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ABSTRACT

Mathematical models have been developed and applied to the 

analysis and design of snap-action diaphragms that can be considered 

axi-symmetric. An efficient finite element formulation based on 

axi-symmetric thin shell theory and employing two noded line 

elements has been produced for studying these unstable devices. The 

finite element model was validated by comparison with experimental 

results on a number of diaphragms, for both pressure loadings and 

point loadings.

A systematic study of two types of snap-action diaphragms 

(conical and spherical) has been conducted using the finite element 

model. Non-dimensional design curves have been produced for conical 

diaphragms and from these a design methodology has been developed. 

This methodology does not require the use of a computer but it is 

based on the computer generated design curves.
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Chapter 1

CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION

Elastic elements find wide application as sensors in pressure 

and force measuring instruments. Examples are Bourdon tubes, 

corrugated diaphragms, and capsules in pressure transducers, and 

load-cell billets and other elastic structures for force 
transducers. In the past the design of such elements has been 

approached mainly from a practical empirical view point using when 

available simple "strength of materials" type theory. Modern 

pressure and force sensing industrial instruments are designed to 

have errors of less than 1%. This has led to methods based on 

simple theory being inadequate. The result is that design and 

development has become a costly and time consuming process. In 

recent years, computer based mathematical models have been developed 

for some common elastic elements (Turley, 1977; Leong,1981; 

Abdullah et.al, 1983)* These have been used successfully to design 

instruments in an efficient manner. An example is the design of 

nesting capsules for pressure sensors. Using conventional methods 

it takes about one man year of effort to design a new capsule. 

Capsules are formed by joining two corrugated diaphragms together. 
The mathematical techniques (computer based) pioneered at The 

Measurement and Instrumentation Centre, The City University allow 

designs to be carried out in a fraction of the time taken formerly. 

The entire design and development process has been streamlined 
including generation of the "'paper-tapes containing information on 

diaphragm profiles. The paper-tapes are then fed into a numerically 

controlled lathe to produce forming tools fdr the diaphragms. The 

security of the design is assured because the tool, if damaged or 

worn, can be replaced easily.

This thesis is concerned with the development and application 

of mathematical modelling techniques to "snap-action" diaphragms 

used in pressure and force sensors. Snap—action diaphragms differ 

from ordinary diaphragms in that they lose stability and buckle 
through when the applied load reaches a critical value. On 
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Chapter 1

reduction of the load the diaphragms snap back at a lower load 

value. At snap-through and snap-back . large displacements are 

involved. The entire load deflection characteristic of a 

snap-action diaphragm includes a region of negative stiffness which 

produces the positive action associated with the diaphragm (hence 

the name snap-action). These devices are used in instruments as 

pressure, force or temperature operated switches. When used in 

combination with "back-off” springs, almost zero rate systems with 

excellent overload capacities can be produced. The mathematical 

modelling of snap-action diaphragms is more complex than ordinary 

diaphragms. This is because the load-deflection characteristic is 

not single valued, and large displacements are involved. Present 

industrial design of these devices has been developed in a wholly 

empirical manner since no adequate simple theory has existed. 

Design is difficult because the snapping behavior is critically 

dependent on the form and dimensions of the diaphragm.

Although the application of ordinary diaphragms is widespread, 

the use of the snap-action diaphragm is limited. This is because 

their design is extremely difficult. It could be argued that if 

accurate mathematical models and design procedures were available 

then these devices will find greater applications. For example, 

they would be ideally suited for gauging the pressure fluctuations 

that occur in vortex shedding type meters.

The objective of this thesis is to develop such models and a 

design methodology. The study has been restricted to snap-action 

diaphragms that can be considered as axi-symmetrical thin elastic 

shells. In particular, two types of snap-action diaphragms 
conical and spherical - have been studied in detail. Numerical 

models based on the Finite Element method are developed. The finite 

element technique is now widely used in many branches of 

engineering. This technique and the finite difference method is 

commonly used for the analysis and design of sensors and actuators 

(see Review paper by Abdullah and Finkelstein, 1982).
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1-2 THESIS ORGANISATION

The thesis is organised in the following sequence:

Chapter 2 is concerned with a general introduction to 

different types of axi-symmetric diaphragms and their application. 

A brief discussion of existing mathematical models and strategy for 

present study is presented.

Chapter 3 is concerned with the non-linear finite element 

formulation using the Total Lagrangian approach for the analysis of 

axi-symmetric shells.

Chapter 4 is concerned with the validation of the finite 

element model, with published theoretical results and experimental 

work conducted by the author. A method for accelerating the 

convergence rate of the model is also suggested.

Chapter 5 is concerned with implementation of the Updated 

Lagrangian formulation. Accuracy of the results was found to 

deteriorate at large displacements when the Total Lagrangian 

formulation was used. Also, a curved non-linear line element is 

introduced so that diaphragms of complex profiles can be analysed 

efficiently.

Chapter 6 is concerned with the classification and parametric 

representation of different axi-symmetrical diaphragms . Results of 

sensitivity analysis are also presented. Sensitivity analysis 

determines which parameters have significant effect on diaphragm 

performance.

Chapter 7 is concerned with a systematic procedure for 

designing diaphragms ie. determination of the parameters for a 

given design specification. Based on this procedure, a feasibility 

study to design a variable range pressure switch has been carried 

out.

Chapter 8 is concerned with the conclusions and achievements 

of the project. Recommendations are made for future work to 

supplement the present study.
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CHAPTER 2

SNAP-ACTION DIAPHRAGMS, APPLICATIONS, AND MATHEMATICAL MODELLING

2.1 introd uction

The background and the objectives of the present study were 

outlined in the previous chapter. In this chapter, a description of 

the behaviour of snap-action diaphragms and their applications are 

presented. A brief discussion of the previous research in the 

field, leading to the present study, is also included.

2.2 SNAP-ACTION DIAPHRAGMS

In ordinary diaphragms (flat or corrugated), as the 

displacements increase, the median in-plane tensile stress in the 

diaphragm also increases. As a result, the resistance of the 

diaphragm to applied load increases, hence increasing the stiffness 

of the diaphragm, so the stiffness of the diaphragm increases. If 

during the mounting of the diaphragm, initial tensile stresses are 

introduced, the stiffness of the diaphragm is increased 

considerably. Conversely, if in-plane compressive stresses are 

introduced in a diaphragm, there is an accompanied reduction in the 

stiffness and the characteristic becomes regressive. If the 

compressive forces are large enough there is eventual loss of 

stability, and sudden change in diaphragm profile takes place 

(Andreeva, 1966). This behaviour is not restricted to diaphragms 

only, and can be observed in beams and arches etc. (Surana, 1982, 

Nayak, 1971, Wood, et.al., 1977, Sabir, 1972).
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LOAD 'F'

Figure 2.1: Convex Diaphragm

When a convex diaphragm is subjected to force or pressure 

(from the convex side), compressive stresses in the diaphragm median 

plane are produced (figure 2.1). If the convexity is large enough, 

the diaphragm will lose stability and buckle through. Typical 

load-deflection characteristics of such a diaphragm are shown in 

figure 2.2.

DJSP.

Figure 2.2: Load Deflection Curve
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As the load is increased from the initial unstrained position 

0, the deflection follows the path OA. This is a stable and 

reversible region. At the critical load *FP', the compressive 

forces in the diaphragm become large enough for it to lose stability 

and snap-through to a new stable state ’B’. A dramatic change in 

the diaphragm shape occurs at this stage. If the applied load is 

varied at this stage, the deflections follow the path ’CD’ (increase 

or decrease). If the load is decreased sufficiently at another 

critical load ’FT’, the diaphragm loses stability again and snaps 

back to 'E'. Again there is a large change in the diaphragm shape. 

From here on the deflections follow 'OA' and the entire operation 

can be repeated.

In the two stable regions, OA and CD of the characteristic 

curve, the variations in the displacements are smooth. The unstable 

region, given by 'AD', is never observed experimentally. However, 

its determination becomes important for certain applications as 

explained in the next section.

Even though large displacements are involved during loading 

and unloading of snap-action diaphragms, the stresses remain small 

and no plastic deformation takes place.

2.3 APPLICATIONS

Snap-action diaphragms, because of their load-deflection 

characteristics are usually used as force or pressure operated 

switches/relays. They are ideally suited for this application 

because they have positive action (as implied by the name), produce 

large displacements and have good reproducibility. Some of the 

other applications of snap-action diaphragms are listed below.

(i) Zero-rate system: A combination of a diahpragm and a 

spring can be designed such that the spring stiffness matches the 

negative stiffness of the diaphragm. Hence the system has zero 

stiffness over a desired operating displacement range and very high 

stiffness when the displacement lies outside the desired range 

(figure 2.3). The system is adjusted such that it normally operates 

in the 'OD' section of the displacement range in which the stiffness 

is zero. Such a combination is used on f -* *ilic circuits and 
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provides protection to other hardware (valves, etc) that follow. 

The advantage of this combination is that it does not offer any 

resistance to load in the normal operating range.

DEFLECTION

Figure 2.3: Zero Rate System

(ii) Variable Load Switch: A snap-action with a suitable 

back-off spring can be used a's a variable load switch. The spring 

is chosen such that it has a lower stiffness than the negative 

stiffness of the diaphragm so that the combination has suitable 

hysteresis. The load at which the diaphragm triggers can be altered 

by arranging Xo (figure 2.4).
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Figure 2.4
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The system may he used to trigger a micro switch at a given load 

'F*. Several commercially available variable pressure switches 

operate on this principle, using an ordinary diaphragm as a load 

sensing element instead of a snap-action diaphragm (figure 2.4). 

Generally, these devices have poor reproducability because ordinary 

diaphragms have monotoraically increasing load-deflection

characteristics, hence the position of the micro-switch becomes 

critical. When using snap-action diaphragms, the position of the 

micro switch becomes non-critical. It can be positioned to trigger 

anywhere between ’WP' and 'WT‘. Furthermore, the displacements in 

snap-action diaphragms are much larger than in ordinary diaphragms, 

hence less sensitive (cheaper) micro-switches can be used.

The types of loading used in snap-action diaphragms are 

uniform pressure and centrally acting point force. Temperature 

loading can also produce snapping behaviour in the diaphragms, but 

generally this occurs when bi-metallic devices are used.

2.4 REVIEW OF THE PAST WORK

The interest in shells developed in the late 195O's. This is 

due to the advancement in the Aerospace Industry and the need for 

light weight load carrying members. New theories for shells and 

methods for solving them emerged rapidly. The subject is 

extensively covered in the literature. (Donnell, 1934, Marguerre, 

1938, Timoshenko, 1951, Novozhilov, 1953, Flugge, 1962, Sanders, 

1963, Kraus, 1967) The two methods used for the analysis of the 

problems are:

a. Analytical models

b. Numerical models

(a) Analytical models express the shell behaviour (load 

deflection, stress and strain, etc) for a particular shell structure 

in terms of a set of algebraic equations. These equations are 

derived by introducing simplifications in the physical model of the 

theory at the expense of losing generality. Such a model, for 

convex-snap-action diaphragms has been developed by Andreeva 

(Andreeva, 1966). The model is for diaphragms of very simple 
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profile and subjected to pressure load. The adequacy of Andreeva’s 

model will be discussed later.

(b) Numerical models. Until the middle of the 196O’s the 

analysis of the buckling of shells in general was restricted to 

approximate determination of buckling load. The studies were 

limited to simple shell profiles. Most of the numerical models, up 

till then, failed to converge prior to the arrival at maximum on the 

load-deflection curve.

Thereafter, more elaborate finite difference models for 

studying the instability of shells were developed. Mescall 

developed a finite difference model based on Reissner’s shell theory 

for axi-symmetrical caps. His study was limited to shells subjected 

to concentrated loads and was valid for small deflections only.

A succession of research papers on the subject emerged in the 

1970's. Notable contributors were - Murray et.al., 1969, Yang, 

1972, Sabir et.al., 1972, Bergan et.al, 1973, Gallagher, 1972, Dhatt 

et.al., 1976, and Wood et.al., 1977. The list mentioned here is by 

no means exhaustive. Further references and details can be obtained 

from the forementioned literature.

Implementation and formulation of a very simple, yet accurate 

and efficient element for the analysis of axi-symmetrical shells is 

presented in Chapter 3• Apart from the usual complexities involved 

in non-linear shell analysis, tracing of the load-deflection 

characteristic for the snap-action diaphragm is further complicated 

due to the fact that, for a given load the deflection is not unique 

(figure 2.2).

An important part in the development of the model the 

programming techniques used. In this respect, a finite element 

library system 'FELIB' (SERC, 1980) is used to aid in the efficient 

development of the program.

Unlike corrugated diaphragms and capsules (Turley, 1977), no 

systematic study has been carried out to facilitate the analysis and 

design of snap-action diaphragms. The aim of the present study is 

to rectify this situation.
page 10
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CHAPTER 3

FINITE ELEMENT ANALYSIS OP INSTABILITY

IN AXI-SYMMETRIC THIN SHELLS

3.1 INTRODUCTION

The objectives of the present study were discussed in the 

previous chapters. To achieve these aims, an accurate and efficient 

mathematical model is essential. A non-linear finite element 

formulation for the analysis of axi-symmetric thin shells is 

presented in this chapter. A simple and efficient two noded line 

element (developed by Zienkiewicz and Bauer et.al., 1977) is used 

for for the analysis. The elements have been shown to yield 

excellent results for several linear examples. The total Lagrangian 

finite element formulation presented in this chapter is general and 

can be applied to the analysis of any axi-syrametrical thin shell 

problem. Only geometric non-linearities are considered because 

plastic deformation does not take place in snap-action diaphragms.

