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5.14 Conditioned inhibition receptive field analysis. Panel A

shows the original stimuli: triangles (A), landscape (X),

and circle outcome. Panel B displays pre-conditioning re-

ceptive fields with clear feature detection for each stimu-

lus. Panel C presents the test result: the predicted receptive

field for compound AX shows reduced outcome features.
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terns are suppressed in the compound representation. The
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5.16 Negative patterning receptive field analysis revealing emer-

gent configural representation. Panel A shows the orig-

inal stimuli used in training. Panel B displays the pre-

conditioning receptive fields extracted by the CNN, show-

ing clear feature detection for triangles (A), cat (B), and
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The individual elements (A+ and B+) maintain recogniz-

able features with circular outcome patterns visible. In
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Abstract

We present a self-organizing, real-time associative learning model that

incorporates a biologically plausible image processing mechanism. This

model offers a naturalistic approach for generating hierarchical percep-

tual representations of visual stimuli built from the convolution and pool-

ing layers of a Convolution Neural Network (CNN) model. We showcase

the implemented technical aspects used in building this model, as well

as the algorithms developed for the operations driving different computa-

tions. We demonstrate that this model can account for most characteris-

tic associative learning phenomena, fully conceptualizing cue competition

as encapsulated by a global error correction mechanism. The integration

with CNN endows the model with an elemental framework from which

we present strong evidence of the formation of complex representations

during learning and provide the necessary computational and algorithmic

approach for how compound stimuli are formed, offering a natural mecha-

nism to represent compound stimuli and discriminate them from their con-

stituent elements. Critically, the model, elemental in nature, is capable of

representing non-linearity, accounting for non-linear discrimination with-

out the need to postulate ex nihilo stimulus representations.
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List of Abbreviations

AA Associative Activation

CNN Convolutional Neural Network

CR Conditioned Response

CS Conditioned Stimulus

DDA Distributed Associative Architecture

ISI Inter-Stimulus Interval

ITI Inter-Trial Interval

OA Overall Activation

RF Receptive Field

SOARN Self-Organizing Associative Recurrent Network

UR Unconditioned Response

US Unconditioned Stimulus

V Associative strength value

λ Dynamic asymptote of learning

δ Temporal spread parameter/standard deviation

ν Asymptote weighting parameter
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Glossary of Terms

Acquisition The process by which a neutral stimulus becomes associated

with an outcome through repeated pairings.

Blocking A phenomenon where prior learning about one cue prevents or

"blocks" learning about a second cue when both are presented together.

Conditioned Inhibition A form of learning where a stimulus signals the ab-

sence of an expected outcome, acquiring negative associative strength.

Extinction The gradual weakening of a conditioned response when the CS

is repeatedly presented without the US.

Negative Patterning A non-linear discrimination task where subjects learn

to respond to individual stimuli when presented alone (A+, B+) but must

inhibit responding when those same stimuli are presented together as a

compound AB-). This task is a benchmark test for configural learning

because it cannot be solved through simple elemental summation. The

compound must be processed as a unique configuration distinct from its

individual components.

Element A computational unit representing one spatial location in a recep-

tive field that can serve as both predictor and outcome in the associative

network.

3



Predicted Receptive Field The learned internal representation that emerges

when a stimulus activates its associated outcomes through the network.

Receptive Field A 56×56×4 feature map produced by the CNN, capturing

the visual features of a stimulus at different spatial scales.

4



Chapter 1

Introduction

1.1 The Phenomenon of Visual Stimuli Representation

Many mechanisms underlie the cognitive function of performing visual

tasks. For example, when we see images, a subset of neurons in the vi-

sual cortex are co-activated. Each active neuron encodes abstract stimulus

features such as shape, colour, corners, textures, or edges. As a result,

neural activities are distributed around various regions of the brain, collec-

tively forming abstract representations of the images we see. However, a

full representation of a stimulus does not rely solely on the current input.

Complex stimulus representations often include elements of different and

past sources correlated with the current stimulation [1]. One mechanism

that has long been postulated to contribute to the formation of complex

event representations is associative learning [2, 3, 4]. Thus, in addition to

specific perceptual mechanisms, this thesis focuses on associative mecha-

nisms that underlie the formation of stimulus representation. Concurrent

neural activities form links between neurons, mainly supported by the re-

lation of events containing stimuli with information about other cues. This

framework conceptualizes how the perceptual system may work under as-

sociative mechanisms and forms a basis for the motivation of the work

presented in this thesis. Our research work focuses on building a real-time
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associative learning model that simulates the involvement of associative

learning mechanisms within the formation of complex visual stimuli rep-

resentation as extracted from a perceptual system.

1.2 Visual Processing and Hierarchical Organization

The visual cortex is generally organized into an interactive hierarchy of

interconnected areas that pass information to its immediate neighbours.

The flow of information is bottom-up, where sequential information moves

exclusively from lower regions to higher ones, and top-down, with feed-

back connections loops that enable the circulation of information among

the visual areas [5]. For the Images we see, processing starts with a primal

sketch and concludes with a high-level representation such that we present

partial cues of the image, and the brain can retrieve the learned representa-

tion of the object.

Convolution neural networks (CNN) exhibit functionalities similar to

those of the visual cortex. Deep CNN layers were used to implement the

perceptual system, performing visual processing tasks such as detection

and exploring regularities in image patterns. In our model, CNNs play a

fundamental role in extracting the perceptual representation of the visual

stimulus as filter maps, which are used as input stimuli for events designed

to simulate associative learning mechanisms. This model has been imple-

mented and built by integrating deep Convolution Neural Network (CNN)

layers within the associative learning model.
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1.3 Review of Formal Models of Associative Learning

1.3.1 Foundational Models and Their Contributions

The field of associative learning has developed through successive theo-

retical frameworks, each attempting to capture different aspects of how an-

imals learn relationships between events [6, 7, 8]. We review these models

to establish the theoretical context for our work and identify the limitations

our model addresses [9, 10].

1.3.1.1 The Rescorla-Wagner Model (1972)

This foundational model [11, 12] formalized learning as a function of pre-

diction error, proposing that associative strength changes proportionally to

the discrepancy between expected and actual outcomes

∆Vi = αiβj(λj −
∑

Vpresent)

The model successfully accounts for blocking and overshadowing phe-

nomena through its global error term. However, it cannot adequately repre-

sent configural stimuli without additional assumptions, fails to account for

within-compound associations, and does not explain recovery phenomena

such as spontaneous recovery and renewal.
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1.3.1.2 Pearce’s Configural Theory (1987, 1994)

In contrast to elemental approaches, Pearce [13, 14] proposed that animals

learn about entire stimulus configurations rather than individual elements.

The associative strength of a configural element C is given by:

VC = EC +
∑

SCiEi (1.1)

where EC is the direct associative strength and SCi represents a general-

ization based on similarity. Although successful in accounting for negative

patterning and configural discrimination learning, the model inadequately

addresses generalization between similar stimuli and scales poorly to real-

istic stimulus environments.

1.3.1.3 McLaren and Mackintosh’s Elemental Model (2000, 2002)

This model attempts to bridge elemental and configural approaches by

proposing that stimuli are represented by large sets of micro-elements.

Through coactivation, configural units form automatically, and salience is

modulated through associative processes. However, the model struggles

with computational complexity and lacks a clear mapping to neural mech-

anisms.
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1.3.1.4 Temporal Difference Learning

Developed from reinforcement learning techniques, these models extend

classical conditioning phenomena to incorporate temporal dynamics. While

powerful for modeling timing effects, they typically require discretized-

time representations and struggle with simultaneous compound discrimi-

nations.

1.3.1.5 Double Error Dynamic Asymptote Model (DDA)

The DDA model [10] represents a recent advanced model of associative

learning, introducing a dynamic asymptote based on the distance between

predictor and outcome activities. Unlike models with fixed asymptotes, the

DDA implements a variable learning parameter:

λt
i,p→j,o =

Ât
j,o − |Ât

j,o − Ât
i,p|

max(Ât
j,o, Â

t
i,p)

(1.2)

The model incorporates double error terms, one for outcomes and one for

predictors, enabling within-stimulus learning alongside traditional stimulus-

outcome associations. This framework successfully accounts for a wide

range of phenomena while maintaining computational efficiency. Criti-

cally for our work, the DDA’s elemental architecture and real-time process-

ing capabilities make it particularly suitable for integration with perceptual

systems.
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1.3.2 Key Phenomena Tested

Several fundamental associative learning phenomena were selected to

validate our model.

Acquisition and Extinction: The formation of associations between stim-

uli (A+) and their subsequent weakening when the outcome is removed

(A-).

Blocking: Prior learning about one cue (A+) prevents or reduces learning

about an added cue (AB+), demonstrating cue competition.

Conditioned Inhibition: A stimulus (X) learns to suppress responding

when paired with an excitor in the absence of the outcome (A+, AX-).

Negative Patterning: The ability to discriminate between individual stim-

uli that predict an outcome (A+, B+) and their compound that does not

(AB-).

These phenomena test whether our integrated model can account for basic

associative processes, cue competition, inhibitory learning, and non-linear

discrimination—core challenges for any comprehensive learning theory.

1.4 Limitations of Existing Approaches

Current associative learning models face several key limitations. Exist-

ing models typically use abstract stimulus representations rather than pro-

cessing actual visual inputs. This abstraction creates a gap between how

perceptual systems work and how learning occurs. Additionally, elemental

models like Rescorla-Wagner cannot account for non-linear discrimina-
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tions, as they assume simple summation of associative strengths.

Most models also lack clear connections to neural mechanisms. Al-

though they successfully predict behavioral phenomena, they do not spec-

ify how their proposed computations might be implemented in the brain.

This limits their explanatory power and biological relevance.

The requirement for prespecified stimulus representations is particularly

problematic. Models assume that stimuli have already been parsed into an

appropriate representation or configuration, without explaining how these

representations emerge from stimuli input. This is especially limiting when

considering complex visual stimuli.

Finally, many models become computationally intractable as the num-

ber of stimuli increases, limiting their applicability to realistic learning

scenarios. These limitations motivated our approach of integrating visual

processing mechanisms with associative learning, allowing representations

to emerge naturally from the interaction between perceptual and learning

systems.

1.5 Novel Contributions of This Thesis

We present a computational model that integrates CNN-based visual pro-

cessing with associative learning mechanisms. This integration represents

a significant advance in understanding how complex stimulus representa-

tions form through learning.
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1.5.1 Integration of Visual Processing and Associative Learning

We demonstrate that integration between CNNs and associative learning

is possible through a fully developed computational model. This hybrid

system incorporates a biologically plausible image processing mechanism

using convolution and pooling layers from a CNN. These layers extract

hierarchical visual representations that serve as inputs to an associative

learning model based on the DDA framework [10].

The model uses five convolutional layers, chosen to parallel the hier-

archical processing stages in the ventral visual stream. Each layer pro-

gressively extracts more complex features, from simple edges in the early

layers to complex shapes in deeper layers.

1.5.2 Elemental Framework with Emergent Configural Properties

The model uses an elemental approach where every data point of the vi-

sual representation is modelled as an element. When stimuli are presented,

elements become activated, and shared elements across stimuli enable gen-

eralization and mediated learning. Despite this elemental foundation, the

model successfully discriminates between elements and compound stim-

uli, as demonstrated in our negative patterning experiments.

The learning mechanism follows Hebbian principles [15], where element

activity drives learning through an unsupervised error correction frame-

work. The algorithm adjusts weights based on the distance between ele-

ment activities, without requiring concepts of reward or punishment. The
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focus is on forming unitized representations through element-element as-

sociations.

1.5.3 State-of-the-Art Architecture for Representation Extraction

To our knowledge, this model is unique in its ability to extract and visual-

ize the complex representation structures formed during associative learn-

ing. This connectionist architecture stores information in adaptive weights

rather than symbols or rules, providing a more biologically plausible ac-

count of learning [16].

The model accounts for fundamental phenomena including acquisition,

extinction [12, 17], blocking [18], conditioned inhibition, and negative pat-

terning [19, 20, 21]. Importantly, it can extract and visualize the learned

representations, providing direct evidence of how associative mechanisms

shape perceptual representations.

The capability to visualize learned representations offers insight into the

formation of complex stimulus structures during learning, making it a valu-

able tool for future research in both learning theory and computational

modeling.

1.6 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: Literature Review – A comprehensive examination of as-

sociative learning theories from early S-R models through modern com-
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putational approaches, and an overview of CNN architectures relevant to

biological vision.

Chapter 3: Methods – Detailed description of the research methodology,

experimental design principles, and evaluation framework.

Chapter 4: Computational Model Design and Implementation – The

complete model specification, including CNN architecture, associative learn-

ing mechanisms, and technical implementation details.

Chapter 5: Model Experiments and Results – Comprehensive results

from simulations of classical conditioning phenomena including acquisi-

tion, extinction, blocking, conditioned inhibition, and negative patterning,

with measures (V-values) and novel receptive field visualizations.

Chapter 6: Discussion and Future Work – Theoretical implications of

the findings, model limitations, and directions for future research.

This work represents a significant step toward understanding how per-

ceptual and associative processes interact to form complex representations,

offering new insights into longstanding questions in learning theory while

providing a practical computational framework for future research.
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Chapter 2

Literature Review

Mechanisms of association that underlie cognitive function, specifically

those that focus on knowledge acquisition, have been central areas of re-

search among several scientific communities: Artificial Intelligence (AI),

cognitive neuroscience, philosophy, psychology, economics, linguistics,

and physics [22, 23, 24, 25, 26, 27]. Empirical studies in cognitive sci-

ence have been in the limelight for decades with research-led initiatives

that focus on connectionism [28, 29], which give association mechanisms

a central place that accounts for behavioural findings and neurobiological

correlates of human and animal learning [7]. These systems rely on par-

allel processing and try to incorporate functional properties of the brain,

which are key for cognition [16]

2.0.1 Associative Learning

Associative learning is a fundamental theoretical approach that aims to un-

derstand the precise mechanisms by which humans and animals learn to

pair events within their environment. Exposure to a contingency or corre-

lation of events results in the formation of associative structures only when

events are informative and are characterized by circumstances that produce

learning [30]. The Neural links formed as a result of event pairing build

different categories of Associative structures within stimuli and between
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different stimuli [31].

1. Animals learn about the existence and properties of stimulus S1 from

a simple presentation of S1. The underlying assumption is that an-

imals have an unconditional ability to detect the features of a given

stimulus via the different sensory organs. Thus, neural centres (or

nodes) representing S1 elements are activated simultaneously when

these features are detected. Elemental nodes, are therefore said, en-

code activity information about these features. Whenever two or more

nodes are activated concurrently, excitatory associations are formed

or strengthened between these nodes. This associative learning frame-

work follows the general Hebbian rule [15], and the associative links

establish a super-ordinate structure constituting a mental representa-

tion of the entire stimulus [8]. It is the formation of such a unitised

structure of representation that forms the theoretical basis for the de-

velopment of our model. Learning of such representation structures

relies on stimulus elements associations.

2. Animals also learn about the structure of the environment, which is

modelled as relations among different stimuli. Animals learn associ-

ations between events, say S1 and S2, when sufficient information is

given by one stimulus over the other [30]. Pavlovian conditioning is

the mechanism by which a stimulus S2 comes to signal another stim-

ulus S1. In this formulation, S1 can be an unconditioned stimulus

(US) and S2 a conditioned Stimulus (CS). Exposure of both stimuli

simultaneously or successively in the same context and close temporal
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contiguity drive learning by concurrently activating representational

nodes. Under these conditions, associative links are formed between

the stimulus representational nodes. Activation of one node induces

activation of the other representational node, an activation which is

proportional to the strength of associations (or weight) between the

links. However, mere contiguity fails to capture the relation required

to produce an association, highlighting that for an association to be

formed, one element must give relational information about the other

[30]. We refer to this association as a stimulus to stimulus association

(S-S). Building these unitised representations that follow an element-

element learning approach is key to our learning model.

3. Animals also learn a given response, which results from experienc-

ing events that relate S1 and the animal’s own behaviour (S-R). This

learning framework is often interpreted within the traditional frame-

work of the reflex theory. An animal learns to perform a response

(R) whenever a specific stimulus (S) is experienced. The assumed as-

sociative structure underlying this type of learning does not include

a reward or a representation of a goal behaviour to be learned. This

means that the animal performs the behaviour automatically, as a ha-

bitual response, when they see a given stimulus. A good example is

the knee-jerk reflex. With repeated training, one learns how to kick

as soon as the hammer is available. This type of learning constitutes

the foundational theory of Reinforcement learning, in which the re-

ward is used as a catalyst to learn the knee-jerking reflex in addition

to other mechanisms, but a change in the value of the reward value
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will not influence the probability of the learned habit response. What

is learned by the animal is the relationship between the stimulus and

the response. Discussions in Reinforcement Learning studies [32, 33]

describe reward as a value that modifies the value of the link or acts as

a catalyst to strengthen the link, not forming part of the S-R associa-

tive structure, which remains intact once it is formed and impervious

to any change in the reward conditions.

4. Under associative learning theory, the mechanism by which animals

learn to perform goal-directed behaviour, requires a representation of

the outcome or goal. In this context, animals must learn about the re-

lation between the consequences and their action. If, for instance, an

animal who presses a lever (R) to get food pellets (O) - a rewarding

outcome, learns to associate the lever press response with the delivery

of food. As a result, the execution of the action results in a change

in the environment of the animal leading to the formation of an asso-

ciative structure in which a response is linked to an outcome (R-O)

link. The reward (the goal) is thus part of the associative structure.

If the value of the reward is changed, the value of R is altered. In

addition, if the contingency is changed, for instance, if there is an au-

tomated way of getting the food pellets, the association would also be

modified -there will be no need to press the lever.

Early theories of associative learning focused on S-R theories where learn-

ing was described as a substitution of a previously existing stimulus into an

existing reflex system [34]. However, research conducted [35] posited that
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animals have mechanisms to adapt to relatively short-term variations that

occur within the environment. They adjust to the ’causal texture’ of their

environments responding to the spatial, temporal and predictive relations

among these events. The question that pervades modern conditioning is

how much of this structure is represented by the organism.

Several of the approaches from the early years of learning theory research

focused on experimental studies and establishing conditions necessary or

sufficient for association formation and the elements that enter into asso-

ciations. In parallel, experimenters’ efforts were crowned by deploying

quantitative models that account for association, which have since grad-

ually grown in sophistication. These tools analyze learning at different

levels, considering the spatial-temporal factors influencing learning.

A cardinal example of associative learning is Pavlovian Conditioning.

Learning results from the exposure to relations among events in the envi-

ronment, which enables animals to predict which consequences will follow

each cue and adapt their behaviour accordingly. Central representations of

elements responsive to environmental stimulation are linked so that activa-

tion of one stimulus can excite its associate [8]. Forming these connections

among representations is referred to as associative learning. The underly-

ing mechanism enables the animal to establish a causal structure of its

world. Although early approaches in experimental psychology have long

been infused with general ’ad hoc’ rules that account for regularities in

learning, these propositions provided insights that play an informative role

in formulating more elaborated, specific, and accurate computational mod-
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els. Modern conditioning envisions Pavlovian conditioning as a rich study

area, which no longer focuses exclusively on the acquisition of conditioned

responses, but it conveys causal and predictive information regarding the

events of the environment, and, critically to this research, it accounts for

how representations are formed and how animals.

Furthermore, with the modern advent of deep learning, associative learn-

ing computational models have the potential to be used to break down the

learning process that underlies these deep artificial neural networks, which

have remained a black box. In this chapter, we discuss the theories that

have been developed and how they have evolved to account for Associa-

tive Learning.

