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ABSTRACT

The development of diffraction problems in oceanography, 

which are amenable to the Wiener-Hopf technique is set 

in the context of modelling physical situations in the 

North sea and other oceanic regions. Two cases are 

considered dealing with the mechanics of Kelvin wave

generation by the diffraction of cyli ndri cal plane waves

by a semi-infinite barrier in an ocean of constant depth

and also in the presence of a depth discontinuity.

The significance of the double Kelvin wave regime in the 
WAV*!-

context of Kelvin generation is also investigated.

A third problem is presented, a half-plane problem,

which uses the diffraction of Kelvin waves by changes in

depth as a means o-f illustrati^a double application of 

the Wiener-Hopf technique involving an extension of the 

functions from the right-hand physi cal plane into the

left-hand plane. The analytic sol ution is given,

although no numerical results have been obtained.

The latter part of the thesis presents a complete class

of separable solutions to the sine-Gordon

equation and its space-like variant. Whilst no boundary 

conditions have been specified, it should be possible to 

extend the results in order to identify some of the 

two-dimensional vortex flows represented.
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ON DIFFRACTION PROBLEMS IN OCEANOGRAPHY AND QN ELLIPTIC 

SOLUTIONS OF THE SINE-GORDON EQUATION,

INTRODUCTION

This thesis is presented in two sections for which six 

published papers are submitted. Section A deals with a 

survey of some diffraction problems in oceanography, 

with particular reference to those problems which can 

approached through applications of the Wiener-Hopf 

technique. This major part of the submission also 

includes unpublished material alongside the papers Al 

and A2.

Section B presents an alternative view of partial 

differential equations in which the sine-Gordon equation 

is considered without the precise boundary conditions of 

section A. Classes of solutions are given in papers 

B1,B2,B3 and B4, which form a reservoir from which 

useful solutions may be extracted as particular physical 

situations arise. The context here is in the development 

of 'solitons' and this work formed part of a joint 

research programme with A.C.Bryan and A.E.G.Stuart.



SECTION A ON DIFFRACTION PROBLEMS IN OCEANOGRAPHY.

SUBMITTED PAPERS

Al. HAINES, C.R. (IPSO)

Kelvin wave generation by a semi-infinite barrier.

Pure and Applied Geophysics 119;46-50.

A2. HAINES, C.R. (1981)

A Weiner-Hopf approach to Kelvin wave generation by 

a semi-infinite barrier and a depth discontinuity.

Quarterly Journal of Mechanics and Applied

Mathematics XXIV (2); 139-151.
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CHAPTER 1 MODELLING LONG NAVES ON OCEANIC BOUNDARIES

The search for realistic mathematical models which 

explain the origin of storm surges in the North Sea is 

part of a wider investigation into the behaviour of long 

waves on a rotating earth. Data on tides and sea levels 

has been collected and analysed over a great many years 

and the results of these observations are diverse. On 

the one hand, the after effects of an earthquake in the 

Pacific Ocean confirmed that the speed c of the 

resultant tidal wave in an ocean of mean depth h, can be 

approximated by Jgh, Green (1946). On the other hand, 

a deeper understanding of the behaviour of tides, the 

diffraction, reflection and transmission of long waves 

and variations in local topography has been achieved 

from detailed and minute observations at tide gaU(JCL 

stations off the Californian coast, Munk et al.(1970).

The intractable nature of most problems in physical 

oceanography has led to the construction of linear 

models with simple representations of coastlines and 

depth profiles. Nevertheless, considerable insight into 

the behaviour of long waves on oceanic boundaries has 

been gained from the use of methods and techniques which 

were originally developed to deal with diffraction 

problems in electromagnetism. In this context, the 

boundary value problems are posed as half-plane 

diffraction problems with the additional comp 1ications
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of the rotation of the earth and of the mixed boundary 

condi ti ons.

The need to construct specific models for particular 

geographical regions is evident, and models of the North 

Sea have been in use for a considerable time. These 

models are of some importance and were originally 

motivated by the severe floods which occurred along the 

East coast in 1953. The representations of the North Sea 

are many and various, such as the shadow region behind a 

semi-infinite barrier, Crease (1956), which allowed an 

investigation of the way in which free waves propogate 

from regions to the west and to the northwest of the 

British Isles into the North Sea. This model, and others 

of the area are shown in Figures 1 to 5.

Using the linearised long wave theory for shallow water 

waves on an ocean of constant depth, Proudman (1953), 

the developments which took place stem from the early 

research of Crease (1956). His model consisted of a 

system of simple harmonic plane waves incident normally 

on a semi-infinite barrier (Fig.l), and demonstrated 

that the transverse velocity components of the waves 

beyond the barrier act as a source for waves to be 

propagated behind the barrier as Kelvin waves. Such 

waves progress without attenuation and in certain 

circumstances, the amplitude of this wave exceeds that 

of the incident wave. This is contrary to the effects
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noticed in acoustics, in which, of course, rotation does

not play a part.thowever, the disturbance which

ori g i nates from the source at the edge of the barrier

does have similar behaviour and dies out rapidly as 

distance increases.