3-2 INTRODUCTION TO THE FINITE ELEMENT METHOD

Exact closed form solutions to complex continuum problems

cannot be obtained. This may be due to irregular features

(geometrical, loading and boundary, etc) in the problem. Analytical 

solutions to such problems may be obtained by ignoring these 

irregularities, but this usually leads to serious errors in the 

results. Alternatively, these complexities may be retained, and an 

approximate solution may be obtained by numerical methods.

In continuum problems of any dimension, the field variable 

(pressure, temperature, displacement, etc) possesses infinite 

degrees of freedom because it is a function of each generic point in 

the body. Hence the problem is of an infinite number of unknowns. 

In numerical methods, the number of unknowns is reduced to a 

manageable size by dividing the domain of interest into small 
segments and assigning finite degrees of freedom to the segment 

nodal points. Two popular numerical methods for solving continuum 

problems are:

page 11
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1. Finite difference method

2. Finite element method

3.2.1 FINITE DIFFERENCE METHOD

In the finite difference method (Fenner, 1978) the domain of 

interest is divided into small segments using a uniform grid. The 

differential equation describing the behaviour of the variable is 

expressed in terms of a difference equation using a Taylor series 

expansion. Solution is obtained after imposing boundary conditions. 

The method yields very good results (Hafiz, 1981, Turley, 1977, 

Rahman, 1979). The disadvantages of this method are:

(i) Lacks Flexibility: Complex geometrical shapes cannot be 

handled easily, for example, curved boundaries may need 

reformulation of the difference equations.

(ii) Computationally Uneconomical: In the finite difference 

method, a uniform grid is often used. If rapid changes in the 

variable occur in one section, the entire grid has to be refined. 

Furthermore, if the geometry is irregular a very fine grid may have 

to be used throughout the domain of interest just in order to model 

the irregular region accurately.

3.2.2 FINITE ELEMENT METHOD

The finite element method is an extension of the Ritz method 

for solving continuum problems. In the Ritz method, an 

interpolation function with adjustable parameters is chosen. The 

interpolation function approximates the solution in the domain of 

interest and must satisfy the boundary conditions. The adjustable 

parameters can be determined by using the variational method 

(extremization of a functional with respect to the adjustable

parameters. For 

as the potential

solution depends

elasticity problems, the functional is identified 

energy of the system). The accuracy of the 

on the suitability of the interpolation function.

The method can only be applied to simple geometries because a single 

trial function approximates the variable over the entire geometry 

(Huebner, 1975).
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In the finite element method, complex geometries are 

approximated by assembling small segments of simple shapes (called 

elements). Variables (potential, displacement, etc) are specified 

at the nodes of the elements. A suitable interpolation function is 
used to approximate the behaviour of the variable within the 

element. The interpolation function must retain continuity of the 

variable across the element boundaries. The unknown variables are 

determined at the nodal points from the equilibrium equation for the 

system.

The different stages of finite element modeling are:

(1) Discretization of the domain - The geometry is divided 

into small segments (elements). The elements may be straight or 

curved depending on the problem. The number of elements necessary 

depends on the problem. Generally the accuracy of the results 

improves as the number is increased.

(2) Choice of interpolation function - Usually polynomials are 

used for interpolating the variables because their mathematical 

manipulation is simple. The degree of the polynomial used depends 

upon the order of partial differential equations of the continuum. 

The following criteria must be observed in choosing an interpolation 

function to ensure convergence:

(a) Compatability - Up to one less than the highest partial 

derivative of the variable in the partial differential equation must 

be continuous across the element boundaries. Violation of this 

produces finite strains at the element interfaces.

(b) Completeness - All uniform state of the variable and its 

partial derivatives appearing in the partial differential equation 

should have representation in the functional when in the limit, 

the element size shrinks to zero.

Elements which comply with the above conditions are called 

conforming elements. However, non-conforming elements have been 

shown to produce excellent results.

(3) Establishment of Element Properties - Element properties 
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can be determined by several methods. In elasticity problems, 

generally, the variational method is used. The method is based on 

determining the stationarity of the functional IT (a) with respect to 

the nodal variables a.

= o
£ £

With interpolation functions giving piecewise representation of the

variable, function TT (a) can be defined as the sum of the individual

functions defined for all the elements of the assemblage:

TT (a) = JlTT (a )
e x t

where e - element number

n - total number of elements

Hence, instead of using the functional defined over the entire 

domain, the functional for individual elements can be used.

a tt  m __ a> nA**)
e = i. "

(4) Assembly of System Equations- Individual element equations 

at step (3) are combined to form system equations, which are 

representative of the entire domain.

K (a), a - F = 0

where K (a) - system stiffness matrix

a - displacement vector for the system

F - loading vector for the system

The combination of the individual element stiffness to form a global 

or system stiffness matrix is based upon the fact that common nodes 

have identical field variables.

(5) Solution of System Equation - A set of simultaneous 
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equations are obtained at step (4). These equations are solved by-

employing one of several standard methods to determine the variables 

at the element nodes. Boundary conditions are often imposed at this 

stage, before solving the equation (Rahman, 1979). Alternatively, 

the boundary conditions (also known as restraints) may be imposed 

when assembling the system equations (SERC, 1980).

(6) Additional Calculations - Additional computations may be 

carried out at this stage ie. determination of stresses and strains 

from the nodal displacements.

Large computations are involved when using the Finite Element 

method, hence it is carried out in three different stages. This 

partitioning of the computation gives an added flexibility because 

each stage may be developed, altered or extended independently. The 

three different stages are:

(i) The Pre-Processor - Division of the geometry using small 

segments (elements) is carried out by a computer program called 

"Pre-processor". It may be very complex, containing different types 

of elements and their interfacing. Pre-processors need to be 

interactive and must have adequate graphics facilities so that 

suitable representation of the geometry can be achieved in minimum 

time.

(ii) The Analysis - This is the main program which formulates 

and solves the system equations to determine the variables at the 

nodes of the elements.

(iii) The Post-Processor'- It is a computer program, generally 

interactive which gives visual display of the results obtained from 

the analysis.

The finite element method has gained immense popularity in the 

recent years and is extensively covered in published literature 

(Fenner, 1979, Nath, 1974, Huebner, 1975, Zienkiewicz, 1977).
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3.3 FINITE ELEMENT ANALYSIS OF AXI-SYMMERTRIC SHELLS WITH GEOMETRIC 

NON-LINEARITY

The general theory of thin shells can be considerably 
simplified by taking axial symmetry of the structure into account. 

The shell theory used here is for axi-symmetric shell structures 

under axi-symmetric loading, so that one dimensional (line) elements 

can be used. The subject is reviewed comprehensively by Gallagher 

(1975).

Only geometric non-linearities are taken into account ie. the 

stresses are assumed to be much less than the yield stress of the 

diaphragm material. This is a valid assumption for the analysis of 

snap-action diaphragms because as the diaphragm snaps through, the 

dominant in-plane stresses change from compression to tension. The 

magnitude of the stresses remains small.

3.3.1 NON-LINEAR STRAIN DISPLACEMENT RELATIONS

The non-linear strain displacement relations for the middle 

surface of the shells of revolution (figure 3.1) are given by 

Novozhilov (1953)» and Kraus (1967). The displacements of the 

middle surface are uniquely defined by the tangential component *u’ 

and normal component ’ w'. Orthogonal curvilinear coordinates are 

used throughout to allow analysis of shells of arbitrary shape and 

not shallow shells only (Batoz et.al., 1976).
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Figure 3 • 1 : Arbitrary shell of revolution

£ s " d u 

ds ds + i
X

-
z 3 >.(sr) + u 3 0 

dT .

2

SIN d
r

U + COS

r

0 vv

(5.1)

■ 30 d U u d 2 0 32
ds 3s dSa dsx

X 0 = 30 
ds

SIN u
r

- SIN 0
r

3 _
ds

1 cos 
i r

» 1< d w 
d 3

where £ - midsurface strains

- bending strains

u - tangential displacements

w - normal displacements
r - cylindrical coordinate

s - meridinal lengti along shell element

© - slope of the undeformed shell

O- - circumferential direction
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If the elements are small, variation of '(f)' with respect to 

's’ can be neglected ie. constant across the element length. 

Hence equation 3»1 can be written as:

= S»N 0 u cos <t> W
r r

- d U
+ 1 (< d w 'j1

d S i <* as >

xs = _ W

as1

(3.2)

Sin <t> i CoS 4 /
r 3s 2 r I 3s
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The stress strain relations are given by:

^3

N 6

OR 5" = D £

9

I

o

o

where N - Stress resultants

M - Stress couples

E - Youngs Modulus of the material

t - Thickness of the shell

9 - Poisson ratio

& - Stress vector

8 - Strain vector

D - Stress Strain matrix

It should be noted that D is a symmetric matrix. This fact is 

utilized when choosing a solution method for the system equation.
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3.4 FINITE ELEMENT FORMULATION

For axi-symmetric sheila, line elements (straight or curved) 

may be used (figure 3*2).

Figure 3.2: n-noded straight element

The displacements inside the element can be determined from 

the nodal displacements and the interpolation functions:

H ’ -N -a (3.4)

To assure convergence, compatibility and completeness 

requirements must be fulfilled (section 3*2). Because second 

derivatives of 'w' are present in equation 3*2, not only the 

variables (u,w) but the slope (c>w/ds) must also be continuous across 

adjacent elements. The variables (u,w) will be continuous because 

they are common for the adjoining elements. Continuity of slope 

(d w/d s) can be imposed at the expense of introducing an extra 

variable 'p' at the nodes (figure 3.3), where 'p* is defined as:

f = £ w/^s (3.5) '
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Figure 3.3

Using this definition of equation 3- > can be rewritten in 

matrix form as follows (the linear and non-linear section of the 

strain displacement relations have been segregated).

o

CoS

r

<3

O

O

O

_ a
"5s*

a 
ds

(5.6)

Only first determinates of the variables are present in

equation 3-6. A two noded linear element can be used which will 

fulfill the convergence requirements. The linear interpolation 

functions, in terms of local coordinates , are:
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N = (1 -q )/2.0

N = (1 + »7 )/2.0

Figure 3.4: Interpolation function

The concept of local coordinates simplifies mathematical 

manipulations when determining element properties (next section).

The displacements a 

terras of nodal variables

inside the element can be expressed in 

and the interpolation function (equation

u,

Vi

*x
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3-5 ELEMENT PROPERTIES

The element properties for solid mechanics can be determined 

by extremization of the functional ]T j , where TTj is the total 

potential energy of the element. The aim is to formulate an element 

stiffness matrix (section 3«2).

aT 5- dv - | a7pdv (3.8)

where p - Load per unit volume

Because *p* is allowed to vary independently, 

must be imposed on ’B’ such that,
a constraint

This can be achieved by using a penalty function.

± <t ( yT X dv
1 ) V

can be recognised as the shear strain, hence the penalty 
number oc i3 the shear rigidity.

5
il

E t
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£ and C , given by equations 3.6 and 3.3 respectively, can be

modified to include & and<x.

*

fc5

=

af
- L

d 0 0

StN
r r

0

0 0 - a

ds

0 0 - SIN a
r

0 a 

aT
- 1

■■ % a + ' B 
T <■

u

0

0

0

0 0 u

vy + i 0 0 0 w

0 0

- r

0 0 0

where Bo - linear strain displacement matrix
BL - non-linear strain displacement matrix

The above strain displacement relations need to be expressed

in terms of the nodal variables. This can be achieved by using

equation 3*7.

d i 0
ds

Bo =

N i Cos t>N [ SIN (/)
0

- dN i 
ds

- Sim <$ d N i 
r dS

-N’t
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o Ni p>

o o

o o

q  _£> bl j Cas ft

r

o o

The stress strain matrix modified to include the shear stress

can be written as:

Et
i -V1

1 V 0 0 0

V 1 0 0 0

0 0 t1 vt1 0
TT 12

0 0 VI1 t1 0
12 12

0 0 0 0 5 ( 1 + V
1Z

(3.9)

where Q - Shear resultant

D - Stress-strain matrix

The functionalTT/a) (equation 3«8) can be modified to include

the constraints on 'B' by using the new expressions of 8 and £7.

(3.10)

The equilibruim equations are
♦

variation of IT (a) with respect to a

obtained by determining the 

and solving for » 0.
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* ‘ ( a ) •f. B dv
a - j p dv = 0 (5.11)

WHERE :

= So + B L

And :

B = f i & U
2

d ( 6 a ) = T P &L * + e> u d a ) „ B u da

a &u a 3 5 u d a

( \ IS A fu nc tion  of 6 onu Y

Equation 3-11 can be written in a more usual manner ie. using 

stiffness matrix K (a) and replacing j p dv with equivalent nodal 
/ , *

forces F .

(3.12)

K (a) is a function of displacement a.

