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Learning efficient representations allows robust processing of data, data that can then be 
generalised across different tasks and domains, and it is thus paramount in various areas of 
Artificial Intelligence, including computer vision, natural language processing and reinforcement 
learning, among others. Within the context of reinforcement learning, we propose in this 
paper a mathematical framework to learn representations by extracting the algebra of the 
transformations of worlds from the perspective of an agent. As a starting point, we use our 
framework to reproduce representations from the symmetry-based disentangled representation 
learning (SBDRL) formalism proposed by [1] and prove that, although useful, they are restricted 
to transformations that respond to the properties of algebraic groups. We then generalise 
two important results of SBDRL --the equivariance condition and the disentangling definition-- 
from only working with group-based symmetry representations to working with representations 
capturing the transformation properties of worlds for any algebra, using examples common 
in reinforcement learning and generated by an algorithm that computes their corresponding 
Cayley tables. Finally, we combine our generalised equivariance condition and our generalised 
disentangling definition to show that disentangled sub-algebras can each have their own individual 
equivariance conditions, which can be treated independently, using category theory. In so doing, 
our framework offers a rich formal tool to represent different types of symmetry transformations 
in reinforcement learning, extending the scope of previous proposals and providing Artificial 
Intelligence developers with a sound foundation to implement efficient applications.

1. Introduction

Artificial intelligence (AI) has progressed significantly in recent years due to massive increases in available computational power 
that facilitates the development and training of data-intensive deep learning algorithms [2,3]. However, the best-performing learning 
algorithms often suffer from poor data efficiency and lack the levels of robustness and generalisation that are characteristic of nature

based intelligence [4--10]. Contrarily, the brain appears to solve complex tasks by learning high-level, low-dimensional representations 
that focus on aspects of the environment that are relevant [11--16].

In this paper, we propose a formal framework that aims to address how ``good'' representations can be learned within the context 
of reinforcement learning. In reinforcement learning, an agent learns an optimal policy by interacting with the environment, the 
world, by trial an error [17--20]. As a result of the agent’s actions, the state of the environment changes, and the agent receives a 
numerical signal, a reward. The task of the agent is to learn the sequence of actions that maximises the expected cumulative reward 
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by exploring the environment and exploiting the knowledge so acquired. For this process to be efficient, it is thus crucial that the 
agent learns ``good'' representations that guide it through the state-action space.

But what makes a ``good'' state representation? Higgins et al. ([1]) argue that the symmetries of the world are important structures 
that should be present in the representation of that world. The study of symmetries shifts the centre of attention from studying objects 
directly to studying the transformations of those objects and using the information about these transformations to discover properties 
about the objects themselves [21]. The exploitation of symmetries has led to many successful deep-learning architectures. Examples 
include convolutional layers [22], which utilise transitional symmetries to outperform humans in image recognition tasks [23], and 
graph neural networks [24], which utilise the group of permutations. Not only can symmetries provide a useful indicator of what an 
agent has learned, but incorporating symmetries into learning algorithms regularly reduces the size of the problem space, leading 
to greater learning efficiency and improved generalisation [21]. In fact, it has been shown that a large majority of neural network 
architectures can be described as stacking layers that deal with different symmetries [25]. The main methods used to integrate 
symmetries into a representation are to build symmetries into the architecture of learning algorithms [26,27], use data augmentation 
that encourages the model to learn symmetries [28,29], or to adjust the model’s learning objective to encourage the representation 
to exhibit certain symmetries [30,31].

There are two main types of symmetries that are used in AI: invariant symmetries, where a representation does not change when 
certain transformations are applied to it, and equivariant symmetries, where the representation reflects the symmetries of the world. 
Historically, the learning of representations that are invariant to certain transformations has been a fruitful line of research [32--35]. 
In building these invariant representations, the agent effectively learns to ignore them since such representations remain unaffected 
by the transformation. It has been suggested that this approach can lead to more narrow intelligence, where an agent becomes good 
at solving a small set of tasks but struggles with data efficiency and generalisation when tasked with new learning problems [36,37]. 
Instead of ignoring certain transformations, the equivariant approach attempts to preserve symmetry transformations in the agent’s 
representations in such a way that they match the symmetry transformations of the world. It has been hypothesised that the equivariant 
approach is likely to produce representations that can be reused to solve a more diverse range of tasks because no transformations are 
discarded [21]. Equivariant symmetry approaches are commonly linked with disentangling representations [38], in which the agent’s 
representation is separated into subspaces that are invariant to different transformations. Disentangled representation learning, which 
aims to produce representations that separate the underlying structure of the world into disjoint parts, has been shown to improve 
the data efficiency of learning [39,40].

Inspired by their use in physics, symmetry-based disentangled representations (SBDRs) were proposed as a formal mathematical 
definition of disentangled representations [1]. SBDRs are built on the assumption that the symmetries of a state of the world display 
important aspects of that world that need to be preserved in an agent’s internal representation (i.e., the symmetries that are present 
in the world state should also be present in the agent’s internal representation state). Higgins et al. describe symmetries of the world 
state as ``transformations that change only some properties of the underlying world state, while leaving all other properties invariant'' [1, page 
1]. For example, the y-coordinate of an agent moving parallel to the x-axis on a 2D Euclidean plane does not change. Symmetry

based disentangled representation learning (SBDRL) has gained traction in AI in recent years [41--50]. However, SBDRL only considers 
actions that form groups and so cannot take into account, for example, irreversible actions [1]. Besides, [51] showed that a symmetry

based representation cannot be learned using only a training set composed of the observations of world states; instead, a training 
set composed of transitions between world states, as well as the observations of the world states, is required. In other words, SBDRL 
requires the agent to interact with the world.

We agree with [1] that symmetry transformations are important structures to include in an agent’s representation, but take their 
work one step further: along with [51] we posit that the relationships of transformations of the world due to the actions of the 
agent should be included in the agent’s representations of the world, but, unlike [51], we do not constraint such transformations 
to symmetries that rely on actions to form algebraic groups exclusively. In this paper, we show that an agent’s representation of 
a world would lose important information if only transformations of the actions of an agent that form groups are included, and 
demonstrate that there exist features that cause transformations that do not form group structures. We believe that considering these 
transformations in the agent’s representation of the world has the potential to build powerful learning mechanisms.

In short, we aim to help answer the question of which features should be present in a ‘good’ representation by, as suggested by 
[1], looking at the transformation properties of worlds. However, while [1] only considered a limited type of symmetry transfor

mations, those that are formalised as groups, we aim to go further and consider the full algebra of world transitions. We propose a 
mathematical framework to describe the transformations of the world, thereby formally characterising the features we expect to find 
in the representations of an artificial agent. More specifically, our contributions are as follows:

1. We propose a general mathematical framework for describing the transformation of worlds due to the actions of an agent that 
can interact with the world.

2. We derive the SBDRs proposed by [1] from our framework and, in doing so, identify the limitations of SBDRs in their current 
form.

3. We use our framework to explore the structure of the transformations of worlds for classes of worlds containing features found in 
common reinforcement learning scenarios, and that go beyond symmetry groups and SBDRL. We also present the algorithm used 
to generate the algebra of the transformations of the world due to the actions of an agent.

4. We generalise the equivariance condition and the definition of disentangling given by [1] to worlds that do not satisfy the 
conditions for SBDRs. This generalisation is performed using category theory.

Artiϧcial Intelligence 348 (2025) 104403 

2 



A. Dean, E. Alonso and E. Mondragón 

It should be emphasised that our framework is about learning representations of an agent interacting with their environment, 
independently of the reinforcement learning algorithm used in the process (say Q-learning, SARSA, PPO or any deep reinforcement 
learning algorithm). Also, the paper is formal in that it establishes a mathematical framework for representation learning. It responds 
to the need to formulate sound formalisms from which specific applications may follow. That is, our work is foundational.

The rest of the paper is structured as follows: In Section 2, we define our framework and then describe how it deals with generalised 
worlds, which consist of distinct world states connected by transitions that represent the dynamics of the world as a result of the 
actions of an agent. In Section 3, our framework is used to reproduce SBDRL. This is achieved by defining an equivalence relation that 
makes the actions of an agent equivalent if the actions produce the same outcome if performed while the world is in any given state. 
In Section 4, we apply our framework to worlds exhibiting common reinforcement learning scenarios that cannot be described fully 
using SBDRs and study the algebraic structures exhibited by the dynamics of these worlds. In Section 5, we generalise, using category 
theory, two important results of [1] --the equivariance condition and the disentangling definition-- to worlds with transformations 
whose algebras do not fit into the SBDRL paradigm. We shall finish with conclusions and a discussion in Section 6.

2. A mathematical framework for an agent in the world

In this section, we introduce our general mathematical framework for formally describing the transformations of a world. First, 
we define world states and transitions. We then consider how agents are understood within our framework and how their actions are 
formalised as labelled transitions.

2.1. Model of the world

For the sake of simplicity, we consider a fully observable world consisting of a set of discrete states, which are distinguishable 
in some way, and a set of transitions between those states; these transitions convey the world dynamics (i.e., how the world can 
transform from one world state to another). This world can be represented by a directed multigraph, where the world states are the 
vertices of the graph and the transitions between states are arrows between the vertices. We will use this framework to reproduce 
the group action structure of the evolution of a world as an agent’s representation of it, as described by [1]. In so doing, we uncover 
the requirements for this group action structure to be present in the world.

2.1.1. World states and world state transitions

We believe that defining a world as a discrete set of world states with world state transitions between them is the most general 
definition of a world. Therefore, we take it as our starting point to define the algebra of the actions of an agent.

Transitions We consider a directed multigraph 𝒲 = (𝑊 ,𝐷̂, 𝑠, 𝑡) where 𝑊 is a set of world states, 𝐷̂ is a set of minimum world state 
transitions, and 𝑠, 𝑡 ∶ 𝐷̂→𝑊 ; 𝑠 is called the source map and 𝑡 is called the target map. For the remainder of the paper, we fix such a 
(𝑊 ,𝐷̂, 𝑠, 𝑡). 𝒲 is called a world.

Minimum world state transitions are extended into a set 𝐷 of paths called world state transitions: a path is a sequence of minimum 
world state transitions 𝑑 = 𝑑𝑛 ◦ 𝑑𝑛−1 ◦ ... ◦ 𝑑1 such that 𝑡(𝑑𝑖) = 𝑠(𝑑𝑖+1) for 𝑖 = 1, ..., 𝑛 − 1. We extend 𝑠, 𝑡 to 𝐷 as 𝑠(𝑑) = 𝑠(𝑑1), and 
𝑡(𝑑) = 𝑡(𝑑𝑛). We also extend the composition operator ◦ to 𝐷 such that 𝑑𝑛 ◦ 𝑑𝑛−1 ◦ ... ◦ 𝑑1 is defined if 𝑡(𝑑𝑖) = 𝑠(𝑑𝑖+1) for 𝑖 = 1, ..., 𝑛−1. 
For 𝑑 ∈𝐷 with 𝑠(𝑑) =𝑤 and 𝑡(𝑑) =𝑤′, we will often denote 𝑑 by 𝑑 ∶𝑤→𝑤′.

For the rest of the paper, we assume that, for each world state 𝑤 ∈𝑊 , there is a unique trivial world state transition 1𝑤 ∈ 𝐷̂
with 𝑠(1𝑤) = 𝑡(1𝑤); the trivial transition 1𝑤 is associated with the world being in state 𝑤 and then no change occurring due to the 
transition 1𝑤.

Connected and disconnected worlds We now introduce connected and disconnected worlds. Simply, a world 𝐴 is connected to a world 
𝐵 if there is a transition from a world state in world 𝐴 to a world state in world 𝐵. The concepts of connected and disconnected 
worlds are necessary for generality; we are only interested in the perspective of the agent and so only care about the world states 
and transitions that the agent can come into contact with. Connected and disconnected worlds give us the language to describe and 
then disregard the parts of worlds that the agent will never explore and therefore are not relevant to the agent’s representation. For 
example, if an agent is in a maze and a section of the maze is inaccessible from the position that the agent is in, then that section of 
the maze would be disconnected from the section of the maze that the agent is in; if we want to study how the agent’s representation 
evolves as it learns, it makes sense to disregard the disconnected section of the maze since the agent never comes into contact with 
it and so the disconnected section of the maze will not affect the agent’s representation.

Formally, we first define a sub-world 𝑊 ′ of a world 𝑊 as a subset 𝑊 ′ ⊆𝑊 along with 𝐷′ = {𝑑 ∈𝐷 ∣ 𝑠(𝑑) ∈𝑊 ′ and 𝑡(𝑑) ∈𝑊 ′}. 
Note that a sub-world is a world. A sub-world 𝑊 is connected to a sub-world 𝑊 ′ if there exists a transition 𝑑 ∶𝑤→𝑤′ where 𝑤 ∈𝑊
and 𝑤′ ∈𝑊 ′; if no such transition exists, then 𝑊 is disconnected from 𝑊 ′. Similarly, a world state 𝑤 is connected to a sub-world 𝑊
if there exists a transition 𝑑 ∶𝑤→𝑤′ where 𝑤′ ∈𝑊 ′; if no such transition exists, then 𝑤 is disconnected from 𝑊 ′.

Effect of transitions on world states We define ∗ as a partial function 𝐷 ×𝑊 →𝑊 by 𝑑 ∗𝑤 =𝑤′ where 𝑑 ∶𝑤→𝑤′ and undefined 
otherwise.
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Fig. 1. The world states of a cyclical 2 × 2 grid world 𝑊𝑐 , where changes to the world are due to an agent moving either up, down, left, or right. The position of the 
agent in the world is represented by the position of the circled A.

Table 1
Each entry in this table shows the out

come state of the agent performing the ac

tion given in the column label when in the 
world state given by the row label.

1 𝑈 𝐷 𝐿 𝑅

𝑤0 𝑤0 𝑤2 𝑤2 𝑤1 𝑤1
𝑤1 𝑤1 𝑤3 𝑤3 𝑤0 𝑤0
𝑤2 𝑤2 𝑤0 𝑤0 𝑤3 𝑤3
𝑤3 𝑤3 𝑤1 𝑤1 𝑤2 𝑤2

2.1.2. Example

We consider a cyclical 2 × 2 grid world, denoted by 𝒲𝑐 , containing an agent as shown in Fig. 1. The transformations of 𝒲𝑐 are 
due to an agent moving either up (𝑈 ), down (𝐷), left (𝐿), right (𝑅), or doing nothing (1). The possible world states of 𝒲𝑐 are shown 
in Fig. 1. 𝒲𝑐 , and variations of it, are used as a running example to illustrate the concepts presented in this paper.

We say the world being cyclical means that if the agent performs the same action enough times, then the agent will return to its 
starting position; for example, for the world 𝒲𝑐 if the agent performs the action 𝑈 twice when the world is in state 𝑤0 in Fig. 1 then 
the world will transition into the state 𝑤0 (i.e., 𝑈2 ∗ 𝑤0 = 𝑤0). The transition due to performing each action in each state can be 
found in Table 1.

