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ABSTRACT
We introduce amodel-agnostic procedure to construct prediction intervals
for the age distribution of deaths. The age distribution of deaths is an exam-
ple of constrained data, which are nonnegative and have a constrained
integral. A centered log-ratio transformation and a cumulative distribution
function transformation are used to remove the two constraints, where the
latter transformation can also handle the presence of zero counts. Our gen-
eral procedure divides data samples into training, validation, and testing
sets. Within the validation set, we can select an optimal tuning parameter
by calibrating the empirical coverage probabilities to be close to their nom-
inal ones. With the selected optimal tuning parameter, we then construct
the pointwise prediction intervals using the same models for the holdout
data in the testing set. Using Japanese age- and sex-specific life-table death
counts, we assess and evaluate the interval forecast accuracy with a suite of
functional time-series models.
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1. Introduction

Actuaries and demographers have long been interested in developing statistical techniques to model
and forecast mortality for annuity pricing and government planning. In the literature on humanmor-
tality, three functions are widely studied: mortality rate, survival function, and life-table death counts
(representing age distribution of deaths). Although these three functions are complementary (see,
e.g. Dickson et al., 2009; Preston et al., 2001), they differ by the number of constraints. The mortal-
ity rate is between 0 and 1; the survival function is also between 0 and 1 and exhibits monotonicity
over a certain age group; and the life-table death counts are non-negative and sum up to a radix,
commonly 105.

Most of the literature has focused on the development of novel approaches for modeling and fore-
casting age-specific logarithmic mortality rates (see, e.g. Basellini, Camarda et al., 2023; Booth, 2006;
Booth & Tickle, 2008, for comprehensive reviews). Instead of modeling central mortality rates, we
consider modeling life-table deaths as an example of a probability density function (see, e.g. Basellini,
Kjaergaard et al., 2020). Observed over a period, we could visualize, model, and forecast a redistri-
bution of the life-table deaths, where deaths at younger ages are shifted gradually toward older ages
due to longevity. In addition to providing an informative description of the mortality experience of
a population, life-table deaths provide readily available information on central longevity indicators
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(see, e.g. Canudas-Romo, 2010; Cheung et al., 2005) and lifespan variability (see, e.g. Aburto & van
Raalte, 2018; Aburto et al., 2020; Robine, 2001; van Raalte & Caswell, 2013; Vaupel et al., 2011).

To model the age distribution of deaths, we resort to an extrinsic approach via transformation.
In demography, Bergeron-Boucher, Canudas-Romo et al. (2017) and Bergeron-Boucher, Simonacci
et al. (2018) apply the centered log ratio (CLR) transformation to obtain unconstrained data, which
can then be modeled through principal component analysis. In actuarial science, Shang and Haber-
man (2020) and Shang et al. (2022) used the forecasted life-table death counts to calculate estimated
fixed-term annuity prices. In statistics, Stefanucci andMazzuco (2022) apply the CLR transformation
to model cause-specific mortality data, Delicado (2011) apply the CLR transformation to analyze
density functions over space, and Kokoszka et al. (2019) model and forecast financial time series of
density functions.

An issue with the CLR transformation is the presence of zero counts. Some ad-hoc ways of han-
dling zero counts exist, including adding or subtracting a small constant (see, e.g. Fry et al., 2000;
Martín-Fernández et al., 2013). Recently, Shang andHaberman (2025) introduced a cumulative distri-
bution function (CDF) transformationwith the advantage ofmonotonicity.We first normalize the age
distribution of death so that the radix is one, akin to the probability density function (PDF), and then
convert the PDF to a CDF. The inverse of CDF is quantile, which is a key quantity in the Wasserstein
distance tomeasure the discrepancy between two distributions (see, e.g. Dubey&Müller, 2022).With
a time series of CDFs, we model its pattern via a logistic transformation. Within this unconstrained
space, we apply a suite of functional time-series forecastingmethods to obtain the h-step-ahead curve
prediction for a chosen forecast horizon h. By taking the inverse logistic transformation, the h-step-
ahead forecast life-table death counts are obtained after first-order differencing and renormalized to
the original scale.

The current literature lacks guidance on the construction of prediction intervals for the age distri-
bution of deaths.We aim to present a general procedure that works for time-series forecastingmodels
in Section 3. The general procedure divides the data samples into training, validation, and testing sets.
The validation set allows us to tune an optimal parameter that adjusts the prediction intervals so that
the empirical coverage probability is close to its nominal one. With the selected optimal parameter,
we construct the pointwise prediction intervals for the data in the holdout set. Assuming that the data
in the validation and testing sets do not differ much, our construction can achieve satisfactory cov-
erage. Using age- and sex-specific life-table death counts in Japan in Section 2, we study the interval
forecast accuracy of several functional time-series methods in Section 4. The conclusion is presented
in Section 5, along with some ideas on how the methodology can be further extended.

2. Period life-table death counts

In many developed countries, such as Japan, increases in longevity risk and an aging population have
led to concerns about the sustainability of government pension, health and age care systems. Japan
has one of the highest average life expectancies in the world, with extreme longevity in Okinawa
prefecture (Coulmas, 2007).

Our chosenmortality instrument is the life-table death counts, where the life-table radix is fixed at
100, 000 at age zerowhile the remaining number of people alive is 0 in the last age group 110+ for each
year. There are 111 ages, which are 0, 1, . . . , 109, 110+. Due to rounding, there are potentially zero
counts for people aged 110+ at some years. To overcome this problem, we work with the probability
of dying (i.e. qx) and the radix of the life table to recalculate our estimated death counts (up to six
decimal places). In doing so, we obtain more precise death counts than those reported in Japanese
Mortality Database (2025).

In Figure 1, we present Japanese age- and sex-specific life-table death counts from 1975 to
2022, obtained from Japanese Mortality Database (2025). We used data from the period after
the First and Second World Wars to obtain a more stable parameter estimate from the historical
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Figure 1. Rainbow plots of the age distribution of deaths from 1975 to 2022 in a single-year group. The life-table radix is 100,000
for each year. The life-table death counts in the oldest years are shown in red, while the most recent years are in violet. Curves are
ordered chronologically by the rainbow colors.

data. The beginning year 1975 was chosen to be the same as its subnational data (see also Shang
& Haberman, 2025).

Figure 1 demonstrates a decreasing trend in infant death counts and a typical negatively skewed
distribution for life-table death counts, where the peak shifts to higher ages for both sexes. This shift is
due to the risk of longevity, which concerns insurers and pension funds in transferring andmanaging
the risks of annuity products (see Denuit et al., 2007, for a discussion). By modeling the period life-
table death counts, we can understand a redistribution of life-table death counts, where deaths at
younger ages gradually shift towards older ages.

