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 A B S T R A C T

Under the influence of surface gravity waves, a floating object experiences a drift in addition to its oscillatory 
motion. Due to its inertia, both the object’s oscillatory motion and its drift will experience a deviation from 
that of a fluid particle, with the drift of the object typically exceeding the Stokes drift of a fluid particle. This 
study uses two-dimensional numerical simulations to examine the drift of floating objects in unidirectional, 
regular, deep-water waves. We investigate the effects of vorticity and turbulence induced by different object 
shapes. We consider two corner shapes: sharp and round. We investigate object sizes ranging from 1% to 
10% of the wavelength. Three types of (two-dimensional) numerical simulations are performed to explore 
the roles played by viscosity and turbulence: simulations based on the Reynolds-Averaged Navier–Stokes 
equations (RANS), viscid simulations using the Navier–Stokes equations, and inviscid simulations solving the 
Euler equations. Objects smaller than 4% of the wavelength are predicted to have a drift equal to the Stokes 
drift for both corner shapes. As size increases, objects with sharp corners exhibit greater drift enhancement 
compared to round-cornered objects of equivalent size (compared to the Stokes drift, we report a 454% increase 
for a sharp-cornered box and a 134% increase for a round-cornered box, both with an object size of 10% of 
the wavelength). In addition to differences in diffraction patterns and phase differences in the linear motion 
between objects with two different shapes, a new mechanism for drift enhancement, which is caused by the 
vorticity generated by the sharp corners, has been identified. The vorticity that arises due to the sharp corners 
is asymmetrically distributed between the two sides of the object, leading to a non-symmetric dynamic pressure 
field and, thereby, mean horizontal forces in the direction of wave propagation. The influence of viscosity and 
turbulence on drift is explored. Viscosity is found to play a dual role. On the one hand, it induces a phase 
difference in the linear motion and thus increases the drift. On the other hand, viscosity reduces vorticity and 
thereby decreases the drift enhancement. Finally, we define an unsteadiness ratio of object drift to examine 
the effect of non-zero acceleration, revealing a correlation between unsteadiness and drift enhancement.
1. Introduction

Flow around bluff bodies is a topic that has attracted consider-
able interest and has been extensively explored in various engineer-
ing applications over many decades. Bluff-bodied structures, including 
skyscrapers, bridges, wind turbines and (floating) ocean platforms, 
are surrounded by highly unsteady flow fields, characterized by phe-
nomena such as flow separation, shear-layer instability, and vortex 
shedding and reattachment. These phenomena not only impact the 
aerodynamic/hydrodynamic characteristics of the structure but also 
affect the forces and motions experienced by them. Pioneering work on 
the flow around square cylinders (i.e., a three-dimensional geometric 
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shape that has a square base and top, and its side faces are rectan-
gles) was conducted by Roshko (1952), Lyn et al. (1995), Wiliamson 
(1996), who investigated vortex shedding and the properties of the 
turbulent flow. More recently, researchers such as Yoon et al. (2010), 
Yen and Yang (2011), Chen and Xia (2017) performed numerical and 
experimental studies to explore different flow patterns, including flow 
separation, vortex formation and reattachment, across various Reynolds 
numbers and their effects on flow-induced forces.

Much effort has been made to investigate the influence of different 
cross-sectional shapes and corner radii on flow features and flow-
induced loads. Delany and Sorensen (1953) carried out an experimental 
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study for different cross-sectional shapes, including rectangular, ellip-
tical, and diamond shapes, with different corner radii, and explored 
the corresponding variation in drag coefficients for different Reynolds 
numbers. For Reynolds numbers of 105, the drag coefficient remains 
essentially constant or decreases with an increase of the corner radius. 
Bearman et al. (1984) presented experimental measurements using U-
tube water tunnel and investigated the effects of corner radius on 
hydrodynamic forces and loads on bluff bodies with Reynolds numbers 
ranging from 200 to 2 × 104 and Keulegan–Carpenter (KC) numbers 
ranging from 1 to 100. They reported that sharp-cornered bodies expe-
rience flow separation at lower KC values compared to circular shapes, 
and the drag coefficient is reduced with increasing corner rounding, 
especially at relatively high KC numbers. This reduction is more evident 
in oscillatory flow than in steady flow and is highly sensitive to the 
corner radius.

Tamura et al. (1998) used a Computational Fluid Dynamics (CFD) 
model without incorporating a turbulence model to investigate the 
relationship between flow structure, vortex formation, and unsteady 
pressure. They explored various corner shapes (e.g., sharp corners, 
chamfered corners, and round corners) and compared their numerical 
simulations with experimental measurements. Tamura et al. (1998) 
found that slight changes in corner shape could drastically modify 
the pressure distribution on the rectangular cylinder (i.e., a three-
dimensional geometric shape that has a rectangular base and top, 
and its side faces are rectangles) surface and affect drag. The effect 
of corner modification on forces on the object in different turbulent 
flows was investigated further in experiments by Tamura and Miyagi 
(1999). They explained that decreased drag arose due to rounding 
of the corners as a result of different separation patterns and extents 
of reattachment. Hu et al. (2006) put their focus on the near-wake 
structure and experimentally investigated the influence of different 
corner radii. They found that an increase in the corner radius leads 
to a decrease in vortex-shedding strength and vortex-relevant circula-
tion. Sharp-cornered structures exhibit a lower quasi-periodic vortex-
shedding frequency than other objects. Moreover, Hu et al. (2006) 
emphasized that the leading-edge corner radius is most important, as it 
determines to a great extent the behaviour of streamlines, separation 
angle, pressure on the base of the object, and near-wake structure. 
Liang et al. (2016) used Detached Eddy Simulation to simulate the 
vortex-induced motions of four square cylinders in uniform flow and 
compared the results with experiments. The cross-sectional shapes of 
their cylinders were all diamonds with small round-cornered radii. 
They found that the flow characteristics around the downstream cylin-
ders are strongly affected by the vortices induced by the upstream 
cylinders.

Despite extensive research on bluff bodies in steady or unsteady 
flows described above, none of the above studies considered the pres-
ence of a free surface. However, for problems involving structures, such 
as hydrofoils, offshore platforms, wave energy converters, and other 
surface-piercing objects, the presence of a free surface introduces addi-
tional complexity, such as the generation of waves and their interaction 
with boundary layers, vortices and bubbles. The effects of the free 
surface and the surface waves generated for surface-piercing cylinders 
have been studied by several authors (Inoue et al., 1993; Kawamura 
et al., 2002; Lin and Li, 2003). These authors found that the strength 
and frequency of vortex shedding are reduced, while a different insta-
bility mechanism with more random fluctuations of higher frequency 
dominates in the region near the surface. Kandasamy et al. (2005) 
employed Reynolds-Averaged Navier–Stokes (RANS) simulations with 
complementary experiments to investigate the unsteady flow pattern of 
free surface wave-induced separation for two different Froude numbers. 
They found that the formation of shear-layer vortices is also impeded 
by the presence of the free surface. However, it is important to note 
that the water surface in those studies is initially calm without waves, 
and waves are only induced by the motion of the object as the fluid 
flows past the object.
2 
In the ocean environment, structures often encounter both a mean 
flow and free surface waves. Wave run-up around surface-piercing 
cylinders has been extensively explored both numerically and exper-
imentally (Stansberg and Nielsen, 2001; Stansberg and Kristiansen, 
2005; Stansberg et al., 2005; Danmeier et al., 2008; Huang et al., 2008; 
Bøckmann et al., 2014). Recently, Yoon et al. (2016) and Mohseni et al. 
(2018) have conducted unsteady RANS simulations of wave run-up on 
surface-piercing cylinders in regular waves of different wavelengths 
and wave steepnesses. They found that, compared to wave steepness, 
wavelength (relative to object size) is the major factor influencing 
wave-induced loads. Longer waves are more prone to developing vortex 
shedding, and the size of the vortices is highly related to the KC 
number. Moreover, the difference in the velocity direction between 
the crest and the trough disturbs the regular structure of the vortex 
shedding, especially in low-KC cases. Moradi et al. (2015) simulated 
wave-induced fluid-flow resonance in narrow gaps between two fixed 
surface-piercing bodies over a variety of incident wave frequencies 
and evaluated the effects of geometry properties (e.g., different corner 
shapes) of the object on gap-resonance characteristic. They showed 
that changes in corner shape significantly affect the wave elevation in 
the gap during resonance by altering the amount of water trapped in 
the gap. For sharp-cornered objects, the wave height during resonance 
reduces significantly due to large-scale vortex structure and kinetic 
energy dissipation.

Vortical structures observed in simulations using the Volume of 
Fluid-RANS model of Palm et al. (2016) are similar across different 
wave periods, and no wake was found. According to Palm et al. (2018), 
vorticity generated in the flow modifies the driving wave pressure 
distribution and can cause separation, resulting in a reduction of wave 
force amplitude. Palm et al. (2018) found that for geometries with 
sharp edges (e.g., sharp-cornered objects), regions of sharp pressure 
gradients induce drag that is dominated by geometrically induced 
vorticity, while viscosity plays a less important role.

Despite extensive research on the effects of vorticity and turbulence 
on surface-piercing objects that are either fixed or moored in flows 
with waves, relatively little work has been done for freely floating 
objects, which typically undergo net drift in the direction of wave 
propagation. For an idealized fluid parcel in a flow without a Eulerian-
mean current, this drift is equal to Stokes drift (Stokes, 1847). Since 
Stokes first described this drift, now 177 years ago, it has been widely 
explored in experimental and theoretical studies (see Van den Bremer 
and Breivik (2018) for a review). However, as Stokes drift is derived 
for an idealized fluid particle based on ideal-fluid and irrotational-flow 
assumptions, it may not accurately predict the drift of a freely floating 
object in the real ocean. Ignoring the Earth’s rotation, which becomes 
relevant only for large spatial and temporal scales, there are four main 
factors affecting the drift. First, wave breaking has been shown to 
increase drift at the wave surface compared to non-breaking waves and 
may alter Lagrangian transport in realistic wave fields (Deike et al., 
2017; Sinnis et al., 2021; Eeltink et al., 2023). Second, the presence of 
viscosity may lead to additional drift due to velocity streaming within 
the boundary layer beneath the water surface (Longuet-Higgins, 1953; 
Grue and Kolaas, 2017). Vorticity from the boundary layers may be 
advected or diffused into the interior of the fluid, affecting the transport 
of particles (Longuet-Higgins, 1953). Third, inertial objects of non-
negligible size exhibit non-Lagrangian drift behaviour (Calvert et al., 
2021; DiBenedetto et al., 2022). Drift enhancement for inertial objects 
has been found for objects with sizes larger than several percent of the 
wavelenghth and such enhancement can vary depending on the objects’ 
shape (Calvert et al., 2021). Fourth, diffraction effects caused by the 
presence of objects can induce drift enhancement for relatively large 
objects. Xiao et al. (2024a) introduced a diffraction-modified Stokes 
drift to predict the enhanced drift resulting from diffraction. They 
observed that the drift enhancement is closely linked to a standing-
wave pattern generated by wave diffraction. This diffraction-related 
mechanism for drift enhancement is further supported by the laboratory 
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study of Xiao et al. (2024b). The effects of size, shape, wave steepness 
and viscosity on an objects’ drift are explored in Xiao et al. (2024a). 
However, in their study, the object’s shape was always chosen to be 
round-cornered in order to avoid the generation of vorticity due to 
sharp gradients of the geometry, that is, sharp corners.

This paper aims to investigate the effects of vorticity and turbulence 
induced by the geometry of the object along with the effects of viscosity 
on the forces and mean drift velocity of freely floating objects of differ-
ent sizes and for different wave steepnesses. The geometry of the object 
is varied by considering two different corner shapes (sharp and round). 
Velocity and pressure fields, as well as vortex structures, are analysed. 
We use the two-dimensional hybrid numerical model, QaleFOAM (Li 
et al., 2018; Yan et al., 2019; Gong et al., 2020), and conduct three 
types of simulations for each case, which respectively solve the RANS, 
Navier–Stokes (viscid) and Euler (inviscid) equations (henceforth, the 
RANS, Navier–Stokes and Euler simulations) to investigate the effects 
of viscosity and turbulence. We report significant differences in the 
mean drift of relatively large objects with sharp corners compared 
to round-cornered objects. This paper is an extension of Xiao et al. 
(2024a,b). It uses the same numerical model as Xiao et al. (2024a) 
and compares to the results for objects with round corners therein. The 
experimental data from Xiao et al. (2024b) are used for comparison. For 
completeness, we note that the RANS and Navier–Stokes simulations 
in Xiao et al. (2024a) gave nearly identical results for drift of objects 
with round corners; we do not revisit these results herein.