The transitions shown in Table 1 can be represented as the transition diagram given in Fig. 2. It should be noted that, since 
the structure of the diagram is wholly dependent on the arrows between the world states, the positioning of the world states is an 
arbitrary choice.

2.2. Agents

We consider worlds containing an embodied agent that is able to interact with the environment by performing actions. The end 
goal of the agent’s learning process is to map the useful aspects of the structure of the world to the structure of its representations; the 
useful aspects are those that enable the agent to complete whatever task it is programmed to achieve (e.g., in reinforcement learning, 
finding an optimal policy).

We use the treatment of agents adopted by [1]. The agent has an unspecified number of sensors that allow it to make observations 
of the state of the environment. Information about the world state that the agent is currently in is delivered to the internal state of 
the agent, its representation of the (state of the) world. Mathematically, the process of information propagating through the sensory 
states is a mapping 𝑏 ∶𝑊 → 𝑂 (the ‘observation process’), which produces a set of observations 𝑜1 containing a single observation 
for each sensory state. These observations are then used by an inference process ℎ ∶ 𝑂→ 𝑍 to produce an internal representation. 
The agent then uses some internal mechanism to select an action to perform.

It is important to note that the agent’s state representation only reflects the observations the agent makes with its sensors; in other 
words, the agent’s internal state is built using the information about aspects of the world state propagated through its sensory states, 
and not directly from the world state.
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Fig. 2. A transition diagram for the transitions shown in Table 1. 

2.2.1. Actions of an agent as labelled transitions

Consider a set 𝐴̂ called the set of minimum actions. Let the set 𝐴 be the set of all finite sequences formed from the elements of 
the set 𝐴̂; we call 𝐴 the set of actions. Consider a set 𝐷̂𝐴 ⊂ 𝐷, where 1𝑤 ∈ 𝐷̂𝐴 for all 𝑤 ∈𝑊 ; we call 𝐷̂𝐴 the set of minimum action 
transitions. We consider a labelling map 𝑙 ∶ 𝐷̂𝐴→ 𝐴̂ such that:

1. Any two distinct transitions leaving the same world state are labelled with different actions.

Action condition 1. For any 𝑑,𝑑′ ∈ 𝐷̂𝐴 with 𝑑 ≠ 𝑑′ and 𝑠(𝑑) = 𝑠(𝑑′), 𝑙(𝑑) ≠ 𝑙(𝑑′).

2. There is an identity action that leaves any world state unchanged.

Action condition 2. There exists an action 1 ∈ 𝐴̂ such that 𝑙(1𝑤) = 1 for all 𝑤 ∈𝑊 . We call 1 the identity action.

Given 𝐷̂𝐴 as defined above and satisfying action condition 1 and action condition 2, we define 𝑄𝐷𝐴 = (𝑊 ,𝐷̂𝐴, 𝑠𝐴, 𝑡𝐴), where 
𝑠𝐴, 𝑡𝐴 are the restrictions of 𝑠, 𝑡 to the set 𝐷̂𝐴. We now define a set 𝐷𝐴, the set of action transitions, which is the set of all paths of 
𝑄𝐷𝐴

.

We extend the map 𝑙 to a map 𝑙 ∶𝐷𝐴→𝐴 such that if 𝑑 = 𝑑𝑛 ◦ ...◦𝑑1 then 𝑙(𝑑) = 𝑙(𝑑𝑛)...𝑙(𝑑1). For 𝑑 ∈𝐷𝐴 with 𝑠(𝑑) =𝑤, 𝑡(𝑑) =𝑤′

and 𝑙(𝑑) = 𝑎, we will often denote 𝑑 by 𝑑 ∶𝑤
𝑎
←←←←←←→𝑤′.

If an action 𝑎 ∈𝐴 is expressed in terms of its minimum actions as 𝑎 = 𝑎̂𝑛 ◦ ...◦ 𝑎̂1, then 𝑎= 𝑙(𝑑) = 𝑙(𝑑𝑛 ◦ ...◦𝑑1) = 𝑙(𝑑𝑛)◦ ...◦ 𝑙(𝑑1) =
𝑎̂𝑛 ◦ ... ◦ 𝑎̂1, where the 𝑎̂𝑖 are called minimum actions.

Remark 2.2.1. For a given 𝑤∈𝑊 , we can label transitions in 𝐷𝐴 with an appropriate element of 𝐴 through the following: for each 𝑑 ∈𝐷𝐴
with 𝑠(𝑑) =𝑤, express 𝑑 in terms of its minimum transitions in 𝐷𝐴 as 𝑑 = 𝑑𝑛 ◦ ... ◦𝑑2 ◦𝑑1; if 𝑙(𝑑𝑖) = 𝑎𝑖 then 𝑑 is labelled with 𝑎𝑛...𝑎2𝑎1 ∈𝐴. 
We denote the map that performs this labelling by 𝑙 ∶𝐷𝐴→𝐴.

Fig. 3 shows how transitions are labelled with actions in our 2 × 2 cyclical world example. We only show the minimum actions 
for simplicity but there are actually infinite action transitions between each pair of world states; for example, the action transitions 
from 𝑤0 to 𝑤1 include those labelled by: 𝐷 ◦𝑅, 𝐷 ◦𝑅 ◦ 1𝑛 (𝑛 ∈N), 1𝑛 ◦𝐷 ◦𝑅 (𝑛 ∈N), 𝐷 ◦𝑅 ◦ (𝐿 ◦𝑅)𝑛 (𝑛 ∈N) etc...

Effect of actions on world states We define the effect of the action 𝑎 ∈𝐴 on world state 𝑤 ∈𝑊 as the following: if there exists 𝑑 ∈𝐷𝐴
such that 𝑠(𝑑) =𝑤 and 𝑙(𝑑) = 𝑎, then 𝑎 ∗𝑤 = 𝑡(𝑑); if there does not exist 𝑑 ∈𝐷𝐴 such that 𝑠(𝑑) =𝑤 and 𝑙(𝑑) = 𝑎, then we say that 
𝑎 ∗𝑤 is undefined. The effect of actions on world states is well-defined due to action condition 1. We can apply the minimum actions 
that make up an action to world states individually: if 𝑎 ∗𝑤 is defined and 𝑎 = 𝑎̂𝑘...𝑎̂1 then 𝑎 ∗𝑤 = (𝑎̂𝑘...𝑎̂1) ∗𝑤 = 𝑎̂𝑘...𝑎̂2 ∗ (𝑎̂1 ∗𝑤). 
Physically, the identity action 1 ∈𝐴 corresponds to the no-op action (i.e., the world state does not change due to this action).

Actions as (partial) functions Consider all the transitions that are labelled by a particular action 𝑎 ∈ 𝐴. Together these transitions 
form a partial function 𝑓𝑎 ∶𝑊 →𝑊 because for any 𝑤 ∈𝑊 either 𝑎 ∗ 𝑤 is undefined or 𝑎 ∗ 𝑤 is defined and there is a unique 
world state 𝑤′ ∈𝑊 for which 𝑎 ∗𝑤 =𝑤′ (due to condition 1). 𝑓𝑎 is not generally surjective because for a given 𝑤 ∈𝑊 there is not 
necessarily a transition 𝑑 ∈𝐷 with 𝑙(𝑑) = 𝑎 and 𝑡(𝑑) =𝑤. 𝑓𝑎 is not generally injective because it is possible to have an environment 
where 𝑓𝑎(𝑤) = 𝑓𝑎(𝑤′) for some 𝑤 ∈𝑊 different from 𝑤′ ∈𝑊 . We can also reproduce these functions using the formalism given by 
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Fig. 3. Labelling the transitions in Fig. 2 with the relevant actions in 𝐴. 

[51], which describes the dynamics of the world in terms of a multivariate function 𝑓 ∶𝐴×𝑊 →𝑊 . If we let 𝑓 ∶𝐴×𝑊 →𝑊 be the 
dynamics of the environment then the transition caused by an action 𝑎 ∈𝐴 on a world state 𝑤 ∈𝑊 (where 𝑎 ∗𝑤 is defined) is given 
by (𝑎,𝑤)↦ 𝑓 (𝑎,𝑤) = 𝑎 ∗ 𝑤. Mathematically, we curry the function 𝑓 ∶ 𝐴 ×𝑊 →𝑊 to give a collection {𝑓𝑎} of partial functions 
with a partial function 𝑓 (𝑎) = 𝑓𝑎 ∶𝑊 →𝑊 for each action 𝑎 ∈𝐴 as Curry ∶ (𝑓 ∶𝐴 ×𝑊 →𝑊 )→ (𝑓𝑎 ∶𝑊 →𝑊 ).

Once we have introduced our framework to formalise word states and their transitions through the agent’s intervention, we are 
investigating next its representational power by showing that it can generate the same transitions as SBDR, that is, those that form 
symmetry groups over disentangled representations, in Section 3, and other types of representations, that do not fit in the constraints 
imposed by SBDR, and that are standard in reinforcement learning scenarios in Section 4.

3. Reproducing SBDRL

We now use the framework set out in the previous section to reproduce SBDRL and illustrate it using worlds that are similar 
to those given by [1] and [51]. We choose to begin by reproducing symmetry-based representations because (1) symmetry-based 
representations describe transformations of the world that form relatively simple and well-understood algebraic structures (groups), 
(2) groups, and the symmetries they describe, are gaining increasing prominence in Artificial Intelligence research, (3) it shows how 
our framework encompasses previous work in formalising the structure of transformations of a world, and (4) it provides a more 
rigorous description of SBDRL, which should aid future analysis and development of the concept.

Section 3.1 provides a description of SBDRL, and Section 3.2 shows how to obtain SBDRL using an equivalence relation on the 
actions of the agent. Section 3.3 details the algorithmic exploration of world structures performed on example worlds and goes 
through a worked example. Finally, Section 3.4 shows the conditions of the world that are required for the actions of an agent to be 
fully described by SBDRs.

3.1. Symmetry-based disentangled representation learning

We proceed to present a more detailed description of the SBDRL formalism, how to extract representations from world states, and 
how to build symmetry-based and symmetry-based disentangled representations, before stating their limitations and thus, of SBDRL.

From world states to representation states The world state is an element of a set 𝑊 of all possible world states. The observations 
of a particular world state made by the agent’s sensors are elements of the set 𝑂 of all possible observations. The agent’s internal 
state representation of the world state is an element of a set 𝑍 of all possible internal state representations. There exists a composite 
mapping 𝑓 = ℎ ◦ 𝑏 ∶𝑊 →𝑍 that maps world states to states of the agent’s representation (𝑤↦ 𝑧); this composite mapping is made 
up of the mapping of an observation process 𝑏 ∶𝑊 → 𝑂 that maps world states to observations (𝑤↦ 𝑜) and the mapping of an 
inference process ℎ ∶𝑂→𝑍 that maps observations to the agent’s internal state representation (𝑜↦ 𝑧) (see Fig. 4).

Given that the symmetries represented by SBDRL form algebraic groups, we first define the notions of groups and group action 
formally, as follows:

Groups and symmetries

Definition 3.1 (Group). A group 𝐺 is a set with a binary operation 𝐺 ×𝐺→ 𝐺, (𝑔, 𝑔′)↦ 𝑔 ◦ 𝑔′ called the composition of group elements 
that satisfies the following properties:
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Fig. 4. The composite mapping from the set 𝑊 of world states to the set 𝑍 of state representations via the set 𝑂 of observations. 

1. Closure. 𝑔 ◦ 𝑔′ is defined for all 𝑔, 𝑔′ ∈𝐺.

2. Associative. (𝑔 ◦ 𝑔′) ◦ 𝑔′′ = 𝑔 ◦ (𝑔′ ◦ 𝑔′′) for all 𝑔, 𝑔′, 𝑔′′ ∈𝐺.

3. Identity. There exists a unique identity element 1 ∈𝐺 such that 1 ◦ 𝑔 = 𝑔 ◦ 1 = 𝑔 for all 𝑔 ∈𝐺.

4. Inverse. For any 𝑔 ∈𝐺, there exists 𝑔−1 ∈𝐺 such that 𝑔 ◦ 𝑔−1 = 𝑔−1 ◦ 𝑔 = 1.

Applying symmetries to objects is mathematically defined as a group action.

Definition 3.2 (Group action). Given a group 𝐺 and a set 𝑋, a group action of 𝐺 on 𝑋 is a map 𝐺 ×𝑋→𝑋, (𝑔,𝑥)↦ 𝑔 ∗ 𝑥 that satisfies 
the following properties:

1. Compatibility with composition. The composition of group elements and the group action are compatible: 𝑔′ ◦ (𝑔 ∗ 𝑥) = (𝑔′ ◦ 𝑔) ∗ 𝑥 for 
𝑔, 𝑔′ ∈𝐺 and 𝑥 ∈𝑋.

2. Identity. The group identity 1 ∈𝐺 leaves the elements of 𝑋 unchanged: 1 ∗ 𝑥 = 𝑥 for all 𝑥 ∈𝑋.

Another important property of groups is commutation. Two elements of a group commute if the order they are composed does not 
matter: 𝑔 ◦ 𝑔′ = 𝑔′ ◦ 𝑔. If all elements in a group commute with each other then the group is called commutative. Subgroups of a group 
might commute with each other.

Symmetry-based representations The set 𝑊 of world states has a set of symmetries that are described by the group 𝐺. This group 𝐺
acts on the set 𝑊 of world states via a group action ⋅𝑊 ∶𝐺 ×𝑊 →𝑊 . For the agent’s representations 𝑧𝑖 ∈𝑍 to be symmetry-based 
representations, a corresponding group action ⋅𝑍 ∶ 𝐺 ×𝑍 →𝑍 must be found so that the symmetries of the agent’s representations 
reflect the symmetries of the world states. The mathematical condition for this is that, for all 𝑤 ∈𝑊 and all 𝑔 ∈ 𝐺, applying the 
action 𝑔⋅𝑊 to 𝑤 and then applying the mapping 𝑓 gives the same result as first applying the mapping 𝑓 to 𝑤 to give 𝑓 (𝑤) and 
then applying the action 𝑔⋅𝑍 to 𝑓 (𝑤). Mathematically, this is 𝑓 (𝑔 ⋅𝑊 𝑤) = 𝑔 ⋅𝑍 𝑓 (𝑤). If this condition is satisfied, then 𝑓 is called a 
group-equivariant map.

Symmetry-based disentangled representations To go from symmetry-based representations to symmetry-based disentangled represen

tations, suppose the group of symmetries 𝐺 of the set 𝑊 of world states decomposes as a direct product 𝐺 =𝐺1 ×…×𝐺𝑖 ×…×𝐺𝑛. 
The group action ⋅𝑍 ∶𝐺 ×𝑍 →𝑍 and the set 𝑍 are disentangled with respect to the decomposition of 𝐺, if there is a decomposition 
𝑍 =𝑍1 ×…×𝑍𝑖 ×…×𝑍𝑛 and actions ⋅𝑍𝑖 ∶𝐺𝑖 ×𝑍𝑖→𝑍𝑖, 𝑖 ∈ {1,… , 𝑛} such that (𝑔𝐺1

, 𝑔𝐺2
) ⋅𝑍 (𝑧𝑍1

, 𝑧𝑍2
) = (𝑔𝐺1

⋅𝑍1
𝑧𝑍1
, 𝑔𝐺2

⋅𝑍2
𝑧𝑍2

), 
where 𝑔𝐺𝑖 ∈𝐺𝑖 and 𝑧𝑍𝑖 ∈𝑍𝑖. In other words, each subspace 𝑍𝑖 is invariant to the action of all the 𝐺𝑗≠𝑖 and only affected by 𝐺𝑖.

