly encountered across 
various fields. In particular, the Least Absolute Shrinkage and Selection 
Operator (LASSO) (Tibshirani, 1996) and related shrinkage methods 
have gained prominence in economic applications due to their ability 
to perform sparse selection and their well-established statistical proper-
ties. However, traditional LASSO estimators often struggle when faced 
with highly correlated covariates. As Zou and Hastie (2005) noted, 
LASSO tends to arbitrarily shrink one variable from a highly correlated 
pair while retaining the other, leading to unstable variable selection 
results. In the past few decades, hundreds of factors (a.k.a. the factor 
zoo) have been proposed to explain cross-sectional asset returns. We 
find that some of these factors are highly correlated, with correlation 
coefficients exceeding 0.9.1 This can cause severe complications when 
using standard methods to select factors. Various methods have since 
been proposed to address this limitation. One prominent approach is 
the group LASSO (Yuan and Lin, 2006), which mitigates issues related 
to highly correlated variables by shrinking groups of variables with 
similar characteristics together. However, this method requires prior 
knowledge of group structures—an often non-trivial task that demands 
rigorous justification. Alternatively, the FARM selection procedure (Fan 
et al., 2020) addresses the problem by using Principal Component 
Analysis (PCA) regression to extract common factors from highly corre-
lated covariates and utilizing the residuals for adjusted factors, which 

E-mail address: chuanping.sun@city.ac.uk.
1 See Fig.  3 in Appendix  D for an illustration of the correlations within the factor zoo.

typically exhibit low correlations. However, PCA-adjusted factors can 
compromise the economic interpretability of the original factors.

This paper investigates a recent development in shrinkage methods–
the Ordered-Weighted LASSO (OWL)  estimator (Figueiredo and Nowak,
2016). The OWL estimator is robust to highly correlated covariates 
and does not rely on assumptions about factor structures (i.e., how 
factors should be grouped). We extend the analysis of the OWL esti-
mator by deriving its oracle inequality property under a more general 
i.i.d. sub-Gaussian framework, relaxing assumptions to accommodate 
datasets with heavier-tailed variables. Empirically, we apply the OWL 
shrinkage method to select the most relevant factors driving cross-
sectional asset prices in an out-of-sample framework. These selected 
factors are then used to construct hedge portfolios. Comparisons of 
OWL-hedged portfolios with benchmarks such as LASSO, Ridge, and 
Elastic Net reveal that the OWL-hedged portfolios achieve the highest 
Sharpe ratio. This paper contributes to a growing body of literature 
that applies shrinkage methods to economic and financial research. For 
instance, Chinco et al. (2019) employ LASSO to predict stock returns, 
demonstrating significant improvements in out-of-sample 𝑅2. Feng 
et al. (2020) use double-LASSO to select factors from the ‘‘factor 
zoo’’ over time, while Babii et al. (2021) use sparse group LASSO for 
nowcasting GDP. This paper differs from existing work by focusing 
on the sparse selection properties of highly correlated predictors and 
empirically demonstrating the usefulness of the OWL shrinkage method 
in this context, outperforming other shrinkage techniques.
https://doi.org/10.1016/j.econlet.2025.112480
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The rest of this paper is organized as follows: Section 2 introduces 
the shrinkage method for factor selection in asset pricing and derives 
its oracle inequality under more general assumptions. Section 3 applies 
this method to select factors and highlights its superior out-of-sample 
performance.

2. Method

2.1. Baseline model

Consider a stochastic discount factor (SDF) asset pricing model 
where the SDF is defined as a linear function of factors: 𝑚𝑡 = 1− 𝑏′(𝑓𝑡 −
𝜇), where 𝜇 represents the expected factor returns and 𝑓𝑡 − 𝜇 is the 
𝐾 ×1 factor innovation, and 𝑏 is a vector of SDF loadings for 𝐾 factors. 
The SDF loadings can be estimated using the Generalized Method 
of Moments (GMM) method with the following moment conditions: 
E(𝑚𝑡𝑟𝑡) = 0𝑁×1, and E(𝑓𝑡 − 𝜇) = 0𝐾×1, where 𝑟𝑡 is 𝑁 × 1 test asset 
returns in excess of risk free rate. The GMM estimator is therefore 
defined as the minimizer of �̂� = argmin𝑏 �̂�′𝑇 (𝑏)�̂� �̂�𝑇 (𝑏), where �̂�𝑇 =
(