2. Numerical model

The hybrid numerical model QaleFOAM is employed in this paper; it 
is based on a domain-decomposition method and couples a fully non-
linear potential-flow solver, QALE-FEM (Quasi Arbitrary Lagrangian-
Eulerian Finite Element Method), with a two-phase incompressible 
Navier–Stokes solver. The hybrid numerical domain of QaleFOAM 
along with the object location are shown in Fig.  1. The region of 
interest, typically near the object and referred to as the Navier–Stokes 
domain, encompasses small-scale complex physics and is modelled 
using the two-phase incompressible InterDyMFoam solver available 
within OpenFOAM. This solver employs the Volume of Fluid (VoF) 
method to discern the interface between two fluids. Conversely, the 
larger region, termed the QALE-FEM domain, is used to simulate wave 
propagation and evolution and employs the QALE-FEM potential-flow 
solver. One-way coupling scheme is adopted, in which the QALE-
FEM solver provides wave solutions to the InterDyMFoam solver at 
the coupling interfaces but does not feed any solutions back. Wave 
generation and absorption are implemented within the QaleFOAM 
solver with wave absorbers deployed at the interfaces of the two models 
to manage reflected and radiated waves. Given the two-dimensional 
nature of the calculations, the front and back boundaries of the Navier–
Stokes model are turned off. For further details of the QaleFOAM solver, 
readers are referred to Li et al. (2018), Yan et al. (2019), Gong et al. 
(2020) and Xiao et al. (2024a) and related references therein. In the 
InterDyMFoam solver, there are inlet, outlet, bottom, atmosphere, and 
body surface boundaries over which we need to define the boundary 
conditions (BC) for the variables we compute: volume phase fraction 
𝛼, pressure 𝑝 and velocity 𝐮 = (𝑢,𝑤). The detailed boundary-condition 
types are given in Table  1 (see the caption for an explanation of 
the terms), where a no-flow, free-slip condition (𝑠𝑙𝑖𝑝) is used for the 
bottom, as we study waves in deep water. Following Moradi et al. 
(2015), we use the divergence scheme 𝐺𝑎𝑢𝑠𝑠𝑀𝑈𝑆𝐶𝐿 for the advection 
term in the momentum equation. The discretization schemes that we 
use in our model are listed in Table  2. The 𝑃𝐼𝑀𝑃𝐿𝐸 algorithm is 
used for velocity–pressure coupling. We use an adjustable time step 
controlled by the maximum Courant number Co = 𝛥𝑡|𝐮|

𝛥𝑥 , in which |𝐮|
refers to the absolute velocity in the flow, and 𝛥𝑡 and 𝛥𝑥 are the time 
and space resolutions, respectively. The maximum Courant number is 
given by Co = 0.25. The effect of surface tension is ignored in all our 
3 
simulations. A convergence study and a validation and verification of 
the numerical model are given in Appendices  A and B, respectively.

This paper presents three types of simulations: RANS simulations , 
which respectively solve the RANS, Navier–Stokes (viscid) and Euler 
(inviscid) equations (henceforth, RANS, Navier–Stokes and Euler simu-
lations). In the Reynolds averaged Navier–Stokes (RANS) simulations, 
following Yu and Li (2013) and Li et al. (2018), we use a 𝑘–𝜔 𝑆𝑆𝑇
turbulence model. Due to the importance of accurately predicting forces 
for evaluating drift, we use a wall-resolving treatment for near-wall 
regions. As required by the wall-resolving treatment, the boundary 
conditions on the body surface are set as follows: the kinetic turbulent 
energy 𝑘𝑒 is initialized with a very small value 1.0 × 10−12 with the 
boundary condition set as the 𝑓𝑖𝑥𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 type; the turbulent viscosity 
𝜈𝑡 is 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 with an initial value 0 and the turbulent specific 
dissipation rate 𝜔 is initialized using a 𝑓𝑖𝑥𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 condition with a 
value calculated by 𝜔 = 60𝜈

0.075𝑦2 , in which 𝑦 is the distance to the first 
cell centre normal to the wall. We have conducted sensitivity tests of 
different boundary conditions for wall conditions (including of low-
Reynolds number wall functions and of high-low Reynolds number 
blended wall functions) with various initial values. However, these 
tests have shown little impact on the results, as our near-wall mesh 
is sufficiently fine, ensuring that the non-dimensional wall distance 
𝑦+ < 1 and the first-layer wall cell is always located in the viscous 
sublayer. Navier–Stokes simulations solve the incompressible Navier–
Stokes equations without any turbulence model. Euler simulations are 
based on incompressible Euler equations, which are compared with 
RANS and Navier–Stokes simulations to identify the effect of viscosity. 
Although Euler simulations do not include viscosity, they support flow 
rotation (i.e., vorticity). Despite their inability to model boundary-layer 
separation effects due to the absence of near-wall shear stress, Euler 
equations are widely used to study the vorticity generated in regions 
with high pressure and velocity gradients such as those induced by high 
wall curvature (Spalart, 1998; Yang et al., 2007; Palm et al., 2018). This 
geometrically induced vorticity is inherently triggered by the numerical 
viscosity from the discretization. Comparison between the three types 
of simulations (RANS, Navier–Stokes and Euler) allows us to assess the 
effects of viscosity, vorticity and turbulence.

In the present paper, we investigate the flow dynamics around a 
two-dimensional (2D) bluff body floating on the water surface in the 
presence of incoming waves but in the absence of a mean current. We 
consider two types of objects: stationary objects and moving objects. 
To better characterize our problem, we introduce the particle Reynolds 
number (Re), which is different from the Reynolds number of the 
flow itself, and the Keulegan–Carpenter (KC) number separately for 
each type of object. For moving objects, we follow Xiao et al. (2024a) 
and define a particle Reynolds number Re𝑥 by using the characteristic 
length of the object, denoted as 𝑙 (equal to the length of the object), 
and the horizontal velocity difference between the object and the 
fluid: particle Re𝑥 = |𝑢𝑜,𝑥 − 𝑢𝑓,𝑥|𝑙∕𝜈. Here, 𝑢𝑜,𝑥 and 𝑢𝑓,𝑥 denote the 
magnitudes of the horizontal velocities of the object and the fluid, 
respectively, and 𝜈 is the kinematic viscosity of the fluid. We estimate 
𝑢𝑓,𝑥 = 𝑎𝑤𝜔𝑒𝑒−𝑘ℎ𝑑  and 𝑢𝑜,𝑥 = 𝐴𝑥𝜔𝑒, where 𝑎𝑤 is the wave amplitude, 
𝜔𝑒 is the wave angular frequency, 𝑘 is the wave number, ℎ𝑑 is the 
submergence (draft) of the object and 𝐴𝑥 is the magnitude of the 
horizontal oscillatory motion of the object. The KC number is defined as 
KC= |𝑢𝑜,𝑧 − 𝑢𝑓,𝑧|𝑇 ∕ℎ𝑑 , where 𝑢𝑜,𝑧 and 𝑢𝑓,𝑧 denote the magnitude of the 
vertical velocity of the object and the fluid, respectively, and 𝑇 = 2𝜋∕𝜔𝑒
is the wave period. We estimate 𝑢𝑓,𝑧 = 𝑎𝑤𝜔𝑒𝑒−𝑘ℎ𝑑  and 𝑢𝑜,𝑧 = 𝐴𝑧𝜔𝑒, 
where 𝐴𝑧 is the magnitude of the vertical oscillatory motion of the 
object. For stationary objects, the particle Reynolds and KC numbers are 
obtained by setting 𝑢𝑜,𝑥 = 0 and 𝑢𝑜,𝑧 = 0, since the object is stationary. 
The Reynolds number measures the ratio of inertial forces to viscous 
forces, with laminar flow dominating at low Reynolds numbers and 
turbulent flow at high Reynolds numbers, which thereby helps predict 
flow patterns and vortex structures. On the other hand, the KC number 
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Fig. 1. Schematic of the domains and object location in hybrid QaleFOAM model.
Source: From Xiao et al. (2024a).
Table 1
Setup of boundary conditions for different variables in our numerical simulations. 𝛼 is the 
volume phase fraction, 𝑝 represents the pressure and u denotes the velocity field. The conditions 
in italics are the standard conditions available in the OpenFOAM platform and the ‘Coupled’ 
conditions represent the boundary conditions that are coupled with the QaleFEM solver. The 
boundary conditions, as described in the OpenFOAM official user guide and manual, are as 
follows: ‘𝑖𝑛𝑙𝑒𝑡𝑂𝑢𝑡𝑙𝑒𝑡’ serves as a generic outflow condition, allowing for specified inflow when 
there is return flow; ‘𝑡𝑜𝑡𝑎𝑙𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒’ establishes a total pressure condition; ‘𝑓𝑖𝑥𝑒𝑑𝐹 𝑙𝑢𝑥𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒’ 
sets the pressure gradient to a provided value such that the flux on the boundary matches 
the specified velocity boundary condition; ‘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐼𝑛𝑙𝑒𝑡𝑂𝑢𝑡𝑙𝑒𝑡𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦’ is a velocity inlet/outlet 
boundary condition applied to pressure boundaries where pressure is specified. For outflow, a 
zero-gradient condition is applied based on the flux, while for inflow, the velocity is determined 
from the patch-face normal component of the internal-cell value; ‘𝑠𝑙𝑖𝑝’ refers to a no-flow, free-
slip condition (𝑠𝑙𝑖𝑝); ‘𝑛𝑜𝑆𝑙𝑖𝑝’ restrains velocity to zero at walls; ‘𝑚𝑜𝑣𝑖𝑛𝑔𝑊 𝑎𝑙𝑙𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦’ provides a 
velocity value for moving walls. For the object surface, we use three different types of velocity 
boundary conditions for different types of simulations: 𝑚𝑜𝑣𝑖𝑛𝑔𝑊 𝑎𝑙𝑙𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is used for moving 
objects (for both the Navier–Stokes and the Euler simulations), 𝑛𝑜𝑆𝑙𝑖𝑝 is used for stationary 
objects in the Navier–Stokes simulations, and 𝑠𝑙𝑖𝑝 is used for Euler simulations of stationary 
objects.

Boundary 𝛼 𝑝 u

Inlet Coupled 𝑓𝑖𝑥𝑒𝑑𝐹 𝑙𝑢𝑥𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 Coupled
Outlet Coupled 𝑓𝑖𝑥𝑒𝑑𝐹 𝑙𝑢𝑥𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 Coupled
Bottom 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑙𝑖𝑝
Atmosphere 𝑖𝑛𝑙𝑒𝑡𝑂𝑢𝑡𝑙𝑒𝑡 𝑡𝑜𝑡𝑎𝑙𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐼𝑛𝑙𝑒𝑡𝑂𝑢𝑡𝑙𝑒𝑡𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦
Body surface 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓 𝑖𝑥𝑒𝑑𝐹 𝑙𝑢𝑥𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑚𝑜𝑣𝑖𝑛𝑔𝑊 𝑎𝑙𝑙𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦/𝑛𝑜𝑆𝑙𝑖𝑝/𝑠𝑙𝑖𝑝
Table 2
Discretization schemes used in our numerical simulations, where 𝑡 and u refer to time and velocity, respectively; 𝜌 denotes the fluid density, 𝜙 refers to the mass flux across the cell 
faces (i.e., the mass flow rate per unit area across a cell face); for an incompressible fluid, it is replaced by the velocity. 𝛼 is the volume fraction and 𝛼𝑟𝑏 is related to an artificial 
compression term. 𝜙𝑟𝑏 is the mass flux related to 𝛼𝑟𝑏. Turbulent modelling-related terms refer to the convection terms of turbulent kinetic energy (TKE) 𝑘𝑒 and the specific rate 
of dissipation 𝜔 in RANS simulations. 𝜇𝑒𝑓𝑓  is the effective dynamic viscosity, which encompasses both the molecular dynamic viscosity and the turbulent viscosity. The column 
‘Setup in OpenFOAM’ corresponding to the terms used in 𝑓𝑣𝑆𝑐ℎ𝑒𝑚𝑒𝑠 (a setup file name) in OpenFOAM. The schemes in italics are standard schemes available in OpenFOAM.
 Terms Symbol Setup in OpenFOAM Schemes  
 Temporal 𝜕∕𝜕𝑡 ddtSchemes 𝐶𝑟𝑎𝑛𝑘𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛0.9  
 Gradient terms ∇ gradSchemes 𝑐𝑒𝑙𝑙𝑀𝐷𝐿𝑖𝑚𝑖𝑡𝑒𝑑𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟1  
 Momentum advection term ∇ ⋅ (𝜌𝜙u) div(rhoPhi,U) 𝐺𝑎𝑢𝑠𝑠𝑀𝑈𝑆𝐶𝐿  
 Phase fraction-related terms ∇ ⋅ (𝜙𝛼) div(phi,alpha) 𝐺𝑎𝑢𝑠𝑠𝑣𝑎𝑛𝐿𝑒𝑒𝑟  
 ∇ ⋅ (𝜙𝑟𝑏𝛼) div(phirb,alpha) 𝐺𝑎𝑢𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟 
 Turbulence modelling-related terms ∇ ⋅ (𝜙𝑘𝑒) div(phi, 𝑘𝑒) 𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑈𝑝𝑤𝑖𝑛𝑑𝑙𝑖𝑚𝑖𝑡𝑒𝑑𝐺𝑟𝑎𝑑  
 ∇ ⋅ (𝜙𝜔) div(phi,omega) 𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑈𝑝𝑤𝑖𝑛𝑑𝑙𝑖𝑚𝑖𝑡𝑒𝑑𝐺𝑟𝑎𝑑  
 Viscosity term ∇ ⋅ 𝜇𝑒𝑓𝑓∇u div((muEff*dev(T(grad(U))))) 𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟  
 Diffusive terms ∇ ⋅ (∇) laplacianSchemes 𝐺𝑎𝑢𝑠𝑠𝑙𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  
describes the relative importance of drag forces compared to inertial 
forces. A small KC number suggests inertia dominates, while a large 
KC number indicates the drag forces being more important. The KC 
number can be interpreted as the ratio of the travel distance of fluid 
particles to the length of the object, thus indicating the likelihood of 
boundary-layer separation.