Since the exposure-to-risk can be difficult to estimate accurately due to migration, under-
reporting, or late registration (see, e.g. Cairns et al., 2016), we choose to work with life-table death
counts instead ofmortality rates. Life-table death counts are derived from the probability of dying and
bypass the need for direct exposure estimation, and they represent the number of deaths in the implied
stationary population and lead to the corresponding probability density function of the age distribu-
tion of deaths. Due to non-negativity and summability constraints, we can study the age distribution
of deaths for all available ages.

3. Construction of prediction intervals for density-valued objects

Denote age-specific life-table death counts as dst(u), where t denotes a year, s denotes female or male
data, and u represents an age. For each year t, the life-table death counts sum to a radix 105. In Sec-
tions 3.1 and 3.2, we consider two transformation methods to remove constraints in the life-table
death counts. For modeling the unconstrained data within each transformation, we consider three
functional time-series forecasting models in Section 3.3.

3.1. Centered log-ratio transformation

By treating age as a continuous variable, the CLR transformation can be written as

CLR[dst(u)] := Gs
t(u) = ln dst(u)− 1

η

∫
u
ln dst(u) du,

where η denotes the length of the age interval and 1
η

∫
u ln d

s
t(u) du is the geometric mean.With a time

series of functions [Gs
1(u), . . . ,G

s
n(u)], we apply the univariate,multivariate, andmultilevel functional
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time-series models to obtain h-step-ahead forecasts Ĝs
n+h | n(u). A brief description of these time-

series models is given in Section 3.3. Via the inverse CLR transformation, the forecast life-table death
counts can be expressed as

d̂sn+h | n(u) = expĜn+h | n(u)∫
u exp

Ĝn+h | n(u) du
× 105.

3.2. Cumulative distribution function transformation

By normalizing the life-table radix from 105 to one, the first transformation computes the empirical
CDF via cumulative sum,

Ds
t(x) =

x∑
u=1

dst(u), x = 1, . . . , 111.

Since Ds
t(111) = 1, we apply the logistic transformation to the first 110 ages,

Lst(y) = ln
[

Ds
t(y)

1 − Ds
t(y)

]
, y = 1, . . . , 110,

where ln(·) denotes the natural logarithm. With a time series of functions [Ls1(y), . . . , L
s
n(y)], we

obtain h-step-ahead forecasts, denoted by L̂sn+h | n(y), via the univariate, multivariate, and multilevel
functional time-series methods.

Taking the inverse logit transformation, we obtain

D̂s
n+h | n(y) = exp̂L

s
n+h |,n(y)

1 + exp̂L
s
n+h | n(y)

.

By including a column of ones 1, we obtain D̂s
n+h | n(x) = [D̂s

n+h | n(y), 1]. By taking the first-order
differencing, we obtain

d̂sn+h | n(z) = �D̂s
n+h | n(z)

= D̂s
n+h | n(z)− D̂s

n+h | n(z − 1), z = 2, . . . , 111,

where � represents the first-order differencing, and d̂sn+h | n(1) = D̂s
n+h | n(1). Given the life-table

radix of 105, we renormalize the forecasts to their original scale: d̂sn+h | n(u) = d̂sn+h | n(z)× 105.

3.3. A suite of functional time-series forecastingmethods

The unconstrained data are assumed to be elements of the Hilbert space equipped with the inner
product. We model the unconstrained data, Gs

t(u) in the CLR transformation or Lst(u) in the CDF
transformation. For illustration, we demonstrate our idea with Gs

t(u), which can be expressed via the
Karhunen-Loève expansion as

Gs
t(u) =

Ks∑
k=1

ηst,kψ
s
k(u)+ εst (u), (UFTS)

whereψ s
k(u) denotes the k

th functional principal component for age u and sex s, ηst,k = 〈Gs
t(u),ψ

s
k(u)〉

is the estimated principal component score at time t and 〈·, ·〉 denotes the L2 inner product, εst (u)
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denotes the residual function for age u and sex s in year t, and Ks denotes the number of functional
principal components. We consider an eigenvalue ratio (EVR) criterion of Li et al. (2020) to select
the number of Ks, which is the integer that minimizes the ratio of two adjacent empirical eigenvalues
given by

Ks = argmin
1≤κ≤(n−1)

{
λ̂sκ+1

λ̂sκ
× 1

(
λ̂sκ+1

λ̂sκ
≥ δ

)
+ 1

(
λ̂sκ+1

λ̂sκ
< δ

)}
, (1)

where λ̂sκ is the κ th estimated eigenvalue, δ is a prespecific small positive number, set as δ =
1/ ln(max{̂λs1, n}), and 1(·) denotes the binary indicator function. For comparison, we also consider
Ks = 6 used in Hyndman et al. (2013).

We also consider a multivariate functional time-series method to jointly model and forecast the
female andmale series that could be correlated. LetGF

t (u) andGM
t (u) represent unconstrained female

and male data. By stacking both series in a vector, we compute their joint covariance function. Via
Karhunen-Loève expansion, a realization of both series can be approximated by

Gt(u) = θ(u)+ �(u)β�
t , (MFTS)

whereGt(u) = [GF
t (u),GM

t (u)]�; θ(u) = [θF(u), θM(u)]� denotes themean functions for the female
and male series, respectively; �(u) is a (2 × (K × 2)) matrix, where the off-diagonal elements
capture the correlation between the estimated principal components; β t = [βF

t ,β
M
t ] and βF

t =
[βFt,1, . . . ,β

F
t,K] denotes the estimated principal component scores.

The multilevel functional time-series method extracts a common pattern shared by female and
male series Rt(u) and a series-specific residual pattern Us

t (u). Via functional principal component
analysis, the common and residual patterns are modeled by projecting the data onto the eigen-
functions of the covariance functions of aggregated and series-specific curves, respectively. For
t = 1, 2, . . . , n, a realization can be approximated by

Gs
t(u) = μs(u)+ Rt(u)+ Us

t (u). (MLFTS)

With a finite sample, we estimate

μ̂s(u) = 1
n

n∑
t=1

Gs
t(u)

Rt(u) ≈
K∑

k=1

βt,kφk(u)

Us
t (u) ≈

V∑
�=1

γt,�ψ�(u),

where K and V represent the number of functional principal components retained. These compo-
nents can be determined by the EVR criterion in (1) or set to K = V = 6.

3.4. Construction of prediction intervals

We equally divide the data sample consisting of 48 years from 1975 to 2022 into training, validation,
and testing sets, each consisting of 16 years. Using the data in the training sample, we implement an
expanding window forecast scheme to obtain the h-step-ahead density forecasts in the validation set
for h = 1, 2, . . . , 15. The expanding window scheme allows one to assess how a forecasting method
performs on short andmediumhorizons.Wehave different numbers of curves in the validation set for
each forecast horizon. For example, when h = 1, we have 16 years to evaluate the forecast errors; when
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h = 15, we have two years to evaluate the residual functions between the samples in the validation set
and their forecasts, and compute their functional standard deviation. Note that we need at least two
years of data to compute the functional standard deviation. Forecast errors are denoted by ε̂m(u) =
dsm(u)− d̂sm(u), form = 1, 2, . . . ,M, andM denotes the number of years of residual functions.