The representations in 𝑍 are symmetry-based disentangled with respect to the decomposition 𝐺 =𝐺1 ×…×𝐺𝑖 ×…×𝐺𝑛, where 
each 𝐺𝑖 acts on a disjoint part of 𝑍 , if:

1. There exists a group action ⋅𝑊 ∶𝐺 ×𝑊 →𝑊 and a corresponding group action ⋅𝑍 ∶𝐺 ×𝑍 →𝑍 ;

2. The map 𝑓 ∶𝑊 →𝑍 is group-equivariant between the group actions on 𝑊 and 𝑍 : 𝑔 ⋅𝑍 𝑓 (𝑤) = 𝑓 (𝑔 ⋅𝑊 𝑤). In other words, the 
diagram

𝑤 𝑔 ⋅𝑊 𝑤

𝑓 (𝑤) 𝑔 ⋅𝑍 𝑓 (𝑤) = 𝑓 (𝑔 ⋅𝑊 𝑤)

𝑔⋅𝑊

𝑓 𝑓

𝑔⋅𝑍

commutes.

3. There exists a decomposition of the representation 𝑍 =𝑍1 ×…×𝑍𝑛 such that each subspace 𝑍𝑖 is unaffected by the action for 
all 𝐺𝑗≠𝑖 and is only affected by 𝐺𝑖.

Limitations of SBDRL Both [1] and [51] suggest that these group actions can be used to describe some types of real-world actions. 
However, it is important to note that they do not believe that all actions can be described by their formalism: ``It is important to 
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Fig. 5. Action equivalence classes in 𝐴∕ ∼ for the actions show in Fig. 3. 

mention that not all actions are symmetries, for instance, the action of eating a collectible item in the environment is not part of any group of 
symmetries of the environment because it might be irreversible.'' [51, page 4].

3.2. SBDRL through equivalence

For the algebra of the actions of our agent to form a group, we need some sense of actions being the same so that the algebra 
can satisfy the group properties (e.g., for the identity property we need an element 1 in the algebra 𝐴 such that 1𝑎 = 𝑎1 = 𝑎 for any 
𝑎 ∈ 𝐴). We define an equivalence relation on the elements of 𝐴 that says two actions are equivalent (our sense of the actions being 
the same) if they lead to the same end world state when performed in any initial world state. This equivalence relation is based on 
our mathematical interpretation of the implication given by [1] that transformations of the world are the same if they have the same 
effect, which is used to achieve the group structure for SBDRL. Our use of an equivalence relation was inspired by [52], which uses 
a similar equivalence relation to equate action sequences that cause the same final observation state after each action sequence is 
performed from an initial observation state. We then derive some properties of the equivalence classes created by ∼ that will be used 
to show that the actions of an agent form the group action described by [1] under the equivalence relations we define and for worlds 
satisfying certain conditions.

Definition 3.3 (Equivalence of actions under ∼). Given two actions 𝑎, 𝑎′ ∈𝐴, we denote 𝑎∼ 𝑎′ if 𝑎 ∗𝑤 = 𝑎′ ∗𝑤 for all 𝑤 ∈𝑊 .

Remark 3.2.1. If 𝑎 ∼ 𝑎′, then either for each 𝑤 ∈𝑊 (1) there exists transitions 𝑑 ∶ 𝑤
𝑎
←←←←←←→ 𝑡(𝑑) and 𝑑′ ∶ 𝑤

𝑎′ 
←←←←←←←←←→ 𝑡(𝑑) or (2) there exists no 

transitions 𝑑 ∶𝑤
𝑎
←←←←←←→ 𝑡(𝑑) or 𝑑′ ∶𝑤

𝑎′ 
←←←←←←←←←→ 𝑡(𝑑).

Proposition 3.1. ∼ is an equivalence relation.

Proof. We demonstrate the three properties of an equivalence relation, namely, reflexive, transitive, and symmetric.

Reflexive. If 𝑎 ∼ 𝑎′ then 𝑎 ∗𝑤 = 𝑎′ ∗𝑤 for all 𝑤 ∈𝑊 .

Transitive. If 𝑎 ∼ 𝑎′ and 𝑎′ ∼ 𝑎′′, then 𝑎 ∗𝑤 = 𝑎′ ∗𝑤 for all 𝑤 ∈𝑊 and 𝑎′ ∗𝑤 = 𝑎′′ ∗𝑤 for all 𝑤 ∈𝑊 . Therefore, 𝑎 ∗𝑤 = 𝑎′′ ∗𝑤
for all 𝑤 ∈𝑊 and so 𝑎 ∼ 𝑎′′.

Symmetric. If 𝑎 ∼ 𝑎′, then 𝑎 ∗𝑤 = 𝑎′ ∗𝑤 for all 𝑤 ∈𝑊 . Therefore 𝑎′ ∗𝑤 = 𝑎 ∗𝑤 for all 𝑤 ∈𝑊 , and so 𝑎′ ∼ 𝑎. □

Fig. 5 shows the effect of applying the equivalence relations to our 2 × 2 cyclical example world 𝒲𝑐 .

We define the canonical projection map 𝜋𝐴 ∶ 𝐴→ 𝐴∕ ∼ that sends actions in 𝐴 to their equivalence classes under ∼ in the set 
𝐴∕ ∼. We denote the equivalence class of 𝑎 by [𝑎]∼. Sometimes we will drop the [𝑎]∼ in favour of 𝑎 ∈𝐴∕ ∼ for ease.

Composition of actions We define the composition of elements in 𝐴∕ ∼ as ◦ ∶ (𝐴∕ ∼)×(𝐴∕ ∼)→ (𝐴∕ ∼) such that [𝑎′]∼◦[𝑎]∼ = [𝑎′◦𝑎]∼
for 𝑎, 𝑎′ ∈𝐴.

Proposition 3.2. [𝑎′]∼ ◦ [𝑎]∼ = [𝑎′ ◦ 𝑎]∼ is well-defined for all 𝑎, 𝑎′ ∈𝐴.

Proof. We need to show that the choice of 𝑎, 𝑎′ doesn’t matter: if 𝑎1 ∼ 𝑎2 and 𝑎3 ∼ 𝑎4 for 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈𝐴, then [𝑎3 ◦𝑎1]∼ = [𝑎4 ◦𝑎2]∼. 
𝑎1 ∼ 𝑎2 means there exists 𝑑𝑖 ∶ 𝑠(𝑑1)

𝑎𝑖 
←←←←←←←←←→ 𝑡(𝑑1) for 𝑖 = 1,2. Since actions are unrestricted in 𝑊 , for any world state and any action there 

is a transition with a source at that world state that is labelled by that action. 𝑎3 ∼ 𝑎4 means there exists 𝑑𝑗 ∶ 𝑠(𝑑3)
𝑎𝑗 
←←←←←←←←←←→ 𝑡(𝑑3) for 𝑗 = 3,4, 
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and so there exists 𝑑𝑗 ∶ 𝑡(𝑑1)
𝑎𝑗 
←←←←←←←←←←→ 𝑡(𝑑3) for 𝑗 = 3,4. ⟹ there exists (𝑑3 ◦ 𝑑1) ∶ 𝑠(𝑑1)

𝑎3◦𝑎1 
←←←←←←←←←←←←←←←←←←←←←←→ 𝑡(𝑑3) and (𝑑4 ◦ 𝑑2) ∶ 𝑠(𝑑1)

𝑎4◦𝑎2 
←←←←←←←←←←←←←←←←←←←←←←→ 𝑡(𝑑3). ⟹

𝑠(𝑑3 ◦ 𝑑1) = 𝑠(𝑑4 ◦ 𝑑2) and 𝑡(𝑑3 ◦ 𝑑1) = 𝑠(𝑑4 ◦ 𝑑2). ⟹ (𝑎3 ◦ 𝑎1) ∼ (𝑎4 ◦ 𝑎2). ⟹ [𝑎3 ◦ 𝑎1]∼ = [𝑎4 ◦ 𝑎2]∼. □

Effect of equivalent actions on world states We define the effect of an element of 𝐴∕ ∼ on world states as ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 such 
that [𝑎]∼ ∗𝑤 = 𝑎 ∗𝑤. Note that this is only defined if there exists 𝑑 ∶𝑤

𝑎
←←←←←←→ 𝑡(𝑑) for 𝑑 ∈𝐷𝐴.; if not, then [𝑎]∼ ∗𝑤 is called undefined.

Proposition 3.3. [𝑎]∼ ∗𝑤 is well-defined for all 𝑎 ∈𝐴 and for all 𝑤∈𝑊 .

Proof. We need to show that 𝑎1 ∗𝑤 = 𝑎2 ∗𝑤 if [𝑎1]∼ = [𝑎2]∼ for 𝑎1, 𝑎2 ∈𝐴 and 𝑤 ∈𝑊 . If [𝑎1]∼ = [𝑎2]∼, then 𝑎1 ∼ 𝑎2. Since actions 
are unrestricted in 𝑊 , for any world state and any action there is a transition with a source at that world state labelled by that action. 
⟹ there exists 𝑑𝑖 ∶𝑤

𝑎𝑖 
←←←←←←←←←→ 𝑡(𝑑1) for 𝑖 = 1,2. ⟹ 𝑎1 ∗𝑤 = 𝑑1 ∗𝑤 = 𝑡(𝑑1) and 𝑎2 ∗𝑤 = 𝑑2 ∗𝑤 = 𝑡(𝑑1). □

Reversible actions An action 𝑎 ∈ 𝐴 is called reversible in a given state 𝑤 ∈𝑊 if 𝑎 ∈ 𝐴𝑅𝑤 where 𝐴𝑅𝑤 = {𝑎 ∈ 𝐴 ∣ there exists 𝑎′ ∈
𝐴 such that 𝑎′ ◦ 𝑎 ∗𝑤 =𝑤}. An action 𝑎 ∈ 𝐴 is called reversible if it is reversible in every 𝑤 ∈𝑊 . An action that is not reversible is 
called irreversible.

Properties of the quotient set 𝐴∕ ∼

Proposition 3.4. (𝐴∕ ∼,◦) has an identity element.

Proof. To show that (𝐴∕ ∼,◦) has an identity element we can show that there is an element 𝑒 ∈𝐴 which satisfies (a) [𝑎]∼ ◦ [𝑒]∼ = [𝑎]∼
and (b) [𝑒]∼ ◦ [𝑎]∼ = [𝑎]∼ for all 𝑎 ∈ 𝐴. We will prove that the identity action 1 ∈ 𝐴 satisfies the above condition. Consider any 
transition 𝑑 ∶ 𝑠(𝑑)

𝑎
←←←←←←→ 𝑡(𝑑) labelled by any action 𝑎 ∈𝐴.

(a) There exists a transition 1𝑠(𝑑) ∶ 𝑠(𝑑)
1
←←←←←←→ 𝑠(𝑑) due to action condition 2. 𝑡(1𝑠(𝑑)) = 𝑠(𝑑) ⟹ 𝑎◦1 is defined for 𝑑. 𝑠(𝑎◦1) = 𝑠(1) =

𝑠(𝑑) = 𝑠(𝑎) and 𝑡(𝑎 ◦ 1) = 𝑡(𝑎). ⟹ 𝑎 ◦ 1 ∼ 𝑎. ⟹ [𝑎 ◦ 1]∼ = [𝑎]∼. ⟹ [𝑎]∼ ◦ [1]∼ = [𝑎]∼.

(b) There exists a transition 1𝑡(𝑑) ∶ 𝑡(𝑑)
1
←←←←←←→ 𝑡(𝑑) due to action condition 2. 𝑡(1𝑡(𝑑)) = 𝑡(𝑑) ⟹ 1 ◦ 𝑎 is defined for 𝑑. 𝑠(1 ◦ 𝑎) = 𝑠(𝑎)

and 𝑡(1 ◦ 𝑎) = 𝑡(1) = 𝑡(𝑎). ⟹ 1 ◦ 𝑎 ∼ 𝑎. ⟹ [1 ◦ 𝑎]∼ = [𝑎]∼. ⟹ [1]∼ ◦ [𝑎]∼ = [𝑎]∼. Therefore 1 ∈𝐴 satisfies the conditions for [1]∼
being an identity element in (𝐴∕ ∼,◦). □

Proposition 3.5. ◦ is associative with respect to (𝐴∕ ∼,◦).

Proof. For ◦ to be associative we need [𝑎1]∼ ◦ ([𝑎2]∼ ◦ [𝑎3]∼) = ([𝑎1]∼ ◦ [𝑎2]∼) ◦ [𝑎3]∼ for any 𝑎1, 𝑎2, 𝑎3 ∈𝐴. We have 𝑎1 ◦ (𝑎2 ◦ 𝑎3) =
(𝑎1 ◦ 𝑎2) ◦ 𝑎3 from the associativity of ◦ with respect to (𝐴,◦), and [𝑎′]∼ ◦ [𝑎]∼ = [𝑎′ ◦ 𝑎]∼ for any 𝑎, 𝑎′ ∈𝐴 by definition of ◦ on 𝐴∕ ∼. 
⟹ [𝑎1]∼ ◦ ([𝑎2]∼ ◦ [𝑎3]∼) = [𝑎1 ◦ (𝑎2 ◦ 𝑎3)]∼ = [(𝑎1 ◦ 𝑎2) ◦ 𝑎3]∼ = [(𝑎1 ◦ 𝑎2)]∼ ◦ [𝑎3]∼ = ([𝑎1]∼ ◦ [𝑎2]∼) ◦ [𝑎3]∼. □

In summary, we have (𝐴,◦,∗), which is a set 𝐴 along with two operators ◦ ∶ 𝐴 × 𝐴→ 𝐴 and ∗∶ 𝐴 ×𝑊 →𝑊 , and we have 
(𝐴∕ ∼,◦,∗), which is a set 𝐴∕ ∼ along with two operators ◦ ∶ (𝐴∕ ∼) × (𝐴∕ ∼)→ (𝐴∕ ∼) and ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 . We have shown 
that ◦ is associative with respect to (𝐴∕ ∼,◦), and that (𝐴∕ ∼,◦) has an identity element by action condition 2.

3.3. Algorithmic exploration of world structures

To gain an intuition of the structure of different worlds and to illustrate our theoretical work with examples, we developed an 
algorithm that uses an agent’s minimum actions to generate the algebraic structure of the transformations of a world. We display this 
structure as a generalised Cayley table (a multiplication table for the distinct elements of the algebra).