We use objects with two corner types: round and sharp. Their 
dimensions are illustrated in Fig.  2 with values given in Table  3, where 
𝑙 represents the object’s length, ℎ is the height, and ℎ𝑑 is the draft. For 
objects of different shapes but equal size (i.e., length 𝑙), we maintain 
equal density and draft. The second moment of inertia differs slightly 
between the two shapes; this small difference probably only has a 
4 
minor effect on the object’s motion, as the rotational degree of freedom 
was found to be unimportant by Xiao et al. (2024a). A non-uniform 
density distribution could have been used to obtain a second moment 
of inertia that is equal for the two object shapes. We do not explore this 
possibility, as this would make comparison with numerical simulations 
in Xiao et al. (2024a) and experiments in Xiao et al. (2024b), which 
both have a uniform density distribution, harder.

3. Results

To explore the effects of vorticity and turbulence induced by the 
geometry of the object on the drift behaviour of floating objects of 
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Fig. 2. Shapes and dimensions of the objects with two different corner types: (a) Sharp-cornered boxes (SCBs) and round-cornered boxes (RCBs).
Table 3
Object dimensions of sharp-cornered boxes and round-cornered boxes with a constant density of 𝜌 = 781 kg∕m3 and aspect ratio ℎ𝑑∕𝑙 = 0.67.
 
SCB & RCB

𝑙∕𝜆 (%) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
 𝑙 (m) 0.037 0.07 0.11 0.15 0.19 0.22 0.26 0.29 0.33 0.37 
 ℎ𝑑 (m) 0.025 0.05 0.075 0.10 0.13 0.15 0.18 0.20 0.23 0.25 
 ℎ (m) 0.055 0.08 0.105 0.13 0.16 0.19 0.22 0.26 0.29 0.32 
 SCB

𝑟 (m) 0 0 0 0 0 0 0 0 0 0  
 RCB 0.006 0.012 0.018 0.024 0.03 0.036 0.043 0.048 0.054 0.06 
Table 4
Mean values of 𝑦+ for Navier–Stokes and RANS simulations of sharp-cornered boxes. 
The mean value is obtained by averaging the time-averaged (over the whole simulation 
duration) 𝑦+ value over the body surface of the object.
 𝑙∕𝜆 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

 Navier–Stokes 0.22 0.26 0.34 0.38 0.42 0.46 0.48 0.51 0.58 0.63 
 RANS 0.21 0.29 0.23 0.45 0.42 0.44 0.47 0.51 0.55 0.59 

different sizes, we consider objects with two different shapes (cf. Fig.  2). 
For each shape, we vary the size of the objects systematically. The wave 
condition used for moving objects is 𝑎𝑤 = 0.02 m, 𝜖 = 𝑘𝑎𝑤 = 0.034 (𝜖 is 
the wave steepness), 𝜆 = 3.69 m. To present our results, we introduce 
two dimensionless parameters that describe shape and size: the relative 
object size, defined as 𝑙∕𝜆, and the relative radius of the corners of 
the round-cornered box, defined as 𝑟∕ℎ𝑑 , where 𝑟 is the radius of the 
round corners. Throughout our simulations, the relative size of the 
objects ranges from 1% to 10% in 1%-point steps, while the relative 
radius of the corners of the round-cornered box remains constant at 
𝑟∕ℎ𝑑 = 0.24. Detailed dimensional parameters are provided in Table  3. 
We maintain a fixed box density of 𝜌 = 781 kg∕m3 and aspect ratio 
ℎ𝑑∕𝑙 = 0.67. The width of the round-cornered boxes is set equal to 
their height, while the width of the sharp-cornered boxes is adjusted 
to ensure equivalent mass to their round-cornered counterparts. The 
mass and moment of inertia of these objects in Table  3 can be easily 
calculated and are not provided here. To avoid green-water impact, it 
is essential to ensure the freeboard of the object exceeds the local wave 
amplitude. However, if we maintain the density and aspect ratio of the 
object, for a relative size smaller than 5%, the freeboard becomes less 
than 0.03 m, which is the minimum value to avoid green water if we 
consider an incident wave amplitude of 𝑎𝑤 = 0.02 m, which is locally 
enhanced. Therefore, we set the freeboard of those objects to be at least 
0.03 m, which creates a further problem. Boxes with such dimensions 
are not hydro-dynamically stable. We therefore constrain the rotation 
for object with a relative size 𝑙∕𝜆 ≤ 5%. Considering the constant ratio 
of submergence depth to size ℎ𝑑∕𝑙, we anticipate that this constraint 
only leads to differences in the results (Xiao et al., 2024a).

To obtain a range of relative size 𝑙∕𝜆, we vary the object size 𝑙 rather 
than the incident wavelength 𝜆 for two reasons. First, maintaining a 
constant wavelength (frequency) ensures consistent wave properties 
encountered by the different objects, which is particularly crucial for 
comparison with laboratory experiments. By changing the object size, 
we can use wave frequencies that exhibit desirable wave properties in 
5 
a tank, such as minimal lateral variation of the wave field and low 
reflection coefficients. Second, using a constant wave amplitude allows 
us to cover a broader range of relative sizes. Otherwise, to maintain 
a constant wave steepness, the required wave amplitude would either 
lower (for large relative size) or higher (for small relative size) than 
what can be practically generated in the laboratory.

For each size of the sharp-cornered box, three types of simulations 
are conducted: RANS, Navier–Stokes, and Euler simulations. However, 
for the round-cornered box, only Navier–Stokes and Euler simulations 
are considered here. As mentioned before, this is based on the findings 
by Xiao et al. (2024a), which demonstrate a high level of similarity 
between the results from RANS and Navier–Stokes simulations for 
round-corned boxes. Shorthands are used in the figures below to denote 
different types of simulations: ‘SCB-RANS’ for RANS simulations of 
sharp-cornered boxes, ‘SCB-Navier–Stokes’ for Navier–Stokes simula-
tions of sharp-cornered boxes, ‘SCB-Euler’ for Euler simulations of 
sharp-cornered boxes, and similarly for round cornered boxes (‘RCB’). 
The ‘RCB’ simulations are from Xiao et al. (2024a) and used for 
comparison.

To better explain the difference in the flow field, pressure distribu-
tion, and resultant forces, which result in a difference in drift velocity, 
simulations for stationary objects were performed. This analysis was 
specifically carried out for the largest objects (i.e., 𝑙∕𝜆 = 10%). Sim-
ulations of stationary objects allow a clearer definition of the relative 
velocity between the fluid and the objects and have more distinct flow 
and vorticity field.

We will start our analysis with the motion and drift behaviour of 
moving objects in Section 3.1, followed by the flow field, pressure 
distribution and forces for stationary objects in Section 3.2.

3.1. Analysis of moving objects

We first address the drift of moving objects. To ensure that the 
mesh resolution across all cases is sufficiently fine to accommodate a 
wall-resolved turbulent model, it is essential to maintain an average 𝑦+
value below 1 throughout the entire simulation duration. Table  4 lists 
the average 𝑦+ values for simulations of sharp-cornered boxes (both 
RANS and Navier–Stokes simulations). The mean 𝑦+ value is obtained 
by first averaging the values across the entire object surface in space 
and then throughout the simulation in time. As demonstrated in Table 
4, the mean 𝑦+ values for all cases remain below 1. Note that the 
InterDyMFoam uses a dynamic mesh, which can result in significant 
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Fig. 3. Oscillatory motion of objects with different corner shapes in different types of simulations in both horizontal and vertical directions: oscillatory motion amplitudes 
(normalized by input wave amplitude 𝑎𝑤) as a function of relative object size (a) in the horizontal direction 𝐴𝑥∕𝑎𝑤 and (b) in the vertical direction 𝐴𝑧∕𝑎𝑤; phase differences of the 
oscillatory motion between a finite-size object (𝜃𝑥 , 𝜃𝑧) and a Lagrangian particle (𝜃𝑥0 , 𝜃𝑧0) with (c) in the horizontal direction (𝜃𝑥 − 𝜃𝑥0) and (d) in the vertical direction (𝜃𝑧 − 𝜃𝑧0). 
The red line denotes the results for an ideal Lagrangian particle.
Table 5
Particle Reynolds and Keulegan–Carpenter numbers of moving objects for both round-cornered and sharp-cornered boxes.
 𝑙∕𝜆 (%) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
 Re𝑥 1.80 × 101 2.02 × 102 3.06 × 102 8.52 × 102 1.41 × 103 1.78 × 103 2.78 × 103 3.51 × 103 4.04 × 103 6.96 × 103 
 SCB KC 0.24 0.24 0.22 0.24 0.26 0.27 0.30 0.32 0.35 0.38  
 Re𝑥 6.0 2.31 × 102 4.70 × 102 7.63 × 102 1.18 × 103 1.75 × 103 2.31 × 103 2.83 × 103 3.38 × 103 3.85 × 103 
 RCB KC 0.27 0.24 0.24 0.24 0.25 0.26 0.28 0.30 0.33 0.36  
mesh deformation and distortion when large displacement happens. 
However, in the cases evaluated here, the displacement (drift) over the 
duration is not substantial, allowing the solver to maintain accuracy 
and convergence as the object moves. The particle Reynolds number 
and Keulegan–Carpenter numbers for both types of objects are given 
in Table  5. As suggested in the table, the particle Reynolds number 
falls within the range of 5 < Re𝑥 < 3 × 105 and the KC numbers satisfy 
0 < KC < 0.4. Because there is limited literature on flow regimes around 
square cylinders in oscillatory flow with a free surface (cf. Tong et al. 
(2017)), we use the flow regimes around a circular cylinder in steady 
current to identify current flow regime. Most of our simulations fall 
within the subcritical region, where 300 < Re𝑥 < 3 × 105. This suggests 
laminar boundary layer separation with a turbulent wake. Regarding 
the KC number, according to Sumer et al. (2006), Yoon et al. (2016) 
6 
and Mohseni et al. (2018), when KC < 3, the flow is inertia-dominated 
and the effects of boundary layer separation and vorticity are small. 
Although vortex formation and a wake structure are observed around 
the object in our simulations of sharp-cornered boxes, no distinct flow 
separation has been found to occur.

3.1.1. Object motion and drift
The simulation results are shown in Figs.  3 and 4. Fig.  3 shows the 

linear oscillatory motions, encompassing both motion amplitudes and 
phases in both horizontal and vertical directions. The amplitudes and 
phases of these oscillatory motions are determined by evaluating the 
phase and magnitude of the linear components only, filtering out sub- 
and super-harmonics components after the quasi-steady state has been 
achieved. Fig.  4(a) illustrates the celerity-normalized drift velocity for 
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Fig. 4. Drift and local surface elevation for different types of simulations for objects with different corner shapes: (a) celerity-normalized drift velocity 𝑢𝑂∕𝑐 as a function of 
relative object size; (b) amplitude of the local surface elevation 𝑎(𝑥) (normalized by incoming wave amplitude 𝑎𝑤) as a function of horizontal distance (scaled by wavenumber) 
from the centre of mass 𝑥𝑐 (i.e., standing wave pattern) for an object with relative size 𝑙∕𝜆 = 7%. The object boundaries represent the left and right sides of the objects.
Fig. 5. Examining unsteadiness of the drift velocity of sharp-cornered objects: (a) dependence of drift velocity on the assumed start of the quasi-steady state 𝑡𝑠 as a function of 
object relative size for the RANS simulations. For each relative size, seven different values of 𝑡𝑠 are shown, ranging from 23 s to 45 s (i.e., 15𝑇  to 30𝑇 ). The red lines are the 
drift reported in Fig.  4(a) using 𝑡𝑠 = 21𝑇 ; (b) an illustrative example showcasing different types of fits of the horizontal trajectory from the RANS simulations for 𝑙∕𝜆 = 10%. 
Here, 𝑥𝑂 denotes the horizontal position of the object at time 𝑡, with 𝑥𝑂,0 representing the initial position at 𝑡 = 0 s. The red line denotes the linear fit: 𝑥𝑂,𝐿𝐹 (𝑡) = 14.5𝑡 − 388.4
(the approach used in Section 3.1.1); the blue line corresponds to the second-order fit: 𝑥𝑂,𝑆𝐹 = 0.067𝑡2 + 7.5𝑡 + 214.3, while the exponentially decaying fit is represented by 
𝑥𝑂,𝐸𝐹 = 740.1𝑒−0.0385𝑡 + 18.64𝑡+ 710. The Stokes drift in this case is 𝑢𝑆 = 2.78 mm/s. Both linear and second-order fits use the trajectory data after 𝑡𝑠 = 32 s, whereas the exponential 
decay fit uses all the trajectory data including from before 𝑡 = 32 s.
all simulation types. Across all cases, a time of 𝑡𝑠 = 21𝑇  is employed 
to define the quasi-steady state, where 𝑇  is the wave period. Fig.  4(b) 
displays the standing wave pattern as defined in Xiao et al. (2024a) for 
different simulation types and for sharp-cornered and round-cornered 
boxes with a relative size of 𝑙∕𝜆 = 7%. The standing wave pattern 
depicts the local wave amplitude at different locations around the 
object. The local wave amplitude is obtained by time averaging the 
magnitude of the surface elevation at specific locations after achieving a 
quasi-steady state. The surface wave elevation is measured using virtual 
wave probes in the earth-fixed coordinates system.
7 
Oscillatory motion: To examine the effects of corner shape on object 
motions, we analyse the amplitudes of oscillatory motions as depicted 
in Fig.  3(a). Consistent with findings by Xiao et al. (2024a), it is 
observed that as the object size increases, the amplitudes of horizontal 
oscillatory motion decrease, while those of vertical oscillatory motion 
increase. Notably, for relatively large objects, sharp-cornered boxes 
demonstrate a slightly smaller reduction in horizontal motion am-
plitude compared to round-cornered boxes. However, the amplitudes 
of vertical motion for both types of objects are very similar for all 
relative sizes studied. For sharp-cornered boxes, a comparison between 
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the ‘SCB-Navier–Stokes’ and ‘SCB-Euler’ reveals that the inclusion of 
viscosity leads to negligible differences in both horizontal and vertical 
motion amplitudes.