Let us define γ (u) = sd[̂εm(u)]. For a level of significance α, our aim is to determine (ξ
α
, ξα) such

that α × 100% of the residuals satisfy

−ξ
α
γ (u) ≤ ε̂m(u) ≤ ξαγ (u).

(ξα , ξα) are the tuning parameters mentioned in the abstract and Section 1. Typically, the constants
ξα and ξα are chosen equal. By the law of large numbers, one may achieve

Pr[−ξαγ (u) ≤ dsn+h(u)− d̂sn+h | n(u) ≤ ξαγ (u)] ≈ 1
M

M∑
m=1

1[−ξαγ (u) ≤ ε̂m(u) ≤ ξαγ (u)].

To determine the optimal ξα , the samples in the validation set are used to calibrate the prediction
intervals so that the empirical coverage probabilities are close to their nominal coverage probabili-
ties. As an output of this calibration, we obtain an optimal tuning parameter based on the coverage
probability difference in Section 4.2.

For comparison, we also consider conformal prediction intervals, which are well calibrated
in a large sample size (Dhillon et al., 2024). The conformal prediction introduced by Shafer
and Vovk (2008) is a popular methodology in machine learning and is used to construct probabilis-
tic forecasts calibrated on out-of-sample errors. Since its introduction in Gammerman et al. (1998),
it has received increasing attention in various fields, including time series forecasting (Angelopou-
los et al., 2023; Fontana et al., 2023; Yu & Xie, 2021) and climate modeling (Cannon, 2018; Qian
& Chang, 2021). The conformal prediction is model-agnostic and presents a distribution-free way to
construct prediction sets with a finite-sample coverage guarantee. From the absolute value of ε̂m(u),
we calculate its 100(1 − α)% quantile for a level of significance α, denoted by qα(u). The prediction
interval can be obtained as [̂

dsn+h | n(u)− qα(u), d̂sn+h | n(u)+ qα(u)
]
,

where d̂sn+h | n(u) denotes the h-step-ahead point forecasts for the data in the test set.
We consider the simplest conformity score by taking the quantiles from the absolute residuals. We

acknowledge that other conformity scores, such as the use of quantile regression, are possible to con-
struct asymmetric prediction intervals that may lead to better performance (see, e.g. Chernozhukov
et al., 2021; Romano et al., 2019). Two limitations are commonly associated with the split conformal
prediction: First, it works well for identically distributed data under the assumption of exchangeabil-
ity. For time series data, the empirical coverage deteriorates as the forecast horizon increases. Second,
it requires a large sample size for the validation and testing sets to achieve superior calibration.

4. Evaluation of interval forecast accuracy

4.1. Expanding-window forecast scheme

An expanding window analysis of a time-series model is commonly used to assess model and param-
eter stability over time. With the samples in the test set, we evaluate and assess the accuracy of the
interval forecast. Using the first 32 years from 1975 to 2006, we can produce one- to 16-step-ahead
forecasts. Through an expanding window scheme, we estimate the parameters in the time-series fore-
castingmodels using the first 33 observations from 1975 to 2007. Forecasts from the estimatedmodel
are produced for one- to 15-step-ahead forecasts.We iterate this process by increasing the sample size
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Figure 2. A diagram of the expanding-window forecast scheme.

by one year until we reach the end of the data period in 2022. This iteration process produces 16 one-
step-ahead forecasts, 15 two-step-ahead forecasts, . . . , and one 16-step-ahead forecast. In Figure 2, we
show a diagram of the expanding window forecast scheme for the forecast horizon h = 1, although
we also consider other forecast horizons from h = 2 to 15.

4.2. Interval forecast errors

To evaluate interval forecast accuracy, we consider the coverage probability difference (CPD) between
the empirical coverage probability (ECP) and nominal coverage probability, as well as themean inter-
val score of Gneiting and Raftery (2007). For each year in the forecast period, the h-step-ahead
prediction intervals are calculated at the 100(1 − α)% nominal coverage probability. We consider
the common case of the symmetric 100(1 − α)% prediction intervals, with lower and upper bounds
that are quantiles at α/2 and 1 − α/2, denoted by d̂s,lbn+ξ (u) and d̂s,ubn+ξ (u). The ECP and CPD are
defined as

ECPh = 1
111 × (16 − h)

×
16∑
ξ=h

111∑
u=1

1
{̂
ds,lbν+ξ (u) ≤ dν+ξ (u) ≤ d̂s,ubν+ξ (u)

}
,

CPDh = 1
111 × (16 − h)

×
16∑
ξ=h

111∑
u=1

[
1{dν+ξ (u) > d̂s,ubν+ξ (u)} + 1{dν+ξ (u) < d̂s,lbν+ξ (u)}

]
,

where v denotes the years in the training and validation sets.
For different ages and years in the test set, the mean and median ECP are defined as

ECP = 1
15

ECPh,

M[ECP] = median(ECPh).

Similarly, mean and median CPD are defined as

CPD = 1
15

15∑
h=1

CPDh,

M[CPD] = median(CPDh).

As defined by Gneiting and Raftery (2007), a scoring rule for the prediction intervals at age u is
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Table 1. For different forecast horizons h = 1, 2, . . . , 15, we present the estimated tuning parameter ξα values obtained from the
univariate functional time-series model (the number of retained principal components, K, can be determined via the EVR criterion
or set as six) with the CDF transformation.

α = 0.2 α = 0.05

EVR K = 6 EVR K = 6

h F M F M F M F M

1 1.41 1.55 1.37 1.40 2.09 2.28 1.98 2.28
2 1.42 1.52 1.39 1.43 2.09 2.28 1.98 2.28
3 1.47 1.57 1.44 1.47 2.16 2.32 2.04 2.32
4 1.57 1.66 1.53 1.59 2.35 2.45 2.25 2.45
5 2.00 1.95 1.95 1.76 2.84 2.85 2.78 2.85
6 2.28 3.26 2.22 2.99 3.40 4.50 3.35 4.50
7 2.40 3.42 2.38 3.08 3.47 4.63 3.52 4.63
8 2.55 3.69 2.51 3.35 3.55 5.17 3.49 5.17
9 2.63 4.36 2.59 3.99 3.46 6.00 3.51 6.00
10 3.87 6.04 3.83 5.58 5.23 7.71 5.34 7.71
11 4.38 6.19 4.21 5.84 6.13 9.03 6.01 9.03
12 5.46 7.40 5.25 7.40 8.27 11.78 8.03 11.78
13 4.34 7.24 4.35 6.65 6.15 16.56 6.30 16.56
14 4.68 8.20 5.26 8.24 8.63 15.28 9.11 15.28
15 3.35 11.84 3.51 12.36 11.83 18.55 15.28 18.55

Sα,ξ
[̂
ds,lbν+ξ (u), d̂

s,ub
ν+ξ (u), d

s
ν+ξ (u)

]
=

[̂
ds,ubν+ξ (u)− d̂s,lbν+ξ (u)

]
+ 2
α

[̂
ds,lbν+ξ (u)− dsn+ξ (u)

]
1

{
dsν+ξ (u) < d̂s,lbν+ξ (u)

}
+ 2
α

[
dsν+ξ (u)− d̂s,ubν+ξ (u)

]
1

{
dν+ξ (u) > d̂s,ubν+ξ (u)

}
,

where the level of significance is customarily set to α = 0.2 or 0.05. The interval score rewards a
narrow prediction interval width if and only if 100(1 − α)% of the holdout densities lies within the
prediction interval.