1
𝑇
∑𝑇

𝑡=1 𝑟𝑡(1 − 𝑏′(𝑓𝑡 − 𝜇))
1
𝑇
∑𝑇

𝑡=1 𝑓𝑡 − 𝜇

)

(𝑁+𝐾)×1

. Solving the above optimization 

problem gives �̂� = (�̂� ′�̂� �̂�)′�̂� ′�̂� �̄�, where �̄� is the 𝑁 × 1 average excess 
returns of test assets and �̂� ∶= Ĉov(𝑟𝑡, 𝑓𝑡) is the 𝑁×𝐾 sample covariance 
matrix between 𝑟𝑡 and 𝑓𝑡. Following Ludvigson (2013), it is optimal to 
set �̂� = 𝐼 when the number of test assets is large, and the goal is to 
infer which factors drive cross-sectional asset returns. Thus, �̂� can be 
interpreted as the solution to a linear regression of �̄� on �̂�. Although 
recent finance literature argues that the set of factors explaining cross-
sectional asset returns is dense rather than sparse, e.g., Bryzgalova et al. 
(2023), fitting too many factors in an out-of-sample forecasting context 
can lead to overfitting and poor performance, as demonstrated by Frey-
berger et al. (2020). To address this, we introduce a penalty term to 
regularize �̂�. The penalized estimate, �̂�𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 , is given by: �̂�𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 =
argmin𝑏

(

‖�̄� − �̂�𝑏‖22 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝜆, 𝑏)
)

. By choosing different forms for the 
penalty function, we can apply various shrinkage methods, such as 
Ridge, LASSO, and Elastic Net, as shown in (1). 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝜆, 𝑏) =

⎧

⎪

⎨

⎪

⎩

𝜆‖𝑏‖22, Ridge
𝜆‖𝑏‖1, LASSO
𝜆(𝛼‖𝑏‖1 + (1 − 𝛼)‖𝑏‖22), Elastic Net,

(1)

where ‖𝑏‖2 =
√

∑𝐾
𝑖=1 𝑏

2
𝑖  and ‖𝑏‖1 =

∑𝐾
𝑖=1 |𝑏𝑖| denote the 𝓁2 and 𝓁1

norm of the 𝐾 × 1 vector 𝑏, respectively. 𝜆 is the shrinkage tuning 
parameter. Figueiredo and Nowak (2016) introduced the Ordered-
Weighted LASSO (OWL) estimator, a shrinkage method that is robust to 
variable correlations, which can challenge many traditional shrinkage 
estimators. The OWL estimator is defined as the following: 
�̂�𝑂𝑊𝐿 = argmin

𝑏

(

‖�̄� − �̂�𝑏‖22 + 𝜔′
|𝑏|↓

)

, (2)

where |𝑏|↓ = (|𝑏|[1], |𝑏|[2],… , |𝑏|[𝑗],… , |𝑏|[𝐾]) and |𝑏|[1] ≥ |𝑏|[2] ≥ ⋯ ≥
|𝑏|[𝑗] ≥ ⋯ ≥ |𝑏|[𝐾], 𝜔 = [𝜔1, 𝜔2,… , 𝜔𝐾 ]′ is a 𝐾 ×1 weighting vector, and 
𝜔1 ≥ 𝜔2 ≥ ⋯ ≥ 𝜔𝐾 ≥ 0. More specifically, 𝜔 is defined as 
𝜔𝑗 = 𝜆1 + 𝜆2(𝐾 − 𝑗), 𝑗 = 1,⋯ , 𝐾, (3)

where 𝜆1 and 𝜆2 are two tuning parameters. In accordance with the 
machine learning literature, we often employ cross-validation to de-
termine the appropriate tuning parameters. The key contribution of 
the OWL estimator, compared to other shrinkage methods such as 
LASSO, lies in its ability to handle highly correlated variables, which 
often pose significant challenges. The OWL estimator possesses two 
important properties simultaneously: the shrinkage property, which 
shrinks unimportant variables to zero, and the grouping property, 
which identifies highly correlated variables and assigns them similar 
coefficients, without requiring any structural assumptions about the 
factors. In contrast, the LASSO method only possesses the shrinkage 
2 
property. When faced with highly correlated variables, LASSO tends 
to inconsistently shrink some variables to zero while keeping others 
non-zero, leading to instability in variable selection. See Appendix  A 
for a detailed comparison between these shrinkage estimators. In the 
next section, we establish the statistical properties of the OWL estimator 
under more general assumptions.2

2.2. Statistical properties

Without loss of generality and for simplicity of notations, (2) can be 
written as: 
�̂�𝑂𝑊𝐿 = argmin