In Fig.  3(c) and (d), a phase lead in the horizontal direction and 
a phase lag in the vertical direction are observed, qualitatively con-
sistent with the findings of Xiao et al. (2024a). Comparison between 
the two types of objects reveals that when the object size is small, 
the sharp corners of the objects exhibit less phase difference in both 
directions, while larger phase differences are observed for large objects. 
Furthermore, comparing ‘RCB-Navier–Stokes’ and ‘RCB-Euler’ shows 
that the inclusion of viscosity causes a slightly greater phase lead in 
the horizontal direction and a greater phase lag in the vertical direc-
tion for round-cornered boxes. Conversely, for sharp-cornered boxes, 
the inclusion of viscosity (that is ‘SCB-Navier–Stokes’ vs. ‘SCB-Euler’) 
does not significantly affect the phase differences in both directions. 
However, in contrast to ‘SCB-Navier–Stokes’ and ‘SCB-Euler’, the ‘SCB-
RANS’ simulations exhibit a non-monotonic trend as the object size 
increases. This can be explained by the fact that the inclusion of the 
turbulent viscosity alters the object motion phase in a slightly different 
way as the object becomes larger.

Overall, the linear motion and phases of the objects in both di-
rections do not exhibit significant differences between objects with 
different corner shapes and between the different types of simulations.

Object drift and standing wave pattern: we move on to the examine 
drift velocity in Fig.  4(a). For both types of objects, small objects 
have a drift equal to the Stokes drift, while larger objects exhibit 
enhanced drift compared to the theoretical Stokes drift, and such drift 
enhancement increases with object size, as observed and reported 
by Xiao et al. (2024a). However, a notable difference is observed 
between sharp-cornered and round-cornered boxes. The enhanced drift 
for round-cornered boxes becomes distinct when the object is 𝑙∕𝜆 ≥ 8%, 
whereas the drift enhancement for sharp-cornered boxes is noticeable 
for objects as small as 𝑙∕𝜆 = 4%. Moreover, the drift enhancement for 
sharp-cornered boxes is larger. The inclusion of viscosity increases the 
drift enhancement for round-cornered boxes, while decreasing the drift 
enhancement for sharp-cornered boxes, suggesting an additional role 
played by viscosity in the case of sharp-cornered boxes due to their 
different corner shapes. The inclusion of a turbulence model further 
reduces the drift enhancement for sharp-cornered boxes by a small 
amount (‘SCB-RANS’).

In Fig.  4(b), the standing wave patterns for the different types 
of simulations and objects are reported. The inclusion of viscosity 
(‘Navier–Stokes’ or ‘RANS’) does not have an obvious influence on the 
standing wave pattern. However, sharp-cornered boxes experience a 
more distinct standing wave pattern with a larger local maximum on 
the upstream side and a smaller local minimum on the downstream 
side. According to Xiao et al. (2024a), the standing wave pattern is 
related to diffraction, which results in drift enhancement. The more 
capable the object is to ‘impede’ the wave field (i.e., the less streamlined 
the object is), the more its drift will be enhanced. Therefore, the 
difference in drift enhancement between two types of objects can partly 
be explained by the different standing wave patterns.

Given that a standing wave pattern with a local maximum of 𝑎∕𝑎𝑤 =
1.12 in Xiao et al. (2024a) results in a 92% increase in drift relative to 
standard Stokes drift, the amplitude difference between the standing 
wave patterns (with a local maximum 𝑎∕𝑎𝑤 = 1.026 for sharp-cornered 
box vs. 𝑎∕𝑎𝑤 = 1.017 for round-cornered boxes) between the two types 
of objects is not sufficient to explain the 176% increase in drift of sharp-
cornered boxes relative to round-cornered boxes with a relative size of 
𝑙∕𝜆 = 7%. The phase difference of linear motion in Fig.  3 may induce 
small differences in drift enhancement between the two types of objects 
according to Calvert et al. (2021) and Xiao et al. (2024a), but there 
must be another explanation to what we observe here.
8 
3.1.2. Drift unsteadiness
Motivated by the difference in drift enhancement between the two 

types of objects, we revisit the object’s trajectory to examine the drift 
velocity. Previous research, including studies by Nath (1978), Huang 
et al. (2011), Calvert et al. (2021) and Xiao et al. (2024a), has evaluated 
drift velocity from drift trajectories using a linear-fit approach after 
a quasi-steady has been achieved, based on the assumption of steady 
drift. This same approach is applied in Section 3.1.1. However, in this 
section, we re-evaluate the drift trajectory of the objects and examine 
whether it is indeed steady. In Section 3.1.1, we investigated the drift 
by removing data before the start of the quasi-steady state 𝑡𝑠 and 
performing a linear fit to its horizontal trajectory. Here, we begin by 
testing the sensitivity of the drift evaluated for different 𝑡𝑠 values, using 
RANS simulations of sharp-cornered boxes, as shown in Fig.  5 (a). The 
drift velocity shows little dependence on 𝑡𝑠 for smaller objects, while 
varying more for larger objects. This dependence could arise because 
larger objects have a greater mass and require more time to achieve 
steady state. Nevertheless, the variations in drift velocity are considered 
small relative to the drift and drift enhancement. Hence, it is reasonable 
to conclude that 𝑡𝑠 = 21𝑇  is an appropriate value for both types of 
objects. The steady state not having been reached, therefore, cannot 
account for the difference in drift enhancement between the two object 
types.

Next, we explore the linear fit approach. A sample trajectory for 
𝑙∕𝜆 = 10% obtained from RANS simulation is presented in Fig.  5(b). 
Upon closer examination, it becomes apparent that the trajectory may 
contain other components of behaviour besides the oscillatory compo-
nent and the constant drift. To examine this further, we perform three 
types of fits to the object drift trajectory in our data: a linear fit (LF), a 
second-order fit (SF) and an exponentially decaying fit (EF). The fitting 
functions are as follows: 
𝑥𝑂,𝐿𝐹 (𝑡) = 𝑢𝑂,𝐿𝐹 𝑡 + 𝑑𝐿𝐹 , (1)

𝑥𝑂,𝑆𝐹 (𝑡) = 𝑠𝑂,𝑆𝐹 𝑡
2 + 𝑢𝑂,𝑆𝐹 𝑡 + 𝑑𝑆𝐹 , (2)

𝑥𝑂,𝐸𝐹 (𝑡) = 𝑒𝑂,𝐸𝐹 𝑒
−𝑏𝑂,𝐸𝐹 𝑡 + 𝑢𝑂,𝐸𝐹 𝑡 + 𝑑𝐸𝐹 . (3)

All of the fits are performed after filtering out the linear oscillatory 
part of the motion, retaining only the drift. The linear fit assumes that 
the object moves steadily with a constant drift. On the other hand, the 
second-order fit describes an accelerating motion, incorporating both 
linear and quadratic terms in time. In contrast, the exponential decay 
fit characterizes the drift motion as a combination of a constant linear 
drift speed and a transient component that decays exponentially with 
time. It is evident from Fig.  5(b) that the linear fit does not provide the 
best fit for the trajectory, particularly for later times.

To quantify the level of unsteadiness in object motion, we introduce 
the ratio 

𝑅𝑎 =
|

|

|

|

|

1 −
𝑢𝑂,𝑆𝐹

𝑢𝑂,𝐿𝐹

|

|

|

|

|

, (4)

which measures the relative magnitude of the linear speed in the 
second-order fit to the (constant) linear speed in the linear fit. The more 
𝑅𝑎 deviates from 0, the more unsteady the object drift is (typically, 
𝑢𝑂,𝑆𝐹 ∕𝑢𝑂,𝐿𝐹  is smaller than 1, and the larger the ratio 𝑅𝑎 is, the more 
unsteady the drift is). The value of the unsteadiness ratio 𝑅𝑎 for both 
types of objects and the different simulations is illustrated in Fig.  6(a). 
Additionally, the acceleration 𝑎𝑂 in Fig.  6(b) represents the mean (time-
averaged) value of the acceleration obtained from the motion in the 
horizontal direction in our simulations, which is evaluated with the 
oscillatory part not included.

From Fig.  6(a), it is clear that the unsteadiness ratios of both types 
of objects and simulations are very close to 0 for smaller objects. 
For round-cornered objects of 𝑙∕𝜆 ≥ 7%, there is some unsteadiness, 
whereas for sharp-cornered objects with relative size 𝑙∕𝜆 ≥ 4%, the 
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Fig. 6. Unsteadiness of drift for the different object and simulations types: (a) the unsteadiness ratio 𝑅𝑎 (b) the mean object drift acceleration (𝑎𝑂) as a function of relative size 
for objects with different corner shapes.
Fig. 7. Unsteadiness ratio of measured drift in the laboratory experiment of Xiao et al. (2024b) as a function of relative object size for different wave steepness values ranging 

from 𝑘𝑎𝑤 = 0.04 to 𝑘𝑎𝑤 = 0.24. The unsteadiness ratio is evaluated from the experimental data for both shorter (black) and longer (red) time durations 𝑇𝑑 .

unsteadiness ratio becomes notably larger compared to round-cornered 
boxes. The comparison between the unsteadiness for different types of 
simulations for sharp-cornered boxes shows that the ‘SCB-Euler’ sim-
ulation is the most unsteady followed by the ‘SCB-Navier–Stokes’ and 
the ‘SCB-RANS’ simulations. The same trend is observed for the drift 
velocity observations, where the ‘SCB-Euler’ simulations demonstrate 
9 
the largest drift enhancement, followed by the ‘SCB-Navier–Stokes’ 
and the ‘SCB-RANS’ simulations. This might be because the inclusion 
of viscosity (‘SCB-Navier–Stokes’ and ‘SCB-RANS’) helps to suppress 
the unsteadiness of the drift, showing less drift enhancement. Com-
plementary to this, Fig.  6(b) shows that the average acceleration of 
sharp-cornered boxes is significantly larger than that of round-cornered 
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Fig. 8. Parameters of the decaying component of the exponential-decay fit based on (3) as a function of relative size for objects with different corner shapes in different types of 
simulations: (a) magnitude of the decaying term 𝑒𝑂.𝐸𝐹 , (b) decay rate 𝑏𝑂.𝐸𝐹 .
boxes. For round-cornered boxes, the average acceleration of ‘RCB-
Euler’ is close to 0, and the inclusion of viscosity slightly increases the 
accelerations. However, for sharp-cornered boxes, the acceleration in 
the Euler simulations is the largest, and the inclusion of viscosity (‘SCB-
Navier–Stokes’ and ‘SCB-RANS’) reduces the accelerations (except for 
the largest object).

Analysis of Fig.  6 suggests that compared to round-cornered boxes, 
sharp-cornered boxes with equivalent size experience more unsteadi-
ness (acceleration) at a relatively small size on the time scale of the 
simulations (around 60𝑇 ). The unsteadiness can be attributed to two 
effects: a fundamental unsteadiness and instability induced by the sharp 
gradients of geometry that will not decay over time, or an initial 
transient due to the stationary condition of the object at the start of the 
simulations. To examine the dependence of unsteadiness on the time 
scale and confirm the underlying reasons for unsteadiness, we have 
re-evaluated the experimental trajectory data collected by Xiao et al. 
(2024b), as shown in Fig.  7. It is worth noting that the objects used 
in the laboratory experiments in their experiment are boxes with sharp 
corners, and vorticity is reported to have been observed visually for 
large objects in Xiao et al. (2024b).

