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Te presence of free water in the concrete slurry signifcantly infuences the crack patterns of concrete. In this study, uniaxial
compression tests were conducted on concrete specimens with varying moisture contents under acoustic emission (AE)
monitoring. Trough parametric analysis and machine learning, the cracking process of water-containing concrete was studied,
signal patterns during the cracking process were identifed, and the impact of moisture content on the damage evolution and
fracture mechanism of concrete was understood. Te results indicate that free water is capable of absorbing high-frequency
signals. With the increase of moisture content, the AE signals decrease. Te failure of concrete is mainly of the tensile type, while
the shear-type accounts for a relatively small proportion. Te presence of free water decreases the likelihood of diagonal shear
failure in concrete structures. Te unsupervised learning was used for various moisture content analyses. Tree distinct AE signal
patterns were identifed during the concrete compression tests: frictional motion signals of the compression surface, fracture
surface activity signals, and aggregate cracking signals. Based on the moisture content, this study analyzes the variations in signal
responses across diferent modes. A predictive model was established utilizing the BP neural network to diferentiate signals of
various modes, achieving an accuracy rate of 99%.

Keywords: acoustic emission; BP neural network; clustering algorithm; concrete; moisture content; parameter characteristics;
RA-AF

1. Introduction

Various large-scale engineering structures, including but not
limited to piers, sluices, reservoirs, and tunnels, are fre-
quently exposed to high humidity environments during
their service life [1–6]. Prolonged exposure to high humidity
environment signifcantly impacts the strength, stifness,
and durability of concrete [7–9]. With the increase in
moisture content, the compressive strength of concrete will
decrease, which can easily lead to failures, such as pier

failure, reservoir collapse, and tunnel collapse. Terefore, it
is imperative to assess and characterize the damage mech-
anisms of concrete under varying moisture conditions. Tis
evaluation holds signifcant importance for maintaining
structural integrity and accurately assessing the service life of
the structure.

Te moisture content exerts a signifcant infuence on
the mechanical properties of concrete materials. Te static
compressive strength of saturated concrete is lower com-
pared to that of dry concrete [8]. As the moisture content
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increases, the cracking stress and compressive strength
initially rise before decreasing. In addition, the presence of
water also reduces the shear strength of concrete [9, 10].
Studies have demonstrated that the compressive strength of
concrete is infuenced by the displacement rate when fully
hydrated under axial loading [11]. Compared to dry spec-
imens subjected to the same displacement rate, the strength
of concrete with high moisture exhibits a signifcant re-
duction. Te moisture content signifcantly infuences the
durability of concrete. Specifcally, higher moisture content
is directly correlated with increased shrinkage and inversely
correlated with workability [7]. When concrete is subjected
to compressive stress, its elastic modulus increases with
higher moisture content; however, the presence of internal
voids adversely afects the mechanical properties of concrete
[12]. Under fatigue loading, the fatigue life of concrete in
a saturated state is signifcantly lower compared to that in
a dry state. In addition, both the strain rate and dissipated
energy of concrete during the fatigue stage increase as
moisture content and stress levels rise [13]. From the per-
spective of damage rheological theory, it has been observed
that moisture content exerts a signifcant infuence on
concrete creep [14]. Zhou et al. [15] investigated the coupling
efects of water saturation and dip angle on the mechanical
properties and failure characteristics of the rock–concrete
interface. Tey discovered that the extent of strength deg-
radation in rock–concrete disc specimens was signifcantly
correlated with the ratio of shear stress to tensile stress at the
interface. Fahim et al. [16] developed a fnite element model
to predict the drying behavior and internal relative humidity
of concrete. Tese studies have elucidated the impact of
moisture content on various mechanical properties of
concrete. However, the impact of moisture content on
various failure mechanisms of concrete remains poorly
understood, primarily due to the challenges in accurately
identifying these mechanisms.

Acoustic emission (AE) is a real-time and efcient
nondestructive testing technology that has gained wide-
spread application in the damage assessment and health
monitoring of concrete structures. Under the action of
external force or internal force, the internal deformation or
fracture of materials releases energy and generates in-
stantaneous elastic waves, which are called AE [17]. AE
monitoring does not induce any damage to the materials
during the assessment process and possesses the capability
for quantitative evaluation of damage [18]. Evaluating the
damage of engineering structures through AE technology
and promptly proposing corresponding measures for any
detection issues are efective methods to mitigate engi-
neering accidents. Ohno et al. [19], Gao and Sun [20], and
Prem et al. [21] conducted AE monitoring during the
fracture process of concrete and reinforced concrete
structures, revealing a strong correlation between AE pa-
rameters and the fracture process. Yu et al. [22] and Chen
et al. [23] conducted uniaxial compression and AE moni-
toring tests on concrete specimens with varying water–
cement ratios. Tey developed a concrete damage evaluation
model based on cumulative AE energy and cumulative AE
ringing counts and introduced a combined active–passive

AE testing method that accounts for the heterogeneity of
concrete. Te reliability of the proposed method has been
validated through a step loading test, utilizing AE wave
velocity and amplitude parameters. Chen and Liu [24] in-
vestigated the infuence of maximum aggregate particle size
on the fracture properties and fracture process zone at the
crack tip in high-performance concrete, characterizing these
efects through AE hit counts. To investigate the charac-
teristics of AE parameters during the failure process of
underground concrete infrastructure, Lee et al. [25] con-
ducted uniaxial compression tests on concrete specimens
prepared with varying sand ratios. By analyzing both time-
domain parameters (such as ringing counts, energy, and
amplitude) and frequency-domain parameters (including
initial frequency and peak frequency), it was determined that
cumulative energy parameters provide the most efective
characterization of the failure process in the specimens.
Furthermore, AE technology has been utilized for the
classifcation of shear and tension cracks during the fracture
process of concrete structures [26], as well as for monitoring
various materials and structures including rocks [27], coal
samples [28], and railway substructures [29].

Machine learning (ML) is a subfeld of artifcial in-
telligence that enables systems to improve and optimize their
performance autonomously by learning from data and
recognizing patterns. ML algorithms leverage extensive
datasets to identify underlying patterns through training and
optimization processes, thereby facilitating accurate pre-
dictions or informed decisions. Te training of ML models
necessitates a substantial volume of data. AE technology,
when employed to monitor the material failure process,
generates a dataset comprised of parameters that can be used
in ML. Pattern recognition of AE signals from various
building materials has beenmade in the application of ML in
structural health monitoring. Liu et al. [30] investigated AE
signals generated during alloy deformation through an in-
tegrated approach that combined supervised and un-
supervised ML techniques. Heidary et al. [31] employed
unsupervised pattern recognition analysis, specifcally fuzzy
C-means clustering related to principal component analysis
(PCA), to identify the damage modes of composite materials
at various stages of drilling. Li et al. [32] successfully clas-
sifed AE signals during the stress corrosion of 304 stainless
steel using the k-means clustering algorithm, achieving
promising results. Soltangharaei et al. [33] employed a hi-
erarchical clustering algorithm to classify AE signals from
cement mortar column specimens under monotonic loading
conditions and identifed the failure modes based on the
characteristics of these signals. Radhika et al. [34] performed
a parametric analysis of AE data obtained from 12 beam
specimens subjected to three-point bending tests. Trough
the application of PCA and k-means clustering algorithms,
they identifed four distinct damage mechanisms in concrete
under fatigue loading conditions. In conclusion, ML has
been extensively applied in the recognition of material
damage, ofering a novel and efective approach for iden-
tifying damage patterns in concrete structures.

It is important to highlight that previous studies on the
identifcation of concrete damage modes have seldom taken
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into account the infuence of water content within internal
voids on the damage mode. As a constituent within the
concrete medium, free water possesses specifc functional-
ities and characteristics that play a signifcant role during the
process of concrete failure. Water exerts a signifcant in-
fuence on the various damage modes of concrete. As the
moisture content varies, distinct damagemodes are expected
to exhibit diferent patterns. It is viable to determine the
damage modes of concrete structures utilizing ML models.
In this study, the fracture process of concrete specimens with
varying moisture content was monitored using AE tech-
niques, and the infuence of free water within voids on the
damage and fracture evolution of concrete was investigated.
Te AE signal patterns during the failure process of concrete
are identifed using a combination of moisture content
analysis and an unsupervised learning algorithm. Further-
more, the impact of varying moisture content levels on
distinct AE signal patterns is examined. Utilizing the BP
neural network, we have developed prediction models for
various signal patterns. Tis study ofers robust theoretical
support and comprehensive safety guidelines for the health
monitoring of concrete structures operating in aquatic or
heavy rainfall environments.

2. Experiment

2.1. Sample Design. In the tests, 15 concrete specimens with
a water-to-cement ratio of 0.58 were fabricated, and each
specimen had dimensions of 150×150×150mm. Te spe-
cifc mix proportions are detailed in Table 1. Te cement
utilized is standard Portland cement, while the fne aggregate
consists of medium sand. Te coarse aggregate comprises
macadam with a maximum particle size of 20mm. Cement,
sand, and gravel are all produced in Guilin Xiangjiu Sand
Field. All samples were fabricated and cured at the same time
period under standard conditions for 28 days following
demolding. Upon completion of the curing period, the
specimens were air-dried in a well-ventilated environment
for 1month, followed by artifcial drying.