Later models, Crease (1958), attempted to fit the 

behaviour patterns in the North Sea more precisely, by 

regarding the region as a channel contained between 

appropriate barriers with a system of plane waves 

incident upon the barriers at arbitrary angles of 

incidence. Modelling the region as a channel matches the 

available data for the area quite well, where the 

amplification factor for the case of normal incidence is 

about 2.3 compared with the predicted factor 2.2.

Solutions to these diffraction problems may be obtained 

in a closed form by the construction of an integral 

equation, the use of a Green's function and a

Wiener-Hopf decomposition. At each stage the comparison 

with the acoustic waves is made, the general problem 

of the scattering of long waves in a rotating system 

having been discussed by Williams (1964). Any problem 

involving scattering by parallel barriers in such a 

system reduces to a Dirichlet problem for a Helmholtz 

equation, although this method does not lead to closed 

solutions for the problems posed by Crease.
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Analogous problems to those of Crease and of Chambers 

(1964) have been considered in the context of internal 

waves being diffracted by a semi-infinite barrier,

Manton et al. (1970). The method used in the solution is 

similarly by an integral formulation and a Wiener-Hopf 

decomposi ti on.

Crease (1956) also postulated that the presence of the

Kelvin wave in the shadow region behind the barrier 

indicated that islands would trap Kelvin waves. Such

that this was indeed the case and the general question

waves would progress round an island in a clockwise

direction in the northern hemisphere and anticlockwise

in the southern hemisphere. Williams (1964) confirmed

□f wave trapping of energy by islands, in a manner 

similar to the capture of a particle by an atomic 

nucleus was subsequently explored by Longuet-Higgins 

(1967).

Whilst the North Sea was initially the main focus of 

interest, other areas have shown more exciting 

prospects, e.g. Buchwald and Miles (1974, Fi g . 6) . So too., 

has attention been given to problems of variable depth 

and the trapping of waves along a discontinuity of 

depth. Under favourable circumstances such a depth 

discontinuity in the ocean floor acts as a wave guide 

for the propagation of waves — double Kelvin waves — 

along the line of the discontinuity. The period of 
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double Kelvin waves is always greater than a pendulum 

day and the uniform depths on either side of the 

discontinuity satisfy a certain condition. The direction 

of propogation of the waves is the same as that for 

Kelvin waves in the deeper water, with the discontinuity 

to the right of the direction of propagation 

(Longuet-Higgins, 1968A/B).

As a result of these developments, attention turned to 

the Mendocino fracture zone off the Californian coast 

and dealt with the diffraction, reflection and 

transmission effects. Figures 7 and 8 illustrate two of 

the models used and in each of these papers aspects of 

the generation of Kelvin and doub1e-Kelvin waves are 

discussed in detail.
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CHAPTER 2 KELVIN NAVE GENERATION

My research programme was motivated by the developments 

outlined in Chapter 1 and concentrated on areas of 

oceanography which were of physical interest and also 

those which were amenable to an exposition of the 

Wiener-Hopf technique.

It has been shown that for wave numbers T<1 Kelvin

waves are diffracted around corners with a reduced 

amplitude, except for wedge angles TE/(2n + l). For these 

prefered angles there is no reduction in amplitude, 

Packham and Williams (1968). It was therefore of 

immediate interest to take a fresh look at the 

calculated (Al). A null hypothesis was proved, that is, 

there are no prefered angles nor, indeed any prefered 

wave numbers. My research also confirmed the single 

result in the case of normal incidence for the threshold

wave number 1=0.6, above which the transmission

coefficient for the diffracted wave is enhanced, Crease

(1956). The results given in (Al) relating the wave

number 1 to the transmission coefficient for the
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diffracted Kelvin

(1988), provi ding

wave, have been investigated by Hills 

further confirmation that incident

waves with higher wave numbers T are the more

persi stent in diffraction round corners, Fig.9. This

section of research also served to extend and to

consolidate that which had been touched upon as a

special case of the proportion of long waves in a

semi-infinite channel, Crease (1958).

There was, in addition, an interest in the role of

bottom topography on problems involving Kelvin waves.

Initially attention was focussed on the ways in which

doub1e-Kelvin waves may be generated, either by the

action of some external agency such as wind stress,

Mysak (1969), or by the diffraction of systems of waves

Since double-Kelvin waves can only exist under certain

conditions, Longuet-Higgins (1968A), the effects of

depth discontinuities in those regimes which do not

support them received rather less attention, this was,

perhaps, surprising, as for many tidal problems the

daub1e-Kelvin wave regime is perceived to be of

peripheral interest, Mil es (19728).

The area of application of my research included the

Mendocino fracture zone off the Californian coast, and

also the region in the southern 

of South America, since in both

hemisphere off the tip

these regions there are
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significant changes in depth over small distances. The

model used by Crease (1956) was adapted to include an

abrupt change in depth together with a semi-infinite

barri er (A2). For wave numbers X<1, a system of plane

waves was diffracted by the depth change and the barrier

and the resultant diffracted Kelvin wave, the

transmitted plane waves and the reflected waves were 

calculated. My research showed that an enhanced Kelvin 

wave was produced only for intermediate wave numbers

0.5<T<l and for the depth ratios 

tidal problems. The variation in 

also shown to have little effect 

that commonly occur in

the depth ratio was

on the transmission

coefficient for the diffacted wave, although the ratio 

is important in considering both the transmitted and the 

reflected waves. The possibility of refraction does not 

arise in this problem.