The displacements have been specified in local coordinates ie. 

tangential and normal to the normal element orientation. Before 

combining element properties to form a systems equation, K(a) and a 

have to be transformed into global coordinates (r,z), figure 3.5.
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Figure 3*5: Global axes

The transformation can be carried out by using direction

cosine matrix such that:

U'L CoS

_ SlrS

Sin

cos

0

0

Ui.

*1

Al 0 0 1 Ik*1
•

or

£1 7 A a ;

where 3 - direction cosine matrix

a- - displacement vector for node i in local coordinates

a- - displacement vector for node i in global coordinates

It can also be shown that the element stiffness matrix in

global coordinates is given by:
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When exact numerical intergration of equation 3*11 is carried 

out, there is a tendency for K leading to a solution ac0 

(Zienkiewicz, 1978, Pawsey et.al., 1971). This was found to be due 

to the shear component of the element stiffness matrix. In a line 

element, linear variation of the shear strain occurs along the 

element. When exact two-quadrature point integration is used, large

shear strain combined with large modules of 

1978) makes the shear component of K(a) 

suggested use of selective integration ie. 

shear component Ke and exact for the rest.

rigidity (Zienkiewicz,

Doherty et.al.(1969)

reduced integration of

In case of a line

element this would mean single point (at controid) integration of 
£

shear component of K (a) and exact integration of the rest.

However, it was found that reduced integration could be carried out 

for the entire stiffness matrix without any loss of accuracy. This 

simplifies computer programming and reduces the computation time and 

the results were found to be better than those obtained by more 

complex formulations (Zienkiewicz and Bauer et.al., 1977)

Assembly of systems equations is carried out by combining 

individual element equations and using the fact that the adjacent 

elements have common nodes hence common variables. Further details 

can be obtained from any text on the finite element method or from 

the FE library documentation (SERC, 1980).

3.6 SOLUTION OF NON-LINEAR EQUATIONS

The system equations, obtained after assembly of the 

individual element equations, are of the same format as the element 

equations (equation 3*12).
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where K (a) - system stiffness matrix (non-linear)

a - nodal displacement vector

F - equivalent load vector

The above equation cannot be solved directly because K(a) is a 

function of displacement, hence iterative methods have to be used. 

There are several iterative methods available for solving non-linear 

equations (Chrisfield, 1980). The Newton-Raphson method was chosen 

for the purpose because of its proven reliability. Generally the 

loading vector is taken as an independent variable when solving the 

above equation iteratively. However, because the relationship 

between the applied load and the displacement is not unique (section 

3-4), the so called dominant displacement method is used (Batoz 

et.al., 1976). In the dominant displacement method, a single 

element of the vector 'a' is increased by a fixed amount and the 

other elements of 'a' are determined so that equilibrium between 

applied load displacement is maintained.

The system equation for each iteration can be written as:

/(a) a‘ - X F ’ I? (5-15)

where >• - Scalar variable to be determined

R - The residual vector

i - Iteration number

F - Known load distribution

The solution seeks to minimize the residual vector at each 

consecutive iteration * i’ . 2? determines the actual load vector 

necessary for equilibrium.

ft L+' —
ft1 + d ft - o

3 fC d ft L 6 d l + a ft1 <s V
d a4 a v

(5.14)

(5.15)
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From equation 3.13:

•a
L <- ‘K Sa

a V
_ F

6 Ru
_ T 6 r f

WHERE :

I

T
3P> * 

a a i- <-

K - is known as tangential stiffness matrix, its derivation is given

in appendix A.

Hence,
\

pj L + 1 = < + b ‘ <5a 1 - sr F = 0 (5.16)
■f

c 1ba can be defined as a sum of 2 vectors such that:

<5 a 1 = 6 b‘ + SV 6cl (5.17)

From equations 3-16 and 3.17:

+
<----

6V ( ^ . <3 c * — -P ) r O

\ --------------- 1 •
i z

The above equation can be satisfied if 1 and 2 are zero.

This leads to two sets of simultaneous equations to be solved at 

each stage.
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K 1. • S b = -R

.Sc = F
(3.18)

The mth element of the displacement vector a is a known constant.

s " 0

From equation 3.17:

+b b\n b a l L
Cz rv. 0b

(3.19)

HENCE

r♦ I
+ nlA 1

AND

+ i i 
aa 1 , i 

+ b> b
(3.20)<5 X l.

The procedure is repeated until no further improvements in the 

results are obtained.

The algorithm is summarized in the following steps:

(i) Displacement vector axis assumed with its mth component

(the dominant displacement) specified. For the diaphragms, the 

vertical displacement of the centre is used as the dominant 

displacement. is also assumed. Loading vector F is known, (F =*

equivalent nodal forces for unit applied load,2i F determines the 

actual load necessary for equilibrium).

(ii) Calculate RL (details given in appendix A)

(iii) Calculate (details given in appendix A), hence Sb 

and ScL can be calculated from equation 3-18.
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(iv) Calculate b , A and a

(v) Repeat steps (ii) to (iv) until convergence is obtained.

The following displacement norm is used as the convergence 

criteria:

r )T( a1*1) - C ? )r ( P)

(a1)

The value of is determined experimentally. It was found 
that no significant improvement in the results were obtained when it 

reached 0.0001. Hence = 0.0001 is used.

3.7 SOLUTION OF SIMULTANEOUS EQUATIONS

Two sets of simultaneous equations (equation 3.18) have to be 

solved at each iteration. The properties of the tangential 

stiffness matrix have to be taken into account when choosing a 

method for solving the simultaneous equations. The primary 

requirements of the solution mentioned are the computational 

economy, fast response, low storage, and assured convergence. The 

accuracy of the results is assured by the iterative solution 

procedure (section 3.6)

In instability analysis, the tangential stiffness matrix is 

not always positive definite and may be ill-conditioned (Bergan et 

:al., 1978). Because of these reasons, iterative methods such as the 

Gauss-Seidal method cannot be used. Cholesky’s compact elimination 

method could not be used for the same reasons. The most suitable 

and reliable method for solving simultaneous equations was found to 

be the the Gaussian elimination method. The subroutine used takes 

the banded nature of tangential stiffness matrix into account 

(reduces computer storage) and incorporated partial pivoting, row 

interchange (Fox, 1964) so that the program will not crash when a 

diagonal element becomes zero.
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3-8 PRE-PROCESSOR

Pre-Precessor is a computer program, used to discretize the 

diaphragm profile, impose boundary conditions (restraints) and 

determine equivalent nodal forces due to distributed applied load. 

The program has to be interactive and must have adequate graphics 

capabilities. This is necessary so that suitable modifications can 

be made to obtain satisfactory discretization. The salient features 

of the pre-processor developed are listed below:

(i) Filtering for smoothing diaphragm profile: Experimental

data acquisition

filteringRecursive

for diaphragm profile

were used

is prone to errors.

techniques to obtain

diaphragm

with

profile. This was achieved by replacing

a smooth

l — ordinate

z i + Z t 42-i z i -1 n i

o' 4- 2 ■ <P

i

where n - determines the bandwith of the filter

extra

(ii) Cubic spline interpolation - This was used to introduce

elements in different regions for diaphragm profile data

obtained experimentally, 

interpolation is that it 

1970, NAG, 1980).

The advantange of cubic spline 

retains continuity of the slope (Hayes,

(iii) Discretization of diaphragm profile for design 

parameters - For sensitivity analysis and diaphragm designing, the 

diaphragm profiles were described with geometric parameters 

(sections 6.3 and 6.4). Coordinate geometry was used to discretize 

such diaphragm profiles.

page 33



Chapter 3

(iv) Equivalent Nodal Forces - For distributed applied load, 

equivalent nodal forces have to be determined. This can be done by 

virtual work method (Zienkiewicz, 1977). Equivalent nodal forces f 

for an element are given by:

Q t *
f = N b dA

where N - shape functions.

b - load per unit area .

dA => 2.r•ds

ds ■ /W * (H)''

9 - local coordinate system

Hence the equivalent nodal forces are dependent on the 

diaphragm profile.

3-9 CONCLUSION

A Finite Element formulation for the analyis of axi-symmetric 

thin shells is presented in this chapter. Only the geometric 

non-linearities have been taken into account. The formulation is 

general and can be used for the analyis of any axi-symmetric shell 

problem, provided a suitable pre-processor is available.

A simple two noded line element is 

for linear "hnalysis 

and applied to a 

to yeild excellent

similar element,

Zienkiewicz et.al.

element was shown

used for the analysis. A 

of shells, was developed by 

number of problems. The 

results for the examples

studied.

The computer program was developed on a Prime 550 (a 

multi-user mini-computer), using routines from a finite element 

library, 'FELIB* (SERC, 1980>. The library has been developed by 

SERC at the Rutherford and Appleton laboratory. The aim is to take 
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account of the modular nature of finite element programming ■by-

building up programs in fully transportable Fortran using a library 

of subroutines specific to finite element manipulations. The 

library and its use has been documented to a very high standard.
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CHAPTER 4

VALIDATION OF THE MODEL

4.1 INTRODUCTION

The finite element formulation for the analysis of 

axi-symmetric diaphragms was presented in the previous chapter. The 

model is based on the Total Lagrangian (T.L.) formulation, whereby 

all the incremental solutions are determined with reference to the 

initial diaphragm profile. The model cannot be used with any 

confidence until its accuracy and limitations have been tested 

thoroughly. Validation of the model has been carried out by 

comparing the results from the model with those published in 

literature (analytic and numeric). As there are very few examples 

published on axi-symmetric diaphragms, validation has been 

supplemented with extensive experimental work.

The stress distribution in a spherical cap is also studied and 

compared with the distribution in a flat diaphragm. The study gives 

insight into the behaviour of snap-action diaphragms.

The convergence of the Total Lagrangian formulation is also 

studied, and suggestions are made so as to accelerate the 

convergence rate.

4.2 MODEL VALIDATION

4.2.1 ANALYTIC RESULTS

Extensive work has been carried out by Andreeva (1966) on 

elastic elements for instruments. She has presented an analytic

model for snap-action diaphragms. The model was developed by

combining the membrane and the bending theory for shells of 

revolution. The model is inaccurate because it assumes that the 
shape of the elastic surface does not alter with deformation. 

Hence, it can only be applied when the displacements are small. The 
pressure-centre deflection characteristic of a spherical diaphragm 

is given by equation 4.1. A similar equation derived by Andreeva 
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for flat diaphragms compares favourably with the 

model developed by Turley (1977).

finite difference

(-) - & (-) — b ( "t C (4.1)

V T ' K T ' ' T ' X T '

where P - Applied pressure on the convex side

E - Youngs Modulus for the diaphragm material

R - Radius of the diaphragm

T - Thickness of the diaphragm

W - Deflection of the diaphragm centre

For the spherical diaphragms:

a 3 5-86 + 4.88 x (H) 

b - 7.72 x (^ )

c = 2.76

where H - Height of the diaphragm centre.

Results obtained from using equation 4.1 and the finite 

element model are shown in figure 4.1.

It can be seen from figure 4.1 that the analytic model is 

inadequate, and cannot be used to study the behaviour of snap action 

diaphragms.

The finite element results were obtained using 10 elements to 

approximate the profile. For H/T = 3, 16 equal increments were 

needed to trace the load-deflection curve. On a Prime 550, it took 

3 CPU minutes for the computatfon.
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Figure 4.1: Results from' the Analytic and the F.E. model
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4.2.2 NUMERICAL MODELS

Bathe et.al. (Bathe, Ramm, and Wilson, 1975) demonstrated the 

accuracy of their F.E. model by using a shallow spherical cap 

subjected to uniform pressure load (figure 4.2) and compared their 

results with those obtained analytically by Korishin et.al. 

(Korishin and Isanbaeva, 1968). Bathe et.al. developed their F.E. 

model using total Lagrangian formulation, with an eight noded 

parabolic element. Obviously, this type of element is 

computationally uneconomical when used for diaphragms of complex 

profiles. This is because of the large number of degrees of freedom 

per element, hence the large number of equations to be solved at 

each iteration.

The F.E. results (figure 4.2) were obtained using 10 two 

noded elements. The load deflection curve was determined using 10 

equal displacement increments. The computation time on Prime 550 

was 1 CPU minute.

Figure 4.3 shows another example frequently used by 

researchers (Wood et.al.,1977, Suraner,1982, Haisler et.al,1972), to 

study large deflection behaviour of axi-symmetric shells.

As seen from figures 3.2 and 4.4, there is a good agreement 

between the results obtained from the present model and those 

published by other researchers. However, the present model has a 

tendency to overestimate centre displacement at large displacements. 

But the maximum errors in displacement are less than 5$. These 

errors are due to the large 'B' (chapter 3).

For the results shown in figure 4.3, the diaphragm profile was 

approximated with 12 two noded line elements. 18 displacement 

increments were needed to trace the load deflection for

R1/RO » 0.42. The computation time on Prime 550 was 5.4 CPU 

minutes. Each iteration takes approximately 1.6 CPU seconds to 

formulate and solve 68 simultaneous equations. In certain 

instances, a large number of iterations (>10) were required for 

convergence.
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Figure 4.2
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4.2.3 EXPERIMENTAL RESULTS

Experimental work is essential in determining the accuracy of 

a numerical model. Comparison of one numerical model with another 

numerical model only indicates that the two models are compatible. 

It does not mean that either model is an accurate representation of 

reality. Similar approximations and assumptions might have been 

made in both models. Therefore, a model cannot be used for 

prediction purposes unless it has been validated with experiments.