2.0.1.1 Linear Operator Learning Tool

Early formal theories of associative learning [36, 37, 38, 39] interpreted

habit as a process where stimulus (S) and Responses(R) become linked and

constituted, and this association formed the cornerstone of learning. These

theories aimed at explaining all learning phenomena and extending their

postulate to cognition, in general, based on simple S-R connections. Al-

though the effects of rewards were considered to be the result of obtaining

a stimulus input (the US in Pavlovian conditioning), the latter was not con-

sidered part of the learning structure. Rewards were mere incentives able

to motivate the production of a response, and as such not coded in the pro-

cess of acquiring the habit. Among the most relevant theories at the time,

it is worth highlighting Hull’s and Estes’ stochastic models [37, 4, 40].

These theories suggest that a response is evoked in the presence of a stim-
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ulus when the response reduces the drive. A drive is an arousal caused by

biological or psychological needs that create an unpleasant internal state.

According to Hull, a connection between an S and a paired R is formed

when the R is followed by a reduction in this state of biological urge, re-

instating the equilibrium (homeostasis) of an organism. Hull proposed a

mathematical deductive theory of behaviour which assumes that the CS

initializes a trace whose intensity changes over time. The rate of learning

is proportional to the intensity of the CS trace at the time of reinforce-

ment. When a habit is learned its strength changes during reinforcement

according to this learning rule:

SEr = (V ∗D ∗K ∗ J ∗ SHr)− SIr − Ir − SOr − SLr (2.1)

Where SEr is the excitatory potential or the likelihood that an organism

will produce a response (R) to a stimulus (S). V is the stimulus intensity

dynamism that determines the influence of one stimulus over the others. D

is the strength of drive determined by the amount of biological deprivation.

K is the incentive motivation or the magnitude of the goal(amount of re-

ward). J is the delay before the organism is allowed to seek reinforcement.

SHr is the habit strength established in the previous conditioning. SIr is

conditioned inhibition caused by a previous lack of reinforcement. Ir is

reactive inhibition, and SOr is a random error value while SELr is reac-

tion threshold, or the smallest amount of reinforcement that will produce

learning.

If we defined habit as the likelihood that an organism will produce a re-
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sponse (R) to a stimulus (S), then the acquisition curve of this conditional

response in Hall’s formulation could be understood as a form of delta error

for habits [6]. This can be expressed as follows.

∆Hi = θ(M −Hi) (2.2)

Where the change in habit, ∆Hi, is the discrepancy between a maximum

value, M and the current strength of habit Hi. θ is the learning rate.

The strength of the habit, according to Equation 1, follows a negatively

accelerated relationship with the number of reinforced trials.

Estes stochastic learning [41, 40, 4] is also a form of S-R learning paradigm.

In a conditioning trial, a randomly selected and partial subset of elements

is sampled to form an association with the response. Reinforcement is de-

fined as an experimental condition that ensures a successive occurrence of

the response that will be contiguous with a new sample of elements from

the same stimulus population. (S −R) contiguity determines the associ-

ation, which is mediated by reward; hence, S elements in the sample are

associated with the response as a consequence. In subsequent trials, new

samples are drawn, and new elements are associated with the response.

Conditioning is complete only when most of the population is conditioned.

Estes [4] formalized this learning by:

∆pi = θ(π − pi) (2.3)

Where π. is the maximum proportion of elements that are conditionable,
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and pi is the proportion already conditioned while θ represents the sample

size. This theory stipulates that the CR is a function of the probability of a

response in the presence of a stimulus S.

Although these two approaches hold different concepts about Pavlovian

conditioning, they were hardly consistent in providing a comprehensive ex-

planation of what is today considered a variety of different learning mech-

anisms. Initial quantitative approaches accounting for acquisition [42, 43]

defined abstract concepts such as associative strength quantified by ob-

servable variables such as number of trials or frequency of conditioned

responses.[6] However, what can be deducted is the need for an error cor-

rection framework in the underlying associative mechanisms. The change

in the strength of the links is majorly determined by the proportion of the

difference in the sampled elements and those that have been conditioned,

as well as the difference in maximum strength in a habit and current habit

strength of the animal.

2.0.1.2 Law of Effect

Thorndike [36] interpreted conditioning as the strengthening of new re-

sponses by their consequences. He elaborated this through his original pro-

posal, the ’law of effect’ where cats learned to press a catch or pull a loop of

string to escape from the puzzle-box. The response R was only associated

with a given stimulusS after a satisfying state of affairs followed it. The

’law of effect’ formed the cornerstone of instrumental learning [38], where

a given goal-directed behaviour is determined by past contingencies of re-

inforcement. Hull’s theory, on the other hand, stated that (S−R) links are
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strengthened only when a reduction in drive occurs. Pavlov’s [44] expla-

nation of the formation of new habits, however, differed from Thorndike’s

and Hull’s explanations. Conditioning was conceived as establishing new

units of behaviour, conditional or conditioned reflexes. These units com-

prised a conditioned stimulus (CS) and a response also known as con-

ditioned response (CR). The establishment of the (CR) was assumed

to be dependent on reinforcement such that an initially neutral stimulus

(CS) repeatedly paired with an unconditional stimulus (US) that elicits

a response, Unconditioned response (UR). In this case, conditioning was

a matter of the (CS) substituting the (US) and thus eliciting a response

(CR). If two stimuli are presented in close temporal contiguity and the

USelicits some reaction, then the CS will evoke a similar response.

2.0.1.3 Beyond Contiguity: Cue Informativeness

Hull’s law of reinforcement, Estes’ sampling theory, Thorndike principle

of law of effect, and Pavlov’s substitution theory assume a smooth learn-

ing gradient for all stimuli involved in training. The way a representation

of stimulus was presented in early onset theories, however, has been chal-

lenged by a series of experiments conducted with compound cues such that

was learned by one stimulus appeared to depend on the associative value

of the other stimulus [45, 46, 47, 48, 49, 17, 50] A good example that can

describe this phenomenon is Blocking [47, 18]. Subjects are conditioned

using stimulus A+ prior to receiving compound training of AB+. Upon

testing, the novel cue Bacquires little or next to no conditioning. It is

extrapolated that learning depends on the surprisingness of the US, the
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associative link formed by A to the outcome prevents the formation of an

equivalent link between B and the US. As a result, B is not a strong pre-

dictor of the US. This experiment was pivotal as it sheds light on results

discovered by Pavlov [51] on overshadowing where a compound stimu-

lus acquires less associative strength than when trained separately [18].

Additionally, when two different compounds, AX and BX , are equally

reinforced (+) and non-reinforced (−) 50% of the time (i.e AX + /−,

BX+/− ) the absolute predictive value of the common features is higher

than when that stimulus compounds more reliably signal the occurrence

and nonoccurrence of reinforcement (AB+, AB−) [52]. In other words,

although X received an identical amount of reward in both conditions, its

predictive value differs depending on the values of their partners. Addi-

tionally, if the CS − US contiguity is preserved but the frequency of

the US is varied in the absence of the CS, conditioning is high when the

probability of the US in the absence is low [49].

The notion of contiguity and reinforcement have been considered crucial

factors to learning [6]. Concurrent activation of the stimuli representational

nodes is a determinant of learning, but not by itself. Cue competition phe-

nomena have shown that the co-activation is not a sufficient condition. The

total amount of available strength for a given connection is determined by

the weight of all other active nodes linking to the same outcome. Such

models have been developed to account for the variation of interaction in

either the CS or the US. Three categories have been identified: First,

the model assumes that the CScompete for the reinforcement, it assumes
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that there is competition among the CS for attention, and lastly, there is a

model that appeals to both processes.

2.0.1.4 Rescorla Wagner Model: variation in US processing

The Rescorla-Wagner(RW ) model assumes that learning involved in a

CS depends on the current associative strength held by all cues present in

that trial [11, 12]. Any change in associative strength of a given CSi is

given by:

∆Vi = αiβj(zjλj −
∑

xiVi) (2.4)

where αi and βj are learning rates determined by intensities of the CSi

and USj . The values of xi and zj are 1 when the corresponding stim-

ulus is present and 0 when absent.
∑

xiVi represents the sum of all the

associative strength of all other stimuli present in the trial at that point in

time. Excitatory learning takes place when the difference between acti-

vation of the adaptive unit by the US is greater than activation by all the

CS present in that trial while Inhibitory learning is experienced when the

activation of the adaptive unit by the US is less than the activation by all

the CS’s that are present in the trial. The main difference between (RW )

and the linear operator rule is the incorporation of the aggregate associa-

tive strength in the computation of change in associative strength resulting

in a ’global’ prediction error term. This rule is compared to a supervised

learning problem [53] where the activation by the USis regarded as the

teacher, whereas the activation by all the CS present in the trial is re-
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garded as the predicted output. The discrepancy between the two outputs,

real and predicted, produces an error that is reduced by a margin for ev-

ery trial. Reinforcement is maximum when the discrepancy is maximum

but reduces as the CS acquires the strength to activate the adaptive unit.

While this model has several limitations, it plays a fundamental role in un-

derstanding how Pavlovian conditioning may contribute to learning stimuli

representations.

2.0.1.5 The attentional Model of Mackintosh: variation in CS processing

The attentional theory assumes that animals attend to cues that are rel-

atively better predictors of outcome than others [48]. Attention to a cue

is modelled as a change in proportion to the relative predictiveness of the

cue for the outcome. Associative failure is caused by the diminution of at-

tention paid to the target CS, also referred to as CS processing failure [6].

Stimuli compete for a limited attentional capacity such that when a given

CS is preferred over another, selective attention is learned and retained for

future learning which presumably aids in reducing proactive interference

between stimuli, thereby speeding up learning. RW-model is unable to ac-

count for the pre-exposure effect because there is no US, as the error term

remains zero. A pre-exposed CS retards the subsequent acquisition of both

excitatory and inhibitory learning [54, 55]

Mackintosh [48] postulated that the associability, α, of a CS increases

when a given CS is the best predictor of the US relative to all other cues

present. A formal description of the associability, αi, of a CSi increases

according to Equation 5 and decreases as per Equation 6
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|zλ− xiVi| < |zλ− xjVj| (2.5)

|zλ− xiVi|≥|zλ− xjVj| (2.6)

Where j represents all other CS’s present in the trial. The proportion of

increase or decrease of a CS’s associability, αi, is given by the difference

as depicted in equation 7

|zλ− xiVi| − |zλ− xjVj| (2.7)

Mackintosh [48] uses Hull’s principle [56] of non-competitive US error

rule to compute the associative change. The US has a limited role in ex-

plaining the acquisition of associative strength of a given stimulus. Mack-

intosh model explains unblocking where the surprising partial omission

of reinforcement during blocking attenuates the blocking of a cue [57].

Thus, it avoids the prediction of over-prediction pushing the blocked cue

toward becoming inhibitory, which the RW model predicts in some circum-

stances for this treatment. This model also accounts for learned irrelevance

[58, 59] whereby a CS uncorrelated with US presentations shows poorer

subsequent acquisition because of the best relative predictor accruing the

most associability, and hence conditioning more quickly than competing

cues.

The presence of a US results in an increment of an excitatory tendency

towards an asymptote of, say +1, whereas the omission of an expected US
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results in the increment of an inhibitory tendency towards, say -1. The

net associative strength of a CS, V , is the difference between excitatory

and inhibitory associations with the US [48]. The model, however, is not

computationally viable; there are no real values for the change in associa-

bility, only tendencies. Some remarkable difference between the Mackin-

tosh model and the RW model lies in the concept of inhibition. In the RW

model, non-reinforced presentations of an inhibitory CS result in the sup-

pression of a response, and the the associative strength of a cue gravitates

towards 0. On the contrary, in the Mackintosh model, inhibitory properties

push associative values towards -1, opening a broad spectrum of reinforc-

ing effect variations. Yet, this very same reason prevents the Mackintosh

model from explaining super-conditioning. Mackintosh model has been

improved to address the challenges of super-conditioning wherein present-

ing a conditioned inhibitor of an outcome together with a novel cue leads

to stronger excitatory conditioning of the novel cue than if it were con-

ditioned individually. The extension, made by LePelly [60], can account

for a computational version that can be compared with RW model from a

computational perspective.

2.0.1.6 The Pearce and Hall mixed model: variation in both CS and US processing

Pearce and Hall [61] proposed a model that relied on both CS and US

processing. According to this model, unexpected outcomes are more liable

to attention and hence win more associative strength. the Pearce and Hall

model [61] can successfully predict phenomena like the Hall and Pearce

negative transfer effect in which acquisition of a conditional response is
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retarded when the CS is previously paired with the same US but of a lower

intensity [62]. Following the postulates of the model, the CS should lose

associability during the pre-training phase, which would put it at an atten-

tional disadvantage in comparison to a novel stimulus, thus slowing down

the conditioning rate. This model, however, cannot explain why a CS that

was previously paired with the same US retards when paired with the same

US but of a lower intensity [48].

According to the Pearce and Hall model [61], the associability of a CSi,

α decreases when it is followed by a consistent outcome [61]. However,

when the outcome is inconsistently predicted, i.e., when the expectancy

of reinforcement is not confirmed, the associability of the stimulus is sus-

tained. In other words, the animal has a limited capacity to process both

the CS and the US simultaneously, and only unexpected events get access

to the processor. The associability of a CSi on a trial is proportional to the

difference between the activation of the adaptive unit by the US and its ac-

tivation by all the CS’s in a previous trial n−1. Therefore the model easily

accounts for the negative transfer effect. On the other hand, the model is

unable to account for learned irrelevance, as the predictor in a learned ir-

relevance procedure will accrue more associability because of their lack of

correlation with the occurrence of an outcome. In the context of a stan-

dard acquisition and extinction protocol, the PH model predicts a sudden

increase in associability when the contingency is changed with a gradual

decline thereafter [10]. The total net prediction is defined as the difference

between excitatory and inhibitory predictions [63] this is expressed as:
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αn
i = γ|zλn−1−(

∑
xiV

n−1
i −

∑
xiV

n−1
i )|+(1−γ)αn−1

1 (2.8)

The excitatory
∑

xiV
n−1
i and inhibitory

∑
xiV

n−1
i learning develop sep-

arately for a given CS. γ governs the relative influence of the preceding

trials. For γ ≈ 1, the associability will be determined by the events of the

immediately preceding trial n; while for γ ≈ 0, α is determined almost

exclusively by earlier trials. Excitatory learning accruing to a given CSi in

a given trial n is proportional to the it’s associability αn
i , Salience Si and

the activation of the adaptive unit by the US, zλ

∆V +
i = αn

i Sizλ (2.9)

Inhibitory learning accrued to a CSi in a given trial n is proportional to

the associability of a CS αn
i , Salience Si and the discrepancy between the

expected activation of the adaptive unit by the all the CS
∑

xiV iand the

Activation of the adoptive unit by the US zλ.

∆V −i = αn
i Si(

∑
xiVi − zλ) (2.10)

The net associative strength of a give CSi is given by subtracting the in-

hibitory strength from the excitatory associative strength.
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2.0.1.7 Elemental and Configural Representational Approaches

The simulation pattern for the Associative mechanism in RW model [11],

Mackintosh [48], and Pearce and Hall [61] is elemental. This means that

conditioning comprises separable elements that develop associations with

the US. This view was challenged when a decrement in CR was ob-

served in a well-trained CS when presented as a compound with a novel

untrained stimulus [13, 14, 64], also termed as external inhibition. Mod-

els that are elemental cannot account for non-linear discrimination, as they

assume the response accrued to a compound is proportional to the sum

of the associative strength of the elements. John Pearce [13, 14] intro-

duced the Configural view of learning where elements of stimulus A and

compounds AB have different configurations. An element A, and a com-

pound AB, have two different representations. Two benchmarks of non-

linear discriminative performance of a model have been negative pattern-

ing (A+, B+, AB−) and bi-conditional (AB+,CD+, AC−, BD−)

discriminations. Elemental models cannot break down the linearity of

the compound trials. The animals must learn to withhold responding on

the trials with two cues which individually predict a common outcome.

Bi-conditional discriminations involve more complex non-linearity. Sim-

ple summation of individual cues offers no information for solving the

discrimination[10].

These configurations are the basic functional units in a conditioning sit-

uation [14, 64]. The associative strength of the configuration C, VC , is

given by the sum of the associative strength directly conditioned to the
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configuration, EC and the associative strength that generalizes to the con-

figuration from other configurations eC . The value eC is determined by

the direct strength of those configurations weighted by the similarity index

to the target configuration, C, where the index is determined by the number

of similar elements shared. Formally VC is given by:

VC = ECi +
∑

SCiEi (2.11)

Where Ei is the direct associative strength of any configuration i and

SCiC is the similarity index between configurations C and i. The change

in the direct associative strength of the configuration in a given trial is ex-

pressed as:

∆EC = αCβ(zλ− xCVC) (2.12)

Pearce’s model differs from the RW model based on the assumptions made

about representations. First, a compound is represented as a single sensory

unit in the Pearce model in contrast to the RW model. Additionally, for

the Pearce model, the notion of associability does not vary with the num-

ber of nominal stimuli included in the configuration; similarity salience,

α, is assigned to each configuration despite the number of components.

Whereas the RW model assumes that a compound has a greater salience

than any of its components approximated by the sum of the individual com-

ponent salience α. These assumptions lead to different results between the

two models hence varying the results of generalization and discrimination
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learning [6].

An attempt to translate the Pearce model to an elemental model for easy

comparison to an RW model was made [65]. It was assumed that when

stimuli A and B are compounded, some elements are inhibited [66]. This

version of the Pearce Model makes an assumption that salience is equal for

all configurations, and theoretical elements in a compound remain invari-

ant. Additionally, there is a level of statistical independence when Stimulus

A is compounded with another stimulus B. The subset of elements active

when A is active is independent when A is compounded with C. The main

difference is that the Pearce model forms compounds by inhibiting some

elements, whereas the RW model forms compounds by adding some ele-

ments [66].

An experiment conducted involving rabbit eyelid conditioning presented

experimental evidence that could not be accounted for by either the Pearce

model or the RW model. The training involved a conditioning procedure

with stimuli A, AB and ABC and testing with the same cues. Whenever

a stimulus was added, i.e., training with A and testing with AB and ABC,

as well as training with AB and testing with ABC, the was a decrement

in response with every addition of a stimulus. This confirmed the external

inhibition effect favouring the configural inhibited elements approach over

the elementalistic addition approach. Moreover, it was noted that there was

even a greater decrement when removing a cue from AB to A compared

to adding a cue from A to AB. The results contradicted the Pearce model,

which predicates that the decrements should be symmetrical [6].
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A model [64, 66, 65] that accounts for the asymmetrical decrements was

proposed [66]. This model, Replaced units Model (REM), is a computa-

tional concept of the hypothesis of the afferent neural interaction hypothe-

sis [67]. New configural elements are activated when stimuli are presented

as a compound, and additional elements are inhibited. Some elements ac-

tivated by the individual stimuli are replaced by the addition of unique

configural elements activated by the stimulus compounded, and some are

removed (unique elements) when the cue is presented in a compound. The

added elements correspond to elements representing context-dependent

features of the stimulus, while the replaced elements are assumed to repre-

sent features of the cue that are uniquely present when the cue is presented

alone. This model accounts for negative patterning and bi-conditional dis-

crimination in the same way as the RW model because the representation

of a compound is distinct from its constituent elements. It also accounts

for the difference in responding between single and compound stimuli. The

downside is that in an elemental model, RW and REM assume that a redun-

dant cue will facilitate learning, but that is not observed. Additionally, it is

assumed that complete reversibility of an association between a stimulus

and the outcome will be successful should the previously learned contin-

gency be reversed. However, experiments display retroactive interference

in feature-negative discriminations for both RW and REM models.