𝑏

( 1
𝑁

‖𝑦 −𝑋𝑏‖22 +
1
𝑁

𝜔′
|𝑏|↓

)

, (4)

where 𝑦 and 𝑋 are 𝑁 × 1 vector and 𝑁 × 𝐾 matrix, respectively. To 
facilitate the analysis, consider the following linear regression model: 
𝑦 = 𝑋𝑏0 + 𝜖, (5)

where 𝑏0 represents the true 𝐾 × 1 vector of coefficients and 𝜖 is the 
error term. In a high-dimensional setting, 𝐾 can exceed 𝑁 . We now 
discusses the asymptotic properties of the OWL estimator, extending 
the framework of Figueiredo and Nowak (2016) to more general as-
sumptions. We begin by introducing some notations and assumptions in 
Appendix  B. It is worth noting that these assumptions are more general 
in the statistical literature and more relaxed than those in Figueiredo 
and Nowak (2016).

Theorem 2.1 (Oracle Inequality). Let Assumptions  1, 2 and 3 be satisfied. 
Suppose that 𝜆0 = 𝜅

√

log𝐾
𝑁

= 𝑜(1), where 𝜅 is a positive constant. Let 
𝜆1
𝑁

= 2𝜆0 and 
𝜆2
𝑁

= 𝑂(
𝑆 log𝐾
𝑁𝐾

). Then, by selecting a sufficiently large 𝜅, 
as 𝑁,𝐾 → ∞, with probability tending to one, �̂� satisfies 

(�̂� − 𝑏0)′�̂�(�̂� − 𝑏0) +
𝜆1
𝑁

‖�̂� − 𝑏0‖1 ≤ 4(
𝜆1
𝑁

)2 𝑆
𝜙2
0

+ 2
𝜆2
𝑁

(𝐾 − 1)‖𝑏0‖1. (6)

Proof. see Appendix  C.
The oracle inequality in (6) can be further developed to offer upper 

bounds separately for the prediction error (�̂� − 𝑏0)′�̂�(�̂� − 𝑏0) ∶= ‖𝑋(�̂� −
𝑏0)‖22∕𝑁 and the estimation error ‖�̂� − 𝑏0‖1. These bounds are crucial 
in determining the convergence rate of the OWL estimator.

3. Empirical application

In this section, we apply several shrinkage methods, including 
LASSO, Ridge, Elastic Net, and OWL, to select factors from the ‘‘factor 
zoo’’ to explain cross-sectional asset prices in an out-of-sample frame-
work.3 We use the Open Source Asset Pricing dataset from Chen and 
Zimmermann (2022) for our empirical analysis. We discuss the data 
and how we clean the data in Appendix  D. To evaluate out-of-sample 
performance, we implement a rolling window approach to select factors 
from the factor zoo, as provided by the Open Asset Pricing factor 
library.

2 Note that we develop the asymptotic properties while relaxing the 𝑖.𝑖.𝑑. 
normality assumption on variables made in Figueiredo and Nowak (2016).

3 We use the ‘cvxpy’ package and the ‘mosek’ solver for optimization 
problems for LASSO, Ridge and Elastic Net shrinkage methods, while we 
develop our own optimization method and code for solving the OWL shrinkage 
problem. A detailed explanation of the algorithm can be found in Sun (2024). 
The tuning parameters for those shrinkage methods are determined using the 
cross-validation, by searching for the best values, given a grid of candidate 
values, that produce the smallest out-of-sample mean squared errors using 
multiple splittings for training and testing samples. The optimal values for 
tuning parameters are between 10−5 and 10−6.
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Table 1
Sharpe ratio comparison.
 Out-of-sample sharpe ratio of hedged portfolios
 LASSO Ridge EN OWL  
 win=240 0.2359 0.1132 0.3161 0.3673  
 win=360 0.5410 0.3222 0.5001 0.7208  
 win=480 0.3667 0.2865 0.4154 0.9526  
Note: this Table reports the Sharpe ratio of the hedged portfolios using top 5 selected 
factors via four competing methods, including LASSO, Ridge, elastic net and OWL.

Specifically, we define a window size 𝑤𝑖𝑛 = {240, 360, 480} months. 
At each time 𝑡, we estimate our four competing models using data from 
𝑡−win+1 to 𝑡. Within each rolling window, we first run a cross-sectional 
regression of average test portfolio returns on the covariance between 
test portfolios and all factors.4

The estimated model is then used to identify a small set of important 
factors for predicting each test portfolio’s return in the next period. For 
simplicity and comparability, we select the five most important factors 
to forecast returns for all test portfolios at time 𝑡 + 1 by running a 
predictive linear regression of each test portfolio on the selected factors.