Conical type of diaphragms were used to test the accuracy of 

the model (figure 4.4).

where RO - 0.82"

RB ’ 0.187"

R1 » R2 = 0.07"

H2 » 0.15"

E - 29.OE6
y = o.3

Figure 4.4
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The diaphragms were designed by the author and produced by 

K.D.G. Instruments Ltd. Different diaphragm characteristics 

(load-centre deflection) were obtained by varying diaphragm 

thickness *T' and height 'H1 ' . This type of diaphragm was chosen so 

as to facilitate the determination of the diaphragm profile. Only 

the slope ’S' needs to be determined so as to evaluate 'H1'. The 

other parameters are fixed (figure 4.4). The diaphragm slope was 

determined using a universal measuring machine which can accurately 

measure 0.0001" displacements. Only the diaphragms with a high 

degree of axi-symmetry were chosen for validation. This is 

determined by measuring 'z' (for a constant r) across several 

diameters. If ’z’ varies by more than 5^, the diaphragm is 

rejected. The non-axi-symmetry (formed by an axi-symmetric tool) 

arises due to:

a) Non-homogeneous material: Diaphragms are formed by 

pressing the tool onto a flat blank with a suitable rubber backing. 

The profile of the diaphragm will be different from the profile of 

the tool due to the spring back of the diaphragm. If the blank is 

non-homogeneous (thickness variation) the rates of spring back will 

be different at different places, hence, a non-axi-symmetric 

diaphragm will be produced.

b) Forming Defects: Non-uniform pressure from the backing 

will also produce a non-symmetric diaphragm. This is usually 

eliminated by repeated pressure of the tool on to the blank and 

rotating the blank.

c) Mishandling: Mishandling the diaphragm before it has been 

hardened by heat treatment alsb destroys the diaphragm symmetry.

Only diaphragms free from surface defects were chosen for 

model validation. Surface defects in diaphragms occur due to the 

presence of dirt particles on the tool or the blank when a diaphragm 

is being formed. The presence of dirt particles produces 

indentations on the surface of the diaphragm. The effect of surface 

defects is to localise stresses and strains producing 

non-axi-symmetric bifurcation.
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The discretized profile of an 0.08" thick diaphragm is shown

in figure 4.5.

Figure 4.5: F.E. representation of the dia. profile

The results of the experimental tests for pressure load and 

point load, and their corresponding computer simulations are shown 

in figures 4.6 and 4.7 respectively. The same diaphragms were used 

for pressure and centrally applied load experiments. If a diaphragm 

becomes unstable (snap) for point load applied at the centre, it 

must snap for pressure load as well. However, the reverse case is 

not necessarily true.

The load-deflection characteristic of a diaphragm could not be 

determined experimentally in''' the unstable region (negative 

stiffness). This is because as the load is varied in the region of 

the peak load carrying capacity, the diaphragm either snaps through 

to the next stable position (load increased), or follows the initial 

load-deflection curve (load decreased). Similar behaviour is 

exhibited at the minimum point of the load deflection curve. Also,

the determination of

curve were found to

maximum and minimum points of load-defleotion 
be difficult because of the nearly zero

diaphragm stiffness.
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Figure 4.6: Results for pressure loading
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Figure 4«7; Results for point loading
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There is a good agreement between experimental and numerical 

results for all the diaphragms and under pressure as well as point 

loading. There are errors (at large displacements) between the 

predicted centre-displacement and that obtained experimentally. The 

maximum error for 0.006" diaphragms where the displacement obtained 

experimentally is approximately 15$ less than that predicted by the 

model. This error is partly because of the too large 'B* but it is 

mainly due to thinning of the diaphragm material at height 'H2' 

(figure 4.4). The numerical results were obtained assuming uniform 

diaphragm thickness. In practice, a diaphragm is formed from a flat 

blank. There is a reduction in the diaphragm thickness due to the 

'drawing’ of the material. At low displacements, the stresses and 

strains around the outer curvature have little effect on the global 

stiffness matrix, but at large displacements, the stresses and 

strains in these regions have a significant effect on the stiffness 

of the matrix. In the finite element model, it is possible to 

define different thicknesses for all the elements. But to determine

the thicknesses of different regions experimentally is not easy.

The computer time for each iteration is approximately 

proportional to the number of equations to be solved; which in

turn, is dependent on the number of elements being used to

discretize the diaphragm profile. The number of iterations for 

convergence depends on the load deflection characteristic of the 

diaphragm. Generally, 5-6 iterations are required for convergence 

at each increment. But when the diaphragm stiffness is nearly zero, 

the number of iterations can increase to 15 or more. Practical 

diaphragm profiles can be discretized using 25-30 elements. In the 

examples studied (figure 4.5) 27 elements were used. This involves 

solving 160 equations for each^iteration. It took approximately 5»5 

CPU seconds for each iteration on Prime 550. Equal displacement 

increments (^a^3 0.5xT ) were used in tracing the load deflection 

curve. The F.E. program determines and stores the peak 'FP' of the 

- characteristic curve. The program then continues and when the load 
exceeds 'FP', the program (having traced the entire curve) stops.

The number of elements to discretize the diaphragm profiles 

were determined experimentally. Generally, as the number of 

elements is increased, the accuracy of the results improves. When 

further increment of the elements has negligible effect on the 
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results, the discrete representation of the diaphragm can be assumed 

satisfactory.

4-3 STRESSES IN DIAPHRAGMS

The load deflection curves for a flat and a convex diaphragm z
are shown in figures 4.8 and 4.9 respectively. The stresses in the 

diaphragms corresponding to different equilibrium positions (marked 

in figures 4.8 and 4.9 ), are shown in figures 4.10 and 4.11.

{r.

Comparison of the stresses in ordinary diaphragms with that of 

a convex diaphragm is of interest because it gives an insight into 

the behavior of a snap-action diaphragm.

In both cases, the in-plane stresses ( and ) are 

dominant as compared with the bending stresses (M3 and M ). In 

flat diaphragms the sign of stresses does not change as the load 

increases. However, for equal consecutive increments of the 

centre-displacement, the in-plane stresses increase at a faster 

rate, illustrating non-linear stress displacement relationship.

From figure 4.11 it can be seen that hysteresis in convex 

diaphragms is due to the stress changing from compression to 

tension, and vice versa. The reduction in the diaphragms stiffness 

is due to compressive stresses in it. Even though the displacements 

involved in a snap-action diaphragm are large, the magnitude of 

stress remains small compared with the yield stress of the material. 

This is important because it justifies the omission of material 

non-linearities in the formulation.
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Figure 4.8: Flat diaphragm

Figure 4.9: Sphepical diaphragm
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4.4 CONVERGENCE STUDY FOR THE TOTAL LAGRANGIAN MODEL

Generally, the finite element model was found'to take 5 or 6 

iterations for the convergence, but for certain cases it was found 

that the number of iterations increased to 15 or more before 

convergence was achieved. The number of iterations for convergence 

were highest at the bifurcation points, where the stiffness is 

nearly zero. To minimize computation time and cost, it is necessary 

to optimize (accelerate) the convergence rate. It is worth noting

that convergence

process.

cannot b e imposed on an otherwise divergent

Convergence rate can be accelerated by using the relaxation

method (Fenner, 1978). Implementation of the method will be

illustrated using spherical cap subjected to ring load at

R1/RO » 0.42 (figure 4.3). The variations in the diaphragm profile 

as it converges are shown in figure 4.12. The update factor A for 

each iteration is shown in figure 4.13» Figure 4.13 indicates that 

the process oscillates before eventual convergence. To minimize the 

number of iterations, the oscillatory behaviour needs to be 

suppressed.

Iterative methods are based on estimating the solution x- 

(i-iteration). If the process is convergent the next estimate 

should be closer to the solution than x •, , where x. is given by:

Provided the process is convergent, then the convergence rate 

can be accelerated by using tha relaxation method such that:

wL is the relaxation factor. Normal range

1 < w-t < 2 (over-relaxation). Larger values of w^ 

divergence in an otherwise convergent process.

To suppress oscillatory behavior of the 
under-relaxation method can be used ( 0 < w £ < 1 ).

of w -t is 

can produce

processes,
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Unfortunately it is not simple to predict the optimal value of 

w . Usually empirical methods are used to estimate w; (Rahman, 

1979).

In the case of a spherical cap, the first estimate of ft- from 

the assumed diaphragm profile 1 (figure 4-12) produces the 

oscillatory behavior (ftx = 378 and ft2 =» -900). By using the 

under-relaxation method (0 < w < 1 ) the oscillatory behavior can 

be suppressed. By experimentation, it was found that Wj =* 0.5 would 

produce the desired effect. The relaxation factor w^ is applied for 

the first iteration only, such that:

ft 1 =fto+O.5x S ft o

The effectiveness of the method is evident from figures 4.14 

and 4.15. The number of iterations have been reduced from 15 

iterations to 5. The accuracy of results is unaffected because it 

is modified only for one iteration. The method was checked for 

several other cases and similar results were obtained. However, 

more work needs to be done to automate the proceedure.
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Chapter 4

4.9 CONCLUSION

The major part of this Chapter is concerned with the 

validation of the finite element model.

The analytic model presented by Andreeva was found to be 
inadequate for the analysis of the snap-action diaphragms. Wide 

deviations were observed between the finite element and the analytic 

results.

The finite element results were also compared with numerical 

results published in the literature. The F.E. results agreed 

favourably for the two examples considered. However, there is scope 

for improvement in the present finite element model. At large 

displacements the present finite element model consistently 

predicted larger displacements than those obtained by other 

researchers, though the maximum errors in displacement were less 

than 5%.

Three different conical diaphragms were used to provide 

experimental validation of the model. Here also, there was good 

agreement between experimental and finite element results. The 

model could predict accurately the maximum and minimum of the load 

deflection curve, but over estimated large displacements. The 

maximum errors being 15% between the predicted displacement and 

those obtained experimentally. The errors were found to be worse 

for the thinner diaphragm (T » 0.006”). Two reasons for these 

errors were singled out:

a) Large Displacements -'Finite element formulation is for 

small displacements. But the errors due to large displacements 

should be of the same order as those in the numerical examples 

studied.

b) Thickness Variation - The main reason for the errors would 

appear to be due to the thinning of the diaphragm material. This is 

supported by the fact that the errors for the thinner diaphragm 

(T = 0.006") are larger. Because of the percentage change in the 

thickness, the thinner diaphragm is larger: *H2' being constant for 

all the diaphragms (figure 4.4).
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Further validation, of the model was carried out using two 

other diaphragms produced by Smith Instruments ltd. Good agreement 

was found between the experimental and the numerical results.

The study of stress distribution in diaphragms was also 

carried out. It was found that the in-plane stresses are dominant. 

For snap-action diaphragms, even though there are large 

displacements involved, the magnitude of maximum stresses remains 

small, because the stresses change from compressive to tensile.

In most cases it was found that 5-6 iterations were required 

for convergence. Occassionally, the number of iterations increased 

to 20 or more. By using 'under-relaxation' method, the convergence 
rate could be improved dramatically. For the example illustrated, 

the number of iterations were reduced from 15 to 6 for convergence. 
The method has not been automated due to difficulty in determining 

the optimal factor.
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CHAPTER 5

MODEL REFINEMENTS

5.1 INTRODUCTION

Validation of the total Lagrangian finite element model was 

carried out in the previous chapter. The accuracy of the model was 

found to deteriorate at large displacements. This is because the 

formulation requires the shear strain to remain small. This 

condition is only fulfilled when the displacements are small.

The so called Updated Lagrangian Formulation (U.L.) is 

introduced in this chapter. In the U.L. formulation, all the 

incremental solutions are determined with respect to the previous 

equilibrium state. Therefore, for each incremental solution the 

displacements remain small.

The convergence properties of the U.L. formulation are also 

studied in this chapter.

Straight frustrum type elements when used to approximate 

complex diaphragm profiles (e.g. a corrugated diaphragm) can be 

very costly in terms of the computer storage and processing time. 

In such cases, more complex curved elements have an advantage 

because curved boundaries can be approximated using fewer elements. 

A finite element formulation using a curved non-linear element is 

introduced in this chapter.
x

5-2 LAGRANGE UPDATE METHOD

for

In chapter 5, a Total Lagrangian Finite Element formulation

the analysis of axi-symmetric diaphragms was presented.

Computer implementation of the T.L. 

simple because the initial diaphragm 

incremental solutions. However, the

formulation is relatively 

profile is used for all the 

accuracy of the T.L.

formulation deteriorates as the rotation 'B’ becomes large. This is 
because Of the Penalty type of constraint imposed, so that

( p - ) remains small (chapter 5). ^e singularity of the
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Penalty functional is assured by using reduced integration 

(integrating at single quadrature point where () —-> 0 ) . To 

improve the accuracy of the results, 'p' should remain small so that 

the 'parasitic shear' (Pawsey et.al., 1973) remains small throughout 

the element and not at the quadrature point only.

To allow for large displacements, the so called Updated 

Lagrangian formulation (U.L.) can be used (Wood et.al., 1977, 

Murray et.al., 1969) •

Computer implementation of the U.L. formulation is similar to 
the Eulerian formulation (Zienkiewicz and Nayak, 1971), where the 

initial position becomes the current equilibrium state prior to some 

incremental change.