Clearly it would have been ideal to have considered the 

two problems (A1,A2) as special cases of a single 

problem involving an arbitrary angle of incidence for 

the incoming system of plane waves, together with a 

semi-infinite barrier and a depth discontinuity 

(Fig.10). However, one objective of my research 

programme was to adapt the procedures outlined by 

Pinsent (1971) and to apply direct fourier transform 

techniques to the differential equations and to the 

boundary conditions. By this method, the need to 
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construct a Green's function is avoided and the 

Wiener-Hopf technique may be applied with the aid of 

Theorem C of Noble (1958). The analysis in the above 

cases is complex and the combining of the two cases in a 

single more general case only serves to complicate the 

analysis still further. The principles involved in such 

a Wiener-Hopf approach are illustrated in the submitted 

papers (A1,A2) and also in the diffraction of Kelvin 

waves by an abrupt change in depth, a problem which is 

further considered in Chapter 3.
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CHAPTER 3 THE DIFFRACTION OF KELVIN NAVES BY AN ABRUPT 

CHANGE IN DEPTH.

3.1 INTRODUCTION

The effect of a depth discontinuity on the propagation 

of Kelvin waves along a coastline has been the subject 

of several investigations with variable success. In the 

Mendocino fracture zone, Miles (1972B), and at the 

southernmost tip of South America, Pinsent (1971), the 

methods adopted have calculated the diffracted Kelvin 

wave but the resulting double Kelvin wave has not been 

calculated for the former case in which the depth 

discontinuity is perpendicular to the coastline.

This chapter defines the boundary value problem as a 

half-plane diffraction problem and uses a double 

application of the Wiener-Hopf technique to obtain the 

solution in closed form. The method adopted combines 

those of Buchwald (1968), in the definition of 

representations of the solution over the whole plane, 

and Pinsent (1971), in the method by which the 

Wiener-Hopf factorisations are carried out and the 

integral formulation of unknown functions in the a 

p1ane.
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3.2 THE EQUATIONS OF MOTION

The horizontal equations of motion for linearised long

waves are, F'roudman (1953),

du
di ■ fv = - g

d£ 
dx ’

r

+ fU = 
dt - g

d$ 
dy ’

i

i

earth and <D is the north latitude.

where J is the elevation of the free surface above its

mean level and u,v are the components of velocity in the

hori zontal xy plane. The coriolis parameter is

f=2o sin0, where o is the angular velocity of the

continuity for uniform depth h ofThe equation of

water, i s

du dv 1 dS
---- — = - — —
dx dy h dt

Assuming u, v to have a simple harmonic time factor

exp(iat), (3.2.1) leads to the horizontal velocity

components
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U
_g____

(<j 2- f2)
+

r

v __ g___
(a2- f2)

+■
u

and (3.2.2) becomes

du dv

dydx

i <7
— X.

h

(3.2.3)

(3.2.4)

Eli mi nating u and v between (3.2.3) and (3.2.4) we

obtain

d2S d2S
k2S

dx2 dy2
+ + 0 ,

(<72— f2)
where k2 and c2 qh.

c2

Although (3.2.4) is usually taken as the equation of

continuity, the equation may be replaced by

du dv f

dy dx h 

which expresses the conservation of vorticity in a 

column of fluid.
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3.3 THE BOUNDARY-VALUE PROBLEM

The conditions of the problem are that a Kelvin wave of 

the form exp < (~f x + i ay)/c 13- is incident from y=+co upon 

a depth discontinuity along the x-axis as shown in

Fig.8. In the region x>0 , y>0 the water is of constant

depth hi and in the region x>0 , y<0 the water is of 

constant depth h2, (ht>h2) . The land mass occupies

the half-plane x<0. Following the approach outlined by 

Noble (1958) and Buchwald (1968), it is assumed that the 

total elevation X above the mean sea-level is given by

pO1 + h
L X 02 + X 2

, y > o , 
, y £ 0 ,

(3.3.1)

where X 01 = ex p < (-fx + i <Jy) /c i> , t

1 *00
X.

1
Ai (a) exp(-i ax - >Ly) da ,

— coj
X 02 = T ex p < (-f X + i ay) /c23- ,

1 ’co
X2

1
= 751. A2( a) exp(-iax + y2y) da .

— coj u

In (3.3.1), in each sector must represent an

outgoing wave at infinity. This is achieved by app1yi ng

a Sommerfeld radiation condition which implies that both
*
kn and a have a small negative imaginary part. In 

considering the integral representations (3.3.2), these 

small imaginary parts are then allowed to approach zero.