Te test samples were categorized into fve groups, with
each group undergoing three replicate trials. Following
natural drying, the samples were placed in a drying oven set
at 105°C for 24 h. Subsequently, the dried samples were
labeled and weighed, allowed to equilibrate to room tem-
perature, and sealed with plastic flm.Tereafter, the samples
were subjected to soaking.

To control the moisture content of the samples, they
were categorized into fve groups, each comprising three
samples.Te grouped samples were submerged in water.Te
control samples were subjected to soaking durations of 6, 12,
24, and 48 h. Te samples following each soaking period
were designated as C-6, C-12, C-24, and C-48, respectively.
To compare their damage characteristics, a set of dry
samples, designated as C-0, was reserved. After soaking the
samples, we gently blotted the surface moisture using paper
towels and then weighed them. Subsequently, the samples
were sealed with plastic wrap and allowed to remain in the
room for 3 days to ensure complete water absorption. After
sealing the test piece with cling flm, since there is no air

convection and the temperature change is relatively small,
there is basically no loss of moisture. It is worth noting that
the water immersion and sealing maintenance of the con-
crete specimens were all carried out in the laboratory. Tis
approach basically compensates for the impact of envi-
ronmental changes on the water loss of the concrete spec-
imens. Following this period, a uniaxial compression test
was performed. Assuming that the weight of the specimen
after drying is G0, and the weight of the specimen after
soaking is G, then the moisture contentM can be calculated
as

M �
G − G0

G0
. (1)

Table 2 presents the pretreatment outcomes for each
sample group.

2.2. Testing System. Te testing apparatus primarily consists
of a mechanical loading system and an AE monitoring
system, as illustrated in Figure 1. Te mechanical loading
system utilized is the Shanghai Sys-Vertical WAW-3000
series electrohydraulic servo universal testing machine, with
a capacity of 3000 kN. Te testing procedure employs
continuous loading at a rate of 0.1MPa/s [22, 23]. Te AE
monitoring system utilized in the experiment is the Sensor
Highway 3, a third-generation, 16-channel fully digital
system, manufactured by Physical Acoustics Corporation,
USA. Tis system comprises preamplifers, flters, signal
acquisition, and processing units, as well as sensors. We set
the preamplifer gain as 40 dB, in order to reduce the impact
of environmental noise. We tested the environmental noise
in the test site, and the test found that the amplitude of
environmental noise is below 35 dB. So, the AE instrument
threshold was set at 40 dB, which can flter almost all
environmental noise.

2.3. Test Program

(1) Prior to the testing procedure, the concrete speci-
mens were labeled and weighed with the locations
and sequence of the eight sensors clearly marked. As
illustrated in Figure 2, this fgure demonstrates the
positioning of the AE sensors on concrete specimens.

(2) Te test sample is positioned on the base of the
testing apparatus, after which the sensor is afxed to
the sample surface using a hot melt adhesive. Fol-
lowing the installation of the sensor, the AST
function should be utilized to verify the adequacy of
the adhesive, ensuring optimal contact between the
sensor and the sample surface.

(3) Set the AE system threshold and preamplifer gain to
40 dB. Typically, the hit defnition time is twice the
peak defnition time, while the hit lock time should
be marginally longer than the hit defnition time.
Consequently, the peak defnition time, hit defnition
time, and hit lock time are confgured at 250, 500,
and 600 s, respectively.

Structural Control and Health Monitoring 3
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(4) Set the loading rate of the testing system to 0.1MPa/
s, activate the AE acquisition device at the onset of
loading, and record the AE activities of the sample
throughout the loading process.

3. Results and Analysis

3.1. Damage AE Characteristics of Water-Bearing Concrete.
Te damage AE characteristics of water-bearing concrete
were investigated on AE time-domain parameters,
frequency-domain parameters, and the number of diferent
types of cracks. Te commonly utilized AE parameters to
quantify the damage extent of concrete include AE energy
[35], AE ringing counts [22], AE hit counts [23], and peak
frequency [36]. By integrating time-domain and frequency-
domain signal characteristic analyses, the failure process of
water-bearing concrete can be accurately quantifed.

3.1.1. AE Energy and Ringing Counts Analysis. Te AE
ringing counts refer to the number of times the AE signal
waveform exceeds the preset threshold voltage, which can
characterize the activity level of the AE signal. Te higher
the AE ringing counts, the higher the frequency of mi-
croscopic damage events occurring within the materials.
Te AE energy refers to the area under the envelope line of
the AE time-domain signal, which can refect the intensity
of the AE events. Te higher the energy, the greater the
elastic wave energy released by the internal damage within
the materials. Figure 3 illustrates the variations in AE
ringing counts, cumulative AE ringing counts, AE energy,
and cumulative AE energy for specimens with varying
moisture content under stress. In general, apart from the
C-0 specimen, the remaining specimens exhibited similar
AE characteristics. Dry concrete exhibits a signifcantly
higher ringing count and energy level. However, for wet
concrete specimens, both their ringing counts and energy
level rapidly decrease to a normal state. On one hand, the
compressive force exacerbates the frictional interactions
between the internal aggregates of dry concrete, leading to
more intense internal activities. Owing to the flling efect

of water in the voids, the water adheres to the surface of the
aggregates, forming a water flm that reduces the friction
and collisions between the aggregates. Furthermore, the
addition of water enhances the continuity of concrete,
leading to increased medium absorption attenuation of AE
waves during propagation. Terefore, it is observed that
the AE energy and ringing counts of water-containing
concrete are much smaller than those of dry concrete.
On the other hand, a signifcant number of voids exist
between the aggregates within dry concrete. Despite these
gaps leading to more pronounced scattering, refraction,
and difraction attenuation of the AE wave before it rea-
ches the sensor (owing to the signifcantly lower acoustic
impedance of the gas phase compared to the solid and
liquid phases, which hinders the propagation of the AE
wave in the gas phase), the energy released during the
destruction process does not decrease; rather, it increases.
Tis indicates that dielectric absorption-induced attenu-
ation of AE waves is more substantial than that caused by
scattering, refraction, and difraction. Te presence of
water not only reduces the collision friction between ag-
gregates but also attenuates the energy of AE waves,
thereby diminishing the intensity of AE activity.

Based on the AE energy and ringing count characteristics
associated with concrete compression failure, the failure
process of concrete can be systematically categorized into
three distinct phases: the localized compaction and elastic
deformation stage, the stable crack propagation stage, and
the unstable crack development stage.

Stage I: the localized compaction and elastic deformation
stage (about 0%–10% of peak stress). Te concrete specimen
begins to load, the original cracks and voids inside are
compacted, and elastic deformation occurs. Te in-
terconnections between the aggregates are robust, and no
new cracks are initiated. Te AE signals at this stage pri-
marily originate from the collision friction between aggre-
gates as the internal voids within the concrete close. Te
duration for dry concrete at this stage is longer compared to
water-containing concrete, with greater energy release and
more intense aggregate collision and friction. Conversely,
water-containing concrete compacts more easily due to the

Table 1: Proportions of concrete mix.

W/C Cement (kg/m3) Water (kg/m3) Sand (kg/m3) Macadam (kg/m3)
0.58 458.72 266.06 534.05 991.80

Table 2: Sample pretreatment result.

Groups Soaking time
(h)

Te average
weight of
the sample
after drying

(kg)

Te average
weight after
soaking (kg)

Water content
(kg)

Proportion of
moisture content

(%)

C-0 0 7.15 — — —
C-6 6 7.12 7.42 0.3 4.21
C-12 12 7.1 7.49 0.39 5.49
C-24 24 7.01 7.44 0.43 6.13
C-48 48 7.11 7.56 0.45 6.33

4 Structural Control and Health Monitoring
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flling efect of water, leading to a shorter duration, reduced
aggregate collision friction, and partial absorption of
collision-generated energy by water, thereby weakening AE
activity.

Stage II: the steady crack propagation stage (about
10%–70% of the peak stress). With the increase of stress, the
initial crack re-initiates propagation, and the mortar and
aggregate start to exhibit slip toward the crack plane. At this
time, the initial crack also started from the interface between
cement mortar and aggregate with the weakest connection
strength, and the crack continued to extend into the cement
mortar matrix. Te cement mortar matrix experiences ir-
reversible plastic strain. At this stage, the AE activity is weak,
and the AE energy and AE ringing counts develop steadily.
With the increase of moisture content, the duration of this
stage gradually lengthens. Dry concrete exhibits a higher
number of initial cracks, faster development rates, and
greater energy release, leading to more intense internal
activities.

Stage III: the rapid crack development stage (about
70%–100% of the peak stress). As the stress on the specimen

progressively approaches the peak stress, the rate of
microcrack propagation accelerates. Tis leads to increased
deformation of the specimen. Te microcracks begin to
interact with and eventually coalesce with the main cracks,
resulting in instability and ultimate failure of the specimen.
At this stage, there is a sharp increase in the number of AE
signals, and macroscopic cracks become evident on the
specimen’s surface, accompanied by audible destruction
sounds. Notably, the increase in AE signals between Stage II
and Stage III for specimens in the dry state is relatively
modest, suggesting potential interactions among various
failure modes. Tis interaction will be discussed in detail in
Section 3.1.3.

By comparison, we observe that the AE activity in dry
concrete is relatively intense across the three stages. How-
ever, after water absorption, the AE activity is signifcantly
attenuated as a result of the lubricating efect of the water
flm and the absorption of AE energy by the medium. With
the increase of moisture content, Stage II gradually
lengthened, Stage III gradually shortened, and tended to be
stable.

