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When a plasma is bounded by an electron-emissive wall, the sheath which 
forms in its vicinity will accelerate any released electrons into the plasma 
and this will give rise to the beam-plasma instability. The development of 
this instability has been modelled using a 1-D particle-simulation code 
developed for this purpose.

When simulating the instability the sheath region is not represented in 
the code and the parameters for the sheath and associated 
secondary-electron beam have been obtained from a separate calculation. 
Equations, generalised to include current flows to the wall under equilibrium 
conditions, have been derived for this purpose and their solutions obtained. 
The thermal fluctuation energy of the most unstable mode in the sheath has 
also been estimated.

The secondary-electron beam-plasma instability develops with initial 
linear growth of a spectrum of electrostatic waves. The spectrum eventually 
becomes narrow enough to be considered a single wave which ultimately 
grows large enough to trap the beam electrons, whereupon the growth 
saturates. Thereafter the wave amplitude oscillates as the trapped electrons 
bounce back and forth in the potential well. Neighbouring waves, 
phase-mixing and particle collisions all have the capability to smear out the 
beam orbit, thus destroying the wave amplitude oscillations and, depending 
on the conditions, this can cause the particle distribution to approach that of 
a BGK mode. When no current is flowing, and assuming the maximum 
secondary-electron flux, the distance from the sheath to the trapping region 
is of the order of 100 Debye lengths for all real plasmas; the stability of the 
sheath itself would appear to remain unaffected by the nonlinear 
development of the instability. When the sheath carries a current, however, 
the sheath stability and distance to the trapping region may be modified.

While pursuing the equilibrium calculations a hypothetical plasma system 
was discovered for which the choice of boundary condition was not clear. 
The particle-simulation has revealed that such a system adopts the 
configuration which minimises the wall-potential relative to the midplane. It 
has also been demonstrated that choosing the equality in the Bohm criterion 
for sheath formation corresponds to an approximate minimisation of 
wall-potential relative to the midolane for a Dlasma hounded hv two



Introduction

1.1 Overview

The properties and structure of the sheath which forms adjacent to any 
surface in contact with a plasma have been investigated for many years. It was 
originally shown that the sheath forms to prevent the flow of current to the 
wall [Tonks and Langmuir, 1929a, 1929b], and Bohm [1949] has shown that in 
a collisionless sheath ions must enter it with a minimum energy if the 
potential distribution is to remain monotonic. Hobbs and Spalding [ 1966] 
showed that the sheath acts as a thermal insulator and Hobbs and Wesson 
[ 1966] have calculated the heat flow for floating conditions and included the 
effects of secondary emission. Harbour [1978] has made extensions to the 
calculation.

Matching of the sheath and plasma solutions for a cold non-emissive 
boundary has been carried out by Franklin and Ockenden [1964] at low 
pressure and Blank [1968] at high pressure. The situation for a hot, emissive 
boundary has been studied by Crawford and Cannara [1965] and Prewett and 
Allen [1976]. Experimental results have been obtained by Goldan [1970]

The above workers have examined only steady state solutions for the sheath 
but at around the electron plasma frequency both experimental [Franklin, 
1964] and theoretical [Baldwin, 1969, Peratt, 1973] work has indicated that a 
conventional sheath is stable. At frequencies up to the ion plasma frequency 
other workers [Weynants et al, 1973] reach similar conclusions.

When secondary emission is included, however, the situation may 
potentially be unstable since the secondary electrons will be accelerated away 
from the wall by the sheath potential and into the plasma. A linear analysis of 
the stability of the sheath in this situation has been undertaken bv Franklin



The aim of the present work is to extend existing calculations and to 
examine the nonlinear development of the secondary electron instability in 
the plasma with emphasis on its consequences for the stability of the sheath. 
The existing work which has provided both the foundations of and the starting 
point for the present investigation will be reviewed in this chapter. These 
topics are: the Bohm criterion for sheath formation, the effect of secondary 
emission on sheath parameters, and the linear stability of the plasma sheath.

The following two chapters describe theory which is not specific to the 
sheath but which nonetheless is directly applicable to the problem being 
investigated. Chapter two concerns Vlasov theory and discusses both linear 
and nonlinear effects described by the Vlasov equation which applies to a 
collisionless plasma. Chapter three considers some theories which have been 
applied to the development of the instability caused by a small cold beam 
interacting with a plasma.

Chapter four describes the particle simulation method which has been 
chosen to model the evolution of the beam-plasma instability resulting from 
secondary emission and the reasons for selecting this approach are also 
discussed there. The main features of the computer code developed to 
perform the simulation are briefly outlined.

In chapter five we deal with calculations which are concerned with 
equilibrium parameters defining the characteristics of the sheath and 
associated secondary electron beam. The first two sections cover zero current 
conditions and the case of a current carrying sheath. The third and last 
section in this chapter discusses situations where the boundary conditions are 
not clear, in particular, calculations are carried out for a hypothetical plasma 
system in which a boundary condition seems to be related to a novel derivation 
of the Bohm criterion.



more clear cut and straightforward. Also in this chapter we speculate on the 
nonlinear evolution of the instability beyond the stage represented in the 
simulations and. finally, we ascertain the stability of the sheath.

A summary of the main results and rationale which led to them is given in 
chapter seven followed by a discussion of other related work and some 
implications are drawn for the beam-plasma instability. The last section lists a 
number of conclusions.

1.2 The Bohm Criterion

Bohm's [1949] model of the sheath assumes a potential variation resembling 
that shown in Fig. 1.1 and further assumptions required are as follows:

(1) The ion distribution at the plasma-sheath boundary may be
approximated by a 'cold' beam.

(2) The electric field and space charge are negligible at the 
plasma-sheath boundary.

(3) There are no collisions within the sheath.

Fig. 1.1 Potential variation near the sheath



these in to the Poisson equation which is:

» 4ne(n - x\) (1.1)

where n, and are the ion and electron number densities respectively.

Assuming that the electrons have a Maxwellian velocity distribution with 
temperature T we have:

n^ no exp -e(4>- 4>o)
KT (1-2)

where ru is the electron density in the sheath edge and is the potential at 
the same point

The ion density is obtained by assuming that the ions fall freely towards the 
wall through the accelerating potential and by imposing the condition of zero 
net current to the walk

n-«.($r (1.3)

Substituting (1.2) and (1.3) into (1.1) gives: 

5?
♦o \1/2 • ~ 0p) 1

• P KT J (1.4)

which when multiplied by 34>/9x and integrated becomes;

(1.5)
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The nature of solutions for 4> near the plasma-sheath boundary can be 
investigated by writing A$> for $ - $0 and expanding equation (1.4) in powers 
of Keeping only the first power one obtains:

dW) - / e 1 Xaa
air = 4ltr ^e (kt ’2^

Clearly if e^KT > 1/2 then exponential solutions are obtained and if 
e$ ,/KT < 1/2 then the solutions are oscillatory, Bohm argues qualitatively that 
in practice one should obtain:

e4>o 1
KT 2

(1.7)

which is the Bohm criterion; this means that ions should enter the sheath 
with energy equal to the average electron thermal energy. The validity of 
exponential solutions with e^o/KT > 1/2 will be examined next and a different 
argument from Bohm's will be used to justify taking the equality (1.7),

Returning to the expansion of equation (1.4) in powers of and continuing 
the process up to the second power one obtains:

Considering the case e^kT = 1/2 this becomes:

■ w>!



where the boundary condition 9(A<|))/0x = 0 when = 0 has been used. 
Integrating again gives:

«* - <*

where G is a constant of integration.

Equation (1.8) shows that goes to zero at x = <*> and these equations are 
therefore satisfied if the ions are travelling at the Bohm velocity at x = <». This 
means that if the ions reach the Bohm velocity at a sufficient distance from the 
wall then, provided that the intervening plasma remains collisionless, these 
equations will accurately describe the sheath potential distribution when we 
set e$f/KT = 1/2.

We now see that solutions with e^^KT > 1/2 cannot be valid because this 
would imply that ions were entering the sheath at speeds greater than the 
Bohm velocity which of course means that they must have reached the Bohm 
velocity at an even greater distance from the wall; if this were the case then, 
as before, equation (1.6) would accurately describe the sheath potential 
distribution with e^/KT = 1/2 thus contradicting the original assumption. It 
is emphasised, again, that this argument remains valid as long as the plasma 
separating the position where the equality is satisfied from the wall conforms 
to the three initial assumptions. We can therefore assume its validity for a 
plasma system which remains entirely collisionless. If we now imagine that 
collisions are gradually introduced into the system, up to some maximum level 
constrained by the condition of a collisionless sheath, we wish to know what 
effect this has on the applicability of the Bohm criterion. This is clearly not



These considerations lead one to conclude that for the purposes of the 
present investigation Bohm's result (equation (1.7)) is applicable provided that 
oscillatory solutions do not occur in practice. This will be examined further in 
Section 5.3.4.

1.3 Secondary Emission and Space Charge Limitation

The approach of the last section has been extended to include the effects of 
secondary emission of electrons from the wall |Hobbs and Wesson, 1966]. 
Again the infinite plane wall is situated at x = 0, in contact with a plasma 
filling the half-space x > 0. Poisson’s equation is now:

= 4n e(nep + n* - nJ (1.9)

taking $(«) = 0, where and n* are the densities of the plasma and 
emission (or 'beam') electrons respectively and n is the density of ions.

The plasma electrons are assumed to have a Maxwellian velocity 
distributions with temperature T so their density is:

iXp = [n0 - n* («)] exp (1.10)

where n,(= nH and charge neutrality at x —> has been assumed.

If the ions arriving at the sheath edge are monoenergetic with energy
E = ^Mv£ and thereupon fall freely to the wall then their density is:

(1.11)
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where T is the ratio of emission to primary electron fluxes, m is the electron 
mass and |0 = $(0).

Substituting these densities into the Poisson equation now gives:

d2$ 
dF

r r m E y/2 / E J/2 i
+ k F L Me(HjJ ’ J (1.13)

After multiplication by dty/dx and integration from «> to x this becomes:

(1.14)

where the boundary condition d$/dx = 0, 0 = 0 has been used. This provides a 
way of calculating the sheath potential distribution once T has been chosen 
and E and 0O are known.

Two more equations are required to determine E and $0: one is the 
condition which must be satisfied for the total current to the wall to be zero, 
and the other, the monotonicity criterion for small is analogous to the 
Bohm criterion for conventional sheaths.
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and equating the net ion and electron fluxes thereupon gives:

lr, r , m E x>/21 ze<>0 X/8KTX1/J 1 , 2E ^
]'^(kt X-5S-) tt (m ; (1.15)

for the zero current condition.

By expanding equation (1.13) about $ =0 the monotonicity condition 
becomes:

(1.16)

As (m/M)1/2 is a small quantity one can obtain the following 
approproximate solutions to equations (1.15) and (1.16):

(1.17)

and E « KT/2 (1.18)

One can see that increasing T reduces the potential drop across the sheath 
but it will be shown that a space charge limitation process prevents the value 
of T from rising above a certain critical value since a reduction in the 
potential drop will be seen to lead to a reduction in the accelerating electric 
field at the wall until it goes to zero.

To obtain an equation for the electric field at the wall we eliminate
(m/M) VT/(1- f) from equations (1.14) and (1.16) to give:



(1.19)

and a simpler, more approximate form can be obtained with the aid of 
equations (1.17) and (1.18):

This equation shows that as the magnitude of the (negative) sheath 
potential is reduced the electric field at the wall decreases until it becomes 
zero for e4>0® - £ KT. At this point no further secondary electrons can be 
accelerated away from the wall and the critical ratio of secondary to primary 
electi on fluxes corresponding to this state is Tc. If the rate of liberation of 
secondary electrons were increased to a level corresponding to T > Tc, 
then a fraction of them would in practice be re-absorbed by the wall to 
maintain T at the value Tc.

Thus it is seen that there will be a critical value of T which cannot be 
exceeded irrespective of the precise physical mechanism of production of the 
secondary electrons.

The equations given in this section have been used in the present work as a 
basis for calculating the equilibrium distribution function of the plasma in and 
beyond a sheath for the purpose of investigating the behaviour of the 

streaming instability. A linear analysis [Franklin, 1980] of this instability is 
described in the following section.
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linear analysis of sheath stability [Franklin, 1980]. In the following equations 
T) is the potential normalised to KT/e, u is ion velocity normalised to ion sound 
speed cB = (KT/M)P? and £ is distance normalised to the Debye length KD.

n^p = n, exp(- T|)

2n * “V2

for the plasma electrons

for the ionsn, = rvfl+a 1+

for the secondary electrons

where n^ is the density of plasma electrons, a the density of secondary 
electrons, u^ the ion speed on entry to the sheath, and T|c is the potential 
drop across the sheath.

Poisson's equation now becomes:

d2n
------- exp-n - a2r) j /2 r 1 

mT/

/ Tic XIZ2 
\T)c -T|/

1 + a

with boundary conditions T) = 0 and dn/d£ = 0 as t, —■><«.

The corresponding monotonicity condition is:

1+a

Now T)o corresponds to the wall potential and a is the relative density of 
the 'beam' of secondary electrons;



where (Dj is the plasma frequency of the jth species, v} the drift velocity, and c 
the thermal velocity. The three terms for plasma electrons, beam electrons 
and ions were included and solutions were obtained for the case of spatial 
growth (complex k and real w). The results indicated that the sheath would 
be stable and that significant instability would only be encountered beyond the 
sheath under floating conditions. For large positive currents to the wall 
however, the sheath can be unstable.
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In this chapter the Vlasov theory of plasma waves is outlined for the linear 
case and a quasilinear treatment is also given which maybe appropriate for 
the nonlinear description of certain cases of the beam-plasma instability (sec 
section 7.2.6).

2.1 Basic Linear Theory

Since much of the phenomena we shall be considering is effectively 
collisionless the appropriate equation to employ is the Vlasov equation:

|| + Vf+ —E-V f = 0 (21)
dt m

where f(r.v,t) is the particle distribution function, m and q are the particle 
mass and charge respectively. We restrict the problem to one dimension so 
that all vectors are in the x direction and consider a perturbation f} by writing 
f - + fi where f0( v) is an equilibrium distribution function which we shall
take to be a Maxwellian Substituting for f in equation (2.1) and after 
linearising we get:

df} df2 qE 3L
-d-+v^-+ — ~ =0 at dx m dv (2.2)

where it should be noted that the electric field E is a first order quantity. We 
now assume plane-wave solutions for f} and E of the form exp i(kx - ©t), so we 
get the following operator transformations: d/dt —»- i© and d/dx = —> ik, which 
when applied to equation (22) gives:

f - i(Vm E 9fo
1 © - kv dv (23)



(24)

V-E = 4it e (n, - nJ

which becomes on substituting the above operators:

ikE = 4ite fdv (^ - 1J)

We can now solve equations (23) and (24) by eliminating either fj or E. 
Choosing the former route we obtain:

£(k. to) - 1 - dMV*£L = 0
k J v - to/k

where c(k, <o) is known as the dielectric function and g(v) is the spatially 
averaged velocity distribution function which is normalised such that

Equation (25) is the dispersion relation for the normal modes of the plasma.

The alternative route of eliminating E gives:

(2.6)

and noting that fy = f(v) exp i(kx - cot) we obtain the following solution to 
equation (26):

fj(v) » P [ k dv 
v- co/k (2.7)

These are known as Case-Van Kampen modes [Van Kampen, 1955; Case,
1QRQ)



initial value problem which would require the use of the Laplace transform 
Such a treatment shows that, in the case of the dispersion relation, the 
integral in equation (25) should be evaluated using the Landau [ 1046] contour. 
This is represented in Fig. 2.1. For weak damping and large phase-velocity 
(co/k » vT) the pole in the integrand at v = co/k will be very close to the real 
v axis since we would then have 0), « this is because for late times the pole 
with the largest imaginary (or least damped part) corresponds to the 
dominant set of modes (the normal modes) for the plasma. Equation (2.5) thus 
becomes:

dg/dv
v - co/k dv + in 3v (28)

b) v=co/k
-Al?--------------- >

5 v= cu/k

Fig. 2.1. Landau contour for the evaluation of the integral in 
equation (25).

Integrating the first term of equation (28) by parts we get

p dv
3v v-co/k

oo gdv 
(v-to/k)" (29)



the binomial theorem to obtain:

©o
L

gdv _ r 2z
(v-a/k)2 a? I

3k2 v\
(2.10)1 +

and the real part of the dispersion relation thus becomes:

+ 3-^k> 
m (211)

where we have used v2 ■ vT « (KT/m)1/2 and assumed that the thermal 
correction is small. Equation (2.11) is the Langmuir wave dispersion relation.

Now returning to the imaginary part of equation (28) and neglecting the 
thermal correction to a) entirely we have:

v=(D/k
(2.12)

And since the imaginary term is small we get

1CD L 2k‘ 3v |v=o/k (2.13)

where we have used the binomial theorem. Thus the damping rate is given by.

no/ 9g |
to, = —? —21c 9v I v=co/k (214)

and this is the Landau damping rate.



Quasilinear theory is so called because much of it depends on linear theory 
but the nonlinearities are assumed to be small corrections to linear theory. 
The theory does not take into account any interaction between resonant 
modes, e.g. the possibility of excited electron waves coupling with ion waves 
through nonlinear wave-wave or wave-particle interactions cannot be included.

The treatment given will be one-dimensional and assumes that the excited 
wave vectors k are aligned in the direction of vb the beam velocity. The 
result obtained cannot be extended to a three-dimensional spectrum but in 
any case the problem at hand is assumed to be one-dimensionaL The ions will 
be treated as a uniform background as it will be assumed that the frequencies 
will be high enough to prevent the ions from becoming significantly polarised. 
It should be noted that the applicability of this theory to the beam-plasma 
instability is discussed in section 7.2.6.

It is required to solve the Vlasov and Poisson equations which are as follows:

(215)

(216)

where f is the electron distribution function.

We proceed by writing: 



perturbation EP It is convenient to work in terms of Fourier transforms fk 
and hence:

4 - f 4 (v. t) etadk

L etadk

Now the intention is to find an equation for the time evolution of foand 
this is accomplished by spatially averaging the Vlasov equation:

9 , 3f e 9f
st <t>4,<aJ>-ii,<E'87>-0

1 L/?where <y> ■ lim J ydx. The second term thus becomes zero and
L

the third term becomes:

— /E — \ — /E — \ + e /E — \
m/ 1 dv> mc< 1 3v > m^ 1 dv >

e ~ 9fi
=^<E^>

since the first term on the right averages to zero.

3t m,' 1 dv >
£ JL
m, 3v (2.17)<E>fi>

So the rate of change of f0 is a second order quantity and is the only nonlinear 
part of quasilinear theory.

If one now substitutes f = f0+ fj into the Vlasov equation one obtains:



and after eliminating 94/9t with the aid of equation (217) we have:

Dropping second order terms and Fourier transforming produces:

34
9t + ikv4 - 94

8v

and assuming further that 4 = fk(v) e-1®1 we have 94/9t = - iwlj. so that

_e_ Ek 9f(/9v 
m, i(kv - w)

(2.18)

This expression for the Fourier mode fk will be used in evaluating the second 
order quantity <E, fj > which is required in equation (217).

Now: „ . 1 l /2
<E,fl>.lto ^E.f.dx

■ft I

1 - L/2 i(k,+ko)x
■J™ jldkJ.Jdk.E,

- Ldm dk, I dk,EM22nS(k,+kJ



Using equation (218) to substitute for fk:

1™.u *
<Ejfj> =

2n e EJ^dfyav 
L mJ i(kv-(o) dk

Since Ek = E^ then this becomes:

<E.f.> = lim
1 1 L-*»

2n £ IEk I2 dfjdv 
L mJ i(kv-<o) (2.19)

Now we define the spectral density £(k) as:

To see what this means we note that the average electric field energy density 
is given by:



So the spectral density corresponds to the average electric field energy 
density per unit wavenumber interval.

Using the spectral density in equation (219) gives:

<E1f1> = 8ne
"ST

oo £>. dfp/dv 
i(kv - co) dk

and inserting this into equation (217) gives:

9fo - 3 fl~
dt m," 8v i(kv-w)

which can be written as:

(220)

which is a diffusion equation and the diffusion coefficient is given by

D =
i(kv- co) dk

Splitting to into real and imaginary parts so that w = <or + ito, we can obtain:

D =
OO

-oo (kv-wr)‘ + co,*

where the k integration passes under the pole.



D=16nV ek=(Or/v 
n\ v

and equation (220) becomes:

34 = 16ir2e2_a_fl lf
3t m/ 3v [v ^r/’ 3v 0 Ikrj

In the literature an error has been perpetuated as the factor 16 is mistakenly 
replaced by 8 in both Drummond and Pines 11962] and Krall and Trivelpiece 
[ 1973a],



Beam-Plasma Theory

3.1 Single-Wave Theory

3.1.1 Single-Wave Model

Single-wave theory is clearly the opposite extreme to quasilinear theory 
which is a many wave theory. The single-wave theory was proposed by 
Drummond. Malmberg, O’Neil and Thompson [1970] to explain the 
interaction of a small cold beam and cold plasma. In this section we describe 
the treatment of a cold beam with warm plasma by O’Neil, Winfrey and 
Malmberg [1971].

The theory is based on the fact that after several e-foldings of the dominant 
mode in the beam-plasma instability the spectrum of waves should develop a 
very narrow bandwidth; it can therefore be represented by a single sine wave. 
Thus, the most unstable mode grows until the electrons are trapped and as 
the electrons oscillate in the potential well the wave amplitude oscillates at 
the same frequency, the bounce frequency. The electrons trapped near the 
bottom of the potential well see an approximately parabolic potential and are 
governed by a linear equation of motion which produces a linear but time-
dependent transformation in phasespace. This effectively amounts to a 
rotation of a string of beam electrons in phasespace and this approximate 
picture remains appropriate for several amplitude oscillations since the 
neighbouring waves will take some time to catch up with the main wave 
assuming that they never grow faster than the linear rate for the dominant 
mode. Because a small beam produces a dominant wave with velocity close to 
the beam velocity it has been possible to treat the background plasma as a 
linear dielectric and the evolution of the single wave is determined using 
Poisson's equation while representing the beam as sheets of charge. The 
Calcillatinn u/ae rarriprl nut o



The frequency and wavenumber of the fastest growing mode is obtained by 
manipulating the dispersion relation and if Ejk, <o) is the plasma dielectric 
function this can be written as

E(/k,o)) - (ne/njf(0^/(0) - ku)2]

where nB and 1% are the beam and plasma densities respectively, is 
the electron plasma frequency and u is the beam drift velocity. The root 
corresponding to the slow beam wave is unstable and has a growth rate 
function peaked near the point kJ which is defined by O)o = l^uand 
Ejk^ (Oo) = 0. We can Taylor expand the dispersion relation about this 

point to obtain:

where co' ■ <o - (oo and k' ■ k - ko. The maximum growth rate is now 
derived by differentiating this with respect to k' and setting Im(da>7dk') ■ 0. 
This gives the result that the most strongly growing mode has wavenumber 
kj, frequency and growth rate given by:

co ■ <o0 + Re((o') = <o0 (1 - t |1/3/24/s )

U - Im((D') = (3w /24/3) nV3(0o

where t| ■ l(co(/2X9Co/9t,))(D0>kol '• Making the
approximations (00 ** (0^ and T] * n^^ we obtain the group velocity and 
the half-width of the peaked growth rate function:



Since the wavenumber spread of the growing waves just prior to trapping 
will be seen to be small, it can be assumed that the initial spectrum is 
effectively flat in this region, and on this basis the shape of the spectrum at 

time t is given by:

|E(k,t)]2 = I Eo 12 exp [2y(k)t]

The resulting spectrum half-width becomes:

6k = (In 2)1/2 N'1/2Ak

= [3(ln 2)1/22‘s /61 T|1/s N1/3k0 (3.2)

where N = ymai t is the number of e-foldings. It can therefore be seen that 
if T|1/3 N 1Z2« 1, then the spectrum will be very narrow.