The main algorithm generates what we call a state Cayley table (Algorithm 1). The elements of this state Cayley table are the 
world states reached when the row action and then the column action are performed in succession from an initial world state 𝑤 (i.e., 
𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 ∗ (𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 ∗𝑤)). Once the state Cayley table has been generated, we can use it to generate the action Cayley table, 
in which the elements of the table are the equivalent elements in the algebra if the agent performs the row action followed by the 
column action (Algorithm 2). For the sake of readability, Algorithms 3 to 6, which are internal loops of Algorithm 1, can be found in 
the Appendix. The code for their implementation of all the algorithms is available at github.com/awjdean/CayleyTableGeneration.

It is worth noting the usefulness of these algorithms: independently of their use in this paper, to show to generate both SBDRL 
groups (Section 3) and symmetries that fall beyond SBDRL’s scope (Section 4), researchers in representation learning and reinforce

ment learning are provided with an automatic mechanism to generate transitions of any arbitrary structure.
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Algorithm 1 Generate state Cayley table.

Require: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑎𝑐𝑡𝑖𝑜𝑛𝑠: a list of minimum actions, 𝑤: initial world state.

1: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒← an empty square matrix with dimensions 𝑙𝑒𝑛(𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑎𝑐𝑡𝑖𝑜𝑛𝑠)× 𝑙𝑒𝑛(𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑎𝑐𝑡𝑖𝑜𝑛𝑠), with rows and columns labelled by 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑎𝑐𝑡𝑖𝑜𝑛𝑠.

2: for 𝑎 in 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 do

3: Create an equivalence class for 𝑎.
4: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒← AddElementToStateCayleyTable(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑎). ⊳ See Algorithm 3.

5: end for

6: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

7: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑← SearchForEquivalents(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙). ⊳ See Algorithm 5.

8: if 𝑙𝑒𝑛(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑) ≠ 0 then

9: Merge the equivalence classes of equivalent minimum actions.

10: Delete the row and column from 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 for the minimum actions not labelling the merged equivalence class.

11: end if

12: end for

13: Initialize an empty list 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
14: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠← SearchForNewCandidates(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠). ⊳ See Algorithm 4.

15: while 𝑙𝑒𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)> 0 do

16: 𝑎𝐶 ← pop an element from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
17: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑← SearchForEquivalents(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑎𝐶 ). ⊳ See Algorithm 5.

18: if 𝑙𝑒𝑛(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑) ≠ 0 then

19: Add 𝑎𝐶 to the relevant equivalence class.

20: Continue to the next iteration of the while loop.

21: else

22: Check if 𝑎𝐶 breaks any of the existing equivalence classes.

23: 𝑏𝑟𝑜𝑘𝑒𝑛_𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒_𝑐𝑙𝑎𝑠𝑠𝑒𝑠← SearchForBrokenEquivalenceClasses(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑎𝐶 ). ⊳ See Algorithm 6.

24: if 𝑙𝑒𝑛(𝑏𝑟𝑜𝑘𝑒𝑛_𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒_𝑐𝑙𝑎𝑠𝑠𝑒𝑠) ≠ 0 then

25: for each new equivalence class do

26: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒← AddElementToStateCayleyTable(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, element labelling new equivalence class). ⊳ See Algorithm 3.

27: end for

28: end if

29: Create new equivalence class for 𝑎𝐶 .

30: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒← AddElementToStateCayleyTable(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑎𝐶 ). ⊳ See Algorithm 3.

31: end if

32: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠← SearchForNewCandidates(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠). ⊳ See Algorithm 4.

33: end while

34: return 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒

Algorithm 2 Generate action Cayley table.

Require: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒.

1: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 ← an empty square matrix with the dimensions of 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, with rows and columns labelled by the rows and columns of 
𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒.

2: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑎𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

3: for 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 in 𝑎𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

4: 𝑎𝐶 ← 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 ◦ 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙.

5: 𝑒𝑐_𝑙𝑎𝑏𝑒𝑙← label of equivalence class containing 𝑎𝐶 .

6: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒[𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙][𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙] = 𝑒𝑐𝑙𝑎𝑏𝑒𝑙.
7: end for

8: end for

9: return: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒.

Displaying the algebra We display the algebra in two ways: (1) a 𝑤-state Cayley table, which shows the resulting state of applying the 
row element to 𝑤 followed by the column element (i.e., 𝑤-state Cayley table value = column label ∗ (row label ∗𝑤)), and (2) an action 
Cayley table, which shows the resulting element of the algebra when the column element is applied to the left of the row element 
(i.e., action Cayley table value = column element ◦ row element).

Algebra properties We also check the following properties of the algebra algorithmically: (1) the presence of identity, including the 
presence of left and right identity elements separately, (2) the presence of inverses, including the presence of left and right inverses for 
each element, (3) associativity, (4) commutativity, and (5) the order of each element in the algebra. For our algorithm to successfully 
generate the algebra of a world, the world must contain a finite number of states, the agent must have a finite number of minimum 
actions, and all the transformations of the world must be due to the actions of the agent.

3.3.1. Example

For our example world 𝒲𝑐 , the equivalence classes shown in Fig. 5 - those labelled by 1, 𝑅, and 𝑈 - are the only equivalence 
classes in 𝐴∕ ∼. The 𝑤-state Cayley table in Table 2 shows the final world state reached after the following operation: table entry =
column element ∗ (row element ∗𝑤).

The 𝑤-action Cayley table in Table 3 shows the equivalent action in 𝐴∕ ∼ for the same operation as the 𝑤-state Cayley table: 
[table entry] ∗𝑤 = column element ∗ (row element ∗𝑤) for all 𝑤 ∈𝑊 .
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Table 2
𝑤0 state Cayley table for 𝐴∕ ∼.

𝐴∕ ∼ 1 𝐷 𝐿 𝑅𝑈

1 𝑤0 𝑤2 𝑤1 𝑤3
𝐷 𝑤2 𝑤0 𝑤3 𝑤1
𝐿 𝑤1 𝑤3 𝑤0 𝑤2
𝑅𝑈 𝑤3 𝑤1 𝑤2 𝑤0

Table 3
Action Cayley table for 𝐴∕ ∼.

𝐴∕ ∼ 1 𝐷 𝐿 𝑅𝑈

1 1 𝐷 𝐿 𝑅𝑈

𝐷 𝐷 1 𝑅𝑈 𝐿

𝐿 𝐿 𝑅𝑈 1 𝐷

𝑅𝑈 𝑅𝑈 𝐿 𝐷 1

Table 4
Action Cayley table equivalence classes.

∼ equivalence class label ∼ equivalence class elements 
1 1,11,𝐷𝐷,𝐿𝐿,𝑅𝑈𝑅𝑈, ...
𝐷 𝐷,𝐷1,1𝐷,𝑅𝑈𝐿,𝐿𝑅𝑈, ...
𝐿 𝐿,𝐿1,𝑅𝑈𝐷,1𝐿,𝐷𝑅𝑈, ...
𝑅𝑈 𝑅𝑈,𝑅𝑈1,𝐿𝐷,𝐷𝐿,1𝑅𝑈, ...

Table 5
Abstract action Cayley table for 𝐴∕ ∼.

𝐴∕ ∼ 1 2 3 4

1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Table 6
Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality Y 
Identity Y 
Inverse Y 
Associative Y 
Commutative Y 

The choice of the equivalence class label in Table 4 is arbitrary; it is better to think of each equivalence class as a distinct element 
as shown in the Cayley table in Table 5.

There are four elements in the action algebra, therefore, if the agent learns the relations between these four elements, and then it 
has complete knowledge of the transformations of our example world.

Properties of 𝐴∕ ∼ algebra The properties of the 𝐴∕ ∼ algebra are displayed in Table 6 and show that 𝐴∕ ∼ is a commutative group, 
where the no-op action is the identity, and all elements are their own inverses. Since the action algebra of our example world is a 
group, it can be described by SBDRL. The order of each element is given by Table 7.

3.4. Conditions for SBDRL to apply

To simplify the problem, we only consider worlds where the transformations of the world are only due to the actions of an agent 
for the remainder of this paper unless otherwise stated. Therefore, we will only consider worlds with 𝐷 =𝐷𝐴.
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Table 7
Order of elements in 𝐴∕ ∼.

Element Order 
1 1 
𝐷 2 
𝐿 2 
𝑅𝑈 2 

To be a group, 𝐴∕ ∼ must satisfy the properties of (1) identity, (2) associativity, (3) closure, and (4) inverse. The identity and 
associative properties are satisfied by Proposition 3.4 and Proposition 3.5 respectively. For the closure property to be satisfied, the 
following condition is sufficient:

World condition 1 (Unrestricted actions). For any action 𝑎 ∈ 𝐴 and for any world state 𝑤 ∈𝑊 , there exists a transition 𝑑 ∈ 𝐷𝐴 with 
𝑑 ∶𝑤

𝑎
←←←←←←→ 𝑡(𝑑). In other words, 𝑎 ∗𝑤 is defined for all 𝑎∈𝐴 and all 𝑤∈𝑊 .

The inverse property of a group (4) is stricter than our current definition of the reversibility of an action. For the structure 𝐴∕ ∼
to have the inverse property, each element (action) in 𝐴∕ ∼ must not only be reversible from each starting state, but additionally, the 
inverse of a given element in 𝐴∕ ∼ must be the same for each starting state; for example, if 𝑎′ is the inverse of 𝑎 from a state 𝑤 ∈𝑊
(𝑎′ ◦ 𝑎 ∗𝑤 =𝑤), then 𝑎′ must be the inverse of 𝑎 from all states in 𝑊 .

World condition 2 (Inverse actions). For each 𝑎 ∈ 𝐴∕ ∼, there exists an 𝑎′ ∈ 𝐴∕ ∼ such that 𝑎′ ◦ 𝑎 ∗ 𝑤 =𝑤 and 𝑎 ◦ 𝑎′ ∗ 𝑤 = 𝑤 for all 
𝑤 ∈𝑊 .

Proposition 3.6. If the world satisfies world conditions 1 and 2 then (𝐴∕ ∼,◦) is a group.

Proof. Totality is given by world condition 1. Associativity is given by Proposition 3.5. Identity element given by Proposition 3.4. 
Inverse element is given by world condition 2. □

Proposition 3.7. If the world obeys world conditions 1 and 2, then ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a left group action.

Proof. We have already established that (𝐴∕ ∼,◦) is a group (Proposition 3.6). Therefore, to show that ∗ is a left group action we 
only have to prove the group action conditions of (a) identity and (b) compatibility. Consider an arbitrary world state 𝑤 ∈𝑊 .

(a) [1]∼ ∗𝑤 = 1 ∗𝑤 = 1𝑤 ∗𝑤 =𝑤.

(b) We need to show that 𝑎′ ∗ (𝑎 ∗ 𝑤) = (𝑎′ ◦ 𝑎) ∗ 𝑤. Because actions are unrestricted in 𝑊 , for any 𝑤 ∈𝑊 , there exists the 

transitions 𝑑1 ∶𝑤
𝑎
←←←←←←→ 𝑡(𝑑1) and 𝑑2 ∶ 𝑡(𝑑1)

𝑎
←←←←←←→ 𝑡(𝑑2). ⟹ there exists the transition (𝑑2 ◦𝑑1) ∶𝑤

𝑎′◦𝑎 
←←←←←←←←←←←←←←←←←→ 𝑡(𝑑2). Therefore, (𝑎′ ◦𝑎) ∗𝑤 = 𝑡(𝑑2). 

Using the transitions 𝑑1 and 𝑑2 for the LHS of the condition, 𝑎′ ∗ (𝑎 ∗𝑤) = 𝑎′ ∗ 𝑡(𝑑1) = 𝑡(𝑑2). □

From Proposition 3.7, if a world satisfies world conditions 1 and 2, then the transformations of that world can be fully described 
using SBDRL (i.e., ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a group action).

Proposition 3.8. If ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a group action, then world condition 1 is satisfied.

Proof. Since a group action is a full operation by definition, world condition 1 is satisfied. □

Proposition 3.9. If ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a group action, then world condition 2 is satisfied.

Proof. If ∗ is a group action, then 𝐴∕ ∼ is a group. If 𝐴∕ ∼ is a group, then for each 𝑎 ∈ 𝐴∕ ∼ there is an inverse element 𝑎−1 such 
that (1) 𝑎−1 ◦ 𝑎 = 1 and (2) 𝑎 ◦ 𝑎−1 = 1.

For an arbitrary state 𝑤 ∈𝑊 , 𝑎−1 ◦ (𝑎 ∗𝑤) = 𝑎−1 ◦ (𝑎 ∗𝑤), therefore 𝑎−1 ◦ (𝑎 ∗𝑤) = (𝑎−1 ◦ 𝑎) ∗𝑤 from the group action compati

bility condition, therefore 𝑎−1 ◦ (𝑎 ∗𝑤) = 1 ∗𝑤 from (1), therefore (3) 𝑎−1 ◦ (𝑎 ∗𝑤) =𝑤 from the group action identity condition.

Similarly, for an arbitrary state 𝑤 ∈𝑊 , 𝑎 ◦ (𝑎−1 ∗𝑤) = 𝑎 ◦ (𝑎−1 ∗𝑤), therefore 𝑎 ◦ (𝑎−1 ∗𝑤) = (𝑎 ◦ 𝑎−1) ∗𝑤 from the group action 
compatibility condition, therefore 𝑎 ◦ (𝑎−1 ∗ 𝑤) = 1 ∗ 𝑤 from (2), therefore (4) 𝑎 ◦ (𝑎−1 ∗ 𝑤) = 𝑤 from the group action identity 
condition.

(3) and (4) together are world condition 2. □

Proposition 3.10. If a world does not satisfy world condition 1, then ∗ is not a group action.
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Proof. If a world does not satisfy world condition 1, then there exists some world state 𝑤 ∈𝑊 and some action 𝑎 ∈ 𝐴 such that 
𝑎 ∗𝑤 is undefined. Therefore, for [𝑎] ∈ 𝐴∕ ∼, [𝑎] ∗𝑤 is undefined, and so ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a partial operation and so not a 
group action. □

Proposition 3.11. If a world does not satisfy world condition 2, then 𝐴∕ ∼ is not a group and so ∗ is not a group action.

Proof. If a world does not satisfy world condition 2, then there exists an 𝑎 ∈ 𝐴∕ ∼ such that there is no 𝑎′ ∈ 𝐴∕ ∼ for which 
𝑎′ ◦ 𝑎 ∗𝑤 =𝑤 or 𝑎 ◦ 𝑎′ ∗𝑤 =𝑤 for all 𝑤 ∈𝑊 . Proof by contradiction. Assume 𝑎 has an inverse 𝑎′′ ∈ 𝐴∕ ∼. Therefore, 𝑎′′ ◦ 𝑎 ∼ 1
and 𝑎 ◦ 𝑎′′ ∼ 1. Since 1 ∗𝑤 =𝑤 for all 𝑤 ∈𝑊 , 𝑎′′ ◦ 𝑎 ∗𝑤 =𝑤 and 𝑎 ◦ 𝑎′′ ∗𝑤 =𝑤 for all 𝑤 ∈𝑊 , which is a contradiction. □

Proposition 3.7 shows that world conditions 1 and 2 are sufficient conditions for ∗ to be a group action, while Propositions 3.10

and 3.11 show that world conditions 1 and 2 are necessary conditions for ∗ to be a group action. Since world conditions 1 and 2 are 
sufficient and necessary conditions for ∗ to be a group action and therefore 𝐴∕ ∼ to be a group, these conditions give a characterisation 
of the worlds with transformations (due to the actions of an agent) that can be fully described using SBDRL; in other words, if the 
transformations of a world can be fully described using SBDRL then that world satisfies world conditions 1 and 2, and if a world 
satisfies world conditions 1 and 2 then the transformations of that world can be fully described using SBDRL.