Figure 5*1

To determine the equilibrium position 3 (figure 5*1), the U.L. 

formulation regards the previous equilibrium state (position 2) as 

the initial position. Hence, the incremental displacements remain 

small at any stage. While in the T.L. formulation, state 1 is 

regarded as the initial position all the time. Conceptually the 

U.L. formulation is simple but leads to programming complications 

especially when uniform pressure load is used. The complication 

arises because:
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(a) The diaphragm profile has to be updated prior to new 

increment.

(b) The updated profile has locked-in stress, hence they have 

to be included when determining the residual vector:

v

(c) The equivalent nodal forces have to be recalculated, at 

the beginning of each increment, when a uniformly distributed load 

is applied.

Because of the above mentioned reasons the excecution time for 

each iteration of the U.L. formulation is relatively longer than 

the T.L. formulation, but in both cases the solution of the 

simultaneous equation consumes the major part Of the total 

excecution time.

The results from the U.L. model, for the numerical examples 

studied in chapter 4 (figure 4.2 and 4«5), are shown in figure 5*2. 

There are errors at large displacements, between the results from 

the T.L. model and those obtained by other researchers. These are 

practically eliminated when the U.L. model is used.

However, the disagreement between the numerical and the 
experimental results (figure 4.6 and 4*7) did not change appreciably 

when the U.L. model was used. It is argued that the source of 

errors, in these cases, are due to the reduction of diaphragm 

thickness at the outer curvatures and not the large displacements. 

It is possible to model variable diaphragm thickness at the expense 

of computation complexity, but because the errors are predictable 

and not very significant, this was not regarded as necessary.
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z

CCNTRE DISP. ( IN>

Figure 5*2; Results from U.L. model.
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5-3 CONVERGENCE OF THE U.L. MODEL

The rate of convergence of the U.L. model was generally found 

to be significantly faster than the T.L. model. Usually 4 Or 5 

iterations were required for the error norm to reduce to less than 

0.0001 (chapter 3*6 ). The number of iterations at each stage were 

found to be dependent on the increment of the centre-displacement.

A spherical cap subjected to a ring load at R/RO * 0.42 

(figure 4.3) is used again to study the convergence Of the U.L. 

formulation. When the centre-displacement is increased by 0.02" 

from the initial unstrained state, the convergence process showed 

the same pattern as for the T.L. formulation (figure 4.12). 

However, when smaller centre-increments are used ( a 0.005"), the 

rate of convergence improved significantly : 4 or 5 iterations for 

each increment. Figure 5.3 shows the convergence process for the 

forementioned cap, when the centre-displacement is increased by 

0.005" to a new centre-displacement of 0.02". The T.L. model took 

15 iterations to converge (figure 4.13) to a centre-displacement of 

0.02". The U.L. model takes only 5 iterations to converge to the 

same position.

Figure 5«3: Convergence of the U.L. Model
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The improvement in the convergence rate is not so dramatic for 

all the cases. But generally it was found that the U.L. model 

takes 40$ less excution time than the T.L. model in tracing the 

load-deflection characteristic of a diaphragm.
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5-4 ATTEMPTED USE OF A NON-LINEAR AND CURVED ELEMENT

Curved elements have an advantage over straight elements when 

approximating diaphragms of complex profile, for example, corrugated 

diaphragms. The obvious reason being that fewer curved elements are 

required to discretize a curved geometry.

The quadratic interpolation functions ( SERC,1982) for a three 

noded line element (figure 5*4) are given by equation 5*1•

Nx = q ( q~ 1) / 2.

Nz = 1 -

z q I q + 1) / 2-0

(5.1)
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The nodal displacements are given by:

Anywhere within the element, the displacements are given by:

Cl -- N *

where

The non-linear strain-displacements for the straight elements 

were obtained by neglecting the curvature terms in equation 5.1 . 

Neglecting the higher order terms and substituting B * (chapter 

3.5), equation 3*1 can be written as:

3s
-0' p <- 2 U <t> J

r
COS a

R
O

s.
ds

O 3

*a , ' SiN <t>
r

- 3IN0 3 
c as

_ f COS & A
T —

0 a 
ds

-1

( 5.2>

where :

ds1
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Separating the linear and the non-linear part of the above 

equation, the strain-displacement relations can be written as:

as

- 4'
as

- p' o

<P o
r

o -A
as ( 5.3?

o_ (()' _ Sin <]5 _ Sltsl 6 a
r r as

O a
as

-1

0 o p -f. i U <t>

o o o

(5. A)
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0’ and 0” are given by the following equations (Zienkiewicz,

1977):

r - d _
3s

d//^n

as

** • 3*3 aV as a aJs
d s *• a n x an an an*

_ y n  ;
an, ~. a n i i’ i '

The rest of the formulation is straight forward and follows 

the same procedure as for the straight and linear element (chapter 

3)• Suitable modifications werb made in the existing finite element 

(total Lagrangian) program. Due to the modular nature of the finite 

element program, the modifications were relatively simple to make. 

The pre-processor had to be modified accordingly.

The numerical examples used to validate the finite element 

model (chapters 4 and 5 ) with linear frustrum element, were used 

again to check the behavior of non-linear curved elements. For a 
given centre-displacement, the load predicted by the curved 

element’ models were found to be much higher than those predicted by 

the other models, ie. the stiffness matrix becomes over-stiff.
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There are two basic differences between the present model and 

the other models:

(1) The use of quadratic interpolation function

(2) Inclusion of the curvatures in the strain-displacement 

matrix

To single out the cause of the error, each addition was 

checked separately. By setting the curvatures O' and 0'' to zero, 

the effect of the 3 nOded quadratic element can be investigated. 

The results obtained from the model with these modifications, were 

similar to those produced by the other models. Hence, it can be 

assumed the errors are not due to the interpolation functions.

The relationship between 0' and the radius Of the curvature 

'Rs' (figure 5.6) is given by:

For a spherical cap, used to test the model, the radius of 

curvature 'Rs' is a known constant, and 0'' is zero. The program 

was found to determine 0' and 0'' correctly.
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A possible explanation for the spurious results could be due 

to the 'locking' of the elements. Hinton et.al.(1978) encountered 

the problem when analysing thin plates using conventional 

displacement-based finite element method. Penalty function terms 

which occur in the total potential energy functional are regarded as 

the cause of the over-stiff matrix. In extreme cases, the 

constraint imposition leads to the deterioration of the stiffness 

matrix and causes locking.

The techniques suggested by Hinton et.al. for avoiding

lacking are: 

(a)

should be

Formulation based on functionals with no penalty terms

adopted.

Imposing constraints

directly at the integration

(b) associated with the

points at the element

penalty terms 

level prior to

assembly.

(c) Use selective or reduced integration instead Of complete 

integration. However, this method is not always successful.

The first method suggested by Hinton et.al. requires complete 

reformation. The third method is already being used.
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5-5 CONCLUSION

The updated Lagrangian formulation removes any restrictions on 

the large displacements. The disagreements Observed between the 

results obtained from the total Lagrangian fdrmulation and those 

published in the literature were practically eliminated with the 

U.L. formulation. However, the errors at large displacements, 

between the experimental and numerical results could not be improved 

significantly. The source of errors in these results are not due to 

the large displacements but because of the thickness, variations in 

the diaphragms. There is a reduction in the diaphragm thickness at 

the outer curvature when it is press-formed from a flat blank. The 

numerical results are based on the assumption that the diaphragm 

thickness remains constant over the entire diaphragm geometry.

Significant improvement in the convergence rate was observed 

with the U.L. formulation. Using U.L. model, it is estimated that 

the load-deflection curve of a diaphragm can be determined in half 

the time taken by the T.L. model.

A curved non-linear element has also been introduced in this

chapter. Curved elements are 

approximate complex diaphragm 

Unfortunately, spurious results

attractive because they can 

profiles more economically. 

were obtained when the curved

elements were used. The source of the errors is assumed to be due

to the locking phenomena in the elements.
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CHAPTER 6

PARAMETRIC REPRESENTATION AND SENSITIVITY ANALYSIS

6.1 intro duc tion

In the previous chapters it was shown that the Finite Element 

model can be used to predict accurately the load deflection 

characteristic of a diaphragm. In this chapter, investigations are 

carried out to determine the effect of the diaphragm form and the 

dimensions on its behavior. This investigation is essential so that 

a methodology for the diaphragm design can be established. The 

study is carried out in three different stages:

(1) Classification of axi-symmetric diaphragms: There are 

three types of axi-symmetric diaphragms that could be studied 
(corrugated, conical, and spherical). For the present study, only 

conical and spherical types of diaphragms are considered.

(2) Parametric Representation: The diaphragm profile can be 

described with a set of geometric parameters. This helps to 

investigate the effect of the diaphragm profile on its performance.

(5) Sensitivity Analysis: The analysis determines which 

geometric parameters have significant effect on its behaviour. 

Further investigations can then be carried out to establish a design 

procedure using these 'important parameters'. Quantitative results 

from the analysis can be used to impose manufacturing tolerances on 

the parameters so that the design complies with the specifications.

Results of sensitivity analysis for the two types of 

diaphragms, subjected to uniformly distributed pressure and 

concentrated load, are presented in this chapter. Ring type of 

loading is not considered because generally it is of no practical 
interest.
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6.2 PARAMETRIC REPRESENTATION OF A CONICAL DIAPHRAGM

A diaphragm is termed conical if its major load carrying 

section can be defined with a straight line (figure 6.1) . The 

diaphragm may or may not have a centre-boss.

Figure 6.1

A pre-processor has been "'developed which uses the parameters 

shown in figure 6.1 to generate and discretize the diaphragm 

profile. If RB = 0.0, discretized data for a conical diaphragm 

without a centre-boss is produced.
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6.3 SENSITIVITY ANALYSIS FOR A CONICAL DIAPHRAGM

Sensitivity tests were carried out by consecutive perturbation 

of the parameters describing a conical diaphragm. Each parameter in 

turn was increased by 10$ while keeping others constant. The effect 

of variation of material properties is investigated by considering 

Youngs Modulus (E) as an independent parameter.

The concept of index numbers is used to obtain quantitative 

measure of the parameter sensitivity (Turley, 1977). The 

relationship between the applied load 'F' and a parameter *P', for a 

constant displacement can be expressed as:

n
F - C.P

where C - contant of proportionality 
n - index number

For small perturbation of P 
n— 1

S F=* n.C. P • SP

^_F__/ F
SP / P

(6.1 )

n 3 0 implies that the parameter 'P' does not have any effect on the 

load ’F'. Index numbers 'n1 ' and 'n2' are calculated at the maximum 

amd the minimum of the load-deflection curve of a diaphragm.
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The nominal values of the parameters used for the analysis 

are:

RB = 0.2 "

RO - 0.7"

R1 = 0.07"
R2 = 0.07" <.6-2 >

H1 » 0.028"

H2 = 0.14"

T = 0.007"

E = 2.9E6 lbs/sq in.

The profile of the diaphragm generated by the pre-processor for the 

above parametric values is shown in figure 6.2.

Figure 6.2

The results for the sensitivity tests are shown graphically 
and in tabular form for the index numbers (figures 6.3, 6.4, and 

table 6.1 respectively).
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Figure 6.3:Sensitivity for point loading

1- Initia
2- RB
5- RO
4- R1
5- R2
6- H1
7- H2
8- T

Figure 6.4:Sen s itivity for pressure loading
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PARAMETERS POINT
N1

LOAD
n 2

PRESSURE
Nj N2

RB 0.168 0.5 -0.28 -0.06

RO -1.9 -1.97 2.96 -2.97

R 1 0.015 -0.082 0.05 -0.01

R 2 -0.002 -0.018 0.03 -0.01

H 1 2.36 -0.011 1.628 1.6

H 2 0.003 -0.02 -0.04 -0.01

T 1.98 5.55 1.95 4.59

E 1.00 1.00 1.0 1.0

Tab Le 6.1
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The results of the sensitivity analysis for a conical 

diaphragm without a centre-boss were very similar to those with a 

centre-boss.

The important parameters deduced from figures 6.3 and 6.4, and 

table 6.1 are:

H1 , RO, RB, T, E

6.4 PARAMETRIC REPRESENTATION OF A SPHERICAL DIAPHRAGM

A diaphragm is categorized as spherical if its major load 

bearing part can be generated by using an arc of an appropriate 

radius. Generally, industrial diaphragms are a hybrid of the 

conical and spherical types. Study of hybrid diaphragms is not 

feasible because of the infinite combinations possible.

The profile of a spherical diaphragm can be generated using 

the parameters shown in figure 6.5.

Figure 6.5
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where RS » <• + he ; / c --<2 »
01 = A TAN ( / < K0 - H 1 ) )

02 = 7?/ 2,0 - 0 1

03 ’ A / 2 . O

Discretized data for a spherical diaphragm can he generated 

using the above information. Figure 6.6 shows the profile 

generation and discretization of such a diaphragm produced by the

diaphragm, and are given by 6.2 .

pre-processor. The parametric values are the same as for a conical

Figure 6.6
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6.5 SENSITIVITY ANALYSIS FOR A SPHERICAL DIAPHRAGM

Results of sensitivity tests for a spherical diaphragm 

subjected to pressure load are presented in this section. A 

spherical diaphragm does not show bifurcation for a point load 

applied at the centre. This is because of the small initial slope 

in the diaphragm profile, even for large *H1'.