Concrete sampleDrying cabinet

Soaking water
treatment Sealing treatment

ab

c d

Sample handling Test device

AE monitoring deviceLoading device

Preamplifier

AE
monitoring device

AE signalAE sensors

Loading

Sample

Rigid plate

Computer (loading system)

Test system

Figure 1: Test system diagram.

Sensor 1 Sensor 2

Sensor 4 Sensor 3

Sensor 6 Sensor 5

Sensor 7 Sensor 8

Figure 2: Sensor layout.
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Te aforementioned rules not only demonstrate a signif-
icant correlation between AE parameters and the failure
process of concrete but also indicate that the presence of free
water in concrete has an infuence on the failure mode of the
specimens. To comprehensively understand the failure modes
of concrete specimens with various moisture contents, it is
insufcient to solely analyze time-domain parameters.
Terefore, we conducted an analysis of the peak frequency
extracted from the AE signals after performing fast Fourier

transform (FFT) [37]. Te peak frequency can efectively
refect the number of signals in each frequency band and the
changes in high-, medium-, and low-frequency signals, which
is essential for the characterization of concrete damage.

3.1.2. AE Peak Frequency and Hit Counts Analysis. Te
characteristics of AE signals cannot be fully obtained only
through the time-domain parameter analysis of AE signals.
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Figure 3: Correlation analysis of ringing counts, energy, and pressure: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and (e) C-48.
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Terefore, this section analyzes the peak frequency of AE
signals by using FFT. Te AE peak frequency refers to the
frequency component in the frequency domain where the
energy of the AE signal is most concentrated, that is, the
frequency point with the highest amplitude in the spec-
trogram. When the AE signal exceeds the threshold and is
received by any sensor, a hit occurs. Te higher the hit
counts, the more frequent the damage activity. For the
purpose of facilitating analysis, we categorize the peak
frequency into three bands: low, medium, and high.Te low-
frequency band encompasses signals ranging from 0 to
100 kHz, the medium-frequency band includes signals from
100 to 200 kHz, and the high-frequency band comprises
signals exceeding 200 kHz. Figure 4 shows the change
process of peak frequency of fve groups of samples with
diferent moisture content over time. Overall, the AE cu-
mulative hit counts show a turning point at the junctions of
each stage. In diferent stages of the specimen under dry
conditions, the number of signal distributions in the three
frequency bands is relatively large. Relatively speaking,
partial absorption of high-frequency signals leads to a sharp
reduction in their quantity within the specimen after water
absorption. Figure 5 shows the percentage of low-, medium-,
and high-frequency signals in the total signals of the three
stages in each of the fve groups of specimens.

In Stage I, the cumulative AE hit counts have rapidly
increased, indicating that the damage caused by friction and
collision during this stage was signifcant, and the AE activity
has intensifed. As the moisture content increased, the
proportion of low-frequency signals progressively rose.
Upon reaching saturation, the low-frequency signals had
increased by 61.03%. Te proportion of intermediate fre-
quency signals exhibited a gradual downward trend, de-
creasing from C-0 to C-48 with a reduction rate of 60.45%.
No substantial variation in the frequency of high-frequency
signals was detected. In other words, at this stage, the signal
is mainly distributed in the middle- and low-frequency
bands. With the increase of moisture content, free water
not only weakens the collision friction between aggregates
but also reduces the energy generated by the collision
friction and absorbs part of the signal in the middle band
[10], so that the dominant frequency band of the signal is
transferred to the low band.

In Stage II, overall, at the junction with Stage I, the
increase in cumulative hit counts suddenly slowed down.
Except for the dry concrete specimens, the cumulative hit
counts of AE in other specimens rose slowly throughout
Stage II. Tis indicates that after entering Stage II, the
damage activities within the concrete signifcantly weak-
ened, and the cumulative hit counts of AE can clearly
distinguish between Stage I and Stage II. Te frequency band
composition of the signals in Stage II is still dominated by
the medium- and low-frequency bands. In contrast to Stage
I, the frequency band signal of water-containing concrete
remains stable, with no substantial variations observed. As
the concrete transitions from a dry state to one that contains
water, the predominant frequency band shifts from the mid-
frequency range to the low-frequency range. Tis suggests
that during the steady crack development stage, the free

water occupying the voids within the specimen progressively
accumulates as microcracks expand. Te randomness in the
number of these microcracks results in varying degrees of
absorption of the medium-frequency signal by the free
water. Due to the absence of free water in dry concrete, the
energy released during crack propagation is signifcant,
leading to the direct reception of mid-frequency signals by
the sensor. Terefore, the response of dry concrete speci-
mens primarily relies on mid-frequency signals.

In Stage III, the cumulative AE hit counts rapidly in-
creased, and the internal damage of the concrete intensifed
signifcantly. Te activity of AE was signifcantly enhanced.
Te AE signals were distributed in the low-, medium-, and
high-frequency bands, but the low-frequency and medium-
frequency bands were predominant. Te diference was that
compared with Stage I and Stage II, the proportion of high-
frequency band signals was larger in Stage III. Te pro-
portion of low-frequency and medium-frequency band
signals in dry concrete was comparable, while the high-
frequency band signals were about 4–15 times that of water-
containing concrete. In this stage, as the water content
increased, the AE activity decreased slightly. Te high-
frequency signals and some of the medium-frequency sig-
nals were absorbed by water, and the signals shifted from the
high- and medium-frequency bands to the medium- and
low-frequency bands, with a relatively small shift amplitude.

In summary, the cumulative hit counts of AE can ef-
fectively represent the degree of damage activity within the
concrete. Analysis of the peak frequency reveals that the
water’s efect weakens the fracture mechanism of the
concrete and absorbs the AE signals in the medium- and
high-frequency bands. However, when the specimen rea-
ches the saturated water absorption rate, this change may
tend to stabilize. Based on the variations in signal pro-
portions observed during Stages I, II, and III, it is evident
that the free water within the voids of the specimen exhibits
a higher absorption capacity for mid-to-high frequency
signals, whereas low-frequency signals remain relatively
stable.

3.1.3. AE RA-AF Analysis. Te cracks in concrete under
uniaxial compression are mainly shear cracks and tension
cracks. Relevant studies have shown that the values of RA
and AF are closely related to the cracking type of concrete
[38–42]. Te RA value refers to the ratio of the AE rise time
to the amplitude, which is called the rise angle. AF is the ratio
of the AE ringing counts to its duration. Te shear damage
signal exhibits a higher RA value and a lower AF value,
whereas the tension damage signal demonstrates a lower RA
value and a higher AF value. Tis suggests that these two
types of signals can be efectively diferentiated by estab-
lishing an appropriate demarcation line. To facilitate the
comparison of cracking signal characteristics across varying
moisture content states, this study includes all signals from
the fve specimen groups.Terefore, using dry-state concrete
specimens as a reference, the slope of the dividing line is set
to 1. Figure 6 shows the classifed signals and the proportion
of diferent types of signals at each stage.
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On the whole, the predominant cracking signal observed
in the specimen is tensile in nature, with the shear signal
comprising only 1.44%–14.09% of the total signals. As the
moisture content increases, the proportion of shear signal
exhibits a gradual decrease. It is noteworthy that the shear
crack signal intensity in dry concrete specimens is signif-
cantly higher than that in water-containing concrete, sug-
gesting that the presence of water alters the damage
mechanism of concrete. When dry concrete is subjected to

compressive stress, the lack of infll in the voids and the
irregular shape and size of internal aggregate particles result
in interparticle slippage. Tis slippage can cause a defection
in the direction of the principal compressive stress acting on
the aggregate particles, thereby increasing the angle between
the aggregate particles and the principal compressive stress.
Consequently, this phenomenon enhances the likelihood of
diagonal shear failure in concrete. After concrete absorbs
water, the free water flls the voids and bears a minor portion
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Figure 4: Correlation analysis of AE peak frequency and hit counts: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and (e) C-48.
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of the pressure. Consequently, the angle between the ag-
gregate particles and the principal compressive stress un-
dergoes a slight alteration. When the internal stress within
the concrete surpasses its bearing capacity, microscopic
damage initiates, ultimately leading to the formation of
macroscopic tensile cracks.

From a stage-by-stage perspective, during Stage I, the
proportion of shear signals progressively diminishes. Tis
trend suggests that as moisture content increases, the
internal voids within the specimen become increasingly
flled, thereby mitigating the likelihood of inclined shear
failure to some extent. In Stage II, except for the dry
concrete specimens, the other specimens hardly produce
the shear-type signal. Tis is because the development of
microcracks at this stage is dominated by the main
compressive stress, its direction is almost not defected,

and due to the pressure and lubrication of free water, the
failure trend of shear cracks in Stage I is not overextended.
In Stage III, the microscopic crack penetration and
macroscopic failure occurred, and the shear signal of
2.76%∼22.97% was generated. At this juncture, the shear
failure trend established during Stage I commenced its
infuence. Te orientation of the principal compressive
stress underwent a shift, leading to an increased angle
between the aggregate particles and the principal com-
pressive stress. Consequently, partial shear failure was
observed. With the increase in moisture content, the
proportion of shear signals exhibits an irregular pattern.
Tis is attributed to the interaction between shear cracks
and tension cracks during their development, leading to
the formation of composite cracks. Such interactions result
in instability and unpredictability in crack behavior.
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Figure 5: Proportions of signals in diferent frequency bands at diferent stages: (a) Stage I, (b) Stage II, and (c) Stage III.
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Figure 6: Te classifcation of shear and tension cracks and the proportion of cracks in each stage: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and
(e) C-48.
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3.2. Recognition of Cement Slurry Crack Pattern Based on
Unsupervised ML. Te aforementioned analysis examines
the characteristics of AE signal time-domain and frequency-
domain parameters, as well as the development mechanisms
of internal cracks in concrete with varying moisture content,
based on changes in time-domain parameters, frequency-
domain parameters, and RA-AF. Accurately identifying
various types of damage signals remains the primary chal-
lenge that needs to be addressed, and it is of critical im-
portance for evaluating the failure modes of concrete. It is
challenging to distinguish between the various types of
damage signals in concrete. Te emergence of ML ofers
a novel approach for the pattern recognition of damaged
signals. In this section, we incorporate moisture content
analysis, employ ML algorithms, and integrate the method
proposed in literature [34] to identify and predict the signal
pattern of the concrete cracking process. Figure 7 illustrates
the comprehensive methodology employed in this section.
Te primary contents encompass the correlation analysis of
AE parameters, feature engineering of high-dimensional
data for ML, concrete cracking signal pattern classifca-
tion based on an unsupervised learning algorithm, cracking
signal pattern identifcation based on moisture content and
AE parameters, and cracking signal pattern prediction based
on BP neural network.