3.5. Action-homogeneous worlds

Given that the algebraic structure underlying symmetric representations in SBDRL are groups, the (extra) condition of homogeneity 
directly applies:

World condition 3 (Action homogeneity). For every pair (𝑤1,𝑤2) ∈ 𝑊 2, there exists a bijective map 𝜎(𝑤1,𝑤2) ∶ 𝑊 → 𝑊 such that 
𝜎(𝑤1 ,𝑤2)(𝑤1) =𝑤2 and such that:

1. for every 𝑑 ∈𝐷𝐴 with 𝑑 ∶ 𝑠(𝑑)
𝑎
←←←←←←→ 𝑡(𝑑), there exists a 𝑑′ ∈𝐷𝐴 with 𝑑′ ∶ 𝜎(𝑤1 ,𝑤2)(𝑠(𝑑))

𝑎
←←←←←←→ 𝜎(𝑤1 ,𝑤2)(𝑡(𝑑));

2. for every 𝑑 ∈𝐷𝐴 with 𝑑 ∶ 𝑠(𝑑)
𝑎
←←←←←←→ 𝑡(𝑑), there exists a 𝑑′ ∈𝐷𝐴 with 𝑑′ ∶ 𝜎−1(𝑤1 ,𝑤2)

(𝑠(𝑑))
𝑎
←←←←←←→ 𝜎−1(𝑤1 ,𝑤2)

(𝑡(𝑑)).

World condition 3 means that action sequences have the same result for any initial world state. Essentially, this means that 
the world looks the same from any world state with respect to the relationships of actions. We call worlds with world condition 3
action-homogeneous worlds.

In this section, we have presented a mathematical formalism for describing transitions due to the actions of an agent between 
world states and an algorithm that generates them. We have then laid out an example world and shown that, after applying an 
equivalence relation, the algebra of the agent’s actions in this world forms a group. We have also characterised the worlds with 
transformations that can be fully described by SBDRL by giving world conditions that are sufficient and necessary for the algebra of 
the transformations of that world to be a group. In the next section, we present transformations relevant to reinforcement learning 
that do not form groups and are thus beyond the expressive power of SBDL but that can be formulated using our framework.

4. Beyond SBDRs

In the previous section, we showed under which conditions, those of forming a (symmetry) group, SBDRL representations can be 
expressed within our framework, as defined in Section 2. We will now consider worlds that are accounted for using our framework 
but that do not satisfy either world condition 1 or world condition 2, that is, transformations that do not form a group action and 
for which the assumption of action-homogeneous worlds does not necessarily hold. We have selected examples with features that 
are common in simple reinforcement learning scenarios to illustrate the potential of our approach in extending SBDRL to symmetries 
that go beyond group actions.

In order to do so, we use two methods of treating actions that are not allowed to be used in certain world states (e.g., the agent 
trying to move through a wall or eat a consumable in a state where the agent is not in the same location as the consumable). Method 
1 (Sections 4.1.1 and 4.1.3) lets the agent select the actions but any actions that would have been undefined in a state w have the 
same effect in w as the agent performing the identity action 1. Method 2 (Sections 4.2.1 and 4.2.2) does not let the agent select 
these actions and so considers them as undefined; this violates world condition 1. These two treatments of actions are common in 
reinforcement learning. We employ the computational methods outlined in Section 3.3 to generate the action algebras of the agent 
in these worlds and provide evidence for our statements.

4.1. Worlds without inverse actions

In this section, we consider worlds that do not necessarily satisfy world condition 2 but do satisfy world condition 1.
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Fig. 6. The world states of a cyclical 2 × 2 grid world 𝒲𝑤𝑎𝑙𝑙 with a wall, where changes to the world are due to an agent moving either up, down, left, or right. The 
position of the agent in the world is represented by the position of the circled A. The treatment of the wall is explained when needed.

Table 8
Each entry in this table shows the out

come state of the agent performing the ac

tion given in the column label when in the 
world state given by the row label.

1 𝑈 𝐷 𝐿 𝑅

𝑤0 𝑤0 𝑤2 𝑤2 𝑤1 𝑤0
𝑤1 𝑤1 𝑤3 𝑤3 𝑤1 𝑤0
𝑤2 𝑤2 𝑤0 𝑤0 𝑤3 𝑤3
𝑤3 𝑤3 𝑤1 𝑤1 𝑤2 𝑤2

Fig. 7. A transition diagram of the labelled transitions in Table 8. 

Proposition 4.1. Consider a world 𝒲 with a set 𝑊 of world states and containing an agent with a set 𝐴 of actions. If 𝒲 satisfies world 
condition 1, then ∗∶ (𝐴∕ ∼) ×𝑊 →𝑊 ′, where 𝑊 ′ ⊆𝑊 , is the action of a monoid 𝐴∕ ∼ on 𝑊 .

Proof. (1) Totality of 𝐴∕ ∼ is given by world condition 1. (2) Associativity of 𝐴∕ ∼ is given by Proposition 3.5. (3) Identity element 
of 𝐴∕ ∼ is given by Proposition 3.4. Since 𝐴∕ ∼ satisfies properties (1), (2), and (3), 𝐴∕ ∼ is a monoid.

∗ is defined for any 𝑎∈𝐴 and 𝑤 ∈𝑊 , therefore ∗ is a monoid action. □
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Table 9
Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality Y 
Identity Y 
Inverse N 
Associative Y 
Commutative Y 

Fig. 8. World states of a world containing an agent and a movable block. 

Remark 4.1.1. If all actions are reversible in 𝒲 then 𝑊 ′ =𝑊 . If any action is irreversible in 𝒲 then 𝑊 ′ ⊂𝑊 .

4.1.1. Example 1: reversible action-inhomogeneous world

To turn the 2 × 2 cyclical grid world 𝒲𝑐 used previously from a reversible action-homogeneous world to a reversible action

inhomogeneous world we add a wall to the world as shown in Fig. 6 to give world 𝒲𝑤𝑎𝑙𝑙 .

This wall is said to restrict the actions of the agent. We say that actions restricted by the wall affect the world in the same way 
as the identity action; for example, if the agent is directly to the left of a wall and performs the ‘move to the right’ action, then this 
action is treated like the identity action and so the state of the world does not change (see Table 8 and Fig. 7).

Properties and structure of 𝐴∕ ∼ The action Cayley table for this world with the identity treatment of the walls contains 26 elements. 
As shown in Table 9, 𝐴∕ ∼ is a monoid.

Adding a single wall to the world has massively increased the complexity of the transition algebra of the world. While the transition 
algebra of 𝒲𝑐 has four elements, the transition algebra of 𝒲𝑤𝑎𝑙𝑙 with restricted actions treated as identity actions contains 26 elements.

The restrictiveness of the group inverse condition should be noted. For 𝒲𝑤𝑎𝑙𝑙 with restricted actions treated as identity actions, 
every action is reversible from a particular state 𝑤 ∈𝑊 . However, the action that takes 𝑎 back to its starting state is not necessarily 
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Table 10

Each entry in this table shows the out

come state of the agent performing the ac

tion given in the column label when in the 
world state given by the row label.

1 𝐿 𝑅

𝑤0 𝑤0 𝑤9 𝑤1
𝑤1 𝑤1 𝑤0 𝑤2
𝑤2 𝑤2 𝑤1 𝑤3
𝑤3 𝑤3 𝑤5 𝑤7
𝑤4 𝑤4 𝑤0 𝑤5
𝑤5 𝑤5 𝑤4 𝑤3
𝑤6 𝑤6 𝑤8 𝑤7
𝑤7 𝑤7 𝑤6 𝑤11
𝑤8 𝑤8 𝑤4 𝑤6
𝑤9 𝑤9 𝑤8 𝑤10
𝑤10 𝑤10 𝑤9 𝑤11
𝑤11 𝑤11 𝑤10 𝑤2

Fig. 9. A transition diagram of the labelled transitions in Table 10. 

the same any starting state 𝑤 ∈𝑊 . For the inverse property to be present, the inverse for each element must be the same from any 
starting state (i.e., the inverse must be independent of the starting state). 𝒲𝑤𝑎𝑙𝑙 with restricted actions treated as identity actions is 
proof that it is possible to have a world where all actions are reversible but for some of those actions to not have an inverse action.

4.1.2. Example 2: reversible action-inhomogenous world without walls

Consider a world 𝒲𝑏𝑙𝑜𝑐𝑘 with the world states in Fig. 8 and with movement along a single 1D cyclical axis with a movable block. 
If the agent is in the location directly to the left of the block and moves into the block, the block moves one location in the direction 
of the agent’s movement and the agent moves into the location previously occupied by the block (see Table 10 and Fig. 9).

The action Cayley table for 𝒲𝑏𝑙𝑜𝑐𝑘 contains 17 elements. As shown by Table 11, 𝐴∕ ∼ is a monoid.

Remark 4.1.2. Adding a wall or a moveable block breaks the symmetry of the original 2 × 2 cyclical world 𝒲𝑐 ; this manifests as the action 
algebra of the world being much more complex.
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Table 11

Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality Y 
Identity Y 
Inverse N 
Associative Y 
Commutative N 

Fig. 10. World states of a world containing an agent and a consumable. 

Fig. 11. Minimum action network for world 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 . 

4.1.3. Example 3: irreversible inhomogeneous actions

This example explores the transition algebras of worlds that are action-inhomogeneous and contain irreversible actions.

Consider a world 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 with movement along a single 1D cyclical axis with a single consumable. Let this world also contain 
an agent that can move left, right or consume the consumable if the agent is in the same place as the consumable (see Fig. 10).

There is not a consumable in every state, therefore if the agent performs the consume action in any state except 𝑤1 then the effect 
will be the same as if the agent had performed the no-op action 1 ∈𝐴∕ ∼ (see Fig. 11).

The action Cayley table for world 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 with restricted actions treated as identity actions contains 64 elements. As shown 
in Table 12, 𝐴∕ ∼ is a monoid.
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Table 12

Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality Y 
Identity Y 
Inverse N 
Associative Y 
Commutative N 

Table 13

Each entry in this table shows the outcome state of the 
agent performing the action given in the column label 
when in the world state given by the row label.

1 𝑈 𝐷 𝐿 𝑅

𝑤0 𝑤0 𝑤2 𝑤2 𝑤1 undefined 
𝑤1 𝑤1 𝑤3 𝑤3 undefined 𝑤0
𝑤2 𝑤2 𝑤0 𝑤0 𝑤3 𝑤3
𝑤3 𝑤3 𝑤1 𝑤1 𝑤2 𝑤2

Table 14

Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality N 
Identity Y 
Inverse N 
Associative Y 
Commutative N 

Remark 4.1.3. Considering this example, we note that the irreversible action moves from one ‘reversible plane’ to another. Perhaps we can 
treat an irreversible action as having a ‘reversible action affecting part’ and a ‘world affecting part’; in this example, the reversible action 
affecting part would be the identity action since the reversible action network is unchanged by the irreversible action.

4.2. Worlds without inverse actions or unrestricted actions

In this section, we consider worlds that do not necessarily satisfy world condition 2 or world condition 1.

Proposition 4.2. Consider a world 𝒲 with a set 𝑊 of world states and containing an agent with a set 𝐴 of actions. ∗∶ (𝐴∕ ∼)×𝑊 →𝑊 ′, 
where 𝑊 ′ ⊆𝑊 , is the action of a small category 𝐴∕ ∼ on 𝑊 .

Proof. (1) Associativity of 𝐴∕ ∼ is given by Proposition 3.5. (2) Identity element of 𝐴∕ ∼ is given by Proposition 3.4. Since 𝐴∕ ∼
satisfies properties (1) and (2), 𝐴∕ ∼ is a small category. Therefore ∗ is the action of a small category. □

Remark 4.2.1. We can consider two equivalent perspectives of ∗:

1. 𝐴∕ ∼ is a small category and ∗ is a full action of 𝐴∕ ∼ on 𝑊 .

2. 𝐴∕ ∼ is a monoid and ∗ is a partial action of 𝐴∕ ∼ on 𝑊 .

4.2.1. Example 1: reversible action-inhomogeneous world

We once again consider the world 𝒲𝑤𝑎𝑙𝑙 (see Fig. 6 for world states); however, now instead of treating restricted actions like the 
identity action, we mask the restricted actions. Masking restricted actions involves not allowing the agent to perform the restricted 
actions - the restricted actions are hidden (masked) from the agent - and so, mathematically, we treat the restricted actions as 
undefined; for example, if 𝒲𝑤𝑎𝑙𝑙 is in state 𝑤0, then the agent cannot perform the 𝑅 action because 𝑅 ∗𝑤0 is undefined (see Table 13

and Fig. 12.

The action Cayley table for 𝒲𝑤𝑎𝑙𝑙 with the masked treatment of the walls contains 59 elements. As shown in Table 14, 𝐴∕ ∼ is a 
small category.

4.2.2. Example 2: irreversible action-inhomogeneous world

We will now apply the masking treatment of restricted actions to the world 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 (see Fig. 13 for world states); for example, 
if 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 is not in state 𝑤1 then the consume action is undefined.
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Fig. 12. A diagram of the labelled transitions in Table 13. 

Fig. 13. Minimum action network for a world containing an agent and a consumable. 

Table 15

Properties of the 𝐴∕ ∼ algebra.

Property Present? 
Totality N 
Identity Y 
Inverse N 
Associative Y 
Commutative N 

The action Cayley table for 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 with the masked treatment of the walls contains 20 elements. As shown in Table 15, 𝐴∕ ∼
is a small category.

Remark 4.2.2. For any world, once the agent has the action Cayley table for any initial world state it can produce the action Cayley table 
for any other initial world state by applying an action that transitions from the old initial world state to the new initial world state to every 
element of the action Cayley table.

Proposition 4.3. The algebra 𝐴∕ ∼ of the actions of an agent depends on the treatment of the actions of the agent (e.g., masked treatment 
vs identity treatment) even if the world states remain the same.

Proof. 𝐴∕ ∼ for the identity treatment of 𝒲𝑤𝑎𝑙𝑙 contains 26 elements, while 𝐴∕ ∼ for the masked treatment of 𝒲𝑤𝑎𝑙𝑙 contains 59 
elements.

Additionally, 𝐴∕ ∼ for the identity treatment of 𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 contains 64 elements, while 𝐴∕ ∼ for the masked treatment of 
𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒 contains 20 elements. □
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We have also demonstrated that neither the identity treatment nor the masked treatment produces simpler algebra in every 
world. For 𝒲𝑤𝑎𝑙𝑙 , the identity treatment contains fewer elements than the masked treatment (26 elements vs 59 elements), while for 
𝒲𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒, the masked treatment contains fewer elements than the identity treatment (20 elements vs 64 elements).