To analyse the experimental trajectory data, we use two different 
time durations, namely a shorter duration of 35𝑇  and a longer time 
duration of between 1×102𝑇  and 1×104𝑇  to evaluate the unsteadiness 
of object drift. The shorter duration is consistent with the time duration 
used in our numerical simulations, while the longer duration corre-
sponds to the duration in the experiments of Xiao et al. (2024b). This 
longer duration can range between 1 × 102𝑇  for the largest objects in 
high wave steepness and 104𝑇  for the smallest objects. Fig.  7 shows that 
for high wave steepness, the unsteadiness ratio shows little dependence 
on time duration and remains close to 0, suggesting the absence of 
unsteadiness. For all values of wave steepness, the unsteadiness ratio 
for the longer duration remains consistently close to 0, regardless of 
object sizes, whereas similar behaviour is not observed for the shorter 
duration. Particular attention is paid to the case 𝑘𝑎𝑤 = 0.04, as this 
is the wave steepness closest to our numerical simulations. For objects 
smaller than 𝑙∕𝜆 = 10%, the unsteadiness ratio for the shorter duration 
is smaller than for the longer duration, suggesting that in low-wave-
steepness scenarios, initial transients that ultimately decay may play a 
role in our relatively short-duration simulations (𝑇 = 35𝑇 ).
𝑑
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Building on the above analysis of the unsteadiness of the exper-
imental results of Xiao et al. (2024b), we return to our numerical 
simulations and perform exponentially decaying fits using (3), which 
are designed to be able to remove initial transients. Instead of allowing 
for acceleration, we aim to divide the data into two components: one 
with a constant drift and the other decaying with time. It is found that 
exponential decay fitting yields better results, as shown in Fig.  5(b). As 
the parameters of the constant-speed components in (3) are similar to 
the drift speed shown in Fig.  4(a), only the terms of the exponentially 
decaying components 𝑒𝑂,𝐸𝐹  and 𝑏𝑂,𝐸𝐹  are presented in Fig.  8. The pa-
rameter 𝑒𝑂,𝐸𝐹  determines the magnitude of the exponentially decaying 
component, and 𝑏𝑂.𝐸𝐹  denotes its decay rate. The exponential-decay fit 
is obtained from the entire time history, including 𝑡 ≤ 𝑡𝑠.

We examine the two parameters in turn, commencing with 𝑒𝑂,𝐸𝐹 . 
The exponentially decaying component increases with object size, po-
tentially explained by the fact that as the object size grows larger, it 
gains more mass and thus exhibits greater inertia. The comparison be-
tween the two types of object reveals that sharp-cornered boxes contain 
larger exponentially decaying components, and the size of this compo-
nent is influenced by the simulation type. For round-cornered boxes, 
the inclusion of viscosity enlarges the decaying component, while for 
sharp-cornered boxes, the inclusion of viscosity (‘SCB-Navier–Stokes’ 
and ‘SCB-RANS’) generally reduces it. Maximum values of the decay 
rate 𝑏𝑂,𝐸𝐹  are reached for object sizes around 𝑙∕𝜆 = 4%. The sharp-
cornered boxes have a smaller decay rate than the round-cornered 
boxes. Moreover, the inclusion of viscosity (‘SCB-Navier–Stokes’ and 
‘SCB-RANS’) also influences the decay rate. This analysis further sup-
ports the notion that the initial transient (at least, partially) contributes 
to the unsteadiness observed in Fig.  6. However, this analysis does 
not provide a definitive answer what would happen in large-duration 
simulations.

We now turn our attention to exploring how this unsteadiness 
correlates with the corner shape of objects. We begin by examining the 
flow field, the vorticity field and the corresponding pressure field at 
different time intervals. Due to the complexities involved in tracking 
the pressure history of moving objects, we opted not to analyse the 
time history of the pressure distributions.

We plot the vorticity and dynamic pressure fields for both sharp-
cornered and round-cornered objects in Figs.  9–12. Vorticity is promi-
nently observed in simulations of sharp-cornered boxes, as shown in 
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Fig. 9. Vorticity magnitude and flow field (indicated by the streamlines) during one wave period for the RANS simulations of a moving sharp-cornered box (𝑙∕𝜆 = 10%) for 
𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡−40 s (after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels. The black arrow indicates the direction of wave propagation, from left to 
right, while the red arrow shows the approximate flow direction on each side of the object. Note that the object is moving downward in (a), upward in (b) and downward again 
in (c).
Fig. 10. Vorticity magnitude and flow field (indicated by the streamlines) during one wave period for the Navier–Stokes simulations of a moving round-cornered box (𝑙∕𝜆 = 10%) 
for 𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡 − 40 s (after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
Fig. 11. Dynamic pressure field (𝑝𝑑 ) across one wave period for the RANS simulations of a moving sharp-cornered box (𝑙∕𝜆 = 10%) for 𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡 − 40 s 
(after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
Fig. 12. Dynamic pressure field (𝑝𝑑 ) across one wave period for the Navier–Stokes simulations of a moving round-cornered box (𝑙∕𝜆 = 10%) for 𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡−40
s (after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
Fig.  9, whereas it is notably absent in simulations involving round-
cornered boxes, as shown in Fig.  10. The flow fields, indicated by the 
streamlines, are also shown in Figs.  9 and 10, where the direction 
of wave propagation and the flows on each side of the box are also 
indicated by arrows. The flow directions for the round-cornered objects 
are not shown in Fig.  10, as they are the same as those depicted in 
Fig.  9. The presence of vorticity, attributed to the sharp corner, induces 
changes in the dynamic pressure field around the box, as evident from 
11 
the comparison between Figs.  11 and 12. Notably, vorticity and flow 
separation occur unevenly and asymmetrically around the front and 
rear regions of the sharp-cornered box, as shown in Fig.  9.

Having examined the vorticity and dynamic pressure fields, we pro-
ceed to investigate how these factors influence the motions of the object 
by exploring the different force components experienced by the object. 
Apart from the gravity and the static pressure force, (both partially and 
fully) submerged objects exposed to fluid typically experience dynamic 
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Fig. 13. Magnitudes of the horizontal forces on the object as a function of relative size for objects with different corner shapes in different types of simulations: (a) magnitudes 
of the oscillatory part of the pressure forces 𝐹𝑥,𝑝; (b) mean values of the pressure forces 𝐹 𝑥,𝑝 over the simulated time duration after 𝑡𝑠 = 21𝑇 ; (c) magnitudes of the oscillatory 
part of viscous forces 𝐹𝑣,𝑥; (d) mean values of the viscous forces 𝐹 𝑣,𝑥 over the simulated time duration after 𝑡𝑠 = 21𝑇 . The forces are all normalized by the gravitational force 𝑚𝑔, 
where 𝑚 is the mass of the object and 𝑔 = 9.81 m∕s2. For ‘SCB-Euler’ and ‘RCB-Euler’, viscous forces are all 0, as viscosity is not included in these simulations.
pressure and viscous forces. In this analysis, we focus on the horizontal 
direction. Fig.  13 presents the magnitudes and time-averaged values 
of the dynamic pressure and viscous force components for objects of 
different sizes and corner shapes and for the different simulation types. 
Notably, the figure illustrates that pressure forces outweigh viscous 
forces by two orders of magnitude.

The comparison between two types of objects and the different 
types of simulations reveals that compared to round-cornered boxes, 
the magnitude of pressure and viscous forces for sharp-cornered boxes 
are slightly smaller but the differences are not significant. The inclusion 
of viscosity does not exert a pronounced influence on the magnitudes 
of these forces for both types of objects. An exception is observed in the 
RANS simulations of sharp-cornered boxes, where there appears to be a 
smaller magnitude of the oscillatory component of the pressure forces 
compared to other types of simulations, consistent with the oscillatory 
motions depicted in Fig.  3. However, comparison of mean values 
reveals significant differences between the two types of objects and 
different types of simulations. The sharp-cornered boxes experiences 
larger mean values of pressure forces than the round-cornered boxes. 
Relating the mean value of the pressure force to the acceleration in Fig. 
12 
6(b), we observe consistent trends. Compared to the round-cornered 
boxes, the larger dynamic pressure forces on the sharp-cornered boxes 
are likely to be induced by the asymmetry in the vorticity field, which 
results in net drift forces that accelerate the object forward. The inclu-
sion of viscosity (‘SCB-Navier–Stokes’ and ‘SCB-RANS’) plays a role in 
suppressing or influencing the generation and development of vorticity, 
subsequently affecting the forces and consequently its drift behaviour. 
Regarding the mean value of the viscous forces, round-cornered boxes 
experience the highest values, followed by the RANS and Navier–Stokes 
simulations of sharp-cornered boxes, suggesting sharp-cornered boxes 
experiences relatively lower mean viscous force due to the alterations 
in the fluid field.

To better understand the pattern of vorticity generation over time, 
especially under oscillatory forcing, it is crucial to explore the rela-
tionship between corner shape, vorticity generation, dynamic pressure 
fields, and resultant forces. However, analysing this relationship for 
moving objects is challenging due to the constantly changing relative 
positions between the object and the fluid field, as they oscillate and 
drift. We therefore conduct additional analysis focusing on stationary 
objects.
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Table 6
Detailed coordinates of the sampling points in the fluid field shown in Fig.  14 for stationary objects for different wave steepness values. The variables 𝑥 and 𝑧 represent the 
horizontal and vertical coordinates of the points, respectively, while 𝑥𝑐 is the horizontal coordinates of the centre of object. Variables 𝑙 and ℎ𝑑 denote the length and draft of the 
objects, respectively. Consequently, the horizontal locations of lines 𝐴𝐵 and 𝐶𝐷 are 𝑥 − 𝑥𝑐 = −0.5𝑙 and 𝑥 − 𝑥𝑐 = 0.5𝑙, respectively. The vertical locations of lines 𝐴′𝐷′ and 𝐵𝐶 are 
𝑧∕ℎ𝑑 = 0 and 𝑧∕ℎ𝑑 = −1, respectively. For 𝑘𝑎𝑤 = 0.034, the sampling points cover the region of −0.65𝑙 ≤ 𝑥 − 𝑥𝑐 ≤ 0.57𝑙 and −0.12ℎ𝑑 ≤ 𝑧 ≤ −1.2ℎ𝑑 . For higher wave steepness values 
𝑘𝑎𝑤 = 0.07, 0.09, the region expands to −0.76𝑙 ≤ 𝑥 − 𝑥𝑐 ≤ 0.65𝑙 and −0.26ℎ𝑑 ≤ 𝑧 ≤ −1.32ℎ𝑑 .
 𝑘𝑎𝑤 Location Left region Bottom region Right region
 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑏1 𝑏2 𝑏3 𝑏4 𝑟1 𝑟2 𝑟3 𝑟4  
 0.03 (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.65,−0.52] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.46, 0.54] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [0.52, 0.57]

 𝑧∕ℎ𝑑 −0.12 −0.6 −0.72 −0.8 −0.98 −1.04 −1.1 −1.16 −1.2 −0.8 −0.84 −0.92 −0.96 
 0.07 (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.76,−0.52] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.46, 0.54] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [0.52, 0.65]

 𝑧∕ℎ𝑑 −0.26 −0.52 −0.6 −0.8 −0.98 −1.04 −1.16 −1.2 −1.32 −0.26 −0.6 −0.72 −0.98 
 0.09 (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.76,−0.52] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [−0.46, 0.54] (𝑥 − 𝑥𝑐 )∕𝑙 ∈ [0.52, 0.65]

 𝑧∕ℎ𝑑 −0.26 −0.52 −0.6 −0.8 −0.98 −1.04 −1.16 −1.2 −1.32 −0.26 −0.6 −0.72 −0.98 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 14. Diagram of the stationary box with both types of corner shapes and the
locations of sampling points in the fluid field around the box for the stationary object
simulations. In the diagram, A and D represent two endpoints at the top of the box,
while A′ and D′ denote the points of intersection of the box with the still-water level.
The sampling points are categorized based on their location (letter) followed by vertical
position (number), e.g., 𝑙1. Several points are positioned at the same vertical locations.
Typically, for the left and right sides of the region, 5 to 6 points are located on each
line while for the bottom region, 8 to 10 points are distributed on each line.

3.2. Analysis of stationary objects

We have conducted simulations of stationary boxes with two corner
types, sharp and round, at the largest size, 𝑙∕𝜆 = 10% for three different
wave steepness values: 𝑘𝑎𝑤 = 0.034, 0.07, 0.09. For sharp-cornered
boxes, we conduct RANS, Navier–Stokes and Euler simulations, while
for round-cornered boxes, only Navier–Stokes simulations are per-
formed for comparison. As the object is stationary, it is straightforward
to set sampling points around the object to collect time–history data for
analysis. The sampling points are categorized into two types: points on
the object boundaries and points in the surrounding fluid field. For the
points on the object boundaries, we evenly distributed 10 points along
each edge. Regarding the points in the surrounding fluid field, these are
located in the left (front), bottom and right(rear) regions surrounding
the objects, as shown in Fig.  14. The detailed coordinates of these points
are provided in Table  6. The distribution of points is designed to cover
the main regions where the vorticity and flow separation occur. It is
noteworthy that as the vorticity generation is not symmetrical on the
upstream and downstream sides, we also distribute the sampling points
asymmetrically. Specifically, for the left region, our sampling points
span 0.13𝑙, while for the right side, only 0.05𝑙 is considered. The values
of 𝑦+ and the relevant non-dimensional numbers for these simulations
are given in Appendix  C.1. We examine the surface elevation around
the stationary objects in Appendix  C.2.