3.2.1. Correlation Analysis of AE Parameters. Te parame-
ters utilized in ML should exhibit low similarity or sub-
stantial dissimilarity to enable the model to more efectively
identify patterns within the data. So, it is necessary to analyze
the correlation of AE parameters. Te main parameters used
for AE signal analysis include time-domain parameters and
frequency-domain parameters; the time-domain parameters
mainly include rise time [43], counts, energy, duration [44],
amplitude [45], signal strength [46], and absolute energy
[47], and the frequency-domain parameters mainly include
frequency centroid [48] and peak frequency.

Correlation analysis is a statistical method employed to
quantify the degree of association between two or more
variables. Essentially, correlation analysis is used for spotting
patterns within datasets. A positive correlation result means
that both variables increase in relation to each other, while
a negative correlation means that as one variable decreases,
the other increases In general, the relationship between data
can be categorized into two types: linear correlation and
nonlinear correlation. Te relationship between linear data
can frequently be described through the formulation of
a linear equation, wherein an increase or decrease in one
variable corresponds to a proportional increase or decrease
in the other variable. Te relationship between nonlinear
data is inherently more intricate and cannot be adequately
represented by a linear model. As one variable undergoes
changes, the corresponding changes in the other variable
occur at varying rates. Pearson [49] correlation analysis is
utilized to quantify the linear relationship between variables,
assuming that the data are normally distributed. Pearson
correlation analysis quantifes the linear relationship be-
tween variables by defning the Pearson correlation

coefcient “r.” In cases where the data contain outliers or do
not follow a normal distribution, the interpretative power of
the Pearson correlation coefcient may be compromised.
Te Pearson correlation coefcient “r” is defned as follows:

rxy �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁

����������������������

􏽐
n
i�1 xi − x( 􏼁

2
􏽐

n
i�1 yi − y( 􏼁

2
􏽱 , (2)

where xi and yi represent 2 groups of variables, and x and y
represent the arithmetic mean of the two sets of variables,
respectively.

Spearman correlation analysis [49] is employed to assess
the nonlinear relationship between variables. Tis method
evaluates the monotonic association based on the ranks of
the data points, rendering it relatively robust to the distri-
bution shape and less sensitive to deviations from normality.
Spearman correlation analysis measures the degree of cor-
relation between data by defning the Spearman correlation
coefcient “S,” which is not afected by data distribution and
is not sensitive to outliers. Spearman’s correlation coefcient
“S” is defned as follows:

S(X, Y) � 1 −
6􏽐

n
i�1D

2
i

N N
2

− 1􏼐 􏼑
, (3)

where X and Y represent 2 sets of data, Di represents the
diference between the grades of two variables being ob-
served, andN indicates the sample size.Te range of Pearson
and Spearman correlation coefcients is [−1, 1] (correlation
approaching 0 indicates no correlation; approaching 1
represents a positive correlation; approaching −1 means
negative correlation).

Figure 8 presents the Pearson and Spearman correlation
coefcient matrices for 9 AE parameters, specifcally rise
time, ringing counts, energy, duration, amplitude, signal
strength, absolute energy, frequency centroid, and peak
frequency. In general, the parameters showed a strong
nonlinear correlation, so the parameters used in the sub-
sequent process were selected according to Spearman cor-
relation coefcient analysis. Spearman correlation analysis
revealed a strong association between energy, absolute en-
ergy, and signal intensity, with correlation coefcients
ranging from 0.91 to 1.0, and concentrated distribution
around 0.97. Consequently, the selection of energy pa-
rameters can efectively characterize both absolute energy
and signal intensity. Te absolute values of the correlation
coefcients between rise time, ringing counts, duration,
amplitude, frequency centroid, and peak frequency are all
below 0.95, indicating that these parameters can be utilized
for subsequent data processing. However, considering that
both the rise time and the duration are defned based on the
time axis, both refect the time evolution process of the signal
and are related to the energy release characteristics of the
signal. Tat is, the shorter the rise time, the more concen-
trated the signal energy release is, and the longer the du-
ration, the more persistent the signal energy release process
is. Moreover, the rise time can only represent part of the
characteristics of the AE signal, while the duration can
directly refect the length of the AE signal in the time
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domain. Terefore, the rise time is excluded. Te fnal AE
parameters determined for subsequent processes include
ringing counts, energy, duration, amplitude, frequency
centroid, and peak frequency.

3.2.2. Feature Engineering of High-Dimensional Data for ML.
Tere are 6 parameters selected after Spearman correlation
analysis, which is still difcult for ML models to process.
Feature engineering of high-dimensional data is the focus of
ML. Commonly employed data dimensionality reduction
and feature extraction techniques encompass PCA [50] and
kernel PCA (KPCA) [51]. Te traditional PCA algorithm is
primarily designed for linearly separable data, and its ef-
fectiveness is notably constrained when applied to non-
linearly separable data. Specifcally, a key limitation of the
PCA algorithm is its inability to efectively separate non-
linearly separable data using a linear classifer in the original
feature space. Te KPCA algorithm employs a kernel
function to project the data into a high-dimensional feature
space, thereby enhancing the linear separability of the data
within this space. Subsequently, it applies the PCA algorithm
to the transformed data for dimensionality reduction and
feature extraction. Common kernel functions utilized in
KPCA encompass the linear kernel, polynomial kernel, and
radial basis function (RBF) kernel, among others. Notably,
both the polynomial and RBF kernels fall into the category of
nonlinear kernels. Te RBF kernel is one of the most
common and efcient kernel functions, and its expression is
as follows:

V xi, xj􏼐 􏼑 � exp −
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (4)

where xi and xj represent the input sample, and σ is the
width parameter of the function, which controls the radial
range of the function.

As evidenced in the preceding section, AE parameters
exhibit characteristics of nonlinear data. Consequently,
KPCA is applied to these data, utilizing a RBF as the kernel.
In the computation of KPCA, the proportion of variance
explained by each principal component relative to the total
variance can be derived. Tis proportion serves as an

indicator of the information encapsulated within each
principal component. Te formula for calculating co-
variance is as follows:

Cov �
1
n

􏽘

n

i�1
ϕ xi( 􏼁ϕ xi( 􏼁

T
, (5)

where n is the dimension of the original data, xi is the i-
dimensional raw data, and φ is the mapping function. Te
characteristic equation is

λ · v � Cov · v, (6)

where λ is the eigenvalue, and v is the corresponding ei-
genvector. Te variance contribution rate is calculated as
follows:

λ · v �
λi

􏽐
n
i�1λi

. (7)

Figure 9 illustrates the variance interpretation rates of
each principal component for AE parameters. Te cumu-
lative interpretation rates for PC1, PC2, PC3, and PC4
reached 95%, efectively capturing the majority of parameter
characteristics. Furthermore, the data transformed by KPCA
are more amenable to visualization and interpretation. Te
outcomes of KPCA will subsequently be employed in the
ensuing ML procedures, which will be elaborated upon in
the following section.