In this section, we have selected several standard reinforcement learning scenarios that go beyond the expressive power of the 
symmetries represented in SBDRL as groups and that can nevertheless be accounted for using our general framework. It was not 
the purpose of this section to identify which algebraic structures would correspond with such representations, say semi-groups or 
groupoids for instance, but rather to establish a proof of concept, through examples generated using Algorithms 1 and 2, that SBDRL 
is not robust or generalisable enough and that our framework subsumes and extends it to bring about substantial representations.

5. Generalising SBDRL

So far, we have introduced a formal framework that allows agents to learn richer representations than those of SBDRL. In order to 
do so, we have proved in Section 3 that SBDRL is subsumed by our framework, that is, that the symmetric disentangled representations 
that SBDRL accounts for are also derivable using a generative algorithm of the corresponding Cayley tables within our approach. In 
Section 4, we have extended our study to simple yet challenging reinforcement learning cases where the conditions for the formation 
of groups, intrinsic to SBDRL, are not satisfied and that fall nevertheless under the remit of our framework. In other words, we 
have proved that our framework is more powerful than SBDRL and that it allows the representation of world transitions that can 
be structured in any algebra, in principle. Although formal, this was nevertheless an exploratory exercise, and, to express it with 
mathematical rigour we recur to category theory in this section. In order to do so, after some preliminary definitions, we first 
generalise SBDRL’s equivariance condition categorically for both single and, importantly, multi-object categories, and then the notion 
of disentanglement for transformations that cannot be described by groups. That is, unlike in Section 4, the purpose of Section 5 is 
not to present further proof cases of the expressive power of our framework nor to revisit the examples in the previous section 
categorically (it would be impractical to go through the many algebraic structures that might result from our framework within and 
beyond SBDRL) but rather to provide a solid, formal characterisation that, in turn, broadens the rationale and capabilities of the 
original framework.

A fundamental result in category theory is the Yoneda Lemma, which posits that the properties of mathematical objects are 
completely determined by their relationships to other objects [53,54]. This result is similar to the shift in perspective in Artificial 
Intelligence representations from studying world states to gaining insight into their structures by considering how they are transformed 
by the dynamics of the environment they are immersed in, including the actions of agents. Due to the Yoneda Lemma, category theory 
already incorporates this approach of considering the transformation properties of objects built in, which arguably makes it the 
natural choice for their representation. More generally, category theory has been extensively used in computer science in the analysis 
of relational databases and functional programming [55,56]. Let us track back the main argument: generally speaking, symmetries 
define invariance, that is, impunity to possible alterations. Interestingly, the fact that the parts that are related by means of an 
equivalence relation correspond to the family of operations transforming the parts into each other while leaving the whole invariant 
satisfies the conditions for constituting a group. Consequently, it has traditionally been assumed that group theory is the language 
of symmetries and indeed groups have been customarily used to exploit symmetries in mathematics and physics, from E. Galois’ 
studies of the structures that underlie the number and form of the solutions for equations of arbitrary degrees, to the formulation 
of the Standard Model that classifies all elementary particles and their interactions according to their flavour, charge and colour 
symmetries as the 𝑆𝑈 (3)

⨂
𝑆𝑈 (2)

⨂
𝑈 (1) group.

Now, a group is simply a category with a single object where every morphism is an isomorphism, that is, the object only re

lates to itself. Thus, although groups are certainly sufficient to formalise homogeneous structures, there are nonetheless plenty of 
transformations that exhibit what we clearly recognise as symmetries that are nontrivial (think of a bowling ball; it may not display 
the symmetries of a perfect sphere, such as a basketball, but it nonetheless poses symmetries that can be identified and exploited). 
To detect such symmetries, we need to ``zoom out'', and this is precisely why adopting a categorical approach in representation 
learning makes sense: category theory does consider objects, but its focus is on the relationships (morphisms) between those objects, 
rather than the internal structure of the objects themselves. The axioms of a category do not require objects to have elements or 
any specific internal structure. Category theory thus becomes the ideal tool for the study of structures that show partial symmetries 
and symmetries that apply to multiple objects, and those that result in higher-dimensional, increasingly more abstract categories. In 
other words, the ontology of algebraic groups is suitable to express symmetric structures that can be represented at the object-level 
in a straightforward way, but does not scale to other types that benefit from viewing the problem from a relation-level. Using the 
framework of Section 2, in Section 4 we have identified several symmetric transformations that cannot be expressed in groups, the 
structure favoured by SBDRL. In this section, we formalise the conditions that accommodate such structures as categories. Our claim 
is that the insights provided in this section might be taken as the starting point for a deeper exploration of category theory as the 
formalism in which to establish and derive symmetries beyond group representations in reinforcement learning and, more generally, 
Artificial Intelligence [57,58].

5.1. Preliminaries

Technically, a category consists of objects connected by arrows, which represent structure-preserving maps between the objects. 
Importantly, we can also relate categories via functors, which are ways to transform a category into another category while preserving 
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the relationships between the objects and arrows of the domain category. In turn, natural transforms are ways to replace one functor 
with another while preserving the structure of the first. That is, we can iteratively construct higher-order categories, where (n)

categories become objects of (n+1)-categories. It is worth emphasizing that (a) the fundamental concept is the concept of morphism 
(transitions in our case) since an object is in fact defined as its collection of identity morphisms; (b) in relating categories these do 
not need to be of the same class, rather the power of category theory becomes visible when, through a process of categorisation, 
that is, by forgetting the details of its objects, we learn properties of a category by relating it to other category whose structure is 
well-known (similarly, we can recover the details of the domain category by a process of decategorisation); (c) as a result, in practice, 
categories provide a rich ontology to represent the concept of similarity beyond strict equivalence. That is, category theory allows us 
to compare (and build) a great variety of structures.

We will now introduce relevant category theory concepts. The reader is referred to [59] for a more detailed account of category 
theory and its uses.

Definition 5.1 (Category). A category  consists of a class of objects, denoted Ob(), and, for each pair 𝑥, 𝑦 of objects, a class of morphisms 
𝛼 ∶ 𝑥→ 𝑦, denoted 𝐶(𝑥, 𝑦), satisfying the following:

• Composition law. Given two morphisms 𝛼 ∈ (𝑥, 𝑦) and 𝛽 ∈ (𝑦, 𝑧) there exists a morphism 𝛽 ◦ 𝛼 ∈ (𝑥, 𝑧) called the composition of 
𝛼 and 𝛽.

• Existence of units. Given an object 𝑥, there exists a morphism denoted by 1𝑥 ∈ (𝑥,𝑥) such that for any morphism 𝛼 ∈ (𝑥, 𝑎), 𝛼◦1𝑥 = 𝛼
and for any morphism 𝛽 ∈ (𝑏, 𝑥), 1𝑥 ◦ 𝛽 = 𝛽.

• Associativity. Given three morphisms 𝛼 ∈ 𝐶(𝑥, 𝑦), 𝛽 ∈ 𝐶(𝑦, 𝑧), 𝛾 ∈ 𝐶(𝑧, 𝑢), then the following associative law is satisfied: 𝛾 ◦ (𝛽 ◦ 𝛼) =
(𝛾 ◦ 𝛽) ◦ 𝛼.

Definition 5.2 (Isomorphism). A morphism 𝛼 ∶ 𝑥→ 𝑦 in a category C is an isomorphism if there exists another morphism 𝛽 ∶ 𝑦→ 𝑥 in C 
such that 𝛽 ◦ 𝛼 = 1𝑥 and 𝛼 ◦ 𝛽 = 1𝑦. This can be denoted by 𝑥

𝛼
≅ 𝑦.

Definition 5.3 (Group). A group is a category that has a single object and in which every morphism is an isomorphism (i.e., every morphism 
has an inverse).

Definition 5.4 (Small category). A category  is a small category if its collection of objects Ob() is a set, and the collection of morphisms 
𝐻𝑜𝑚 (𝑋,𝑌 ), where 𝑋,𝑌 ∈ Ob() is also a set.

Definition 5.5 (Hom-set). Given objects 𝑥 and 𝑦 in a small category , the hom-set 𝐻𝑜𝑚(𝑥, 𝑦) is the collection of all morphisms from 𝑥 to 
𝑦. A category is said to be small if each of its hom-sets is a set instead of a proper class.

Definition 5.6 ((covariant) Functor). A functor is a structure-preserving map between two categories. For two categories  and , a functor 
𝐹 ∶→ from  to  assigns to each object in  an object in  and to each morphism in  a morphism in  such that the composition 
of morphisms and the identity morphisms are preserved. A functor transforms objects and morphism from one category to another in a way 
that preserves the structure of the original category.

More precisely, a functor 𝐹 ∶→ consists of two maps:

1. A map that assigns an object 𝐹 (𝐴) in  to each object 𝐴 in .

2. A map that assigns a morphism 𝐹 (𝑓 ) in  to each morphism 𝑓 in  such that:

(a) 𝐹 respects composition for any two composable morphisms 𝑓, 𝑔 ∈, 𝐹 (𝑓𝑔) = 𝐹 (𝑓 )𝐹 (𝑔).
(b) 𝐹 preserves identities: for any object 𝐴 in , 𝐹 (𝑖𝑑𝐴) = 𝑖𝑑𝐹 (𝐴).

Definition 5.7 (Functor category). For categories  and , the functor category denoted 𝐷 or [,] is the category whose: (1) objects 
are functors 𝐹 ∶  →, and (2) morphisms are natural transforms between these functors.

Definition 5.8 (Natural transform). For categories  and  and functors 𝐹 ,𝐺 ∶  →, a natural transform 𝛼 ∶ 𝐹 ⇒ 𝐺 between 𝐹 and 
𝐺 is an assignment to every object 𝑥 in  of a morphism 𝛼𝑥 ∶ 𝐹 (𝑥)→𝐺(𝑥) in  such that for any morphism 𝑓 ∶ 𝑥→ 𝑦 in , the following 
diagram commutes:

𝐹 (𝑥) 𝐹 (𝑦)

𝐺(𝑥) 𝐺(𝑦)

𝐹 (𝑓 )

𝛼𝑥 𝛼𝑦

𝐺(𝑓 )
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Definition 5.9 (Delooped category). Given an algebraic structure 𝐴, we can construct the delooped category B𝐴 whose morphisms correspond 
to the elements of 𝐴 with the relevant composition: 𝐴

𝑑𝑒𝑙𝑜𝑜𝑝 
←←←←←←←←←←←←←←←←←←←←←←←←→ B𝐴. B id called the base of the category and contains the objects. The number 

of objects in B is the number of objects necessary for the morphisms of B𝐴 to correspond to the elements of 𝐴.

Definition 5.10 (Monoid). A monoid is a category with a single object.

Definition 5.11 (Categorical product). The categorical product of two categories 𝐶1 and 𝐶2 is the category 𝐶1 ×𝐶2. The objects of 𝐶1 ×𝐶2
are the pairs of objects (𝐵1,𝐵2), where 𝐵1 is an object in 𝐶1 and 𝐵2 is an object in 𝐶2. The morphisms in 𝐶1 ×𝐶2 are the pairs of morphisms 
(𝑓1, 𝑓2), where 𝑓1 is a morphism in 𝐶1 and 𝑓2 is a morphism in 𝐶2. The composition of morphisms is defined component-wise.

Definition 5.12 (Sub-functors of sub-categories). We can define a functor 𝐹 ∶ 𝐶1 ×𝐶2 → 𝐶 as follows:

1. For each object (𝐵1,𝐵2) in 𝐶1 ×𝐶2, 𝐹 (𝐵1,𝐵2) is the object in 𝐶 that corresponds to the pair (𝐵1,𝐵2).
2. For each morphism (𝑓1, 𝑓2) ∶ (𝐵1,𝐵2)→ (𝐵′

1,𝐵
′
2) in 𝐺1 ×𝐺2, 𝐹 (𝑓1, 𝑓2) is the morphism in 𝐺 that corresponds to the pair (𝑓1, 𝑓2).

We can now define sub-functors 𝐹1 of 𝐺1 and 𝐹2 of 𝐺2 on an object 𝐵 of 𝐺 as follows:

1. 𝐹1(𝑔1,𝐵) = 𝐹 (𝑔1,1𝐺2
)(𝐵) for all 𝑔1 ∈𝐺1.

2. 𝐹2(𝑔2,𝐵) = 𝐹 (1𝐺1
, 𝑔2)(𝐵) for all 𝑔1 ∈𝐺1.

We can decompose 𝐹 into the sub-functors 𝐹1 and 𝐹2 as 𝐹 = 𝐹1 ×𝐹2, if there is a decomposition 𝐵 = 𝐵1 ×𝐵2 of 𝐵 into two sub-objects 
𝐵1 and 𝐵2 such that:

1. For all 𝑔1 ∈𝐺1 and 𝐵2 ∈𝐺2, we have 𝐹1(𝑔1,𝐵1 ×𝐵2) = 𝐹1(𝑔1,𝐵1 ×𝐵2.

2. For all 𝑔2 ∈𝐺2 and 𝐵1 ∈𝐺1, we have 𝐹2(𝑔2,𝐵1 ×𝐵2) =𝐵1 × 𝐹2(𝑔2,𝐵2).

5.2. The equivariance condition

In this section, we use category theory to generalise [1]’s equivariance condition. In doing so we show that the equivariance 
condition can apply to worlds where the actions of an agent cannot be fully described by groups.

5.2.1. Group equivariance in category theory

We will now convert [1]’s group equivariance condition into the language of category theory.

A left group action 𝐺 × 𝑆 → 𝑆 is a homomorphism from a group 𝐺 to the group of bijections of a set 𝑆 that 𝐺 is acting upon. 
Since 𝑆 is itself an object in the category Set of sets, and bijections from 𝑆 to itself are the invertible morphisms in ℎ𝑜𝑚Set(𝑆,𝑆), the 
left group action 𝐺 × 𝑆 → 𝑆 is an object of the category Set𝐺 of covariant functors from 𝐺 to Set.

Since the objects of the category Set𝐺 are the functors from 𝐺 to Set,1 then the morphisms of Set𝐺 are natural transforms between 
these functors. For the left action 𝐴1 ∶ 𝐺→ Set that maps the single object 𝑏 of 𝐺 to a set 𝑆1 and the left action 𝐴2 ∶ 𝐺→ Set that 
maps the single object 𝑏 of 𝐺 to a set 𝑆2, the natural transform 𝜂 ∶𝐴1 →𝐴2 has a single component 𝜂𝑏 ∶ 𝑆1 → 𝑆2 because there is a 
single object 𝑏 in 𝐺. Every morphism, which is a group element 𝑔 ∈ 𝐺, must satisfy the naturality condition 𝜂𝑏(𝑔 ⋅𝑆1 𝑠) = 𝑔 ⋅𝑆2 𝜂𝑏(𝑠)
for all 𝑠 ∈ 𝑆1, where ⋅𝑆1 denotes the action of 𝐺 on set 𝑆1 and ⋅𝑆2 denotes the action of 𝐺 on set 𝑆2.