2.0.1.8 Simple Real-Time models

Timing effects among stimuli play a role in the formation of associations

and the generation of responses. There are different timing models that ac-
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count for cognitive processes in time. There are also associative learning

timing models that account for time factors of the stimulus processes, and

lastly, there are models that fall in between Associative learning timing

models and cognitive timing models. We are only going to consider Asso-

ciative learning timing models that are not in real-time, but they implement

the discretized temporal factors that usually would not be accounted for by

the models that have already been reviewed.

Temporal factors such as the time interval between the onset of a CS and

US, also known as inter-stimulus Interval (ISI), majorly affect the latency

to initiate CR and the peak of the CR. It has therefore been a major factor

to consider while formulating real-time models [68, 69, 70, 71, 72]. Real

time here refers to discretized models. To account for these findings, early

models suggested that CR varied in proportion to the strength of condition-

ing. Poor learning was manifested in the form of slow-rate of acquisition,

low CR amplitude and a longer latency of initiation and peak. Additionally,

the ISI function hypothesis [73, 74, 75, 76] posits that the ISI determines

the rate of learning. This theory suggests that an intermediate ISI is an

optimal index where learning is maximal and that acquisition decreases

exponentially with longer and shorter ISI’s

One key temporal feature that affects learning and stimulus representation

in these simple Real-time models is the concept of trace [44, 56], which

refers to the change of stimulus representation over time. Associations

are formed to each part of the trace depending on the presence or absence

of reinforcement and strength of the trace. This was built according to
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Hull’s [56] S-R principle that had a delay component in its formulation.

Associations are, therefore, formed differentially across time. The activity

of each processing unit reflects a time-varying course of activity in the

stimulus during the trial.

2.0.1.9 Real-time Rescorla Wagner Model

This model [77] [78] is an extension of the RW model [11, 12] that ac-

counts for within-trial associations. The CS trace x(t) follows a curvi-

linear function increasing in a negatively accelerated and decays to zero

after CS offset [77]. The US trace z(t) is a rectilinear binary function that

assumes a value of 1 when the US is active and 0 when it is inactive. Bran-

don [78], on the other hand, processes traces in a momentary fashion by

use of time-steps. Both stimuli, US and CS, traces are characterized by an

initial period of negatively accelerated rise of activity followed by a period

of adaptation then they decay back to inactivity. Learning involves com-

puting changes in associative strength at each moment of time by taking

into account factors such as the momentary strength of the CS trace and

the reinforcement.

Simple real-time implementation of the RW rule consists of computing

changes in associative strength for a given CS at each moment, according

to the momentary strength of the CS trace and the reinforcement. This

notion has been formalized in the following equation:

∆Vi = αiβj[z(t)λ(t) −
∑

xi(t)Vi(t)]xi(t) (2.13)
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The amount of learning accrued to a CSi at any moment in time (t) is given

by the discrepancy in time between the activation of the adaptive unit by

all the CSs available in that trial and the US i.e z(t)λ(t)−
∑

xi(t)Vi(t) con-

trolled by the strength of the trace of CSi given by xi(t). The net associa-

tive strength is given by an overlap of inhibitory and excitatory tendencies

evoked by the presentation of the CS at every moment in time.

Brandon’s [78] trace definition posited a greater acquisition with an ISI of

intermediate duration, which was similar to what was reported by Schma-

juk [77]. When trained with many trials, the function relating the ISI and

associative strength shifts from an inverted U-function to a linear decreas-

ing function, which means that conditioning is best for shorter ISIs.

2.0.1.10 The time derivative Model of Richard Sutton and Andrew Barto

Time derivative models propose that both CS and US have reinforcing

properties. The adaptive unit is not required to play the role of a super-

visor to produce changes in the Associative strength of a CS. The model

accounts for second-order conditioning, where the acquisition of the asso-

ciative strength by a CSi is with another stimulus CSj which had previ-

ously been conditioned with the US. Therefore reinforcement is based on

the difference in the output between two time intervals such that a CS with

associative strength greater than zero can produce reinforcement in the ab-

sence of a US. The first time derivative model to be proposed was called

the Sutton and Barto (SB) model [79]

In this model, the CS generates two traces, Stimulating trace xi(t) and

eligibility trace, ei(t). xi(t) is a binary function that generates responses,
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which takes a value of 1 when the CS is active and 0 when inactive. ei(t)

continually changes with calculations of a running average of xi(t) and

decays with the offset of the CS. The US representation is similar to the

stimulating trace of the CS. The change in eligibility trace is given by:

∆ei(t) = δ(xi(t)− ei(t)) (2.14)

Where δ is the rate of change of ei(t). Since the stimulating trace is a

binary function throughout the duration of the CS, ei(t) continually in-

creases towards 1 at the onset of the CS at a fixed rate, δ, and decays at

the same rate upon offset. Learning at any moment in time is given by the

discrepancy between the current and the immediate previous output. Rein-

forcement is a function of the time difference between the output at time t

and time t− 1. Therefore, the change in associative strength is expressed

as:

∆Vi = [Y (t)− Y (t− 1)]ei(t)

∆Vi =
δ[(
∑

xi(t)Vi(t) + z(t)λ(t))− (
∑

xi(t− 1)Vi(t− 1)+

z(t− 1)λ(t− 1))]ei(t)

(2.15)

The onset of the stimulus is assumed to generate excitatory associations,

whereas the offset generates inhibitory associations. Trial-level phenom-

ena such as blocking, overshadowing, and conditioned inhibition are ac-

counted for in the SB model[79], but there are several predictions that don’t
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match with empirical evidence [6]. SB model predicts that the level of con-

ditioning in experiments with longer ISIs will be the same. This contradicts

the evidence showing that there is poor conditioning when longer ISIs are

used. This has been attributed to the fixed rate, δ, of change in the eligibil-

ity trace that increases towards the value of 1 and decays at a constant rate.

Differential condition is only noticed in instances of Short ISI because the

eligibility trace will not have reached the asymptote at the moment of US

presentation. Another disadvantage is the inhibitory learning caused by

the offset of the US causing negative reinforcement at a time, t producing

lower output at time t− 1, i.e., Y (t)< Y (t− 1). The eligibility trace of

the CS, in most cases, overlaps with the US offset, resulting in inhibitory

learning that reverses or cancels excitatory learning due to the US onset.

Improvements to this model were made to overcome the eligibility chal-

lenges. The drive reinforcement model (DR model) [80, 81] postulate that

all CSs have the same eligibility trace independent of their duration, i.e.,

the CS is only incremented at its onset followed by a gradual decrement.

Eligibility trace does not depend entirely on the time course of the CS but

follows a fixed course after the CS onset independent of its offset resulting

in long and short CSs generating exactly the same trace. This means that

shorter ISIs will predict stronger conditioning.

Additionally, an SBD model [82] was developed to address the issue of

long ISIs. This model posits that the rate of decay of the eligibility trace

increases as a function of the CS duration. The eligibility trace decays after

the CS offset, but the rate of decay is proportional to the duration of the CS.
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This model proposes that the trace of the US decays progressively upon the

offset of the u,s which reduces the inhibitory effects of the US observed in

the SB model. Moreover, the reinforcing effects of the US is a function

of the current associative strength, V , which is similar to the RW model

that implements a diminishing value of its respective US as a function of

the current Associative strength. Although both the DR and SBD models

solve the problem of long ISI delay conditioning, there is still a challenge

of incorrect prediction of strong inhibitory simultaneous conditioning.

2.0.1.11 SOP

Stimuli representation in the SOP model [83, 84] is composed of a pair

of processing units, primary and secondary, that are made up of a number

of elements. The primary unit is associated with its respective secondary

unit. Presentation of a stimulus invokes activation of some proportion of

elements in the Primary unit, A1i, followed by activation of secondary

elements A2i, recurrently inhibiting corresponding elements in A1i. The

activity of each stimulus across time is represented by two traces, the trace

of the primary and secondary unit. The rate of activation of each unit,

p1 and pd1, primary and secondary, respectively, is independent of the

presence or absence of the stimulus.

The US sensory and adaptive units have separate activities because the CR

does not exactly mimic the UR. This model postulates that when the US is

presented, two sequences of response are generated. The CS activates the

US secondary unit through the associative links established and indirectly

inhibits the primary unit through the secondary unit’s inhibitory influence
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over the primary unit.

Two rules were proposed that relate the activity in the different units and

generate responses [83]. One is the retrieval rule that states that CS influ-

ences the activity of the US secondary unit according to the product of the

momentary proportion of its active primary (pA1i) and secondary elements

(pA2i) and the net associative value (Vi)

P2US =
∑

Vi(r1PA1i + r2PA2i), for, 0 < P2 < 1 (2.16)

The products are summed to determine the conditioned activation of the

US Secondary unit. r1 and r2 represent the relative weight of the re-

spective primary and secondary units. Since p2US is restricted to the unit

interval or (0 < p2 < 1), a CS with the net inhibitory association has

no effect on the activity of the secondary node, but it can contribute to

making its activation more difficult in the presence of other excitatory cues

[6]. The second rule was a response generated rule that states the response

generated by units involving a mapping function fUS weighted by linear

factors w1 and w2 [83]. Both CS and US influence the generation of a

response. The response R is expressed as

R = fUS(w1PA1US1i + w2PA2US) (2.17)

Excitatory and inhibitory links are established separately for both the CS

and the US, and changes in excitatory links are proportional to the momen-
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tary product of active CS and US primary elements. Similarly, changes in

inhibitory links at any moment are proportion to the product of CS primary

elements and the US elements that are active. We can express this as:

∆V i
+(t) = L+

∑
(PA1i(t)x ∗ PA1US(t)) (2.18)

∆V i
−(t) = L−

∑
(PA1i(t)x ∗ PA2US(t)) (2.19)

∆vi
+(t) = ∆V i

+(t)−∆V i
−(t) (2.20)

Where L+ and L− are learning rates. The activity of the secondary US unit

is influenced by all the CSs with active primary elements and V other than

zero. Consequently, the activation of the secondary unit of the US is equiv-

alent to the total prediction of the US or
∑

V . The SOP model accounts

for the priming phenomena as the acquired CS-US association not only

influences the probability of response but also US processing. This has

proven to be advantageous as the model deals well with challenges related

to inhibitory learning that have proved to be difficult for models like RW

to account for. For instance, according to the RW model, non-reinforced

presentation of inhibitory CS results in the extinction of inhibitory proper-

ties but for SOP, inhibitory CS has no activity on secondary US units and

therefore, no learning takes place. Another advantage of the SOP model

is the precision associated with ISI - effects for a given number of trials.

Unfortunately, with a high degree of training, the shape of the ISI function
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changes to a linear rather than an inverted U. This seems to be a predic-

tion of any model in which inhibitory learning where opportunities for

non-reinforcement become increasingly more influential with longer ISIs.

This has consequently resulted in defining a stable-ISI function leading to

a fully connected and real-time model.

2.0.1.12 SSCC TD: A Serial and Simultaneous Configural-Cue Compound Stimuli

Representation for Temporal Difference Learning

The SSCC TD model [85] is an extension of the TD model. This model

incorporates configural representations that are also required to instantiate

key learning paradigms that rely on configural cues, such as discrimination

and summation tests for inhibition. The notion of the configural cue is con-

sidered an emergent perceptual cue that represents a combination of given

elements. This representation competes with other cues to gain associate

strength like any other orthodox stimulus [86, 12].

Configural representations in an SSCC TD are built by the co-occurrence

of stimulus simultaneously within a conditioning trial such that the respec-

tive activation of representations takes place at the same time. Formation of

configural cue can also be between an active stimulus representation over-

lapping with memory traces of earlier stimulus. Additionally, configural

compounds can be formed between context and the stimulus representa-

tion.

The model learns through error correction while incorporating compound

stimulus configurations in a real-time architecture. This has been a suc-

cessful model that explains the performance of learning tasks involving
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compound stimulus for which factors such as generalization and discrimi-

nation are inherent [85]

2.0.1.13 Hidden - Units Model

Most hidden-unit models were developed to account for discrimination

problems that have challenged linear models for a long time. Negative

Patterning, for instance, is one of the discrimination problems that have

been problematic. CS are reinforced when presented separately but non-

reinforced when they are presented as a compound (A+, B+, AB-). The

typical result of this procedure is that the response of the animals to indi-

vidual CS is more significant than their response to the compound. This

is an example of an XOR problem, suggesting that the representation of

a compound CS should be different from the representation of its com-

ponents. Hidden-unit models suggest that a configural representation is

encoded by the hidden units connected to the sensory layer and to the out-

put layer. The SD model is an example of the hidden unit model that was

proposed by Schmajuk and Dicarlo [87] and later improved [88, 77, 89].

This three-layered network has input units, hidden units, and an output

layer. All the links are modifiable except for the US-to-output connection.

This model was proposed as an improvement of the Pearce and Hall[61]

model to account for negative patterning and address issues related to oc-

casion setting [88, 77, 89]. After a short delay, the onset of the CS initiates

a trace, xi(t), that increases to a maximum over time and decays to zero

gradually upon the CS offset. The US is a binary function that assumes a

value of 1 when the US is on and 0 when off. When activated, the hidden

45



units initiate a trace of wi that is determined by the weighted activity of

the sensory unit, that is: wj(t) =
∑

xi(t)Cij(t).

Associative change takes place in three sites: the connection between the

sensory units and the output unit V Si, the connections between the hid-

den units and the output units, V Hi, and in the connection between the

sensory units and the hidden units, Cij . The learning rule applied to V Si

and V Hi determines the generation of CR and RW learning rule applies.

This is given by the discrepancy of the momentary activation of the output

unit z(t)λ(t) and the aggregated associative strength held by the active

sensory unit and hidden unit:

∆V Si = θ1xi[z(t)λ(t)−(
∑

xi(t)V Si(t)+
∑

wj(t)V Hj(t))](|1−V Si|)

(2.21)

∆V Hj = θ2Wi[z(t)λ(t)−(
∑

xi(t)V Si(t)+
∑

wj(t)V Hj(t))](|1−V Hj|)

(2.22)

where factors |1− V Si| and |1− V Hj| maintain the associative values

between -1 and 1 and θ1 and θ2 are learning parameters. The activity of the

output unit requires that activation produced by sensory units and hidden

units be differentiated. Thus (0 < θ1 < θ2 < 1). This adjustments

confers a competitive advantages to the configural (hidden) associations

over the direct associations. Prediction error or output Error (EO) is given

by z(t)λ(t)− [
∑

xi(t)V Si(t) +
∑

wj(t)V Hj(t)]

46



Changes in the association between the sensory units and the hidden units

are governed by the backpropagation learning rule. Error term for sen-

sory unit-to-hidden units associations (EHij) [29, 87]. This error is a

function of the degree of activation of the adaptive unit by the hidden unit

(wi(t)V Hi(t)) and output Error (EO):

EH = f((EO)V Hi

∑
xi(t)Cij(t)) (2.23)

Where f is a sigmoid function. The change in the association between the

sensory unit, Sj , and the hidden unit, Hj , is given by:

∆Cij = θ3xiEH(|1− Cij|) (2.24)

The learning rate θ3 is greater than θ1 and θ2. If the difference between the

aggregate prediction of the US and the actual US at a given time cannot be

reduced by modifying the direct (CS − US) associations, sensory units

strengthen the connections to hidden units. That is, the sensory unit gets

configured to solve the problem at hand [6] this is a key feature of occasion

setting. The SD model is able to handle the regularities of occasion setting,

where unique cues seem to modulate responding to common cues rather an

acquiring the ability to generate CR by itself [90, 91, 92]. Configural and

direct associations with the output unit are regulated by the same error

(EO). Successive arrangement of features comes to set the occasion for

the response controlled by the target while in a simultaneous arrangement,

features directly control the response. The model differential predictions
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of both simultaneous and serial arrangement of feature positive and feature

negative are controlled by the initial values of Ci,j .

2.0.1.14 Modulatory models

Modulatory models extend the US representation beyond its role as a

’supervisor’ to a modulatory function. This means that the US plays a

role of modulating the process of acquisition in addition to the role of re-

inforcement or error computation. The computational modulatory model

[93], the Grossberg Model, assumes the CS forms associations with the

sensory aspect and with the motivational aspect of the US such that pair-

ing with CS generates changes in two types of associations. First, between

the sensory representation of the CS and the drive representation of the

US. The CS acquires the ability to elicit the response and becomes a sec-

ondary reinforcer. Secondly, associations between the drive representation

of the US and a secondary sensory representation of the CS. The US mod-

ulates the degree of activation of the CS. The first association is known as

conditioned reinforcement, as the CS acquires the ability to act as the US

whereas the second association is known as the incentive learning as the

activation of the US representation modulates the degree to which the CS

will be processed.

VET model [94, 95, 96] was proposed to describe the temporal properties

of the conditioned response. This model assumes that during acquisition,

two separate but interacting processes take place. First, there is the acquisi-

tion of responding in the presence of the CS, and second, the acquisition of

appropriate expectancies of the US. Animals learn which response to emit
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and separately learn when to emit a given response. A dual representation

of the US was proposed and implemented [95], with one responsible for

CR and the other responsible for a temporal expectancy of the US. Both

Grossberg and VET models have little empirical evidence to support the

hypothesis.

Wagner and Brandon [97] proposed AESOP, an affective extension of SOP

[83, 84]. In this model, the CS forms separate associations with two kinds

of US representation, sensory and emotive attributes. The association of

the CS with the sensory representation evoke conditioned responses. In

contrast, associations with the emotive representation evoke a diffuse of

activity changes known as the conditioned emotive response (CER), which

modulates the CR. Additionally, some CSs are more likely to be associ-

ated with the sensory or emotive aspect of the US depending on the tem-

poral arrangement of the cues in conditioning [6]. Divergence of response

measures [98] motivated the need to incorporate an emotive mechanism

to SOP. The conditions in which CSs are associated with the US is that

CER is more likely to occur with extended (or contextual) CS, whereas CR

tends to develop with short duration CS [99, 100, 101, 102]. The nature of

the US modulation is such that CER are relatively generalized emotional

states that affect performance with any CS. Depending on the nature of

CER (appetitive or aversive), they not only modulate the expression of CR

by inhibiting or facilitating the response but also modulate the acquisition

of CR [103]. Experiments conducted [104, 97] conclude that conditioned

response and conditioned emotional response may be controlled by differ-

ent aspects of the US, and the nature of the CS-US associations depends
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on the temporal requirements of each type of association.

2.0.1.15 Componential models

We have seen that the CR is affected by several variables brought about

by changes in the amplitude and frequency of the response across the

course of conditioning. Similarly, temporal factors affect onset latency,

peak amplitude and time of peak [73]. The correlation of these factors cou-

pled together can be regarded as a single construct known as the strength

of association.

There are instances where these measures become uncorrelated, suggest-

ing a complex mechanism underlying acquisition. For instance, a shift in

ISI leads to an observed shift in the latency of CR initiation and peaks to a

longer or shorter value [105, 106]. The change in timing is reflected not in

a gradual movement of the CR in time towards its new location but in the

extinction of the CR at its original locus and reacquisition at its new locus.

The strength notion incorrectly predicts the gradual change in CR topog-

raphy with an ISI shift, reflecting the loss or gain of associative strength

expected. Additionally, mixed training at two different ISIs produces two

CRs, each resembling the CR exhibited by animals when trained with each

ISI separately. The strength notion assumes that the topography of the CR

depends entirely on the associative strength accrued to the CS. Mixed train-

ing with two ISIs should produce only one CR with a topography that look

like the average topography of CRs that normally would develop when

each ISI is trained separately.

These challenges have been solved by building more complex, molecular
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or componential CS representations. This notion assumes that the stim-

ulus trace is made up of a number of components that occur at different

moments in time following CS initiation and control separate associations.