For different ages and years in the test set, the mean interval score is defined by

Sα(h) = 1
111 × (16 − h)

×
16∑
ξ=h

111∑
u=1

Sα,ξ
[̂
ds,lbν+ξ (u), d̂

s,ub
ν+ξ (u), d

s
ν+ξ (u)

]
.

Averaging over all forecast horizons, we obtain the overall mean interval score

Sα = 1
15

15∑
h=1

Sα(h),

M[Sα] = median[Sα(h)].

4.3. Interval forecast results

For h = 1, 2, . . . , 15, we present the estimated values of ξα obtained from the univariate functional
time-series model with the CDF transformation in Table 1. Regardless of the method used to select
the number of principal components retained, the values of ξα exhibit an increasing trend as h
increases. This pattern highlights the increasing uncertainty associated with longer-term forecasts.
When h = 15, there exists a numerical instability issue since we have only 2 years of data samples in
the validation set.

For various functional time-series models with the EVR criterion to select the number of com-
ponents, we evaluate and compare their ECPh, CPDh and Sα,h, where h = 1, . . . , 15. In Table 2, we
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Table 2. At the nominal coverage probabilities of 80%, we evaluate and compare the interval forecast accuracy between the con-
formal and standard deviation approaches, measured by ECP, CPD and Sα , for three functional time-series models with the EVR
criterion for selecting the number of components.

CDF CLR

Sex Metric Approach UFTS MFTS MLFTS UFTS MFTS MLFTS

F ECP sd 0.759 0.807 0.857 0.735 0.954 0.883
conformal 0.694 0.729 0.776 0.594 0.852 0.809

M[ECP] sd 0.757 0.840 0.838 0.707 0.985 0.905
conformal 0.671 0.741 0.769 0.601 0.870 0.804

CPD sd 0.050 0.048 0.062 0.092 0.154 0.085
conformal 0.106 0.071 0.037 0.206 0.055 0.047

M[CPD] sd 0.043 0.047 0.038 0.093 0.185 0.105
conformal 0.129 0.059 0.032 0.199 0.070 0.047

Sα sd 470.641 450.607 279.509 440.152 304.421 282.987
conformal 447.700 430.650 285.221 422.189 308.855 258.568

M[Sα ] sd 480.484 407.819 249.753 475.842 280.564 262.005
conformal 460.567 400.257 270.113 438.396 319.200 234.998

M ECP sd 0.845 0.702 0.802 0.950 0.662 0.833
conformal 0.728 0.629 0.712 0.952 0.545 0.763

M[ECP] sd 0.855 0.685 0.790 0.947 0.665 0.839
conformal 0.695 0.642 0.709 0.947 0.553 0.736

CPD sd 0.053 0.098 0.032 0.150 0.138 0.080
conformal 0.086 0.171 0.106 0.152 0.255 0.078

M[CPD] sd 0.055 0.115 0.027 0.147 0.135 0.069
conformal 0.105 0.158 0.091 0.147 0.247 0.087

Sα sd 324.628 297.966 286.152 520.602 406.046 291.875
conformal 279.971 290.123 272.383 461.792 390.239 247.519

M[Sα ] sd 341.024 309.338 296.565 548.271 433.355 299.644
conformal 310.794 305.092 285.865 495.595 415.860 256.614

Note: Based on the ECP and CPD, we highlight in bold the functional time-series method with the smallest values for each of the
two approaches.

present the averaged metrics ECP, CPD and Sα , as well as the median M[ECPh], M[CPDh] and
M[Sα,h]. At the α = 0.2 significance level, the conformal prediction interval approach coupled with
theMLFTS generally provides the smallest mean andmedian CPD values and interval scores for both
the CDF and CLR transformations.

For female data, under the CDF transformation, theMFTS (standard deviation approach) achieves
the lowest mean CPD, while the MLFTS attains the lowest median CPD and the smallest mean and
median interval scores. Under the CLR transformation, the UFTS minimizes median CPD but is
slightly less effective than the MLFTS in mean CPD and interval scores.

For male data, under the CDF transformation, the MLFTS achieves the lowest mean and median
CPD as well as the smallest interval scores. Under the CLR transformation, the MLFTS yields the
smallest mean and median CPD. Taking into account the smallest mean and median interval scores,
the MLFTS is the recommended choice.

At the α = 0.05 significance level, Table 3 highlights the conformal prediction interval with the
MLFTSmethod as the best performer for female data under the CDF transformation. Under the CLR
transformation, the MFTS method outperforms UFTS. For male data, MLFTS is recommended with
the CLR transformation, while UFTS produces smaller CPD values and interval scores under the
CDF transformation.

For female data, MLFTS achieves the lowest mean andmedian CPD, along with the smallest inter-
val scores, under both the CDF and CLR transformations. For male data, the UFTS yields the lowest
mean and median CPD, although the MLFTS and MFTS provide better interval scores. Under the
CLR transformation, the UFTS attains the smallest mean and median CPD, but considering interval
scores, the MLFTS remains the preferred choice. For comparison, we also considerK = 6 number of
components and report their results in the Appendix 1.



10 H. L. SHANG AND S. HABERMAN

Table 3. At the nominal coverage probabilities of 95%, we evaluate and compare the interval forecast accuracy between the con-
formal and standard deviation approaches, measured by ECPh , CPDh and Sα,h , for three functional time-series models with the EVR
criterion for selecting the number of components.