3.2.1. Vorticity and dynamic pressure field
Next, we examine the fluid and vorticity fields over one wave cycle.

Fig.  15 presents the vorticity magnitude and the flow fields, as indi-
cated by streamlines, over one wave period for the RANS simulations
of a stationary object with sharp corners when 𝑡∗ = 𝑡 − 40 s (which is
larger than 𝑡 = 32 s). The directions of wave propagation of the flows
𝑠  
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over each side of the object are also indicated in Fig.  15 by arrows. The 
flow directions for the round-cornered objects are not shown in Fig.  16, 
as they are the same as those depicted in Fig.  15. We can see that the 
vorticity is asymmetrically generated around the two corners. The front 
(left) experiences larger vorticity, covering a larger area compared to 
the rear. Additionally, the vorticity pattern appears to be periodic, as 
evident when comparing panel (a) with panel (f) at 𝑡 = 0 and 𝑡 = 0.98𝑇 , 
respectively. In contrast, Fig.  16 gives the corresponding vorticity and 
flow field for round-cornered boxes. The streamlines are smooth, with 
little vorticity, consistent with our findings for moving objects. Spectral 
analysis of the turbulent kinetic energy for the sampling points in the 
fluid field is conducted in Appendix  C.3.

The corresponding dynamic pressure fields for boxes with sharp-
cornered and round-cornered boxes are given in Figs.  17 and 18, 
respectively. A noticeable difference can be observed in the pressure 
gradient/distributions at the locations where the vorticity is generated, 
leading to different pressure forces after integration over the bound-
aries. We note that similar analyses are conducted for viscid simulations 
using the Navier–Stokes equations and inviscid simulations using the 
Euler equations of the sharp-cornered box, revealing larger vorticity 
magnitude and broader vorticity generation areas in Euler simulations 
compared to RANS and Navier–Stokes simulations. This subsequently 
induces different dynamic pressure fields and pressure forces. The 
inclusion of viscosity helps to suppress the generation of vorticity and 
reduce its magnitude. However, these results are not presented here for 
brevity. The trends observed are consistent for higher wave steepness, 
albeit with larger vorticity magnitudes in larger areas.

To further support and quantify these observations, we analyse 
dynamic pressure over the object boundaries. The magnitude and time-
averaged value of the dynamic pressure for low wave steepness, serving 
as a representative case, are given in Fig.  19 where the magnitude (of 
the oscillatory part) and the mean value are both evaluated after 𝑡𝑠. 
The figure shows that the primary difference between the two types of 
objects occurs on the front edges.

3.2.2. Force analysis
Thus far, we have looked at how the vorticity generated due to 

the sharp corner alters the dynamic pressure distributions. The anal-
ysis proceeds to examine the relationship between dynamic pressure 
distributions and object motions over time through analysis of the 
forces, as shown in Fig.  20. Here, both magnitudes and mean values of 
the pressure and viscous forces are compared. It is shown that sharp-
cornered boxes exhibit larger magnitudes of the oscillatory components 
and larger mean values of pressure forces relative to round-cornered 
boxes for all wave steepness explored here, aligning with the obser-
vations from Fig.  19. Conversely, the forces for round-cornered boxes 
have larger viscous magnitudes and absolute mean values compared to 
their sharp-cornered counterparts.

Comparing with those for moving objects in Fig.  13, we see consis-
tent results: for all wave steepness explored here, sharp-cornered boxes 
experience larger mean values for both pressure forces and viscous 
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Fig. 15. Vorticity magnitude and flow field (indicated by the streamlines) during one wave period for the RANS simulations of a stationary sharp-cornered box with 𝑙∕𝜆 = 10%
for 𝑘𝑎𝑤 = 0.034. The black arrow indicates the direction of wave propagation, from the left to right, and the red arrow shows the approximate flow direction on each side of the 
object.
Fig. 16. Vorticity magnitude and flow field (indicated by the streamlines) during one wave period for the Navier–Stokes simulations of a stationary round-cornered box with 
𝑙∕𝜆 = 10% when 𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡 − 40 s (after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
forces, as well as larger magnitudes of the oscillatory components of 
the viscous forces. However, for moving objects, there is no pronounced 
difference (which is also inconsistent) between the two types of objects 
regarding the magnitude of the oscillatory pressure forces as shown 
in Fig.  13(a). For the largest object 𝑙∕𝜆 = 10%, this discrepancy 
may be attributed to the object’s drift motion, which alleviates the 
impedance and disturbance caused by the objects to the fluid field, 
thereby mitigating the differences between the two types of objects.

4. Conclusion

This paper has investigated the influence of corner shape on the 
drift behaviour of bluff-bodied objects (rectangular boxes) floating on 
unidirectional, deep-water surface gravity waves. This work builds 
14 
on numerical simulations and experiments by Xiao et al. (2024a,b). 
Compared to Xiao et al. (2024a,b), the present paper has identified 
a new mechanism for drift enhancement: the vorticity generated by 
sharp corners and the pressure distribution this generates. Two dif-
ferent corner shapes have been considered: sharp corners and round 
corners with a corner radius of up to 24% of the object’s draft. Three 
types of models are used that solve the Reynolds-Averaged Navier–
Stokes (RANS), Navier–Stokes (viscid) and Euler equations (inviscid) 
respectively. We restrict our analysis to objects with sizes less than 10% 
of the wavelength. The particle Reynolds Re𝑥 and Keulegan–Carpenter 
(KC) numbers are in the range of 6 < Re𝑥 < 8 × 104 and 0 < KC < 0.9, 
suggesting a turbulent wake (with laminar boundary layer separation) 
and a small amount of flow separation. We observe vortex formation 
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Fig. 17. Dynamic pressure field 𝑝𝑑 during one wave period for RANS simulations of a stationary sharp-cornered box with 𝑙∕𝜆 = 10% when 𝑘𝑎𝑤 = 0.034. Time starts at 𝑡∗ = 𝑡− 40 s 
(after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
Fig. 18. Dynamic pressure field 𝑝𝑑 across one wave period for Navier–Stokes simulations of a stationary round-cornered box with 𝑙∕𝜆 = 10% when 𝑘𝑎𝑤 = 0.034. Time starts at 
𝑡∗ = 𝑡 − 40 s (after 𝑡𝑠 = 32 s) for initial time 𝑡∗ = 0 s, as denoted in the panels.
in the simulations of sharp-cornered boxes which is absent for round-
cornered boxes. We observe significantly larger drift enhancement 
(compared to the theoretical Stokes drift) for objects with sharp corners 
and show that the drift of these objects becomes unsteady. In addition 
to previously identified mechanisms of drift enhancement that arise 
from (viscous) drag (Calvert et al., 2021) and diffraction of the wave 
field (Xiao et al., 2024a), which together explain only part of the drift 
enhancement found here, we identify another mechanism related to 
vortex formation that contributes to the drift enhancement of objects 
with sharp corners.

Consistent with the findings of Calvert et al. (2021) and Xiao et al. 
(2024a), we observe that drift enhancement for boxes with both shapes 
of corners is only relevant for objects larger than a few percent of 
the wavelength. For smaller objects (𝑙∕𝜆 ≤ 3% in this study, with 
𝑙 representing the length of the object and 𝜆 the wavelength), the 
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non-Lagrangian behaviour is less evident and the drift speed of the 
objects is equal to the Stokes drift. However, as size increases, a 
difference in velocity between the object and its surrounding fluid 
emerges, corresponding to enhanced drift compared to a Lagrangian 
tracer. Importantly, objects with sharp corners experience much greater 
drift enhancement than objects of equivalent size with round corners. 
For instance, compared to a Lagrangian tracer, there is a 454% increase 
in drift for a sharp-cornered box and a 134% increase for a round-
cornered box when 𝑙∕𝜆 = 10%. Furthermore, sharp-cornered boxes 
experience non-negligible enhanced drift from relatively smaller sizes 
(𝑙∕𝜆 ≥ 4%) compared to round-cornered boxes (𝑙∕𝜆 ≥ 7%). The presence 
of vorticity due to the sharp corners results in changes to the dynamic 
pressure field and subsequently affects the forces exerted on the object. 
Larger magnitudes of vorticity and vorticity-containing regions on the 
upstream side of sharp-cornered boxes lead to larger magnitudes of 
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Fig. 19. Dynamic pressure 𝑝_𝑟𝑔ℎ (scaled by 𝜌𝑔𝑙) distributions over the object boundaries for objects with 𝑙∕𝜆 = 10% and two different corner shapes for 𝑘𝑎𝑤 = 0.034: (a) dynamic 
pressure magnitude (𝑝_𝑟𝑔ℎ), normalized by 𝜌𝑔𝑙, for different types of simulations; (b) mean values of dynamic pressure 𝑝_𝑟𝑔ℎ, normalized by 𝜌𝑔𝑙, for different types of simulations.
Fig. 20. Horizontal forces as a function of wave steepness for objects with different corner shapes in different types of simulations: (a) magnitudes of the oscillatory part of 
pressure forces 𝐹𝑥,𝑝; (b) mean values of pressure forces 𝐹 𝑥,𝑝 over the simulated time duration after 𝑡𝑠 = 21𝑇 ; (c) magnitudes of the oscillatory part of viscous forces 𝐹𝑥,𝑣; (d) mean 
values of viscous forces 𝐹 𝑥,𝑣 over the simulated time duration after 𝑡𝑠 = 21𝑇 . Notably, for ‘SCB-Euler’, viscous forces are all 0 owing to the absence of viscosity in these simulations.
the oscillatory forces (more observable for stationary objects) and 
mean (time-averaged) forces. Viscosity plays a dual role in object drift. 
First, viscosity induces a phase difference between the object and the 
surrounding fluid, which acts to enhance drift, as described by Calvert 
et al. (2021); this occurs for objects with both sharp and round corners. 
Second, viscosity suppresses vorticity generation, reducing its magni-
tude and restraining its development for sharp-cornered boxes, thus 
mitigating drift enhancement.

Finally, we examine the potential unsteadiness of the drift of ob-
jects. Our analysis reveals that objects with sharp corners exhibit 
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greater unsteadiness in their drift compared to round-cornered objects. 
Evaluating the unsteadiness over different durations using experimental 
data from Xiao et al. (2024b) suggests that, for low wave steepness, the 
duration of numerical simulations may not be sufficient for transient 
behaviour to disappear and for the object to reach a quasi-steady state, 
indicating that at least part of the unsteadiness will diminish with time 
and may be the result of an initial transient. However, considering 
that vorticity is periodically generated by the periodic incoming waves, 
it is likely that the unsteadiness of drift is fundamental and persists 
over time. Determining which of the two hypothesis is correct requires 
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large duration experiments and numerical simulations, and these are 
recommended as future work.

Although the current numerical simulation uses a model developed 
by Xiao et al. (2024a), which has been compared to experiments 
in Xiao et al. (2024b), the capability of the model to predict the 
drift for both object shapes would benefit from a comparison with 
experimental for round-cornered objects, which were not considered 
by Xiao et al. (2024b). Additionally, the vorticity and turbulence in the 
RANS simulations needs further verification through comparison with 
Large Eddy Simulations (LES) or Direct Numerical Simulation (DNS).

The present study focuses on the drift of objects with relative sizes 
𝑙∕𝜆 ranging from 1% to 10%, forlimited wave steepness conditions 
and two corner shapes. Xiao et al. (2024b) reports a critical value 
of steepness (𝑘𝑎𝑤 ≥ 0.2 with 𝑘 representing wavenumber and 𝑎𝑤
wave amplitude) and relative size (𝑙∕𝜆 ≥ 15%), where the mechanisms 
dominating drift enhancement changes. A more systematic exploration 
of the effect of different relative sizes, corner shapes (e.g., varying 
round corner radii, chamfered corners) and wave steepness on this 
transition is needed and recommended as future work.
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Appendix A. Convergence study for stationary objects

A convergence study and grid dependency analysis are conducted 
for objects with sharp corners on the waves with lowest (𝑘𝑎𝑤 = 0.034) 
and highest wave steepness (𝑘𝑎𝑤 = 0.09) in our simulations. The 
convergence study has been conducted for both the InterDyMFoam 
solver and QaleFEM solver, but only the results of the InterDyMFoam 
Navier–Stokes solver are presented in this paper, as discretization error 
is typically the main source of errors in CFD solvers. The meshing in 
the Navier–Stokes domain is constructed using blockMesh and snap-
pyhexMesh with refinement near the object and the free surface. The 
aspect ratio of the mesh near the object is set to 1. Near the surface, 
the addlayer in snappyHexmesh is typically set to 6 or 10, and the 
surface refinement level is set to 2. RefinewallLayer is used in some 
cases to further refine the mesh near the wall. The convergence study 
is carried out for the stationary object with the largest objects of size 
𝑙∕𝜆 = 10%  (𝜆 is the wavelength), subjected to waves with the low 
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wave steepness 𝑘𝑎𝑤 = 0.034 as well as the highest wave steepness 
𝑘𝑎𝑤 = 0.09 where 𝑘 is the wave number and 𝑎𝑤 is the wave amplitude. 
We include low wave steepness because it represents the main wave 
steepness in our later explorations. The object has length 𝑙 = 0.037 m, 
height ℎ = 0.055 m, draft ℎ𝑑 = 0.025 m, and density 𝜌 = 781 kg∕m3. 
We perform this convergence study for stationary objects. When the 
object is stationary, the relative velocity between the object and the 
flow is larger and the flow is more turbulent than for the moving objects 
(both particle Reynolds number Re𝑥 and Keulegan–Carpenter number 
KC are therefore higher). That is to say, for stationary cases, it is more 
challenging to achieve convergence.