After obtaining the predicted returns, we sort test portfolios into 
deciles based on their predicted returns and construct a hedging strat-
egy by going long on the top decile portfolio and short on the bottom 
decile portfolio.

Table  1 reports the out-of-sample Sharpe ratios for hedged portfolios 
formed using the top 5 selected factors from each of the four competing 
methods: LASSO, Ridge, Elastic Net, and OWL. We conduct robustness 
checks by using three different rolling window sizes (240, 360, and 
480 months). The results show that OWL-hedged portfolios consistently 
deliver the highest Sharpe ratios compared to other benchmarks. More-
over, the OWL-hedged portfolio performs best when the rolling window 
is set to 480 months, providing sufficient historical data to estimate the 
primary factors driving cross-sectional asset returns. In this case, the 
OWL achieves a Sharpe ratio more than doubles of other benchmarks.

Next, we examine the most frequently selected factors in the out-
of-sample period by each of the four methods. Fig.  1 shows that all 
methods agree on the importance of the ‘Market’ factor in driving asset 
prices. Additionally, reversal factors, volatility related factors are com-
monly selected by all methods, although with different interpretations. 
LASSO frequently selects ‘short-term reversal’ and ‘return on asset’ as 
key factors after the ‘market’ factor. Notably, LASSO shows a shift in 
importance from ‘short-term reversal’ to ‘return on assets’ in the second 
half of the out-of-sample period. In contrast, OWL identifies ‘long-
term reversal’ and ‘idiosyncratic volatility’ as key factors following the 
‘market’ factor, with a shift towards ‘idiosyncratic volatility’ in the late 
2010s. However, in the most recent two years, ‘idiosyncratic volatility’ 
loses its importance, while factors such as ‘Analyst Valuation’ and ‘Asset 
Growth’ become more significant in forecasting asset prices.

4. Conclusion

We extend the statistical properties of a correlation-robust shrinkage 
method under relaxed assumptions, a framework commonly used in 
economic research. This method is applied alongside other bench-
marks to select factors for predicting cross-sectional asset returns and 
constructing hedged portfolios. Our empirical results show that the 
OWL-hedged portfolio consistently achieves the highest Sharpe ratios 
compared to other methods.

4 This step is similar to the Fama–MacBeth regression for inferring risk 
premiums. The difference here is that we infer risk prices. See Sun (2024) 
for a detailed discussion on the relationship between these methods.
3 
For future research, further development of the statistical properties 
of this correlation-robust shrinkage estimator could involve relaxing 
assumptions, such as removing the i.i.d. assumption on variables, and 
investigating the consistency of variable selection. Additionally, de-
veloping a debiased version of the estimator would enable statistical 
inference and further enhance its practical application.

Overall, this shrinkage method is particularly valuable when dealing 
with highly correlated variables in high-dimensional settings, making 
it a robust and practical tool for financial modeling.

Appendix A. The geometric interpretation of the OWL penalty and 
its comparison with the LASSO and the Elastic Net penalties

Fig.  2 shows the geometric representation of the penalty terms of 
LASSO, Elastic Net and OWL shrinkage methods. The LASSO penalty 
is demonstrated as the diamond-shaped rectangular, where the OWL 
penalty is the octagonal-shaped one. The tangent point between the 
penalty term and the contour from the un-regularized least square 
estimator determines the shrinkage estimator. However, when two 
variables are highly correlated, the frontier of the contour coming 
from the un-regularized solution is flat. Given the shapes of the LASSO 
penalty and the contour under correlated factors, it is very unstable in 
determining which variable to shrink. A slight estimation error from 
the un-regularized solution can easily produce opposite inferences on 
factors selections. On the other hand, the EN penalty is curved by 
combining the LASSO and Ridge penalties together. The curved edge 
stabilizes the tangent point with a flat contour of the un-regularized 
solution. Therefore, it avoids randomly shrinking one highly correlated 
variable to zero while keeping the other as non-zero, alleviating the 
unstable solutions from the LASSO shrinkage method. Finally, the OWL 
penalty is octagonal shaped, it not only has vertexes on both axes, 
it also has vertexes on the ±45 degree lines. Those vertexes on the 
axes produce sparse selection like the LASSO estimator, while those 
on the ±45 degree lines encourage assigning similar coefficients for 
highly correlated variables, as these vertexes on the ±45 degree lines 
are most likely to have the tangent point with a flat contour from 
the un-regularized solutions. This is regarded as the grouping property 
which ensures robust factor selection while factors are correlated. 
When factors are highly correlated, they will be assigned with similar 
coefficients.