3.2.3. Concrete Cracking Signal Pattern Classifcation Based
on the Unsupervised Learning Algorithm. To eliminate the
dimensional discrepancies among various principal com-
ponents and facilitate subsequent analysis, PC1, PC2, PC3,
and PC4 were normalized. Unsupervised learning refers to
a type of ML algorithm where the data are not prelabeled,
and the algorithm autonomously identifes features and
patterns within the data. Commonly employed unsupervised
learning algorithms include k-means clustering [52], spec-
tral clustering [53], and density-based clustering [54]. Te k-
means clustering algorithm is currently the most widely
utilized unsupervised learning method. It boasts high
computational efciency, making it particularly suitable for
large-scale datasets. In addition, it can achieve convergence
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Figure 7: Methodological introduction.
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Figure 8: Pearson and Spearman correlation analysis: (a) C-0 Pearson, (b) C-6 Pearson, (c) C-12 Pearson, (d) C-24 Pearson, (e) C-48
Pearson, (f ) C-0 Spearman, (g) C-6 Spearman, (h) C-12 Spearman, (i) C-24 Spearman, and (j) C-48 Spearman.
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Figure 9: Variance explained rate of each principal component: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and (e) C-48.
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within a fnite number of iterations. It has a simple structure
and is highly interpretable. Te fundamental principle of the
k-means algorithm is to minimize the within-cluster sum of
squares, thereby ensuring that data points are grouped into
clusters, where the intracluster similarity is maximized.
Trough multiple iterations, the algorithm will refne the
distribution of clusters to minimize the distance between
data points and their respective centroids, ultimately
achieving convergence. Te sum of squares of the distance
between each point and the center of its cluster is calculated
as follows:

W � 􏽘
n

i�1
􏽐

x∈Ni

x − μi

����
����
2
, (8)

where n represents the number of clusters, Ni is the point set
of cluster i, x is the data point in Ni, μi represents the cluster
center of cluster i, and ‖x − μi‖

2 is the square of the Eu-
clidean distance between x and μi. k-means usually uses
Euclidean distance to measure the distance between a point
and the center of a cluster, and its formula is

d(x, μ) �

�����������

􏽘

n

j�1
xj − μj􏼐 􏼑

2

􏽶
􏽴

. (9)

Prior to employing the k-means algorithm, it is im-
perative to predetermine the number of clusters, a factor that
signifcantly infuences the clustering outcome. To de-
termine the optimal number of clusters, we concurrently
calculate the silhouette coefcient, Calinski–Harabasz (CH)
index, and Davies–Bouldin (DB) index, with the number of
clusters ranging from 2 to 5. It is worth noting that the
silhouette coefcient, DB value, and CH value mentioned
here are all evaluation indicators calculated based on the k-
means clustering results. Te silhouette coefcient focuses
on the rationality of the assignment of individual samples.
Te DB index is used to measure the balance between the
compactness within clusters and the separation between
clusters. Te CH index assesses the separation degree of
clusters by comparing the ratio of intercluster dispersion to
intracluster dispersion. A lower DB value, coupled with
a higher contour coefcient and CH value, indicates a more
efective clustering outcome. Figure 10 presents the calcu-
lated results of the contour coefcient, CH value, and DB
value for the C-0, C-12, and C-48 specimens. Two clusters
are appropriate for dry concrete, whereas three clusters are
recommended for water-containing concrete. Tis indicates
that a certain damage mechanism is expanding as the
specimen absorbs water, so we determined the cluster as 3 in
order to explore this damage mechanism.

Te k-means clustering algorithm was applied to fve
distinct datasets, efectively partitioning the original data
into three distinct clusters. Figure 11 shows the spatial
distribution of the three clusters. Although PC1, PC2, PC3,
and PC4 are utilized for clustering, for the sake of descriptive
simplicity, we have chosen to visualize the data in three-
dimensional space using only PC1, PC2, and PC3. As can be
seen from the fgure, although the clustering shapes of other

samples except C-0 are diferent, the overall clustering efect
is good.Te C-0 specimen generated 2 –3 times more signals
compared to other specimens, as the damage occurred in an
environment devoid of water, thereby eliminating the ab-
sorption of sound signal energy by water. Furthermore, the
substantial energy release has resulted in elevated values of
the measured acoustic parameters, which are identifed as
the primary factor contributing to the suboptimal clustering
performance. A viable approach is to evaluate the signal
pattern following clustering based on the variation of
moisture content and AE parameters. In the next section, we
will identify the signal pattern of the whole process of
concrete compression through moisture content and AE
parameter characteristics.

3.2.4. Cracking Signal Pattern Identifcation Based on
Moisture Content and AE Parameters. Te proportion of
signals from each cluster relative to the total number of
signals is presented in Table 3. We will consider identifying
clustering features with as few AE parameters as possible.
Energy and amplitude can be used to quantify the strength of
the signal, while duration refects the temporal extent of the
signal. In addition, frequency centroid provides insight into
the signal’s frequency-domain characteristics. Conse-
quently, these four parameters, energy, amplitude, duration,
and frequency centroid, are selected as the key indicators for
identifying damage signal patterns associated with clustering
analysis. Figure 12 illustrates the correlation analysis dia-
gram of AE signal parameters for diferent clustering seg-
ments. Tree distinct types of characteristic signals can be
identifed from the fgure, detailed as follows:

(1) Cluster 1 exhibits the lowest signal energy, with its
amplitude and duration being marginally higher
than those of Cluster 2, while the frequency centroid
remains comparable. In addition, the proportion of
Cluster 1 among all specimens did not exhibit sig-
nifcant variation and was consistently the smallest.
In other words, the damage mode associated with
Cluster 1 is commonly observed in both dry and
water-containing concrete specimens, exhibiting
minimal correlation with their moisture content.Te
moisture content will afect the strength of concrete,
so the damage mechanism inside the concrete is
basically related to the moisture content. Owing to
the development and propagation of microcracks
within the concrete, the compressive surface may
experience minor slippage, leading to friction. Te
friction is relatively mild, resulting in a low intensity
of the measured AE signal. Te low-frequency
centroid suggests that the energy of this signal is
predominantly concentrated in the low-frequency
components. Cluster 1 may be related to the fric-
tional motion signals of the concrete compression
surface.

(2) Te signal of Cluster 2 exhibits moderate energy
levels (higher than those of Cluster 1), a moderate
frequency centroid, relatively lower amplitude, and
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shorter duration. Te medium energy and low
amplitude indicate that the signal is not violent. Te
proportion of Cluster 2 exhibited a gradual increase
as the moisture content rose. In the process of
concrete fracture, the fracture surface will be active,
including frictional slip, collision, intersection, and
so on. In dry concrete, the movement of the fracture
surface is weak. After the specimen absorbs water,
the free water in the void will concentrate to collect
and fll the microcracks in the cement mortar. Te
accumulated free water will produce a “wedging
[10]” efect on the tip of the microcrack, accelerate
the development of microcrack, and produce more
AE signals. Due to the lubrication and wedging
action of water, the movement of the fracture surface
is intensifed. Combined with AE parameter features,
it can be determined that these are the fracture
surface activity signals.

(3) Te signal distribution range of Cluster 3 is wide, and
the values of signal characteristic parameters are
distributed at all levels. With the increase in moisture
content, the proportion of Cluster 3 progressively
diminishes. Te smaller the moisture content, the
more intense this signal pattern is, which may be
related to aggregate cracking. Due to the flling and
lubricating efect of free water on the void inside the
concrete, the friction between the cement mortar and
the particles inside the interfacial transition zone (ITZ)
is reduced, making the aggregate more prone to
cracking. Coarse aggregate is the hardest part of
concrete and releases a lot of energy when broken,
corresponding to a signal with the highest energy and
maximum amplitude. Te ITZ is the interface area
between aggregate and cement mortar in concrete,
which has high porosity, is the weak part in concrete,
and is also one of the areasmost susceptible to external
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Figure 10: Selection of cluster number: (a) C-0, (b) C-12, and (c) C-48.
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Figure 11: Tree-dimensional visualization of clustering data: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and (e) C-48.
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Table 3: Percentage of signals from each cluster of the total signal.

Groups Cluster 1(%) Cluster 2(%) Cluster 3(%)
C-0 16.4 9.6 74.0
C-6 16.8 39.5 43.6
C-12 16.3 41.4 42.4
C-24 18.0 41.5 40.6
C-48 15.9 52.2 31.9
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Figure 12: Continued.
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Figure 12: Correlation analysis of AE parameters: (a) C-0, (b) C-6, (c) C-12, (d) C-24, and (e) C-48.
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Figure 13: Te distribution of clusters in each stage.

Table 4: Accuracy of test sets with diferent numbers of hidden layers.

The number of hidden
layers 2 3  5 6 7 8

C-0(%) 94.4 95.1 97.2 96.3 98.1 99.1 99.2
C-6(%) 95.2 96.6 98.8 97.6 99.1 99.8 99.7
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Figure 14: Continued.
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Figure 14: Schematic diagram of the BP neural network training process: (a) C-0, (b) C-12, and (c) C-48.
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Figure 15: Continued.
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factors. When ITZ is destroyed, the energy released is
weak and the amplitude is small, corresponding to the
part with the lowest energy and the smallest ampli-
tude. Due to the varying degrees of cracking of cement
mortar, the energy range generated is large, corre-
sponding to the part between the coarse aggregate
cracking signal and the ITZ cracking signal.

Each cluster is divided into the three stages distinguished in
Chapter 3.1.1, and the proportion of clusters in each stage is
shown in Figure 13 It is observed that the three clusters are
predominantly distributed in Stages II and III, indicating that
the three damage mechanisms primarily occur during the
stable and unstable fracture development stages. In Stage II, the
frictional motion of dry concrete compression surface, fracture
surface activity, and aggregate cracking are predominant. As
moisture content increases, the three signal modes of water-
bearing concrete exhibit a trend of transitioning from domi-
nance in Stage III to dominance in Stage II. Tis suggests that
increased moisture content may accelerate the development
speed and intensity of microcracks in concrete, leading to
a shortened stable crack development stage, premature
cracking, and ultimately a reduction in strength.