Consequently, different CR develops with Independence at different ISI,

solving the problem of double-peaked CR and the shifting ISI. It is also

neuro-biologically plausible to represent the CS as an activity of constella-

tions of neurons that exhibit plasticity at the level of the synapse, evidence

of the major temporal properties of Pavlovian conditioning [107, 108, 109].

There exist several ways to construct the componential stimulus. A CS rep-

resentation such as the tap-delay line suggested by David and Moore [95]

where the CS onset initiates a sequence of activations of elements across

a temporal line. Grossberg and Schmajuk [93] suggest a CS generated

by bell-shaped signals that vary in rise and delay. Gluck [110] suggests a

CS representation in which elements behave as sine waves oscillating at

different frequencies. Mauk [111, 109] suggested that the CS influences

the pattern of activity of neurons whose on-and-off status is determined

by a random stochastic process. A dual representation of the CS with two

classes of binary CS elements was suggested [112]. In this design, some

CS elements have a distribution pattern of activity over the duration of the

CS duration, and some have a randomly distributed pattern.

Temporal difference (TD) [113, 114, 79] was an improvement of the SB

model. It was proposed to solve the inhibitory effect of the US offset and

generation of an ISI function for delay conditioning. This model incor-

porates a componential representation of the CS. Initially, the TD model
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[114, 79] suggests the CS and the US traces were defined exactly the same

as the ones proposed in the SB model with both having an eligibility trace

and a stimulating trace. Moore et al. [113] proposed a CS representation

called the tap-delay-line in which the CS initiates a cascade of sequentially

activated elements ordered in line of activation. The CS is assumed to have

two traces, an onset and an offset one which contains a sequence of acti-

vation elements in each. Each element xijk has a tap that influences the

activity of the adaptive unit. Elements in the delay line are either active

or inactive. The activation period is equal for all the elements and lasts

several time steps. Once the CS activates the first element in the delay line,

the first element activates the second until the last element is activated. The

same is applied during the CS offset. Desmond and Moore[95] argued that

separated representations of the onset and offset of the CS are necessary

because the offset of a stimulus during the inter-trial interval can serve as

an effective CS.

Each element is represented by two distinctive traces: the stimulating trace

is a binary function, and the eligibility trace reaches a maximum value and

determines the rate of learning at each moment in time. Changes in the

Vijk is given by:

∆Vijk = αβ[Z(t)λ(t)+γ
∑

xijk(t)Vi(t)−
∑

xijk(t−1)Vijk(t−1)]

(2.25)

where γ is the discounting factor (0 < γ < 1) that allows CSi with ex-

isting associative strength to generate changes in Vi. The contribution of
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the US in this model contributes to reinforcement throughout rather than

during the change in intensity (at time (t − 1)); the reinforcement is de-

termined at the moment (time t) rather than by the change in intensity

levels. Additionally, the contribution of the CS to the reinforcement term

is weighted by parameter γ that permits the CS to contribute to reinforce-

ment even when the associative strength does not change from time (t−1)

to time (t).

Results of implementing the TD model have resulted in alignment with

empirical evidence where: an inverted-U shape function relating strength

of conditioning and ISI, for both trace and delay conditioning, was plotted;

maximal learning at ISIs of intermediate duration; excitatory learning for

simultaneous conditioning; and excitatory learning for short ISIs in both

forward trace and delay conditioning. Training with large numbers of trials

predicts that the ISI function will become linear with greater conditioning

for shorter ISI, as with the RW model. This is because the TD model

computes inhibitory learning for all parts of the trace in which US is not

present, and CS has some excitatory value [6]

Componential SOP

In an SOP model, a stimulus function is described in terms of activity

states. Each element is assumed to be in a state of inactivity from which

it can be activated, a state of activity from which it can become refrac-

tory, and finally, a state of refractory from which it cannot be activated but

will revert to inactivity. This becomes a componential representation by

assuming that learning accrues with relative independence to the stimulus
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that is differentially activated during the duration of the CS. The stimuli

characterization is assumed to generate the same molar trace from trial to

trial based on a probabilistic-determined course of activity. CS represen-

tation that is temporally distributed constitutes randomly distributed ele-

ments and temporally distributed elements that can account for previously

accounted phenomena and CR timing [112].

The idea of componential representations was adopted by [115, 116] in

the Spectral Timing Model where the CS activates at different rates, some

fast and some slow. The joint activation of all elements belonging to the

same population is called the activation spectrum. When joined to the US

activation spectrum, there is temporally associative learning [116].

2.0.1.16 Double Error Dynamic Asymptote Model

Double Error Dynamic Asymptote Model[10] (DDA) model is a formal,

fully connected computational model of Pavlovian conditioning.

Stimulus representation

In this model, the stimulus representation is a set of elements denoted by

e that can be unique to the stimulus or shared with other stimuli. Shared

elements are sampled whenever one of their parent stimuli is active. Addi-

tionally, this model constitutes an elemental framework of stimulus repre-

sentation where each element of a given temporal cluster of a given stimu-

lus is capable of developing associative links to other temporal structures.
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These elements learn to predict clusters of other elements. This model

implements differential activity through time, where elements in a clus-

ter vary in activity through time. Any stimulus can either function as a

predictor, p, or an outcome, o, that contain a set of clusters i, j

For each time unit of the duration of the stimulus, a temporal cluster is

defined with the maximal cluster activity happening at time t. Each ele-

ment within each cluster is activated with a probability that approximately

follows a Gaussian distribution at that moment in time. This is depicted as:

∀e ∨ (i, p ∨ o)

Φt
i,p = exp(−

(t− t)2k

2σ2
i

) · (I iff p ∨ o = US)
(2.26)

Where σ2
i = CV gti is the variance of the temporal cluster. CV depicts

the coefficient of variation and g. The model assumes that ti = i, which

implies that the i’th temporal cluster peaks at time point t = i. k is a skew

parameter that multiplies the enclosed term when t < i. If the cluster i

belongs to a US, the scalar intensity value I multiplies the equation such

that the strong reinforces are coded with high I values. The default value

of I is set to 1.

The DDA model uses temporal clusters to implement the variable stimulus

representation in time and differential element activity during the presen-

tation of the stimulus. Earlier temporal clusters learn associations differ-

entially from later ones. This mechanism ensures that there is significant

generalization through time, as thereis usually an overlap of activations be-

55



tween long tails of the temporal clusters. The DDA model implements a

different eligibility mechanism to counteract inter-trial extinction.

Associative Activation

The DDA model evokes activity without a direct source of activation. In

general, The activation of an element results in the prediction of clusters

of elements proportional to the weights from itself to these clusters. At a

given time-point, the aggregate of the predictions for a cluster i function-

ing as an output o of another cluster j, denoted by Ψt
i,o is the total pre-

diction for this cluster i, consisting of the contribution of each predicting

element,e, active at that point in time (xt
e,i∨j,p∨o = 1). That is, the as-

sociative activation of a cluster is a function of the weight of the link from

each active predicting element at that moment in time (wt
e,j,p−→i,o) mod-

ulated by 0 < ϑ < 1, an associatively activated discount that is triggered

if the predictor j is not directly activated but retrieved. The associative

activation of a cluster is computed as:

Ψt
i,o =

∑
p

∑
j

∑
e

wt
e,j,p−→i,ox

t−1
e,i∨j,p∨o · (ϑ if Φt

j,p < 0.1 else 1)

(2.27)

where probability (xt
e,i∨j,p∨o = 1) = At

i,p∨o. Where At
i,p∨o is the

overall activation. The notion Ψt
i,o is used to indicate that associatively

activated elements are predicted (i.e., the outcomes o)

Overall Activation
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The overall activation of the cluster, that is either a predictor or an out-

come (i, p ∨ o) is taken to be whichever is larger between its associative

activation, Ψt
i,o or direct activation Φt

i,p∨o. This is expressed as:

At
i,p∨o = max(Φt

i,p∨o,Ψ
t
i,o) (2.28)

The activation of a cluster, direct or associative, complements rather than

competes against each other. This implies that predictions by one stimulus

to another do not inhibit the activation of the predicted stimulus rather, they

reduce the novelty of the predicted stimulus.

Learning and the Dynamic Asymptote

Learning is set to occur when two clusters are concurrently active, either

through sensory experience or associative retrieval. The direction of learn-

ing (excitatory or inhibitory) between clusters is dependent on the dynamic

asymptote, which is a measure of closeness between the aggregate activa-

tion of the clusters, as well as the associative strength of other cues in the

error term. A unique feature of the dynamic asymptote is that it predicts

within-stimulus learning while being able to produce stimulus-to-stimulus

learning. The excitatory and inhibitory links are derived from the error

term of the outcome.

The asymptote of learning used in the outcome error term is an inverse

measure of the distance in activity between the predictor cluster and the

predicted cluster. The asymptote for each cluster is estimated using a con-

strained overall stimulus activation Â, such that if the stimulus direct ac-
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tivation is above a threshold of 0.1, the value is set to maximum direct

activation.

Ât
i,p∨o =


maxΦt

i,p∨o, if Φt
i,p∨o > 0.1

At
i,p∨o, otherwise

where(maxΦt
i,p∨o = Iif(i ∈ US)else1)

(2.29)

λt
i,p−→j,o

∆
=∥ Ât

i,p, Â
t
j,o ∥=

Ât
j,o − |Ât

j,o − Ât
i,p|

max(Ât
j,o, Â

t
i,p)

(2.30)

The result is an asymptote based on a linear distance function, where two

cues with highly dissimilar activations support less learning than if their

activations at a given time point were similar. As the absolute value is

subtracted from the outcome total activity level, this dynamic asymptote

is anti-symmetrical; that is, the outcome activity is more determinant of

whether the asymptote is positive or negative.

The Double Error Term and Weight Update

The outcome error is given by the difference in the asymptote of learning

λt
p−→j,o and the total prediction of the outcome Ψt

j,o depicted by:

∀ e ∈ (i, p)

δt
i,p−→j,o = λt

i,p−→j,o −Ψt
j,o

(2.31)
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In the DDA model, the weights encode the degree to which the activity of

the predicting element predicts the activity of the outcome cluster. One of

the novel features of this model is that the predicting cluster has an error

term that denotes how expected the predictor stimulus is. This error term is

used to modulate learning in the model as well as to define the reevaluation

of the alpha update.

∀ e ∈ (i, o)

δt
−→i,o =∥ At−1

i,o −Ψt
i,o

(2.32)

Both the predictor and the outcome error are used to update the weights

for a given element of a given temporal cluster.

∆wt
e,i,p−→j,o = δt

i,p−→j,oδ
t
−→i,ose,isjx

t
e,i∨j,p∨oA

t
i,pA

t
j,oϵ

t
i,pα

t
i,p−→c·(b iff ti > tj)

(2.33)

Where se,i and sj are saliences of the predicting element and predicted

cluster, respectively. At
i,p and At

j,o are activations while xt
e,i∨j,p∨o is a

binary activity term and ϵti,p is the eligibility term used to counteract ex-

tinction before outcome occurrence. αt
i,p−→c is the adaptive re-evaluation

rate. b is a backward discount factor that multiplies learning from i −→ j

if ti > tj , i.e if cluster i occurs after cluster j.

The direction of learning is determined by the outcome prediction error and

59



its variable asymptote, while the prediction error for the predictor itself,

along with other modulating factors, influences the extent and speed of

learning.

Eligibility Modulation

The DDA model is implemented as a real-time model, and outcomes are

predicted before their onset hence significant extinction occurs on absent

outcomes. The eligibility factor counteracts this trend. The observed pre-

diction from one cluster to another is given by

Ψt
i,p−→j,o =

∑
e

wt
e,i,p−→j,ox

t−1
e,i∨j,p∨o.(ϑ if Φt

i,p < 0.1 else 1) (2.34)

The eligibility is defined as operating on cluster-to-cluster temporal predic-

tions. When the predictor cluster is not present but associatively retrieved,

then the observed prediction Ψt
i,p−→j,o is multiplied by ϑ. The eligibility

is expressed as:

ϵti,p = (
Ψt

i,p−→j,o

maxΨt
i,p−→j,o

)z (2.35)

For an active predictor, p, the maxΨt
i,p−→j,o for each outcome is updated

towards a maximal prediction for that outcome cluster in the current trial

(T ). The rate of the update is determined by the eligibility discount γ

expressed as:
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maxΨt
i,p−→j,o = maxΨt−1

i,p−→j,oγ + (1− γ)maxΨT
i,p−→j,o (2.36)

Attentional modulation: The stimulus Associability

Attention to cues increases when there is uncertainty in the occurrence of

an outcome. If the uncertainty occurs for a long period of time, this is used

as a source of information and attention levels to a cue are reduced. The

attentional modulation is proportional to the time-dependent activation t
i,p

of the element as well as a fixed adaptation parameter, ρ, that determines

how quickly the re-evaluation changes. This is depicted by:

αt
i,p−→c = (1−dt

i,p−→c)(1−ρAt
i,p)α

t−1
i,p−→c+ρAt

i,p|δ
′t
i,p−→c| (2.37)

where δ
′t
i,p−→c is the overall error of the class of outputs calculated as a

moving average in time and dt
i,p−→c is a decay that is initiated if the moving

average crosses a given threshold.

2.0.2 Convolution Neural Networks - CNN’s

2.0.2.1 Introduction and Background

The ability of humans and animals to process image objects locatable in

time and space, with many features, is supported by significant specialized

neural mechanisms. The brain processes a visual world through the intake

of sensory outputs from the neural transducers. This stimulation results
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in the activation of a complex network of neurons [117] and hence the

formation of mental representations. These representations are built up

sequentially from a hierarchy of interconnected areas in the visual cortex,

as low-level area representations contribute to the building blocks of high-

level representations.

Convolution Neural Networks (CNNs) [118], a class of multilayer com-

putational models collectively known as convolution networks (ConvNets),

specialize in processing grid-like data such as time-series data and image

data [119]. These models have experienced tremendous success in prac-

tical tasks such as object recognition, segmentation, regression classifica-

tion etc. [120, 121, 118]. CNNs make use of a mathematical operation

known as convolution, a specialized kind of linear operation that leverages

sparse interactions, parameter sharing, and equivariant representations to

produce a set of linear activations [119]. Each linear activation function is

run through a non-linear activation function, such as a rectified linear unit -

(ReLU) that detects features of interest. Finally, a pooling operation is ap-

plied, which modifies the output further, making representations invariant

to small translations.

End-to-end CNNs are trained using supervised learning methods to as-

sociate visual input representations with appropriate labels [122]. After

training, they generalize to unseen images from a given test set [123].

Although ConvNets have existed for a long time, several state-of-the-art

machines for image recognition in vision and learning have been devel-

oped mainly influenced by the ongoing deep learning revolution [121].
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The ImageNet challenge [123], since 2010, has seen a rise in the devel-

opment and improvement of traditional computer vision models for image

recognition to the deployment of state-of-the-art models such as ResNet

deep learning framework for training Deep CNNs. These architectures

have managed to achieve human-level performance in object recognition

[120, 124, 125, 126].

CNNs are characterized by deep convolution layers containing thousands

of connection weights. Their structural design mimics the hierarchical

structure of the visual cortex, containing sequential information encoded in

lower areas flowing to higher levels with representations characterizing the

information encoded about the visual stimuli [5]. Activations induced by

stimulus spread sequentially up the hierarchy, where each layer computes

new representations as encoded in the feature maps. The mechanisms of

feature detection along the visual cortex follow a neurobiological motiva-

tion that stems from the pioneering works of David Hubel and Thorsten

Wiesel [127] [128] who focused on locally sensitive and orientation-

selective neurons of the visual cortex of a cat. Results of the recording

from V1 cells found two types of cells: Simple cells that responded to

bar-like patterns at a particular orientation and position. Complex cells re-

sponded to the bars and had a preferred orientation but had a small degree

of position invariance [5].

Our interest is to use CNNs as computational models, which will enable

us to explore how representations are identified along the ventral streams.

We are interested in the use of these models to harness the power of en-
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coded information to account for association formation as representations

are built up along the hierarchical areas.

2.0.2.2 Structural description of a Standard CNN

A CNN model is composed of successive layers that mimic the hierarchi-

cal organization of the visual cortex. The network employs a linear mathe-

matical operation known as convolution, followed by applying a non-linear

activation function and, lastly, applying a pooling operation on data. These

operations are typical and essential in a standard CNN layer as they enable

information about features to be encoded to characterize representations in

the layer.

Figure 2.1: A classical architecture of a Convolution Neural Network (CNN). Each layer
is composed of convolution and pooling operations.

2.0.2.3 Convolution Operation

Convolution is a mathematical operation applied to two real-valued argu-

ments, say x and t. Suppose we would like to track the location of an

object x at a given time interval t using a laser. To get the reading of

the position at a given time t, we average several measurements such that

the weighted average value gives more weight to the more recent mea-

surement. The weighting function is defined by w(a). Application of
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the average weighted operation at every moment in time results in a new

function given by:

s(t) =

ˆ
x(a)w(t− a)da (2.38)

This operation is known as convolution, and its mathematical denotation is

given as:

s(t) = (x ∗ w)(t) (2.39)

In a CNN network, the function x is referred to as the input, and the second

argument is the kernel, which is sometimes often referred to as a feature

map. These input and kernel functions are multidimensional arrays of data

parameters to be learned [119].

Given a two-dimensional image I , a two-dimensional kernel K is imple-

mented such that the new function (feature map) is given by:

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n) (2.40)

One of the properties of convolution is that it is commutative; therefore, it

can be written as:

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j−n)K(m,n) (2.41)

This implies that we are convolving the image function I, containing pix-

els locations i,j with a kernel function over a range of valid values m

and n. The cross-correlation function is the same as convolution but with-

out flipping the kernel [119]. Whereas both operations achieve similar
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results, many machine learning libraries implement convolution as cross-

correlation [119].

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j+n)K(m,n) (2.42)

Figure 2.2: A 2D convolution without flipping the kernel applied in a 2D Image.

In a CNN, each neuron from the feature map is only connected to a lo-

cal region of the input. It is impractical to connect all neurons as images

are high-dimensional inputs. Suppose there is a (10x10x3) image fully

connected to a single unit with 300 weights. Convolution enables local

connections of learnable filters that are moved across the height and width

of the image to produce an activation map. Simple arrays of neurons in
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the feature maps with similar properties (the same weights) are arranged

spatially such that copies of the same kernel are found in different posi-

tions in space. The filter is smaller than the inputs, and therefore, sparse

interactions are established [119]. The image I is convolved by a filter/k-

ernel w. The output at each pixel is given by the product of the filter to the

appropriate intensity values of the image that produces the output of the

filters at every spatial position and an additional bias term.

y =
∑

i∈3X3

wixi + b (2.43)

Figure 2.3: Simple diagram depicting locally connected high dimensional image (7x7x3)
to a 3x3 filter and a5x5 activation map

The output is controlled by three hyper-parameters, depth, stride and

padding. Depth corresponds to the total number of filters (in this example,

there are three filters convolving each dimension of the image). Each filter

corresponds to the 3 colour channels of the image. Each neuron in the ac-

tivation map is connected to the receptive field (a 3X3 filter in this case).

The connections of the filter map are connected by a matrix of weights

(kernels) that are shared. This reduces the number of parameters of the
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model, and the resulting output becomes equivariant. A feedforward pass

of the image activates the neurons along the depth dimension in the pres-

ence of various oriented shapes, colours or other specified features.

Convolving through the image involves sliding the kernel across the im-

age. This operation may involve techniques such as selecting a given stride

which allows the flexibility to specify how to slide the filter or the kernels

across the image. Convolving also involves applying padding the input

with zeros around the border. Padding enables the preservation of the spa-

tial size of the output such that input and output sizes are the same or

sometimes smaller or larger than the original input.