When a point load at the centre is applied, tensile inplane 

stresses are produced. The instability in diaphragms occur due to 

the inplane compressive forces. A suitable ring type loading can 

produce instability in spherical diaphragms but this is of little 

practical use and therefore ignored for the sensitivity analysis.

■ Results of sensitivity analysis for a spherical diaphragm with 

centre-boss and without centre-boss under pressure loading are 

presented on the following pages. Index numbers ’n1' and ’n2’ were 

determined using equation 6.1, at the peak and trough positions of 

the load-deflection curve.

Figure 6.7
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Table 6.2

PARAMETERS NO CENTRE BOSS CENTRE BOSS
"1 N2 N1 N2

RB - - -0.4 -0.2

RO -5.25 -3.157 -2.97 -2.945

R 1 0.058 -0.055 0.042 -0.041

R 2 -0.006 -0.002 0.0C4 -0.005

H 1 2.7 1.01 2.3 1.016

H 2 -4.5x104 -2.1x10 5.66x104-0.004

T 1.814 3.337 2.18 3.35
E 1.00 1.00 1.00 1.00
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6.6 COMPARATIVE STUDY OF THE TWO TYPES OF DIAPHRAGMS

Conical and spherical diaphragms have different 

load-deflection characteristics even when the same parametric values 

are used to define their respective profiles. The choice between 

the two types of diaphragms, for design purposes, depends on the 

load-deflection characteristic. Figure 6.9 shows pressure 

deflection characteristics of the two types of diaphragms, with and 

without the centre-boss. The parametric values used for the 

analysis are the same as for the conical diaphragm (6.2) .

H1/T =4
C- conical, S- spherical
1- with centre-boss

Figure 6.9
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6.7 BOUNDARY CONDITIONS

"s.

The effects of different boundary conditions on the diaphragm 

behavior are investigated in this section. A dome shape diaphragm, 

clamped at the perimeter, does not show any hysteresis when 

subjected to a point load at the centre (figure 4.3)• However, when 

the diaphragm is allowed to rotate at the perimeter (simple 

support), the diaphragm shows marked hysteresis (figure 6.10)

DISPLACEMENT

Figure 6.10
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Industrial diaphragms have more complex profiles (figures 6. 

and 6.6). Figure 6.11 shows the discretized profile of such a 

diaphragm. The different boundary conditions for which the 

diaphragm (figure 6.11) was tested are:

a. Clamped at position 1

b. Simply supported at position 1
I

c. Clamped at position 2

d. Simply supported at position 2

Figure 6.11

page 84



Chapter 6

Results of the test (figure 6.12) indicate that the different 

boundary conditions have negligible effect on the load deflection 

characteristic of such a diaphragm.

FO
RC

E ( U
fi.

Figure 6.12
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6.8 CONCLUSIONS

The variations in a diaphragm behavior, due to geometry-

changes, were investigated in this chapter. This was achieved by 

identifying the different types of diaphragms (conical and 

spherical), and describing their profiles with a set of geometric 

parameters. The important parameters were then determined using 

sensitivity analysis. The investigation indicates that the 

following parameters have significant effect on the performance of 

the two types of diaphragms: (

H1 , RO, RB, T, E.

Apart from *H1', it was found that all the other parameters 

increase or decrease the maximum and the minimum of the 

load-deflection curve without altering the displacements at which 

they occur. These facts are utilized when developing a design 

methodology for the diaphragms (Chapter 7).

A comparison of the load-deflection behavior of a conical and

study indicatesa spherical diaphragm was also carried out. The

that, as a mechanical switch, conical type of

preferred. The maximum and the minimum of the

curve, for a conical diaphragm, are equally well

diaphragms are 

load-deflection

defined. In

contrast, the corresponding minimum for a spherical diaphragm, 

extends over a large displacement (large region of near zero

stiffness). This property of spherical diaphragms makes them

unsuitable as a switch, where positive action is a primary

requirement.

The effects of different boundary conditions were also

investigated in this chapter. The load-deflection characteristic of 

a simple spherical cap was found to change dramatically when the 

boundary conditions changed from a clamped support to a simple 

support. However, the boundary conditions were found to have 

negligible effect on the behavior of more complex shaped diaphragms.
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CHAPTER 7

DESIGN CONSIDERATIONS AND METHODOLOGY

7.1 INTRODUCTION

In the previous chapter, parametric representation of the two 

types of diaphragm (conical and spherical) was carried out. Using 

the sensitivity analysis techniques, the geometric parameters which 

have significant effect on the diaphragm behaviour were determined. 

In this chapter a design methodology has been presented to determine 

the critical parameters for given design specifications. Therefore, 

a new diaphragm can be designed more economically and efficiently.

Conventional methods for designing new instruments are based 

on the experience and expertise of the designer, aided by simple 

analytic models of questionable validity (chapter 2). Prototypes of 

the instrument are manufactured and tested. Modifications in the 

design are suggested to eliminate the errors between the desired 

performance and the test results. The process is repeated until a 

satisfactory design has been obtained. The eventual design is 

invariably a compromise because the process cannot be repeated 

indefinitely to eliminate all the errors.

An accurate mathematical model can expedite the design and 

development of new instruments. The model can be used to replace 

experimentation and production of hardware. Suitable modifications 

can be made with the aid of sensitivity results to obtain the 

desired performance of an instrument. However, this method will 

still be time consuming and computationally expensive.

A better approach is to use the accurate finite element model 

to generate a set of results for a range of diaphragms. The results 

can then be generalized using 'Dimensional Analysis' techniques so 
that they can be used for any similar diaphragm. Using these design 

curves, new diaphragm designs can be generated in a fraction of the 

time needed by other methods.

Such a methodology has been developed and presented in this 
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chapter, for design of conical diaphragms subjected to concentrated 

or uniformly distributed load.

7.2 DESIGN SPECIFICATION AND OBJECTIVES

The load-deflection characteristics of a snap-action diaphragm 

can be identified from its salient feature ie. the maximum load and 

the corresponding displacement (FP,WP), minimum load and the 

corresponding displacement (FT,WT), and the negative stiffness (s) 

for the diaphragm (figure 7.1).

DIS P

Figure 7.1

Specification of the negative stiffness is necessary if the 

diaphragm is to be used in conjunction with a 'back-off' spring for 

overload protection or variable range switch (chapter 2). However, 
a diaphragm cannot be designed to comply with any arbitrary 

specifications. Therefore, some of the design specifications will 

have to be given priority. From the priority specification, the 

feasibility range for the other specifications can be determined. 
This fact can be utilized to help the designer choose feasible 

page 88



Chapter 7

design specifications.

Given a design specification, the objctive is to determine a 

suitable diaphragm profile and materials. The profile suggested 

should comply with constraints on the size of diaphragm (specified 

by the designer), and thin-shell theory constraints.

As shown in the previous chapter, a conical diaphragm can be 

described with a suitable set of parameters. The important 

parameters (RB, RO, T, H1 and E) were determined using sensitivity 

analysis. The other parameters were found to have negligible effect 

on the load-deflection characteristics of a diaphragm. Therefore, 

only the critical parameters need to be determined, other parameters 

can be chosen so that the design complies with the constraints. The 

diaphragm material is chosen for its elastic and anti-corrosion 

properties. Hence, the Youngs modulus for the material can be 

regarded as an input constant.

7.3 DIAPHRAGM DESIGN FOR CENTRALLY APPLIED POINT-LOAD

A systematic procedure for snap-action diaphragm design has 

been developed. Only conical shaped diaphragms have been considered 

for the reasons metioned in chapter 6.

7.3.1 DIMENSIONAL ANALYSIS

Dimensional Analysis is a method 

from available 'experimental' data, 

new results (Taylor, 

based on the concept 

balanced. This is

that a valid

information

own, produce 

analysis is

all the possible

achieved by 

parameters

of extracting

It cannot, on its

1974, Massey, 1971). Dimensional

relationship must be dimensionally 

comparing the fundamental units of 

describing a system. Useful

dimensionless groups 

groups should be meaningful, ie.

can be derived in this way.

should convey

The dimensionless

the relationship

between parameters, so 
interpolation. When 

experimental data, they

that they can be used for 
the 'relationships' are 

are generally approximate.

extrapolation or 
derived from

applied at thediaphragm, point load (F)For a snap-action
centre can be expressed as a function of critical parameters
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(chapter 6) and the centre displacement.

F = f/RO, RB, T, E, W) (7.1)

Apart from *H1', the other parameters have a scaling effect on 'F'.

The results of sensitivity tests (tables 6.1 and 6.2) indicate that

F < E. Therefore, equation 7.1 can be written as:

F = f2(RO, RB, T, N) (7.2)

HI - constant

To investigate the relationship between 'F' and 'RO’ and 'RB', 

the finite element program can be used. A diaphragm profile is 

assumed and each parameter is altered gradually (steps of 10%) while 

keeping the others constant. Figure 7.2 shows a discretized profile 

of such a diaphragm/ The definition of 'RO' is different from the 

previous chapter 6.1. The values of parameters are given below and 

in figure 7.2:

R1 = R2 « 0.07"

H2 » 0.15"

7 = 0.3

E =■ 29.OE6 lbs/sq. in.
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Figure 7.2

Figures 7-3a and 7.3b show the effect of 'RO’ and 'RB’ on load 

deflection characteristics of a diaphragm.

By curve fitting or other numerical methods of approximating data 

(Hayes, 1970), it can be shown that:

F <x 1 /RO z

F RB

•x . 
provided the other parameters are constant.

The validity of the above approximate relations for entire 'W' 
can be verified by determining F x R0? and F/RB for different 'RO' 

and 'RB'. Graphically, this is shown in figures 7.4a and 7.4b 

respectively.
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Figure 7.3a

Figure 7.3b
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Figure 7.4a

Figure 7.4b
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Therefore, equation 7.2 can be expressed as:

E
i< o •F ( ia ) j t ")
FE.

( 7.5)

n  1 _ Const an  t

or in terms of dimensionless groups:

\7 Ee T'J " 4 It )
Ml -CONSTANT

The two dimensionless groups can be used to generalize the 

load-deflection characteristics obtained for a particular diaphragm, 

so that it could be used for any similar diaphragm.

Numerical methods of data approximation can be used to 

determine . In terms of power series, the characteristic curve 

of a diaphragm can be expressed as:
r>

F . r< o . i _ V A • / w ( 7 .;
T Fb P -

where n - The order of the polynomial (n > 5) 

A - Coefficients of the power series

The effect of *H1’ can be investigated at this stage. Figure 

7.5 shows the finite element results (in non-dimensional form), for 

5 < H1/T < 7. The figure contains all the information regarding the 

behavior'of snap-action diaphragms.
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The approximate relationships have been obtained for:

2.5 < RO/RB < 5.3

Projections outside this practical range will need further

validation.

Figure 7.5

H1/T < 5 is not used because the diaphragm remains stable. 

This was checked for various^ diaphragm profiles and thicknesses. 

Also for H1/T > 7, numerical results indicate a sudden stiffening of 

the diaphragm in the unstable region. This again was confirmed for 

various diaphragm profiles. Profile plots of the diaphragm for 

increasing centre-displacement indicate sudden changes in the 

profile take place when H1 is large (H1/T > 7), hence the sudden 

stiffening of diaphragms.
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7.3.2 DESIGN PROCEDURE

The design procedure described in this section is approximate. 

The finite element program is used to determine accurate 

load-deflection for the diaphragm parameters obtained from the 

approximate procedure. Necessary modification in the design 

parameters can be made using the relationships given by equation 7.3 

to obtain the desired load-deflection characteristic.

The design procedure can be summarized as follows:

(i) The ratios of maximum and minimum of the load-deflection 

curve can be regarded as a constant for a given H1/T ie. 

independent of the design parameters. The errors in the ratios are 

of the same magnitude as those in the assumption of F 1/R0z 

and F °< RB. These ratios for various 'H1/T' can be determined 

from figure 7.6 and are shown below:

Figure 7.6

The ratio *RPT' of maximum force *FP' and minimum force 'FT* for

H1/T = 7 is not considered because it approaches infinity

(figure 7.5). For a given peak force, the range of possible minimum 
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force is given by:

F P / FT / F'F
8-7 x 1.0

This can be used to help the designer choose a suitable ’FT'. Then 

from 'RPT', *H1/T' can be determined (figure 7*6).

(ii) For various 'H1/T', the dimensionless displacements 'WPN' 

and 'WTN' corresponding to maximum and minimum load are shown 

graphically in figure 7.7.

Figure 7.7

M Ft"

From 'H1/T', the dimensionless displacements 'WPN ' and 'WTN ' 

can be determined. If the peak force is required to occur at 'WP' 

displacement, the necessary diaphragm thickness is given by:

T - WP/WPN*

From 'T', 'H1' can be determined as well. The displacement
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corresponding to the minimum load is given by (figure 7.7):
I
I

WT = WTN x T

If 'WT' is not suitable, then either displacement 

corresponding to peak force 'WP' will have to be changed, or the 

ratio 'RPT' has to be changed.
I

(iii) 'RO’ and 'RB' can be determined iteratively using the 

relationship between non-dimensional peak load 'FPN' and 'H1/T' 
(figure 7.8).

x

Figure 7.8
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The iteration can be initiated by assuming a value for 

'RO/RB*.