3.2.5. Cracking Signal Pattern Prediction Based on the BP
Neural Network. Although the clustering algorithm is ca-
pable of identifying distinct signal patterns during the

concrete failure process, it fails to achieve real-time pre-
diction of signals generated during the monitoring process.
To address this limitation, a real-time signal category pre-
diction model based on the BP neural network is proposed
for predicting signal patterns in the real-time monitoring
process.Te clustering algorithm’s recognition output serves
as the data label for the BP neural network. Te BP neural
network [55] is an artifcial neural network model that relies
on the backpropagation algorithm, and it stands as one of
the most extensively utilized neural networks in various
applications. Te fundamental mechanism of this network
encompasses both the forward propagation of signals and
the backward propagation of errors. Structurally, a BP neural
network consists of three layers: the input layer, hidden
layer, and output layer. It refnes its performance by
adjusting weights and thresholds through the back-
propagation algorithm. Specifcally, the input layer receives
raw data inputs, the hidden layer processes these inputs
through complex transformations, and the output layer
delivers the fnal prediction outcomes. Troughout this
process, neurons exert their infuence progressively layer by
layer. In cases where the initial predictions do not meet
expected standards, the network initiates the error back-
propagation phase. During this phase, the discrepancies
between predicted and actual results are used to fne-tune
the network’s weights and thresholds, thereby enhancing the
overall accuracy of the BP neural network.
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Figure 15: Confusion matrix of training data and test data: (a) C-0 train data, (b) C-6 train data, (c) C-12 train data, (d) C-24 train data, (e)
C-48 train data, (f ) C-0 test data, (g) C-6 test data, (h) C-12 test data, (i) C-24 test data, and (j) C-48 test data.
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A substantial volume of training data can prolong the
neural network’s training duration and lead to issues such as
inadequate generalization capability. Consequently, for each
sample category, only 6000 instances are selected for model
training and evaluation. Te 6000 sets of data contain 3
signal modes, and each set of signals contains 4 features,
namely, PC1, PC2, PC3, and PC4. Te data amount of each
signal mode is 2000 groups, and the data label is provided by
the clustering result. We take 80% of the data for training the
model and 20% for testing the model. In this study, the
number of hidden layers was set at 0.5 to 2 times that of the
input layer.Te performance of the test set was monitored as
the number of hidden layers was gradually increased,
thereby determining the optimal number of hidden layers.
Taking specimens C-0 and C-6 as examples, Table 4 shows
the accuracy rates of the test set when the number of hidden
layers was 2–8. When the number of hidden layers was 7 and
8, the accuracy rate of the test set reached over 99%, so the
number of hidden layers was set to 7. We set the maximum
number of iterations for the model to 1000, the target
training error to 0.001, and the learning rate to 0.01. Te
performance variation of the mean square error during the
training process is illustrated in Figure 14. As the number of
iterations increases, the mean square error of the BP neural
network gradually decreases. Te model can basically
achieve the set target error within 200 iterations. Te result
analysis is represented by a confusion matrix. Te confusion
matrix shows how the predicted label compares to the real
label, helping to identify how the model performs in dif-
ferent categories. Figure 15 shows the confusion matrix for
the training set and the test set. As can be seen from Fig-
ure 15, the BP neural network model is fully trained, and the
accuracy rate of the test set is basically above 99%, which can
accurately identify diferent signal modes in the whole
process of concrete compression. Tis further demonstrates
the accuracy of the clustering outcomes, as the training of
neural networks inherently demands a high-quality dataset.
When a new signal generated during the compression
process is input to the model, the BP neural network pre-
diction model can give the correct prediction.

4. Conclusions

In this study, uniaxial compression tests and AE monitoring
were conducted on concrete specimens with varying
moisture contents. Te temporal and frequency-domain
changes in AE signal parameters were systematically ana-
lyzed. Furthermore, the tension and shear cracks were
distinguished using the AE RA-AF method, allowing for an
in-depth analysis of the crack development mechanisms.
With moisture content as the main line, thee ML algorithm
is used to identify and predict the AE signal pattern of the
whole process of concrete compression. Te study has led to
several key conclusions, which are summarized as follows:

(1) Te AE activity in dry concrete is more pronounced
and exhibits a gradual reduction as the moisture
content increases. Te free water in the void inside
the concrete can absorb the medium- and high-

frequency signal above 100 kHz. Te higher the
moisture content, the stronger the absorption efect,
and it tends to be stable when it reaches saturated
water absorption.

(2) Based on the AE analysis conducted by RA-AF, the
predominant failure mode of concrete is tensile
failure, with shear failure comprising only 1.44%–
14.09% of all failures. Te flling of the void in the
concrete and the bearing efect of water reduce the
possibility of diagonal shear failure of the specimen.

(3) Te correlation analysis of AE parameters reveals
that the relationship between these parameters is
a strong nonlinear correlation. KPCA was employed
to extract the principal components PC1, PC2, PC3,
and PC4. Tese components efectively capture the
majority of AE parameters, with a cumulative var-
iance explanation rate exceeding 95%.

(4) Based on variations in moisture content, an un-
supervised learning algorithm was employed to
identify three distinct signal modes during the entire
process of concrete compression fracture: frictional
motion signals of the compression surface, fracture
surface activity signals, and aggregate cracking sig-
nals. Tese three signal modes predominantly
manifest during the middle and late stages of con-
crete failure. With the increase of moisture content,
the activity of the fracture surface is gradually en-
hanced, and the cracking degree of aggregate is
gradually weakened.

(5) Te BP neural network was employed to predict the
three signal modes, achieving a test set accuracy
exceeding 99%. Tis model can reliably distinguish
between diferent signal patterns throughout the
entire process of concrete compression.
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J. V. Lemos, “Dynamic Monitoring of a Concrete Arch Dam
During the First Filling of the Reservoir,” Engineering
Structures 174 (2018): 548560.

[2] X. Niu, Q. Li, W. Liu, and Y. Hu, “Efects of Ambient
Temperature, Relative Humidity and Wind Speed on In-
terlayer Properties of Dam Concrete,” Construction and
Building Materials 260 (2020): 119791, https://doi.org/
10.1016/j.conbuildmat.2020.119791.

[3] Y. Zhu, J. Zhou, B. Zhang, H. Wang, and M. Huang, “Sta-
tistical Analysis of Major Tunnel Construction Accidents in
China From 2010 to 2020,” Tunnelling and Underground
Space Technology 124 (2022): 104460, https://doi.org/10.1016/
j.tust.2022.104460.

[4] J. Sun, J. Zhang, W. Huang, L. Zhu, Y. Liu, and J. Yang,
“Investigation and Finite Element Simulation Analysis on
Collapse Accident of Heyuan Dongjiang Bridge,” Engineering
Failure Analysis 115 (2020): 104655, https://doi.org/10.1016/
j.engfailanal.2020.104655.

[5] B. Liu, P. Li, and C. Gao, “Seismic Response Analysis of Bridge
Pier in Water by Diferent Water Depth,” China Civil Engi-
neering Journal 43, no. S2 (2010): 199–203.

[6] Z. Xing, L. Zhang, M. Tan, M. Zhou, and H. Huang, “Research
on the Infuence of Tide on the Stability of Subsea Tunnel
Face,” Chinese Journal of Underground Space and Engineering
20, no. S1 (2024): 381–390.

[7] K. C. Hover, “Te Infuence of Water on the Performance of
Concrete,”Construction and BuildingMaterials 25, no. 7 (2011):
3003–3013, https://doi.org/10.1016/j.conbuildmat.2011.01.010.

[8] H. Wang, L. Wang, Y. Song, and J. Wang, “Infuence of Free
Water on Dynamic Behavior of Dam Concrete Under Biaxial
Compression,” Construction and Building Materials 112 (2016):
222–231, https://doi.org/10.1016/j.conbuildmat.2016.02.090.

[9] X. H. Vu, Y. Malecot, L. Daudeville, and E. Buzaud, “Ex-
perimental Analysis of Concrete Behavior Under High
Confnement: Efect of the Saturation Ratio,” International
Journal of Solids and Structures 46, no. 5 (2009): 1105–1120,
https://doi.org/10.1016/j.ijsolstr.2008.10.015.

[10] H. Li, S. Meng, D. Shi, Q. Wei, Z. Xu, andW. Zhao, “Infuence
of Moisture on Ultrasonic Propagation, Acoustic Emission
Activity, and Failure Mechanism in Concrete Media,” Con-
struction and Building Materials 386 (2023): 131499, https://
doi.org/10.1016/j.conbuildmat.2023.131499.

[11] P. G. Ranjith, D. Jasinge, J. Y. Song, and S. K. Choi, “A Study
of the Efect of Displacement Rate and Moisture Content on
the Mechanical Properties of Concrete: Use of Acoustic
Emission,” Mechanics of Materials 40, no. 6 (2008): 453–469,
https://doi.org/10.1016/j.mechmat.2007.11.002.

[12] B. D. Liu, W. J. Lv, L. Li, and P. F. Li, “Efect of Moisture
Content on Static Compressive Elasticity Modulus of Con-
crete,” Construction and Building Materials 69 (2014): 133–
142, https://doi.org/10.1016/j.conbuildmat.2014.06.094.

[13] X. Sun, Y. Tian, W. Yin, and H. Wang, “Efect of Free Water on
Fatigue Performance of Concrete Subjected to Compressive
Cyclic Load,” Construction and Building Materials 318 (2022):
125995, https://doi.org/10.1016/j.conbuildmat.2021.125995.

[14] Z. Zheng, H. Liu, M. Xiao, J. D. He, H. Q. Xie, and L. Zhuo,
“A Creep Model Coupling Moisture and Mechanical
Damage for Water-Bearing Concrete,” Construction and

Building Materials 326 (2022): 126598, https://doi.org/
10.1016/j.conbuildmat.2022.126598.

[15] Z. Zhou, J. Lu, X. Cai, Y. Rui, and L. Tan, “Water Saturation
Efects on Mechanical Performances and Failure Character-
istics of Rock-Concrete Disc With Diferent Interface Dip
Angles,” Construction and Building Materials 324 (2022):
126684, https://doi.org/10.1016/j.conbuildmat.2022.126684.