CDF CLR

Sex Metric Approach UFTS MFTS MLFTS UFTS MFTS MLFTS

F ECP sd 0.856 0.872 0.948 0.854 0.988 0.954
conformal 0.761 0.795 0.869 0.688 0.909 0.886

M[ECP] sd 0.868 0.885 0.958 0.857 0.999 0.962
conformal 0.751 0.795 0.887 0.715 0.912 0.905

CPD sd 0.094 0.078 0.023 0.096 0.038 0.023
conformal 0.189 0.155 0.081 0.262 0.041 0.064

M[CPD] sd 0.082 0.065 0.023 0.093 0.049 0.023
conformal 0.199 0.155 0.063 0.235 0.038 0.045

Sα sd 902.186 834.717 455.273 744.670 453.627 452.517
conformal 1068.769 922.037 410.163 846.837 346.150 335.551

M[Sα ] sd 926.920 763.808 324.887 702.110 407.010 368.169
conformal 1012.438 795.885 370.749 841.039 342.580 358.339

M ECP sd 0.946 0.886 0.921 0.977 0.873 0.939
conformal 0.798 0.718 0.784 0.975 0.636 0.853

M[ECP] sd 0.953 0.873 0.908 0.985 0.867 0.929
conformal 0.743 0.730 0.755 0.980 0.637 0.851

CPD sd 0.018 0.068 0.040 0.031 0.078 0.038
conformal 0.152 0.232 0.167 0.026 0.314 0.097

M[CPD] sd 0.014 0.077 0.042 0.035 0.083 0.036
conformal 0.207 0.220 0.195 0.030 0.313 0.099

Sα sd 493.131 475.002 456.609 660.490 611.946 460.363
conformal 422.177 579.461 501.265 522.754 839.853 368.778

M[Sα ] sd 448.888 425.326 445.072 750.222 552.793 447.374
conformal 457.082 572.234 483.798 579.485 848.386 374.045

5. Conclusion

We propose a general strategy for constructing prediction intervals for the age distribution of death.
This approach leverages a validation set to determine an optimal tuning parameter that aligns empir-
ical and nominal coverage probabilities. Using this optimized parameter, we construct prediction
intervals for the testing set.

To illustrate the effectiveness of this strategy, we analyze Japanese age- and sex-specific life-table
death counts, comparing three functional time-series forecasting models: univariate, multivariate,
and multilevel functional time-series models. Our findings suggest that the multilevel functional
time-seriesmethod generally performs best. Additionally, when selecting the number of components,
we find little difference between the EVR criterion and the setting K = 6. Given that overfitting does
not adversely affect the accuracy of the forecast, we recommend the latter.

Using the age distribution of deaths, we present our methodology for constructing distribution-
free and model-agnostic prediction intervals. Other measures of mortality, such as age-specific
mortality rates or hazard rates, could also be considered in the modeling. In Appendices 2 and 3,
we demonstrate our proposed sd approach for constructing prediction intervals and evaluating its
empirical coverage probability using the Australian and Canadian age- and sex-specific log mortality
rates, respectively. Using the proposed sd approach, it achieves superior finite-sample coverage proba-
bility in comparison to the classical functional time-series model of Hyndman and Ullah (2007). The
method of Hyndman and Ullah (2007) computes the total variance and constructs the prediction
interval parametrically based on the assumption of a Gaussian distribution.

There are at least five ways inwhich themethodology can be extended. (1) The functional standard
deviation was computed coordinate-wise. Several functional depths exist, which can be implemented
to compute other variants of standard deviations. (2) Instead of symmetric prediction intervals, one
can consider asymmetric ones. In that case, two tuning parameters are needed to adjust the lower
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and upper bounds. (3) The data set was divided equally into training, validation, and testing samples.
Other proportions may be possible and lead to a more accurate selection of the tuning parameter ξα
and more accurate interval forecasts. (4) For demonstration, we implemented a suite of functional
time-series models. Other time-series extrapolation models may also be considered. (5) We use the
life-table data directly in our modeling, but we could extend the analysis by incorporating their esti-
mation error into the model, reflecting the underlying observational data used to contruct the life
table.
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Appendices

Appendix 1. Interval forecast results when K = 6
In Tables A1 and A2, we present the interval forecast accuracy between the conformal and standard deviation
approaches for three functional time-series models with the first six retained components at the nominal coverage
probabilities of 80% and 95%, respectively.

From Table A1, the MFTS and MLFTS outperform the UFTS with smaller mean and median CPD and interval
scores for both approaches. However, for male data, the UFTS achieves a lower CPD using the standard deviation
approach with the CLR transformation.

From Table A2, the MFTS and MLFTS outperform the UFTS with smaller mean and median CPD and interval
scores for both approaches. However, for male data, the UFTS achieves a lower CPD and an interval score using the
standard deviation approach with the CDF transformation.

Appendix 2. Australian age-specific mortality rates
We analyze Australian age- and sex-specificmortality rates spanning from 1921 to 2020, obtained fromHumanMortal-
ity Database (2025). These rates represent the ratio of death counts to population exposure in each respective year and
age group (based on one-year intervals). Our study covers age groups from 0 to 99 in single years, with the final group
covering ages 100 and above. Age-specific mortality rates are often modeled and forecasted using natural logarithmic
transformations. In Figure A1, we present rainbow plots for log mortality rates.

In Table A3, we compute the empirical coverage probability specific to each horizon and its coverage probability
difference for the sd approach at the nominal coverage probability 80%. For comparison, we implement the parametric

Table A1. At the nominal coverage probabilities of 80%, we evaluate and compare the interval forecast accuracy between the
conformal and standard deviation approaches, measured by ECP, CPD and Sα , for three functional time-series models with K = 6.

CDF CLR

Sex Metric Approach UFTS MFTS MLFTS UFTS MFTS MLFTS

F ECP sd 0.750 0.801 0.833 0.785 0.835 0.878
conformal 0.681 0.726 0.766 0.654 0.815 0.753

M[ECP] sd 0.746 0.809 0.832 0.771 0.821 0.873
conformal 0.662 0.726 0.764 0.677 0.825 0.755

CPD sd 0.061 0.036 0.037 0.050 0.071 0.083
conformal 0.119 0.074 0.035 0.146 0.065 0.061

M[CPD] sd 0.054 0.035 0.034 0.042 0.066 0.073
conformal 0.138 0.074 0.036 0.123 0.072 0.045

Sα sd 425.527 336.788 309.193 376.570 309.369 274.407
conformal 404.812 327.194 311.363 351.138 256.756 259.693

M[Sα ] sd 422.625 318.620 264.745 362.494 281.715 232.967
conformal 408.239 324.021 293.286 367.602 265.018 270.223

M ECP sd 0.815 0.737 0.825 0.854 0.747 0.887
conformal 0.701 0.652 0.740 0.768 0.652 0.810

M[ECP] sd 0.820 0.735 0.820 0.841 0.733 0.875
conformal 0.669 0.655 0.728 0.783 0.646 0.819

CPD sd 0.035 0.063 0.026 0.057 0.058 0.087
conformal 0.101 0.148 0.068 0.066 0.148 0.025

M[CPD] sd 0.034 0.065 0.020 0.041 0.067 0.075
conformal 0.131 0.145 0.072 0.049 0.154 0.021

Sα sd 332.674 318.413 289.418 336.100 444.925 275.450
conformal 285.552 302.708 263.287 279.133 406.393 234.783

M[Sα ] sd 354.513 347.581 331.476 338.271 457.361 289.172
conformal 327.190 308.440 298.650 274.904 448.065 257.413

Note: Based on the ECP and CPD, we highlight in bold the functional time-series method with the smallest values for each of the
two approaches.

https://doi.org/10.1136/bmjopen-2011-000128
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Table A2. At the nominal coverage probabilities of 95%, we evaluate and compare the interval forecast accuracy between the
conformal and standard deviation approaches, measured by ECPh , CPDh and Sα,h , for three functional time-series models with
K = 6.