Figure 2.4: Simple diagram depicting locally connected high dimensional image (7x7x3)
to a 3x3 filter and a5x5 activation map

2.0.2.4 Variants of the Convolution Operation

Valid Convolution

This is the simplest convolution operation. It entails fully overlapping

the kernel with the image such that the output will be slightly smaller than

the original input. The output is given by:
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outputsize = inputsize− kernelsize + 1 (2.44)

Full Convolution

This is the opposite of a valid convolution. Wherever the kernels and the

image overlap by at least one pixel, an output is computed. In practice, this

operation ends up padding the image with either zeros or any other values

at the discretion of the modeller. The activation feature map computed ends

up being larger than the original image. Full convolution can be thought of

as a valid convolution but only with padding. The output size is given by:

outputsize = inputsize + kernelsize + 1 (2.45)

Same Convolution

In this operation, the image is padded with enough zeros so that the feature

map is the same size as the original input. The padding also depends on the

kernel size. For instance, if the kernel size has an even number dimension,

the input image will be padded asymmetrically. One thing to look out

for is the possibility of detecting edges of the input as important features

extracted by the image. The output size is given by:

outputsize = inputsize (2.46)

Strided Convolution

In this operation, the output is computed by skipping some steps instead
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of computing the output at every possible offset, which results in the fea-

ture map becoming smaller than the original input. The ??below shows

a strided convolution with a two step sliding kernel. This operation re-

duces the resolution of the feature maps and consequently, this enhances

high-level features in the hierarchy to be operating at a larger scale. Addi-

tionally, this technique is a cheaper way to compute.

Figure 2.5: Simple diagram depicting a two step Strided convolution operation

Dilated Convolution

The operation skips the value of the receptive field. It results in varying the

features of the images slowly over space by sub-sampling. While increas-

ing the size of the filter is an alternative, it remains an expensive decision

as this results in increased parameters and heightens the computation cost.

Figure 2.6: Simple diagram depicting a dilated convolution operation

2.0.2.5 Pooling Operation

The pooling function replaces the output of the unit at a certain location

with a summary statistic of nearby neighbours [119]. Pooling layers func-

tionally reduce the spatial size of the feature maps. Representations in-
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variant to small translations of the input are extracted. Additionally, the

Pooling function operates independently on the feature sheet of the input

and resizes it spatially, using the MAX operation [129]. It sums up simi-

lar information in the neighbourhood of the receptive field and outputs the

dominant response within this local region.

Zk
l = gp(F

k
l ) (2.47)

Pooling operation is defined as (Zk
l ), which represents the pooled feature-

map of the lth layer for the kth feature map, whereas gp(.) defines the type

of pooling operation. The use of pooling operation helps to extract a com-

bination of features, which are invariant to translational shifts and small

distortions [130, 131] Reduction in the size of feature-map to invariant

feature set not only regulates the complexity of the network but also helps

in increasing the generalization by reducing overfitting [132]. In addition

to max pooling, the pooling units can also perform other functions, such as

average pooling, which is viewed as adding an infinitely strong prior such

that the function the layer learns is invariant to small translations [119].

Figure 2.7: Simple diagram depicting a max pool operation
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2.0.2.6 Activation Function

The activation function serves as a decision function and helps learning

about intricate patterns. This function is applied after convolution for a

convolved feature map and it is defined as:

T k
l = ga(F

k
l ) (2.48)

The output of a convolution (F k
l ) is passed through an activation func-

tion ga(.) that adds non-linearity and returns a transformed output T k
l

for the lth layer [132]. Different activation functions such as sigmoid,

tanh, ReLU, and variants of ReLU, are used to apply a non-linear com-

bination of features [133, 134, 135, 136] However, ReLU and its variants

are preferred as they help in overcoming the vanishing gradient problem

[137, 132]. One of the recent activation functions MISH: Self Regularized

Non-Monotonic Neural Activation Function, has been shown to perform

better than ReLU[138]
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The success of CNNs, therefore can attributed to these structural designs

that apply three forms of constraints [139]

• Feature Extraction

Units are organised into planes, also known as Feature Maps. Each

unit takes inputs from a small sub-region of the image - local re-

ceptive field. These units detect the same patterns but at different

locations in the input image. Once the features have been extracted,

location becomes less important but more importantly, there is preser-

vation of position relative to other features.

• Feature Mapping

There are multiple feature maps, each having its own set of weights

and bias parameters. They are all constrained to share the same synap-

tic weights. As a result, shift invariance is incorporated into the op-

eration of the network through the use of convolution followed by a

sigmoidal non-linearity activation function.

• Subsampling

The outputs of the Convolution units form the inputs of the pooling

layer. A plane of units is formed in this layer. Each unit takes inputs

from a receptive field that performs an operation such as local aver-

aging of those inputs. These are multiplied by adaptive weights and

the addition of an adaptive bias parameter and then transformed by

the application of a sigmoidal non-linearity activation function. This

operation reduces the sensitivity of the feature map outputs to shifts
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and other forms of distortion.

2.0.2.7 CNN’s Variants

CNNs date back to the late 80’s when LeCuN [118] proposed a 2D su-

pervised CNN model that performed tasks such as reading handwritten

digits and zip codes [140]. Different improvements of the CNN archi-

tecture have been deployed to date that can perform tasks such as image

classification and segmentation, object detection, video processing, natu-

ral language processing, and speech recognition. The improved capability

and performance in these models can be attributed to parameter optimiza-

tion, structural reformulation, application of different regularization tech-

niques etc [132]. Most of the improvements made are due to a restruc-

turing of the processing units and the innovation of new blocks(layers).

The attributes of some of these modifications are categorized into seven

categories [132], namely, spatial exploitation, depth, multi-path, width,

feature-map exploitation, channel boosting, and attention-based CNNs.

We will review these architectures briefly while stating examples of the

CNNs architectures that have been developed.

2.0.2.8 Spatial Exploitation based CNNs

Parameters and hyper-parameters in a CNN such as weights, biases, activa-

tion function, learning rate, filter size, strides, padding, number of process-

ing units, and number of layers characterize the CNN model [141, 142].

These models focus on exploiting the locality of connectivity of the pix-

els in an image. Different filter sizes have been explored to improve the

performance and the learning of the network. Research has suggested that

74



adjustment of filters can improve the granularity of detail and information

detected by the filterers [132]. Some of the architectures under this cat-

egory are LeNet [139, 143], which displayed state-of-the-art performance

on hand-digit recognition tasks. The architecture classified digits without

being affected by small distortions, rotation, and variation of position and

scale.

AlexNet [120] displayed groundbreaking results for image classification

and recognition tasks. This model improved the learning capacity of the

CNN by making it deeper and by applying several parameter optimisation

strategies [120]. The hardware limitations experienced in the early 2000s

were never experienced with this architecture. It was trained using two

parallel GPUs (NVIDIA GTX 580) to overcome its shortcomings.

ZfNet, also known as a multilayer Deconvolutional Neural Network (De-

convNet). It was proposed in 2013 [144] to visualize the network perfor-

mance quantitatively with the aim of monitoring the performance of the

CNN by interpreting the neuron’s activation. The DeconvNet works in the

same manner as the forward pass CNN but they reverse the order of con-

volution and pooling operation. This reverse mapping projects the output

of the convolution layer back to visual image patterns, consequently pro-

viding the neuron-level interpretation of the internal feature representation

learned at each layer [145, 146]. Feature visualization was also used for

the identification of design shortcomings and for the timely adjustment of

parameters.

VGG was modular in layer patterns [124] and designed with deeper layers
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than AlexNet and ZfNet. It was used to simulate the relation of depth with

the representational capacity of the network [144, 120] VGG used small

filters, and it was discovered that the use of small filters added a benefit

of low computational complexity by reducing the number of parameters.

These findings set a new trend in research to work with smaller size filters

in CNN [132]

GoogleNet [125] achieved a high accuracy with a reduced computational

cost. An inception block was introduced whereby multi-scale convolu-

tion transformations were incorporated and Split convolutions applied, fol-

lowed by passing a non-linearity function and then application of the pool-

ing operation. After which, merging was applied. This block convolves

filters of different sizes to capture spatial information at different scales.

The exploitation of the idea of splitting, transforming, and merging by

GoogleNet, helped in addressing a problem related to learning diverse

types of variations present in the same category of images having different

resolutions. One of the downsides of this architecture was a representation

bottleneck that drastically reduced the feature space in the next layer, and

thus it led to loss of useful information.

2.0.2.9 Depth based CNNs

These architectures were developed with the assumption that an increase

in the depth of the network can better approximate the target function with

a number of nonlinear mappings and more enriched feature hierarchies

[147]. Although the increase in the depth of the network results in efficient

function representations, it comes at the cost of exponentially many neu-
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rons. However, it was suggested that deeper networks can maintain the ex-

pressive power of the network at a reduced cost [148, 132, 149, 150, 151]

Architectural networks such as Inception and VGG, which recorded the

best performance, strengthened the idea that the depth is an essential di-

mension in regulating learning capacity of the networks [124, 125, 152,

153] ResNet [126] also revolutionized the CNN architectural innovation

by introducing residual learning and devised an efficient methodology for

the training of deep networks. Inception-V3, V4 and Inception-ResNet are

improvements of Inception-V1 and V2. Inception-V3 was developed with

the idea of reducing the computational cost without affecting generaliza-

tion. Large size filters (5x5 and 7x7) were replaced with small and asym-

metric filters(1x7 and 1x5) and used 1x1 convolution as a bottleneck before

the large filters. For Inception-ResNet architecture, residual learning and

inception block were combined [126, 152, 153]. Another implementation

was Inception-V4 with residual connections (Inception-ResNet). This ar-

chitecture had the same generalization power as plain InceptionV4 but with

increased depth and width. It was observed that Inception-ResNet con-

verges more quickly than Inception-V4, which depicts that training with

residual connections accelerates the training of Inception networks signif-

icantly.

2.0.2.10 Multi-Path based CNN

CNNs suffer from vanishing gradients or explosions and performance degra-

dation. These challenges are not caused by overfitting. Instead, they are

caused by an increase in the depth of the network [137, 154]. Although
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increasing the depth of the network results in an improvement in perfor-

mance, the downside is faced while training the network. In deep net-

works, the large number of layers may result in the backpropagation er-

ror computing small gradient values at lower layers. Multi-path networks

were proposed to train Deep networks, [155, 156] using multiple paths

or shortcut connections that systematically connect one layer to another

by skipping some intermediate layers to allow the specialized flow of in-

formation across the layers [157]. Cross-layer connectivity partitions the

network into several blocks. These paths are an alternative technique for

solving the vanishing gradient problem by making gradients accessible to

lower layers. These architectures make use of different types of connec-

tions, such as zero-padded, projection-based, dropout, skip connections,

and 1x1 connections. Architectures that have been designed are highway

networks, ResNets[126] and DenseNets [155, 126]

2.0.2.11 Width based Multi-Connection CNNs

As much as the depth of the network is important for efficient representa-

tions of complex problems, the width of the network is equally important

[158]. Drawn from the use of parallel multiple processing units of the

multilayer perceptron, it has been shown that the width is an essential pa-

rameter in defining principles of learning [132]. Wide ResNet [159] is

implemented to fix a major drawback of feature reuse in deep residual net-

works where some feature transformations or blocks may contribute very

little to learning. Wide ResNet increases the width by introducing an ad-

ditional factor which controls the width of the network. Widening of the
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layers provides a more effective way of performance improvement rather

than making the residual networks deep. Architectures such as Pyramid-

Net [160] increase the width gradually per residual unit. This strategy

enables pyramidal Net to cover all possible spatial locations instead of

maintaining the same spatial dimension within each residual block until

down-sampling occurs. Another architecture Xception is another exam-

ple of a width based architecture. It is considered as an extreme Inception

architecture, which exploits the idea of depth wise separable convolution

[161]. The original inception block are modified in by widening and re-

placing the different spatial dimensions (for example a 1x1, 5x5, 3x3) is

replaced by with a single dimension (3x3) followed by a 1x1 convolution

to regulate computational complexity.

2.0.2.12 Feature-Map (ChannelFMap) Exploitation based CNNs

These CNNs, feature selection plays a vital role in determining the per-

formance of classification, segmentation, and detection tasks. Some of the

feature-maps impart little or no role towards object discrimination [162].

Enormous feature sets may create an effect of noise and thus lead to over-

fitting of the network. These networks emphasise on selection of feature-

maps to improve the generalization of the network. Architectures such as

Squeeze and Excitation Network [162] exist where a new layer called SE-

block suppresses the less important feature-maps but assigns a high weight

to the class specifying feature-maps. Competitive Squeeze and Excitation

Networks is a different form of architecture using the idea of SE block to

improve the learning of deep residual networks.
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2.0.2.13 Channel-Input Exploitation based CNNs

Filters are applied to extract different levels of information for a single type

of image [163, 164]. Since the model relies on input representation, these

CNNs rely on the concept of channel boosting (input channel dimension)

to boost the representation of the network [165]. The architecture boosts

the number of input channels in order to improve the representational ca-

pacity of the network. Channel boosting is performed by artificially cre-

ating extra channels (known as auxiliary channels) through auxiliary deep

generative models and then exploiting it through the deep discriminative

models [132]

2.0.2.14 Attention based CNNs

CNNs extract representations that are encoded with different knowledge at

different levels of abstraction. In addition to learning about multiple hi-

erarchies of abstractions, focusing on features relevant to the context also

plays a significant role in image localization and recognition [132] A prac-

tical application of attention based CNNs is the recognition of objects from

cluttered backgrounds and complex scenes. Architectures such as resid-

ual attention neural network [166] have improved feature representation

of the network for learning features. The architecture adopts a bottom-up,

top-down learning strategy. The bottom-up feed-forward structure extracts

low-resolution feature-maps with strong semantic information. Whereas

top-down architecture extracts dense features to make an inference of each

pixel [132]. An additional architecture is the Convolutional Block Atten-

tion Module [166, 162]. This architecture is simple in design and similar
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to Squeeze and Excitation-Network, in which the spatial location of the

object has a vital role in object detection. Concurrent Spatial and Channel

Excitation Mechanism [167] incorporates spatial information in combina-

tion with feature-map (channel) information in segmentation tasks.
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Chapter 3

Methods

We built the Self Organising Associative Recurrent Network Figure 3.2

that simulates the formation of complex representation structures using

associative learning mechanisms. The design pattern that was settled on

is summarized in the UML (Unified Modeling Language) diagram below

Figure 3.1. This diagram details the overall structure of the modules im-

plemented, which are described in more detail in the Results section since

building this very complex model is the main contribution of the thesis.

Difficult trade-off decisions were made to realistically implement the

model using standard programming best practices that ensured standard

boilerplate code was used to avoid code replication and allow easy track-

ing of changes.

We used Python as the standard development language and settled on Vi-

sual Studio Code as our integrated development environment (IDE). This

choice was based on the ease of the language and tools that I was comfort-

able and familiar with, as well as consideration of the wider community

of developers who might want to familiarize themselves with this model.

The code for this implementation can be found here. The files inside this

package hold 17 modules with 5016 lines of code.
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Figure 3.1: Full Architecture UML
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Figure 3.2: Full Architecture - SOARN
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The file registry contains modules offering different functionalities. We

provide a summary of what each module is capable of, noting that there

is much more functionality that is abstracted by the descriptions we have

provided, and in-depth operational details are described in the next chapter.

3.0.1 Conv

This module has been designed to perform convolution operations on

input arrays. It includes methods for initializing the layer, calculating out-

put dimensions, padding arrays, and performing forward passes. The class

also has properties for accessing the layer’s weights and data.

3.0.2 Phase

This module has been designed to initialize different parameters for a

simulation phase, including the stimuli sequence, group, timing, and con-

text configurations. It also runs the simulation by assigning results, setting

parameters for stimuli elements, and executing the algorithm for the given

sequence.

3.0.3 Group

This module is designed to initialize the group with a name, number of

phases, and model, create and clear maps, add entries to maps, and retrieve

entries from maps. It also has functions for retrieving the total maximum

duration and the group’s name.

85



3.0.4 Raw stim

This module has been designed to process stimuli by loading raw data,

running the CNN model, and creating filter maps.

3.0.5 Sequential

This module is designed as a neural network architecture with 5 convo-

lutional layers and 4 max pooling layers. The forward pass of this class

involves passing the input through the layers and returning the output.

3.0.6 Trial

This module is used to create and manipulate trial objects. These objects

contain trial strings, cues, and trial numbers, and can be copied, modified,

and reinforced. This class also includes methods for getting and setting

cues, trial strings, and trial numbers. This is important for data parsing.

3.0.7 Base

This module is designed as an abstract base class that defines the com-

mon properties and methods of neural network layers. It includes methods

for forward propagation, setting weights, and retrieving weights. The class

also distinguishes between trainable and non-trainable layers.

3.0.8 Config

This module contains methods to check if a given name is a context or a

US. The CS class has methods to initialize the values of its instances and

get their names, symbols, onset, offset, alpha, and salience.
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3.0.9 Element

This module is designed to be initialized with various attributes such as

index, parent, group, name, std, trials, and total stimuli. It also sets up

various keys and maps for the class instance.

3.0.10 ITI

The ITI class defines a waiting period of a specified duration, while the

Timing Configuration class creates timing configurations for trials using

cues and sets the maximum offset value for all cues in a trial. The ITI

Config class sets the minimum waiting period.

3.0.11 Model

The SOARN model class includes methods for initializing and setting

various parameters related to alpha rates, context, cues, and groups. These

methods allow for customization and fine-tuning of the SOARN algorithm.

3.0.12 Pooling

This module performs down-sampling by dividing the input into rectan-

gular pooling regions and outputting the maximum value of each region.

The layer takes an input array and applies the max-pooling operation to it,

returning an output array with reduced dimensions.

3.0.13 Stim

The Stimulus class is initialized with various attributes such as group,

symbol, trials, total stimuli, and configurations. It contains methods for
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initializing a stimulus with its name, number of trials, cue names, rein-

forcement status, and raw data. It also has methods for adding parts to

the stimulus, checking if it contains a certain part or cue, getting its name,

parts, cue names, and number of trials, and setting its parts.

3.0.14 Utils

This module contains all the helper functions that make running the

model much easier. These include preparing and loading image data, in-

cluding resizing and converting to RGB format. There is also functionality

for saving images as a pickle file that is later used in training.

We implement these module packages together with functions that run the

operations of the computations of the model. We aim to reduce redundancy

in code implementation by making use of these classes to avoid code rep-

etition and errors. Many packages have been used to support these imple-

mentations, the main one being the NumPy array. We have avoided the

use of deep learning frameworks such as TensorFlow or PyTorch, as these

require preprocessing data inputs to a certain format and using a large cor-

pus of training data. That, though, is not the aim of this implementation;

hence, the reason we settled for NumPy.

Figure 3.2 provides a snapshot of the model and data pipeline we devel-

oped, but the details of the implementations are discussed in-depth in the

next chapter.
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Chapter 4

Computational Model Design and

Implementation

4.1 Introduction

We develop a real-time associative learning computational model that

simulates the learning of visual stimuli representations using associative

mechanisms. The model is implemented using an elemental connectionist

approach, in which the activity of elements simulates the activation process

of neurons that drive learning when a stimulus is experienced.

Elements are set up as both predictors and outcomes, enabling learning

to be elemental. An error correction learning framework has been imple-

mented using a dynamic asymptote that measures the distance between two

concurrent active elements and adapts the sum of the predicted values of

the predicting element by reducing the error factor.