Appendix B. Notations and assumptions

Let 𝜁𝑗 ∶= 𝜖′𝑋(𝑗) ∶=
∑𝑁

𝑖=1 𝜖𝑖𝑋
(𝑗)
𝑖 ∶=

∑𝑁
𝑖=1 𝜁𝑖,𝑗 , where 𝑋(𝑗) is the 

𝑗th column of 𝑋 and 𝜖 is defined in (5). We denote �̂� = 1
𝑁

𝑋′𝑋 as 
the scaled Gram Matrix of 𝑋. For any vector 𝑥 ∈ 𝑅𝑁 , we denote 
‖𝑥‖2 = (

∑𝑁
𝑖=1 𝑥

2
𝑖 )

1∕2, ‖𝑥‖1 =
∑𝑁

𝑖=1 |𝑥𝑖| and ‖𝑥‖∞ = max1≤𝑖≤𝑁 |𝑥𝑖|. Let 
𝑠0 denote a subset, 𝑠0 ⊂ {1,… , 𝐾}, and |𝑠0| the cardinality of 𝑠0. 
For 𝑏 = {𝑏1,… , 𝑏𝐾} ∈ 𝐑𝐾 , denote 𝑏𝑠0 ∶= 𝑏𝑖𝟏{𝑖 ∈ 𝑠0, 𝑖 = 1,… , 𝐾}, 
𝑏𝑠𝑐0 ∶= 𝑏𝑖𝟏{𝑖 ∉ 𝑠0, 𝑖 = 1,… , 𝐾}. Then 𝑏 = 𝑏𝑠0 + 𝑏𝑠𝑐0 . We establish the 
following assumptions. 

Assumption 1 (Random Variables). {𝜁𝑖,𝑗}𝑁𝑖=1 are identically and in-
dependently distributed and E(𝜁𝑖,𝑗 ) = 0 for 𝑖 = 1,… , 𝑁 and 𝑗 =
1,… , 𝐾. The distributions of variable 𝑋(𝑗)

𝑖  and 𝜖𝑖 for all 𝑖 = 1,… , 𝑁
are uniformly subgaussian such that sup𝑖,𝑗 P(|𝑋(𝑗)

𝑖 | > 𝑎) ≤ 𝑐1 exp[−𝑐2𝑎2]
and sup𝑖 P(|𝜖𝑖| > 𝑎) ≤ 𝑐1 exp[−𝑐2𝑎2] for all 𝑖 = 1,… , 𝑁 , 𝑎 > 0 and some 
𝑐1, 𝑐2 > 0 which do not depend on 𝑎, 𝑖, 𝑗.

Assumption 2 (Sparsity).  Denote by 𝑆 the number of non-zero param-
eters in 𝑏0 = {𝑏01, 𝑏

0
2,… , 𝑏0𝐾}. We assume that 𝑆

√

log𝐾
𝑁

= 𝑜(1) when 
𝑁,𝐾 → ∞.
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Fig. 1. Out-of-sample factor selections with win=360.
Note: This table list the most selected factors during the out-of-sample period, ordered by frequency that they are selected by each candidate model. The color indicate how 
important the selected factor is for driving cross-sectional asset returns. The darker the color the more importance of the factor.
Assumption 3 (Compatibility Condition, Buhlmann and Van De Geer, 
2011).  For all 𝑏 such that ‖𝑏𝑠𝑐0‖1 ≤ 3‖𝑏𝑠0‖1, we have 

𝜙2
0 ∶= min

𝑠0⊂{1,…,𝐾}
|𝑠0 |<𝐾

min
𝑏∈𝑅𝐾 ∖{0}

‖𝑏𝑠𝑐0
‖1≤3‖𝑏𝑠0 ‖1

𝑏′�̂�𝑏𝑆
‖𝑏𝑠0‖

2
1

> 0. (B.1)