[16] A. Fahim, S. De Carufel, P. Ghods, A. R. Alizadeh, and
M. Salehi, “Practical Model for Predicting Internal Relative
Humidity of Concrete Exposed to Drying,” Journal of Ma-
terials in Civil Engineering 31, no. 8 (2019): 04019143, https://
doi.org/10.1061/(asce)mt.1943-5533.0002785.

[17] L. Dong, Y. Zhang, S. Bi, J. Ma, Y. Yan, and H. Cao, “Un-
certainty Investigation for the Classifcation of Rock Micro-
Fracture Types Using Acoustic Emission Parameters,” In-
ternational Journal of Rock Mechanics and Mining Sciences 162
(2023): 105292, https://doi.org/10.1016/j.ijrmms.2022.105292.

[18] C. U. Grosse and F. Finck, “Quantitative Evaluation of Fracture
Processes in Concrete Using Signal-Based Acoustic Emission
Techniques,” Cement and Concrete Composites 28, no. 4 (2006):
330–336, https://doi.org/10.1016/j.cemconcomp.2006.02.006.

[19] K. Ohno, K. Uji, A. Ueno, and M. Ohtsu, “Fracture Process
Zone in Notched Concrete Beam Under Tree-Point
Bending by Acoustic Emission,” Construction and Build-
ing Materials 67 (2014): 139–145, https://doi.org/10.1016/
j.conbuildmat.2014.05.012.

[20] Y. Gao and H. Sun, “Infuence of Initial Defects on Crack
Propagation of Concrete Under Uniaxial Compression,”
Construction and Building Materials 277 (2021): 122361,
https://doi.org/10.1016/j.conbuildmat.2021.122361.

[21] P. R. Prem, M. Verma, and P. S. Ambily, “Damage Charac-
terization of Reinforced Concrete Beams Under Diferent
Failure Modes Using Acoustic Emission,” Structures 30
(2021): 174–187, https://doi.org/10.1016/j.istruc.2021.01.007.

[22] A. Yu, Z. Chen, L. Zhang, X. Li, J. Shi, and F. Fu, “Study on AE
Characteristics of Concrete With Diferent w/c Ratio Under
Uniaxial Compression,” Structures 58 (2023): 105443, https://
doi.org/10.1016/j.istruc.2023.105443.

[23] Z. Chen, T. Miao, T. Liu, X. Chen, and A. Yu, “Active-Passive
Joint Acoustic Emission Monitoring Test Considering the
Heterogeneity of Concrete,”Materials 16, no. 24 (2023): 7694,
https://doi.org/10.3390/ma16247694.

[24] B. Chen and J. Liu, “Investigation of Efects of Aggregate
Size on the Fracture Behavior of High Performance Con-
crete by Acoustic Emission,” Construction and Building
Materials 21, no. 8 (2007): 1696–1701, https://doi.org/
10.1016/j.conbuildmat.2006.05.030.

[25] J. Lee, H. Kim, and T. Oh, “Acoustic Emission Characteristics
During Uniaxial Compressive Loading for Concrete Speci-
mens According to Sand Content Ratio,” KSCE Journal of
Civil Engineering 24, no. 9 (2020): 2808–2823, https://doi.org/
10.1007/s12205-020-5697-0.

[26] Z. Shi, X. Chen, Y. Ning, and H. Tian, “Study on Crack
Propagation of Rubber Self-Compacting Concrete Based on
RA-AF Characteristics,” Journal of Civil & Environmental
Engineering 46, no. 05 (2024): 175–183.

[27] J. Yang, Z. Mu, and S. Yang, “Experimental Study of
Acoustic Emission Multi-Parameter Information Charac-
terizing Rock Crack Development,” Engineering Fracture
Mechanics 232 (2020): 107045, https://doi.org/10.1016/
j.engfracmech.2020.107045.

[28] Z. Zhang, X. Liu, Y. Zhang, X. Qin, and M. Khan, “Com-
parative Study on Fracture Characteristics of Coal and Rock
Samples Based on Acoustic Emission Technology,”

24 Structural Control and Health Monitoring

 schm
, 2025, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/stc/6633988 by C
ity U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [04/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://doi.org/10.1016/j.conbuildmat.2020.119791
http://doi.org/10.1016/j.conbuildmat.2020.119791
http://doi.org/10.1016/j.tust.2022.104460
http://doi.org/10.1016/j.tust.2022.104460
http://doi.org/10.1016/j.engfailanal.2020.104655
http://doi.org/10.1016/j.engfailanal.2020.104655
http://doi.org/10.1016/j.conbuildmat.2011.01.010
http://doi.org/10.1016/j.conbuildmat.2016.02.090
http://doi.org/10.1016/j.ijsolstr.2008.10.015
http://doi.org/10.1016/j.conbuildmat.2023.131499
http://doi.org/10.1016/j.conbuildmat.2023.131499
http://doi.org/10.1016/j.mechmat.2007.11.002
http://doi.org/10.1016/j.conbuildmat.2014.06.094
http://doi.org/10.1016/j.conbuildmat.2021.125995
http://doi.org/10.1016/j.conbuildmat.2022.126598
http://doi.org/10.1016/j.conbuildmat.2022.126598
http://doi.org/10.1016/j.conbuildmat.2022.126684
http://doi.org/10.1061/(asce)mt.1943-5533.0002785
http://doi.org/10.1061/(asce)mt.1943-5533.0002785
http://doi.org/10.1016/j.ijrmms.2022.105292
http://doi.org/10.1016/j.cemconcomp.2006.02.006
http://doi.org/10.1016/j.conbuildmat.2014.05.012
http://doi.org/10.1016/j.conbuildmat.2014.05.012
http://doi.org/10.1016/j.conbuildmat.2021.122361
http://doi.org/10.1016/j.istruc.2021.01.007
http://doi.org/10.1016/j.istruc.2023.105443
http://doi.org/10.1016/j.istruc.2023.105443
http://doi.org/10.3390/ma16247694
http://doi.org/10.1016/j.conbuildmat.2006.05.030
http://doi.org/10.1016/j.conbuildmat.2006.05.030
http://doi.org/10.1007/s12205-020-5697-0
http://doi.org/10.1007/s12205-020-5697-0
http://doi.org/10.1016/j.engfracmech.2020.107045
http://doi.org/10.1016/j.engfracmech.2020.107045


Teoretical and Applied Fracture Mechanics 111 (2021):
102851, https://doi.org/10.1016/j.tafmec.2020.102851.

[29] X. Luo, H. Haya, T. Inaba, and T. Shiotani, “Seismic Di-
agnosis of Railway Substructures by Using Secondary
Acoustic Emission,” Soil Dynamics and Earthquake Engi-
neering 26, no. 12 (2006): 1101–1110, https://doi.org/
10.1016/j.soildyn.2006.03.002.

[30] H. Liu, F. Brifod, T. Shiraiwa, M. Enoki, and S. Emura,
“Clustering Analysis of Acoustic Emission Signals During
Compression Tests in Mille-Feuille Structure Materials: Me-
chanics of Materials,” Materials Transactions 63, no. 3 (2022):
319–328, https://doi.org/10.2320/matertrans.mt-m2021105.

[31] H. Heidary, N. Z. Karimi, M. Ahmadi, A. Rahimi, and
A. Zucchelli, “Clustering of Acoustic Emission Signals Collected
During Drilling Process of Composite Materials Using Un-
supervised Classifers,” Journal of Composite Materials 49, no. 5
(2015): 559–571, https://doi.org/10.1177/0021998314521258.

[32] J. Li, G. Du, C. Jiang, and S. Jin, “Te Classifcation of Acoustic
Emission Signals of 304 Stainless Steel During Stress Cor-
rosion Process Based on K-Means Clustering,”Anti-Corrosion
Methods & Materials 59, no. 2 (2012): 76–80, https://doi.org/
10.1108/00035591211210848.

[33] V. Soltangharaei, R. Anay, L. Assi, M. Bayat, J. R. Rose, and
P. Ziehl, “Analyzing Acoustic Emission Data to Identify
Cracking Modes in Cement Paste Using an Artifcial Neural
Network,” Construction and Building Materials 267 (2021):
121047, https://doi.org/10.1016/j.conbuildmat.2020.121047.

[34] V. Radhika and J. M. Chandra Kishen, “A Comparative Study
of Crack Growth Mechanisms in Concrete Trough Acoustic
Emission Analysis: Monotonic Versus Fatigue Loading,”
Construction and Building Materials 432 (2024): 136568,
https://doi.org/10.1016/j.conbuildmat.2024.136568.

[35] P. Gao, J. Liu, X. Wang, Y. Jiao, and W. Shan, “Damage
Evaluation and Failure Mechanism Analysis of Axially
Compressed Circular Concrete-Filled Steel Tubular Column
via AE Monitoring,” Structural Health Monitoring 23, no. 2
(2024): 701–713, https://doi.org/10.1177/14759217231174697.

[36] C. Barile, C. Casavola, G. Pappalettera, and V. P. Kannan,
“Interpreting the Lempel–Ziv Complexity of Acoustic Emission
Signals for Identifying DamageModes in CompositeMaterials,”
Structural Health Monitoring 22, no. 3 (2023): 1708–1720,
https://doi.org/10.1177/14759217221112831.