The net effect of such a spread is to produce an approximate sine wave, 
but with some frequency and amplitude modulation. The modulation 
wavelength is approximately = 2rc/6k. We now have to assess whether an 
electron can detect this modulation during the evolution of the instability. 
Since nonlinear effects only become important in the last one or two e- 
foldings it is only necessary to consider the accumulating phase difference 
within a time of about 2ymiu1 in order to assess whether an electron sees 

an essentially pure sine wave during the trapping process. It is possible to 
show [O’Neil Winfrey and Malmberg, 19711 that in this time an electron 
travels a distance (relative to the wave) which is an insignificant fraction of the 
modulation wavelength provided the following condition is satisfied:

NV2»[8 ln(2)/31V2



wave.

If the above condition does not hold then we may still be able to use a 
single-wave model if the wave spectrum is very narrow. Hence, 6k « k0 is a 
suitable criterion in this case.

3.1.2 Computer Calculations Using the Single-Wave Model

The assumed conditions of the single-wave model lead to the emergence 
of a sine wave with velocity v^ given by.

and since the wave velocity is so close to the beam velocity it can be assumed 
that the plasma is non-resonant even during the nonlinear stage of the 
instability and can thus continue to be treated as a linear dielectric. Using this 
approximation together with Poisson’s equation and representing the beam by 
discrete charge sheets, it has been possible to obtain equations determining 
the motion of the individual charge sheets [O’Neil, Winfrey and Malmberg, 
1971].

The analysis is carried out in the frame of the initial beam velocity and the 
single-wave potential can be written:

4>(x,t) = (t) exp (iV) + c.c.

and ♦ko(t) can be expressed as:

K (t) = $0 exp (.ij'dtro



are:

(3.3)- iko exptikoXjtt)] + ex.

where j = 1. _ M and x, is the position of the jth charge sheet It will be 
possible to determine the complete time development of the system if we can 
obtain an equation for the time evolution of the potential and to this end 

Poisson’s equation is invoked:

ko2 ♦k JO » 411 lPxo(P> + P^B’ (t)1

and it remains to find expressions for p^1 (t) and Pko(B) (t) which are the 

Fourier transformed charge densities for the plasma and beam respectively. If 

the beam charge density per sheet is (2enBit)/(Mk q ), then we have.

■ (§) O * «p

pn

= M1 exp

Instead of using the plasma charge density we can include the plasma 
dielectric function which we are assuming to be linear, and so Poisson's 
equation now becomes:

kX(kc»“) = (41tenB/M) ? exP I- ikoXjCO] (3.4)

As before we can Taylor expand the dielectric function but this time the 
wavenumber is assumed constant at 1%:



<M*) «
4nenB

w'(t)k02M
/ fc0\-i
\ 3d)/(!)(,ko

And we thus obtain the following equation for the rate of change of the 

potential:

exp [- ikoX/t)] (3.5)

Now equations (3.3) and (3.5) can be solved by computer but it is possible 
to scale them in terms of variables which depend on all the significant 
parameters of the system [O’Neil, Winfrey and Malmberg, 1971]. The new 

variables are:

Q = (07<0dd/2T])1/s,

T = to d(l/2T))1/3,

4>(t ) = e$ko(t)/mu2(l/2r|)2/3
, (3.6)

>

where <X>(t ) = 4>(0) exp I - i J0T Q(t ) dV]

and we can rewrite equations (3.3) and (3.5) as:

= - i$(T) expJi^T)] (3.7)

d2<t> (t ) i . (3.8)

Computer solutions of these equations have been obtained [O’Neil, Winfrey 
and Malmberg, 1971).



The numerical solutions of equations (3.7) and (3.8) obtained by O'Neil et 
al [1971] were carried out using a computer with 60 and 500 beam sheets in 
various runs. The spatial variable was confined to a one-dimensional "box11 one 

wavelength long and with periodic boundary conditions imposed at the ends. 
Varying the number of beam sheets was found to produce no significant 

differences.

Fig. 3.1 Wave amplitude as a function 

oftime. The wave amplitude and 

time are scaled accordingto equation 

(3,6).

Fig. 3.2 The phasespace loci for the 500 
beam sheets are plotted for various times. 
Each point gives the scaled velocity and 
coordinate for one of the beam sheets at 
the particular time denoted; i»e.,T
5,6,7 or 9. For clarity, only every third 
particle is plotted, andthe filamentary 
tails have been truncated to avoid 
confusing overlap,

Fig. 3.1 depicts the evolution of the wave potential while Fig. 3.2 
summarises the evolution of the beam dynamics. The interpretation is that 
the wave grows linearly until trapping causes saturation and the wave potential 
subsequently oscillates in response to the oscillation of the trapped electrons 
in the potential welL This is because the trapped electrons alternately speed 
up and slow down in the course of oscillating, and this change in kinetic 
energy has to be balanced by an equal and opposite change in the potential or 
field energy. Hence the wave amplitude is synchronised to the beam



One can see that att « 6.0 the trapped electrons have reached their lowest 
position in phasespace and have therefore transferred a maximum amount of 
energy to the wave. Consequently, Fig. 3.1 shows that the wave potential has 

reached its first maximum at this time.

The high degree of regularity of this behaviour can be explained in the 
following way. The potential well is approximately parabolic near the bottom 
so that electrons trapped in this region experience this parabolic potential 
and share a common oscillation frequency along with an approximate equation 
of motion given by.

where ^.(t ) is the instantaneous bottom of the well. The solution to this 
equation is:

$(*) - A(t Xj(O) + Bftg,(0) + g(T)

where [^(0), ^(0)] are the initial coordinates in phasespace, and this implies 
the following transformation for the particle coordinates in phasespace:

(Mt) B(t ) |S,<0) geo1
<|(*) 1 A(t ) B(t )(

+
g(t) 1

(3.9)

The first term on the right hand side of equation (3.9) causes a rotation while 
the second is responsible for the translation and, since the beam electrons are 
initially arranged in a straight line, the trapped electrons continue to be 

positioned in an approximate straight line during the course of the trapping 
process, just as depicted in Fig. 3.2



from 2 upwards, since the system was periodic. These harmonics were found 
and also observed to grow, but they made a negligible contribution to the field 
energy throughout the calculation. O'Neil et al [1971] ascribed their 
existence to spatial bunching of the beam electrons (see section 7.23 and 

7.24).



3JL1 General Considerations

To ascertain the ultimate state of a beam-plasma system after the instability 
has developed Is extremely difficult, but one possibility is a BGK mode; these 
arc named after Bernstein. Greene and Kruskal [ 1957] who first studied this 
kind of nonlinear wave. A BGK mode is a wave which is in equilibrium when 
viewed in the wave frame; in other words, assuming that the state is a stable 
one, the solution remains time independent One approach for obtaining BGK 
solutions begins by prescribing an arbitrary periodic potential a distribution of 
untrapped electrons and a distribution of untrapped ions. One then 
substitutes these quantities into the Poisson equation which is inverted to 
obtain the corresponding distribution function for trapped electrons. In 
principle there is always a solution for the trapped particles which satisfies 
the Poisson equation

We are specifically interested in beam-plasma systems and an analysis of 
such a system has been carried out [Thompson, 1971]. Although the system 
considered consists of a cold beam and plasma (in contrast to the warm 
plasma instability we have been considering) it may afford a qualitative 
understanding of beam-plasma systems generally, since it describes a limiting 

case of the more general situation. For such a system with a small beam, the 
background plasma electrons can be described by linear theory. However, in 
this discussion the principle of adiabatic invariance is used to describe them. 
This principle depends on the fact that in a system with a coordinate q and 

conjugate momentum p, a quantity called the action, defined by:

is often conserved when there is a slow change in a certain parameter. That 
is, the quantity, also called an adiabatic invariant, is a constant of the motion.



3.2.2 BGK Modes in a Beam-Plasma System

Thompson 11971] considers a cold, one dimensional beam-plasma system 
in which the density of the beam electrons is much less than that of the 
background electrons so that T] ■ ((D^2/^2) « 1 is a small parameter, 
where (0^ is the beam electron plasma frequency. The basic equations 
describing this system are the Vlasov equation for the distribution function of 
each species and Poisson's equation for the electric field.

It will be assumed that the ultimate BGK state of this system is 

accompanied by an electric field consisting of a single sinusoidal mode and 
that the beam electrons are completely trapped. Now, it can be shown that any 
distribution function constructed from the constants of the motion of the 
individual particle orbits must be an equilibrium solution of the Vlasov 
equation. For the case considered, the Hamiltonian 
H(x,v) s-jmv2- (eEa/ka)cos kax (where the electric field is given by 

E(x ) = E a sin kQX = - d$/dx and the potential 4>(x) = (Ea/ka)cos ICq X) is a 
constant of the motion and therefore solutions to the time-independent Vlasov 
equation must be a function of the Hamiltonian. The adiabatic invariant that 
we shall be using for the background electrons is the spatially averaged 
velocity:

J = < I v(H,x,t) I >

4 / eE(t) s i* if (nsr) {S(K~ 1)KE*(X >+ S<1 - K)iE2<K) - n - o. io)

where k  ■ [1 + kH/eE(t)]}1/2, K and E2 are complete elliptic integrals of the
first and second kind, and S(p) -3+2 signp is the unit step function.



F^x.v) - FJH(x,v)] - 7int(-^«y/2KtK-1(<)6(H - HJ

where and K, are related by Ke» (1 + kaHyeEa)]1/2. Now the density of the 

trapped beam electrons is given by: 

^(K) = g(e4>) ■ 1.^"“ dH^HJ^nXH b + eO)F1/2

and this equation can be inverted to obtain the following equation for F^H^

(3.11)

The required expression for g(V) or n^x) is obtained by invoking Poisson's 
equation:

■ 8™ -ffe Q-dH F'(H)l2m(H + '♦,| M

=- (ka74ne2)V+n. + n, - it nJeE a/2k a)1/2 VXH e + V)4/2

where r^ and are the initial uniform beam and background electron 
densities respectively. Here the ion denstity (equal to + rQ remains 

constant as the ion mass is assumed to be infinite.

Thus after substituting g(V) into equation (3.11) we are now able to 
integrate the latter to obtain:



determined from four more equations. One of these is the equation for J for 
the background electrons. Since these remain untrapped, the trapping 
parameter r > 1. Hence equation (3.10) reduces to:

where u is the initial beam velocity relative to the plasma and v^ is the initial 
beam velocity in the wave frame. The next equation expresses the fact that 
the beam particle density must vanish at the nodes of the trapping separatrix 
(i.e, at the points x = ± (n/ka) x odd integer):

gCe^) = (kaEa/4ne) + nt + nb-^iine(l - = 0

Momentum conservation is expressed by:

- tin, (I^sy^K-W) + mnju - vj - mn^ - 0

and for energy conservation we have:

■ + -r\e Ea  (k; - 1 - k .2)'1/2 K’^k ;1) -1 mnjn - v^2-1 miv» - 0

From these four equations the four unknowns are found to be:

< -2^(1+ 13^ + ...)

= (^pe/uXl + tl2/s + ...)



where Tb(0) is the initial beam kinetic energy density. These quantities are 
close to those obtained from a linear theory projection but the BGK wave 
velocity is slightly smaller. One should therefore expect the wave to be slowed 
down by nonlinear effects as the BGK state is approached.



From the discussion so far it is clear that the influence of many waves is 
important in the development of the beam-plasma instability and there is 
another point of view that can deal with some aspects of such a situation. If 
one models the spectrum as a main wave with the addition of small amplitude 
neighbouring waves to provide a perturbation, one finds that the original 
separatrix in phasespace no longer clearly separates the trapped electrons 
from the untrapped ones. Instead, a region is formed near the separatrix 
where the electrons move stochastically; this has the effect of flattening the 
distribution function in this region and therefore smoothing out the clump.

The chaotic motion of an electron is due to the fact that it is influenced by 
more than one wave. Two waves can influence an electron when their 
trapping regions overlap in velocity space. The size of the trapping region for 
a given wave is given by:

6v

where A is the wave amplitude and the "Chirikov stochasticity parameter" 
[Dimonte, 1982] is given by.

6vj + 6v 2
2Av

where the subscripts refer to two specific waves. If P > 1 then the trapping 
regions of the two waves overlap, forming a stochastic region for electrons 
(see section 7.25).

A narrow spectrum of waves will produce the result shown in Fig. 3.3 
where the shaded area is the stochastic region. In the beam-plasma instability 
one certainly expects a spectrum of waves but, initially, the wave amplitude



al. 1982] (see section7.25).

Fig. 3.3 Phasespace showing the stochastic region (shaded) 
resulting from a narrow spectrum of waves. The bold 
curve represents the separatrix.

The existence of the stochastic region implies that electrons are 
constantly being detrapped and then trapped again in a neighbouring potential 
trough. In time the distribution function should eventually become constant 
throughout the stochastic region and there would be no further amplitude 
oscillations. Such a state would resemble a BGK state (see section 3.2 ) since 
the distribution function would appear to be time independent in the wave 
frame and would clearly exhibit constant periodicity. However, as we have 
invoked a spectrum of neighbouring waves we cannot satisfy the condition of 
monochromaticity. Even so, it would still be possible to interpret the state as 
one which conforms macroscopically to a BGK state, but which also 
encompasses a noise spectrum on the microscopic scale. It might seem more 
reasonable to expect, in practice, a BGK state with some amplitude and 
frequency modulation but it is not clear how to justify such a supposition given 
that we have assumed that a spatially periodic distribution function is the
result nf this finite snertrnl snrend
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the distribution function was assumed there to go to zero at the nodes of the 
separatrix in contrast to the present case. Some disparity is therefore to be 

expected.

The considerations of the present section allow one to examine the effect 
of a given spectrum of waves on the distribution of electrons but they do not 
provide any guidance concerning the further growth of waves. This restriction 
is shared by the BGK analysis of section 3.2 and on this occasion we again 
have to remember that the stability of the system is not being considered.



The Particle Simulation Method

4.1 Simulation Theory

The main purpose of this study has been to investigate the behaviour of the 
sheath and plasma in conditions where secondary emission is present The 
primary approach used has been a computer particle-simulation method and 
the reasons for making such a choice are discussed in this section.

4.1.1 Finite Difference Approximation and Finite Element Method

There are many methods of tranforming the differential equations of 
physics to discrete forms suitable for numerical compution. Among the most 
widely used are finite difference methods, finite element methods, and 
particle methods.

The finite difference approximation (FDA) [Richtmyer and Morton, 1967] 
uses a mesh of points distributed in variable space and functions of the 
continuous variable only possess values at each mesh point. Derivatives of the 
functions are approximated at each mesh point in terms of differences 
between values assigned to neighbouring mesh points; this results in 
difference equations which only apply at mesh points and which replace the 
original differential equations.

In the finite element method (FEM) [Strang and Fix, 1973] functions are 
replaced by sets of simpler functions, for example, the piecewise union of 
simple polynomials or the sum of orthogonal global polynomials; the latter is 
also known as the spectral method. The FEM provides greater accuracy and 
flexibility than the FDA.



is the simplest it can run into numerical difficulties in dealing with advection 
terms (such as in the Vlasov equation): on the other hand a Lagrangian scheme 
may result in very complex mesh topology or even mesh shearing problems. 

An example of a Lagrangian scheme is the waterbag model (Berk and Roberts, 
1970] which has been applied to the study of two-stream instabilities.

4.1.2 Particle Methods

At present, particle methods provide the most efficient way of combining 
the advantages of Eulerian and Lagrangian approaches. Using the particle-
mesh (PM) scheme a series of sample points is distributed throughout the 
fluid continuum. Each point (particle) carries attributes (e.g. charge, mass) 
which are, ideally, conserved quantities so that time advancement is simply a 
matter of moving the particles; this constitutes the Lagrangian part of the 
method. The Eulerian part of the calculation solves the remaining equations 
using the FDA or the FEM. The Lagrangian and Eulerian parts of the scheme 
are linked together at each timestep by interpolating from the mesh to the 
particles and performing inverse interpolation from the particles to the mesh.

From now on we consider only the one-dimensional problem and the 
'particles' then become infinite plane two-dimensional sheets. For simplicity 
we assume a 1- D collisionless plasma consisting of an electron gas in a fixed 
neutralising background of ions, and such a system is described by the 
following equations:

3f 3f qE 3f
— + V — + 3— — 
at ax m av

(4.1)

(4.2)



p = p0 + q/fdv (4.4)

where f(x,v,t) is the electron distribution function. In the PM model equation 
(4.1) is replaced by.

(4.5)

which are the equations of motion of the particles i. m, and q are now mass 
per unit area and charge per unit area respectively. The particles are in 
essence a device for transforming the awkward advective equation (4.1) into 
the set of ordinary differential equations (4.5). Here the electric fields E(xJ 

are interpolated from the mesh values.

The PM model also requires the discretisation of equations (4.2) and (4.3) 
using the FDA and the integral in equation (4.4) is evaluated using some 
inverse interpolation scheme.

4.1.3 Charge Assignment

The way in which the distribution function f is approximated deserves 
deeper consideration. One can construct samples f of the smooth 
distribution function f in the following way:

_ ”p
f- X Sfr-xJ^v-v,)

where Np is the total number of particles. Now a smooth approximate 
distribution function f is obtained as follows:



where S is a scaling factor, W is a weighting or 'shape' factor and h is the 
range of x over which averaging is performed.

The integral in equation (4.4) now becomes:

Rdv--| ZWU-xJ

and the scheme can be classified into further categories according to the 
nature of the shape factor W, the two most common being Nearest Grid Point 
(NGP) and Cloud In Cell (CIC).

Consider a mesh with interval H; if we set h = H then the shape factors are 
as follows:

H- Ixl . , , „ „—2— when I x I S H
W(x) =

0 when I x I > H
> for CIC

1
W(x) =

0

when - H/2 < x S H/2 

otherwise
for NGP

The NGP scheme merely amounts to assigning a particle to its nearest grid 
point, hence its name. To visualise the CIC scheme, however, the mesh can 
be considered to be composed of equally spaced grid points each occupying 
the centre of a string of similar cells; the particles can now be considered to 
be rectangular clouds of length equal to the grid interval and a fraction of any 
particle equal to the fraction of cloud overlapping a cell is assigned to the grid 
point occupying that cell.



be seen the charge density variation for NGP is stepwise whilst for CIC it is 
piecewise continuous linear. The smoother representation resulting from CIC 
leads to reduced field noise compared to NGP and it therefore allows the use 

of fewer particles and a coarser grid.

The depicted incremental charge density profile indicates that in both of 
these schemes the particles have an effective width, which gives the schemes 
improved noise characteristics compared to those using point particles.

8p .
NGP

CIC

Fig. 4.1 The incremental charge density 6p assigned to 
a grid point at x* due to a particle at jq.

♦ x

Care must be taken during the inverse process, that is when interpolating 
from the fields on the mesh to the fields acting on the particles. The reason 
is that if the interpolation scheme is not the exact inverse of the charge 
assignment scheme then particle self-forces will arise and produce non-
physical behaviour of the simulation



where xg < x, < xg>1. This ensures that the two components of self-force 

experienced by a particle at x, (due to its own charge contribution to the two 
grid points at Xg and xgtl) will cancel each other out

4.1.4 Determining the Electric Field

The mesh values for the electric field E are calculated from the mesh values 
for the charge density p using equations (4.2) and (4.3). Of course these have 
to be discretised and the FDA version of these are:

♦o - 2<|>i + ♦z « - 4nH2pj

4>i - 24>2 +4>3 - - 4nH2p2

4>Ng-2 - Ng-1 + ’4>Ng = - ^H^Ng-l

4>Ng-i - 24>Ng + 4>Ngtl = - 4nH2pNg

where mesh point zero is at x = 0 and mesh point Ng is at x^. Now this is 

a system of Ng equations in Ng + 2 unknowns and we therefore require two 
boundary conditions to determine all the variables.

There are several methods for solving such a set of equations including 
Gaussian elimination and tridiagonal matrix inversion but in this particular 
case a simple method is to multiply the first equation by one, the second by 
two, the third by three, and so on, then summing them. The result is:



If one now choses periodic boundary conditions, for example, this implies:

00“ 0^ = 0, 0Ng+1“01

so that

then:

= -4KH2 ? PPP

02 = 244'4itH2Pi

and: 0n = 20n.! - 0n-2 '

Thus the values of the potential are obtained on the mesh and the electric 

field can then be derived by using the discretised form of equation (4.2):

0P-i ~ 0p+i
2H

The next step is to perform the time integration of equations (4.5).

4.1.5 Time Integration

If we merely used:

and

Xnew = At

Vn« ~ VoU + At

where the new values of nnsitinn and velnritv are eynliritlv formulated in



used way of overcoming this problem is to use a time-centred method known 
as the "leapfrog" scheme.

For this scheme the new positions and velocities are given by:

<+1 = < + <41/2At

and v?+1/2 - <1/2 + -Sl E(x ”) At
m.

The interpretation of the timestep index n is illustrated in Fig. 4.2. It can be 
seen that in each case the increment is calculated from values which apply at 
a time which is midway between the preceding and current timesteps. Such 
a scheme is described as time-centred.

Velocitv advancement

Position advancement

Fig. 4.2 Velocity and position advancement at a series of 
timesteps n for the leapfrog time-integration scheme.

It should be noted that at time t = 0 we have to obtain v(- At/2) from v(0) 
by using the force F(0) in order to set the leapfrog scheme going. The benefit 
of introducing the leapfrog modification is that the phase errors are now only 
proportional to (At)2.



As we saw in the last section a particle-mesh simulation inherits 
considerable advantages from its ability to combine Eulerian and Lagrangian 
features and this was therefore the method, along with the C1C scheme and 

leapfrog time-integration, which was chosen to investigate the evolution of the 
beam-plasma instability due to secondary emission. A computer code was 
developed for this purpose and the functions of its main routines are outlined 
below.