4.2 Architecture

The implementation of SOARN required solving several technical chal-

lenges. The model processes 56×56×4 receptive fields, resulting in 12,544

elements per stimulus. Managing the computational load while maintain-
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Figure 4.1: SOARN architecture components and data flow. The model processes visual
stimuli through convolutional layers (Conv) and pooling layers (Pool) to extract feature
maps. These feed into the associative learning network where elements form bidirec-
tional connections. Activation functions include direct activation and associative activa-
tion, with overall activation determined by the maximum of both. The legend shows the
symbols used throughout the architecture diagrams.

ing real-time performance required careful design of the activation and

learning mechanisms. The model uses several configurable parameters

that control learning dynamics and temporal processing. Default param-

eter values and their descriptions are provided in Appendix C.2.

4.2.1 Forward Propagation

We develop an input layer that reads an image of shape (H,W,C),

where H is the height of the image, W is the width and C is the channel

of the image. The three-dimensional image is processed by the convolution

layer which processes data by employing the convolution operation.
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Figure 4.2: Complete SOARN architecture showing the flow from visual input to associa-
tive learning. Input images are processed through multiple convolutional layers (Conv)
and pooling layers (Pool) to extract hierarchical features. The Time Layer distributes acti-
vation across temporal elements, which then feed into the associative network. Elements
are fully connected both within and between layers, forming bidirectional associations.
The Predicted Layers show the learned representations for each stimulus. Mathematical
operations shown include convolution (equation boxes), element-wise multiplication, and
summation across connections.
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Figure 4.3: RGB channel structure of input images. Color images consist of three chan-
nels (Red, Green, Blue) with dimensions Height × Width × 3. Each channel contains the
intensity values for its respective color component.

4.2.2 Convolutional Layer Computation

The convolution operation transforms input images into feature maps.

The kernel slides over the whole input and on each slide, element-wise

multiplication is performed followed by a summation of all values to get a

single value. These output maps are stacked together to form the channels

of the new image.

4.2.2.1 CNN Processing

The CNN architecture consists of five convolutional layers and four pool-

ing layers. This five-layer design was chosen to match the hierarchical pro-

cessing levels in biological vision: edge detection, texture, shape, object

parts, and full objects. Each layer progressively extracts more complex

features while maintaining computational efficiency. Each convolutional
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layer uses 4 filters with 3×3 kernels. This minimal configuration captures

color plus two additional feature detectors.

Figure 4.4: Convolution operation showing kernel sliding across input. A 3×3 kernel
performs element-wise multiplication with the input image at each position, followed by
summation to produce a single output value. The kernel slides across the entire input with
specified stride to generate the complete output feature map.
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Figure 4.5: Element-wise multiplication in convolution operation. Each element of the
3×3 kernel is multiplied with the corresponding element in the input image patch. The
products are then summed to produce a single output value (99 + 145 = 244 in this exam-
ple).

The implemented convolution operation is represented by

aikbil =


a0k ∗ b0l + a1k ∗ b1l∑

i aikbil

aT [k].bT [l]

(4.1)

where i is the index of the matrix and k and l are the free indices. (See

Appendix A.1 for detailed implementation code and parameter specifica-

tions.)

4.2.3 Pooling Layer Computation

The pooling layer reduces the dimensionality (H ×W ) of the image,

but not the number of channels. The operation applied is max pooling,

with different strides applied on the different layers of the model.
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Figure 4.6: Max pooling operation with stride 1. A 2×2 pooling window selects the
maximum value from each region of the input (5×5) to produce the output (4×4). This
operation reduces spatial dimensions while preserving the most prominent features.

The operation is executed for the entire image, resulting in a reduced

feature map that contains the defined maximum values of the kernel opera-

tion. (Complete pooling implementation details are provided in Appendix

A.2.)
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4.3 Stimulus Representation and Activation

The reservoir of feature maps at the end of the pooling layer are trans-

formed into a matrix of units, each belonging to the specific stimulus cat-

egories (CS or outcome). The unit’s basic function is to compute the acti-

vation based on the number of inputs connected to it.

Figure 4.7: Single element as a computational unit. Each element receives multiple
weighted inputs (X1...Xn with weights W1...Wn), computes their weighted sum, and
applies an activation function f(x) to produce output. Elements serve as both predictors
and outcomes in the associative network.

The predictive computation of this element takes the form of a sum of the

multiplication of all the net inputs X1...Xn, and their respective weights

W1...Wn:

y =
n∑

i=1

wi · xi (4.2)

4.3.1 Activation Overview

For each time step of the stimulus duration, there are elements ei repre-

senting the presence of the stimulus at that point. Each stimulus contains

a pre-set duration T that indicates an onset time ton, offset time toff , and
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inter-trial interval iti before the next trial onset.

Figure 4.8: Stimulus experience timeline showing temporal parameters. Each stimulus
has an onset time, offset time, and total duration. The inter-trial interval separates con-
secutive trial presentations. Elements are activated during the stimulus duration.

These elements are activated at each time step by a modified normal

distribution activation function:

At
i = exp

(
−
(t− i)2k

2σ2
i

)
× I (4.3)

where σ2
i = i·δ2, ensuring that elements with higher indices have broader

temporal receptive fields (see Appendix A.3 for activation profiles).

4.3.1.1 Direct Activation Operation

We represent the life cycle of each sub-element of the constituent cluster

using a Markov property, where each element is represented by two states:

an inactive state I and an active state A.

ei =


S1 = I inactive

S2 = A active
(4.4)
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From the Markov chain property, each element builds its own transition

matrix populated by probability values of moving from one state to another

at every time step.

Figure 4.9: Transition matrix for element state changes. Each element can be in either
an inactive state (I) or active state (A). The matrix shows transition probabilities between
states, where PI represents the probability of remaining inactive (1 - PA) and PA repre-
sents the probability of transitioning to or remaining in the active state. These probabilities
govern the stochastic activation of sub-elements during stimulus presentation.

4.3.1.2 Associative Activation

Model elements are connected by weight values Wij to one another.

Each element can retrieve activity from elements connected to it when

serving as a predictor. The associative activation is:

AAt
i =

∑
j

At
j ×Wji (4.5)

The overall activity of the element compares the direct and associative ac-

tivities:

OAt
i = max(At

i, AAt
i) (4.6)
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4.4 Network

The network object is an engine that applies all the operations we have

designed to learn experiments.The full network contains over 150,000 mod-

ifiable connections for a typical three-stimulus experiment. To handle this

scale, we implemented a sparse activation scheme where only elements

with OAt
i > 0.01 participate in weight updates, reducing the computa-

tion cost without affecting learning outcomes. The complete network ob-

ject structure and implementation details are described in Appendix C.3.

Figure 4.10: Input activity patterns across time showing element activation matrices. Each
row represents a time step with activity values for CS and US elements. The matrices
display binary activation patterns (0 or 1) for different stimulus combinations across the
trial duration, illustrating how stimuli are represented temporally in the network.
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Figure 4.11: Network structure showing bidirectional connectivity between layers. In-
put layers process time-tagged stimuli which connect to element layers through weighted
connections. Each element receives both direct activation (from sensory input) and asso-
ciative activation (from connected elements). The network computes overall activation as
the maximum of direct and associative inputs, with predicted layers showing the learned
representations.
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4.4.1 Group and Phase Objects

The group object performs dynamic tasks that enable the model to per-

form several operations based on the specified tests and experiments. The

phase object on the other hand, is central to running simulations, setting up

simulation parameters and trial sequences.

Figure 4.12: Group object architecture and functionality. The group object manages
experimental groups through initialization methods that set up group name, number of
phases, and model parameters. It maintains a cue storage database and phase list, with
methods to add phases by parsing stimulus sequences, creating trial strings, adding cues,
and setting timings for each trial. The object provides access to time functionality and
appends phases to enable flexible experimental design across multiple training phases.

Both Group and phase objects implement a flexible experimental proto-

col system. A single group can run multiple phases with different stimulus

configurations including handling trial randomization and timing. For in-

stance, a blocking experiment with 100 A+ trials followed by 100 AB+

trials is specified as: group.add_phase(’100A+/100AB+’) The

parser automatically generates the trial sequence and timing parameters

(see Appendix C.3 for parser implementation).
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Figure 4.13: Phase object structure and workflow. The phase object coordinates the sim-
ulation process, managing the flow from trial configuration through stimulus timing to re-
sult storage. It initializes simulation parameters, updates cues with dynamic asymptotes,
and executes the computation algorithm for stimulus simulations. The object interfaces
with timing configurations, trial objects, and the element update system to orchestrate the
complete learning process across specified trial sequences.

4.5 Learning Mechanism

4.5.1 Dynamic Asymptote

The dynamic asymptote of learning, λ, measures the degree to which

elements vary in activity:

λ =

(
Amax −

(OAt
p − OAt

o)
2

2

)
×
(
ν · OAt

o + (1− ν) · OAt
p

)
(4.7)
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Figure 4.14: Dynamic asymptote lookup table showing activity-dependent learning ceil-
ing values. The asymptote varies as a function of predictor activity (rows) and outcome
activity (columns), ranging from 0.0 to 1.0. Higher values (red) occur when predictor and
outcome activities are similar, while lower values (blue) occur when activities differ. This
mechanism ensures that learning is strongest when elements have comparable activation
levels, implementing the principle that co-active elements form stronger associations.

This formulation solves a key limitation of static learning rates. When

OAt
p = OAt

o, λ reaches its maximum, promoting learning between

co-active elements. Conversely, when activities differ maximally, λ ap-

proaches zero, preventing spurious associations. Implementing the lookup

table 4.14 allows efficient computation during the thousands of weight up-

dates per trial (see Appendix A.4 for computational complexity analysis).
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4.5.2 Weight Update

Learning involves changing weight components through error correc-

tion:

W t+1
ij = ∆W t

ij + W t
ij (4.8)

where:

∆W t
ij = (λt

j − V t
j )× (λt

i − V t
i )× Si × Sj × b (4.9)

The backward discount value b only applies if the predictor occurs after

the outcome in time.

4.5.3 Response

At the end of a trial, the model response is:

RT = max(V T
→US, V

T
→CS) (4.10)

where:

V T
→A =

1

FM(m×n)

∑
∀FMi

f

(∑
i

wixi

)
(4.11)

4.6 Summary

This implementation successfully processes 256×256 RGB images through

associative learning, a significant advancement over traditional models lim-

ited to abstract representations. The model runs a 200-trial experiment in
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approximately 30-45 minutes on standard hardware, extracting both asso-

ciative measures (V values) and novel receptive field visualizations. The

modular architecture allows us to test new learning rules by modifying

only the weight update function (4.9), while the visualization capabilities

provide insight into how associations modify perceptual representations.
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Chapter 5

Model Experiments and Results

5.1 Introduction to Experiments

Please note that in the following experiments, the notation + is used to

match the experimental designs conducted in the laboratory. However, in

all subsequent experiments, the outcome is a neutral stimulus. The objec-

tive is not to measure the change in response due to the formation of a

predictor-outcome association but to assess the role of the associative pro-

cess in the formation of more complex compound representations between

two or more constituents. The analysis, however, is presented in predictive

terms.

5.2 Evaluation Framework for Associative Learning

5.2.1 Challenges in Evaluating Associative Learning Models

The evaluation of associative learning models differs fundamentally from

supervised learning where performance can be measured against labelled

data. Unlike supervised learning with its predefined correct outputs, asso-

ciative learning models must demonstrate their validity by reproducing a

range of well-established phenomena observed in animal learning studies.
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The field has evolved significantly from early verbal theories to math-

ematical models that make precise, testable predictions. For example,

temporal difference learning models now link behavioral phenomena such

as blocking to specific neural mechanisms dopamine prediction errors,

while models like those reviewed by [6] provide unified mathematical for-

malisms to compare different theoretical approaches.

One fundamental challenge stems from the theoretical divide within the

field. As highlighted by Shanks [168], there is an ongoing tension between

association-based theories that employ concepts such as excitation and in-

hibition, and cognitive theories that invoke hypothesis testing and explicit

reasoning about causal relationships. This divide complicates the evalua-

tion framework approach because the same phenomena can be explained

through different theoretical mechanisms.

Furthermore, even within associative frameworks, models differ in their

core assumptions. Some focus on changes in stimulus processing, that

is, CS associability, while others emphasize prediction error mechanisms,

that is, US processing [60]. This diversity of approaches adds a layer of

complexity to model comparison and evaluation.

5.2.2 Our Evaluation Approach

Given these challenges, we evaluate our model using multiple criteria.

We test whether the model reproduces fundamental phenomena from the

conditioning literature: acquisition, extinction, blocking [18], conditioned

inhibition [12, 17], and negative patterning. For each phenomenon, we ex-
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amine both the qualitative pattern and the quantitative trajectory of learn-

ing.

Through visualization of receptive fields, we provide direct evidence of

how associative processes modify perceptual representations. This capa-

bility allows us to evaluate not only whether the model produces correct

outputs but also the mechanisms through which these outputs are gener-

ated.

Critically, all phenomena are tested using fixed parameter set. This

means that the same learning rate, salience values, and model parameters

are used in all experiments, from simple acquisition to complex negative

pattern discriminations. This constraint ensures that the model’s perfor-

mance reflects theoretical coherence rather than adjusting parameters after

seeing results to make each phenomenon work.

5.2.3 Metrics Used in This Work

Following the Rescorla-Wagner [11], our primary metric is associative

strength (V), representing the predictive value each stimulus acquires through

learning. We track V values across trials to generate learning curves that

reveal the pattern of the learning process.

Beyond these traditional measures, our model uniquely provides access

to internal representations through receptive field visualization. Although

conventional models report that a stimulus has acquired a certain V value,

our approach reveals how the stimulus representation itself has changed
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providing visual insight into the mechanisms underlying the associative

phenomena.

The combination of associative strength values and a visualization of

the receptive fields allows for a more complete evaluation of the model’s

performance. We can assess not only whether the model reproduces known

phenomena through appropriate V values but also whether it does so through

biologically plausible mechanisms that align with our understanding of

perceptual and learning systems.

5.2.4 What are Receptive Fields?

In our model, receptive fields are the visual feature patterns extracted

by the CNN layers. Each receptive field represents what a particular unit

in the network "sees" or responds to when processing an image. These

are visualized as the 56×56 feature maps output by our CNN architecture,

where different patterns and intensities indicate which visual features have

been detected and learned.

5.2.5 Extracting and Visualizing Receptive Fields

Our model extracts receptive fields from the final pooling layer of the

CNN, producing feature maps of size (5, 56, 56) where:

• 5 represents the number of feature maps

• 56×56 represents the spatial resolution

These receptive fields capture what the network sees when presented

with a stimulus. They represent the learned internal representation of the
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visual input after processing through the hierarchical CNN layers.

Figure 5.1: Example of CNN receptive fields before associative learning. This 4×5 grid
shows 20 different receptive fields (each 56×56 pixels) extracted from the CNN’s final
pooling layer. The colour patterns (purple, green, yellow) represent different feature ac-
tivations. Notice the clear geometric patterns - these are the visual features the CNN
extracts from a triangle stimulus before any learning occurs.

The transformation between these two states reveals how associative

learning shapes perception. Before learning (Figure 5.1), the receptive

fields show clear triangular patterns. After learning (Figure 5.2), circu-

lar features from the outcome have been incorporated, creating a complex

representation structure.
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Figure 5.2: Receptive fields after associative learning shown across different time points
within a trial. Each column represents a different time step, demonstrating the temporal
evolution of the representation. The progression from left to right shows how the features
change over the course of stimulus presentation, with circular patterns (bright yellow/-
green regions) becoming more prominent in later time steps. This reveals how associative
learning modifies perceptual representations during stimulus processing.
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5.3 Acquisition

5.3.1 Experimental Design

The experimental design we use in this model tests whether the simulta-

neous pairing of two stimuli, a CS(A) and an outcome + would endow

the former with a predictive capability of the latter, incorporating its char-

acteristic features. In other words, whether the model would allow the ac-

quisition of a relationship CS — + that would modify the input predictor

image into a new representation that incorporates some of the features of

the predicted outcome. Training in the experiment involved a single phase

of 100 trials, in which stimulus A (a display of four triangles of different

colours arranged in a square shape) was presented, followed by an outcome

(a large empty circle). Following training, we tested how much of the CS

was able to predict the outcome, reproducing its image in a compound with

the CS. This was examined by generating a receptive field map.

Table 5.1 is the CNN layer setup. The two images, A and +, were passed

through the convolution and pooling layers, followed by the running of

the trials specified in Table 5.2. The base image size is (256*256), and

the output size after CNN is (4, 56, 56), where 4 is the number of feature

maps.

5.3.2 Results and Evaluation

The acquisition test measured the level of prediction that image A con-

veyed of the outcome features. Similarly to the Rescorla-Wagner model,

112



CNN set-up
Layers Filters Kernel Size Padding Stride
Conv2D 4 3x3 ’valid’ 1
Conv2D 4 3x3 ’valid’ 1
POOLmax 4 4x4 2
Conv2D 4 3x3 ’valid’ 1
Conv2D 4 3x3 ’valid’ 1
Conv2D 4 3x3 ’valid’ 1
POOLmax 4 4x4 2
POOLmax 4 4x4 1
POOLmax 4 4x4 1

Table 5.1: Convolution and pooling stack used in all experiments. This architecture pro-
gressively reduces spatial dimensions while maintaining 4 feature channels throughout.

Group Phase 1 Test
1 100A+ A?

Table 5.2: Acquisition Design. 100 trials of stimulus A paired with outcome +, followed
by test of A alone.

[11], in our model, learning is driven by the discrepancy between the ac-

tual outcome and its prediction. While a discrepancy exists between the

predicted value and the outcome, learning takes place. As the prediction

value increases, learning decreases. The acquisition pattern does follow a

negative accelerated curve semi-asymptotic around the maximal prediction

value.

Figure 5.3 shows the growth of the associative strength over the num-

ber of trials. In the early conditioning trials, the outcome prediction error

is highest, generating larger jumps in prediction compared to subsequent

trials in which the size of the increments decreases as the outcome be-

comes predictable and the learning approaches an asymptote. This pattern

validates that our model implements error-driven learning consistent with

established associative learning principles.
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Figure 5.3: Acquisition learning curve showing growth of associative strength (V) over
100 trials. The curve demonstrates classic negatively accelerated learning, reaching
asymptote around V=0.93. Early trials show rapid learning due to large prediction er-
rors, while later trials show minimal change as the outcome becomes well-predicted. The
red-dashed line indicates the asymptotic value approached by the model.
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5.3.3 Receptive Field Analysis

Figure 5.4: Receptive field analysis for acquisition. Panel A shows the original CS (four
colored triangles) and outcome (circle) stimuli. Panel B displays the receptive fields ex-
tracted by CNN before training, showing clear triangular patterns for the CS and minimal
activation for the outcome. Panel C shows the critical result: after 100 acquisition tri-
als, the predicted receptive field demonstrates clear integration of features. The temporal
progression (columns 1-4) reveals how circular features from the outcome become incor-
porated into the CS representation, with strongest integration visible in later time points
(rightmost columns).

Figure 5.4 panel C shows the receptive field maps for the predicted fea-

ture of the predicting stimulus A and the outcome extracted at the begin-

ning of the conditioning training by CNN, characterizing the representation

of individual stimuli.

To interpret these receptive fields, we examine several key aspects. After

learning, circular patterns emerge in the CS receptive fields. Panel B shows

the CS fields with only triangular features matching the input stimulus.

However, Panel C reveals that after 100 acquisition trials, circular features

from the outcome have been integrated into the CS representation. This
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integration is most visible in the later time points, where bright yellow-

green circular patterns appear.