[37] K. He, X. Liu, Q. Yang, and Y. Chen, “An Extraction Method
of Welding Crack Acoustic Emission Signal Using Harmonic
Analysis,” Measurement 103 (2017): 311–320, https://doi.org/
10.1016/j.measurement.2017.02.026.

[38] Z. Liu, X. Chen, T. Ji, and Z. Peng, “Fracture Properties of
Full-Graded Dam Concrete Under Discontinuous Cyclic
Loading Based on Acoustic Emission,” Journal of Materials in
Civil Engineering 37, no. 4 (2025): 18138, https://doi.org/
10.1061/jmcee7.mteng-18138.

[39] Y. Bi, Z. Yao, Y. Qin, Q. Chen, C. Yang, and A. Kali,
“Experimental Study on Acoustic Emission Damage in
Precast Reinforced Concrete Interior Joints Containing
Disc Springs,” Structures 69 (2024): 107271, https://doi.org/
10.1016/j.istruc.2024.107271.

[40] Z. Lv, C. Chen, R. Li, J. Jin, and B. Hu, “Multifractal of
Acoustic Emission for the Multi-Scale Fracture Behavior of
Diatomite Modifed Concrete,” Construction and Building

Materials 445 (2024): 137951, https://doi.org/10.1016/
j.conbuildmat.2024.137951.

[41] W. Shen, F. Wang, C. Li, Z. Zhang, and M. Hou, “Revealing
Evolution Law and FailureMechanism of Interface Damage in
Concrete-Encased CFST Columns by Acoustic Emission
Technology,” Journal of Building Engineering 93 (2024):
109792, https://doi.org/10.1016/j.jobe.2024.109792.

[42] S. Du, B. Liang, Y. Zhang, et al., “Mechanical Properties and
Damage Characteristics Analysis on Recycled Aggregate Con-
crete With Glazed Hollow Beads After High Temperatures by
Acoustic Emission Method,” Journal of Building Engineering 90
(2024): 109429, https://doi.org/10.1016/j.jobe.2024.109429.

[43] Y. Ma, M. Liu, L. Yang, P. Dai, J. Fan, and E. Tsangouri,
“Acoustic Emission for Monitoring the Damage Progress on
Concrete-Filled Stainless-Steel Tubes (CFSST) Under Bending
Test,” Engineering Structures 314 (2024): 118316-, https://
doi.org/10.1016/j.engstruct.2024.118316.

[44] K. Zhao, H. Ma, C. Yang, and J. J. K. Daemen, “Te Role of
Prior Creep Duration on the Acoustic Emission Character-
istics of Rock Salt Under Cyclic Loading,” International
Journal of Rock Mechanics and Mining Sciences 157 (2022):
105166, https://doi.org/10.1016/j.ijrmms.2022.105166.

[45] S. Li, S. Chang, P. Li, X. Zhang, and N. Jiang, “Optimization of
Concrete Surface Sensor Arrangement for Acoustic Emission
Monitoring of Prestressed Steel Strand Damage in T-Beams,”
Applied Acoustics 223 (2024): 110082, https://doi.org/10.1016/
j.apacoust.2024.110082.

[46] B. Hu, S. Chen, D. Yang, P. Yu, and Z. Liao, “Study on the
Evolution of Acoustic Signals and Strain Evolution During
Large-Scale Tensile Failure Test of Limestone,” Water Re-
sources and Hydropower Engineering (2024): 1–20.

[47] J. Guo, S. Liang, H. Zhang, F. Sun, and B. He, “Experimental
Study on Rockburst of Granite With Prefabricated Folded
Fissure Under True-triaxial With Single Face Unloading,”
Journal of Basic Science and Engineering (2024): 1–20.

[48] C. Barile, C. Casavola, G. Pappalettera, and
V. Paramsamy Kannan, “Damage Assessment of Carbon
Fibre Reinforced Plastic Using Acoustic Emission Technique:
Experimental and Numerical Approach,” Structural Health
Monitoring 20, no. 3 (2021): 1090–1101, https://doi.org/
10.1177/1475921720946438.

[49] P. Lin, X. Feng, W. Guo, J. Wu, X. Tang, and X.Wang, “Plastic
Deformation Defect Detection of TiB/TC4 Composites Based
on Acoustic Emission,” Journal of Netshape Forming Engi-
neering 16, no. 07 (2024): 96–108.

[50] C. Wu, G. Ma, H. J. Hwang, and D. J. Kim, “Machine
Learning-based Identifcation of the Relationship Between
Bond Strength of GFRP Bars and AEHits in Concrete Beams,”
Engineering Structures 329 (2025): 119845, https://doi.org/
10.1016/j.engstruct.2025.119845.

[51] Y. Wang, X. Li, Y. Sun, J. Zhang, P. Guo, and R. Wang, “A
Monitoring and Warning Method for Hydroelectric Units
Based on KPCA and LSTM,” Journal of Vibration and Shock
43, no. 24 (2024): 287–294.

[52] S. L. Li, S. H. Chen, M. Li, et al., “Separation Method for
Acoustic Emission Signals of Prestressing Steel Strand
Fracture and Concrete Cracking,” Measurement 245 (2025):
116607, https://doi.org/10.1016/j.measurement.2024.116607.

Structural Control and Health Monitoring 25

 schm
, 2025, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/stc/6633988 by C
ity U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [04/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://doi.org/10.1016/j.tafmec.2020.102851
http://doi.org/10.1016/j.soildyn.2006.03.002
http://doi.org/10.1016/j.soildyn.2006.03.002
http://doi.org/10.2320/matertrans.mt-m2021105
http://doi.org/10.1177/0021998314521258
http://doi.org/10.1108/00035591211210848
http://doi.org/10.1108/00035591211210848
http://doi.org/10.1016/j.conbuildmat.2020.121047
http://doi.org/10.1016/j.conbuildmat.2024.136568
http://doi.org/10.1177/14759217231174697
http://doi.org/10.1177/14759217221112831
http://doi.org/10.1016/j.measurement.2017.02.026
http://doi.org/10.1016/j.measurement.2017.02.026
http://doi.org/10.1061/jmcee7.mteng-18138
http://doi.org/10.1061/jmcee7.mteng-18138
http://doi.org/10.1016/j.istruc.2024.107271
http://doi.org/10.1016/j.istruc.2024.107271
http://doi.org/10.1016/j.conbuildmat.2024.137951
http://doi.org/10.1016/j.conbuildmat.2024.137951
http://doi.org/10.1016/j.jobe.2024.109792
http://doi.org/10.1016/j.jobe.2024.109429
http://doi.org/10.1016/j.engstruct.2024.118316
http://doi.org/10.1016/j.engstruct.2024.118316
http://doi.org/10.1016/j.ijrmms.2022.105166
http://doi.org/10.1016/j.apacoust.2024.110082
http://doi.org/10.1016/j.apacoust.2024.110082
http://doi.org/10.1177/1475921720946438
http://doi.org/10.1177/1475921720946438
http://doi.org/10.1016/j.engstruct.2025.119845
http://doi.org/10.1016/j.engstruct.2025.119845
http://doi.org/10.1016/j.measurement.2024.116607


[53] M. Solarte-Sanchez, D.Marquez-Viloria, A. E. Castro-Ospina,
E. Reyes-Vera, N. Guerrero-Gonzalez, and J. Botero-Valencia,
“m-QAM Receiver Based on Data Stream Spectral Clustering
for Optical Channels Dominated by Nonlinear Phase Noise,”
Algorithms 17, no. 12 (2024): 0553, https://doi.org/10.3390/
a17120553.

[54] L. Yin, Y.Wang, H. Chen, andW. Deng, “An Improved Density
Peak Clustering Algorithm for Multi-Density Data,” Sensors 22,
no. 22 (2022): 8814, https://doi.org/10.3390/s22228814.

[55] A. Jierula, S.Wang, T. Oh, J.W. Lee, and J. H. Lee, “Detection of
Source Locations in RC Columns Using Machine Learning
With Acoustic Emission Data,” Engineering Structures 246
(2021): 112992, https://doi.org/10.1016/j.engstruct.2021.112992.

26 Structural Control and Health Monitoring

 schm
, 2025, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/stc/6633988 by C
ity U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [04/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://doi.org/10.3390/a17120553
http://doi.org/10.3390/a17120553
http://doi.org/10.3390/s22228814
http://doi.org/10.1016/j.engstruct.2021.112992

	Signal Recognition and Prediction of Water-Bearing Concrete Under Axial Compression Using Acoustic Emission and Machine Learning
	1. Introduction
	2. Experiment
	2.1. Sample Design
	2.2. Testing System
	2.3. Test Program

	3. Results and Analysis
	3.1. Damage AE Characteristics of Water-Bearing Concrete
	3.1.1. AE Energy and Ringing Counts Analysis
	3.1.2. AE Peak Frequency and Hit Counts Analysis
	3.1.3. AE RA-AF Analysis

	3.2. Recognition of Cement Slurry Crack Pattern Based on Unsupervised ML
	3.2.1. Correlation Analysis of AE Parameters
	3.2.2. Feature Engineering of High-Dimensional Data for ML
	3.2.3. Concrete Cracking Signal Pattern Classification Based on the Unsupervised Learning Algorithm
	3.2.4. Cracking Signal Pattern Identification Based on Moisture Content and AE Parameters
	3.2.5. Cracking Signal Pattern Prediction Based on the BP Neural Network


	4. Conclusions
	Data Availability Statement
	Conflicts of Interest
	Author Contributions
	Funding
	References