We use three sets of refinements: Mesh 1 (M1, most refined), 
Mesh 2 (M2, moderately refined) and Mesh 3 (M3, coarse) for the 
RANS simulation, while the Navier–Stokes simulations use only Mesh 
1. Tables  A.1 and A.2 summarize the specific parameters associated 
with each mesh, along with the corresponding simulation results. The 
horizontal mesh resolution 𝛥𝑥 is given in a range to reflect its gradual 
refinement closer to the object. The mesh in the region extending 2𝑙 (±𝑙) 
(where 𝑙 is the length of the object) from the object is non-uniform, 
with the smallest horizontal resolution indicated in the table as 𝛥min. 
The non-dimensional wall-normal distance to the centre of the first 
grid cell 𝑦+, averaged in time and over the object’s surface, is used to 
assess the near-wall mesh refinement. Convergence is evaluated based 
on the magnitude of surface elevations at points located 0.0155𝑙 from 
the object’s front and back, as well as the forces in both directions. The 
magnitudes of these physical quantities are determined by averaging 
the signals over time after 𝑡 = 21𝑇  (where 𝑇  represents the wave 
period), corresponding to the time at which a quasi-steady state is 
achieved. The first- and second-harmonic amplitudes of the quantities 
are computed using the Fast Fourier Transform (FFT) of the respective 
signals. Following the methodologies outlined by Stern et al. (2001) 
and Mohseni et al. (2018), the convergence study is carried out focusing 
on the first-harmonics.

As a measure of convergence, the convergence ratio 𝑅 = �̇�21∕�̇�32 is 
used, in which �̇�𝑖𝑗 = 𝜑𝑖 − 𝜑𝑗 denotes changes to the solutions between 
Mesh 𝑖 and Mesh 𝑗, with 𝜑 being the simulation result for any physical 
quantity of interest. For three sets of mesh, monotonic convergence is 
achieved when 𝑅 ∈ (0, 1), allowing for error estimation and uncertainty 
assessment through generalized Richardson Extrapolation (RE) (Liu 
et al., 2020). If we define the refinement ratio of the 𝑖th mesh to 𝑗th 
mesh as �̇�𝑖𝑗 = 𝛥𝑖∕𝛥𝑗 , in which 𝛥 = 𝛥𝑥 = 𝛥𝑧 is the mesh resolution 
on the free surface, then in both wave steepness cases, �̇�21 = �̇�32 = 2. 
The order of accuracy �̇� for a constant refinement mesh ratio can be 
obtained by Roache (1994): 

�̇� =
ln(�̇�32∕�̇�21)
ln(�̇�) . (5)

Additionally, for a standard three-grid convergence study with an error 
estimated from RE, the Grid Convergence Index (GCI) approach is used 
with a safety factor 𝐹𝑆 to indicate the uncertainty of the error estimate: 

GCI𝑖𝑗 = 𝐹𝑆
|𝜀𝑖𝑗 |
�̇�𝑖𝑗 − 1

. (6)

The results from this convergence analysis are detailed in Tables  A.3
and A.4, where 𝐹𝑆 = 1.25 for a minimum of three grids (Roache, 1994).

It is evident that for both the low- and high-wave steepness cases, 
overall, satisfactory convergence has been achieved for the quantities 
of interest, with minimal changes to the solution observed, particularly 
between Mesh 1 and Mesh 2. Analysis of the first-harmonic component 
reveals a small convergence ratio accompanied by a relatively high 
order of accuracy and a small GCI, indicating the simulated value is 
approaching the asymptotic range (Stern et al., 2001; Mohseni et al., 
2018). Notably, for Mesh 1 and Mesh2, the time-averaged 𝑦+ averaged 
over the body surface is below 1. Mesh 1 (the most refined mesh) is 
selected as the final mesh for all subsequent simulations.
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Table A.1
Convergence study for low wave steepness (𝑘𝑎𝑤 = 0.034), conducted at particle Re𝑥 = 1.97 × 104, KC = 0.33. The mesh refinement is reduced in the order M1, M2, M3 with M3 
being the most coarse mesh. 𝑁𝑐 is the total number of cells in the mesh with the unit ‘M’ representing million. 𝜆 and 𝑙 represent the wavelength and size of the object, respectively. 
𝛥𝑥 and 𝛥𝑧 indicate the horizontal and vertical mesh sizes, while 𝛥min represents the smallest mesh size near the object surface. 𝑦+ is the time-averaged value of 𝑦+ averaged over 
the object surface. 𝑎 represents the local wave amplitude at the sampled location. The sample location ‘Front’ and ‘Back’ are chosen to lie a distance 0.0155𝑙 away from the front 
and back sides of the object. 𝐹𝑥 and 𝐹𝑧 are the magnitudes of the oscillatory parts of the horizontal and vertical forces, which are made non-dimensional as 𝐹 ′

𝑥 = 𝐹𝑥∕(𝜌𝑔𝑎𝑤𝑙2∕4)
and 𝐹 ′

𝑧 = 𝐹𝑧∕(𝜌𝑔𝑎𝑤𝑙2∕4), respectively.
 Simulation Mesh 𝑁𝑐 𝜆∕𝛥𝑥 𝑙∕𝛥𝑥 𝑎𝑤∕𝛥𝑧 𝛥min (m) 𝑦+ Front (𝑎∕𝑎𝑤) Back (𝑎∕𝑎𝑤) 𝐹 ′

𝑥 𝐹 ′
𝑧  

  Navier–Stokes M1 1.15M 185–7385 738 40 1.06 × 10−4 0.37 1.74 0.59 2.02 1.00 
 
RANS

M1 1.15M 185–7385 738 40 1.06 × 10−4 0.35 1.75 0.57 2.03 1.03 
 M2 0.69M 185–3693 369 20 2.11 × 10−4 0.74 1.76 0.57 2.08 1.05 
 M3 0.35M 185–1846 185 10 9.48 × 10−4 2.77 1.92 0.55 2.24 1.11 
Table A.2
Convergence study for the highest wave steepness (𝑘𝑎𝑤 = 0.09) conducted at particle Re𝑥 = 8.0 × 104, KC = 0.87. Mesh refinement is reduced in the order M1, M2, M3 with M3 
being the most coarse mesh. 𝑁𝑐 is the total number of cells in the mesh with the unit ‘M’ representing a million. 𝜆 and 𝑙 are the wavelength and size of the object, respectively. 
𝛥𝑥 and 𝛥𝑧 is the horizontal and vertical mesh sizes, while 𝛥𝑚𝑖𝑛 represents the smallest mesh size near the object surface. 𝑦+ denotes the time-averaged value of 𝑦+ averaged over 
the object surface. 𝑎 represents the local wave amplitude at the sampled location. The sample location of ‘Front’ and ‘Back’ are chosen to lie a distance 0.0155𝑙 away from the 
front and back sides of the object. 𝐹𝑥 and 𝐹𝑧 are the magnitudes of oscillatory parts of the horizontal and vertical forces, which are made non-dimensional as 𝐹 ′

𝑥 = 𝐹𝑥∕(𝜌𝑔𝑎𝑤𝑙2∕4)
and 𝐹 ′

𝑧 = 𝐹𝑧∕(𝜌𝑔𝑎𝑤𝑙2∕4), respectively.
 Simulation Mesh 𝑁𝑐 𝜆∕𝛥𝑥 𝑙∕𝛥𝑥 𝑎𝑤∕𝛥𝑧 𝛥min (m) 𝑦+ Front (𝑎∕𝑎𝑤) Back (𝑎∕𝑎𝑤) 𝐹 ′

𝑥 𝐹 ′
𝑧  

   Navier–Stokes M1 1.04M 185–7385 738 106 1.05×10−4 0.87 1.74 0.61 1.96 1.06 
 
RANS

M1 1.04M 185–7385 738 106 1.05×10−4 0.87 1.70 0.60 1.97 1.04 
 M2 0.69M 185–3693 369 53 2.11×10−4 1.81 1.71 0.60 1.97 1.04 
 M3 0.35M 185–1846 185 27 4.47×10−4 3.51 1.72 0.62 1.98 1.03 
Table A.3
Convergence statistics of normalized first-harmonic components of target quantities for low wave steepness 𝑘𝑎𝑤 = 0.034 with particle 
Re𝑥 = 3.01 × 104, KC = 0.34. 𝐹𝑝𝑥 and 𝐹𝑝𝑧 are the magnitudes of the first-harmonics parts of the pressure forces on the object in the horizontal 
and vertical directions, respectively, and 𝐹𝑣𝑥 and 𝐹𝑣𝑧 are the magnitudes of the first-harmonics parts of the viscous forces on the object 
in the horizontal and vertical directions, respectively. All these forces shown with its non-dimensional form at the table are normalized by 
𝐹 ′ = 𝐹∕(𝜌𝑔𝑎𝑤𝑙2∕4).
 Parameter Front (𝑎∕𝑎𝑤) Back (𝑎∕𝑎𝑤) 𝐹 ′

𝑝𝑥 𝐹 ′
𝑝𝑧 𝐹 ′

𝑣𝑥 𝐹 ′
𝑣𝑧  

 M1 1.75 0.57 2.04 1.02 2.16 × 10−3 2.02 × 10−3  
 M2 1.76 0.57 2.09 1.03 2.16 × 10−3 1.97 × 10−3  
 M3 1.92 0.55 2.24 1.08 2.44 × 10−3 1.47 × 10−3  
 �̇�21 0.01 −2.33 × 10−4 0.05 0.01 5.01 × 10−6 −4.82 × 10−5 
 �̇�32 0.16 −0.02 0.15 0.05 2.73 × 10−4 −5.02 × 10−4 
 𝑅 0.06 0.01 0.33 0.29 0.02 0.10  
 �̇� 4.18 6.46 1.62 1.81 5.77 3.38  
 GCI21 [%] 1.09 0.03 6.24 1.65 6.26 × 10−4 6.02 × 10−3  
 GCI32 [%] 19.67 2.57 19.19 5.75 3.41 × 10−2 6.27 × 10−2  
Table A.4
Convergence statistics of normalized first harmonic components of target quantities for highest wave steepness 𝑘𝑎𝑤 = 0.09 with particle Re𝑥 = 8.0 × 104, KC = 0.9. 𝐹𝑝𝑥 and 𝐹𝑝𝑧 are 
the magnitudes of the first-harmonics parts of the pressure forces on the object in the horizontal and vertical directions, respectively, and 𝐹𝑣𝑥 and 𝐹𝑣𝑧 are the magnitudes of the 
first-harmonics parts of the shear forces on the object in the horizontal and vertical directions, respectively. All these forces shown with its non-dimensional form at the table are 
normalized by 𝐹 ′ = 𝐹∕(𝜌𝑔𝑎𝑤𝑙2∕4).
 Parameter Front (𝑎∕𝑎𝑤) Back (𝑎∕𝑎𝑤) 𝐹 ′

𝑝𝑥 𝐹 ′
𝑝𝑧 𝐹 ′

𝑣𝑥 𝐹 ′
𝑣𝑧  

 M1 1.73 0.53 1.99 0.96 2.26 × 10−3 2.46 × 10−3  
 M2 1.73 0.53 2.00 0.96 2.13 × 10−3 2.32 × 10−3  
 M3 1.75 0.55 2.00 0.96 1.79 × 10−3 1.72 × 10−3  
 �̇�21 3.42 × 10−3 3.84 × 10−3 3.95 × 10−4 −1.77 × 10−4 −1.29 × 10−4 −1.36 × 10−4 
 �̇�32 1.40 × 10−2 1.78 × 10−2 2.19 × 10−3 −4.81 × 10−3 −3.40 × 10−4 −6.02 × 10−4 
 𝑅 0.24 0.22 0.18 0.04 0.38 0.23  
 �̇� 2.04 2.21 2.47 4.77 1.40 2.15  
 GCI21 [%] 4.27 × 10−3 4.81 × 10−3 0.05 0.02 0.02 0.02  
 GCI32 [%] 0.02 0.02 0.27 0.60 0.04 0.08  
Appendix B. Validation and verification for small moving objects

Validation and verification of the QaleFOAM model are conducted 
by examining the drift of very small moving objects, focusing on 
Navier–Stokes and Euler simulations under low-wave steepness con-
ditions. The suitability of the QaleFOAM model for wave-structure 
interaction problems has been demonstrated by comparison with ex-
periments and other numerical models in Li et al. (2018), Yan et al. 
(2019) and Gong et al. (2020). Xiao et al. (2024a) showed that the 
QaleFOAM model correctly predicts the drift of infinitely small ob-
jects, i.e. fluid parcels, and very small objects with round corners and
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spherical shapes. Therefore, only simulations involving sharp-cornered 
boxes are presented here for brevity.