1. Assume RO/RB

2. FPN
5

E ,T
R?- FP * RO

RB

3. Calculate RB

If ’RO’ and 'RB' are not suitable (violate the constraint on 

maximum diaphragm radius or too small) then 'RO/RB’ is increased and 

step 2 onwards is repeated. If RO/RB > 5-25 then the design is not 

feasible and specifications have to be changed.

Minimum load can also be determined at this stage using 

non-dimensional minimum load 'FTN' from figure 7.3.

(iv) The negative stiffness 'S’ of the diaphragm can be 

determined from figure 7.9. If ‘S' is not suitable, modifications 

in the design specifications will have to be made.

Suitable values for other parameters ('R1', 'R2', 'H2') can be 

chosen at this stage:

R1 and R2 > 10 x T (thin shell constraint)

'H2' should be as small as possible so that thinning in the 

material is minimal (chapter 5).

The procedure presented above is not unique. The sequence of 

the calculation may be altered according to different requirements.

Other methods based on constrained optimization techniques can 

also be adopted to determine the critical geometric parameters. 

These techniques lack flexibility, and therefore, are not considered 

suitable for the problem.
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H1|T

Figure 7.9
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7.3-3 VALIDATION OF DESIGN PROCEDURE

The validation of design procedure presented' in the previous 

section was carried out by using several example design 

specifications and determining a suitable diaphragm profiles. The . 

accurate load deflection characteristic for the diaphragm profiles 

was then determined using the finite element program. One such 

study is presented here.

Case Study

The

peak load

’FT' and

stiffness

arbitary

design specifications (section 7.2) were assumed to be 

'FP' and the corresponding displacement 'WP', minimum load 

the corresponding displacement 'WT', 

'S’. However, it is not

design specifications.

and the negative

feasible to

Therefore,

design for any 

the following

specifications and designspecifications were assumed, other 

parameters were determined by the program:

FP 3 10.0 lbs.

WP 3 0.018 in.

FT 3 3.5 lbs.

E 3 29.OE6 lbs./sq. in.

Results from the design program were:

WT 3 0.0387”

S 3 -320 lbs/in.

Design parameters determined ffom the program:

H1 3 0.087"

T 3 0.008”

RO 3 0.0758”

RB 3 0.0237”
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The other parameters necessary to define the diaphragm profile 

can be determined from the shell constraints ie. the curvatures 

must be greater than 10 x thickness:

R1 3 R2 3 10 x T 3 0.08"

'H2‘ should be small so that reduction in diaphragm thickness 

remains small:

H2 = 2 x R1 3 0.16"

Results from the finite element program, for the above 

mentioned parameters, are shown in figure 7.10 (curve 1). The 

errors between the desired 'FP' and 'FT' and those determined using 

the finite element program, can be eliminated using the fact that:

F ex. RB
F 1 /R0Z
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To obtain FP = 10, ’RB' can be modified to:

RB = 10.0 x 0.037 » 0.0208”

Results from the finite element program for this modification 

are shown in figure 7.10. The errors between design specifications 

and the finite element results are less than 2$. However, the 

negative stiffness predicted by the design program was -320 lbs/in, 

while that obtained from the finite element model is -400 lbs/in. 

It is possible to make modifications in the parameters to reduce the 

difference, but because the negative stiffness is of secondary 

importance, this was not deemed necessary.
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7.4 DESIGN OF A VARIABLE RANGE PRESSURE SWITCH

7.4.1 A DIAPHRAGM SPRING COMBINATION TO FORM A VARIABLE LOAD SENSOR

A snap-action diaphragm can be used to design a variable range 

pressure switch. As part of a switch, snap-through diaphragms are 

preferred over ordinary diaphragms, beacuse they are more positive 

action, have higher travel for the same overall dimensions, and have 

better reproduc bility.

Figure 7.11 shows a possible combination of a snap-action 

diaphragm and a spring to form a variable range switch for 
concentrated load.

Figure 7.11
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The overall behaviour of the system is given by the

combination of the diaphragm and spring behaviours.

at which the diaphragm will snap can be altered by

Mathematically, this can be expressed:

The peak load

varying .

F = Kjx). x + K$ (x + x0)

where F Applied load

Ka(x ) - Non-linear diaphragm stiffness 

Kj i- Linear spring stiffness i 

x,x0 - Displacements (figure 7.11 )

Graphically, the applied load and centre displacement 

behaviour is shown in figure 7.12.

Figure 7.12

The spring stiffness 'K^' should be less than the negative atiffness 

of the diaphragm so that the combined system will have suitable 

hysteresis. The choice of spring stiffness depends on the required 

sensitivity of the switch. In addition, the diaphragm needs to be 

restrained from moving up to a new equilibrium position when x. 0 ia 

altered, otherwise, assumed origin of displacement will change.
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The diaphragm spring system can be easily adapted to act as a 

variable range pressure switch. This can be achieved by including a 

'summing junction' to transduce pressure into concentrated load 

(figure 7.13). A barrier diaphragm or a capsule can be used as a 

summing junction.

/V

1 1--------------------------------------------------------- ------------—---------------- J L--------------

J <5^

------------------------------------------------------ --------------------------

T

Figure 7.13

The choice of the barrier diaphragm or the capsule depends on the 

maximum pressure and corresponding displacement. It should be 

chosen such that the effective area and stiffness remains constant 

over the entire range of operation. Equation 7.6 can be modified to 

include the effect of the summing junction.

where P - Applied pressure

A - Effective area of the junction

Kj - Stiffness of the summing junction

The other terms on equation 7«7 have the same meaning as equation

7.6.
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7.4.2 DESIGN OF 3 psi to 15 psi PRESSURE SWITCH

Design of a variable range pressure switch involves:

a) Selecting a suitable summing junction: It should be linear 

over the entire range of operation. The maximum pressure rate of 

the capsule or the barrier diaphragm should be less than the minimum 

pressure to be detected by the switch. A KGD capsule, rated 40" 

water (1.44 psi) at 0.048" deflection, was choosen for the design. 

The stiffness 'K ' of the capsule was determined experimentally, and 

was found to be 55 lb/in. The effective area of the capsule 'A' was 

found to be 1.712 in .

b) Selection of the spring: The choice of the back-off spring 

depends on the required sensitivity (£P/dX0) of the device and the 

over-all travel (xo). Assuming the required sensitivity is:

t)P/Z>x<? = 20.0 psi/in.

This implies that for 8 P =* 1 psi, ’ X. o' should be changed by 0.05". 

To alter the pressure range from 3 psi to 15 psi, xo has to be 

increased by 0.75". The spring has to be of sufficient length to 

allow such compressions. The sensitivity (2>p/^x.o) can be improved 

at the expense of increasing the spring length or reducing the 

pressure range of the switch. The stiffness of the spring can be 

determined using equation 7.7.

K = A » 20.0 x 1.712 » 34.24 lbs/in.
2>*o
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c) Specifications for the 

specification for

specifications of 

stiffness of the

diaphragm and design: The

the diaphragm design can be determined 

the capsule and the spring. The 

diaphragm must be greater than the

stiffness of the capsule and the spring for the system 

hysteresis.

from the

negative 

combined

to have

S > K+K
J 15

> 89.23 lbs/in.

The maximum travel of the diaphragm (WP + XX. ( figure 7.12) 

should be less than or equal to the maximum displacement allowed for 
the capsule (0.048”).

The diameter of the diaphragm should be less than or equal to 

that of the capsule so that step up adaptors do not have to be used 

for the assembly of the components.

The peak load carrying capacity *FP' of the diaphragms and the 

corresponding displacements 'WP' can be determined using equation 

7.7.

FP » P.A - (K$+ K)WP

But from figure 7.7,

WP » 2.0 x T .

•\ .
where T - Diaphragm thickness

P - 3.0 psi

A - 1.712 in 

Kj - 55 lbs/in

- 34.24 lb/in

Standard blanks are used to form diaphragms, therefore, T can 

assume a limited number of values. This limits the number of 

' iterations necessary in determinimg a suitable diaphragm profile.
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The existing diaphragm design program was modified to take the 

forementioned considerations into account.

The critical parameters defining the diaphragm profile 

obtained from the design program, are shown in figure 7.14 The 

assumed values of other parameters are given below:

R1 = R2 » 0.07”

H2 = 0.14"

Figure 7.14

The diaphragm characteristic, obtained from the finite element 

program is shown in figure 7.14 (curve 1). Curve 2 indicates the 

combined characteristic of the diaphragm and the capsule. Curve 3 

shows the combination of curves 1 and 2. The pressure deflection 

characteristic of the system (curve 4) is obtained by dividing the 

combined force-deflection characteristic of the system by the 

effective areas of the capsule (equation 7*7).
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Figure 7.15

•\
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The effect of variation of x0, is to change the threshold of 

the device, as 3hown in figure 7.16.
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Final tuning of the switch can be carried out at the 

calibration stage.

It was hoped that the switches would be produced and tested, 
but due to lack of tine the project could not be completed. The 

design is being pursued by K.D.G Instruments Ltd. Provided the 

diaphragm profile is formed according to the design, it is expected 

that the switch will perform satisfactorily.

■x

7-4.5 DIAPHRAGM MANUFACTURE

In the past mechanically adjustable tools or lathe turned 
forming tools were used for diaphragm manufacture. With the 

increasing use of computer-aided techniques, numerically controlled 
lathes are used to produce forming tools; diaphragms are then press 

formed using these 'tools'.
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Data transfer to N.C. lathe at K.D.G.Instruments Ltd was 

carried out using paper-tapes. However, due to non-compatibility 

between the Prime 550 (mini-computer) and the N.C. machine at KDG, 

an interface program had to be developed. Prime 550 is a 16 bit 

computer and requires 'set' parity (parity bit =* 1) for all the 

data, while the N.C. lathe at KDG requires odd parity data. 

Paper-tapes also need three or more null characters after the 'line 

feed' and 'carriage return’ commands at the end of the data line. 

These are not produced by Prime when a paper-tape is generated. 

Details of the interface program are given in Appendix C.

For the analysis, 'r' and 'z' coordinates of middle surface of 

the diaphragm are used. To form a diaphragm tool, the 'r' and 'z' 

coordinates of the inner surface have to be determined (figure 

7.17). The difference between the two sets of coordinates is 

negligible for very thin diaphragms (T < 0.004").

2

Figure 7.17

When a diaphragm is formed from a tool, the profile of the 

diaphragm is different from the tool. The difference in the 

profiles is due to the spring-back effect of the diaphragm after it 

has been pressed. The amount of spring-back depends on the material 
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properties of the blank (Young’s modulus and thickness) as well as 

the profile of the tool. The required diaphragm profile is obtained

by trial and error method. This is achieved by using a tool with

exaggerated convexitivity (H1 > desired H1) So that after

spring-back, the diaphragm, hopefully, will have the desired

profile. Further study needs to be carried out to quantify the 

spring-back effect. There are two methods available to tackle the 

problem:

(i) Compensation. r:

(ii) Elimination.

(i) Compensation: In the present method of manufacturing, 

diaphragms are based on compensation techniques. The spring-back 

effect needs to be quantified so as to avoid the hueristic method of 

achieving the desired diaphragm profile. This can be achieved by:

a) Mathematical Modelling - Using a mathematical model with 

material non-linearity (plasticity), the forming of diaphragms and 

spring-back effect can be studied.

b) Empirical Method - By producing a set of diaphragms and 

carrying out sensitivity analysis (chapter 6), the parameters 

effecting spring-back can be determined. Hence, the relationship 

between spring-back and the parameters can be determined.

(ii) Elimination: An alternative approach is to eliminate or 

reduce the spring-back effect by using explosive-forming (Blazynski, 

1983) instead of press-forming of diaphragms. The basic difference 

between press-forming and explosive-forming is the different rate at 

which transfer of energy takes place. Closed explosive-forming is 

carried out by placing a blank on top of a female die. Explosive 

material is placed on top of the blank and the system is submerged 

into an energy transferring media, usually water (figure 7*18).
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vacuum  
line

Figure 7.18

There is more control over the shape of the diaphragm when 

explosively formed. This is achieved by varying:

a - Type of explosion.

b - Distance of explosive from the blank.

c - Distribution of the explosive.

d - The type of energy transformer medium and its 

temperature
•x .

A considerable amount of work has been carried out on 

explosive forming and extremely accurate symmetrical parts have been 

formed using the method.
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7.5 DIAPHRAGM DESIGN FOR PRESSURE LOAD

A systematc procedure for diaphragm design, subjected to 

pressure loading, is presented in this section. Concepts of 

dimensional analysis (section 7.5.1) are used to generalize 

diaphragm characteristics. The design specifications are the same 

as for a diaphragm subjected to concentrated load, except the 

negative stiffeness is neglected. The specification of the negative 

stiffness was included so that a diaphragm could be used with a 

suitable back-off spring. The results of the finite element program 

are no longer valid when a back-off spring is used for a diaphragm 

subjected to pressure load.

Therefore the design specifications are:

a) Peak load 'FP' and corresponding displacement 'WP'.

b) Minimum load ’FT’ and corresponding displacement 'WT'.

Again the constraints are those of thin-shell theory, and on 

the maximum radius of the diaphragm (geometric constraint). The 

objectives are to determine the critical parameters ie. 'RO', 'H1', 

'T', and 'E' (chapter 6). The effect of the centre-boss is not 

included. The parameters necessary to describe the diaphragm 

profile are as suggested in sections 7.5.2 and 7.5*5. The choice of 

dimensional groups is based on the theory presented by Andreeva for 

snap-action diaphragms. Andreeva's analytic model cannot be used 

for design because it is inadequate (chapter 4, section 2.1).