Assumption  1 specifies that the distributions of the random vari-
ables are 𝑖.𝑖.𝑑. and sub-Gaussian. This assumption is more general 
than the 𝑖.𝑖.𝑑. normality assumption made by Figueiredo and Nowak 
(2016), allowing for heavier tails in the variables. The adoption of 𝑖.𝑖.𝑑. 
sub-Gaussian assumptions is consistent with standard practices in high-
dimensional econometrics, as noted by Kock (2016), Kock and Tang 
(2019). Assumption  2, governs the growth rate of the dimension of 𝑋, 
the sparsity parameter 𝑆, and the number of observations 𝑁 . Impor-
tantly, the exact sparsity level 𝑆 is not predetermined. Assumption  3, 
the compatibility condition, addresses challenges posed by a degenerate 
scaled Gram matrix in high-dimensional factor models. This condition 
is less restrictive than the commonly used restricted eigenvalue or 
irrepresentable conditions in high-dimensional statistics, as discussed 
by Van de Geer and Bühlmann (2009).

Appendix C. Proof of Theorem  2.1

Proof.  By definition the OWL estimator is minimizing the function

�̂� = �̂�𝑂𝑊𝐿 = argmin 1
‖𝑦 −𝑋𝑏‖22 +

1
𝐾
∑

[𝜆1 + 𝜆2(𝐾 − 𝑖)]|𝑏|[𝑖],

𝑏 𝑁 𝑁 𝑖=1

4 
where |𝑏|[⋅] denotes the element of the decreasingly ordered vector of 
|𝐛|, such that |𝑏|[1] ≥ |𝑏|[2] ≥ ⋯ ≥ |𝑏|[𝐾]. Let 𝑏0 be the vector of true 
values of risk prices, and 𝑦 = 𝑋𝑏0 + 𝜖. According to the ‘‘argmin’’ 
property, definition of �̂� implies
1
𝑁

‖𝑦 −𝑋�̂�‖22 +
1
𝑁

∑

𝑖
[𝜆1 + 𝜆2(𝐾 − 𝑖)]|�̂�|[𝑖] ≤

1
𝑁

‖𝑦 −𝑋𝑏0‖22

+ 1
𝑁

∑

𝑖
[𝜆1 + 𝜆2(𝐾 − 𝑖)]|𝑏0|[𝑖].

(C.1)

Since 𝜔𝑖 = 𝜆1 + 𝜆2(𝐾 − 𝑖) is in a monotone non-negative cone and 
𝜔1 ≥ 𝜔2 ≥ ⋯ ≥ 𝜔𝐾 , we have
∑

𝑖
[𝜆1 + 𝜆2(𝐾 − 𝑖)]|�̂�|[𝑖] ≥ 𝜔𝐾‖�̂�‖1 = 𝜆1‖�̂�‖1,

∑

𝑖
[𝜆1 + 𝜆2(𝐾 − 𝑖)]|𝑏0|[𝑖] ≤ 𝜔1‖𝑏

0
‖1 = [𝜆1 + 𝜆2(𝐾 − 1)]‖𝑏0‖1.

Together with 𝑦 = 𝑋𝑏0 + 𝜖, this implies that (C.1) can be simplified as: 
1
𝑁

‖𝑋(�̂�−𝑏0)‖22+
𝜆1
𝑁

‖�̂�‖1 ≤
2
𝑁

𝜖′𝑋𝑗 (�̂�−𝑏0)+ 1
𝑁

[𝜆1+𝜆2(𝐾−1)]‖𝑏0‖1. (C.2)

Note that 

2|𝜖′𝑋(�̂� − 𝑏0)| ≤
(

max
1≤𝑗≤𝐾

2|𝜖′𝑋(𝑗)
|

)

‖�̂� − 𝑏0‖1. (C.3)

Hence, (C.2) can be written as
1
‖𝑋(�̂� − 𝑏0)‖2 +

𝜆1
‖�̂�‖1 ≤

(

1 max 2|𝜖′𝑋(𝑗)
|

)

‖�̂� − 𝑏0‖1
𝑁 2 𝑁 𝑁 1≤𝑗≤𝐾
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Fig. 2. Geometric interpretation of LASSO, EN, and OWL penalties.
+ 1
𝑁

[𝜆1 + 𝜆2(𝐾 − 1)]‖𝑏0‖1. (C.4)

Consider the event 

𝐸 ∶=
{

1
𝑁

max
1≤𝑗≤𝐾

2|𝜖′𝑋(𝑗)
| ≤ 𝜆0

}

, (C.5)

where 𝜆0 = 𝜅
√

log𝐾
𝑁

 and 𝜅 is a positive constant. Then, in view of 
(C.5), (C.4) can be bounded as 
1
𝑁