MAIN

This module initialises the main arrays and variables and creates a plasma 
with stipulated characteristics at time t = 0. It interprets commands which 
can either be supplied interactively by the user at a terminal or by a 
“command" data file when the programme is run in batch mode. Appropriate 
routines are called when MAIN is required to carry out its other functions 
which include advancing the simulation by a specified number of timesteps 
and producing diagnostics.

SETUP

This routine is called by MAIN to set up the plasma with specified initial 
conditions. The length of the "box" containing the plasma is given and ion-
electron pairs are assigned to random positions within this domain. The 
particle velocities, however, are assigned in accordance with the required 
initial velocity distribution functions for each species.

MAX

This routine is called by SETUP once for each particle to obtain an initial 
particle velocity with probability distribution given by a truncated Maxwellian



Each time this routine is called by MAIN it moves the simulation forward by 
one timestep. It proceeds by assigning charge density to the mesh, solving 
the field equations using the finite difference approximation and then 

performing leapfrog time-integration on the particle positions and velocities. 
The specified boundary conditions are then applied at this point

IONISE

This routine, which is called by STEP, provides ionisation if necessary by 
introducing ion-electron pairs to random positions within the "box* at a 
specified rate.

FOURIE

This routine is called by MAIN and performs a Fourier analysis of the potential 
field distribution across the box at the conclusion of each timestep. The time 
evolution of the Fourier modes is thus obtained.

COEFF

This routine is called by FOURIE and calculates the Fourier coefficient for the 
mode selected by FOURIE.

GRAPH

This routine produces phasespace plots of the ions and electrons and is called 
by MAIN.

FIELD 
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Equilibrium Sheath Calculations

Calculations of parameters defining the equilibrium characteristics of 

sheaths and associated secondary electron beams have been carried out and 
are reported in this chapter. Cases with and without current are dealt with in 
sections 5.2 and 5.1 respectively. A hypothetical system is also investigated in 
section 5.3 because it provides an example in which the boundary conditions 
are not clear.

5.1 Zero Current Conditions.

5.1.1 The Effect of Secondary Emission on Wall Potential and Ion Energy

In the equations which follow, all units are normalised to the following 

quantities:

Mass: m. Length: XD Time : 1/0)^

Velocity: vTe Electric Charge : e Electric Field: or KTyeLj

Electric Potential: or KT^e

where m, is the electron mass, the Debye length, (0^ the electron plasma 
freqency, vTe the electron thermal velocity, e the electronic charge, K 
Boltzmann's constant, and Te is the electron temperature. Note that the 
normalised ion mass will either be written as M/m or p and will usually be 
referred to as the mass ratio.

The zero-current condition and monotonicity criterion (equations (1.15) 
and (1.16)) are a pair of simultaneous equations which determine the values of



I (5.2)

where 4>0 is the wall potential and I is the ion energy on entry to the sheath. A 
simple computer code was written to solve these iteratively, giving I and <t>0 
as a function of T for three mass ratios. The results are displayed in Fig. 5.1. 
All the curves exhibit a rising gradient with increasing T but, shortly before 
the slopes become infinite, T will have exceeded the critical value and 
solutions in this region will have no physical significance. Critical values of T 
(signified by Tc), which correspond to zero electric field at the wall, along 
with curves of I and are displayed as a function of mass ratio in Fig. 5.2 In 
addition. Fig. 5.3 depicts curves of vb (beam-velocity given by ^eC’j/m) 

and rVno (relative beam-density given by equation (1.12)) as a function of 
mass ratio for the condition of critical f.
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The distribution of the potential in the sheath with secondary emission is 
defined by the Poisson equation as given in section 1.2. After integrating 
once and employing the usual normalisations (see section 5.1.1) we obtain:

J(g)2 - 21K1- -1] + 2L(-i^Mi-■ i]

+ [1 ■ TTr (- '"1 l«P< *) - 11 (5.3)

A code was written to solve this equation numerically using a second-order 
predictor-corrector method. A one-dimensional mesh was used to represent 
the spatial coordinate with Xo corresponding to the position of the wall and 
Xj, X,z etc., the positions of successively further meshpoints. Integration was 
carried out from the wall into the plasma using the boundary condition at the 
wait X = 0, $ = <I>0 where <l>0 was obtained from previous calculations. The 
calculation of successive values of<t> on the mesh requires information from 
two preceding mesh-points, therefore the predictor- corrector method is not 
self starting and it is necessary to use another algorithm to begin the process. 
A second order Runge-Kutta method, known as the improved Euler method 
was used to obtain from 4>0 and the predictor- corrector scheme was able 
to continue from there. The essentials of the scheme are summarised below.

Equation (5.3) is of the form:

f(4>)

and the improved Euler method gives:

= K + W^-h)

D/Y A - 1 r ffY a. h dS a  Urf/ M



Ci - + 2hK4>m)

and the corrector equation :

Ci - 4>m + s Wpj  + kO

is iterated until:

where c is the required precision of the calculation. The truncation error for 
this method is given by.

Thus solutions for equation (5.3) have been obtained for a number of mass 
ratios and values of T; the truncation error was always found to be negligible. 
These results appear in Fig. 5.4 The sheath can be seen to extend over a 
region of about 10 Debye lengths from the wall for all mass ratios used. Note 

that the profiles for critical values of T clearly show the potential gradient at 
the wall dropping to zero which indicates that the electric field here is zero as 

predicted.

The particle simulation has also been used to obtain results for the sheath 
region of a plasma for comparison with the above calculations. Since the ions 
participate in the formation of the sheath potential it is necessary to run the 
simulation long enough to allow the ions to take up an equilibrium distribution 

in space. Since the equilibrium state of ions at any position in the sheath
HpnpnHc nn Hip sfptp nf inn? pvprvu/hprp p1«p in thp chpnth thp inn Histrihiitinn
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Fig. 5.4 Potential distributions in the sheath for T = 0 and Tc 
for three different mass ratios.

information from all parts of the sheath to propagate to all other parts. We are 
therefore led to conclude that it is necessary to run the simulation for at least 
an ion-sound time which is the time for an ion sound wave to travel the length 
of the simulated region of plasma - in this case 10 Debye lengths. The ion-
sound speed is (m/M)1/2 when normalised to the electron thermal velocity 
and the normalised ion-sound time therefore becomes 10(M/m)J/2. Thus it 
was decided to restrict the sheath simulations to a mass ratio of 100 in order 
to minimise computer time.

The simulations were started with 2000 pairs of ions and electrons in a one-
dimensional box of length 10kD with the wall at X = 0. The electrons were 
Maxwellian and the ions monoenergetic with energy equal to that calculated in 



of the box all electrons were returned to the plasma at X * 10XD with 
velocities chosen to be consistent with a flux of Maxwellian electrons and the 

ions were introduced at a constant rate with the energy appropriate for the 
1OID plane. Care was needed to choose the correct distribution function for 
the electron velocities; if the electrons are characterised by a Maxwellian 
distribution function f(v), then the velocity distribution for electrons crossing 
a plane in the plama is given by vf(v). This is the appropriate distribution for 
introducing electrons into the box across the 10XD plane. Gradually the 
number of particles in the box fell as they were absorbed by the wall until the 
rate of loss to the walls was equal to the rate of introduction of new particles; 
this left about 1750 ion-electron pairs in the box.

Fig. 5.5 shows the potential distribution for a number of values of T after a 
time tWp, = 110; note that the potential at the wall is now taken to be zero. 
These distributions strongly resemble those of Fig. 5.4 and when allowance is 
made for the large thermal fluctuations of the simulation the agreement is 
good. Two simulations have values of T which are above the critical value of 
0.42 for the chosen mass ratio; these are T = 0.5 and 0.8 respectively and the 
corresponding results are expected to agree with those for T = 0.42. This is 
because, although a fraction greater than T of incident electrons maybe 
emitted from the wall, only a fraction Tc will be allowed to flow away from the 
wall back into the plasma The rest will form a layer at the surface of the wall 
and have the same influence on the plasma as if they were absorbed by the 

wall

Since the fluctuations are quite large it is necessary to study the time 
evolution of the simulation. We are interested in the potential drop across the 
sheath and we therefore consider the time evolution curves for the potential 
drop across the one- dimensional simulation box; these are plotted in Fig. 5.6.
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inconsiderable level; these oscillations result from thermal fluctuations in the 
simulated plasma and this is quantified in section 5.2 For the case of no 
secondary emission (r = 0) the average potental drop over the last ten plasma 

periods is about 1.3; this agrees well with the value of 1.33 for the potential 
across the first 10 Debye lengths obtained from Fig. 5.4. For the cases of T = 
0.5 and 0.8 the time averaged values of the potential drop are 0.6 and 0.57 
respectively; this is to be compared with the value of 0.64 obtained from 
Fig. 5.4 In view of the length of time that the simulation was run and the size 
of the fluctuations the agreement is reasonable.

Phasespace plots of the ions and electrons at times corresponding to the 
potential distributions of Fig. 5.5 appear in Fig. 5.7. The small dots are 
electrons and the ions are represented by larger dots but these cannot be 
individually resolved because they merge to form an almost straight line just 

below the horizontal axis. For the cases of secondary emission the beam 
electrons can clearly be seen in a curving line beginning at the origin and 
reaching a steady velocity after a few Debye lengths. They form a boundary 
above which there are no other electrons.



5.2.1 Modifying the Equilibrium Equations to Include Current

The sheath calculations described so far have been for floating wall 

conditions, but we shall now consider how the sheath is modified when a 
positive current to the wall is allowed. It is also of interest to examine what 
effect the sheath has on the heat flow to the wall under these conditions. 
The approach is similar to the one used in the first chapter, so the first task is 
to obtain expressions for the number densities in order to solve the Poisson 
equation. The ion and primary electron densities are unaltered and, as before, 
we obtain:

(M»

for the ion density, and:

Oji - [no - nJ-)] exp(e<|)/KT) (5.5)

for the primary electron density.

For the secondary electron flux we proceed as follows.

Net electron flux to wall:

F = F - Fre rep *es

where Fep and FM are the primary and secondary electron fluxes 
respectively.

Net positive current to wall:



where is the ion flux.

J/e-F.-F.d- D/r

where T = FM /F^ is the secondary emission coefficient

(E

where we define:

p - f ;f . “ a - j)/i (5-8)

and j( is the ion current So p is the ratio of electron and ion fluxes.

Thus the Poisson equation for the sheath potential becomes:

Tp rm E n/2 /_E_\i/2'i 
+ 1-rLM ed-^J "lE-e4>/ J

Now we need two conditions to determine the wall potential and the ion
-_____________________ ______ 4- 4-- 4.1— — — 1—— — 4-1. -1 4U - -______ - — 4- 1-4-2 <...1.2-1. 



a) Current Relation:

We manipulate equation (5.6) and substitute expressions for the fluxes:

J/e - F,-F, . F,-F„(l -D (5.9)

<0)r"n" (sr)wrT uslng (58)

and after substituting for (0) we have:

(5.10)

b) Monotonicity Condition:

The condition for marginal monotonicity of the solutions for small values of 
| is obtained by expanding the new Poisson equation about | = 0 and setting 

the coefficient A to zero in the resulting equation which is of the form:

d20/dx2 = A#

The condition A - 0 becomes:

(5.11)



1 o calculate tne neat flow through the sheath we need to obtain an 
expression for the primary electron flux. Equations (5.8) and (5.9) give:

F, (1 - p) - F.-F^d-D

.-. pF. - F^l- D

• f "oVqP
•• r«P - 1-r (5.12)

Now each electron hitting the wall carries on average an energy 2KT, while 
each ion carries its initial energy E plus the energy - e0o gained by falling 
through the sheath potential So the heat flux to the wall is given by:

Q = 2KTF,, + (E - e<|>0 )F.

(5.13)

on making use of equation (5.12).

To see whether or not the sheath should be considered as an insulating 
layer we can rewrite equation (5.13) as:

Q = . 2KT. F(F)

where

and

C _ / KT y/2
4 \ 2nm )

F = f n — —Y* f-E ~ C<{>0 + 
k M KT/ k KT 1-17



In the following section the heat flux is calculated for M/m ■ 4590.

5.23 Solutions of the Equations

Thus one can 6ee that the modification required to include current in the 
equilibrium equations is to replace 1 -T by(1 - T)/p. However, for all 
quantities which were originally functions of the mass ratio M/m, this is 
equivalent to altering the dependence on (m/M)1/2 to a dependence on 
p(m/M)1/2. So Figs. 5.1 to 5.4 remain valid if we use this substitution. The 
substitution is defined in this way rather than using p2(m/M) because the 
results are sensitive to the sign of p and up to now have been valid for positive 
p which corresponds to values of T less than one. As T approaches one the net 
electron current to the wall approaches zero hence p also approaches zero. 
The factor (1 - T)/p thus remains finite and as T becomes larger than one p 
becomes negative, corresponding to negative net electron flux to the wall. 
These are the conditions that we are most interested in when the wall 
potential is not floating as the corresponding parameters allow the most 
dramatic beam-plasma behaviour.

The heat flux (equation (5.13)), on the other hand, does not depend on the 
factor p(m/M)1/2, but it does depend on p/(l - I"). For the specific case of a 
mass ratio of 4590 it was decided to express the information in the form of 
Fig. 5.8 which depicts the T - p plane with constant heat flux contours and also 
the line representing the zero- wall- field condition. The shaded region is 
physically inaccessible due to space charge limitation. These contours have 
been calculated assuming that the dominant term in equation (5.13) is the ion 
energy term; the contours are then simply straight lines passing, along with 
the zero wall-field line, through the point p » 0, T = 1. Note that the 
normalised heat flow in this approximation is identical to the normalised wall-
potential Also 6hown on the diagram is a line representing equality of the ion



X

Fig. 5.8 Heat-flow contours for mass ratio 4590 in the plane of T. the 
secondary emission coefficient, and p, the ratio of ion and electron 
fluxes. Here the sign of p is negative.

In order to graphically illustrate the interrelation of the various quantities, 
the T - <t>0 plane is displayed in Fig. 5.9 with constant p(m/M)1/2 and beam-
density contours. Again, the shaded region above the zero wall-field line is 
physically inaccessible. The equations used to plot these curves are given 

below.

Equation (1.19) gives the electric field at the wall, and when normalised 

this becomes:



1/2Fig, 5.9 Contours ofp(m/M) (solid lines) labelled with values of
1/2Log^lpfm/M) I. Note that pis actually negative in the upper half-plane and 

positive in the lower. The bold line represents the sero wall-field condition, the region 
above which is physically inaccessible. The three dotted lines are contours of relative 
beam densitv labelled with values of n./ rt,.



waiL 10 nna tne zero wau-neia locus in tne I - <P0 plane we neea tne 
normalised versions of equations (5.10) and (5.11) which are respectively:

(5.15)

and

(5.16)

By eliminating p(m/M)1/2 from equations (5.15) and (5.16) we have:

r = 4n,/2(- <t>o)3/2 exp(- ♦„) (5.17)

Then putting (d$/dX)w = 0 in equation (5.14) and combining with equation 
(5.16) by eliminating I, we obtain:

ff 2it1/2(l - 2»o) w 
iLn-^exp^ + af'd J

_ V^expO, - 4it1/2)[it1/2(exp4>0 - 1) - (- O^TexpOJ
[IT <t>o)'1/2exp4>o + 2n"T ~

which defines the locus of zero wall-field in the f - 4>0 plane.

To calculate the beam density we need the normalised version of 
equation (5.7):

A. pF r™ 1 I1/2
no“ 1-rLM (- (5.19)



and (5.18) we obtain the locus of constant beam-density:

r exp4>0
rexpO0 + 2n"‘(- GJ1'2 (5.20)

Finally, by eliminating I from equations (5.16) and (5.17) we have the locus 
of constant p(m/M)1/2:

(5.21)

We now consider some features of Fig. 5.9. It will be observed that the T « 1 
line also forms the p = 0 line. The region below this line covers positive 
values of p, i.e., there is a net flux of electrons towards the wall, while above 
the line p is negative, i.e„ there is a net flux of electrons away from the walL 
The zero wall-field line intersects the T = 1 line at l$>ol = 1. So, for smaller 
values of wall potential than this, values of Tc must be less than 1. Larger 
values of wall potential allow Tc to exceed 1, and as can be seen, the value of 
Tc reaches enormous magnitudes even when 14>01 is less than 10. If these 
values ofT can actually be attained, the physical significance of this quantity 
will be devalued since secondary electrons will no longer be released by 
primary electron impact Instead they will originate from ion impact; for this 
reason it would be more appropriate to define a new coefficient rt = F^/Fp i.e., 
the ratio of the secondary electron flux to the ion flux at the walL This is to be 
contrasted with T = F^/F^.

It will be useful to relate f, to f so we begin by noting:

£l _ . PFep = P
r f , f , i-r

(5.22)
e

Hence using equation (5.21) we obtain:



This enables T, to be calculated from a knowledge of T, 4>0 and m/M. Making 
use of the zero wall-field relation and taking the limit 4>0 it can be shown 
that the critical value of f, for large wall-potential is given by.

r.c = (^ )1/2 (5.24)

For the same limit we note that the net electron flux Fe must have a 
negligible component of primary electrons, so that p ■ F^ becomes 
approximately p « -F*/^. Therefore, in this limit we have:

p = < (5.25)

Thus it also follows from equations (5.24) and (5.25) that in this limit

p(m/M)1/2 = -1 (5.26)

It is of interest to investigate the behaviour of the incident ion energy for 
the extreme conditions of maximum or critical F and very large wall potential. 
To do this we set (d4>/dX), = 0 in equation (5.14) and assume that I remains 
of the order of 1/2 even when 4>0 is large. Thus we have approximately:

_ J r 1 (kt  y/2~|-i 
KT" 2L kKTj \ e$J J (5.27)

or since the rightmost term is small: 

(5.28)



lhc  inciueni ion energy in me limit 01 mnniie wuu-potenuai is 1/z. it is 

remarkable that a prediction given by Bohm for a sheath in the vicinity of a 
non- emissive wall at floating potential is equally applicable for the extreme 
conditions dealt with here: namely, intense secondary emission of electrons 
and currents induced by very large wall potentials.

Although p is related to the total current, it is not a direct measure, 
therefore it will be useful to define a normalised current given by:

■ J/jtf (5.29)

where jd is the ion current for floating conditions. We then have:

= (F, - FJ/F, =
n0(2E/M)1/2 + n.2(~X-2 e<M1/2

n0(2E)/M)‘/2 (5.30)

where we have made use of the simplifying approximation T » 1 and 
Et » KT/2 is the ion energy for floating conditions. Eliminating r\2/nQ from 
equations (5.7) and (5.30) after applying the large f approximation again gives:

J« ■(>)“■" -■» <5.31)

Since E/KT * 1/2 we can write for - p » 1:

* - p (5.52)

Thus for intense secondary emission and large currents and wall-potentials, 
the parameters JN, fj and - p can be taken to be equivalent



The simulation results, as reported in section 5.1, appear to be consistent 
with the calculations of Hobbs and Wesson, [1966]. It was felt, however, that 
the basis for one of the assumptions needed further investigation. The 
assumed condition of marginal monotonicity at the sheath boundary, first 
suggested by Bohm [ 1949J, seemed to be an arbitrary choice and further 
justification for this was sought by examining the equations describing the 
potential distribution in the whole plasma.

Further exploration led to the discovery of a hypothetical plasma system in 
which the usual condition E « KT/2 (where E is the ion energy on entry to the 
sheath) did not apply. Even more surprising was the fact that there did not 
seem to be any way of predicting the boundary condition appropriate to the 
system as a whole. This motivated a search for some principle which would 
enable one to do this and which, hopefully, would apply to plasma systems 
generally.

5.3.1 An Equation Defining the Potential Distribution Throughout a Plasma

Consider a plasma contained in a one-dimensional box. We shall deal with 
one half of the plasma which is bounded by the mid-plane at x = 0 and one 
wall at x = L. The ions at position x are assumed to be formed by ionisation at 
positions z, where 0 < z < x, falling to x (and of course beyond) under the 
influence of the potential. The potential the ionisation rate per unit volume 
N and the ion and electron densities r\ and n* are all functions of position X 

with $(0)=0. The ion density is therefore given by:

n, = J0N(z)[M/2e{ |(z) - ♦(] 1/2dz

where we have made use of the fact that v, « (2e{$(z) - $}/M]1/2 (assuming 
long mean free paths). Assuming the electrons have a Maxwellian velocity 
distribution we have:



\ Al /

Now Poisson's equation is:

V2| = -4ne(nt - nJ

and substitution of the densities into this produces:

’S’= LN(z)[M/2e( 0(z) - <>}] 1/2dz - exp(^.)

which is the 'plasma-sheath equation’. We are interested in the solution 
appropriate for the plasma region where quasineutrality prevails because when 
it breaks down it will give us some idea where the sheath region begins. We 
can therefore make the approximation I n, -« n* which means that we 
can drop the first term to obtain:

LN'Jcyg(l)[M/2e{ ♦(!) - <D(y)}J 1/2dl - n*, exp(-^) = 0 (5.33)

where we have made the substitutions

Z/L = 1 

x/L = y

N(z)^N(l) = N'g(l)

(5.34)

N' is a constant and g(l) defines the profile of ionisation. This is the 'plasma 
equation' and, in the region where quasineutrality no longer holds, the 
electric field predicted by this equation becomes infinite. The potential at 
this point can be taken to be the approximate potential at which the sheath 
begins.

Wp nnu/ pynlnrp thp dpnpnHpnrp nf A nn Hay  Ipntfth T. and M/m thp ratio nf



N' by noting that the rate of production of plasma particles must equal their 
rate of loss to the walls. The flux of electrons to the walls is given 
approximately by:

c

where nr. is the electron density and c = (8KT/ it m)1/2, so by equating 
the production and loss fluxes we get

LN'fjg(y)dy = exp (5.35)

where we have employed substitutions (5.34). Recall that the potential drop 
across a sheath is given byln(4nEm/KTM) setting T = 0 in equation (1.17)), 
so that the waD potential (equal to the potential between mid-plane and 
wall) becomes:

1 in/ M KT 
KT KT ’ 2 I 4nm E, (5.36)

Substituting in (5.35) produces:

LN' = n”(2HKt),'!‘xP(4f)/f"

and when this in turn is substituted into (5.33) we obtain:

w ■0 ,5-37’

which is an equation defining $ as a function of y (=x/L) that is independent of 
mass ratio. Now if we choose ionisation profiles g(y) which are independent of 
L, then we can see that equation (5.37) is also independent of L. This confirms 



several different geometries far the cases of uniform ionisation rate and 
ionisation rate proportional to n^ Both these cases conform to the condition 
that g(y) is independent of L and therefore their results do not depend on 
either L or mass ratio. The values of e^/KT (where is the potential at 
which the electric field is predicted by equation (5.37) to become infinite) 
calculated by Tonks and Langmuir are given in Table 5.1 and the 
corresponding values of E, the ion energy on entry to the sheath, appear in 
Table 5.2

TABLE 5.1
Values of et}* /KT for three plasma geometries

N-n,
N uniform

Planar Cylindrical
0.854 1.155

0.854 1.054

Spherical
1.418
1.195

TABLE 5.2
Values of E/KT for three plasma geometries

Planar Cylindrical
N * n, 0.654 0.736
N uniform 0.654 0.695

Spherical

0.719

The above calculation confirms the approximate validity of the Bohm 
criterion E = KT/2 and demonstrates how to derive the potential distribution 
in the plasma This procedure is straightforward as we know that the 
appropriate boundary condition for the plasma is zero electric field at the mid-
plane, but in section 5.3.3 we discuss a plasma system for which the choice of 
boundary condition seems arbitrary.