CDF CLR

Sex Metric Approach UFTS MFTS MLFTS UFTS MFTS MLFTS

F ECP sd 0.859 0.891 0.931 0.900 0.924 0.963
conformal 0.755 0.801 0.839 0.745 0.887 0.833

M[ECP] sd 0.865 0.884 0.929 0.892 0.923 0.971
conformal 0.742 0.806 0.824 0.776 0.868 0.841

CPD sd 0.091 0.059 0.023 0.050 0.048 0.022
conformal 0.195 0.149 0.111 0.205 0.064 0.117

M[CPD] sd 0.085 0.066 0.023 0.058 0.042 0.021
conformal 0.208 0.144 0.126 0.174 0.082 0.109

Sα sd 783.946 582.336 491.354 613.577 557.077 434.461
conformal 943.683 652.737 574.971 606.063 379.501 341.970

M[Sα ] sd 732.045 510.697 371.856 532.389 445.167 326.626
conformal 852.400 573.037 437.359 521.617 343.097 358.741

M ECP sd 0.946 0.882 0.937 0.942 0.867 0.961
conformal 0.771 0.742 0.814 0.848 0.749 0.877

M[ECP] sd 0.953 0.872 0.938 0.945 0.864 0.956
conformal 0.717 0.744 0.786 0.851 0.747 0.886

CPD sd 0.018 0.068 0.022 0.030 0.083 0.015
conformal 0.179 0.208 0.136 0.102 0.201 0.073

M[CPD] sd 0.014 0.078 0.019 0.027 0.086 0.008
conformal 0.233 0.206 0.164 0.099 0.203 0.064

Sα sd 493.131 602.081 493.277 662.022 762.599 462.813
conformal 454.399 632.817 418.730 442.703 874.558 327.106

M[Sα ] sd 448.888 562.958 477.297 575.785 836.510 408.421
conformal 518.473 639.114 434.471 354.886 886.527 333.583

approach of Hyndman and Ullah (2007) implemented in the ftsa package in . Using data from 1921 to 1976, we
computed the forecasts for the validation period from 1977 to 1998. For h = 1, 2, . . . , 21, we determine the optimal
tuning parameters, with which we evaluate the empirical coverage probability based on the test period from 1999 to
2020. The proposed sd approach achieves superior finite-sample coverage in comparison to the parametric approach
based on the total variance under the Gaussian distribution assumption.

In Table A4, we report the empirical coverage probability specific to each horizon and its coverage probabil-
ity difference for the sd approach at the nominal level 95%. Compared with the parametric approach of Hyndman
and Ullah (2007), the sd approach achieves superior finite-sample coverage probability and often produces empirical
coverage probability at and above the nominal level.

Appendix 3. Canadian age-specific mortality rates
We also analyze Canadian age- and sex-specific mortality rates spanning from 1921 to 2022, obtained from the Human
Mortality Database (2025). Our study covers age groups from 0 to 99 in single years, with the final group covering ages
100 and above. We present rainbow plots for log mortality rates in Figure A2, where the data from the distant past are
shown in red and the more recent data in purple.

In Table A5, we compute the horizon-specific empirical coverage probability and its coverage probability difference
for the sd approach at the 80% nominal coverage probability. Using data from 1921 to 1978, we computed the forecasts
for the validation period from 1979 to 2000. For h = 1, 2, . . . , 21, we determine the optimal tuning parameters, with
which we evaluate the empirical coverage probability based on the test period from 2001 to 2022. The sd approach
achieves superior finite-sample coverage probability and often produces empirical coverage probability around the
nominal level.

In Table A6, we display the horizon-specific empirical coverage probability and its coverage probability difference
for the sd approach at the 95% nominal coverage probability. Compared with the parametric approach of Hyndman
and Ullah (2007), the sd approach achieves superior finite-sample coverage probability and often produces empirical
coverage probability at and above the nominal level.
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Table A3. At the nominal coverage probability of 80%,we compute the empirical coverage probability and its coverage probability
difference between the sd approach and parametric approach.

sd approach parametric approach

Female Male Female Male

Smooth Raw Smooth Raw Smooth Raw Smooth Raw

h ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD

1 0.807 0.007 0.802 0.002 0.815 0.015 0.849 0.049 0.545 0.255 0.746 0.054 0.573 0.227 0.738 0.062
2 0.819 0.019 0.836 0.036 0.846 0.046 0.849 0.049 0.544 0.256 0.749 0.051 0.529 0.271 0.686 0.114
3 0.815 0.015 0.838 0.038 0.875 0.075 0.875 0.075 0.552 0.248 0.739 0.061 0.498 0.302 0.645 0.155
4 0.829 0.029 0.845 0.045 0.903 0.103 0.900 0.100 0.553 0.247 0.730 0.070 0.476 0.324 0.594 0.206
5 0.824 0.024 0.842 0.042 0.923 0.123 0.926 0.126 0.558 0.242 0.726 0.074 0.450 0.350 0.563 0.237
6 0.832 0.032 0.856 0.056 0.949 0.149 0.945 0.145 0.562 0.238 0.715 0.085 0.425 0.375 0.533 0.267
7 0.822 0.022 0.853 0.053 0.954 0.154 0.957 0.157 0.544 0.256 0.697 0.103 0.405 0.395 0.502 0.298
8 0.825 0.025 0.861 0.061 0.980 0.180 0.983 0.183 0.547 0.253 0.700 0.100 0.389 0.411 0.496 0.304
9 0.822 0.022 0.873 0.073 0.993 0.193 0.988 0.188 0.557 0.243 0.690 0.110 0.380 0.420 0.497 0.303
10 0.819 0.019 0.881 0.081 0.989 0.189 0.984 0.184 0.560 0.240 0.691 0.109 0.369 0.431 0.486 0.314
11 0.830 0.030 0.870 0.070 0.979 0.179 0.979 0.179 0.547 0.253 0.676 0.124 0.371 0.429 0.481 0.319
12 0.833 0.033 0.887 0.087 0.977 0.177 0.984 0.184 0.557 0.243 0.671 0.129 0.364 0.436 0.466 0.334
13 0.849 0.049 0.885 0.085 0.983 0.183 0.990 0.190 0.566 0.234 0.673 0.127 0.366 0.434 0.471 0.329
14 0.827 0.027 0.914 0.114 0.983 0.183 0.985 0.185 0.554 0.246 0.673 0.127 0.372 0.428 0.483 0.317
15 0.830 0.030 0.901 0.101 0.978 0.178 0.978 0.178 0.561 0.239 0.663 0.137 0.395 0.405 0.459 0.341
16 0.789 0.011 0.881 0.081 0.969 0.169 0.963 0.163 0.549 0.251 0.652 0.148 0.402 0.398 0.463 0.337
17 0.807 0.007 0.875 0.075 0.969 0.169 0.959 0.159 0.540 0.260 0.645 0.155 0.408 0.392 0.464 0.336
18 0.794 0.006 0.861 0.061 0.970 0.170 0.956 0.156 0.507 0.293 0.650 0.150 0.420 0.380 0.461 0.339
19 0.829 0.029 0.869 0.069 0.978 0.178 0.975 0.175 0.505 0.295 0.641 0.159 0.426 0.374 0.475 0.325
20 0.825 0.025 0.931 0.131 0.927 0.127 0.921 0.121 0.492 0.308 0.647 0.153 0.419 0.381 0.488 0.312
21 0.856 0.056 0.931 0.131 0.876 0.076 0.921 0.121 0.550 0.250 0.673 0.127 0.426 0.374 0.485 0.315
Mean 0.823 0.025 0.871 0.071 0.944 0.144 0.946 0.146 0.545 0.255 0.688 0.112 0.422 0.378 0.521 0.279