(S-Z-Sj
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In (3.3.2), Joi represents the incident Kelvin wave

and J 02 the transmitted Kelvin wave with coastline 

amplitude IT I. Note that cn2=ghn, n = l,2 and that 

(3.3.1) and (3.3.2) satisfy (3.2.5) if, and only if,

Vn2 = (X2 - kn2 , n = 1,2. (3.3.3)

The boundary conditions are:-

(i) along the barrier x=0, there is zero transverse

velocity; both uOi and u02 are identically zero on

x=0 so that we require

Ui = 0
u2 = 0

> o, q
< 0. J

x 0, y
0, y

(3.3.4)
V A

(i i) on the depth discontinuity, the surface elevat i on

is continuous,

0 , I -y -r kt  \ 
\ O ■ •—1 ■ vJ /Joi + Ji

and the transverse flux is also continuous

hi (Vol h2(v02 + v2) y = 0, x 0. (3.3.6)

Using (3.2.3) , vOn
g
~ J On ,

Cn

n=l,2 in (3.3.6) wi th

J02 + X2 , y

+ Vi)

O vM A

(3.2.6) we obtain

dui 
hi —

dy

du2
h2

dy
y = 0, (3.3.7)x > 0.

(3 7) may be used instead of (3.3.6)



3.4 TO SATISFY THE BOUNDARY CONDITIONS

Consider first, the condition at the wall (3.3.4)2 from 

(3.2.3) and (3.3.2) we have, for n=l and 2,

'oo
U„= 9

(a2-f2) JW
(aa+f yn) A„ (a) exp (-i ax+y„y) da , 4

COO

in which, and subsequently, the upper sign is taken for 

n=l and the lower sign for n=2. The boundary condition 

is satisfied if

or

(croc + fy„) A„(a) exp (+yny) da = 0

taking a semi-infinite range of i ntegrati on,

|°°C(aa + fyn)A„(a) - (aa ± fy„)An(-a)j da = 0. (3.4.2)

The condition (3.3.4) is satisfied for -oo<y<w if

-co,

(aa + fyn) A„(a) - (aa ± fy„) An(-a) = 0. (3.4.3)

Turning now to the step condition (3.3 ■ 7) , we begin by

def i ni ng

dun 1 Yo
7- (x,0) = u„(a) exp (-iax) da 9 (3.4.4)
dy J2TL

in which
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and

U„* (<x)

U„~ (a)

u„(a) un* (a) + un-(a) , t

*00
1 du„ (x , o)= TH dy

exp (iax) da.
(-h

»C)
i dun

(x , 0) ex p (i ax ) da." TH dy-(XH i

(3.4.5)

In (3.4.5), Un*(a)  is a regular -function of a in the 

half plane Im ( a) >max < Im (kn) , Im (m) 3=-60. This follows 

from the application of the radiation condition and 

since

I dm
I dy Un exp ( <5ox ) as x oo.(x , 0)

Similarly Un‘(a) is a regular function of (X in the

half-plane Im(a)<60 from an assumed behaviour of

dun 
dy

Dn exp (6oX) as x

Using these transforms on the boundary condition

(3.3.7) gives the step condition,

hiU!*(a)  = h2U2*(a)  . (3.4.6)

Now u„(x,y) is given by (3.4.1), so that on

differentiation and setting y=0,

dun 
dy

(x,0) _____g
(<72—f 2) +y„(aa+f yn) An(a)exp (-iax) da.

(3.4.7)
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Now compare (3.4.7) with the definition (3.4.4) and

obtain

Un (a) = +
gyn (<j <x + fy„) An(<x)

(<j 2 - f2)
(3.4.8)

and this relationship can be used to eliminate A„(a) 

from (3.4.3), showing that Un(«) is an odd function of <x,

Un(a) + U„ (-a) = 0. (3.4.9)

Each of the terms in (3.4.9) may be decomposed using

(3.4.5) and rearranged to give

Un*(a)  + U„-(-a) = - U„-(a) - U„*(~a). (3.4.10)

Now the left hand side of (3.4.10) is a regular function 

of <x for Im(a)>-60, whilst the right hand side is 

regular for Im(<X)<60. Un*(<X)  and Un_(C() are

both ~l/<x as a—x», so that the usual extension to

Liouville's Theorem, Noble (1958), gives

U„*(a)  + Un"(-a) = 0, r|
U„-(a) + Un*(-a)  = 0. J’ (3.4.11)

The step condition (3.4.6) yields

h, Ut*(-a)  = h2 U2*(-a)  , (3.4.12)

and making use of (3.4.11) we get,

hj Ur(<X) h2 U2‘ (<X) (3.4.13)
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Adding (3.4.6) and (3.4.13),

h1CU1*(a)  + Ur(a)] = h2[U2*(«)  + U2"(a)3 ,

or, more concisely,

hi Ui (<x) = h2 U2( a) . (3.4.14)

We now turn to the surface continuity at the step

(3.3.5), for which the definition of Son is extended 

from x>0 into the half plane x£0, Buchwald (1968), by 

means of the unknown functions f„(x), n=l,2.