5.3.2 An Alternative Derivation of the Bohm Criterion

It was hoped that some principle could be found which applied to plasma 
systems generally and which in particular could be used to derive the 
appropriate boundary conditions in unresolved situations. The adoption of this 
objective at first led to an interesting observation which was thought to be 
relevant



energy on entry to the sheath 1= E/KT and the potential <I>= e<|)/KT. In 
practice there is a spread of ion energies since the ions are created in 
different positions throughout the plasma but we continue to use a 
monoenergetic model, attributing ions with the average kinetic energy at a 
given position. Now on entry to the sheath the ions have fallen through an 
average potential equal in magnitude to I and it will be taken to be equal to the 
potential drop between the mid-plane and sheath although this is not strictly 
accurate. Equation (5.36) with normalisations thus becomes:

and differentiating with respect to I produces:

dO 1. 1 + _ 
di 21

Setting doydl = 0 gives I = 1/2, which is the Bohm criterion! So perhaps 
the plasma, in effect, chooses the boundary condition which minimises the 
wall potential

5.3.3 A Hypothetical Plasma System

This system was originally devised by the author to test the computer code 
and explore the sheath formation process. (It was later discovered that this 
paralleled a model treated earlier [Langmuir, 1929].) Again the plasma is 
contained in a one-dimensional box but new plasma is only introduced at the 
mid-plane where the ionisation is deemed to take place. Here the electrons 
enter the box with a Maxwellian velocity distribution but the ions are 
positioned at the mid-plane with zero velocity. We shall later refer to this 
system as the 'single-point ionisation* case. We assume the potential 
distribution is monotonic and we again obtain expressions for the electron and



approximately Maxwellian velocity distribution everywhere we have: 

and using the usual approximate expression for the flux of particles to an 
absorbing wall along with the fact that the ion and electron fluxes are equal we 
obtain for the ions:

no/_M_ JO^y/2 exp/^A
2 Vmit ?\Kl)

As before these expressions are substituted into the Poisson equation to give:

After integrating once we arrive at:

On using the normalisations described in section 5.1.1 this becomes:

(S’ = 2[exp (C,) + (■ ^)V2 exp •A] (5.38)

where the maximum permissible value of the constant A is +1, which 
corresponds to zero electric field at the mid-plane. Other values of A 
correspond to finite values of electric field.

Equation (5.38) can be integrated to find the potential profile if the value of 
the electric field at the mid-plane is known. Unfortunately, there does not



system within a box of length 100 XD using a mass ratio M/m of 100 and a 
phasespace plot of the electron and ion trajectories for steady state conditions 
appears in Fig. 5.10 The electric field fluctuations are so large as a result of 
the relatively small number of particles used that the potential profile is 
difficult to determine, so an alternative method was used to analyse the 
results.

Fig. 5.10 reveals that the ions maintain a constant velocity except for small 
regions near the wall and mid-plane. This indicates that the potential has 
formed a plateau throughout most of the box and we shall assume that small 
sheath regions have been created at either end.

Setting f = 0 in equation (1.17) we obtain:

(5.39)

where <t>w is the wall potential, 4>p is the plateau potential and the usual 
normalisations have been performed.

We will now assume that the electric field at the mid-plane is zero and 
therefore set A = 1 in equation (5.38), then noting that the electric field in 
the plateau is zero we have:

ex (5.40)

Eliminating from equations (5.39) and (5.40) we have:

exp(<i>pXl-24>p)= 1 (5.41)

and solving numerically we obtain $p = -1.26 (c.f. Langmuir [1929]). This
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Fig. 5.10 Phasespace plot of the particles using a mass ratio
M/m of 100. Small dots are electrons, large dots are ions.



confirm the original assumption that the electric field at the mid-plane is 
zero. Note that the magnitude of the plateau potential exceeds the value of 0.5 
demanded to satisfy the Bohm criterion for the sheath formation at the wall 
(see section 1.2). This is not paradoxical since the potential attains the value 
0.5 in the high-field region near the source at the mid-plane, and this is a 
condition which is incompatible with the assumptions used in section 1.2 
which argues for the validity of the equality.

The need was felt for some kind of explanation which could account for this 
finding. Some basic principle of plasma physics should be able to provide a 
reason why the plasma adopts this particular configuration. The principle 
should be general and, for a conventional plasma, one might expect the Bohm 
criterion to be a consequence of it; in this case we know that the mid-plane 
electric field must be zero to ensure there is no singularity, therefore if there 
is a general principle it must constitute the mechanism which ensures the 
absence of singularities.

5.3.4 Investigating Possibilities for a Principle

In section 5.3.2, where the Bohm criterion was derived in a novel way, it 
was suggested that a plasma may adopt a configuration which minimises the 
wall potential with respect to the plane of symmetry. If this is to be a general 
principle it must also apply to the single-point ionisation case.

To analyse this case we examine whether the wall potential achieved in the 
particle simulation is in fact a minimum. To do this we explore analytically the 
behaviour of the plasma for small deviations from the equilibrium configuration 
maintained in the simulation. The deviation is expressed by replacing the 
value of 1 for the constant A in equation (5.38) by 1 - £ where £ is a small 
positive quantity, so that E = 0 corresponds to zero electric field at the mid-
plane. Corresponding to equations (5.38) and (5.41) we now have respectively



\ UTk/ L X JU11/ J

(1 - 2<r>p) exp (4>p) - 1 - E (5.43)

And differentiating (5.43) with respect to € we obtain:

exW 1'24>p)‘ 2 exW = * 1

So that

d4>p. _ l-24>p0
de le.o~ 1+2$po (5.44)

where <Dp0 = $p when £ = 0.

Now, after differentiating equation (5.39) with respect to £ we arrive at

d4>,i _ / 1 2$^-. d<t>p |
de ko" 2<J,po / dc L (5.45)

and after substituting equation (5.44) into equation (5.45) we obtain:

d0w) = 1- 20^
d£ l£.o 2<J>po

(5.46)

We have previously calculated the numerical value of plateau potential for 
the case of zero electric field at the mid-plane and after substituting this into 
equation (5.46) we obtain the increment in wall potential:

A<T>W * - 1.4e (5.47)
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increase in the magnitude of the wall potential. The magnitude of the wall-
potential maintained by the plasma is therefore the smallest value which can 
be achieved whilst still preserving monotonicity of the potential profile. It 
would appear that the adopted wall-potential is not stationary with respect to 
c. However, it will now be shown that the adopted wall-potential is stationary 
with respect to the electric field at the mid-plane.

From equation (5.42) we have:

d0
dX $.0 =

d z dCK
'■ de (.dx;<t>-o= (2c)

d^ 
'■ dE0 = (2c) 1/2 d0w

de

where = (dS/dX)^.o£.o

It is suggested that 'stationarity’ is only relevant with respect to some local 
value of a real plasma parameter. After all, some purely mathematical quantity 
can always be defined with resect to which one can achieve stationarity or 
otherwise at wilL

A second candidate for a general principle which has been reviewed is the 
possibility that a plasma settles into a configuration which minimises the total 
electric field energy. The pusuit of this idea was originally motivated by a line 
of reasoning which ultimately proved to be flawed. However, the validity of the 



both conventional plasmas and the single-point ionisation case was 
investigated.

We first examine single-point ionisation and we now need to specify a 
coordinate system. We take the wall to be at X = 0 and the mid-plane is 
situated in the positive half space. The total field energy for the zero source-
field case is then given by:

(5.48)

and after differentiating with respect to c we obtain:

=f° d4>-f—M —-I
d£ b dEldx;|£.o \dx7|^ de |e.o

By setting e = 0 and I = 4>„ in equation (5.42) and making use of equation
(5.46) we are able to derive an expression for the rightmost term:

/ d4\ | d4>„i
kdxJL de

w

= 1-4(2 (exp(4>„) + exp(4>,)-l]p'2

An expression for the integrand is obtained by differentiating equation (5.42) 
with respect to £ and making use of equations (5.46) and (5.43), so that

de(dx)|£.o r° 1 - (4>/4> 0)I/2
d4> “ Uw0 (exp(4>) + 2(4>4>p0)Py2exp(4>p0)-l)1/2 0 (5.49)

where 0^ is the wall potential when e = 0. This integrand has singularities 
at 4> = 0 and 4>p0. The nature of the one at 4> = 4^ is elucidated by 
substituting4> = 4*^ + A4> into equation (5.49). A4> is a small quantity and 
enables an approximate expression for the integrand to be obtained through 
sinrnli firing exDansions:



d£ \dX/|f-0 ~ \ ^1 + 24^/ L <Ppo WpoV l + 2<J>p0/ J

Thus at 0 = 0pO the integrand is just a step function which does not usually 
cause problems for numerical integration schemes.

The singularity at $ = 0 is treated by an approximate expansion of equation 
(5.49) valid for small $ :

d,d<k| 1
dddx)|^ *(-*r (2(-<$>p0)"2 exp(4>p0)|1/2

So integrating over a small range to 0 we obtain:

i°lA| d0 , It*')3'4____
d£ k dxj t-o {2(- V177 exfXGp,,)} -

which is finite. The shape of the integrand is depicted in Fig. 5.11. Hence the 
integration can be performed numerically and this has been done.

The result for (dE/de)e.o varies with mass ratio M/m and this also affects 
the integration by determining the wall-potential which forms one extreme of 
the range of integration. The consequence of this is that the result is positive 
for mass ratios below 1000 and negative above this value, as can be seen in 
Fig. 5.12. Hence the field energy too is found not to be stationary with respect 
to c. However, as in the case of the wall-potential, it is found to be stationary 
with respect to £ since d£/d£ = (2e )’1/2. The interesting point is that, for 
zero-field at the mid-plane, field energy is at its maximum value when the 
mass ratio is above 1000 and at its minimum value for mass ratios below this. 
So minimisation of the field energy as a principle would have greater 
corroboration if it were confirmed for mass ratios above 1000.

It was still of interest to know whether the principle might apply to a 
conventional plasma-in-box system. Hence, we recall the expression for the
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Fig. 5.12 The derivitive of the total field energy (dE/de le_J 
as a function of mass ratio M/m.



= 21/2{2I[(1 - 4>/I)1/2 - 1] + exp(4>) - I)"2 (5.50)

Since the field in the remainder of the plasma is so small, it makes a 
negligible contribution to the total field energy and can be neglected.

Substituting equation (5.50) into equation (5.49) we obtain:

E = J° 21/2{2I[( 1 - <t>/I)1/2 - 1] + exp (4>) - 1}1/2 d4> (5.51)

and we note that this depends on mass ratio M/m through the wall potential 
(which, it should be remembered, also depends on I). Equation (5.51) has 
been integrated for a range of mass ratios and ion energies; the results are 
plotted in Fig. 5.13. As can be seen, the total field energy at I = 1/2 does not 
possess a stationary value with respect to I. Thus, it appears that plasmas do 
not attempt to minimise their total field energy.

One possibility which suggests itself as a natural extension of the ideas 
already discussed is that a plasma may minimise its total energy, i.e., a plasma 
may minimise the sum of its kinetic and field energies. However, the 
feasibility of this idea can be quickly assessed. The total kinetic energy 
depends on the size of the box, therefore the configuration for minimised total 
energy would also depend on the size of the box. Since we already know that 
the structure of the sheath regions (where the electric field energy is 
concentrated) does not depend on the box size (see section 5.3.1) we may 
conclude that a plasma does not minimise its total energy.

Only 'minimisation of the wall potential' has not been invalidated as a 
principle. Clearly, it would be preferable if this result were shown to follow
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following observation.

It was noticed that there was one characteristic which was common to both 
of the plasma systems analysed above. In each case the plasma seems to adopt 
a configuration which can be described as marginally monotonic. If ions 

entered a conventional sheath with a velocity below that given by the Bohm 
criterion, then there would be no monotonic potential solutions in the sheath 
but, as we have argued in section 1.2 and discovered in section 5.3.1, the ions 
appear to adopt the minimum velocity consistent with the Bohm criterion; 
this is a marginal monotonicity condition. In the single-point ionisation case 
it was also found that the plasma adopted a configuration with zero electric 
field at the mid-plane; again this is a marginal monotonicity condition. It 
would appear to be safe to claim that a plasma will, in general, adopt the 
marginally monotonic configuration.

It will be instructive to try to discover reasons why marginal monotonicity 
should be maintained and whether there are conditions which could invalidate 
the principle. We begin by noting that one might not, at first, expect to 
observe, inside a plasma, regions of space-charge which are concentrated 
enough to produce local maxima or minima in the potential distribution, 
because if such a region materialised the electrons might be expected to 
redistribute themselves to reduce the concentration of space-charge. This 
would, of course, maintain monotonicity.

There are, however, two things that could prevent adequate redistribution. 
Firstly, if by some means a steady stream of electrons can be directed towards 
a negative space-charge region at a rate equalling that at which electrons are 
being repelled by the negative potential then a local minimum in potential can 
be maintained. Secondary electrons from a hot, emissive boundary is one 
mechanism which may provide sufficient energy to electrons to enable them 
to produce such a minimum. Secondly, a maximum in potential can occur if



of the one-dimensional box, in which case the maximum is situated at the mid-
plane; but of course our previous remarks concerning monotonicity refer to 
each separate half of such a system.

The above considerations ensure that in both of the cases discussed so far 
only monotonic potential distributions can occur, thus supporting the 
observed features of the calculations. The other half of the principle, which 
states that the monotonicity is marginal, has not to date been explained in 
terms of more fundamental concepts, but it is suggested that the principle 
remains generally true in circumstances where the profile is not influenced by 
either of the two mechanisms which interfere with the ability of the electrons 
to moderate space-charge concentration.

In summary then, the principle of a minimum ion energy for sheath 
formation is shown to follow from the requirement for monotonicity; the 
conclusion that this should also represent a maximum ion energy for a 
conventional sheath follows from the argument of section 1.2 The use of the 
equality in the Bohm criterion (equation (1.7)) is thus justified.

It has also been verified that the above criterion corresponds to the 
minimum wall-potential consistent with monotonicity, and that the adopted 
wall-potential is stationary with respect to the boundary value of a real plasma 
parameter.



Simulation of the Instability and Interpretation

Results for zero current conditions and current carrying conditions will be 
dealt with separately. We will begin with those for the current case (section 
6.1) since the behaviour is more clear-cut and straightforward. The zero 
current case with parameters more likely to be relevant to tokamaks will be 
discussed in section 6.2 In section 6.3 we investigate the evolution of the 
instability beyond the stage represented in the simultation and assess the 
stability of the sheath.

6.1 Beam-Plasma Results With Current

In this section we investigate the development of the beam-plasma 
instability when large currents are allowed to flow through the sheath to the 
wail under space-charge limited conditions. This choice was made to ensure 
maximum beam-density, thus enhancing the strength of the instability.

Two cases have been chosen corresponding to values of normalised wall 
potential of -10 and -100. For $0 ■ -10 the corresponding values of beam 
velocity and density are:

vb/vT = 4.47, nt/n0 = 0.149

In the case of 4>0 = -100 these values become:

Vj/Vt  = 14.14, iVn0 = 0.0632

«

The system we are concerned with is one where the instability is expected 
to grow spatially in the beam as it moves out from the sheath into the plasma 
The evolution of the instability would therefore be affected by a very large 
region of plasma which would be difficult to simulate because of finite



relationship between the temporal growth simulation and the spatial growth 
case is dealt with in section 6.2 where the importance of other unnatural 
effects, such as exaggerated thermal fluctuations, are also discussed.

The particle simulation code was employed with box length equal to one 
wavelength of the fastest growing wave. This mode was determined by solving 
a linear dispersion relation for the appropriate electron distribution function, 
the ion interaction being neglected since their large mass is expected to 
prevent them from playing a significant role in the evolution of the instability. 
The dispersion relation is given [Wesson, 1974[ by:

where:

is the plasma dispersion function - evaluated using the Landau contour (see
fig. 21),

v^( = KT/mj and v^ is the drift velocity of the j“* species. For a beam of 
electrons passing through Maxwellian plasma electrons the dispersion 
relation, when normalised (see section 5.1.1), becomes:



appeared in the definition of vT}, fj, ■ and 4 ■ n^/n^

The solution to the dispersion relation for $0 = -100 is shown in Fig. 6.1. 
The parameters discussed so far are applicable to arbitrary mass ratio, but 
once this is selected then it fixes the current and associated variables such as 
p and r,. For the two cases considered, the appropriate quantities for a 
number of mass ratios have been calculated and are given in Table 6.1. The 
actual mass ratio used in the simulation was 100 but since we are assuming ion 
motion is negligible we also assume that the results are applicable to all mass 
ratios for which (M/m)V2 » 1.

Phasespace plots of the particle motion are displayed in Figs. 6.2 and 6.3. In 
both cases the beam of electrons is initially clearly visible as a horizontal line 
separated in velocity space from the main plasma The velocity perturbation of 
the beam begins with wavelength equal to the box size and it continues to 
grow until the beam is trapped by the growing wave. This happens after 
ttOpg« 15 and 20 for the lower and higher wall-potential cases respectively. 
After trapping, the beam and plasma continue to orbit in phasespace but the 
varying amplitude of the trapping potential allows electrons to be periodically 
spilled across the separatrix near the nodes, where the local potential is small. 
The resulting filamentary spikes can clearly be seen at intervals corresponding 
to the bounce frequency. Smaller spikes can also be seen at other times due to 
the considerable thermal fluctuations experienced by this kind of simulation. 
This 'detrapping’ of the electrons prevents them from following a constant 
orbit, thus ensuring that they all have slightly different bounce frequencies. 
This has the effect of smearing out the electron distribution function along 
orbits, which would, in turn, gradually diminish the size of the amplitude of 
the oscillations of the trapping potential. The 4>0 «-10 case still retains at the 
end of the simulation a void at the centre of the particle orbits, while, in the

= -100 case, stochasticity theory (see section 3.3 and 7.25) may be 
applicable since electron orbits are rather chaotically scattered throughout the 
region enclosed by the separatrix; at this stage the spatially averaged electron
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velocity space spanned by the separatrix as can be seen by referring to 
Figs. 6.4 and 6.5 which display electron distributions for the two cases (note 
when comparing plots that the vertical scale is automatically adjusted in each 
case to accommodate the maximum value of the distribution function).

In addition to electrons shifting their orbits when spilled outside the 
phasespace separatrix it should be noted that other electrons are gradually 
spiralling in towards the centre in the 4>0« -10 case. This process will also 
lead to the gradual smearing of the distribution along orbits with consequent 
reduction in amplitude oscillations. However, the reduction of the amplitude 
oscillations is in turn a cause of the inward spiralling. This is because the 
extremes of the wave amplitude are gradually reduced, thus preventing the 
initially trapped electrons from regaining their former extremes of velocity on 
subsequent revolutions of the spiral. Successive waves of detrapped electrons 
are regularly being produced to partially feed the outer edges of the spiral 
with a continuous source of particles which follow the rest in towards the 
centre. The issue is then whether or not the spiral actually reaches the centre 
or whether the distribution around the orbit becomes homogeneous before 
this can happen, thus halting the process by removing the amplitude 
oscillations of the trapping wave. In either case the result would resemble a 
BGK mode (see section 3.2). A further explanation for the spiralling is 
explored in section 7.2.7.

It would appear from Figs. 6.2 and 6.3 that for the 4>0 = -100 case the 
central void does become filled, while at the end of the simulation the <J>0 = -10 
case retains the possibility that the void will persist A real or simulated 
plasma, however, is not restricted to the idealised behaviour determined by 
the Vlasov equation; there are thermal fluctuations, which in the simulation 
are especially large, and these must continue to spread out the orbits to fill in 
the voids. There is also the fact that, strictly speaking, there is never only a 
single mode involved in the instability, although there is the possibility that for 
a period of time the plasma may appear to behave as if there were a single
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wave, provided that the appropriate criterion i6 met (see section 6.2). As a 
matter of fact, for the 4>0 = -100 case, the initially dominant mode (mode 1) 
appears to suffer competition from mode 2 after about ■ 30 when a 
velocity perturbation with wavelength half the box size is clearly visible. The 
comparability of these two modes at this time can be confirmed by referring to 
Fig. 6.7. which shows the time development of the first two modes for this 
case (the corresponding curves for the 0O = - 10 case are shown in Fig. 6.6). 
This neighbouring wave competition is probably responsible for the rapid 
filling in of the central void and preventing the trapped electrons from 
spiralling smoothly. Such behaviour is predicted by stochasticity theory (see 
section 3.3 and 7.25). It should be noted that the mode amplitudes depicted 
in Figs. 6.6 and 6.7 result from the sum of the Landau and beam modes at that 
particular wavelength. This causes a problem because the trace is swamped by 
the nearly standing wave oscillations resulting from the thermal fluctuations in 
the Landau mode. This effect must be taken into account when interpreting 
Figs. 6.6 and 6.7. A clearer impression of the bouncing of the trapped 
electrons in the potential well is gained by viewing Figs. 6.8 and 6.9 which 
shows the variation of the beam and plasma electron energy. It does not suffer 
to the same extent from the noise problem but it does not reveal anything 
about the individual modes either. Note that the energy exchange between the 
beam and plasma electrons is almost perfect - but not quite! The difference 
between the two gives rise to the wave energy which is observable in the field 
energy plots of Figs. 6.10 and 6.11; also shown here is the reduction in the 
total particle kinetic energy. As can be seen, the two are always identical apart 
from numerical noise.

Section 6.2 supplies a criterion for the applicability of the single-wave 
model of the beam-plasma instability (equation (6.11)) and making use of 
equation (3.1) we have approximately:

25/6 (Y^)172
3(ln2)1/2 T]1/s > >1 (6.1)
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obtain 276 in the lower wall-potential case (4>0 « -10) and 4.12 in the higher 
wall-potential case (4>0 = -100). So neither case should be expected on this 
basis to provide a genuine example of single-wave behaviour. However, it 
should be noted that the finite box size with periodic boundary conditions 
used in the simulation will restrict the spectrum to discrete modes thus 
somewhat prolonging the period of single wave dominance. In any event the 
criterion applies to the time spanning the last few e-foldings before trapping 
occurs, so longer times will give the electrons a chance to "detect* the 
presence of other waves. For this reason the criterion does not enable one to 
assess the applicability of the single-wave model to the nonlinear stage of the 
instability.