Table A4. At the nominal coverage probability of 95%,we compute the empirical coverage probability and its coverage probability
difference between the sd approach and parametric approach.

sd approach parametric approach

Female Male Female Male

Smooth Raw Smooth Raw Smooth Raw Smooth Raw

h ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD

1 0.933 0.017 0.938 0.012 0.949 0.001 0.964 0.014 0.715 0.235 0.907 0.043 0.752 0.198 0.899 0.051
2 0.938 0.012 0.943 0.007 0.972 0.022 0.980 0.030 0.722 0.228 0.906 0.044 0.736 0.214 0.883 0.067
3 0.943 0.007 0.952 0.002 0.973 0.023 0.982 0.032 0.722 0.228 0.905 0.045 0.707 0.243 0.848 0.102
4 0.947 0.003 0.957 0.007 0.981 0.031 0.984 0.034 0.741 0.209 0.899 0.051 0.688 0.262 0.826 0.124
5 0.952 0.002 0.964 0.014 0.989 0.039 0.988 0.038 0.737 0.213 0.893 0.057 0.644 0.306 0.806 0.144
6 0.944 0.006 0.956 0.006 0.991 0.041 0.997 0.047 0.732 0.218 0.888 0.062 0.620 0.330 0.775 0.175
7 0.940 0.010 0.958 0.008 0.993 0.043 0.991 0.041 0.727 0.223 0.876 0.074 0.592 0.358 0.751 0.199
8 0.947 0.003 0.964 0.014 0.999 0.049 0.997 0.047 0.723 0.227 0.884 0.066 0.585 0.365 0.739 0.211
9 0.937 0.013 0.964 0.014 1.000 0.050 1.000 0.050 0.723 0.227 0.883 0.067 0.574 0.376 0.732 0.218
10 0.941 0.009 0.966 0.016 1.000 0.050 1.000 0.050 0.717 0.233 0.858 0.092 0.561 0.389 0.720 0.230
11 0.947 0.003 0.972 0.022 0.998 0.048 0.993 0.043 0.715 0.235 0.861 0.089 0.568 0.382 0.705 0.245
12 0.945 0.005 0.977 0.027 0.995 0.045 1.000 0.050 0.698 0.252 0.849 0.101 0.557 0.393 0.697 0.253
13 0.944 0.006 0.977 0.027 0.995 0.045 0.999 0.049 0.691 0.259 0.846 0.104 0.574 0.376 0.693 0.257
14 0.944 0.006 0.981 0.031 0.994 0.044 0.994 0.044 0.691 0.259 0.838 0.112 0.582 0.368 0.691 0.259
15 0.965 0.015 0.984 0.034 0.996 0.046 0.990 0.040 0.689 0.261 0.832 0.118 0.571 0.379 0.676 0.274
16 0.949 0.001 0.987 0.037 0.992 0.042 0.982 0.032 0.679 0.271 0.826 0.124 0.576 0.374 0.668 0.282
17 0.957 0.007 0.975 0.025 0.995 0.045 0.990 0.040 0.685 0.265 0.820 0.130 0.576 0.374 0.660 0.290
18 0.937 0.013 0.978 0.028 0.996 0.046 0.980 0.030 0.685 0.265 0.822 0.128 0.560 0.390 0.659 0.291
19 0.955 0.005 0.980 0.030 1.000 0.050 1.000 0.050 0.671 0.279 0.832 0.118 0.554 0.396 0.661 0.289
20 0.944 0.006 0.990 0.040 0.990 0.040 0.990 0.040 0.677 0.273 0.805 0.145 0.548 0.402 0.644 0.306
21 0.975 0.025 0.970 0.020 0.965 0.015 0.990 0.040 0.723 0.227 0.837 0.113 0.554 0.396 0.673 0.277
Mean 0.947 0.008 0.968 0.020 0.989 0.039 0.990 0.040 0.708 0.242 0.860 0.090 0.604 0.346 0.734 0.216
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Table A5. At the nominal coverage probability of 80%,we compute the empirical coverage probability and its coverage probability
difference between the sd approach and parametric approach for the Canadian data.