_ p exp C (i <Jy - f x)/Ci J x > 0, '
t x < 0, (3.4.15

Y _ f T exp [(iffy - fx)/c2] x> 0,
i 02 “ \

b f 2 (X) X < 0. J

Taking the Fourier transform of the surface elevation 

condition (3.3.5), extended into x<0,

1
-ooj

'co
( S oi+S i) exp (i <xx ) dx

1__

-cov
( S oz+S z) exp (i ax ) dx

(3.4.16)

Now the left-hand side of (3.4.16) is

i 1
Ft-(a)

xTz Tl
+• Ai (a) (3.4.17)

In (3.4. 17)

r it ia + —
L ct J

and Ai(a)
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has been obtained using the definitions (3.3.2).

Similarly, the right-hand side of (3.4.16) is

F2- (a)
iT

xTTTl
+ a2( a). (3.4.18)

(X +

1

i f "
c2 .

The transformed surface elevation condition (3.3.5) is

gained by equating (3.4.17) to (3.4.18), after which,

and substituting for An(«) from (3.4.8)

i 1 (<j2-f 2)Ui (a)
Fr (a)

gy, (aa-f yi)

(3.4.19)

a + i f '
Ci .

iT
= F2-(a) +

J2TL j

1 ( <T2—f 2) U2 (<X)

’ « + ill
C2 J

1 ■
gy2(<r<x+f y2)

is obtained.

The object now is to separate (3.4.19) into two halves, 

each of which is a regular function of a in overlapping 

half planes. First a new function F~ (a) is defined 

such that

F-(a) =Ft-(<x) -F2- (a) ,

and then U2(a) is eliminated using (3.4.14),
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i iT
F-(<X>

J 2jl if 1
4- -----

Cl _
(3.4.20)

(a2-f 2) p 1 
g I y1(aa-fy1)

hi_____________

h2y2(aa+f y2>
J-Ui(a) .

The equation (3.4.20), in which F~(a) is regular in

Im(a)<60, may be used to define Ui(a) and recalling 

that Un(a) is in fact an odd function, then Ui(a) 

may be eliminated to give

i iT
+F- (a)

xl 2tl
a

(3.4.21)

H(a) •

where H(a) has been defined thus,

h2y2 (aa+f y2) +hjyi (aa-f yt)
H (a) = -------------------------------------------------

h2y2(aa-f y2) +hiyi (aa+f yt)

(aa+f y,) (aa-f y2)

(aa-f yt) (aa+f y2)
(3.4.22)

The properties of H(a) are dealt with in section 3.6,

H*(a)
but for the moment suppose that H (a) = ------------- ,

H-(a)

then adopting the usual notation, (3.4.21) becomes



F~(<x> H’(a>
i_

TSTl
H-(a)

1 T
i f(X 4- ---- r if "i<X 4- ----

> L c, J L c2 J i

(3.4.23)

= F‘(-<x) H*(<x) 1 T r
■1 M II — II \ \A /

r if i
•

r if 1
<x - — <x - — |L ci J L c2 J J

We now need to deal with the terms in ( ) so that

(3.4.23) can be split into expressions which are 

regular in overlapping half planes, this is accomplished

i f
by removing the poles at a = ±— appropriately. In

c„

(3.4.24) such rearrangements of (3.4.23) have taken 

place so that the left hand side is a regular function 

of a for Im(a)<60 and the right hand side is 

regular for Im(<x)>-6o-



F_(a) H’(a)

H"(<X)-H~| if 9
» CiJ

H‘f-1 
uC i t

■ 1 .....
i f' \|2lt if'<X + — a-------

L Ci. L cd

i
H*(a)-H*| ’ if 1

f CiJ H"
' ill
> C1J

J2K T i’f'«- - - - - - -L ci.
J2u [“ if I + — 

Ci.

(3.4.24)

The extended form of Lionville's Theorem ,Noble (1958), 

is now applied to (3.4.24). Suppose that each side of 

the equation is equal to J (<x) , clearly J (a) is 

regular in the strip -60< Im (a) < 60, but since the 

left hand side is regular for Im(a)<<50 and the right 

hand side is regular for Im(a)>-60, J (a) may be 

continued analytically over the whole a plane.
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The properties of H (<x) , section 3.6, show that H*(<X)  and

H’(a) are ~<X and F* (<x) is ~l/a as a—too and

so J(a) is a constant B (say). The left hand side of

(3.4.24) equated to B, and noting that H*((X)  - -H'(-a) , 

leads to

(3.4.25)

Equation (3.4.25) may now be used with (3.4.20) in order 

to find Ui(a), and equation (3.4.14) then defines U2 (<X> .