It might have been expected that the 4>0 = -100 case would be the least 
likely to suffer from neighbouring wave competition since it was closer to 
satisfying criterion (6.1) than the 4>0 = -10 case. However, the criterion is 
based on an assumption that the initial wave spectrum is flat in the region 
where wave growth is important In fact the 4>0 = -100 case does have a 
reasonably flat spectrum but the 4>0«-10 case is more peaked since the box 
size is smaller and the fluctuation spectrum is given by: 

.2 KT k
1 + (nkX/ 2n (6.2)k

where kXD is the smallest normalised wavenumber accommodated by the 
system (see section6.2). So this too would prolong the period of single wave 
dominance.

It must be remembered that a real plasma will have a much lower level of 
thermal fluctuations initially than the artificial plasma of these simulations, so 
that by the time that nonlinear behaviour begins the wave spectrum will be 
much more peaked in reality. The single-wave dominance will therefore 
continue much longer and the oscillations in the amplitude of the trapping 



should exhibit more broadband behaviour than observed in temporal growth 
during the nonlinear phase.

Some computer beam-plasma experiments (see section 3.1.3) effectively 
restrict the spectrum of growing waves to a single mode. In these cases it is 
observed that "clumps” of trapped electrons maintain their rotation 
indefinitely while the amplitude of the trapping potential continues to 
oscillate between fixed maximum and minimum values. This indicates that 
there can be no detrapping of electrons here otherwise this would gradually 
erode the magnitude of the oscillations of the trapping potential amplitude. 
The time variation in shape of the potential well and the motion of the 
electrons must be such as to ensure that they all have the same bounce 
frequency.

It would seem therefore that the long timescale evolution of the beam-
plasma instability in a collisionless plasma depends on the nature of the wave 
spectrum. Electron detrapping and attendant reduction of amplitude 
oscillations would seem to require neighbouring wave growth to enable the 
process to take place; these and already existing waves ensuring further 
smoothing of the distribution function. The evolution is difficult to calculate 
exactly but the speed with which it progresses will undoubtedly be related to 
the width of the wave spectrum when trapping begins (witness the rapid 
flattening of the distribution function for the $0 = -100 case). This will be 
more important than the noise spectrum at more distant wavelengths. Note 
that another possible mechanism causing the spiralling of electrons in 
phasespace and damping of amplitude oscillations of the main wave is, 
however, discussed in sections 7.2.2 and 7.27 and even applies to a single-
wave situation.

If there are significant collisions these will of course play a similar role in 
hastening the flattening of the distribution function and they will ultimately 
lead to the restoration of a Maxwellian velocity distribution function. The



then collisions will be the dominant mechanism. This is a difficult issue to 
resolve without unlimited computer resources as the many wave problem is a 
complex one.

Thus, depending on the relative importance of the above mechanisms, the 
instability may or may not penetrate deep into the plasma, but even if the 
structure exists over a large distance it does not make sense to expect a true 
BGK mode to be created since such an entity can only survive by virtue of the 
artificial requirement for an absolutely monochromatic single wave (see 
section 3.2).



The computer simulation of the beam-plasma instability is difficult as it 
would require a prohibitively large number of particles to model all the 
attributes of a real plasma for the conditions of interest Since computer 
resources are limited it is necessary to invoke as many simplifications as 
theoretical assessments will allow.

The simplest way of representing a plasma is to model a small segment of it 
and use periodic boundary conditions; this heavily restricts the spectrum of 
waves which can propagate by only allowing discrete modes. The adequacy of 
such a reduced spectrum will be discussed later but for the moment we 
simply note that these restrictions will have to be borne because there is no 
possibility of including sufficient particles to be able to fully represent the 
entire region of interest This immediately presents a problem because the 
conditions we are interested in do not relate to a spatially homogeneous 
situation. The beam-plasma instability is expected to grow spatially in the 
direction of the plasma centre and away from the sheath, whereas use of 
periodic boundary conditions will only permit the simulation of temporal 
growth, starting from spatially homogeneous conditions. It is, however, 
possible to relate some aspects of a temporally evolving simulation to those for 
the case of spatial evolution. This has been done analytically for the linear 
dispersion relation [O’Neil and Malmberg, 1968] and for the evolution of the 
instability [O’Neil and Winfrey, 1972; Winfrey and Dunlop, 1977].

A linear analysis of the beam-plasma instability was carried out by O'Neil and 
Malmberg [1968] in connection with the transition from beam type to gentle 
bump type roots of the dispersion relation (see section 7.26). For temporal 
growth (i.e., choosing k to be real and 0) complex) near the intersection of the 
beam and Landau roots they have derived the following equation in 
transformed coordinates:



(6.4a)

The constants P, Q and R are defined by:

p-2[“3(£)’]

Q-6 (6.4b)

Note that the point (a)o,ko) is defined by <oo = and Re ctko,©^ = 0 
(there is a small imaginary part of order exp(vD2/vT2)).

O‘Neil and Malmberg [1968] have also examined the case of spatial growth 
by choosing o to be real and k to be complex. The equation which they derive 
to describe the dispersion relation near the intersection of the beam and 
Landau roots is identical to equation (6.3) if transformation (6.4) is replaced 
with the following transformation:

<a-^o / R'9\„
<oo A P + Q/ 

VBR s = — 
vD



while d)0 is the frequency of maximum spatial growth rate and this offers 
some hope that a temporal simulation using the mode at wavelength 1^ may 
provide information about the mode at frequency <oo in the spatial problem. 
However, the important point to note is that the terms in the dispersion 
relation have been expanded about the point (d)^ kJ. Maximum growth rate 
for both the temporal and spatial cases therefore occurs close to this point; 
thus it would seem unlikely that failure to properly distinguish between these 
two modes would lead to significant deviations of detail if the single-wave 
model is applicable to this situation.

We also need to be more clear about whether the nonlinear stage of the 
temporal simulation can be considered relevant to the spatial problem. 
However, further discussion will be better comprehended after some 
simulation results have been examined. Fig. 6.12 is a series of phasespace plots 
of the plasma particles during a simulation carried out for illustrative 
purposes. The region spanned by the calculation has a length of 40 XD and the 
emissive wall is taken to be located at the left-hand edge (x • 0). The 
boundary conditions chosen here are that all impinging ions and electrons are 
absorbed but a fraction Tc (the critical value of the secondary emission 
coefficient) of the electrons are returned at x = 0 with zero velocity. The 
boundary conditions at the right-hand edge are that the ions are introduced 
monoenergetically at a constant rate while the introduction of electrons 
across the entry plane is arranged to exactly parallel those electrons crossing 
another plane which is a distance 10 XD from the entry plane or 30from 
the wall. This is done to enforce periodicity with a wavelength of 10 which 
is about the wavelength of the most strongly growing mode for the case of a 
deuterium/tritium mixture. Clearly, it does not greatly influence the 
wavelength of the mode that actually materialises in this case where the mass 
ratio is 100. The actual wavelength appears to be * 5XD. The energy of the 
injected ions was chosen to be that calculated for entry to the sheath for such 
a mixture with T at the critical value. The beam of electrons can be clearly 
seen accelerating away from the wall and after approaching a limiting velocity
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box.

The results of a temporal simulation with periodic boundary conditions are 
shown in Fig. 6.13 which depicts phasespace plots at successive times for 
beam parameters corresponding to a mass ratio of 4590 with no current 
Later times in this simulation roughly correspond to positions further from 
the wall The beam electrons began at t=0 with a uniform velocity 
corresponding to the value calculated for electrons leaving the sheath region 
and they can be seen to experience a growing oscillatory perturbation until 
they eventually become trapped by the wave potential. We must remember that 
the time taken for this to happen is dependent on the natural level of the 
perturbations in the approriate mode at the start of the simulation and that 
this will be different from that encountered in a real plasma However, it will 
be possible to take this into account by using the formulae described later in 
this section to estimate the fluctuation levels for both situations and for the 
moment we will ignore this aspect

Thus, in the simulation at least, one mode dominates and grows until the 
electrons are trapped. It would be useful to obtain some idea of the physical 
scale of this phenomenon by estimating the distance d,. between the wall and 
the approximate region where trapping begins. We could approach this by 
assuming that the time tj required for trapping to begin in the temporal 
simulation is equal to the time required for beam electrons to travel from the 
wall to the trapping region. We could then write approximately:

dr = utr (6.5)

where u is the beam velocity.

We shall now try to examine the relation between the temporal and spatial 
problems with a little more precision. The paper by O'Neil and Winfrey [1972]
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” lv  uic uuc uy uncu, winirey ana MaimDerg [1971] which is
described in section 3.3.1. Recall that their computer solution for the initial 
nonlinear behaviour of a beam-plasma system also employed a charge sheet 
particle simulation but these particles were confined to the beam electrons 
while the plasma was represented by a linear dielectric function. The 1972 
paper showed that the corresponding spatial problem had the same solution 
although the scaled variables were related to the actual parameters in a 
different way. These results are based on the assumption that the single-wave 
model is valid, however, the paper by Winfrey and Dunlop [1977] investigated 
the effect of neighbouring waves on the nonlinear evolution.

Winfrey and Dunlop [1977], using the same computer simulation technique, 
concluded that when the single-wave model was not appropriate the nonlinear 
behaviour diverged in the temporal and spatial problems, but their 
explanation seems a little confused. They showed that the spatial growth 
spectrum was more peaked in k-space than the temporal growth spectrum, 
which might initially suggest that temporal growth should exhibit more 
broadband behaviour. However, this resulted in closer spacing of the modes 
used in their spatial calculation, thus increasing the tendency for neighbouring 
modes to compete with the dominant mode; they described this as broadband 
behaviour, although reducing the spacing of the modes in the temporal 
calculation may have had the same effect on the temporal solution. Their 
remarks therefore refer to a computational artefact which obscures the issue. 
What is clear is that their dispersion relation indicates that a broader range of 
waves in the spatial case are resonant with the dominant mode on the basis of 
proximity in phase velocity. This is more likely to be the true explanation for 
the broadband behaviour seen in experiments.

It is possible to make use of the results of O'Neil and Winfrey [1972] to 
relate the trapping time tj. of the temporal simulation to the trapping 
distance dj of the spatial problem. In terms of unsealed variables they give 
the following transformation between the temporal and spatial coordinate;



t - (x/uXn'/Ti)1/s (6.6)

where T| and T)' are given by:

n - (nB/no /(O02)l(®72X3e/ 1 4

T)' = - (nB /no X (o^/(o02)[( 0)o/2uX de/ k)^]’1

ando)0 = koU (see section 3.1.1). Equation (6.6) thus becomes:

If we now identify x with the trapping distance dj and t with the trapping 
time tp and since ( do/ak)^^ is of the same order as u in general, we can 
write:

dr* utr (6.7)

which is consistent with the estimate given by equation (6.5). Actually, 
(dw/dk)^is always less than u, therefore equation (6.7) represents an 
upper limit Thus the heuristic estimate of equation (6.5) is confirmed, at least 
in the context of single-wave theory.

It should be emphasised that the above workers have been able to employ 
simplifying approximations on the assumption that the electron beam is small, 
cold and fast This requires:

exp(- u2/2vT2) « (nB/no) «1 (6.8)

and
( vB /u) « (nB /no)1/s (6.9)

where vB is the thermal velocity of the beam electrons. Since vB is zero for



bu  mat exp(- u/zvT) = 0.377 and
(ng/nJ1/3 - 0.557. The beam is therefore neither sufficiently small nor 

sufficiently fast for the instability to be accurately described by the analyses of 
this section. Of course, this is one reason why it is important to perform the 
particle simulation.

We next examine the applicability of the single-wave model in the case we 
are considering. The simulation produces nonlinearity in smaller times or 
distances than a real plasma since the instability grows from an artificially 
boosted level of energy in the mode of interest; this is because the simulation 
contains a restricted number of particles. The derived trapping distance will 
be adjusted to take this effect into account but we need to estimate the width 
of the wave spectrum in the simulation just before the evolution becomes 
nonlinear. Actually, a simulation which uses periodic boundary conditions can 
only allow the growth of certain discrete modes so that, depending on the 
spacing of the neighbouring modes, the spectrum may effectively remain 
artificially narrow over an extended period of time. However, we will ignore 
this aspect for the moment

We need to assess whether an electron can detect the spread of 
wavelengths in the spectrum. Recall from section 3.1.1 that one criterion is 
obtained by considering whether an electron detects the modulation in 
wavenumber. The condition for the modulation to remain undetected over a 
period spanning the last few e-foldings prior to the onset of nonlinearity is 
therefore given by:

6kl(ve- v^)lt2 « 2ji

where tj is the time over which there are two e-foldings of the dominant 
wave, ve is the electron velocity and is the phase velocity of the wave. This 
can be written:

6kl(ve-VA)| «Kyra
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depends on which electrons have the most important role. We note that the 
dominant contribution to the wave potential is supplied by the plasma 
electrons as opposed to the beam electrons since there are many more of the 
former. Hence for simplicity we take ve to be zero (the most probable 
velocity). The above inequality thus becomes:

5k^-«irym (6.10)

Now recall from section 3.1.1 (equation 3.2) that after N e-foldings the width 
of the spectrum of waves is given by:

6k = (ln2)1/2N'I/2Ak

where Ak is the width of the linear growth spectrum and we shall assume the 
equivalence of this 6 k with that appearing in equation (6.10). Substituting this 
equation into condition (6.10) now gives:

N-1/2(ln2)1/2 Ak « irym

Examination of the dispersion relation for the conditions of our simulation 
provides the following approximate values:

Ym = 0.095

<o/k = 1.0

Ak = 1.0

so that N1/2 » 2.79.



conmuon can De obtained Dy simply requiring the spectrum width 
to be small So for the single-wave model to be applicable we require 6k « k 
or

N‘1/2 « (ln2)1/2 k/Ak

which gives N1/2 » 1.23.

(6.11)

The two assessments give different requirements but we only need to 
employ the least restrictive condition which is (6.11). Therefore the 
wavenumber spread seen by the electrons is just that of the wave spectrum 
itself Thus the number of e-foldings required depends on the purity of the 
spectrum demanded. For example, to obtain 6k/k < 0.2 requires 
N 7 > 5 x 1.23 or N > 37.8. To obtain 6k/k <0.1 requires N > 151; this 

cannot be satisfied by either a real or simulated plasma Clearly, one will get 
an approximation to single-wave behaviour in a real plasma which is 
quantifiable in the fashion just outlined, but the conditions assumed here do 
not define perfect single-wave behaviour. However, we return to the 
consideration of the mode restricting nature of the periodic boundary 
conditions employed in the simulation.

The wavelength of the most strongly growing mode was 10 for the 
conditions of interest and the length L of the box enclosing the simulated 
plasma was chosen to be twice this value. Thus the wavelengths of the only 
modes which were allowed are given by An = 201 Jn, n= 1,2,.. etc. and the 
strongest growing mode therefore has mode number n = 2. The potential 
distribution across the box was Fourier analysed throughout the simulation and 
the amplitudes of the separate modes were recorded as a function of time; the 
development of the first three modes is plotted in Fig. 6.14 It will be noticed 
that, at first, mode 2 dominates until shortly after it reaches a peak at about 
to,, = 65 whereupon its amplitude begins to fall and is comparable with the 
steadily increasing amplitude of mode 1 at about - 85. The peak signifies
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greater than either of its neighbouring modes 1 and 3 by about a factor of 5, so 

at this stage it can be considered to be approximately a single wave. Prior to 

this moment all the modes would have been growing linearly so that it can be 

assumed that the development of mode 2 in the simulation can be 

approximately described by the single wave model up to the moment of 
trapping. Thereafter mode 2 rapidly loses its dominance and the 
neighbouring modes strongly influence subsequent behaviour. Thus, in the 
simulation, the evolution can be described by the single-wave model up to the 

point of trapping, in contrast to the case of a real plasma What this means in 

practice is that the main wave will possess much larger amplitude and 

wavelength modulations than observed in the simulation. However, trapping 
of the beam electrons will still occur in about the same time so we will 

estimate the distance to the trapping region by making use of simulation 

results. The inability to exactly model the many wave spectum prevents the 
later evolution of the instability from being accurately simulated, so we shall 

restrict ourselves to obtaining the trapping distance.

Thus the trapping time in the simulation was found to be = 70 which 

gives a trapping distance of about 103XD by virtue of equation (6.7). Of 

course, this will have to be related to the true value one would encounter in a 
real plasma by estimating the relative amplitudes of the fluctuations in the two 
cases.

The expression for the electric field fluctuations in a one-dimensional 

Maxwellian plasma (modelled as infinite, plane charged sheets) was derived 

using the dressed test-particle formulation of Krall and Trivelpiece [1973b] 

which they had applied to the three-dimensional case. Vlasov theory - a fluid 
theory - cannot be used for this since the fluctuations depend on the 
discreteness of the plasma medium. The 1 - D result for a discrete spectrum 
is:

X QrrZ - 1 . 72“^ (6.12)
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length and k is the smallest wavenumber accommodated by the system. So 

the energy in a single mode (after transformation to normalised units) is given 
by:

. 2. _ 1 kA.p
' -2n(nJA.D) l + (nkAp)2 (6.13)

Also, the electric field and potential amplitudes are related by:

<*"> ’ (i)2 <£"> ’ = (6.14)

Thus we are able to obtain the potential amplitudes for any of the modes 

which would arise in a particle simulation of a Maxwellian plasma. The beam-

plasma system, however, is not a simple Maxwellian and the dispersion 

relation has both beam-like and Landau type roots, so the energy at a 

particular wavelength will be divided between the beam and Landau modes. 
Specifically, we are interested in the beam mode and the amplitude of the 

corresponding fluctuations at t = 0 which can be inferred from the growth 

rate, trapping time and trapping amplitude of the appropriate mode. We will 
then make the assumption that S, the ratio of the amplitude of the beam mode 

to that calculated for a Maxwellian plasma, is the same for the simulation as for 

a real plasma. This is reasonable because we expect the energy to be divided 

between the modes in the same way for both cases. Since we can calculate the 

level of fluctuations in a real Maxwellian plasma this ratio will enable us to 

estimate the fluctuation level in the beam mode of a real beam-plasma system.

The simulation employed a total of 999,852 particles or charge sheets (both 

ions and electrons) or, approximately, n^D = 25,000 electron particles per 
Debye length, and the dispersion relation indicates that the wavenumber of 

the most strongly growing mode is kkD = 0.667. For a Maxwellian plasma, 

these values taken with equations (6.13) and (6.14) predict a value of 
2.528 x 10 3 for the initial potential amplitude <5 nf mnrU o



w negative wavciiLunuci case, ror me Deam-piasma system we now 
wish to estimate the initial amplitude of the beam mode.

We can write approximately:

where 4*^ is the saturation amplitude of the unstable wave and <i>B0 is the 

initial amplitude of the wave. Using 0^ « 0.09, = 70 and yn = 0.095 we

obtain $B0 = 1.165 x 10^. We therefore arrive at

(6.15)

We now turn our attention to the task of calculating the initial amplitude of 

the fastest growing beam mode in a real plasma. In a real plasma we have 

point particles instead of sheets of charge. Any magnetic field along the 
direction of the beam will, to a greater or lesser extent, restrict the 

perpendicular motion of the plasma particles but will leave the parallel motion 

unconstrained. Since the fluctuation spectrum for wave-vectors parallel to the 
field depends only on the parallel motion it might be assumed that adding the 

magnetic field makes no difference to the fluctuation spectrum. This will hold 

true for some conditions but when 0)a » 0)^. (where is the electron 

gyrofrequency) the electrons will interact more strongly (when oscillating in a 

Langmuir wave) if the gyroradius becomes larger than the mean inter-particle 

distance; this will change the results.

To find out if this combination of events can happen we characterise the 
inter-particle separation as 1 « l/n^3 and note that the electron gyroradius is 
given by:



(6.15)

and this can be rewritten as:

(iUd )1/S

where 1D = (KT/4itne2)1/s. Since is the number of particles per 

Debye sphere (usually a very large number) we can conclude that <o » to ce pe
when the gyroradius is comparable to the particle separation and the 
behaviour of the electrons is then much more like that of two-dimensional 

charge sheets moving in one dimension - as in the 1-D particle simulation 
code.

In order to obtain plasmas with comparable electron gyroradius and particle 

separation we need a specific magnetic field which is calculated by 
substituting <oce - eB/mtc (where e/me is the electronic ratio of charge to 

mass and c is the velocity of light) into equation (6.15) which is rearranged to 
give:

B = | (meKTe)I/2 n^3

or B = 238T1/2 n^/s

in Gaussian units. This value of magnetic field would have to be greatly 

exceeded if the electrons were to be constrained to behave like point particles 
in the context of fluctuation theory.

Of course if wpe 2 coce then the magnetic field is too weak to influence the 

electrostatic fluctuations and again the electrons will behave like point 

particles. For this to be the case we find that-



or B £ 3.2 x 10 s n}''2

in Gaussian units. For example, we see that for a density of lO^cm'3 the 

magnetic field should not exceed about 3 Tesla if the electrons are to behave 
like point particles. Thus, depending on the conditions, the electrons can 
behave like either point particles or sheet particles and we now estimate the 
fluctuation level for the two cases.

Consider first the sheet particle model. In order to infer the parameters 

relevant to a sheet model we turn to the following heuristic argument Fig. 

6.15 depicts a cylinder of radius equal to the electron gyroradius passing 

through a plasma with axis along a field line. The electrons enclosed by the 

cylindrical surface are constrained by the magnetic field to remain 

approximately within the volume of the cylinder and thus effectively play the 
role of individual charge sheets of area roughly equal to the cross-sectional 

area of the cylinder. The fluctuations in such a system depend on the average 
number of charge sheets per unit length which, in this case, is effectively 
given by

n, = it Pc2 n,?

Fig. 6.15 Charge sheet model for gyrating electrons.