The receptive fields show neural activation patterns during a test trial

in which the CS is presented alone without US to probe the learned rep-

resentations. The visualization captures four time points during this test

presentation. Early in the trial (leftmost column), dark purple activation

indicates minimal feature detection. As the CS presentation continues, ac-

tivation increases and circular features become more prominent, showing

that the learned associative representation unfolds dynamically during CS

processing even in the absence of the US.

Despite incorporating outcome features, the CS representation maintains

aspects of its original triangular structure, visible as diagonal patterns in

the heatmaps. This shows that associative learning modifies rather than

replaces existing representations.

A comparative visual inspection of the receptive field maps of the initial

inputs with the receptive field in Panel C shows a change in the repre-

sentation of A. After effective conditioning, the receptive field obtained

following the presentation of A now incorporates some elements of the

outcome, suggesting the formation of a more complex stimulus represen-

tation resulting from A predicting the outcome.

Delayed Conditioning Time was also considered in the acquisition exper-

iments. The same design experiment in Table 5.2 was carried out, but

inter-stimulus interval time was altered to investigate the sensitivity of con-
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ditioning to time. We presented the CS and the outcome in a delayed pro-

cedure where A had a duration of experience that was 4 seconds long with

an onset of 0 and an offset of 4. On the other hand, the + had a duration

of 2 seconds with exposure starting at 2 and an offset of 4. The CS still

signaled the US but for a shorter exposure time.

Figure 5.5: Delayed conditioning results. Panel A shows simultaneous conditioning
where CS and outcome are presented together at the same time, achieving V ∼ 0.93.
The timeline bars at bottom show how both stimuli are presented for the full duration (0-4
seconds), completely overlapping in time. Panel B shows delayed conditioning where the
CS (top bar) is presented for the full 4 seconds while the outcome (bottom bar) appears
only during the last 2 seconds of the CS presentation (from 2-4 seconds). This tempo-
ral arrangement results in reduced associative strength (V ∼ 0.43), demonstrating the
model’s sensitivity to temporal parameters. The difference in learning curves highlights
how temporal contiguity affects association formation.

The results Figure 5.5 panel B show that there is still conditioning, al-

though the level of conditioning decreases when the stimuli are not pre-

sented simultaneously and the exposure time of the outcome is reduced.

The learning curve in delayed conditioning shows a similar negatively ac-

celerated pattern but reaches a lower asymptote, indicating weaker associ-

ation formation.
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Figure 5.6: Receptive field analysis for delayed conditioning. Panel C reveals important
temporal effects on representation formation. While circular features are still incorporated
into the CS representation, they appear less prominent compared to simultaneous condi-
tioning. The receptive fields shown represent the later time points where CS-outcome
association occurred (when both stimuli were present together). Despite temporal overlap
in the final 2 seconds, the integration of circular outcome features is weaker than in simul-
taneous conditioning. This pattern demonstrates that associative mechanisms can bridge
temporal gaps but are less effective, resulting in weaker and less complete integration of
outcome features.
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Figure 5.6 panel C shows the receptive field maps for the predicted fea-

ture of the predicting stimulus A and the outcome extracted after the con-

ditioning training by CNN.

When comparing delayed and simultaneous conditioning receptive fields,

several differences emerge. The circular patterns from the outcome are

less pronounced in the delayed conditioning, particularly in the number

of fields showing clear circular features. This corresponds to the lower

V value (0.43 vs 0.93). The delayed presentation appears to affect pri-

marily the early processing time points, with later time points showing

somewhat better integration, suggesting that the model learns temporal re-

lationships between stimuli. The triangular features remain more dominant

in delayed conditioning, indicating less modification of the original repre-

sentation when temporal contiguity is reduced.

This map is not significantly different from the one observed for simulta-

neous conditioning, but the predicted compound representation appears to

have less of the outcome features incorporated, corresponding to a lower

level of V in comparison to the simultaneous experiment. These results

suggest that, according to the model, the formation of a complex represen-

tation may be sensitive to time. Delayed conditioning would be less ef-

fective in generating compound representations between two stimuli than

simultaneous conditioning.
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5.3.4 Discussion

The acquisition results confirm that the model successfully implements

fundamental associative learning. The negatively accelerated learning curve

reaching asymptote around V=0.93 matches the typical pattern observed in

animal conditioning studies. More significantly, the receptive field analysis

reveals the mechanism underlying this learning: circular outcome features

become progressively integrated into the CS representation. This visual

evidence demonstrates that associative learning in our model operates by

modifying perceptual representations themselves, not merely creating ab-

stract links. These acquisition results establish the baseline against which

more complex phenomena can be evaluated.

5.4 Extinction

5.4.1 Experimental Design

The experimental design we used to test for extinction is similar to the

acquisition design, but the main difference is that, following an acquisition

phase of 100 trials, we presented the CS(A) with no outcome(−) for

another 100 trials. This experiment tests for the extinction phenomenon,

which describes the progressive loss of associative strength between pre-

viously conditioned stimuli observed when the predictor is presented in

isolation. We tested the performance of this model by checking whether

the CS would be able to invoke the outcome representation after the extinc-

tion phase. The images used in this experiment have a base of (256*256)

and a receptive field of (4,56,56). We set up an experiment containing a
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single group with two phases as described in Table 5.3.

Group Phase 1 Phase 2 Test
1 100A+ 100A- A?

Table 5.3: Acquisition and Extinction Design. Phase 1 establishes the CS-outcome asso-
ciation, Phase 2 presents CS alone to test extinction.

In phase one, a CS A - an image display containing four triangles - was

paired with a US, a circle image, the outcome. In phase two, the CS is

presented without outcome CS → −. A total of 100 training epochs

were run in each phase. A single test to A was carried out at the end to

produce a receptive field map.

5.4.2 Results and Evaluation

During conditioning in the first phase, the triangle acquires a positive

value of V , as described earlier in the acquisition experiment. In the sec-

ond phase, the absence of the outcome is represented with the symbol ′−′.

The computational procedure involved inputting the image with zero in-

tensity, meaning it did not engender activity in the network. As per model

definitions, such input should generate low, near zero, dynamic asymptote

values, which combined with the high prediction value of the active pre-

dicting cue, results in a large negative δ error. Hence, the prediction V

decreases with each extinction trial. The results indicate that extinction is

not complete and proceeded more slowly than acquisition.

5.4.3 Receptive Field Analysis

Once the extinction training trials were complete, we tested the capabil-

ity of A to represent the outcome features. Following successful acquisi-
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Figure 5.7: Extinction learning curves showing two distinct phases of learning. Dur-
ing Phase 1 (trials 1-100), standard acquisition occurs with the characteristic negatively
accelerated curve reaching V ∼ 0.58. The phase transition at trial 100 marks the begin-
ning of extinction. During Phase 2 (trials 101-200), CS-alone presentations cause gradual
decrease in associative strength to V ∼ 0.22. Note the asymmetric nature of learning
where extinction proceeds more slowly than acquisition and remains incomplete after 100
trials, consistent with empirical findings in the extinction literature.

122



Figure 5.8: Receptive field changes during extinction. Panel A shows original stimuli.
Panel B displays receptive fields before conditioning, showing the initial CNN-extracted
features. Panel C reveals the critical extinction effect: after extinction, fields show degra-
dation of both outcome features and original CS features, with increased noise and loss of
coherent patterns. This suggests extinction involves active modification rather than sim-
ple decay of associations.
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tion, we know from our learning curves that A had incorporated outcome

features, reaching V ∼ 0.58. However, after 100 extinction trials, signif-

icant changes occur in the receptive field structure shown in Panel C.

The primary observation is not simply the loss of circular outcome fea-

tures, but a general degradation of representational clarity. The fields ex-

hibit increased noise, reduced activation intensity and loss of coherent spa-

tial patterns. The triangular CS features become blurred and less distinct,

while residual circular patterns can still be faintly detected in some fields.

This suggests extinction creates a distinct representational state rather than

simply reversing acquisition.

Figure 5.9: Direct comparison of receptive fields after acquisition (Panel A) versus after
extinction (Panel B). Panel A shows clear, well-defined patterns with integrated circular
features across multiple time points. Panel B reveals the profound impact of extinction:
emergence of noisy, less coherent activation patterns. The contrast demonstrates that
extinction modifies representations at a fundamental level. Note the shift from bright,
focused activation (yellow-green) to diffuse, weak activation (dark purple-blue).
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The comparison between receptive fields after acquisition and after ex-

tinction provides crucial insights into the extinction process. The extinc-

tion fields show increased variability across time points and feature de-

tectors, suggesting that extinction destabilizes the learned representation

rather than cleanly removing outcome features. Despite 100 extinction tri-

als, the receptive fields do not return to their pre-conditioning state. This

aligns with the incomplete extinction observed in the V values (0.22 rather

than 0).

The degradation appears most severe in early time points, with some

structure remaining in later processing stages. This temporal pattern may

reflect different mechanisms operating at different stages of stimulus pro-

cessing. These findings support theories suggesting extinction involves

new learning rather than unlearning, creating modifications at a fundamen-

tal representational level. This hypothesis is supported by the asymmetric

extinction rate as measured by the cue-outcome associative strength, which

shows resistance to complete extinction.

5.4.4 Discussion

The extinction results reveal two key findings. First, the incomplete re-

duction in associative strength (V = 0.22 rather than 0) aligns with em-

pirical evidence that extinction involves new inhibitory learning rather than

unlearning. Second, the degraded receptive fields with increased noise sug-

gest that extinction creates an ambiguous representational state rather than

reverting to the original stimulus representation. This supports inhibitory

learning theories and explains why extinguished responses often sponta-
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neously recover.

5.5 Blocking

5.5.1 Experimental Design

The following experimental design tested one of the most paradigmatic

associative learning phenomena: Blocking. The presence of blocking is

considered critical in assessing the associative nature of a phenomenon

[168]. When an association between a CS and outcome is sufficiently

established, the acquisition predictive value by a new predictor paired with

the original and the same outcome is prevented or ’blocked’. This effect

is often compared to the acquisition of a compound formed by two novel

predictions.

The images used in this experiment have a base of (256*256) and a re-

ceptive field of (4,56,56). We set up an experiment containing two groups,

each with two phases Table 5.4.

Group Phase 1 Phase 2 Test
1 50A+ 50AB+ B?
2 50C+ 50AB+ B?

Table 5.4: Blocking Design. Group 1 tests blocking where prior learning about A prevents
learning about B. Group 2 serves as control where B can acquire associative strength
normally.

In Group 1, Phase 1, a CS A - an image display containing four triangles

- was paired with a outcome, a circle image. In Phase 2, stimulus A was

accompanied by another stimulus B, forming a triangle-cat compound and

paired with the same outcome. Each of these phases consisted of fifty
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training trials or epochs. On Phase 3, a single test trial of B was presented.

Group 2, a control condition, was identical to Group 1 except for Phase 1,

in which a novel C stimulus, a flat landscape, was presented instead of cue

A.

5.5.2 Results and Evaluation

Figure 5.10: Blocking results demonstrating learning between experimental and control
groups. Panel A shows the overlaid comparison where the difference between blocked B
image (black line, V ∼ 0.11) and control B (pink line, V ∼ 0.36) is evidenced by a re-
duction in the strength of learning. Note the mediated extinction of C (red line declining)
during Phase 2, demonstrating the model’s sensitivity to associative associations. Panel
B displays the control Group 2 where B acquires substantial associative strength when A
is not pre-trained. Panel C shows the blocking effect in Group 1: A (green line) acquires
strong associative strength in Phase 1, then when AB is presented in Phase 2, B (black
line) shows minimal learning, confirming the blocking phenomenon.

The results obtained in this simulation are shown in Figure 5.10. Panel A

shows all conditions overlaid for comparison, while Panels B and C display

the individual group results. During the first phase of conditioning (trials
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1-50), stimulus A in Group 1 and stimulus C in Group 2 both acquired

positive predictive values.

The critical blocking effect emerges in Phase 2. In Group 1 (Panel C),

where A had already been established as a predictor of the outcome, the

added stimulus B acquired minimal predictive value (black line plateauing

at V ∼ 0.11). This contrasts with Group 2 (Panel B), where B reached

V ∼ 0.36 (pink line), representing a reduction in learning due to block-

ing.

Please note the decay in the predictive value of the control stimulus C

(red line in Panel A). The model predicts contextual activation of C during

Phase 2, resulting in its value being reduced through mediated learning.

5.5.3 Receptive Field Analysis

Once the training trials were completed, we tested the ability of B to pre-

dict the visual features of the outcome by extracting the predicted receptive

field in both groups and comparing them.

Figure 5.11 shows the receptive field maps in Group 1. Panel B displays

the CNN-extracted features before conditioning, while Panel C shows the

predicted receptive field for stimulus B after the blocking phase. The pre-

dicted field shows predominantly dark purple activation, indicating mini-

mal feature detection. The absence of circular patterns demonstrates that

B failed to form predictive associations with the outcome despite being

presented with it 50 times in compound with A. Some faint cat-like fea-
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Figure 5.11: Blocking Group (Group 1) receptive field analysis. Panel A displays the
original stimuli: triangles (A), cat (B), and circle outcome. Panel B shows CNN-extracted
features before conditioning. Panel C reveals the critical blocking effect in the predicted
receptive field of B: despite 50 AB+ trials, B’s representation shows minimal circular
outcome features. The receptive field remains dominated by dark purple activation with
only faint traces of the cat’s features visible. Notably absent are the bright yellow-green
circular patterns that would indicate successful outcome prediction. This visual evidence
confirms that prior learning about A prevented B from forming an effective predictive
representation.

129



tures can be detected, suggesting the model learned B’s identity (B → B

associations) but not its predictive relationship with the outcome.

Figure 5.12: Control Group (Group 2) receptive field analysis demonstrating success-
ful learning. Panel A shows all stimuli including the control landscape stimulus (C).
Panel B displays pre-conditioning features. Panel C presents B’s predicted receptive field
after AB+ training, revealing differences from the blocking group. Clear circular pat-
terns (bright yellow-green) are evident across multiple time points, particularly in later
columns. The successful integration of outcome features confirms that B formed strong
predictive associations when not blocked by prior learning. The contrast between Groups
1 and 2 provides strong visual evidence for the blocking phenomenon at the representa-
tional level.

Figure 5.12 shows the receptive field maps in Group 2. The left panel

shows the receptive field maps at the beginning of the conditioning trials

for each stimulus. The receptive field map generated by stimulus B dur-

ing the test phase presents a different picture from Group 1. In the control
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condition, B’s receptive field shows robust learning with clear evidence of

outcome feature integration. In contrast to Group 1, B’s receptive field

in the control condition shows robust learning with clear circular patterns

(bright yellow-green) visible across the receptive field. These circular fea-

tures match those seen in successful acquisition, confirming that B has

learned to predict the outcome when not blocked by prior learning.

The contrast between Groups 1 and 2 provides visual confirmation of

the blocking effect. Group 1’s B shows minimal activation and no circu-

lar features, while Group 2’s B displays bright, coherent circular patterns.

This representational difference corresponds to the reduction in associative

strength and demonstrates that blocking operates at the level of perceptual

representation formation.

These results emphasise the associative nature of the representation learn-

ing algorithms of the model, replicating a blocking phenomenon where

well-established predictors of an outcome succeed in preventing a novel

cue from acquiring predictive capabilities of the same outcome, hence hin-

dering the representation of the outcome features in the formation of a

compound representation.

5.5.4 Discussion

The reduction in learning for the blocked stimulus B demonstrates robust

cue competition within the empirically observed range. The receptive field

analysis provides novel insights into the blocking mechanism: B fails to

incorporate outcome features despite the 50AB+ trials. This visual evi-
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dence supports the theory that blocking prevents perceptual learning. The

preservation of B’s identity features (cat) while lacking outcome features

(circle) suggests that blocking specifically disrupts predictive associations

while maintaining stimulus identification. This finding could not be re-

vealed by traditional models that only report on associative strengths.

5.6 Conditioned Inhibition

5.6.1 Experimental Design

Conditioned inhibition refers to a Pavlovian phenomenon in which the

prediction of a stimulus of the outcome is hindered by the presence of

another stimulus which is assumed to inhibit the representation of the out-

come. The experimental design we used consisted of a single phase of

training in which two types of stimuli, A+ and AX-, were presented as a

series of random epochs (Table 5.5). A single test trial of AX- followed

training to capture the corresponding receptive field map. The images used

in this experiment have a base size of (256*256) and a receptive field size

of (4, 56, 56). The setup of the experiment was a single group with a single

phase.

Group Phase 1 Test
1 200A+/200AX- AX?

Table 5.5: Conditioned Inhibition Design. Intermixed trials of A+ and AX- train X as an
inhibitor.
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Figure 5.13: Conditioned inhibition learning curves demonstrating the development of
inhibitory associations. Stimulus A (red line) maintains positive associative strength
(V ∼ 0.55) throughout training, showing typical acquisition for reinforced trials. X
(blue line) develops negative associative strength, reaching V ∼ −0.08, confirming the
model’s ability to produce inhibitory learning. The compound AX (green line) maintains
intermediate strength (V ∼ 0.45). While X’s inhibitory effect is modest, it demon-
strates that the model can develop negative associative values without hard-coding.
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5.6.2 Results and Evaluation

The two types of random trials were as follows: one consisted of A, an

image display containing four triangles, being paired with an outcome, a

circle image Figure 5.14, and the second type of trials consisted of a com-

pound stimulus, AX−, which includes a triangle and a natural landscape

being paired with no US. Each of these trials runs for 200 epochs.

The learning dynamics reveal important aspects of inhibitory learning.

During the initial trials (0-50), all stimuli show exploratory changes as the

model determines the contingencies. A shows rapid acquisition typical of

excitatory conditioning. Most critically, X progressively develops nega-

tive associative strength, crossing into negative values around trial 75 and

continuing to decrease throughout training. This genuine negative V value

distinguishes conditioned inhibition from simple extinction or reduced ex-

citation.

During learning, A+ acquires associative strength while AX− de-

creases in strength. Since the model abides by a summation principle,

this entails that V of the stimulus X acquires a negative value, effec-

tively becoming an inhibitor of the strength of another predictor of the

same outcome. Figure 5.13 shows this pattern of changes in the associa-

tive strength of the stimuli. Stimulus A acquired a strong predictive value

of the outcome (red line). The presence of X (green line) in compound

with A reduced the prediction value of the latter. Finally, a simulation of

the prediction carried by X (blue line) shows how this progressively be-
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comes negative. Under these parameters, the condition inhibition effect is

small but unequivocal.

The performance of the model was evidence that the system can produce

both negative and positive V predictive values, that is, inhibition, without

the need to hard-code it. In accordance with the associative summation

assumption, the total prediction of the compound stimuli is the sum of the

compounded CSs. The values of the compound AX− change during the

trials, where the V value in X and the V value in A, when combined,

give us the V value of the compound AX .

5.6.3 Receptive Field Analysis

Once the training trials were complete, we tested the performance of the

model on the compound AX . Panel B shows the receptive fields before

conditioning trials, representing the initial CNN-extracted features. Panel

C shows the predicted receptive field of the compound AX .

The compound representation shows reduced circular patterns compared

to what would be expected from A alone. Both triangular patterns (from

A) and landscape features (from X) remain visible in the compound rep-

resentation, while outcome features are suppressed. The receptive fields

show moderate activation levels (green-blue colors) rather than the bright

yellow-green of successful excitatory conditioning. This pattern is main-

tained across all time points.
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Figure 5.14: Conditioned inhibition receptive field analysis. Panel A shows the orig-
inal stimuli: triangles (A), landscape (X), and circle outcome. Panel B displays pre-
conditioning receptive fields with clear feature detection for each stimulus. Panel C
presents the test result: the predicted receptive field for compound AX shows reduced
outcome features. While A predicts the outcome (V ∼ 0.55), circular patterns are
suppressed in the compound representation. The fields show triangular and landscape
features with moderate activation (green-blue regions), suggesting that X prevents full
outcome representation.
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The representation shows clear features of both predictors A and X, but

reduced outcome features. This evidence suggests that X has developed in-

hibitory properties, though the effect is modest given X’s relatively small

negative value V ∼ −0.08. The visual evidence confirms that our model

can implement conditioned inhibition through suppression of outcome rep-

resentations at the perceptual level.