Now consider an agent with a set 𝐴 of actions and a set 𝑍 of representation states in a world 𝒲0 that has a set 𝑊 of world states 
and that satisfies world conditions 1 and 2. For 𝒲0, 𝐴∕ ∼ is a group. Since the set of world states 𝑊 and the set of representation 
states 𝑍 are both acted on by the same group 𝐴∕ ∼, there are two group actions ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 and ∗𝑍∶ (𝐴∕ ∼) ×𝑍 →𝑍 , 
and both group actions give functors from 𝐴∕ ∼ to objects (𝑊 and 𝑍) in the category Set. A structure-preserving map between these 
functors is a natural transform with the single component 𝜂𝑏 ∶𝑊 →𝑍 that satisfies 𝜂𝑏(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏(𝑤) for all 𝑤 ∈𝑊 and for 
all 𝑎 ∈𝐴∕ ∼, where ∗𝑊 denotes the action of 𝐴∕ ∼ on set 𝑊 and ∗𝑍 denotes the action of 𝐴∕ ∼ on set 𝑍 . This component 𝜂𝑏 is [1]’s 
equivariant condition (𝑔 ⋅𝑍 𝑓 (𝑤) = 𝑓 (𝑔 ⋅𝑊 𝑤)) in the language of category theory.

5.2.2. Equivariance for single-object categories

We will now take the category theory argument we used to derive the group equivariance condition for worlds where ∗𝑊 ∶ (𝐴∕ ∼
) ×𝑊 →𝑊 is a group action (reproducing [1]’s equivariant condition) and generalise our argument to worlds where ∗𝑊 ∶ (𝐴∕ ∼
) ×𝑊 →𝑊 is the (full) action of any algebraic structure 𝐴∕ ∼ that can be delooped to form a single-object category B(𝐴∕ ∼).2 Any 
single-object category is a monoid (Definition 5.10), therefore an equivariance condition for single-object categories will hold for any 
world where 𝐴∕ ∼ is a monoid. The derivation of this condition is trivially the same argument as given for the group action case 
since we did not require that the morphisms in the single-object category with morphisms giving 𝐴∕ ∼ be isomorphisms.

1 The objects of the category Set𝐺 are the maps from the morphisms in 𝐺 to the morphisms in Set.
2 Formally, in section 5.2.1 we follow the argument in this section and deloop the group 𝐴∕ ∼ to form the associated category B(𝐴∕ ∼).
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1. Setup Now consider an agent with a set 𝐴 of actions and a set 𝑍 of representation states in a world 𝒲1 that has a set 𝑊 of world 
states and where 𝐴∕ ∼ is a monoid with elements 𝑎1, 𝑎2, ..., 𝑎𝑛.

2. Category of actions Let B(𝐴∕ ∼) be the delooped category of 𝐴∕ ∼ and let B = {𝑏} be the set of objects of B(𝐴∕ ∼). The set of 
morphisms of B(𝐴∕ ∼) is 𝐴∕ ∼.

3. Functors for actions on sets The action ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 of 𝐴∕ ∼ on the set 𝑊 gives a functor 𝜌 ∶ B(𝐴∕ ∼)→𝑊 , where 𝜌
encodes the properties of the algebraic structure of (𝐴∕ ∼). Similarly, the action ∗𝑍∶ (𝐴∕ ∼) ×𝑍 →𝑍 of 𝐴∕ ∼ on the set 𝑍 gives a 
functor 𝜏 ∶ B(𝐴∕ ∼)→𝑍 , where 𝜏 encodes the properties of the algebraic structure of (𝐴∕ ∼).

4. Structure-preserving morphism (natural transform) We want the property that 𝐴∕ ∼ acts on 𝑊 and 𝑍 in the same way, so we want 
to preserve the structure between the functors 𝜌 and 𝜏 . The objects of the functor category SetB(𝐴∕∼) are the functors, including 𝜌
and 𝜏 , from B(𝐴∕ ∼) to Set; the morphisms (structure-preserving maps) between the objects of SetB(𝐴∕∼) are natural transforms. The 
structure-preserving map between 𝜌 and 𝜏 is the natural transform 𝜂 ∶𝑊 →𝑍 with the single component 𝜂𝑏 ∶𝑊 →𝑍 that satisfies 
𝜂𝑏(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏(𝑤) for all 𝑤 ∈𝑊 and for all 𝑎 ∈ 𝐴∕ ∼, where ∗𝑊 denotes the action of 𝐴∕ ∼ on set 𝑊 and ∗𝑍 denotes the 
action of 𝐴∕ ∼ on set 𝑍 .

5. Generalised equivariance condition The generalised equivariance condition for the single-object case is:

𝜂𝑏(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏(𝑤) for all 𝑤 ∈𝑊 and for all 𝑎 ∈𝐴∕ ∼.

In other words, the diagram

𝑤 𝑎 ∗𝑊 𝑤

𝜂𝑏(𝑤) 𝜂𝑏(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏(𝑤)

𝑎∗𝑊

𝑎∗𝑍

𝜂𝑏𝜂𝑏

commutes.

We have now generalised [1]’s group equivariance condition to worlds where ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a (full) monoid action. 
We have shown that the equivariance condition depends only on the number of objects in the delooped category of 𝐴∕ ∼, and so 
the equivariance condition for monoid action ∗ is structurally the same as for group action ∗. Our derived equivariance condition is 
valid in some worlds where agents can perform irreversible actions since monoids can have elements with no inverse; the inability 
of [1]’s original formalism to deal with irreversible actions has been explicitly stated [51, page 4]. In fact, from Proposition 4.1, this 
equivariance condition for the single-object category case is valid for any world that satisfies world condition 1.

5.2.3. Equivariance for multi-object categories

We will now generalise our argument to derive equivariance conditions for worlds where ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 is the action of 
any algebraic structure 𝐴∕ ∼ that can be delooped to form any small category B(𝐴∕ ∼). Let us adapt our argument for single-object 
categories from the previous section step-by-step to the multi-object category case:

1. Setup Consider an agent with a set 𝐴 of actions and a set 𝑍 of representation states in a world 𝒲2 that has a set 𝑊 of world 
states and where 𝐴∕ ∼ is a small category with elements 𝑎1, 𝑎2, ..., 𝑎𝑛.

2. Category of actions Let B(𝐴∕ ∼) be the delooped category of 𝐴∕ ∼ and let B = {𝑏1, 𝑏2, ..., 𝑏𝑚} be the set of objects of B(𝐴∕ ∼). For 
the multi-object category case, the set of morphisms 𝑓 ∶ 𝑏𝑖 → 𝑏𝑗 of B(𝐴∕ ∼) is not the elements 𝑎1, 𝑎2, ..., 𝑎𝑛 of 𝐴∕ ∼ - the elements 
from the algebraic structure 𝐴∕ ∼ do not appear directly as components of morphisms; instead they inform how the objects and 
morphisms within the category interact. The morphisms 𝑓 ∶ 𝑏𝑖 → 𝑏𝑗 of B(𝐴∕ ∼) can be thought of as arrows connecting object 𝑏𝑖 to 
object 𝑏𝑗 . Each morphism is then labelled by an element of 𝐴∕ ∼; this labelling indicates how the element from 𝐴∕ ∼ maps 𝑏𝑖 to 𝑏𝑗
within the categorical framework.3 This is analogous to the treatment of transitions (analogous to morphisms) and actions (analogous 
to elements of 𝐴∕ ∼) given in Section 2.2.1.

3. Functors for actions on sets As before, the action ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 of 𝐴∕ ∼ on the set 𝑊 gives a functor 𝜌 ∶ B(𝐴∕ ∼)→𝑊 , 
where 𝜌 encodes the properties of the algebraic structure of (𝐴∕ ∼). Similarly, the action ∗𝑍∶ (𝐴∕ ∼) ×𝑍 →𝑍 of 𝐴∕ ∼ on the set 𝑍
gives a functor 𝜏 ∶ B(𝐴∕ ∼)→𝑍 , where 𝜏 encodes the properties of the algebraic structure of (𝐴∕ ∼). The functors 𝜌 and 𝜏 now have 
components, 𝜌(𝑏𝑖) and 𝜏(𝑏𝑖), for each object 𝑏𝑖 ∈ B as well as components, 𝜌(𝑓 ) and 𝜏(𝑓 ), for each morphism 𝑓 ∈ B(𝐴∕ ∼).

3 In the single-object category case (B = 𝑏), all morphisms are between the same object (they are endomorphisms) and so there is a one-to-one correspondence 
between these endomorphisms 𝑓 ∶ 𝑏→ 𝑏 and the elements of 𝐴∕ ∼; this means we can treat the elements of 𝐴∕ ∼ as the morphisms of B(𝐴∕ ∼).
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4. Structure preserving morphisms (natural transform) We again want the property that 𝐴∕ ∼ acts on 𝑊 and 𝑍 in the same way, 
so we want to preserve the structure between the functors 𝜌 and 𝜏 . The objects of the functor category SetB(𝐴∕∼) are the functors, 
including 𝜌 and 𝜏 , from B(𝐴∕ ∼) to Set; the morphisms between the objects of SetB(𝐴∕∼) are natural transforms. So we again want to 
preserve the structure between the functors 𝜌 and 𝜏 using a natural transform 𝜂 ∶𝑊 →𝑍 . However, since there are multiple objects 
in B(𝐴∕ ∼), our natural transform 𝜂 has a component for each object in B. For each object 𝑏𝑖 ∈ B, there is a component 𝜂𝑏𝑖 ∶𝑊 →𝑍

such that it satisfies 𝜂𝑏𝑖 (𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏𝑖 (𝑤) for all 𝑤 ∈𝑊 and for all 𝑎 ∈ 𝐴∕ ∼, where ∗𝑊 denotes the action of 𝐴∕ ∼ on set 𝑊
and ∗𝑍 denotes the action of 𝐴∕ ∼ on set 𝑍 .

Remark 5.2.1. There is a different 𝜂𝑏𝑖 for each object 𝑏𝑖 ∈ B.

5. Generalised equivariance condition The generalised equivariance condition for the multi-object category case is a collection of 
equivariance conditions, one for each object 𝑏𝑖 ∈ B, with the corresponding natural transformation components 𝜂𝑏𝑖 satisfying the 
condition:

𝜂𝑏𝑖
(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏𝑖 (𝑤) for all 𝑤 ∈𝑊 and for all 𝑎 ∈𝐴∕ ∼.

In other words, the diagram

𝑤 𝑎 ∗𝑊 𝑤

𝜂𝑏𝑖
(𝑤) 𝜂𝑏𝑖

(𝑎 ∗𝑊 𝑤) = 𝑎 ∗𝑍 𝜂𝑏𝑖 (𝑤)

𝜂𝑏𝑖

𝑎∗𝑊

𝑎∗𝑍

𝜂𝑏𝑖

commutes.

This generalised equivariance condition ensures that the action of 𝐴∕ ∼ on 𝑊 and 𝑍 is preserved consistently across all objects 
of B(𝐴∕ ∼).

Remark 5.2.2. For each object 𝑏𝑖, we have an associated natural transformation component 𝜂𝑏𝑖 ∶𝑊 →𝑍 . This component represents how 
the action of 𝐴∕ ∼ on the set 𝑊 relates to the set 𝑍 for the specific object 𝑏𝑖. In other words, 𝜂𝑏𝑖 encodes how the algebraic structure 𝐴∕ ∼
interacts with that particular object 𝑏𝑖.

We have generalised [1]’s group equivariance condition to worlds where ∗𝑊 ∶ (𝐴∕ ∼) ×𝑊 →𝑊 is a (full) small category action 
or, equivalently, a partial monoid action. Our derived equivariance condition is valid in some worlds where agents have actions that 
are not defined by some world states.

5.3. Disentangling

We will now generalise the definition of disentanglement given by [1] to give a definition that works for worlds with transforma

tions that cannot be described by groups. We prove that the equivalence condition can be disentangled.

5.3.1. Disentangling of group actions in Category Theory terms

In Category Theory, the group action ⋅ ∶𝐺×𝑋→𝑋, where 𝐺 is a group and 𝑋 is a set, gives a functor 𝛼 ∶ B𝐺× Set → Set, where 
B𝐺 is the (single-object) delooped category of 𝐺 and Set the category of sets. 𝛼 satisfies:

1. 𝛼1 = id𝑋 , where 1 is the identity element of 𝐺.

2. 𝛼𝑔1 ◦ 𝛼𝑔2 = 𝛼𝑔1𝑔2 for all 𝑔1, 𝑔2 ∈𝐺.

The set 𝑋 is an object in the category Set.

If 𝐺 decomposes into the direct product of subgroups 𝐺 = 𝐺1 × ... × 𝐺𝑛, then B𝐺 decomposes into a categorical product of the 
relevant delooped categories B𝑖𝐺𝑖 as B𝐺 = B1𝐺1 × ... × B𝑛𝐺𝑛. The object of B1𝐺1 × ... × B𝑛𝐺𝑛 is the 𝑛-tuple of objects (𝑏1, ..., 𝑏𝑛)
where each 𝑏𝑖 is the (single) object in B𝑖. The morphisms of B1𝐺1 × ...× B𝑛𝐺𝑛 are the 𝑛-tuples of morphisms (𝑓1, ..., 𝑓𝑛) where 𝑓𝑖 is a 
morphism 𝑓𝑖 ∶ B𝑖𝐺𝑖→ B𝑖𝐺𝑖. The composition of morphisms is defined component-wise.

We say the functor 𝛼 ∶𝐺 ×𝑋→𝑋 is disentangled with respect to a decomposition 𝐺 =𝐺1 × ...𝐺𝑛 of 𝐺 if:

1. There exists a decomposition 𝑋1 × ...𝑋𝑛 and an isomorphism 𝑋 ≅𝑋1 × ...𝑋𝑛.
2. 𝛼 can be decomposed into sub-functors 𝛼 = 𝛼1 × 𝛼2 × ... × 𝛼𝑛, where each sub-functor 𝛼𝑖 ∶ (B𝑖𝐺𝑖) ×𝑋𝑖 → 𝑋𝑖 corresponds to the 

action of the subgroup 𝐺𝑖 on the subspace 𝑋𝑖 that is invariant under all other subgroups: 𝛼(𝑔,𝑥) = 𝛼(𝑔1 × ... × 𝑔𝑛, 𝑥1 × ... × 𝑥𝑛) =
𝛼1(𝑔1, 𝑥1) × ... × 𝛼𝑛(𝑔𝑛, 𝑥𝑛).
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If 𝐺 has additional structure such as a vector space or a topological space, then we can consider a subcategory consisting of objects 
with that structure, and require the functors 𝛼 and 𝛼𝑖 to preserve that structure.

We will now extend the definition of disentangling given by [1] to worlds with transition algebras that are described by multi-object 
categories. First, we convert [1]’s definition of disentangling into category theory terms. We then extend this to any single-object 
category, and finally to any multi-object category.

The definition of a disentangled functor given previously extends to the case of any algebra, including those expressed as multi

object categories, by letting 𝐺 be the algebra 𝐴∕ ∼ and letting B contain one or more objects. These changes do not change the 
definition of a disentangled functor given previously.