The solid parallel lines are magnetic field lines.
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dimensional Maxwellian plasma are now assessed using the continuous 
spectrum version of equation (6.12):

Z E2 = r“ KT dk
x 8ir 2r\ -« 1 + (k A.J2 2n

which becomes in normalised units:

_ 1 f* d«
2n(nA0)J-* bn?

where x» kXD. We are interested in the initial energy distributed over the 
final spread of wavelengths contained in the wave spectrum when the growth 
has saturated due to electron trapping. Since the wavenumber of strongest 
growth is 0.667 we obtain approximately:

"An

where 6« is the width of the saturated spectrum and by making use of 
equation (3.2) this becomes:

<e2> = 0.11(ln2)1/2N'1/2Ax
Me (6.17)

and Ax is now the width of the growth rate spectrum We now rewrite in 
terms of the potential amplitude and note that N is given by:

$ = <h

where 4^ is the saturation potential amplitude and <t>B0 is the initial 

potential amplitude of the beam mode, so that equation (6.17) becomes:



bo  " oh V'w $B0)r (6.18)

where S is given by equation(6.16). Equation(6.18) is an implicit equation for 
$B0 which is easily soluble by iteration and solutions have been obtained for a 
wide range of the parameter n^p. The results are shown in Table 6.2

Table 6.2

10s 5.69 xlO-5 110
106 1.73 xlO-5 127
107 5.30 xlO-6 145
10s 1.63 xlO"6 162
109 5.02 xlO’7 180

The range in n, was chosen to span the extremes corresponding to the 
following ranges of density and magnetic field strength:

ho: 1019 - 2 x IO20 m^

T : 500 - 104 eV

B : 4 - IT

These ranges encompass the typical operating conditions of present day 
tokamaks. Also shown in Table 6.2 are the corresponding trapping distances, 
in units of the Debye length, obtained from = N and dj = utp As can be 
seen, the trapping distance is rather insensitive to variations in the conditions 
and is always of the order of 100 kD.

We now consider the second case, i.e, conditions where the magnetic field 
is sufficiently weak to allow three-dimensional behaviour of the plasma or, 
alternatively, sufficiently strong to force the electrons to play the role of point



and Trivelpeice, 1973b} by:

KT dk, E\ 1 f* KT dk 
\8n > = 2 J l + (kV (2n:)3

where k2 = k,2 + kj2 + kj2. As usual we transform to normalised units:

/E\ - / [ gK< > ‘ J -« TTP

where dtc = dXj dx2 dx3. We choose k s to be perpendicular to the emissive 

wall and since we need this component we need to integrate out k , and k ,. 
This is accomplished by transforming to:

where r = kJ + KJ and we have introduced a cutoff rc in the integration as 

the integral diverges for rc —» this is an acceptable procedure because the

spectrum of fluctuations does not extend to infinitesimally small wavelengths 
and we must assume that fluctuations with wavelengths smaller than the 

average inter-particle distance cannot exist On this basis we take 
rc= 2Jtn0l%

Thus we obtain:

The integrand is a very slowly varying function of k 3 in the region of
__



<t > * (2ir)s (nJ3)

Following the procedure used for the 1-D case we again obtain an implicit 

equation for <i>B0:

S(ln2)1/4 (Ax)1/2
2"^ 'Ml1'*

where Ax is the width of the growth rate spectrum and is the wavenumber 

of the dominant mode. Resulting values of i>B0 and dT (in units of the Debye 

length) appear in Table 6.3. The range in covers all plasmas which can 
be physically realised. Again it is clear that the trapping distance is rather 

insensitive to the plasma conditions and, as before, it is of the order of 100/.^

Table 6.3

Ho V ^BO

109 5.71 xlO’7 176
10s 1.79 xlO* 159
107 5.60 xKT 142
10® 1.75 xlO’5 126
105 5.49 xlO'5 109
104 5.43 xlO"* 92
10s 1.72 xlO"1 75
102 5.54 xlO’3 58
10 6.23 xlO'8 41

Confidence in the formulae derived for calculating the fluctuation levels can 

be gained by comparing their predictions with the simulation results. We 

assume the fluctuation level at t = 0 is approximately like that in a Maxwellian 
plasma and note that any mode would then be composed of positive and 

negative k components of equal magnitude. The result is a standing wave of 

amplitude equal to twice that of each component The Fourier analysis of the 
simulation simply finds the resultant wave for each wavenumber and the 

measured amplitude of a given mode will therefore fluctuate approximately
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when it ceases to be an insignificant contribution to the total signal at that 
wavelength. This can be confirmed by examining the evolution of the 
amplitudes of the first four modes; the peak to peak magnitude of the 
fluctuations remains approximately constant with time. Table 6.4 lists the 
calculated and measured fluctuation energies and amplitudes of the first four 
modes for two values of n^ Remember that we are considering one 
component (e.g. positive k) only. Considering the approximations and the 
coarseness of the estimation technique the agreement is extremely good.

Table 6.4

mode *0 *0 <O *0
No 25000 25000 25000 2500 2500 2500
n calculated calculated observed calculated calculated observed
1 1.82 x 10" 28 x 10" 24 x 10" 1.82 x IO-5 90 x 10" 120 x 10"
2 1.43 x IO"6 25 x 10" 20 x 10" 1.43 x 10-® 80 x 10" 75 x 10"
3 1.06 x IO-6 22 x 10" 14 x 10" 1.06 x IO’5 69 x 10" 60 x 10"
4 0.78 x 10'® 19 x 10" 12 x 10" 0.78 x 10'5 59 x 10" 40 x 10"

As a further check we have estimated the total energy of the electric field 
fluctuations and compared with the simulation results using nt^D= 25000. 
The calculated sum of energies of the first 100 modes is found to be:

<e2 > = 1.76X10'5

while the initial electric field energy was found to be:

<e2> = 7.5 x IO"5

using the field energy plot shown in Fig. 6.16. Note that this graph is a plot of 
J E2dx which must be converted by dividing by the box length. The measured 

energy is about 50% lower than the predicted level and this is consistent with 
the measured amplitudes which can be seen to be about 70% of the predicted
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particle size induced by using a mesh and employing the CIC charge 
assignment scheme. The effective particle size is determined by the mesh 
interval which in this case was 0.2kD but really significant improvements in 
noise reduction is only obtained when the particle size approaches the Debye 
length.

These modified amplitudes could be used to revise the calculation of the 
trapping distance but the result would not change significantly.

Before leaving the subject of fluctuations it is interesting to note that the 
formulae used in this section all apply to thermalised plasmas. Now, when the 
simulation is started, pairs of ions and electrons are placed at random within 
the box but each half of a pair occupies the same position so that the initial 
electric field is zero. Williamson [1971] has, however, shown that plasma 
simulations set up in this way quickly evolve within a plasma period to a state 
where fluctuations resemble those in a fully thermalised plasma The results 
of this section would appear to confirm this finding.
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6.3.1 The Effect of Collisions on the Distribution Function and Vice Versa

The evolution of the instability would ultimately be affected by collisions in a 

collisional plasma However, a tokamak plasma is likely to be collisionles for 
the timescales involved in this problem. Even so, certain features of the 
developing distribution function may greatly enhance the collision rate. In a 
tokamak plasma conventional collisions are treated by Fokker-Planck theory 
which assumes that large-angle deflections of plasma particles result from 

very many small-angle scatterings.

The change in the distribution function of a species of particles along 

paricle orbits is given by:

(6.19)

where the right-hand side, known as the collision term, is to be determined 
by the particular model used for the particle interactions. Of course, in a 

collisionles plasma the collision term is zero and we are left with the Vlasov 

equation. This is appropriate for describing processes with timescales much 
shorter than a collision time. In a tokamak plasma individual ions and 

electrons exert their influences over distances of the order of a Debye length 

and a charged test particle will therefore be influenced by the sum of a very 

large number of small perturbations as it passes through the plasma Hence 

the Fokker-Planck model is appropriate for sufficiently long timescales.

The Fokker-Planck equation is derivable from kinetic theoiy but a simpler, 

less rigorous derivation [Rosenbluth, 1957] is summarised here. We take 

T(v, Av) to be the probability that a particle with velocity v changes its velocity 

to v+ Avin a time At this is assumed to be independent of time and therefore



written:

fl>, ¥,t) = J f (r, ¥ - Ay , t - At) Y (¥ - Av; Av ) d(Av) (6.20)

Since the increments Av are small we can expand equation (6.20) to second 
order in Ay  to obtain:

f(r,¥,t) = J d(Av) (flr,¥,t - At) Y (vAv) - Ay

(6.21)

©o

By noting that Yd(Av) = 1 and defining the rate of change of f due to 
collisions as:

B flr,¥,t) - flr,¥,t - At)
X St A At (6.22)

we obtain from equation (6.21):

( «)■ ■ if J (- A’4* 2- (6.23)

or:

/ Sf\ d Ay  13^ r AvAv( dt)c = < Af> + 2 aVdV: [ <“a F> xt ) ] (6.24)

where:



” At J *r'V,t) T(T>MA¥d(A»)

AiAv 1 ,
<> = yt J fir. *lt) Y(v,A »)A ¥A ¥ d(A¥) (6.25)

In order to evaluate the quantities (6.25) the function Y must be derived 
from details of the collision model. A diagram representing a small-angle 
binary collision appears in Fig. 6.17 in which the impact parameter b is 
defined. The analysis of this encounter leads to the following results:

d¥*

A1A¥
<a F> =

4tt ngq/qg2 InA

2 V irn, ) Ze

Substituting equations (6.26) into equation (6.24) we finally obtain the 
Fokker-Planck equation:

a2
dvdv

(6.26)
/w*") I v - ¥*ld¥*

The subscript T denotes quantities relating to the test particle in collision 

with plasma species denoted by a. Note that the quantity In A has replaced 

mbmrn = I bmn db'b which arises in the calculation. The limits oand « 
cannot be used in this integral because it would diverge. So is chosen for 
b^s as the Coulomb potential is screened beyond this distance and b is 
taken as Ze2/3KT which is a lower limit for the validity of the approximations 

used for small angles of scatter (large angle scattering is very rare as has 

already been stated). The integral is not sensitive to the coarseness of these 

gross approximations and we therefore define:

M, 9ba
nir (6.27)



Scattering Centre

Fig. 6.17 Small-angle binary collision

where the first term is known as the coefficient of dynamical friction and the 

second the coefficient of diffusion The functions appearing in this equation 
are depicted as:

Iv-v'ldv'

11q (v ) =
mTfJa(vl 

jxalv-v'l
dv (6.28)

u mT+ ma

and the Landau contour (see Fig. 2.1) must be used to evaluate the integrals in 
equations (6.28).



* » — -,-------------- — wnv vcui voLiiucuc various
characterstic times for collision processes by taking moments of it 

Multiplying equation (6.27) by v and integrating with respect to ¥ produces an 

equation for the time rate of change of the velocity U of a beam of incident 
particles since we define U ■ Jfvd¥ We then define the slowing down time for 

a beam of particles impinging on a plasma with distribution given by the right 
hand side of equation (6.27):

which for the case of (KT,/mi)1/? < U < (KT/mJ1^ and a delta function 
beam gives;

These integrations retain only the dynamical friction term which confirms the 
choice of name.

Measures of the speed with which a beam evolves an isotropic distribution 
and with which its particles spread in velocity are obtained by multiplying 

equation (6.27) by v" and integrating with respect to v. It is best to separate 
the components parallel and perpendicular to the initial direction. The result 
for 3(U|f)/at contains both the friction and diffusion terms while that for 
<KU£)/0t involves only the diffusion term. The characterisitic time for 

progress towards isotropy is obtained by defining a deflection time:

U2 
" dU//dt

When U « (KTymJ1'’2 for a beam of electrons this becomes:



Td =^ha L^ + ^+2]

where 4* is the error function given by 4>(x) = J* exp(-y2) dy.

We can also define a time for the exchange of energy:

-W
T* " 3W/3t

where W = | nirU2 And for a beam of electrons of speed U = (2KT,/mf)I/2 we get

nV/?(2KT/'?
w 8710^(1) - 4e“ /VnJlnA

The above collisional times are appropriate for a beam of secondary 

electrons leaving a wall with T at the critical value and streaming into the 
plasma This is because under these conditions the beam velocity is of the 
order of the plasma electron thermal velocity. In the case of a deuterium-

tritium plasma we have m,- = m„ tjj. = - e and Z » 1-|; this gives the result 

that t w  « -4xs, t d  « iot8. We therefore use t s as our collision time and note 
that a typical plasma in the JET Tokamak would have a collision time of 
T»®pe* 5 x 106 while a plasma capable of supporting thermonuclear reactions 

would have a collision time of xm * 4 x 107.
D

The relevance of these collisions to the beam-plasma instability is that they 

will gradually destroy any system of waves which may survive the nonlinear 

stages of the evolution The tendency of collisions is to push the particle 
distribution function towards a Maxwellian However, this involves the 

extension of the negative slope region of the distribution to larger phase 
velocities and that implies negative wave growth according to the formula for 

Landau damping (see equation 214). Thus, we can expect these processes to 

be accompanied by the damping of waves which have their phase velocities in 

this region It should be noted, however, that the Landau damoine formula
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perturbation, i.e, that the wave is of small amplitude. So the approximation 
will be less good for large amplitude waves.

It will be useful to consider the timescale for the collisional destruction of a 

BGK mode since, as we have seen, the later stages of the beam-plasma 
instability may strongly resemble such a mode. We will call it a quasi-BGK 

mode since the finite width of the wave spectrum is also expected to cause 
the gradual destruction of the mode with consequent broadening and probable 
flattening of the spectrum. This problem has been analysed by Zakharov and 

Karpman (1963| and the rate given for the collisional destruction of a BGK 
mode is:

(6.29)

where p • 3, yM is the Landau damping rate for a Maxwellian plasma,

= (m^e^k ) is the 'bounce1 time of the trapped electrons in the 

wave trough and Tro!i is the collision time. This formula reflects the 
interaction of two mechanisms: the collisions attempting to change the 
distribution towards a Maxwellian and the resulting positive slope reducing 

the wave amplitude by the equivalent of Landau damping. The damping, of 

course, has a tendency to reduce the slope.

As explained in sections 6.1 and 6.2 the instability is not expected to evolve 
into a genuine BGK mode but it will probably resemble one at some stage of its 

development Taking as an example conditions typical of a JET plasma, one 

might have a collision time of » 107 and for the parameters of the 
instability in a deuterium-tritium plasma which we have been considering we 

have: 3, YM/d)pe«> 0.6, kvth/<u » 1, so that the time for the
collisional destruction of the BGK mode becomes:

« 2.106 



velocity, the wave structure would be destroyed within about 21O1D from 
the wall. However, this would correspond to a distance of about 40m or so 
since kD« 210‘fm. Thus ordinary collisions probably do not playa role in 

the development of this instability under conditions such as these.

We must remember that a BGK mode is an ideal which will probably never 
be reached by the evolving plasma As we have seen in section 6.1, depending 

on the conditions, the trapped electrons may gradually spiral in towards the 

centre of the phasespace voids so that the distribution function in these 
regions may ultimatlely appear approximately flat on a coarse scale but on a 
fine scale the spiral pattern constitutes a very jagged distribution. This feature 

of the distribution function will strongly affect the term containing the 

operator in the Fokker-Planck equation and on this basis we shall estimate a 
new slowing down time. The estimate will be very approximate since we shall 

assume that, after the initially trapped electrons have performed ten spirals, 
the collision time will be reduced by a factor of 100, and so on. One spiral is 

executed in a bounce time so after a time t the effective collision time is given 
by:

Since this parameter is continuously dropping we can obtain a rough value by 

setting t = . Thus we have:

t «(t t  )1/3\ucsc c'

and using our previous values we obtain T^/Op. * 450. We now replace r^, 

in equation (6.26) with and obtain a new rate for the collisional 
destruction of the wave structure: * 100. Of course, the multi-wave

nature of the problem for these conditions may in the first place prevent the 
formation of a distribution resembling a BGK mode [Buchelnikova and
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phasespace fine-structure can have a large effect on collision rates.

The previous treatment of collisions depended on the fine-grain jaggedness 

of the distribution function resulting from the spiralling of the trapped 

electrons. However, electrons do not have to be trapped for the distribution 

function to develop this kind of fine-grain structure. To see this we recall the 
Case-Van Kampen modes discussed in section 2.1. These can be represented 
by fi(x,v,t) = fj(v) exp i(kx - at) where is given by:

. p . 6(v . „/k) fl. p
(6.30)

where P is the principal value. Strictly speaking, an individual mode is non-

physical because the delta function in equation (6.30) renders fj infinite when 

v = a/k f However, we are able to recover the normal Fourier components by 

summing the Case-Van Kampen modes over a; we then have:

fjv.k) = eikx/~ e'^f/v.ajcfajda (6.31)

where the weighting function c(a) is chosen to fit a given initial condition 

fj = lj(v,k,t=O). This process also removes the singularities present in 

equation (6.30). If we now substitute equation (6.30) into equation (6.31) we 
obtain:

fj(vjc) = eikx < 9g
F 9v v- a/k

-1(1) t > e c(co)

+ keik«x-vt’c(a=kv) ag/a/
V- v d/ (6.32)

It will be noticed that the term keilcx c(a=kv)e'ikvt in equation (6.32) does 

not damp away at late times but instead its oscillations in velocity space 
become ever more compressed. Thus a significant perturbation will eventually 
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modify the friction term of the Fokker-Planck equation and thereby reduce 

the effective collision time, just as in the case of trapped electrons.

6.3.2 Sheath Stability

The relation between the spatial and temporal growth solutions for the 
beam-plasma instability, as discussed in section 6.2, strictly depended on an 

assumption of linearity, i.e, the background plasma was described by linear 
theory, but after trapping occurs we know that the behaviour of much of the 
plasma in our simulations is nonlinear. We therefore consider the question of 
whether this nonlinearity will modify the results for the region of plasma near 

the wall for which linear theory was originally assumed to be valid and we 

would like to know, in particular, whether the sheath remains stable as linear 

theory predicts. Computer simulation cannot answer this question since it is 

impossible to represent the whole plasma so we resort to a rather heuristic 
treatment of the problem.

We begin by noting that the nonlinear region of the plasma will only affect 

or modify the linear region through the action of the plasma moving from the 

nonlinear to the linear region. If this plasma carries a 'memory1 of the 
nonlinear influences back to the sheath then the original nonlinear treatment 

of this region may not be adequate. To simplify the discussion we shall assume 

that at some point beyond the sheath there exists a region of indefinite extent 

where the solution at some time resembles a BGK mode. We next observe that 

the plasma in this region travelling towards the wall can be represented by a 
large number of beams each of which has a different total energy and we 

consider just one of these beams during this time. We are interested in 

whether there exists an equilibrium solution for the beam which we shall 
model using the following fluid equations:

9v 9v a. d<b
— + V — + — —-
3t 3x m^x = 0 (6.33)



drir d

St “ " 3x (6.34)

These constitute the equation of motion and the equation of particle 

conservation. We now define x = x0 and v = v0 when 0 = 0O = 0 and set 
dv/dt = dnydt = 0 since we are looking for equilibrium solutions: this implies 

that we are working in the wave frame. Equations (6.33) and (6.34) are now 
integrated from x0 to x giving respectively:

nTv = rT

(6.35)

(6.36)

where Tt  is the constant particle flux carried by the beam. Eliminating v from 
equations (6.35) and (6.36) gives:

ru « ^i + M)
v0 m^ (6.37)

where we have assumed that 2qI4/mTy‘ « 1 and employed the binomial 

expansion. So the density perturbation is proportional to the potential and 
this in turn gives rise to a contribution to the total potential The magnitude 

of the contribution can be obtained from the Poisson equation:

V2<|> = - 4itp

We consider the charge density p to be composed of two components, i.e., the 

elemental beam charge density pd and the charge density pp of the remaining 

plasma as a whole, so we have:

Ptj = Po + Pj
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Pp = Ppo + G(x)

where G(x) is a periodic function of x with wavelength equal to that of the 

potential variation. At the nodes in the potential we have p,= <p = G = 0 and by 
assuming quasineutrality(pel + pp « 0) at these points we deduce that
Po+ Ppo = 0. hence we have:

P = Pi + G(x)

Thus the Poisson equation becomes:

V2<|> =-4it5£ir-^, + ^-t'l

and if we now assume the perturbation to be sinusoidal then $ = ijisinkx, 

G(x) = G sinkx which when substituted in the Poisson equation leads to:

0 =

m-rV

which is of course the total wave amplitude in terms of the plasma density 

variation G and the elemental beam characteristics. We are, however, more 
interested in the elemental beam contribution separately, and for this purpose 

we substitute p = p, into the Poisson equation giving:

mTv$

where <|>b is the potential contributed by the elemental beam which is 
assumed to be given bvdk = sink* Thic



The plasma streaming towards the wall is of course characterised by a 

distribution, i.e, it is composed of a set of beams and we can write:

where <|>w is the wave amplitude contributed by the wall-directed flux. So the 

contributed fraction is independent of the wave amplitude. If the solution is 
valid then the result holds in the nonlinear region and also right down into 

the thermal fluctuation levels of the sheath region. In that case the nonlinear 

region has no permanent effect on the plasma moving towards the wall and we 

would conclude that the original linear theory results still apply to the volume 
of plasma between the wall and the trapping region. Thus it is now necessary 

to attend to the problem of what conditions are required for the validity of the 
equilibrium solution discussed above.

We again consider equations (6.33) and (6.34) and eliminate dv/9x to obtain:

3v v 9nT qT 3$ v2 an,.
3t nTdt mT9x + nT9x (6.38)

To be able to neglect the time dependent terms we can see that the right 

hand side of equation (6.38) must be small compared to either of its terms. 
Differentiating equation (6.37) and using $ = $sinkx gives us:

dx
(ficoskx

and -L±/coskx
0X coskx
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the condition that

Mcoskx -----  ----- _tt £t  cosk x
mr nrinTv0

must be small or after substituting for rr

qh- 0 coskx (fr 4> coskx z qT <{> sinkx
_______ mr v mTv^ 
Qr 4> coskx Qr $ coskx

m,. m.

This finally reduces to:

2mTv^ <<: 1 (6.39)

Since the potential amplitude required to trap the electron beam is given 
by 2qT $ « nuyj then condition (6.39) can be interpreted to mean that the 

equilibrium or time-independent solution, given previously, will be valid if the 

wave amplitude is smaller than that required to trap the beam. For the case of 
the deuterium-tritium plasma which we have already studied the above 

condition is satisfied for the plasma flowing towards the wall and we therefore 
know that when this plasma reaches the sheath it will not carry any influence 

from the higher field regions where trapping of the secondary electron beam 
has occurred. We are thus able to conclude that the nonlinear stage of the 
instability in this case does not destroy the stability of the sheath.



CHAPTER 7

Discussion

This chapter summarises the goals which have been achieved and analyses a 

number of aspects of the work

7.1.1 The Main Findings

a) Novel derivation of the Bohm Criterion.

The instability with which we have been concerned is made possible by 

virtue of the sheath, hence the importance of the Bohm criterion. This led to 

an examination of the validity of this criterion during which a novel derivation 
was discovered (see section 5.3.2). The criterion was found to follow from 
minimising the wall potential which, in turn, suggested the possibility of an 
underlying principle.

b) A suggested principle determining the configuration of a plasma

The need for some principle was felt when a calculation for a hypothetical 

plasma system with 'single-point ionisation' (section 5.3.3) appeared to lack a 
clear choice for one of the boundary conditions. It was suggested that plasma 

systems adopt the minimum wall-potential consistent with monotonicity of 
the potential profile and that this value of wall-potential is stationary with 

respect to small changes in the boundary conditions. This was consistent with 
the conclusions based on the Bohm criterion and the 'plasma equation' 
analysed in section 5.3.1: the suggestion was also confirmed by the particle-
simulation code when applied to the 'single-point1 problem.
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Equations describing the above system have been derived and solved in 
section 5.3.3.

d) Solution of the sheath equations with secondary emission.