Experiments and theoretical models (Nath, 1978; van den Bremer 
et al., 2019; Calvert et al., 2021), show that when objects are very 
small, they behave as perfect Lagrangian tracer, rendering viscosity 
insignificant due to the very small relative velocity between the object 
and the surrounding fluid. Consequently, simulations for small objects 
are for very small particle Reynolds number (|𝑢𝑜 − 𝑢𝑓 | → 0), indicating 
a laminar flow regime around the object, although the flow itself 
could be turbulent. We have conducted RANS simulations but find very 
similar results to the Navier–Stokes simulations. For brevity, the RANS 
simulations are not presented here.
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Table B.5
Results and mesh sensitivity study of a very small sharp-cornered box in low wave steepness 𝑘𝑎𝑤 = 0.034. For Euler simulations, the kinematic 
viscosity in the simulation is set as 𝜈 = 0 and for Navier–Stokes simulations, 𝜈 = 1 × 10−6 m2 s−1. The level of mesh refinement is reduced from 
M1 to M2, with M1 being the mesh used for later simulations. 𝑎 is the wave amplitude at the downstream end of the tank, which is a good 
indicator of a clean wave field with minimal radiated and diffracted disturbances to the waves. 𝑢𝑂 is the time-averaged horizontal drift velocity 
of the object. 𝑢𝑆 is the standard Stokes drift calculated by (7) when 𝑧 = 0. 𝐹𝑥 and 𝐹𝑧 are the magnitudes of the oscillatory parts of horizontal 
and vertical forces, which are made non-dimensional as 𝐹 ′

𝑥 = 𝐹𝑥∕(𝜌𝑔𝑎𝑤𝑙2∕4) and 𝐹 ′
𝑧 = 𝐹𝑧∕(𝜌𝑔𝑎𝑤𝑙2∕4).

 Simulation Mesh 𝑙∕𝜆 𝜆∕𝛥𝑥 𝑙∕𝛥𝑥 𝑎𝑤∕𝛥𝑧 𝑁𝑐 𝑎∕𝑎𝑤 𝑢𝑂∕𝑢𝑆 𝐹 ′
𝑥 𝐹 ′

𝑧  
 Euler M1 0.97 185–7385 72 40 0.38M 1.00 1.002 0.095 0.100 
 M2 0.97 185–3692 36 20 0.24M 1.01 0.995 0.097 0.101 
 Navier–Stokes M1 0.97 185–7385 72 40 0.38M 1.01 1.010 0.106 0.107 
 M2 0.97 185–3692 36 20 0.24M 1.00 1.000 0.098 0.101 
Fig. B.1. Time history of the horizontal motion of the small object in low-wave steepness waves (𝑘𝑎𝑤 = 0.034) for Euler simulations. 𝑥𝑝 is the time-dependent horizontal position 
of centre of mass of the object and 𝑥𝑝0 is the initial horizontal position of its centre of mass.
In this section, we focus on a small sharp-cornered box with dimen-
sions 𝑙 = 0.036 m and ℎ𝑑 = 0.025 m. The results from Navier–Stokes 
and Euler simulations are given in Table  B.5. The wave conditions are 
𝜆 = 3.69 m, 𝑎𝑤 = 0.02 m and 𝑘𝑎𝑤 = 0.034. Regarding the calcula-
tion of the (time-average) drift velocity, two methods are considered: 
processing the horizontal velocity using the Fast Fourier Transform 
(FFT) and applying a low-pass filter to obtain its subharmonic part 
(filtering out frequencies larger than 0.4 times the wave frequency) or 
applying a best linear fit over the horizontal trajectory to derive the 
mean velocity (Huang et al., 2011). Both methods yield similar results. 
We chose the latter approach as it allows potential future comparison 
with experimental data, where only the trajectory data is available. 
Following Xiao et al. (2024a), the time-averaged drift velocity of the 
object, denoted as 𝑢𝑂, is obtained by applying a best linear fit to the 
signal after reaching a quasi-steady state. Fig.  B.1 provides an example 
of the drift trajectory obtained in the Euler simulation, demonstrating 
the achievement of a quasi-steady state around 𝑡 = 21𝑇 = 32 s, 
leaving a duration of 39𝑇  for estimation of the time-averaged velocity. 
The wave amplitude 𝑎 at a location far downstream near the outlet is 
calculated by averaging its wave amplitude over 39𝑇  after 𝑡 = 30 s, as 
are the magnitudes of the oscillatory parts of forces 𝐹 ′

𝑥 and 𝐹 ′
𝑧 in both 

directions.
Fig.  B.1 shows that except for the oscillatory motion, the object 

experiences a nearly constant mean drift that remains stable over 39𝑇
after 𝑡 = 32 s. The observed drift follows the theoretical Stokes drift, 
thus confirming the accuracy of the Euler simulation. The leading-order 
theoretical expression for the Stokes drift 𝑢𝑆 is: 

𝑢𝑆 = 𝑎𝑤2𝜔𝑒𝑘𝑒2𝑘𝑧, (7)

The data in Table  B.5 corroborates this finding, indicating that 
for the Euler simulation, the mean drift velocity closely aligns with 
the theoretical Stokes drift. Moreover, in the Navier–Stokes simula-
tions incorporating viscosity, the small object follows Lagrangian drift 
behaviour, validating the efficacy of the Navier–Stokes simulations. 
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In addition, Table  B.5 shows that the quantities of interest exhibit 
minimal sensitivity to the mesh resolution. It is important to note that 
verification and validation of the model, including the convergence test 
and the validation of the small objects, only cover partly the validation 
process. Ideally, the comparisons of the trajectories of large objects to 
the experiment should be conducted in the future to further validate 
the simulations presented here. Also, the comparison of the vorticity 
structures and patterns that we observe (reported in Section 3.1.2) 
with the relevant data/results should be conducted for comprehensive 
validation.

Appendix C. Additional analysis for stationary objects

In this appendix, we provide additional analysis for the stationary 
objects to complement the discussions in Section 3.2.

C.1. The values of 𝑦+, particle Reynolds number and keulegan–carpenter 
number

Fig.  C.2 gives the 𝑦+ distribution over the object boundaries for 
the lowest and highest wave steepness values in the RANS simulations. 
It demonstrates that the current mesh used ensures that most of the 
mean value of 𝑦+ across all boundaries remains smaller than 1 ex-
cept for very small parts on AB for the highest wave steepness are 
larger than 1 where the region is either on the air phase or near the 
free surface. Suffice to say, the mesh used is sufficient for the wall-
resolving models. The corresponding particle Reynolds numbers and 
Keulegan–Carpenter (KC) numbers are given in Table  C.6. Compared 
to the moving object, both particle Reynolds numbers and Keulegan–
Carpenter numbers for stationary objects fall within the same flow 
regimes but have slightly larger values, leading to larger regions where 
vortex and wake structures are observed.



Q. Xiao et al. Applied Ocean Research 161 (2025) 104645 
Fig. C.2. Time-averaged 𝑦+ distribution over the edges of the stationary object for two values of wave steepnesses for the RANS simulations of a sharp-cornered box. (a) 𝑘𝑎𝑤 = 0.034, 
(b) 𝑘𝑎𝑤 = 0.09.
Fig. C.3. Standing wave pattern: amplitude of local wave surface elevation 𝑎(𝑥) as a function of horizontal distance from the centre of mass 𝑥𝑐 for a stationary object of relative 
size 𝑙∕𝜆 = 10% with two different corner shapes. (a) different types of simulation in low wave steepness 𝑘𝑎𝑤 = 0.034, (b) different types of simulation in high wave steepness 
𝑘𝑎𝑤 = 0.09. The local wave amplitude 𝑎(𝑥) is normalized by incoming wave amplitude 𝑎𝑤 and the horizontal distance is scaled by the wavenumber. The object boundaries represent 
the left and right sides of the object.
Table C.6
Particle Reynolds and Keulegan–Carpenter numbers for stationary objects for different 
wave steepness. The values of Reynolds and Keulegan–Carpenter numbers are the 
identical for sharp-cornered and round-cornered boxes.
 𝑘𝑎𝑤 𝑙∕𝜆 (%) Re𝑥 (× 104) KC  
 0.03 10.0 1.97 0.33 
 0.07 10.0 6.18 0.67 
 0.09 10.0 7.99 0.87 

C.2. Standing wave pattern

We conducted a wave-field analysis to examine wave diffraction 
effects on the stationary objects. The results are shown in Fig.  C.3 for 
𝑘𝑎𝑤 = 0.034 and 𝑘𝑎𝑤 = 0.09. For low wave steepness, in line with the 
observations in Section 3.1.1, the sharp-cornered boxes induce a larger 
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standing wave pattern compared to the round-cornered boxes, with no 
significant variation across different simulation types. For high wave 
steepness, however, the difference between the two types of objects 
diminishes noticeably. Furthermore, it is observed that the normalized 
wave pattern in high wave steepness (maximum 𝑎∕𝑎𝑤 = 1.8) is smaller 
than that for low wave steepness (maximum 𝑎∕𝑎𝑤 = 2.0). This finding 
aligns with the conclusions drawn by Xiao et al. (2024a), indicating that 
as the wave steepness increases, the standing wave pattern normalized 
by wave amplitude decreases, resulting in smaller drift amplification 
factor.

C.3. Spectral analysis of turbulent kinetic energy

To analyse the turbulent statistics in the fluid field around the 
object, we conduct a spectral analysis of the turbulent kinetic energy 𝑘𝑒
based on the time history collected at the sampling points in the fluid 
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Fig. C.4. Power spectral density (PSD) of turbulent kinetic energy (TKE) 𝑘𝑒 at sampling points in the fluid field around the object for RANS simulations of stationary objects 
(𝑙∕𝜆 = 10%) with sharp corners when 𝑘𝑎 = 0.034. (a) left (front region) (b) rear (right) region (c) bottom region. The red lines represent the theoretical lines of Kolmogorov’s 5/3 
law in the inertial subrange. The left and right boundaries of the object are located at 𝑥−𝑥𝑐 = −0.5𝑙 and 𝑥−𝑥𝑐 = 0.5𝑙, respectively. The bottom boundaries are located at 𝑧∕ℎ𝑑 = 1, 
𝑥 − 𝑥𝑐 = [−0.5𝑙, 0.5𝑙].
field defined in Table  6. The power spectral density of 𝑘 at left (front), 
bottom and right (rear) regions is presented in Fig.  C.4. We selectively 
chose sampling points within regions where vorticity is pronounced, 
21 
resulting in uneven distributions at the upstream and downstream 
regions. For the left region, where vorticity is generated and covers 
0.13𝑙, turbulent energy 𝑘  is observed to follow Kolmogorov’s 5/3 
𝑒



Q. Xiao et al. Applied Ocean Research 161 (2025) 104645 
law. As points move closer to the object, the power spectral density 
of 𝑘𝑒 increases, indicating a more turbulent fluid field. Notably, at 
𝑥 = −0.65𝑙, turbulent energy is only observed at locations 𝑧 = −0.72ℎ𝑑
and 𝑧 = −0.8ℎ𝑑 , while points closer to the object exhibit more turbulent 
energy distribution. For points located at 𝑥 − 𝑥𝑐 = −0.52𝑙, that is just 
0.015𝑙 from edge 𝐴𝐷 (the left edge of the object), the turbulent region 
spans the entire sampling region −0.12ℎ𝑑 ≤ 𝑧 ≤ 1. Compared to the 
upstream side, the downstream side contains less turbulent energy, 
with the turbulent region spanning a smaller horizontal and vertical 
extent.

To be more specific, the region in the downstream side spans 
from 0.05𝑙 horizontally and 0.2ℎ𝑑 vertically (vs. 0.13𝑙 horizontally and 
0.88ℎ𝑑 vertically for the upstream side). In the bottom region, points 
on the left side accumulate more turbulent energy and have a larger 
vertical span compared to the right side region. In addition to the 
turbulent energy peak at the frequencies 𝑓∕𝑓𝑤 ≥ 1.0 Hz, there is a large 
amount of turbulent energy for 𝑓∕𝑓𝑤 ≤ 1.0 Hz. There is an area for 
𝑓∕𝑓𝑤 ≤ 1.0 Hz that gains local increase as frequency increases (outlined 
by ellipse in the corresponding figures) in the left region of which the 
pattern is not observed in the right region. Because those frequencies 
are lower than the frequency of objects’ linear motion (equal to the 
incident wave frequency), it induces more sub-harmonic disturbance 
for the object’s drift, which might help to explain the unsteadiness and 
time-decaying components found in Section 3.1.2.
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