Having determined U„(a), n=l,2, equation (3.4.8)

yields A„(<x), n=l,2, as follows



Ai (a) = <
B i

H~ L Ltl 
) CiJ 2a

H’(a) ' J2TL

j

H- (a) [“■ • T,]

iT
J"2u

LL1 
J c2J
H" (<X)

• ►

(3.4.26)

- h2y2 (era + f y2)
_

Ch2y2(aa+f y2) •+• hiyuaa - f y>) □

(3.4.27)

hjy, (era - f yj

Ch2y2 (era+f y2) + hiyi(aa - fyj]

The formal solutions (3.4.26), (3.4.27) determine the

elevations X in the assumed forms (3.3.2), save for the 

constant B, and the

transmission coefficient T for the Kelvin wave component 

along the coastline. Both B and T are determined by 

considering the boundary conditions at the origin.
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3.5 THE BOUNDARY CONDITIONS AT THE ORIGIN

Firstly we consider the determination of the constant B 

and require that the surface elevation X be continuous 

at the origin. The condition (3.3.5) is therefore 

applied at (0+,0). Using (3.3.2),

^Ol" j 02— 1 ~T

and

- Ai (<x) da . (3.5.1)

Notice that the integrand in (3.5.1) can be written as 

the right hand side of (3.4.25) using the results 

(3.4.26) and (3.4.27) and that it is analytic in the 

lower half plane with simple poles at a=-if/co, 0=1,2. 

The integral is evaluated using the contour C, which 

consists of the real axis and the semicircle I<x I =R, 

~K<arga<0. The integral —*0  on the semicircular arc 

as R—>oo if, and only if, B=0 since H'(a)MM

This is additionally confirmed by the fact that the 

left hand side of (3.4.25) is analytic in the lower 

half plane with simple poles at <x=-if/c„, n=l,2. 

Evaluating the residues at these poles and applying 

Cauchy's theorem,

X2-Xi=1-T=Xoi -Xo 2

at (0+,0), as required.
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Similarly the transverse flux, described by (3.3.6),

must be continuous at (0+,0). Using (3. 2.3) and (3.3.2)

the velocity component

VOn=~ (g/Cn) X On, n=l,2,

and

Vn da. (3.5.2)

Now the wi th

that the contour C is again appropriate for the

evaluation of the integrals and we deduce that

h2v2-h iVi=c 2T-c  i=h iVOi-h2Vo2,

at (0+,0) as required.

It is now necessary to determine T by matching the 

conditions on x=0 and those on y=0, at the origin. 

On x=0, from (3.2.1) and (3.3.4),

d
~f (Von + Vn) = ~g ---- (Son+Sn) , H = 1,2 .

dx

On y=0, differentiating (3.3.5)

d

dx
Uoi+Si)

d
= — Uo2+S2) ,

dx
(3.5.4)

substituting into (3.5.3) we deduce that at (0+,0±)

Voi + Vi = vo2 + v2. (3.5.5)

The foregoing and (3.3.2) lead to vOi=-g/Ci at



(0+,0+) together with v02=-(g/c2)T at (0+,0-~), and

the solutions (3.4.26) and (3.4.27) applied

appropriately at (0,0) imply

vi-v2 = (-^2^f2y- C (-ayx+af) A1(a)-(ay2+af )A2(a) 1 da

hiyuaa-f y,) (af+ <zy2)+h2y2 (aa+f y2) (af-ayj
where M ( a) = ----------------------------------------------------------------------------------.

h2y2 (<7<x+f y2) +hty! (aa-f yj

These results are now substituted into (3.5.5), which is

then solved for T,

’co
(<72—f2) 4-

Ci
1
IL M ( a)

H’(a)

(<72—f2)
c2

-co,

a
, f2 n 

I c,2J

da

*oo
1
IL M( a)

H-(a) da

T

+

00,

(3.5.7)

In (3.5.7) we notice that when h,=h2, the case for no 

depth discontinuity, then T=1 as expected and also, that 

as h2 *0,  then T O and X02=0 for the case when the 

water is constrained to the first quadrant.



3.6 PROPERTIES OF H(<X)

Returning now to (3.4.22), we analyse the properties of 

H(a) which enabled its decomposition and the resulting 

factorisation of (3.4.23).

h2y2 (cra+f y2) +h>yi (cra-f yt)
H ( a) = ------------------------------------------------

h2y2 (cra-f y2) 4-hjyt (<ja+f yj

(cra+f yx) (aa-f y2)

(aa-f yt) (cra+f y2)
(3.4.22)

For to include a double Kelvin wave component in 

the regime cr>f, m is a positive root of

hi<rjm2-ki2 + h2<rjm2—k22 - mf (hi-h2) = 0 , (3.6.1)

Longuet-Hi ggi ns (1968A), but if <T< f then m is complex 

with Im(m)< 0.

It is convenient to extract from H(a) its poles and 

zeros and to define K (a) thus:-

H ( a) K (a) . (3.6.2)

[«- -1

b C2J (<x - m)

Note, further, that leads to

where

1 i m
a-->oo

K (a) and lim I K(a)
a->—co

(<7+f )h2 + ((7-f ) h j

I

I

1 ,

(a-f)h2 + (a+f)h1 (3. 6.3)



H*(  <x)
The decomposition H (<x) -------- now depends upon finding 

H~( <x)

K*(a)  and K"(<x) such that

p if q
<x + —

b Ci J
H*(<x)  = ------------------ - (<x m) FC (a) ,

(3.6.4)and

' iff
<x + —

J c 21

r« -
J C X L

LJ- { ty\ — FC (a) ,\ -r m)

in which K*(a)  is a regular function of a in the half 

plane Im(a)>-6X and K"(<x) is regular in the half 

plane Im(a)<6x. <5X is defined to be

min£Im(if/cn) , Im (-m) 3-.