Since the beam derives from secondary electrons it was necessary to solve 
the equations for a plasma bounded by an emissive wall (see sections 5.1 and 
5.2).

e) Development of a particle-simulation code.

The results from the previous calculations supplied input to the particle 

simulation code developed especially to determine the evolution of the 
instability (see section 4.2).

f) Confirmation of the predictions of Hobbs-Wesson equations.

Tests with the simulation confirmed the correctness of the solution to the 
Hobbs-Wesson equations (see section 5.1.2).

g) Equilibrium for the single-point ionisation case modelled.

The particle simulation was used to model the 'single-point* ionisation 

plasma system and confirm the equations derived for this case (see section 
5.3.3).

h) Beam-plasma instability modelled

The beam-plasma instability was modelled with the particle-simulation 

using parameters relevant to the secondary emission case. Owing to 
limitations of computer resources, the simulation could only qualitatively 
1 Hl 1 Strata hnut nrrnlinAar nhacp nf ___  « . «
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energies in the beam and Landau modes which enabled the distance to the 
trapping region to be calculated (see sections 6.1 and 6.2).

h) Dependence of thermal fluctuation levels on the strength of the 
magnetic field.

A real physical plasma is three-dimensional and it was necessary to 
determine when it could be represented by a 1-D charge sheet model in order 

to estimate the thermal fluctuation levels at the relevant frequencies. When 

the magnetic field is sufficiently weak the 3-D nature of the plasma must be 

properly treated and it was necessary to derive the equivalent 1-D fluctuation 
levels for such conditions see section 6.2).

i) Estimate of collision time for the late evolution of the instability.

The ultimate behaviour of the instability after long times (or large distances 
from the wall) remains speculative but an effective collision time has been 

estimated on the basis that the electrons develop a very jagged distribution 
function (see section 6.3.1). The complete suggested evolution deserves a 

separate section and is therefore described more fully in section 7.1.2.

j) Stability of the sheath.

A condition for the stability of the sheath is derived and found to indicate 

stability for the conditions considered (see section 6.3.2).

7.1.2 The Evolution of the Instability

We now describe the picture that has emerged of the development of the 
instability in the secondary emission problem. Secondary electrons are 

emitted from a wall confining a plasma and, after being accelerated through 
the sheath, these electrons pass through the plasma as a monoenergetic beam. 
SdlpFl Q C*I 70 vrrill nwalrto 4-In a  __ • .....



ib peaxea in velocity space and has a range of phase velocities in the frame of 
the plasma lying below the velocity of the beam.

At first, the waves grow linearly until the dominant mode is large enough to 

trap the beam electrons. At this stage the wave spectrum may be narrow 

enough to affect the electrons as a single wave and the single-wave model 
would then be appropriate for describing the behaviour of the system until 

neighbouring waves were large enough to significantly affect the motion of the 
electrons.

Typically, the instability develops by causing an initially sinusoidal 

perturbation of the beam in phasespace at the wavelength of the dominant 
mode, until the beam electrons are trapped to form a rotating clump; this 

gives rise to oscillations in the amplitude of the saturated wave. This process 
does not continue indefinitely, however, as neighbouring waves continue to 

grow and eventually become significant enough to affect the trapped electrons, 
smearing them out in phasespace and thus flattening the distribution function 
in the range of velocities spanned by the beam detectors. Quite apart from 

neighbouring waves, phase-mixing may also be a significant homogenising 
factor, depending on the conditions. At this point the electron distribution 

function may closely resemble that of a BGK mode; this is only a temporary 

state, however, since there are many waves in the system giving rise to 
fluctuations in the distribution function and ensuring continued evolution 

through the process of detrapping. Unless new processes influence the 
development, the distribution function will ultimately become flat in the 

region of velocity space spanned by the spectum of waves, and will become 
spatially homogeneous.

One mechanism which may modify or succeed the flattening process 
described above is a secondary instability. It is likely that if the spatially 

averaged distribution function develops or retains a minimum then further 
instability will arise. Depending on the parameters, the evolution may 

resemble that of the initial beam-plasma instability with a dominant
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described as "cascading" and is considered by other workers Winfrey and 

Dunlop [1977].

For the parameters used in our simulations the primary instability would 

not appear to evolve towards a spatially averaged distribution with a minimum 
in velocity space and secondary beam-plasma instabilities are, presumably, not 
relevant here. For the case of mass ratio 4590 with floating conditions it was 

concluded that single wave theory did not accurately describe any part of the 
evolution because the wave spectrum was not narrow enough to constitute a 

single mode. In such a case one should perhaps talk of a predominant as 

opposed to a dominant mode. Modes 1 and 2 are shown in Fig. 6.14 and it can 

be seen that model displaces mode 2 from dominance after 10)^= 85. It 

appears to have maintained its linear growth rate during this period. A 

succession of neighbouring modes is expected to grow and dominate 
temporarily until the distribution is flattened in this region in a manner 

reminiscent of the quasilinear theory predictions.

The advanced stages of the instability for other conditions may not be 
determined solely by the many-wave picture described so far, the continuous 

shifting of electron orbits observed in the simulations leads to a distribution 

function with ever more "corrugations" - a new one appearing about every 

bounce period of the trapped electrons. These features increase the
o 

magnitude of the friction term containing V in the Fokker-Planck equation 

and enhance the effective collision rate. If the distribution resembles a BGK 

mode at this stage, it will therefore be destroyed more quickly than would a 

real BGK mode expressed in a smooth distribution function. There is also the 
possibility that phase-mixing is by itself sufficient to cause the amplitude 

osallations to be destroyed (see section7.22).

The 3 sets of conditions which have been simulated can be represented on 

a diagram depicting the wall-potential — beam-density plane (Fig.7.1). The 

available region is bounded by two lines representing floating conditions and
—_____11 >4.*o ■rAC'l'lA/'tiufxR/’ Alon ckintr™ ___________ _________ J 



me inequality ol equation o.o, one satisiymg it ny an order or magnitude and 
the other simply satisfying the equality. This division of parameter space is 

related to work reported recently by Buchelnikova and Matochkin [ 1987] (see 

section 7.2.4).

w

n*b/nip

Fig. 7.1 The wall-potential - beam density plane, showing the physically 
accessible region bounded by lines representing zero wall-field and zero 
current or ’floating' conditions; the latter is a function of mass ratio. The 
positions of the three circled numbers indicate the conditions for which 
’results have been reported in chapter six. Cases 1 and 2 represent the 
conditions corresponding to 4>w - 10 and 4>w = - 100 respectively. Case 3 
corresponds to mass ratio 4590 with zero current



7.2.1 Sheath Parameters

It has been shown (see section 5.3.1) that solutions to the plasma equation 

are consistent with assuming equality in the Bohm criterion for sheath 
formation. This analysis is of course applicable to a plasma without 
singularities which is enclosed by absorbing walls where the sheaths are 

created. Matching of the sheath solution to the plasma solution when the wall 

is non-emissive has been performed by Franklin and Ockenden [1970] for the 

low pressure case, and by Blank [ 1968] for the high pressure case. The case of 

a hot electron-emissive boundary has been investigated by Crawford and 

Cannara [ 1965] and Prewett and Allen [ 1976]. It should be noted, however, 

that some plasma systems do not conform to these conditions; the 

hypothetical single-point ionisation system (see section 5.3.3) is one example; 
the singularity at the point of ionisation is responsible for the loss of validity of 

the Bohm equality.

Other calculations including secondary emission and permitting current 

flows have been performed by Harbour [ 1978]; these did not simplify the 
electron distribution by assuming it to be Maxwellian, but used the correct 

truncated Maxwellian with delta function beam electrons. Arbitrary ion energy 

on entry to the sheath was also catered for as well as warm ion distributions. 

For a mass ratio of 4590 and assuming zero wall-field conditions, the 

calculations showed that the equations of Hobbs and Wesson [ 1966] 

overestimate the ion energy at the plasma-sheath boundary as 0.575 instead of 
0.53, and also overestimate the wall potential as 0.976 instead of 0.865; the 
latter error leads to an overestimate of the final beam velocity by only about 
6%, and a similar overestimate of the wavelength of the dominant mode. The 

relative beam density njn# on the other hand, is underestimated by Hobbs 

and Weson as 0.0871 instead of 0.113 which leads to an underestimate of the 

growth rate of the dominant mode by about 6%. Clearly these small errors do 

not have important concequences for the results obtained in the present
-4.____1..



7SL2 Beam-Plasma Theory and a Possible New Factor Contributing to the 

Destruction of Wave Amplitude Oscillations.

The first analysis of the beam-plasma instability was undertaken by 

Buneman [1959] who dealt with counter-streaming, cold electrons and ions. 

We have been particularly interested in warm plasmas and single-wave theory 

and therefore specifically required the characteristics of the dominant mode 

and spectrum width as derived by O'Neil, Winfrey and Malmberg [1971] (see 

section 3.1). It will be recalled that their computer simulations showed 
oscillations in the saturated amplitude of the wave in common with all studies 

of the beam-plasma instability. These oscillations did not, however, damp 

away; similar findings were reported by Shapiro and Shevcenko [ 1976]. This 

contrasts with more recent studies [Fukumasa et al, 1978, 1982, Winfrey and 

Dunlop, 1977] which find damping of the amplitude oscillations. The reason 

for the disparity is claimed to be due to the artificial restriction to one mode 

in the single wave case, the inclusion of many waves being at least one possible 

cause of the damping of the oscillations.

The oscillations are reminiscent of those in the nonlinear Landau damping 

coefficient derived by O’Neil [1965] which similarly result from the 

oscillations of the trapped electrons. The amplitude of the oscillations and 

the value of the coefficient tend to zero for long times due to phase-mixing of 

the electron distribution function. Evidently the amplitude oscillations of the 

Single-Wave simulations do not suffer the same fate, which implies that a 

trapped electron endlessly retraces its orbit in these calculations. Al'tshul and 
Karpman [1965] also derived an oscillating damping coefficient but did not 

find the oscillations diminishing for long times; this is probably an error 
resulting from use of a perturbation scheme which was not valid for all parts of 

the calculation.

Both the single-wave beam-plasma calculations and the nonlinear Landau 

damping coefficient relate to a monochromatic wave, so one might wonder 

why phase-mixing does not also occur in the beam-plasma case; if it did then, 



the vicinity of the phase velocity of the wave being damped. In the latter case 
all trapped electron orbits are adjacent to neighbouring electron orbits and 
this results in phase-mixing.

In some beam-plasma systems, depending on the parameters, the trapped 
electrons derive from both the beam and the plasma (this does not apply to 
the single-wave calculations [O’Neil et al already referred to) and therefore 
begin with an initial spread of phase velocities. This suggests the possibility 
that time variation of the distribution function may gradually phase-mix away 
under these circumstances, even if the wave spectrum is restricted to one 
mode. Of course, any real wave spectrum does have a finite width which 
contributes to the damping of the amplitude oscillations, but the phase-mixing 
described here may be an additional mechanism which could prove to be 
significant In the case of mass ratio 4590 with floating-wall conditions the 
trapped plasma electrons derive from a wide range of initial phase velocities 
and consequential phase-mixing may be at least as important in destroying the 
amplitude oscillations as competition from neighbouring waves. Trapped 
electrons which are initially non-monoenergetic may, therefore, lead to 
significant additional damping of the amplitude oscillations in the nonlinear 
evolution of the beam-plasma instability. A possible further role played by this 
mechanism is discussed in section 7.27.

7.23 Related Experiments

In this section we briefly survey some relevant experiments and the extent 
to which theoretical predictions have been confirmed.

The earliest experiments which clearly suggest the presence of beam-
plasma oscillations are described by Mahaffey [ 1959} and Emeleus [ 1964] in 
which a mercury vapour tube has a current passed through it via an anode and 
a hot, flat, oxide-coated cathode; Fig. 7.2 shows the geometry. The



Fig, 7 2 Diagram of sections of single-beam self-oscillating discharge from flat-oxide-coated 
cathode (after A, Garscadden). A, cathode (usually 8 mm diameter); B, cathode sheath; C, nearly 
parallel electron beam about same diameter as cathode; D, oscillation dead space; E, oscillation 
front (meniscus); Y, deviated electron beamsj G, anode. Most of the space between B and G is 
nearly equipotential apart from the oscillation fields,

anode by scattering some of them obliquely. This is possible confirmation of a 
greatly enhanced collision rate due to fine-scale velocity-space perturbations 
caused by the instability, as suggested in section 6.3.1. Spatial variation in the 
intensity of oscillation as observed by Mahaffey [ 1959] is shown in Fig. 7.3 and 
it is noted that it bears a remarkable resemblance to the temporal variation 
seen in the plasma electron energy of the simulation corresponding to a wall 
potential I I = 10 shown in Fig. 6.8 - this is, of course, the analogue of the 
expected spatial variation in energy.

Malmberg and Wharton (1969] launched a very low density beam into a 
plasma to test linear theory whose predictions regarding growth rate and 
dispersion relation were confirmed in the appropriate regime. The saturated 
wave amplitude was approximately in agreement with that expected and it did 
not depend on the initial wave amplitudes, but only on the parameters of the 
system. The harmonic content was very low.



Fig. 7,8 Intensity of oscillation (I) in arbitaryunits at different distances (cm) from cathode (C) 
towards anode (A) of discharge of form shown in Fig. 12 (after W. Mahaffey). The position of 
the front (E) seen is shown by an arrow. Gas, mercury;pressure, 1,8|1; current, 48 m*‘,tribe 
voltage, 21 volts. Here p = 10”3 mm Hgpressure.

In another beam-plasma experiment Apel [1969] observed a power law 
dependence for the the harmonic spectrum which was given by:

= PJW6

where P^ is the wavepower of the harmonic, Po is that of the dominant 

mode, kQ is the wavenumber of the dominant mode and k,. is that of the 

harmonic. Apel suggests that this is due to turbulence in which Bohm 

diffusion is the dissipation mechanism causing energy to cascade from small 
wavenumber modes to larger ones. Indeed, other workers [Chen, 1965; 
Sagdeev and Galeev, 1966] have derived a negative exponent of 5 with a power 
law by assuming such theories of turbulence. However, the phase-velocities of 
the harmonics were measured to be the same as that of the dominant mode 

moving with the beam and this strongly suggests that the origin of the 

harmonics is simply the spatial bunching of the beam electrons (see section 

3.1.3).
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theory wtth an experimental arrangement Their apparatus consisted of a two- 
metre column containing a 3 cm diameter quiet plasma with a longitudinal 
magnate held of IkG to render the electron dynamics one-dimensional An 
electron-gun directed a cold, weak beam of electrons axially into the plasma 
Their results confirmed that a single mode dominates and grows until the 

Zrt1SrfSTted by deCtrOn traPPing‘ PrediCted OSCiUations °f the wave 
amplitude due to oscillation of the trapped electrons were also observed. 
However, the amplitude of the wave energy oscillations was smaller than 
theoretical predictions and they also decayed faster than expected.

idebands of the main wave were observed in a beam-plasma system by van 

eren and Hopman [1972] who expected to find them symmetrically 
displaced from the main wave by Wfi/2n (where o>B is the bounce frequency of 
trapped electrons) as observed in experiments with quiescent plasmas. 
However, they only observed the lower sideband and the displacement was not 
the predicted value. A possible explanation for the latter feature is given in 
section 7.2.4 (Winfrey and Dunlop, 1977]. It was concluded that the upper 
sideband probably existed, but with a very low growth rate. Like others, this 
study also found that the phase-velocities of the harmonics were equal to that 
of the main wave, again suggesting spatial bunching origins.

Mizuno and Tanaka [1972] have measured trapped-electron distribution 
functions in a beam-plasma system using an externally excited wave. Their 
results confirm the description of the evolution given by O'Neil, Winfrey and 
Malmberg [1971] (see section 3.1.3) in which the trapped beam electrons 
roughly form a line in phasespace which rotates to go from a position of 
bunching in velocity to spatial bunching. At this point in the experiment the 
harmonic spectrum was seen to conform to a power law given by:

where En is the electric field amplitude of the n* harmonic. This is further



case of a spatially periodic delta-function 
1971J.

|O Neil, Winfrey and Malmberg,
Will tX-Ug

These results were extended by Gentie and Lohr H973) who were able to 
My conf,™ th. predlctions „f singIe.wave (o poiM

■capping. However, the wave bst its monotonicity and the spectrum 
broadened mote rapidly than sideband theories had predicted, as other 

stud.es also discovered. The distribution function and phasespuce pl.m were 

also obtained. Their harmonic spectrum revealed a power !aw exponent of 
between -3.5 and -4.

is noted that the negative exponent of empirically obtained power-law 

777rrfrom about 25 ,o 5- ™s re”ects ,he de8r" •» «•** »•. 

paha! bunching of beam electrons approaches the periodic delta function, 
he ideal value of 2 represents the minimum and as shown by O’Neil and 

Winfrey, 1972| the ensemb.e averaging of the .oca, soiution over a» Xie 

phases and amplitudes causes the value to increase.

Empirical determinations of electron velocity distribution iunctlons in the 

py Bex rission arE ve'yhard ,o f“but 
by Behmdt. Klagge and Leven |1986) with a He glow discharge have produced 

some interesting results. They found that secondary emission is ven, 

■7toZ”dy'T"d by imp"“fr™ me“steble He a,oD’8-By in,rad“i-8 * 
the discharge they were able to destroy the He metastables by

Ar + He*—»Ar* + e + He

With a consent reduction of the energy and qUantity of 

electrons as is clear from the change in 'beam’ distribution shown in Fig. 7.4
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Fig. 7.4 Electron distribution functions for a) 2% Ar,

b) 0.1% Ar, c) 0.05% Ar, d) pure He.

7.2.4 The Role of Neighbouring Waves.

Dawson and Shanny[1968] performed numerical simulations using a sheet 
model for the electrons. They modelled conditions appropriate to the bump 

on tail instability (see section 7.26) and Confirmed the theoretical prediction 
of the flattening of the distribution function.

Morse and Nielson [1969] used a particle-in-cell computation with two 

unequal warm beams to model a variety of conditions from bump-on-tail to 

more strongly unstable cases. In the latter situation, single-wave structures in 
phasespace resembling those obtained for current flow conditions in section 

6.1 were produced. The bump-on-tail case confirmed the theoretical 

predictions of quasilinear theory which are that the spectrum of unstable 

waves is very broad and leads to the gradual diffusion of the distribution of the 
bump in velocity space until it forms a plateau
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calculations by numerically integrating the Vlasov equation in 1-D but were 
surprised to discover that the fastest growing mode dominated the evolution, 
in conflict with the predictions of quasilinear theory. They attributed this 
disparity to the behaviour of the spectrum which became very peaked before 
the nonlinear phase of the evolution began. Consequently quasilinear theory 
was not valid, contrary to expectations, since it relies on the assumption that 
the spectrum is flat

Cases with cold, weak beams, as we have seen, display strongly single-wave 
behaviour during initial nonlinear stages but in the later stages of 
development other waves begin to play a role and there have been a number 
of studies aimed at discovering the details of these interactions.

Many studies have shown that even in plasmas without a beam, a 
monochromatic wave is unstable to sidebands at nearby frequencies. Wharton, 
Malmberg and O'Neil [1968] carried out experiments in which they launched a 
large amplitude wave into a collisionless plasma and measured a continuous 
spectrum of excited neighbouring waves. However, there was a small 
separation in frequency between the main wave and the peak in the excited 
spectrum. The unstable waves were named trapped particle sidebands as they 
were thought to obtain their energy from the trapped electrons. It was later 
noticed that the data revealed the existence of these sidebands in a part of the 
plasma near the source of the launched wave where no plasma electrons had 
yet become trapped [Morales and Malmberg, 1974].

Morales and Malmberg undertook to further pursue the origin of these 
sidebands by launching a small amplitude wave into a plasma in order to avert 
the influence of trapped particle effects. The amplitude of the wave was 
gradually increased until the more familiar results were obtained. This 
experiment decisively demonstrated that the trapped particle sidebands 
evolved from 'linear sidebands' which were themselves a result of the initial 
interaction between the launched wave and a noise spectrum of streaming



Franklin et al [1978] also performed experiments with large amplitude 

waves launched into a plasma They concluded that electrons which became 
trapped and then later untrapped, behaved like a beam, giving rise to the 

growth of a sideband via the beam-plasma instability.

Further experiments with large amplitude waves have recently been 

reported by Buchelnikova and Matochkin [1987] and they also define 3 regions 
(ie. weak, strong and unstable) of parameter space analogous to those 
discussed in section 7.1.2.

The above experiments suggest that there is more than one possible 

mechanism for the generation of sidebands. Their characteristics may 

therefore depend on precise plasma conditions which could be difficult to 

replicate in different plasma experiments. Numerical experiments using 

computers of course allow greater consistency.

Koch and Leven [1983] have performed a computer simulation of the 
sideband instability by solving the Vlasov equation numerically. The initial 

conditions consisted of a Maxwellian plasma carrying a large amplitude wave; 

the closest neighbouring modes in this system were separated in k-space from 

the main wave by an amount corresponding to about 15% of one wavelength. 

In order to determine the extent to which the sidebands owe their existence 

to quasilinear effects, an interrelated calculation was simultaneously 
performed in which the spatially averaged distribution function from the first 

calculation was used to calculate the sideband growth from quasilinear theory. 
The results showed that quasilinear theory almost completely accounted for 

the development of the upper sideband but did not predict any growth of the 

lower sideband (see Figs. 7.5 and 7.6). It was therefore apparent that the 
development of the lower sideband can only be described by the inclusion of 

the mode coupling terms. Koch and Leven suggested that this may occur 

through the interaction of the upper sideband with the first harmonic of the
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Junction is, on average, positive, and it would seem reasonable to associate this 

distortion of the distribution with the 'beam' of untrapped electrons 

postulated by Franklin et al [1978]; after all, this feature of the distribution 

appeared to be retained throughout the calculation, which spanned many 
bounce periods. Koch and Leven. however, believed that the sidebands were 
caused by trapped particles.

So far we have been considering the various ways in which neighbouring 

waves can develop when a single monochromatic wave is launched into a 
plasma. In a beam-plasma system the situation can be similar because the 

evolution of the instability is dominated by a single mode and there is no 

reason why the trapped particle sidebands or the ’untrapped electron beam’ 
sidebands should not materialise here. It is also possible that there are other 

ways in which the spectrum of a beam-plasma system can become broadened. 
There are a number of numerical studies which have examined this aspect of 

beam-plasma systems and the consequential damping of the amplitude 
oscillations of the main wave.