sd approach parametric approach

Female Male Female Male

Smooth Raw Smooth Raw Smooth Raw Smooth Raw

h ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD

1 0.769 0.031 0.775 0.025 0.742 0.058 0.728 0.072 0.571 0.229 0.766 0.034 0.498 0.302 0.649 0.151
2 0.773 0.027 0.786 0.014 0.738 0.062 0.712 0.088 0.588 0.212 0.761 0.039 0.444 0.356 0.587 0.213
3 0.768 0.032 0.764 0.036 0.726 0.074 0.702 0.098 0.566 0.234 0.732 0.068 0.403 0.397 0.535 0.265
4 0.770 0.030 0.755 0.045 0.736 0.064 0.714 0.086 0.581 0.219 0.736 0.064 0.398 0.402 0.508 0.292
5 0.743 0.057 0.733 0.067 0.734 0.066 0.724 0.076 0.557 0.243 0.691 0.109 0.372 0.428 0.481 0.319
6 0.744 0.056 0.732 0.068 0.740 0.060 0.726 0.074 0.543 0.257 0.680 0.120 0.362 0.438 0.467 0.333
7 0.749 0.051 0.731 0.069 0.749 0.051 0.729 0.071 0.545 0.255 0.666 0.134 0.353 0.447 0.452 0.348
8 0.745 0.055 0.716 0.084 0.760 0.040 0.737 0.063 0.530 0.270 0.647 0.153 0.341 0.459 0.439 0.361
9 0.744 0.056 0.732 0.068 0.793 0.007 0.778 0.022 0.521 0.279 0.632 0.168 0.345 0.455 0.438 0.362
10 0.724 0.076 0.706 0.094 0.815 0.015 0.784 0.016 0.515 0.285 0.618 0.182 0.350 0.450 0.427 0.373
11 0.723 0.077 0.713 0.087 0.836 0.036 0.800 0.000 0.505 0.295 0.601 0.199 0.366 0.434 0.441 0.359
12 0.734 0.066 0.714 0.086 0.883 0.083 0.846 0.046 0.485 0.315 0.585 0.215 0.351 0.449 0.431 0.369
13 0.747 0.053 0.730 0.070 0.850 0.050 0.828 0.028 0.503 0.297 0.589 0.211 0.356 0.444 0.434 0.366
14 0.740 0.060 0.722 0.078 0.862 0.062 0.810 0.010 0.492 0.308 0.585 0.215 0.366 0.434 0.430 0.370
15 0.751 0.049 0.713 0.087 0.829 0.029 0.797 0.003 0.460 0.340 0.546 0.254 0.351 0.449 0.415 0.385
16 0.692 0.108 0.683 0.117 0.851 0.051 0.843 0.043 0.429 0.371 0.506 0.294 0.341 0.459 0.407 0.393
17 0.705 0.095 0.691 0.109 0.855 0.055 0.835 0.035 0.422 0.378 0.490 0.310 0.337 0.463 0.381 0.419
18 0.713 0.087 0.695 0.105 0.899 0.099 0.877 0.077 0.414 0.386 0.497 0.303 0.327 0.473 0.386 0.414
19 0.782 0.018 0.755 0.045 0.943 0.143 0.928 0.128 0.411 0.389 0.520 0.280 0.329 0.471 0.351 0.449
20 0.746 0.054 0.634 0.166 0.881 0.081 0.878 0.078 0.360 0.440 0.469 0.331 0.314 0.486 0.333 0.467
21 0.762 0.038 0.634 0.166 0.792 0.008 0.832 0.032 0.287 0.513 0.391 0.409 0.337 0.463 0.337 0.463
Mean 0.744 0.056 0.720 0.080 0.810 0.057 0.791 0.055 0.490 0.310 0.605 0.195 0.364 0.436 0.444 0.356

Table A6. At the nominal coverage probability of 95%,we compute the empirical coverage probability and its coverage probability
difference between the sd approach and parametric approach.

sd approach parametric approach

Female Male Female Male

Smooth Raw Smooth Raw Smooth Raw Smooth Raw

h ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD ECP CPD

1 0.918 0.032 0.907 0.043 0.892 0.058 0.881 0.069 0.738 0.212 0.902 0.048 0.683 0.267 0.845 0.105
2 0.925 0.025 0.915 0.035 0.876 0.074 0.864 0.086 0.746 0.204 0.897 0.053 0.613 0.337 0.778 0.172
3 0.906 0.044 0.900 0.050 0.855 0.095 0.851 0.099 0.733 0.217 0.865 0.085 0.560 0.390 0.710 0.240
4 0.916 0.034 0.903 0.047 0.855 0.095 0.858 0.092 0.735 0.215 0.865 0.085 0.538 0.412 0.670 0.280
5 0.895 0.055 0.881 0.069 0.864 0.086 0.848 0.102 0.704 0.246 0.837 0.113 0.528 0.422 0.642 0.308
6 0.878 0.072 0.867 0.083 0.871 0.079 0.858 0.092 0.694 0.256 0.822 0.128 0.497 0.453 0.615 0.335
7 0.877 0.073 0.860 0.090 0.876 0.074 0.858 0.092 0.691 0.259 0.806 0.144 0.494 0.456 0.612 0.338
8 0.869 0.081 0.844 0.106 0.894 0.056 0.878 0.072 0.673 0.277 0.788 0.162 0.498 0.452 0.601 0.349
9 0.866 0.084 0.854 0.096 0.895 0.055 0.875 0.075 0.656 0.294 0.778 0.172 0.487 0.463 0.588 0.362
10 0.847 0.103 0.840 0.110 0.902 0.048 0.882 0.068 0.648 0.302 0.750 0.200 0.489 0.461 0.586 0.364
11 0.851 0.099 0.847 0.103 0.920 0.030 0.903 0.047 0.634 0.316 0.737 0.213 0.506 0.444 0.593 0.357
12 0.869 0.081 0.829 0.121 0.954 0.004 0.938 0.012 0.628 0.322 0.714 0.236 0.515 0.435 0.598 0.352
13 0.869 0.081 0.847 0.103 0.935 0.015 0.940 0.010 0.630 0.320 0.727 0.223 0.525 0.425 0.592 0.358
14 0.834 0.116 0.826 0.124 0.964 0.014 0.978 0.028 0.617 0.333 0.722 0.228 0.528 0.422 0.601 0.349
15 0.838 0.112 0.832 0.118 0.944 0.006 0.978 0.028 0.597 0.353 0.712 0.238 0.519 0.431 0.580 0.370
16 0.825 0.125 0.818 0.132 0.963 0.013 0.972 0.022 0.562 0.388 0.673 0.277 0.506 0.444 0.567 0.383
17 0.810 0.140 0.784 0.166 0.972 0.022 0.979 0.029 0.558 0.392 0.649 0.301 0.493 0.457 0.569 0.381
18 0.808 0.142 0.810 0.140 0.980 0.030 0.974 0.024 0.562 0.388 0.657 0.293 0.497 0.453 0.543 0.407
19 0.879 0.071 0.901 0.049 0.998 0.048 0.978 0.028 0.564 0.386 0.653 0.297 0.460 0.490 0.532 0.418
20 0.911 0.039 0.908 0.042 0.990 0.040 0.970 0.020 0.521 0.429 0.640 0.310 0.426 0.524 0.475 0.475
21 0.881 0.069 0.876 0.074 0.980 0.030 0.941 0.009 0.480 0.470 0.634 0.316 0.431 0.519 0.480 0.470
Mean 0.870 0.080 0.859 0.091 0.923 0.046 0.914 0.053 0.637 0.313 0.754 0.196 0.514 0.436 0.608 0.342
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Figure A1. Rainbow plots of the original and smoothed age-specific mortality rates for the Australian female and male data from
1921 to 2020. Smoothing was performed via penalized spline with monotonic constraint described in Hyndman and Ullah (2007).
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Figure A2. Rainbow plots of the original and smoothed age-specific mortality rates for the Canadian female and male data from
1921 to 2022.
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