Unfortunately, the K ( a) behaviour (3.6.3) does not fit 

the conditions of Theorem C, Noble (1958), but using the 

method prescribed by Pinsent (1971), integrate

log I K(p)
---------------------- in the p-plane round the rectangle with

(P - a)
log I 

vertices -i 6X-R, -i<5x+R, i6x+R, i<5x-R, and ---------------
(P - a)

round the same rectangle but in the opposite sense. The 

behaviour of K(P) is given by (3.6.3) so that Cauchy's 

Integral Theorem, with R-*oo,  leads to



'->uj

log K (<x)

-i 61+co i 61+00
V log K(P) P 1 oq

d P - —” -K(f” dP.
J (P -- a) J (P - a)

i 61-00 i 6 i-oo (3.6.5)

Implicit in (3.6.4) is the decomposition of K(a),

K ( a)

so that (3.6.5) is

K*  (a) ex p

K*  (<x)

K-( a)

itself decomposed to give

(3.6.6)

1
2 Hi

— i 6 i+oo
log K(P)J

i 6t-oo
a)

dP

and (3.6.7)

K-(a) ex p
_JL_
2 Hi

i 6 i+co
1 oq K ( P)

i 61-oo
a)

dP

where K*(a)  is regular for Im(a)>-6i and K’(<x) is 

regular for Im(<X)<6i.

From (3.6.7) we see that

K*(a)  = K-(-a) and K"(a) = K*(-a)  .

Further, (3.6.4) implies that

H*(a)  = -H-(-a) and H~(a> = -H+(-a) ,

that is,

H(a) ,H(-a) 1



which can be seen directly from (3.4.22).

As the only contributions to |K*(<X)  I and

IK-(a) | arise from the pole at P = a on the real P 

axis. The behaviour of |K*(<X)  1 and |K-(<X) I 

therefore follows that of K(a) which is 0(1), so 

(3.6.4) implies that |H*(a)  I and IH“(<X) I are 

~<X as I <X J —*oo. The decomposition of (3.4.24) is 

therefore justified.



3.7 EXTENSIONS AND CONCLUDING REMARKS

The analysis presented in this chapter illustrates an 

application of the Wiener-Hopf technique to a 

diffraction problem using adaptations of methods 

suggested by Buchwald (1968) and F'insent (1971).

Ideally, the formal solution should now be verified 

numerically by comparison with data from tide gage 

stations. The transmission coefficient T, (3.5.7), for 

the Kelvin wave component has been estimated by Miles 

(1972B), for certain regimes in T<1, but not for the 

case of the double Kelvin wave. It is possible that 

asymptotic forms for the solutions in T>1 can be found 

using the saddle point method, even though they may in 

fact have little physical significance. These solutions 

for $n contain components in T>1 for which the 

contribution from the poles at <X=±m lead to the double 

Kelvin wave travelling along the depth discontinuity. 

The contribution at the saddle point itself describes 

the non-rotational effects for both T<1 and for T>1.

It would also have been desirable to compare the 

solutions given by (3.3.2) with both the analytic 

solution and the asymptotic results of Miles (1972B).

The models discussed so far are based upon a linearised 

long wave theory in which the vertical accelerations are 

assumed to be negligible. It is of interest to consider 

the behaviour in the immediate neighbourhood of the 

depth discontinuity. In such a region, the vertical 
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accelerations may not be small and this factor must be 

taken into account in the basic equations of motion, 

Proudman (1953), together with the full equation of 

continuity. Some preliminary investigations suggest that 

the linearised and suitably scaled equations, with a 

time dependence exp(i<7t) lead to

(<72_f2+4o2)wyy + (J2—f2)w„ = 0

for the vertical component of velocity w. Further 

tranformations in the vertical direction lead to 

Laplaces equation, for w, in an infinite strip with 

Dirichlet boundary conditions on the surface of the 

water and on the horizontal ocean floor and a Neumann 

condition on the step itself.

□f course, this research has concentrated upon linear 

effects and as mentioned above, there are still several 

areas in which a linear approach could yield relevant 

physical results. However, nonlinearities in the 

governing equations and in the boundary conditions have 

also received attention. The effect of an irregular 

coastline on the propogation of Kelvin waves suggests 

that Kelvin waves are generated predominantly by 

atmospheric disturbances or by the incidence of a plane 

wave system, Pinsent (1972), Mysak and Tang (1974) and 

Clarke (1977). The incident Kelvin wave itself, is also 

shown to be slowed down by coastal irregularities and to 

give up part of its energy in generating further Kelvin 

waves or, for KI, Poincare waves. Small changes in the 
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coastline without a sustained change in direction have a 

negligible effect on the transmitted Kelvin waves at 

tidal frequencies, Miles (1972A). The curvature of the 

earth is also shown to have little effect compared to, 

say, bottom topography. This leads one to conclude that 

further research is necessary on the depth profiles 

used, even in the linear model.