A numerical study of the effect of neighbouring waves on the development 

of the beam-plasma instability was carried out by Winfrey and Dunlop [ 1977], 

some of whose conclusions have been described in section 6.2 Their main 
discovery was that the evolution of the beam-plasma instability was different in 

the two cases of spatial and temporal growth because of their different 

dispersion relations; neighbouring waves were found to more strongly 

influence the evolution in the spatial case and damp the amplitude oscillations 
of the main wave more quickly. This accounts very well for the broadband 

behaviour observed experimentally [Gentle and Lohr, 1973).

Winfrey and Dunlop referred to the growth of the sidebands as a 

manifestation of the trapped-particle instability. However, it is doubtful that 

this is literally the same mechanism as that reponsible for the results of 

Wharton et al [1968] and Morales and Malmberg [1974], where the sidebands



is suggested oy Winfrey and Dunlop that the sidebands result from a 'secondary 
beam-plasma' instability where the distribution of trapped electrons behaves 
like another beam with smaller velocity than the first, but still capable of 
causing instability. They also suggest that 'cascading' can occur when there is 
a succession of such secondary beams. For certain conditions there maybe 
some truth in these suggestions but it might be more accurate to say that the 
dispersion relation is modified so that, as the beam slows, the peak in growth 
rate continuously shifts to lower velocity, thus exciting successively slower 
modes.

Winfrey and Dunlop have defined a parameter known as the 'beam-strength' 
given approximately by:

s = 1(1% v£)/(6n pvfy1/5 or s = (nb/2np)1/3

for spatial and temporal modes respectively. As this quantity becomes larger 
the effects of neighbouring waves are found to become stronger, the damping 
of the amplitude oscillations occurring much more rapidly. For the spatial 
case, the beam-strength is related to the parameter T| introduced in section 
3.1.1 through q = 2ss.

Fukumasa et al [ 1982] have carrried out similar computations for spatial 
growth and discovered that the effects of neighbouring waves are sensitive to 
the beam velocity in addition to the beam strength s. They find that as v^Vy 
increases the competition from neighbouring waves decreases. Their 
explanation is that, after trapping, the frequency shift of the most unstable 
wave is proportional to s(v^v3) and the shift is therefore smaller for larger 
beam velocities, implying that the single-wave ideal is more closely 
approached under such conditions. Note that, as has already been suggested, 
the frequency of the most unstable wave must change continuously as the 
beam progressively slows down. This comment is thought to be worth making 
since it is felt that some of the literature being reported here manages to



uncurb omy wnen trapping has taken place.

An alternative reason for the dependence on beam-velocity observed above 

seems to have been overlooked. It should be recalled that the widths of the 
growth-rate spectrum and saturated wave spectrum depend on beam-velocity; 
for the conditions appropriate to the numerical simulations, this leads to a 

spectrum width which is comparable to the size of the wavelength shift 
induced by the slowing and trapping of the beam. The reduced competition 

from neighbouring waves resulting from increasing the beam velocity may 

therefore be as much due to the narrowing of the spectrum as to the 
reduction of the wavelength shift of the most unstable mode. To demonstrate 

this we begin by recalling equation 3.1b for the spectrum half-width:

_ 3(ln2)1/2T)1/3k0
K-------^N173-----

where N is the number of e-foldings before trapping and, on substituting 
ko=“o/u. the half-width of the spectrum, after trapping, becomes:

6k = 3fln2)1/2(o0T]1'3
2*°Nl/2u

Since <d 0 « Op. we can write the wavenumber shift as Ak » -Aud ^u 2 and we 

now require an estimate for the change in velocity of the beam. From section 
3.1.1 we have:

(0 = a>o( 1 - t ]1/3/24/3) 

v<p = (o/k = u(l - t ]1/3/24/3) 

Au-u-Vq, = ut )1/3/24/s  

thus the wavenumber shift becomes:
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Since N » 7 in the computer simulations, the numerical factor multiplying the 

R.H.S. of equation (7.1) evaluates to 0.530, while that in equation (7.2) 

becomes 0.397. The finite spectral width is therefore a significant factor and 

cannot be ignored in these calculations.

There is an additional consideration which should theoretically affect the 
width of the saturated spectrum in a real plasma: the level of thermal 

fluctuations in a plasma increases with decreasing wavenumber (see section 

6.2). which corresponds to increasing beam velocity. Hence, when there is a 

faster beam the most unstable mode grows from a greater fluctuation level; 

this factor alone will tend to reduce the number of e-foldings and broaden the 

saturated spectrum, but it turns out that the effect is small compared to the 
those considered above.

In addition to the effects of neighbouring waves, Fukumasa et al [1978, 

1982] investigated the influence of collisions on the nonlinear evolution of the 

beam-plasma instability. They found that, with single-wave simulations 

collision rates of the order of v/a)0 = JO- (where <o0 is the frequency of the 

most unstable mode) induced significant damping of the amplitude oscillations 
durmg or soon after the first bounce of the trapped particles. Collisions, then, 

affect the evolution of the instability in a similar way to sidebands.

There is an aspect of many-wave behaviour which may appear paradoxical 
and deserves some discussion. In computer calculations using the single-wave 

model [O'Neil et al 1971] (see section 3.1) it has been observed that the 

higher harmonics of the main wave grow and during trapping form a power 
law spectrum given by:

IE^I2 = Ani5



0 is the wavenumber of the main wave; thus the model is not single-wave in 
the very strictest sense. The power law spectrum is a direct consequence of 

the periodic spatial bunching of the beam electrons. This may seem a little 

puzzling when one considers the fact that all waves grow from some initial 

amplitude and we are therefore used to the idea that the initial conditions 
determine the evolution of an instability. We have to conclude from the facts 

that the harmonic spectrum depends only on the amplitude of the dominant 

mode and is insensitive to the initial amplitudes of the harmonics. Although 

surprising, an illustration of such insensitivity to initial conditions can be seen 
in the calculations of Koch and Leven [1983] described earlier in this section. 
Figs. 7.5 and 7.6 depict two sets of their results showing the development of 

the main wave with upper and lower sidebands. The only difference between 

the two calculations is that the upper sideband begins with a finite amplitude 

in one case and. in the other, it is initially zero. It can be seen that after t = 
100 the sidebands are present in both calculations and are evolving in a 

virtually identical manner. This clearly indicates that plasma behaviour can, in 

a non-trivial sense, be independent of some of the initial conditions.

7.2.5 Stochasticity Approach

The main wave with its oscillating amplitude maybe considered to be the 

combination of an unperturbed wave plus a small amplitude perturbation. In 

phasespace there will be a separatrix corresponding to the unperturbed wave; 

of course, in the absence of a perturbation this would separate the trapped 
from the untrapped electrons. Perturbations introduce extra resonances 

which correspond to and microscopically modify specific particle orbits in 
phasespace. If the perturbation remains small the particle motions within the 

resonances can remain adiabatic (see section 3.21). However, if the 
perturbation becomes large enough the widths of the resonances will increase 
to the point at which overlapping will occur. When this happens, some or all 
of the particles travelling along orbits which reside in the overlapping 

resonance region, no longer behave adiabatically. Such particles essentially 
perform a random walk in phasesoace through _________ .
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IZaslavskii and Chirikov. 1972; Chirikov. 1979; Chirikov et al. 1971].

One can define a stochasticityparameter? which, when greater than one, 

signifies a region of phasespace where the resonances are overlapping. Thus 

P = 1 defines a boundaiy in phasespace which constitutes the edge of the 

region of overlap. The condition p = 1 therefore defines the stochastic 

boundary^ the boundaiy of the stochastic region. The stochastic region 

initially forms around the separatrix and brings about the smoothing of the 
distribution function, thus leading to the damping of the amplitude 

oscillations.

Murakami et al 11982) have used . -single wave with ampiitude perturbation- 

model to analyse the stochastic behaviour of electrons. For this purpose they 

have taken the perturbation to be a constant oscillation of the amplitude of the 

main wave; practice, the osciliat.ons always damp away, so this is .my an 
approximation. The analysis is more easily accomplished if the usual 
phasespace coordinates are transformed into actlomangle coordinates 1 e 
given by:

1-^fVdX.

e.j s<x.i)

where:

S(XJ) ■ JoV(X'J) dX'

md where X and V are the particle position and velocity respectively. Units 

length and time have been normalised to kJ. the inverse wavenumber of the



main wave, and (Db, the inverse bounce frequency, respectively. Contours of I 
and 0 in normal phasespace are shown in Fig. 7.7,

Fig. 7.7 The relation between the coordinates (1,0) and V, X). 
The line I = Iq  is the separatrix.

Resonances are found to lie on specific I contours given by:

2nQ(In) -1 = 0

where n is any positive or negative integer - except zero which identifies the 

separatrix IQ. The function Q is defined differently within and without the 

separatrix. Inside the separatrix (0 < bj < 1) we have:

1 + W
2

while outside (0 < b0 < 1) we have:

it

Vfbo)
2

1 + W ‘



----------- - » w uuiupicit euipuc integral of the second kind and W is 
the particle energy eigenvalue corresponding to the time independent 

unperturbed Hamiltonian; note that W = 1 on the separatrix.

The stochastic parameter is given by.

where AIn is the width of the nto resonance. For large values of n the 

stochastic boundary is defined by p = 1. However, for the problem 
considered, overlapping begins with the first resonances on each side of the 

separatrix; in this case the width of the stochastic region is given 
approximately by 2A1P

If this picture is applied to the amplitude oscillations of the saturated beam 

plasma instability we would expect the stochastic behaviour of the trapped 
beam electrons to smear out the beam along orbits and lead to the damping of 

the oscillations as is observed in practice. But, it is not clear how this analysis 

can be reconciled with the observation that simulations using the single-wave 
model showed negligible damping of the amplitude oscillations [O'Neil et al, 

1972; Shapiro and Shevchenko, 1976] (see section 7.22). Perhaps the 

conditions of the simulation simply imply very small damping via the 

stochasticity mechanism.

Stochastic behaviour can also be predicted by considering the trapping 

regions in phasespace of neighbouring waves as if they were resonances 
[Dimonte, 1982 Bodrow, 1985] (see section 3.3). One finds the width in 

velocity-space of the trapping region of a wave to be

Av =



W“C1C C lb me amplitude or me electric field and k is the wavenumber. And 
the corresponding stochasticity parameter is:

AVj + Av2
~26v

where A^and Av2are the widths of consecutive trapping regions and 6 vis 
the distance between their centres. Typically, neighbouring waves of even very 

small relative amplitude can produce values of p larger than 1 and hence 

stochasticity. Their influence is greatest near the nodes where the electric 
field of the main wave is small.

In the beam-plasma instability, stochasticity theory may thus be applicable 

on the basis of two mechanisms: amplitude oscillations of the main wave and 

competition from neighbouring waves. Further comments on the applicability 
of stochasticity theory are given below in section 7.27.

7.26 The Domain of Quasilinear Theory

Quasilinear theory can describe the complete time evolution of the bump-on- 

tail instability whereas the single-wave model generally describes only the 

initial stages of the beam-plasma instability, but it has not been made clear 

whether the two theories can overlap. We shall see that an examination of this 

question throws light on the range of validity of quasilinear theory.

We recall that setting k = 0 in the Fourier transform of the perturbed Vlasov 
equation leads to:

(7.3)

and substituting d/dt = -i(D in the same equation provides an expression for



k * i(k-v-B) +iM
i(k- v - a) (7.4)

Substituting (7.4) into (7.3) gives:

(7.5)

and if we drop the second term we obtain:

dg_ 16n2e2
dt m2 (7.6)

which is the quasilinear equation for g the space-averaged distribution 
function Since this equation should remain valid for arbitrarily small 

perturbations it might seem natural to expect this equation to predict the 

same initial behaviour as the single wave model for the same starting 
conditions. Now, as we know, the single wave model predicts perturbations of 

the beam velocity and thus a broadening of the space averaged distribution 

function this occurs at a velocity faster than the wave phase velocity since the 

beam is moving faster than the wave. However, on examination of equation 

(7.6) we note that it can only describe changes to the distribution function at 

velocities where there are plasma waves. So we have to be able to explain this 

apparent contradiction.

One of the reasons for this disparity is that dropping the second term in 

equation (7.5) involved glossing over a rather inconspicuous subtlety. The term 
which is retained in the quasilinear equation is only the lowest significant 
order term if all the maxima in the integrand occur in the region of k-space 

corresponding to the range of phase velocity spanned by the distribution of 
beam electrons. For beam-like as opposed to gentle bumo distrih„tmnC



........... —in sucn situations leading to 
diffusion of the distribution function faster than the quasilinear rate.

We therefore observe that for distributions which are beam-like we would 

have to include the mode-coupling terms in equation (7.5). Now one can 

instantly see that there is not going to be any overlap between the two 
theories since mode-coupling is not consistent with a single wave view. 

Examining this point further we note that if we allowed the mode-coupling 

terms to modify the beam distribution until it developed a large spatial 

variation, then the condition f, « f0 would be violated and the perturbation 

scheme would break down So we conclude that the perturbed Vlasov 

equation is not capable of describing single wave behaviour.

We can therefore see that quasilinear theory is only valid when the phase-

velocity of waves with the maximum growth rate falls into the region spanned 

by the beam electrons. This can only happen when the beam has a large 

enough velocity-spread to be classified as 'warm' according to some 

appropriate criterion This question has been investigated by Self et al [1971] 
who derived a dispersion relation in a similar manner to O'Neil and Malmberg 
[1968] (see section 6.2) and extended it by including the effects of collisions 

They have defined parameters which, when collisions are ignored, reduce to:

for the spatial and temporal cases respectively. These expressions are valid 

only for small v„/v0, which is the ratio of the velocity spread of the beam to 

its drift velocity, and under these conditions they correspond to the 

parameter s in the analysis of O'Neil and Malmberg (see section 6 2) The 
beam is deemed to be cold or hot depending on whether s « 1 or s » 1 

respectively. Self et al find that the beam is still cold according to this 

criterion when the phase-velocity for maximum growth-rate initially 

encounters the positive-slope region of the total distribution function. Le, 
when it enters th a  rprfi'nn nf ___
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order 1 in both the temporal and spatial cases.

There is a further consideration which warrants a cautious approach to 

making quasilinear calculations. As described in section 7.24, Armstrong and 
Montgomery [1969] found considerable discrepancies between the 
predictions of quasilinear theory and the results of direct numerical 

integration of the Vlasov equation for a plasma with gentle-bump system. They 
found that the most unstable mode in the latter calculation dominated the 

spectrum of waves when trapping occurred, and they traced this to the fact 
that the spectrum became strongly peaked at the wavelength of strongest 

growth even before the evolution had entered the nonlinear stage; thus, at the 

stage in which quasilinear theoiy was deemed to become applicable, the 

spectrum did not have the degree of flatness assumed in the derivation of the 
theory. The applicability of quasilinear theory must, therefore, be judged very 

carefully when considering the analysis of any given set of physical conditions.

On the other hand it is gratifying to note that, despite the above difficulties, 

quasilinear theory has been demonstrated to be capable of enabling useful 
calculations to be performed, even when the perturbation scheme it relies 

upon has broken down. The calculations of Koch and Leven [1983] described 

in section 7.24 showed that quasilinear theory almost completely accounted 

for the growth of the upper sideband. However their distribution functions 

indicate that the large amplitude wave had induced such large spatial 

variations that the perturbation scheme underpinning quasilinear theory was 
no longer valid.

7.2.7 Interpreting Simulation Results

We now examine some of the simulation results in the light of theories 

referred to above. Clear examples of the stong effects of perturbations near 

the nodes of the separatrix can be seen in Fig. 6.2, which depicts the 

phasespace during the nonlinear phase of the beam-plasma instability



interest to observe the fact that these detrapping events are not, after all, 

random as suggested by stochasticity theory. They appear to occur once every 

bounce period! At the same time it should be noticed that the electrons 

which were the first to be trapped continue to spiral in towards the centre of 
the orbit Thus, the region spanned by non-adiabatic electron orbits gradually 
widens on each side of the separatrix, in agreement with stochasticity theory, 

but the motion of the electrons cannot be described as a random-walk 

Theory, therefore, does not appear to fully explain the observations.

Pursuing this point further, we note that the beam-plasma behaviour 

contains two features which have only been tackled separately in theoretical 

treatments: one feature is the amplitude oscillations and the other is the 

competition from neighbouring waves. The combination of these two aspects 
within one single physical problem could lead to unpredicted behaviour but, 

assuming the theories are correct, it would be surprising if they conspired to 
produce the rather coherent spiralling observed in the simulations. It seems 

more likely that the predicted stochasticity is missing either because of 
invalid assumptions in the analyses or because of some extra feature in the 

simulation which has not been taken into account

As explained in section 7.2.2 one mechanism which has not been discussed 

in the literature as a means of destroying the amplitude oscillations is phase-

mixing. It is presumably taken for granted that this will naturally result from 
the non-adiabaticity caused by other factors; however, it should be stressed 

that for certain conditions it may, in its own right, turn out to be the dominant 

cause of non-adiabaticity. Phase-mixing would be expected to play this role if a 
significant amount of the warm plasma becomes trapped along with the beam 

electrons. If this happens, the consequent smearing out ofthe spatial 
bunching of beam electrons is inescapable and the reduction ofthe oscillations 

in amplitude, inevitable. Clearly, the clumps of electrons rotating in 

phasespace must then experience a reduction of the extremes of velocity 

within which they are constrained; this is just another way of saying that the 
trapped electrons must snirai ___ ..................
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electrons at the nodes also depends on this phase-mixing; certainly, the 

stochasticity theory would merely predict random ejection of particles at 
these points.

Thus, it is suggested that the inward spiralling of electrons, seen for some 
conditions, can only be explained by phase-mixing.

7.2.8 A New Approach to the Sheath Formation Criterion

We now return to the subject of the Bohm criterion for the last time. We 
examine how it is normally interpreted by others (including Bohm) and 
discover that it has been misunderstood. An alternative approach supplies a 
clearer criterion.

The standard interpretation of the Bohm criterion (I ■ E/KTS 1/2) is that 
when I<l/2 the potential solutions are oscillatory and that solutions with 
I>l/2 are not ruled out by the assumptions on which the model is based. The 
truth is that the Bohm model is basically overdetermined if one tries to 
explore solutions with I . 1/2 while simultaneously stipulating that n, - at 
the sheath boundary. Thus the conclusion that oscillatory solutions 
correspond to I<l/2 cannot be drawn. The apparent prediction from the 
model that solutions with I<l/2 will be oscillatory is merely a result of the fact 
that the proposed value of ion energy will actually generate conditions which 
violate the Bohm assumptions; hence this prediction is invalid.

The particular assumption which will be violated is that n, - at the plane 
of injection of the ions. This assumption should not be made as the relative 
densities are determined by the dynamics of the model. To show this we 
return to the ’single-point- ionisation model of section 5.3.3 and generalise it 
to permit ion injection with any energy I = E/KT. The once integrated Poisson 
equation then becomes:



< dx> ’ T p w + L1 ‘ mJ eW - AJ
As before, this defines a plateau potential $p with sheath structure at both 
ends. The plateau potential is thus obtainable from:

exp^ + fd-^Aj^ exp (<!>_). a  = 0
(7.7)

The potential distribution can represent one monotonic wall-sheath solution if 
we choose A to give zero-field at the midplane and let 4>p-> o. Setting p = 1 
and T = 0 m equation 5.10 enables us to obtain a zero current relation for our 
new system if we replace <t>„with - <t>p and I with I - <t>p :

<t> . * x In [
' p L M J (7.8)

Substituting equation (7.8) into equation (7.7) with
A ■ 1 +1 exp( <t>wXM/m it)1/2 and squaring provides the following 
equation:

41 exp (20pXI - <J>p) = fexpf^p) + 2 exp (I - . if
(75)

Thus <Dp is a monotonic function of I (apart from the trivial solution 0 = 0) 
and it can be shown from equation (7.9) that I -> 1/2 when <Dp-> 0. Thus the 
criterion for sheath formation is:

1= 1/2 (7.10)

and there is no ambiguity here. If Kl/2 then there is a highly concentrated 
region of positive space-charge near the input plane leading to acceleration of 
the ions into the plateau; this violates the assumptions of the Bohm model. 
Fig. 5.10 shows an example of this for the special case I - 0. When I>l/2.



r ------------------------------------------------------------------- ihib  utui dc  iaxen as a valid
prediction because no monotonic distributions obtained by varying I could 
encompass features which violate the assumptions of this 'single-point 
ionisation modeL

For a normal sheath, then, we conclude that I = 1/2 since it would be 
unreasonable to allow the region of concentrated space-charge at the plasma-
sheath boundary (with corresponding jump in potential) which is required to 
violate this criterion.

7.3 Conclusions

Assuming the maximum secondary-electron flux and no current flow, the 
secondary-electron beam plasma instability grows spatially away from the 
sheath and into the plasma where, at a distance of about 100 Debye lengths 
the dominant mode traps the beam electrons. The stability of the sheath itself 
would appear to remain unaffected by the nonlinear development of the 
instability. When there is a current flow the growth rate is increased; this may 
modify the sheath stability and distance to the trapping region.

The wave energy grows linearly until trapping occurs and thereafter it 
oscillates with the bounce frequency of the trapped electrons. Neighbouring 
waves, phase-mixing and particle collisions all have the capability to smear out 
the trapped electron orbits, thus destroying the wave energy oscillations and. 
depending on the conditions, this can cause the particle distribution to 
temporarily approach that of a BGK mode.

It has been demonstrated that the plasma in the hypothetical 'single-point 
ionisation' system adopts the configuration which minimises the wall-potential 
relative to the midplane, and this corresponds to zero electric field at the 
midplane; no other general principle to guide the choice of boundary 
condition has been found for this case. It has also been shown that choosing 
the equality in the Bohm criterion for sheath formation corresponds to an



plasma bounded by two absorbing walk

A new criterion for sheath formation has been derived using a model which 
reveals previously held misconceptions about the dependence on ion energy.



APPENDIX A

Phasespace diagrams for the beam-plasma instability 
corresponding to a wall potential of 4>0 = - io.

These diagrams are enlargements of those appearing in Fig 6 2 The 
value of to is given on each diagram as "T". The monotonfc ionslle 
visible as a line parallel to and just below the x-axis. Trapping of beam 
electrons is observable after = 15 and, at the end of the 
simulation, voids in the centre of the trapped electron orbits appear 
likely to persist for some time.
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APPENDIX B

Phasespace diagrams for the beam-plasma instability 
corresponding to a wall potential of 4>0 = -100.

These diagrams are enlargements of those appearing in Fig. 6.3. The 
value of is given on each diagram as "T. Trapping of the beam 
electrons is observable after = 20 but the regularity of their 
orbits is soon disrupted and by the end of the simulation the 
phasespace distribution is spatially homogeneous.
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APPENDIX C

Phasespace diagrams for the beam-plasma instability 
corresponding to zero current conditions for mass 1 io 4590.

These diagrams are enlargements of those appearing in Fig. 6.13. The 
value of is given as T on each diagram. Trapping of the beam 
electrons is observable after to„ = 70.
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