‖𝑋(�̂�−𝑏0)‖22+
1
𝑁

𝜆1‖�̂�‖1 ≤ 𝜆0‖�̂�−𝑏0‖1+
1
𝑁

[𝜆1+𝜆2(𝐾−1)]‖𝑏0‖1. (C.6)

By assumption, 𝜆1
𝑁

= 2𝜆0. Therefore, (C.6) can be written as 

2
𝑁

‖𝑋(�̂�−𝑏0)‖22+
2
𝑁

𝜆1‖�̂�‖1 ≤
𝜆1
𝑁

‖�̂�−𝑏0‖1+
2
𝑁

[𝜆1+𝜆2(𝐾−1)]‖𝑏0‖1. (C.7)

Note that

‖�̂�‖1 = ‖�̂�𝑠0‖1 + ‖�̂�𝑠𝑐0‖1 ≥ ‖𝑏0𝑠0‖1 − ‖�̂�𝑠0 − 𝑏0𝑠0‖1 + ‖�̂�𝑠𝑐0‖1, (C.8)

‖�̂� − 𝑏0‖1 = ‖�̂�𝑠0 − 𝑏0𝑠0‖1 + ‖�̂�𝑠𝑐0‖1. (C.9)

Therefore, using (C.8) and (C.9), (C.7) can be written as
2
𝑁

‖𝑋(�̂� − 𝑏0)‖22 +
2𝜆1
𝑁

(‖𝑏0𝑠0‖1 − ‖�̂�𝑠0 − 𝑏0𝑠0‖1 + ‖�̂�𝑠𝑐0‖1)

≤
𝜆1
𝑁

(‖�̂�𝑠0 − 𝑏0𝑠0‖1 + ‖�̂�𝑠𝑐0‖1) +
2𝜆1
𝑁

‖𝑏0‖1 +
2𝜆2(𝐾 − 1)

𝑁
‖𝑏0‖1. (C.10)

Note that ‖𝑏0𝑠0‖1 = ‖𝑏0‖1, so (C.10) can be written as 

2
‖𝑋(�̂�− 𝑏0)‖2 +

𝜆1
‖�̂� 𝑐 ‖ ≤ 3

𝜆1
‖�̂� − 𝑏0 ‖ +

2𝜆2(𝐾 − 1)
‖𝑏0‖ . (C.11)
𝑁 2 𝑁 𝑠0 1 𝑁 𝑠0 𝑠0 1 𝑁 1

5 
By (C.9), ‖�̂�𝑠𝑐0‖1 = ‖�̂� − 𝑏0‖1 − ‖�̂�𝑠0 − 𝑏0𝑠0‖1. Utilizing this in (C.11), we 
obtain 
2
𝑁

‖𝑋(�̂�−𝑏0)‖22+
𝜆1
𝑁

‖�̂�−𝑏0‖1 ≤ 4
𝜆1
𝑁

‖�̂�𝑠0−𝑏
0
𝑠0
‖1+

2𝜆2(𝐾 − 1)
𝑁

‖𝑏0‖1. (C.12)

By Assumption  3, we have 

‖𝑏𝑠0‖
2
1 ≤ 𝑏′�̂�𝑏𝑆∕𝜙2

0. (C.13)

Applying (C.13) on ‖�̂�𝑠0 − 𝑏0𝑠0‖1 and using �̂� = 𝑋′𝑋
𝑁

, we have

‖�̂�𝑠0 − 𝑏0𝑠0‖
2
1 ≤ (�̂� − 𝑏0)′�̂�(�̂� − 𝑏0)𝑆∕𝜙2

0 = ‖𝑋(�̂� − 𝑏0)‖22𝑆∕(𝑁𝜙2
0),

‖�̂�𝑠0 − 𝑏0𝑠0‖1 ≤ ‖𝑋(�̂� − 𝑏0)‖2
√

𝑆∕(
√

𝑁𝜙0).

Therefore, using inequality 4𝑎𝑏 ≤ 𝑎2 + 4𝑏2, we obtain

4
𝜆1
𝑁

‖�̂�𝑠0 − 𝑏0𝑠0‖1 ≤ 4

(

‖𝑋(�̂� − 𝑏0)‖2
√

𝑁

)(

𝜆1
𝑁

√

𝑆
𝜙0

)

≤ 1
𝑁

‖𝑋(�̂� − 𝑏0)‖22 + 4(
𝜆1
𝑁

)2 𝑆
𝜙2
0

.