5.3.2. Disentangling and the equivariance condition

We now want to see how disentangling affects the equivariance condition. Specifically, we want to see if the natural transform 𝜂
disentangles.

Let 𝜌 ∶ B(𝐴∕ ∼)→𝑊 and 𝜏 ∶ B(𝐴∕ ∼)→𝑍 be disentangled functors of the actions ∗𝑊 ∶ (𝐴∕ ∼)×𝑊 →𝑊 and ∗𝑍∶ (𝐴∕ ∼)×𝑍 →𝑍

respectively.

By definition, there are decompositions 𝑊 =
∏𝑛

𝑖=1𝑊𝑖 and 𝑍 =
∏𝑛

𝑖=1𝑍𝑖 where each 𝑊𝑖 (respectively 𝑍𝑖) is fixed by the sub

functor 𝜌𝑗≠𝑖 (respectively 𝜏𝑗≠𝑖) and is only affected by the functor 𝜌𝑖 (respectively 𝜏𝑖). Now let 𝜂 ∶𝑊 → 𝑍 be a natural transform 
between 𝜌 and 𝜏 (i.e., for each 𝑎,𝑤 ∈ (𝐴∕ ∼)×𝑊 , we have 𝜂(𝜌(𝑎,𝑤)) = 𝜏(𝑎, 𝜂(𝑤))). We want to show that 𝜂 is itself disentangled with 
respect to the decomposition of B(𝐴∕ ∼).

Let 𝑤 = (𝑤1, ...,𝑤𝑛) ∈𝑊 be a point in the decomposition of 𝑊 , let 𝑎 = (𝑎1, ..., 𝑎𝑛) ∈𝐴∕ ∼ be a point of decomposition of B(𝐴∕ ∼), 
and let 𝑎𝑖 ∈ (𝐴∕ ∼)𝑖 be an element in the 𝑖th factor of 𝐴∕ ∼. Say we have a decomposition of 𝜂 such that 𝜂 = (𝜂1, ..., 𝜂𝑛) where 𝜂𝑖 is 
the 𝑖th component of 𝜂. Therefore, we have 𝜂(𝑤) = (𝜂1(𝑤1), ..., 𝜂𝑛(𝑤𝑛)) where 𝜂𝑖(𝑤) ∈𝑍𝑖. Consider

𝜂(𝜌(𝑎𝑖,𝑤)) = 𝜂((𝜌1(𝑎𝑖,𝑤1), ..., 𝜌𝑖(𝑎𝑖,𝑤𝑖), ..., 𝜌𝑛(𝑎𝑖,𝑤𝑛)))

= (𝜂1(𝜌1(𝑎𝑖,𝑤1)), ..., 𝜂𝑖(𝜌𝑖(𝑎𝑖,𝑤𝑖)), ...𝜂𝑛(𝜌𝑛(𝑎𝑖,𝑤𝑛)))

Since 𝑊𝑖 is fixed by the action of (𝐴∕ ∼)𝑗≠𝑖, we have 𝜌𝑗 (𝑎𝑖,𝑤𝑗 ) =𝑤𝑗 for 𝑖 ≠ 𝑗, and so:

𝜂(𝜌(𝑎𝑖,𝑤)) = (𝜂1(𝑤1), ..., 𝜂(𝜌𝑖(𝑎𝑖,𝑤𝑖)), ..., 𝜂𝑛(𝑤𝑛)) (1)

Now consider

𝜏(𝑎𝑖, 𝜂(𝑤)) = (𝜏1(𝑎𝑖, 𝜂1(𝑤1)), ..., 𝜏𝑖(𝑎𝑖, 𝜂𝑖(𝑤𝑖)), ..., 𝜏𝑛(𝑎𝑖, 𝜂𝑛(𝑤𝑛)))

Since 𝑍𝑖 is fixed by the action of (𝐴∕ ∼)𝑗≠𝑖, we have 𝜏𝑗 (𝑎𝑖, 𝜂(𝑤𝑗 )) = 𝜂(𝑤𝑗 ) for 𝑖 ≠ 𝑗, and so:

𝜏(𝑎𝑖, 𝜂(𝑤)) = (𝜂1(𝑤1), ..., 𝜏𝑖(𝑎𝑖, 𝜂𝑖(𝑤𝑖)), ..., 𝜂𝑛(𝑤𝑛)) (2)

We can see from combining equations (1) and (2) that if 𝜂𝑖(𝜌𝑖(𝑎𝑖,𝑤𝑖)) = 𝜏𝑖(𝑎𝑖, 𝜂𝑖(𝑤𝑖)) (i.e., the relevant diagrams commute for each 
component 𝜂𝑖 of 𝜂), then 𝜂𝑖 is disentangled with respect to the action of (𝐴∕ ∼)𝑖 on 𝑊𝑖 and 𝑍𝑖, and therefore 𝜂 is itself disentangled 
with respect to the decomposition of 𝐴∕ ∼.

We have shown that 𝜂 can be decomposed into sub-natural transforms 𝜂1, ..., 𝜂𝑛, where each 𝜂𝑖 is a natural transform between 
sub-functions 𝜌𝑖 and 𝜏𝑖. Each 𝜂𝑖 ∶𝑊𝑖 → 𝑍𝑖 preserves the structure of the corresponding subcategory of 𝑊 and 𝑍 ; therefore, if 𝑊𝑖
and 𝑍𝑖 have additional structure, then the sub-natural transform 𝜂𝑖 must preserve that structure. This opens up the possibility of a 
decomposition of 𝐴∕ ∼ and therefore 𝑊 , 𝑍 , 𝜌, 𝜏 , and 𝜂 such that some additional structure is confined to a single set of components 
(𝐴∕ ∼)𝑖, 𝑊𝑖, 𝑍𝑖, 𝜌𝑖, 𝜏𝑖, and 𝜂𝑖.

Components of 𝜂 when B(𝐴∕ ∼) is a multi-object category If B(𝐴∕ ∼) is a multi-object category, then the components of the sub-natural 
transform 𝜂𝑖 between functors 𝜌𝑖 and 𝜏𝑖 are 𝜂𝑖𝑏𝑗 ∶ 𝜌𝑖(𝑏𝑗 )→ 𝜏𝑖(𝑏𝑗 ) for each object 𝑏𝑗 ∈ B.

In this section, we first generalised [1]’s equivariance condition using category theory; to do so, we converted our symmetry

based representation argument into category theory - this gave us insight into the relationship between the algebraic form and the 
categorical form. Category theory naturally generalises the group-equivariance condition given by [1] to any algebraic structure that 
has a categorical interpretation. We then showed that a form of the equivariance condition exists for a world with transformations 
that form any algebra. We also demonstrated that the equivariance condition is, in fact, a fundamental feature of category theory: 
the natural transform.

Next, we converted [1]’s definition of disentangling into category theory terms; category theory then provided a natural gener

alisation of the definition of disentangling to worlds with transformations that form any algebra. Finally, we explored the interplay 
between the generalised equivariance condition and the generalised definition of disentangling. We concluded that disentangled 
sub-algebras can each have their own individual equivariance sub-conditions, and thus, the learning of these sub-algebras, as well as 
their applications, can be treated independently. This result has important implications for learning algorithms; for example, since 
each disentangled subspace has its own individual equivariance condition, the learning of each subspace is also independent, and so 
different learning algorithms could be used on each disentangled subspace.
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6. Discussion & conclusion

The question of what features of the world should be present in a ‘good’ representation that improves the performance of an 
artificial agent for a variety of tasks is key in representation learning. [1] proposes that the symmetries of the world are important 
structures that should be present in an agent’s representation of that world. They formalise their proposal using group theory as 
SBDRL, which is made up of a disentangling condition that defines transformations as commutative subgroups and a group equivariant 
condition.

In this paper, we have taken that programme one step further and posit that the relationships of transformations of the world 
due to the actions of the agent should be included in the agent’s representation of the world and not just the actions that form 
group symmetries. We then used this framework to derive and identify limitations in SBDRL. This approach reports two benefits: 
(1) it shows that the framework we put forward encompasses SBDRL, and (2) it identifies worlds where SBDRL cannot describe the 
relationships between the transformations of a world due to the actions of an agent. We use algorithmic methods, newly designed 
by us for this work, to extract the (not necessarily group) algebras of the actions of an agent in example worlds with transformations 
that cannot be fully described by SBDRL. We decided to use worlds that exhibit features commonly found in reinforcement learning 
scenarios because representation learning methods have been shown to improve the learning efficiency, robustness, and generalisation 
in such contexts. Finally, we use category theory to generalise core ideas of SBDRs, specifically the equivariance condition and the 
disentangling definition, to a much larger class of worlds than previously done, with more complex action algebras, including those 
with irreversible actions. We also propose that category theory appears to be a natural choice for the study of transformations of 
a world because it focuses on the transformation properties of objects per se, and the perspective that the properties of objects are 
completely determined by their relationship to other objects is a key result of category theory (the Yoneda Lemma).

The framework we have set out and its results have much room for expansion in future work, including the following: (1) How 
would we deal with transformations of the world that are not due to the actions of an agent? (2) How would partial observability 
affect the agent’s representations? (3) What effect would the use of continuous actions have? (4) What algebraic structures would 
be given by different equivalence relations? (5) Under what conditions can we disentangle reversible and irreversible actions? (6) 
Could our category theory generalisation of the SBDRL equivariance condition also be used to describe other uses of equivariance 
conditions in Artificial Intelligence, such as unifying the different equivariance conditions given by [25] through natural transforms? 
(7) How can our framework be used to develop better representation learning algorithms?

Despite such valid follow-up questions, the main contributions of our proposal stand clear: for agents to interact with their 
environment efficiently, it is paramount that they learn ``good'' representations, representations that take advantage of the symmetries 
of the transformations brought in by their own actions to reduce the task of data processing. For instance, if we learn that a square 
shows rotation and reflection symmetries, we can, in principle, operate directly in the world under such assumptions, rather than 
exploring the outcomes of every possible action. Whereas SBDRL and similar approaches have paved the way in formalising such 
transformations in the case of homogeneous groups, they fall short in representing more flexible symmetric structures. That is, while 
the study of symmetries is becoming more prominent in representation learning, in this work we have sought to take some key 
results of mathematical frameworks based on symmetries and generalise them to encompass all transformations of the world due 
to the actions of an agent: we have presented a formal framework that provides AI developers with the right tools to generate rich 
representations that show symmetries as groups (as SBDRL does) and beyond. The range of applications of AI models built with 
this underlying framework and mechanism may greatly extend the state of the art --for instance, reinforcement learning algorithms 
can directly incorporate knowledge of unknown until now symmetries in so-called world models, minimizing convergence speed; 
in natural language processing and computer vision tasks, for both LLMs and multimodal foundation models that rely on training 
vast amounts of data, information and its structured representation in various types of symmetries may be incredibly useful; even 
in relatively simple classification tasks executed on convolutional layers one could expect an improvement in performance if such 
convolutions take into account the symmetries formalised in our framework; and the same can be hypothesised about generative AI 
models such as GANs and transformers that depend on encoding and decoding embedded representations to and from latent spaces. 
We hope the work presented here will stimulate further work in this direction.

In addition, we also believe that a general framework for exploring the algebra of the transformations of worlds containing an 
agent, as proposed in this paper, has the potential to be used as a tool in the field of explainable AI since it may enable us to predict 
which algebraic structures should appear in the agent’s representation of the world at the end of the learning process.
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Appendix A

Algorithm 3 AddElementToStateCayleyTable: Fill state Cayley table row and column for element 𝑎.
Require: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤: initial world state, 𝑎.
1: Add new row and new column labelled by 𝑎 to 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒.
2: for 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

3: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒[𝑎][𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙]← 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 ∗ (𝑎 ∗𝑤).
4: end for

5: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

6: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒[𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙][𝑎]← 𝑎 ∗ (𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 ∗𝑤).
7: end for

Algorithm 4 SearchForNewCandidates: Search for new candidate elements in state Cayley table.

Require: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤: initial world state, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
1: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

2: for 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

3: 𝑎𝐶 ← 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 ◦ 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙.

4: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑← SearchForEquivalents(𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤, 𝑎𝐶 ). ⊳ See Algorithm 5.

5: if 𝑙𝑒𝑛(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑) ≠ 0 then

6: Add 𝑎𝐶 to relevant equivalence class.

7: else

8: Add 𝑎𝐶 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.
9: end if

10: end for

11: end for

12: return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.

Algorithm 5 SearchForEquivalents: Search for elements in Cayley table that are equivalent to 𝑎.
Require: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤: initial world state, 𝑎.
1: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑← empty list.
2: 𝑎_𝑟𝑜𝑤← empty list. ⊳ Generate state Cayley row for 𝑎.
3: for 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

4: if 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 == 𝑎 then

5: Continue to the next iteration of the for loop.

6: end if

7: Append 𝑐𝑜𝑙𝑢𝑚𝑛_𝑙𝑎𝑏𝑒𝑙 ∗ (𝑎 ∗𝑤) to 𝑎_𝑟𝑜𝑤.

8: end for

9: 𝑎_𝑐𝑜𝑙𝑢𝑚𝑛← empty list. ⊳ Generate state Cayley column for 𝑎.
10: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

11: if 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 == 𝑎 then

12: Continue to the next iteration of the for loop.

13: end if

14: Append 𝑎 ∗ (𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 ∗𝑤) to 𝑎_𝑐𝑜𝑙𝑢𝑚𝑛.
15: end for

16: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

17: if (𝑎_𝑟𝑜𝑤, 𝑎_𝑐𝑜𝑙𝑢𝑚𝑛) == (𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 row, 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 column) then

18: Append 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 to 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑.

19: end if

20: end for

21: return 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠_𝑓𝑜𝑢𝑛𝑑.

Artiϧcial Intelligence 348 (2025) 104403 

27 



A. Dean, E. Alonso and E. Mondragón 

Algorithm 6 SearchForBrokenEquivalenceClasses: Find equivalence classes that are broken by 𝑎𝐶 .

Require: 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒, 𝑤: initial world state, 𝑎𝐶 .

1: for 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 in 𝑠𝑡𝑎𝑡𝑒_𝑐𝑎𝑦𝑙𝑒𝑦_𝑡𝑎𝑏𝑙𝑒 do

2: 𝑒𝑐_𝑙𝑎𝑏𝑒𝑙_𝑜𝑢𝑡𝑐𝑜𝑚𝑒← 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 ∗ (𝑎𝐶 ∗𝑤).
3: for 𝑒𝑐_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 in equivalence class labelled by 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙 do

4: if 𝑒𝑐_𝑙𝑎𝑏𝑒𝑙_𝑜𝑢𝑡𝑐𝑜𝑚𝑒≠ 𝑒𝑐_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∗ (𝑎𝐶 ∗𝑤) then

5: Create a new equivalence class labelled by 𝑒𝑐_𝑒𝑙𝑒𝑚𝑒𝑛𝑡.
6: Remove 𝑒𝑐_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 from the equivalence class labelled by 𝑟𝑜𝑤_𝑙𝑎𝑏𝑒𝑙.

7: end if

8: end for

9: end for

10: return: New equivalence classes.

Data availability

GitHub repository has been linked to in the paper.
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