Nonlinear theories have not been neglected in the 

literature and a first attempt at such a theory was made 

by Smith (1972), who dealt with Kelvin and continental 

shelf waves. His initial work showed that a nonlinear 

theory was both possible and desirable, although his 

results could not be compared with any real situation 

since he neglected curvature, changes in depth profile 

and changes in the coriolis parameter.
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CHAPTER 4 THE SINE-GQRDQN EQUATION AND ITS LAPLACIAN 

VARIANT

This research was prompted by the interest of nonlinear 

physicists in the sine-Gordon equation and the wide 

range of applications which it models. The sine-Gordon 

equation has been used as a model for describing the 

dynamics of nonlinear phenomena and has remarkable 

properties at the classical and quantum levels.

It was the existence of solitons and their behaviour 

which focussed attention on the sine-Gordon equation. 

Questions of separability for partial differential 

equations were under investigation elsewhere and I began 

working with Dr.A.E.G.Stuart and Mr.A.C.Bryan on a 

formal c1assification of the separable solutions of the 

sine-Gordon equation and its space like variant.

Although there had been a wide ranging survey article on 

solitons published several years earlier, Barone et al. 

(1971), and of course Cercignani (1977), the short paper 

of Zagrodzinski (1976), provided the focus of our 

attention. I was able to make an initial attempt at 

establishing a complete set of solutions in terms of 

Jacobian elliptic functions.

As the research progressed, it emerged that there were 

in existence complex solitons whose limiting forms are 

the real soliton and a singular form. This development 

formed the basis of the paper (Bl) and established the 

equivalence between the dynamics of the interacting 
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sine-Gordon solitons and the motion of the poles of the 

corresponding Hamiltonian density.

It was also found that the soliton and antisoliton 

solutions of the sine-Gordon equation may be obtained 

directly from limiting cases of a separable, two 

parameter family of elliptic solutions, (B2) .

The research was completed in (B3) and forms a basis for 

information on the sine-Gordon equation in a similar 

manner to the task undertaken by Shercliff (1977).

There is still scope for further extensions to be made 

in the applications of the space-like equation to 

hydrodynamics. A complete class of separable solutions

(1971).

has been found and it should be possible to identify

particular steady, two-dimensional vortex flows of an

ideal compressible fluid which they describe, Stuart

Finally, the paper (B4) attempts to place the previous 

work in context. The research was shared equally between 

the three members of the group, my own particular 

contribution to the progress of the research centred 

upon the initial classification and on the properties of 

the Jacobian elliptic functions as they emerged in the 

analysi s.
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diffracted Kel vin wave
—-------- -—into the North sea

////'///////British Isles
x

A

incident plane waves 
from the Atlantic

Figure 1: A representation of the North Sea as the 
shadow region behind a semi-infinite barrier (British 
Isles), (Crease, 1956).
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from the Atlantic

■> diffracted Kelvin wave
into the North
sea

British Islesincident 
plane waves 
from the Atlantic

Representations of the North Sea as a long 
gulf behind a semi-infinite barrier (E^ritish Isles). For 
problems investigating the diffraction of Kelvin waves 
into the North Sea, the modelling of the continental 
coastline by a semi-infinite barrier is better than 
using an infinite barrier, (Crease, 1958).
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diffracted
Kelvin wave

Figure 3; Representations of part of the North Sea in 
the proximity of a sharp bend in the coastline of the 
British Isles in order to investigate the effects of 
Kelvin wave diffraction, (Buchwald, 1968 and Packham and 
Willi ams, 1968).

Figure 4: A representation of the North Sea as an 
open-ended semi-infinite channel, (Packham, 1969).
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continental coastline

reflected
Kelvin wave

Poincare waves

diffracted Kelvin
wave

_________ incident
Kelvin wave

English coastline

Figure 5; A representation of the North Sea as an 
open-ended semi-i nf i n i te channel, (Kapoulltsev s, 1979).

El..g.Ltr§.—Tidal diffraction by a strait between two 
Tnm7ln,finite barriers- to model San Francisco 
(Buchwald and Miles, 1974). Bay,
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depth h^

double Kelvin 
------------->

----->
waves

di f f racted 
Kelvin wave

depth h^

Figure 7: The diffraction of Kelvin waves by a depth 
discontinuity, modelling a region at the southernmost 
tip of South America, (F’insent, 1971).

■ 4

Californian/ 
coastline /

I

/

Incident
Kelvin wave

depth h^
double Kelvin----------->.
__________. Mendocino fracture
_________zone
wave

depth h^

1

N

transmitted
V Kelvin wave

Figure 8: Modelling Kelvin wave diffraction by changes 
in depth, (Miles, 1972B).
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Figure 9; The relationship between wave number t , 
where X = J1-TZ, the angle of incidence 0 and the 
transmission coefficient Tk for the diffracted Kelvin 
wave, (Hills, 1988).
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incident 
plane waves

----------- diffracted
Kelvin waves

depth h^
------------ -----------------------
x

depth h^

Figure 10: The generalised problem of Kelvin wave 
generation by a barrier and a depth discontiniuty.
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