So (C.12) can be written as 
1
𝑁

‖𝑋(�̂� − 𝑏0)‖22 +
𝜆1
𝑁

‖�̂� − 𝑏0‖1 ≤ 4(
𝜆1
𝑁

)2 𝑆
𝜙2
0

+
2𝜆2(𝐾 − 1)

𝑁
‖𝑏0‖1. (C.14)

Note that 1
𝑁

‖𝑋(�̂� − 𝑏0)‖22 = (�̂� − 𝑏0)′�̂�(�̂� − 𝑏0), so (C.14) completes the 
proof of (6).

Now we have obtained (6) assuming (C.5). In the next step we want 
to evaluate the probability of the inequality (C.5) to be true, i.e. P(𝐸). 
By a union bound and using the notation 𝜁 = 𝜖′𝑋(𝑗) =

∑𝑁 𝜖 𝑋(𝑗) =
𝑗 𝑖=1 𝑖 𝑖
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Fig. 3. Preliminary analysis on data.
∑𝑁
𝑖=1 𝜁𝑖,𝑗 , we obtain 

P(𝐸𝐶 ) = P( 1
𝑁

max
1≤𝑗≤𝐾

2|𝜖′𝑋(𝑗)
|) ≥ 𝜆0 ≤

𝐾
∑

𝑗=1
P( 1

𝑁
|𝜁𝑗 | ≥

𝜆0
2
). (C.15)

Note that both {𝜖𝑖}𝑁𝑖=1 and {𝑋
(𝑗)
𝑖 }𝑁𝑖=1 for all 𝑖 = 1,… , 𝑁 and 𝑗 = 1,… , 𝐾

are uniformly subgaussian variables. Therefore, variables {𝜁𝑖,𝑗}𝑁𝑖=1 are 
uniformly subexponentially distributed. Hence, applying Corollary 5.17 
in Vershynin (2012) and utilizing 𝜆0 = 𝜅

√

log𝐾
𝑁

, we obtain

P(𝐸𝐶 ) ≤ 𝐾 max
1≤𝑗≤𝐾

P( 1
𝑁

|𝜁𝑗 | ≥
𝜆0
2
) = 𝐾 max

1≤𝑗≤𝐾
P( 1

𝑁

|

|

|

|

|

|

𝑁
∑

𝑖=1
𝜁𝑖,𝑗

|

|

|

|

|

|

≥
𝜆0
2
)

≤ 2𝐾 exp[−𝑐𝜅2 log𝐾] = 2𝐾1−𝑐𝜅2 .

where 𝑐 and 𝜅 are positive constants. Therefore, selecting 𝜅 such that 
𝑐𝜅2 > 1, we have the following property for (C.5): 

P(𝐸) = 1 − P(𝐸𝐶 ) ≥ 1 − 2𝐾1−𝑐𝜅2 → 1, (C.16)

as 𝑁,𝐾 → ∞. This completes the proof of Theorem  2.1. □

Appendix D. Data

To study firm characteristics and their ability to predict stock 
returns, we use data from the Open Source Asset Pricing dataset 
from Chen and Zimmermann (2022).5 This dataset includes 212 firm 
characteristic-based factors with monthly returns from January 1926 to 
December 2022. Factors are constructed by sorting stocks into decile 
portfolios according to a given characteristic at each point in time. 
The spread return between the top and bottom deciles represents the 
factor return associated with that characteristic. The decile portfolios 
for all characteristics are used as test portfolios. However, missing data 
presents a challenge in training and validating models. The left panel 
of Fig.  3 shows the percentage of missing data over time for factors 
and for test portfolios. Before the mid-1960s, the missing data for both 
factors and portfolios is substantial, exceeding 50% before 1950. After 
the mid-1960s, the missing data percentage falls below 5%, and drops 
to less than 1% after 1980. For this reason, we restrict our analysis 
to data from January 1980 to December 2022 and exclude columns 

5 The data is downloaded from https://www.openassetpricing.com/.
6 
containing any missing values.6 Additionally, we obtain market returns 
(‘Mkt’) and the risk-free rate from Kenneth French’s website.7

After addressing the missing data, we conduct a preliminary analysis 
to examine the correlations between factors. The right panel of Fig. 
3 reveals that some factors exhibit very high correlations, indicated 
by dark colors on the heatmap (some correlation coefficients exceed 
0.9). This raises concerns about the reliability and stability of LASSO 
in selecting variables, as Zou and Hastie (2005) highlight that high cor-
relations can make LASSO variable selection unreliable. In contrast, the 
OWL estimator is well-suited for handling highly correlated variables.

Data availability

I have shared the link to the data in the appendix.
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