■x
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The non-dimensional groups suggested by Andreeva are:

4
P / R0\ and W
E V T / T

where P - Applied pressure

E - Young's modlus for the material

RO - Inner radius for the diaphragm (chapter 5)

T - Diaphragm thickness

W - Centre-displacement

The results obtained from the finite element program are 

presented in figure 7.19 (in non-dimensional form). Under pressure 

load, conical diaphragms are found not to show any hysteresis for 

H1/T < 3. For H1/T > 9, sudden stiffening of the diaphragm is

detected in the unstable region. This is because when 'H1' is large 

(H1/T >J°), sudden change in the profile takes place in the unstable 

region. This was detected for several diaphragm profile. The 

diaphragm parameters used in obtaining the results, are given below:

RO - 0.4567"

R1 =» R2 =■ 0.07"

H2 » 0.14"

T » 0.007"

E =* 29.0 x 10 lbs/in.

7 » 0.3

3T < H1 <(0T
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12
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The design procedure presented here is approximate. The 

errors being of the same order as for diaphragm design subjected to 

point load (section 7.3). To obtain accurate results, tuning in the 

diaphragm parameters can be carried out using the F.E. program. 

Results presented in figure 7.19 have been used to obtain all the 

information for the design procedure. The procedure can be 

described in the following steps.

a) Determination of *H1/T*: The ratio of peak load and 

minimum load (RPT = FP/FT) can be assumed to be dependent On H1/T 

only. The relationship between 'PRT' and 'H1/T' is shown in figure 

7.20. For specified 'FP' and 'FT', ‘RPT ' can be determined, hence 

'H1/T '.

Figure 7.20

b) Determination of 'WP', 'WT', 'H1', and 'T': 
shows the non-dimensional displacements 'WPN' 

corresponding to peak load 'FP' and minimum load 'FT'

Figure 7.21 
and 'WTN'

respectively.
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Figure 7.21

Having determined *H1/T', 'WPN ' and 'WTN ’ can be determined from 

figure 7.21. For specified 'WP', the diaphragm thickness 'T' can be 

determined:

T = WP./WPN

Hence, WT = WTN x T
■x

If the displacement corresponding to minimum load 'WT' is not 

suitable, modification in the specification will have to be made 

accordingly.

Alternatively 'T' can be determined from 'WTN ', depending 

which displacement ('WP' or 'WT') has priority. *H1' can also be 

determined at this stage.
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c) Determination of 'RO’: Figure 7.22 shows the variation of 

non-dimensional peak pressure 'FPN' with 'H1/T'.

H1/T

Figure 7.22

For given 'H1/T', 'FPN ’ can he determined, and hence the 'RO'.

RO - (FPN .E.T )

If 'RO' is not desirable, suitable modifications in the 

specification will have to be made.

The other parameters necessary to describe the diaphragm can

be assumed as:

R1 3 R2 3 10 x T (thin shell constraint)

H2 > (R1 + R2) (physical constraint)
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However, ’H2’ should be as small as possible to minimize the 

variation of thickness.

Youngs modlus 'E' is taken as an input variable because the 

materials used for diaphragms are limited; hence can be chosen 

beforehand.

A computer program, based on the procedure, has been 

developed. The program is interactive. As each specification is 

fed to the program, j!the feasible range of the other specifications 

are determined. Computation time is negligible, hence a feasibility 

study for a new design can be carried out in minu tes.

The validation of the program was carried out in the manner 

described in section 7.3.3. A typical example demonstrating the use 

of the design program is presented here.

Case Study

Design specifications:

FP » 3.0 psi WP » 0.01"

FT 35 1.0 psi WP » 0.029"

Maximum Radius =■ 1.0"

E = 29 x 10 lbs/in

Critical parameter determined by the program:

T = 0.05"

RO = 0.67" x

H1 » 0.0253"

The other parameters assumed to fully describe a conical diaphragm a 

re:

R1 - R2 » 0.05"

H2 » 0.1"

The results from the finite element program, for such a 

diaphragm are shown in figure 7.23. There is good agreement between 
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design specification and the finite element results. There is +12$ 

error between the minimum load specified and that determined by the 

finite element program. Also, the corresponding displacement (WT) 

is out by -7$. Tuning of the design can be carried out using the 

results of sensitivity analysis (chapter 6).

Figure 7.23

7.6 CONCLUSION

■x
Procedures for designing snap-action diaphragms, subjected to 

pressure and point loading, are presented in this chapter. From the 

design specifications, the procedures enable the designer to 
determine the diaphragm shape and size. The design methodologies 

are based on the results from the finite element model for a set of 

diaphragms. The results from the finite element model are 

general ized using the Dimensional Analysis techniques so that they 

can be applied to any similar diaphragm. The computer programs, 

based on the design procedures, are interactive and guide the 

designer in choosing feasible specifications. Using these programs, 

a feasibility study for a new design can be carried out in a matter 
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of a few minutes. The design curves are approximate (due to 

generalization), therefore, the diaphragm parameters may not produce 

the required load-deflection characteristic exactly. Modification 

in the parameters can be made using the guidelines in the chapters. 

It was found that, at the most, three iterations are needed for the 

design to comply with the specification. The entire diaphragm 

design procedure has been upgraded, including the transfer of data 

to a numerically controlled lathe (at K.D.G. Instruments Ltd). 

This gives added security to the design because the diaphragm 

forming tool, if damaged or worn, can be replaced easily.

The accuracy suggested by the numerical results, cannot be 

achieved in practice because the diaphragm, when press-formed with a 

tool, does not take the same profile as the tool. This is because 

of the ’spring-back' effect in the diaphragms. Different methods, 

to overcome the problem, have been suggested.
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CHAPTER 8

CONCLUSIONS

The objectives of the presented study were:

a) to develop an accurate and efficient mathematical model for 

the analysis of axi-symmetric snap-action diaphragms.

b) To establish a methodology for the design of such 
diaphragms.

A finite element model, based on thin shell theory and 

employing two noded line elements with six degrees of freedom has 

been developed and validated. Validation of numerical models, 

generally involves three stages:-

(i) Comparison with analytically solvable exact solutions.

(ii) Comparison with previously published analytic or 

numerical results.

(iii) Comparison with detailed experimental results.

Because of the complex load-deflection characteristics that 

arise in snap-action diaphragms no exact analytic theory was 

available for comparison at stage 1. However, the model was tested 

for the large deflections of^a circular flat plate and a spherical 

cap, both under pressure loadings for which analytic results are 

available. At stage 2 comparison with published analytic results 

for snap-action diaphragms (Andreeva, 1966) showed a large variance 

when compared with the Finite Element (F.E.) results. It turned 

out that Andreeva's analytic model is totally inadequate. Also at 

stage 2 tests were conducted on a spherical cap with a ring load and 

good agreement was obtained between the F.E. model and other 

previously published numerical results. At stage 3 detailed 

comparisons were made with a number of diaphragms which were both 

mathematically modelled and tested experimentally by the author.
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The results indicate that the load deflection characteristics can be 

predicted accurately except at large displacements where errors of 

about 15^ occured. A plausible explanation for this error is given.

Having established that the F.E. model was accurate and 

efficient, a systematic study of two types of snapping diaphragms - 

conical and spherical - were carried out with a view to establishing 

a design methodology.

The approach was to provide a parametric representation to 

characterise the geometry of the diaphragms, to identify important 

design variables and then use dimensional analysis type methods to 

produce a non-dimensioned design curves. These curves can be used 

to develop a methodology for design. Given that a parametric 

representation of a snap-action diaphragm has approximately six 

geometric and two material variables to describe it this was 

considered the way to use the computer in a cost effective manner 

and develop a viable design methodology.

Having established the normalised design curves a methodology 

of design using these curves was presented. This methodology is 

simple and can be done in an iterative method either manually or 

using a simple programmable calculator. To be sure of any design it 

is advisable to make a final check on the performance using the F.E. 

model.

The design methodology has been illustrated by way of examples 

including that of an adjustable pressure operated switch in the 1 

bar (3-15psi) range. This device is still to be constructed and 

tested. Provided that the diaphragm can be formed to the design 

specified there is no reason to expect that the system will not 

perform as predicted.

Further work should be concerned with applying the methods 

outlined in the thesis to the design of snap-action diaphragms for 

the variety of applications indicated in chapter 2. Only in this 

way will further confidence be built up in the methods presented 

here.

The design methods produce a diaphragm geometry for a given 
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material. This information is used to produce a tool (using a 

numerically controlled lathe) from which the diaphragm is press 

formed. No account is taken of spring-hack. There is therefore a 

need to study spring-hack. This can he achieved theoretically by 

developing finite element models for the formation process (ie. an 

elasto plastic model) or by empirical means to study what form 

spring-back takes. In the latter approach a profile plotter being 

developed as another project for measuring the profiles of 

corrugated diaphragms would assist. In this plotter the r-z 
(radial-axial) coordinates of the diaphragm surface are measured to 

about 10 microns ( 0.0004" ) using a stepper motor driven carriage 

which moves the diaphragm under a displacement sensing head. The 
whole profile can be measured and stored on a micro computer within 

a minu te or so. If such a plotter is used to study both the tool 

profile as well as the formed diaphragm using a graphics VDU, then 

it would be possible to identify factors contributing to spring-back 

so leading to an experimental study of the problem. Once the 

principal factors contributing to spring-back are identified it 

should be possible to compensate for it at the design stage. 

Explosive forming of diaphragms is a method which may get around the 

problem of spring-back. This also needs to be explored further, 

although it may not be economically feasible for production 

purposes.

In the present work two types of loading have been 

considered:- pressure and point loadings. An area mentioned but not 

explored is temprature operated snap-action devices. A finite 

element model could be developed for such devices. Since the 

operation of these devices are based on composite shells having 

different thermal expansion Coefficients, some effort would be 

needed in developing a finite element model. However, much of the 

basic approach in the development of the present finite element 

model will remain.
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APPENDIX A

DERIVATION OF THE RESIDUAL VECTOR AND THE TANGENTIAL STIFFNESS 

MATRIX

From equations 3-11 and 5*13, the residual vector ’R' is given 

by the following equation. Subscripts and superscripts have been 

neglected for the sake of clarity.

( - t  , . ■■ ( A-l)
R=. BDBdya_XF r

) v

bu t 5" „ D B a

, -t  <A,2)
R - B r dv - dv - AF

' V

The above expression is used to determine the residual vector.

Tangential stiffness matrix, by definition,

3.11

- [ + B T d 6" >1 dV (A.3)
J y 1 3 a 3 3 '

FROM EQUATION
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da

a a =
d AT (y
d a

= 6T. d A7 , d ft g- 
d ft da

b At ff d ft
d ft d a

a T d Ar S’ . G

3 qr Ns _
L r

Cr C A .4-)

Similarly, it can be shown that,

b t d B (A-5)

From equations A.3, A.4 and A.5,

g t ( n s dv

d a

M & ) G E> T i> B

Because ‘O' is a symmetric matrix, ’K ’ will also be a 

symmetric matrix. The overall tangential stiffness matrix will be 

symmetric and banded. The bandwidth of ’K ’ will depend on the 

degree of freedom of the element.
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APPENDIX B ‘ .

SOURCE LIST OF TOTAL LAGRANGIAN FINITE ELEMENT PROGRAM

The source list of the Total Lagrangian Finite Element program 

is given in this appendix. The program has "been developed using 

Finite Element library routines (SERC, 1980), wherever possible. 

Because the library doesnot contain any ’shell elements', all the 

routines relevent to thin shell elements had to be developed by the 

author. However, the structure of the program is similar to the 

ones presented in the library. In most cases the same variable 

names have been used as in the library programs. Additional 

variables have been assigned meaningful names. Familiarity with the 
theory (see text) and access to the library documentations is 

essential to understand the program.
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APPENDIX C

INTERFACE PROGRAM FOR N.C. LATHE TAPE GENERATION

The source list of the macro 'MATE' and the Fortran program 

'PAPE' are given in this appendix.

The macro edits the ASCII data file and inserts '@@@' at the 

end of each data line. '@@@* are used by the Fortran program to 

detect the end of the data line. In addition, the macro compiles, 

loads and runs the Fortran program.

HIAHBYTG
<---------------------------------------------------------—►

Figure A1

A Prime 550 is a 16 bit word computer (figure A1). ASCII 

characters require 7 bits for the data, and an additional bit for 

the parity. Hence a Prime word stores two ASCII characters, one in 

each byte. On a Prime, the parity bits are set to 1, regardless of 

the characters in the computer word. Even parity ASCII code is 

required for the data to be compatible to the N.C. machine. This 

was achieved by masking the entire computer word apart from bit 0 

and checking its contents. If bit 0=1 , then a counter was increased 

by 1. The process is repeated after shifting the word to right by 

one bit. Depending on the contents of the counter the parity bits 

(7 and 15) are modified accordingly. The paper-tape also needs to 

have at least 3 null characters after 'line-feed' and 

'carriage-return' commands. These are also generated by the Fortran 

program.

To run the program 'MACRO MATE' needs to be typed on the 

terminal.
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