5.6.4 Discussion

Although X developed only modest negative associative strength (V =

−0.08), the receptive field analysis confirms genuine inhibitory learning

through active suppression of outcome features in the AX compound. The

relatively weak inhibition compared to theoretical models may reflect our

biologically-inspired architecture, where negative values emerge from the

learning dynamics rather than being hard-coded. The suppression visible

in the compound representation validates that X functions as a conditioned

inhibitor, preventing outcome representation even in the presence of the

excitatory stimulus A. This shows that our model is capable of producing

inhibitory phenomena without hardcoding inhibitory units.

5.7 Negative Patterning

5.7.1 Experimental Design

Having demonstrated that the model is capable of reproducing classic

associative phenomena while building complex stimulus representation, it

is now necessary to test whether the model is capable of representing non-
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linear relationships.

Real-world relationships are often more complex than the simple linear

relationship posited by elemental models of conditioning and their summa-

tion assumption. On many occasions, these are more appropriately charac-

terised as nonlinear conditional probabilities. Hence, learning models must

incorporate processes to approximate these conditional relations. Several

have been proposed to account for nonlinear discrimination learning, all of

which rely on postulating ex nihilo representation of the stimuli.

A benchmark of nonlinear discriminative tasks is negative patterning

(NP) [20, 21]. In this procedure, individual presentations of two cues,

A and B, are followed by an outcome, whereas compound presentations

of the same cues are not, AB. The difficulty and importance of it lie in

learning that compounding the cues does not convey additive prediction,

requiring a breakdown of linearity on the compound trials.

The experimental design we used to run the negative patterning trials

tested the phenomenon of how the model learns to respond to a presented

compound stimulus (AB) and how it responds when the elements are pre-

sented separately. The trials, as organized in Table 5.6, were presented as

a series of randomized epochs. The images used in this experiment have a

base size of (256*256) and a receptive field size of (4, 56, 56). The setup

of the experiment was a single group with a single phase; each trial in the

phase was presented separately but in a random sequence.
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Group Phase 1
1 200A+/200B+/200AB-

Table 5.6: Negative Patterning Design. Elements are reinforced but their compound is
not.

5.7.2 Results and Evaluation

There were three random trials in this experiment: one consisted of CS

A, an image display containing four triangles, paired with a US, a cir-

cle image Figure 5.16; the second consisted of CS B, an image display

containing a cat, paired with a US, a circle image Figure 5.16; and the

third random trial consisted of a compound stimulus, AB−, which was a

combination of triangle and cat images, paired with no US. Each of these

trials ran separately for 200 epochs.

The learning dynamics reveal important characteristics of how the model

solves this non-linear problem. During early trials (0-50), all stimuli show

exploratory fluctuations as the model samples the contingencies. The com-

pound AB initially increases before declining in the first 20 trials, suggest-

ing the model first treats it as the sum of its elements before learning the

AB− trials. By trial 100, clear differentiation emerges with elements

maintaining positive values while the compound shows minimal associa-

tive strength.

During conditioning, both A+ and B+ acquired associative strength,

while AB− decreased in strength after the first few epochs. Here, the

model has learned to respond to A and B separately, as well as to AB−.

The plots shown in ?? provide evidence that the model can discriminate
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Figure 5.15: Negative patterning results demonstrating successful non-linear discrimina-
tion. The learning curves reveal a complex pattern that cannot be explained by simple
elemental summation. Both A (green line) and B (black line) acquire positive associative
strength (V ∼ 0.41). Critically, the compound AB (blue line) shows different learning
dynamics: after initial exploration, it maintains near-zero values around V ∼ 0.05. The
separation between element and compound values demonstrates the model’s ability to
treat AB as a unique configuration rather than the sum of its parts. If the model operated
purely on elemental summation, AB should have V ∼ 0.82 (sum of A and B); instead,
it maintains near-zero associative strength, confirming successful negative patterning dis-
crimination.

140



between separate associations and compound associations. If this were not

the case, AB− would sum to produce more responding to AB than to the

individual A+ and B+. This phenomenon confirms that our model can

represent configural cues.

5.7.3 Receptive Field Analysis

Figure 5.16: Negative patterning receptive field analysis revealing emergent configural
representation. Panel A shows the original stimuli used in training. Panel B displays
the pre-conditioning receptive fields extracted by the CNN, showing clear feature detec-
tion for triangles (A), cat (B), and circle outcome. Panel C presents the critical results:
predicted receptive fields for A+, B+, and AB- after training. The individual elements
(A+ and B+) maintain recognizable features with circular outcome patterns visible. In
contrast, the compound AB- shows a degraded representation with predominantly dark
purple/blue activation and no clear outcome features. This shows how the model solves
negative patterning: AB develops a degraded representation that differs from both A and
B individually.

Once the training trials were complete, we tested the performance of the

model on all stimuli. Panel B shows the receptive fields before condition-
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ing trials are run. These are internal representations of the visual stimuli

after the CNN layer computation. Panel C shows the predicted receptive

fields after training for A+, B+, and the compound AB-.

The receptive field analysis provides crucial insights into how the model

solves negative patterning. The most striking feature is the differential rep-

resentation between elements and compound. Where A and B individually

maintain features including circular outcome patterns, the compound AB

shows only diffuse, weak activation with no coherent pattern structure.

If the model were simply summing elemental representations, we would

expect to see both triangular and cat features in the compound, possibly

with circular outcome features. Instead, the AB representation appears to

suppress all recognizable features, creating a novel representational state

dominated by dark purple and blue regions.

It can be seen that when both A and B are presented together, the com-

pound AB develops a degraded representation distinct from either ele-

ment. This demonstrates how our elemental model can solve non-linear

discriminations through emergent configural properties. By developing a

unique representation for AB that differs qualitatively from both its ele-

ments and their sum, the model treats the compound as a distinct stimulus.

5.7.4 Discussion

The successful negative patterning discrimination provides strong evi-

dence for emergent configural processing in our elemental model. The
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degraded representation of AB lacking features from either element or

outcome, shows that the compound develops its own unique representa-

tion rather than summing its components. This solves the non-linear dis-

crimination without requiring pre-specified configural units. This finding

supports theories suggesting that configural processing can emerge from

elemental architectures through interactive mechanisms, validating our ap-

proach of integrating CNN feature extraction with associative learning.
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Chapter 6

Discussion and Future work

6.1 Discussion

In this work, we have demonstrated that integrating CNN-based visual

processing with associative learning mechanisms successfully creates a

unified model capable of forming complex stimulus representations. The

model, based on the DDA framework [10], achieves the main objective of

this thesis: simulating how visual stimuli form complex representations

through associative mechanisms.

The model uses actual visual stimuli processed through CNN layers, con-

trasting with traditional associative models that rely on abstract symbolic

representations. This approach allows the model to work with realistic

perceptual inputs while maintaining the computational tractability of ele-

mental models. The CNN layers extract hierarchical features that serve as

elements for the associative mechanism, naturally providing both common

and unique features across stimuli.

Our results across five fundamental phenomena, acquisition, extinction,

blocking, conditioned inhibition, and negative patterning, demonstrate that

the model reproduces established patterns of associative learning. The V

values obtained match predictions from classical theories, while the ex-
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tracted receptive fields provide direct visualization of how representation

formation changes through learning.

Critically, the model provides evidence supporting the proposal by Mon-

dragón et al. [9] that integrating CNNs with associative mechanisms en-

ables elemental models to solve non-linear discriminations. The negative

patterning results demonstrate this capability: despite using purely elemen-

tal mechanisms, the model successfully discriminates between elements

and their compound. This occurs through the CNN’s extraction of unique

and common features, which the associative mechanism then strengthens

or weakens based on their predictive value, creating distinct representa-

tional clusters.

The ability to extract and visualize learned representations sets this model

apart from existing approaches. Traditional models report only abstract

associative strengths, while our model shows how perceptual representa-

tions themselves are modified through learning. This provides insights into

theoretical questions about how associative mechanisms shape perception.

6.1.1 Future Work

The model provides a foundation for investigating fundamental associa-

tive learning mechanisms and extracting complex stimulus representations.

Several directions warrant further investigation.

First, the model would benefit from quantitative methods to evaluate

predicted receptive fields. While associative strength values provide be-

havioral measures of learning, the visual representations extracted by our
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model require systematic evaluation. Information-theoretic metrics such

as entropy and mutual information could quantify representational changes

during learning. Additionally, diffusion models [169] could reconstruct the

extracted features into high-quality images for detailed pattern analysis.

Second, the model could be extended to investigate additional associative

phenomena not explored in this work. Phenomena such as overshadowing,

superconditioning, and second-order conditioning would test the generality

of our approach. More complex discriminations, including biconditional

tasks and occasion setting, would further evaluate the model’s capacity for

configural representation.

Finally, the model offers a unique opportunity to examine how percep-

tual and associative processes interact during representation formation. By

manipulating visual similarity between stimuli, we could test predictions

about generalization gradients and discrimination learning. This approach

could provide insights into how the cognitive system constructs represen-

tations of the environment through experience [30].

These extensions would strengthen our understanding of how associa-

tive mechanisms operate on realistic perceptual inputs, bridging the gap

between abstract learning theories and biological vision systems.

146



Chapter A

Mathematical Derivations

A.1 Convolutional Layer Computations

A.1.1 Convolution Operation Definition

The convolution operation is implemented as a function that is defined

as:

Conv(Input, Kernel) = Output (A.1)

The image is resized to an appropriate shape, (H×W ), and the channel

is set to 3 because we are going to work mostly with coloured images. The

kernel has been set as a probability density function of weights that have

exactly the same number of channels as the image.

A.1.2 Output Dimension Calculation

To obtain the output, we begin with a computation of the output shape

that establishes the dimension of the placeholder for the output values that

we expect from the convolution operation. The shape of the feature map is

given as:
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O =

{
I + 2p−K

s
+ 1

}
(A.2)

where O is the output shape, I is the input shape, p is padding, K is

kernel shape and s is the stride.

An example would be:

O =


56+2×0−3

1
+ 1

53
1
+ 1

54

(A.3)

This output represents a weighted average image that has the shape (fn, fh, fw).

The number of convolution operations performed is based on the number

of kernels set, which gives the number of feature maps we will have at the

end of the layer.

A.1.3 Element-wise Multiplication

The implemented convolution operation is represented by:

aikbil =


a0k × b0l + a1k × b1l∑

i aikbil

aT [k] · bT [l]

(A.4)

where i is the index of the matrix and k and l are the free indices.
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A.2 Pooling Layer Computation

The pooling layer in this architecture has been implemented with the aim

of reducing the dimensionality (H ×W ) of the image, but not the num-

ber of channels. The operation applied is average pooling, with different

strides applied on the different layers of the model.

The output dimension is first computed to set up a placeholder for the

output as follows:

O =
I −K

s
+ 1 (A.5)

Where O is the output shape, I is the input shape, K is the kernel shape

and s is the stride. The operation is executed for the entire image resulting

in a reduced feature map that contains the defined maximum values of the

kernel operation.

A.3 Activation Function Details

A.3.1 Temporal Width Calculation

The trial duration set for each element at time t can be represented as:

etpvo = (
√
et × δ)2 (A.6)

where et is the element index, and δ is the standard deviation of the

element. Concurrently, at the same time point t, the difference in time t
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and et is squared and multiplied by a skew factor k, allowing the curve to

have a positive skew-shaped curve while the intensity I adjusts the amount

of activity range.

A.3.2 Complete Activation Function Derivation

The gradual growth or decay of the activity curve of an element is found

by calculating the negative exponent, which prevents the program from

encountering a zero division error. The final activation function of a single

element at t is written as:

At
pvo = exp

(
−
(t− et)2k

etpvo

)
× I (A.7)

The advantage of having this function is that each element can be set

with a different skew factor that controls the activation tail and a different

standard deviation, δ, allowing the stimulus to generally activate with some

degree of variability in its elements.

A.3.3 Stochastic Sub-element Activation

During the period of experience, the activation of the sub-elements op-

erates following a random stochastic process that involves randomly se-

lecting elements eti from the clusters using random probabilities. Selection

of sub-elements is assigned a maximum activation value of 1; if not, the

values remain at 0. Eventually, all the sub-elements are assigned a value

of 0 after the offset time point toff of that element ei (see Algorithm B.1

in Appendix B for detailed implementation).
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A.4 Dynamic Asymptote Computation

A.4.1 Lookup Table Generation

The lookup table below is generated for all activity values ranging from

[0, 1]. We created this table as a visual aid to provide a glimpse of its ap-

pearance. However, computation involves many more complexities, such

as activity values that have more than one floating point. We have ap-

plied the necessary adjustments to the visual aid, but accurate references

are made in the computation that does not appear in the figure.

A.4.2 Full Computation

The computation of λ involves initializing the model with an upper bound

value, the maximum activation level of 1 in all of our experiments, Amax.

We also need weights, (1−ν), ν, that will be applied to the overall activity

of both the predictor and the outcome elements eti, e
t
j:

δ =

(
Amax −

(OAt
p − OAt

o)
2

2

)
×
(
(ν × OAt

o) + ((1− ν)× OAt
p))
)

(A.8)

The dynamic asymptote, δ, defines an inverse relationship between two-

element activities, and it is the maximal level of learning for that time

step. In error correction learning, it is used as the teacher in the context of

supervised learning. Therefore, the weights are adjusted according to the

difference between λ and the total predicted value of the output element,
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multiplied by other modulating factors.

A high weight factor, ν, on the output activity value implies that learning

will converge quickly because of the high error value, even if the predictor

activity has low values, and vice versa. We have implemented this factor

instead of having a static λ, which does not provide an accurate maximal

value for that time.

We compute two asymptotes of learning δt
i , and δt

j , one for the predicted

output layer and the other for the learned CS value.

A.5 Learning Algorithm Details

A.5.1 Weight Update Rule

Learning involves an operation that changes the weight component {W cs
p,o}.

The change of weights, an error correction learning operation, is driven by

the difference between the dynamic asymptote δ and the sum value of all

the predicted elements present at that point in time multiplied by the binary

value of the presence of a cluster. This difference is known as an error.

W t+1
i,j = ∆W t

i,j + W t
i,j (A.9)

where:
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∆W t
i,j = (δt

o−
∑
i→∀p

Wi,j×eti)×(δ
t
p−

∑
j→∀o

Wi,j×etj)×Sj×Si×(b ⇐⇒ tFM t
i
> tFM t

j
)

(A.10)

The values Sj, Si are the saliences of the stimulus, which had been ini-

tialized as stimulus parameters at the onset of the network.

The backward discount value, b only applies if the occurrence of a cluster

of the predictor is greater than the cluster of the outcome in time tFM t
i
>

tFM t
j
.

A.5.2 Prediction Computation

The forward pass loops through every connecting link Wi,j , from all the

predictor elements available in the input layers to the output layer. The

results are a sum of all the prediction values, V t
j→o, of each element in

the output layer (o) at time t. The prediction value is the activity of each

predicting element OAt
p multiplied by the respective weight value Wi,j ,

where i, j are the predicting and output elements, respectively.

V t
j→o =

∑
i→∀p

Wi,j × OAt
p (A.11)

Once the predicted values have been determined, the sum weight is ac-

cumulated at the end of each time step and averaged at the end of the

stimulus duration by the total number of duration time points experienced

by the stimulus. This ensures that there is a cumulative moving average of
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weights from one trial to another.
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Chapter B

Algorithmic Procedures

B.1 Random Probability Generation

Algorithm 1 Generate Random Probabilities for samples of (FM )

Require: FM.size = (m× n), 0 ≤ ab ≤ 1
Ensure: f(x) = 1

(b−a)
▷ uniform distribution

elem← dict
Y ← (m,n)
for coordinates in Y do

PI ← Random.Sample(f(x)) ▷ Inactive state 0 ≤ ab ≤ 1
PA ← Random.Sample(f(x)) ▷ Active State 0 ≤ ab ≤ 1
C ← [P1, P2]
elem[coordinates]← (C)

end for

B.2 Stimulus Activation

Algorithm 2 Stimulus Activation (FM )

Require: FM.size = (m× n), tonset, toffset

Ensure: At
pvo ▷ Element activation function

actcont ← dict ▷ activation value [0− 1]
markercont ← dict ▷ mark of selection (0|1)
for ∀ time steps ∈ range(toffset − tonset) do

econt ← etime steps ▷ Assign list of elements
end for
for ∀ time steps ∈ range(toffset − tonset) do

for ∀ ele in econt do
actcont ← At

pvo ▷ Apply activation function list of elements
end for

end for
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B.3 Dense Layer Activation

Algorithm 3 Dense Layer Activation (FM )

Require: FM.size = (m× n), tonset, toffset

Ensure: et
pvo ▷ initialize unit function for all elements at all time points

act← list ▷ activation value [0− 1]
for ∀ time steps ∈ range(toffset − tonset) do

for ∀ element units in et
pvo do

act← activate() ▷ append the activity
end for

end for
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Chapter C

Implementation Details

C.1 CNN Architecture Specification

Table C.1: Complete CNN Layer Configuration

Layer Type Filters Kernel Stride Padding Output
0 Input - - - - 256×256×3
1 Conv2D 4 3×3 1 valid 254×254×4
2 Conv2D 4 3×3 1 valid 252×252×4
3 MaxPool - 4×4 2 - 125×125×4
4 Conv2D 4 3×3 1 valid 123×123×4
5 Conv2D 4 3×3 1 valid 121×121×4
6 Conv2D 4 3×3 1 valid 119×119×4
7 MaxPool - 4×4 2 - 58×58×4
8 MaxPool - 4×4 1 - 56×56×4
9 MaxPool - 4×4 1 - 56×56×4

C.2 Model Parameters

Table C.2: Default Parameter Values

Parameter Symbol Default Description
Learning rate α 0.1 Weight update rate
Salience S 0.5 Stimulus salience
Temporal spread δ 1.0 Activation temporal width
Skew factor k 1.0 Temporal asymmetry
Intensity I 1.0 Maximum activation
Asymptote weight ν 0.5 Predictor/outcome balance
Backward discount b 0.8 Temporal discount
Max activation Amax 1.0 Activation ceiling
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C.3 Network Object Structure

The network object is an engine that applies all the operations designed

to learn experiments. The configuration of the network that will run a given

trial involves several components:

C.3.1 Group Object

The group object is designed to perform dynamic tasks that enable the

model to perform several operations based on the specified tests and ex-

periments. The operations of the group object are encapsulated so that the

public interface available to the user requires four main inputs:

• Name of the group

• Number of Phases

• Model object

• **kwargs Stimulus configurations

The name of the group is stored in string format, a fundamental require-

ment of the network operations, as this is added to an overall dictionary

of groups that the model will eventually run. It also takes the number of

phases and stores this as an integer, which becomes useful when building

results data arrays.

C.3.2 Trial Object

A trial is implemented as a placeholder object that stores cues in a set.

Suppose we have a trial 3A+, where A is a conditioned stimulus (CS) and
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+ is an unconditioned stimulus (US). The set in this trial will store all the

cues in the global cues database and ensure there is no duplication of trials.

C.3.3 Phase Object

The phase object is central to running simulations. Its main function-

ality involves setting up the simulation’s parameters and trial sequences.

It also hosts the main algorithm that runs the simulation process, making

this object highly dependent on other objects, especially the computational

elements applied in the computation loop.
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