

City, University of London Institutional Repository

Citation: Courtois, H., Aouf, N., Ahiska, K. & Cecotti, M. (2024). NDT RC: Normal

Distribution Transform Occupancy 3D Mapping With Recentering. IEEE Transactions on
Intelligent Vehicles, 9(1), pp. 2999-3009. doi: 10.1109/tiv.2023.3250326

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35707/

Link to published version: https://doi.org/10.1109/tiv.2023.3250326

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

NDT RC: Normal Distribution Transform
Occupancy 3D Mapping with Recentering

Hugo Courtois∗, Nabil Aouf†, Kenan Ahiska‡ and Marco Cecotti§

Abstract—The Normal Distribution Transform Occupancy
Map (NDT OM) is a mapping algorithm able to represent a dy-
namic 3D environment. The resulting map has fixed boundaries,
thus a robot with unbounded displacement might fall outside of
the map due to memory limitation. In this paper, a recentering
algorithm called NDT RC is proposed to avoid this issue. NDT
RC extends the use of NDT OM for vehicles with unbounded
displacements. NDT RC provides a seamless translation of the
map as the robot gets far from the center of the previous map.
The influence of NDT RC on the precision of the estimated
trajectory of the robot, or odometry, is examined on two publicly
available datasets, the KITTI and Ford datasets. An analysis
of the sensitivity of the NDT RC to its tuning parameters is
carried out using the Ford dataset, while the KITTI dataset is
used to measure the influence of the density of the input point
cloud. The results show that the proposed recentering strategy
improves the accuracy of the odometry calculated by registering
the latest lidar scan on the generated map compared to other
NDT based approaches (NDT OM, NDT OM Fusion, SE-NDT).
In particular, the proposed method, which does not perform loop
closure, reduces the mean absolute translation error by 16% and
the runtime by 88% compared to the NDT OM Fusion on the
Ford dataset.

Index Terms—NDT, occupancy mapping, KITTI dataset, Ford
dataset, recentering.

I. INTRODUCTION

The creation and maintenance of a reliable map of obstacles
around a robot is a core problem for many autonomous robotic
applications. In particular, maps can provide tools to compute
odometry or avoid obstacles. In this paper, odometry is defined
as the set of poses of the robot computed from scan regis-
tration. Since robots have limited memory and computational
power, a stationary map restricts the radius of action of a robot
to the size of the map. This is an inherent problem of popular
mapping algorithms such as Octomap [1] or NDT OM [2]. In
order to overcome this problem, we propose to displace the
map so that it remains centered on the robot. This prevents
the robot from falling outside of the boundaries of the map.

Desirable properties for a map to be used in robotic applica-
tions are 3D capabilities, real time update rate and adaptability
to dynamic changes in the environment. A widely used method
to represent the environment is the occupancy grid map [3],

Manuscript received on
∗Hugo Courtois is with Outsight, 2 rue de Berite, 75006, Paris, France
†Nabil Aouf is with the Department of Electrical and Electronics Engineer-

ing, City University of London, London, UK
‡Kenan Ahiska is with the Centre for Electronic Warfare, Information and

Cyber, Cranfield University, Defence Academy of the UK, Shrivenham, UK
§Marco Cecotti is with the Advanced Vehicle Engineering Centre, Cranfield

University, Cranfield, UK
This work was part of a PhD thesis at the Centre for Electronic Warfare,

Information and Cyber, Cranfield University, Defence Academy of the UK,
Shrivenham, UK. This work was supported by the Engineering and Physical
Sciences Research Council [grant number EP/K504324/1].

[4]. The original occupancy grid map was developed in 2D.
There are several solutions to extend it to 3D. One of them
is the elevation map, which uses a 2D grid and adds an
associated height for each cell (e.g., [5]). Although efficient in
memory, this approach only allows a single point for a whole
spatial column. This makes structures like windows difficult
to represent which is a problem for aerial robots.

Octomap [1], as a 3D implementation of occupancy maps,
uses octrees to efficiently provide multi-resolution support.
Despite this multi-resolution capability, Octomap operates un-
der the assumption that a cell is either fully occupied, or fully
empty. This means that to provide an accurate representation
of the world, the size of a single cell of the map has to be
smaller than a typical feature of the environment.

A solution to use fewer cells is the Normal Distribution
Transform (NDT), introduced in the 2D case [6], and ex-
tended to 3D by Magnusson, Lilienthal, and Duckett [7].
The NDT operates on a point cloud by computing the mean
and covariance of the points inside each spatial cell. The
obtained NDT representations of two point clouds can then
be matched in order to find the rigid transformation between
them. An experimental study on NDT [8] shows that they
can be as accurate as occupancy grids of finer resolutions.
The combination of the NDT representation with occupancy
mapping update is NDT OM [2], which introduces a recursive
update of the map. NDT OM allows NDTs to be fused into a
unique map. NDT OM is attractive for several reasons:

1) The points from the point cloud are not kept in memory.
Only 11 parameters are required per occupied cell (3 for
the mean, 6 for the covariance, 1 for the number of points,
1 for the occupancy value).

2) NDT representation can be used to retrieve the odometry.
The direct registration of two NDT models is described
in [9] and analytical derivatives are provided for the given
objective function.

3) Multi-resolution is available due to the recursive update
scheme.

4) The obstacle inside a map cell is described by a Gaussian
distribution. This results in a map that can represent the
environment more accurately and with less cells than a
standard occupancy grid map.

Several methods have been proposed to improve the scan
registration process with NDTs: the distribution to distribu-
tion [9] (D2D) algorithm matches two NDTs together, which
is faster and more precise than matching a point cloud with an
NDT. The Segmented Region Growing NDT (SRG-NDT) [10]
adds two main modifications to the D2D NDT. First, the
ground points are removed from the scans. Second, the re-
maining points are clustered using a region growing algorithm.

h.binning
Text Box
© 2023 IEEE. This is the Author Accepted Manuscript issued with: Creative Commons Attribution License (CC:BY 4.0).
The final published version (version of record) is available online at DOI:10.1109/TIV.2023.3250326. Please refer to any applicable publisher terms of use.

h.binning
Text Box
IEEE Transactions on Intelligent Vehicles, Volume 9, Issue 1, January 2024, pp. 2999-3009
DOI: 10.1109/TIV.2023.3250326

2

Those two operations reduce the runtime and increase the
precision compared to D2D NDT. The SE-NDT [11] uses
semantic information to improve the matching stage. Two
NDTs are created, from points belonging to edges and planes.
Then the matching is performed between two NDTs of the
same type. An improvement can be brought to the construction
of the Gaussians inside a cell: using a probabilistic model of
the sensor to define the spatial probability distribution around
individual data points, allows Gaussians to be computed from
a single point. This increases the precision of the matching
process, but slows the algorithm down. The matching process
can also be improved indirectly by using NDT OM: as several
scans are accumulated into the map, the precision of the map
increases. However, since the map used in NDT OM has
spatially fixed boundaries, such a strategy is restricted to a
fixed spatial zone due to memory limitations.

A solution to this problem is proposed with NDT OM
Fusion [12], where the map is divided into tiles. The tiles are
saved on the disk when the vehicle is far enough from them.
Provided enough disk space, this method allows for greater
movement of the robot. In some applications such as obstacle
avoidance, it is however not necessary to keep the map of all
the traversed areas. In this case, there is no need to use disk
space, which would not only reduce the memory requirement,
but also speed up the algorithm since retrieving data on the
disk is slower than fetching it from the memory. Moreover,
a problem noticed with NDT OM Fusion is the loop closure:
if the formerly visited areas are stored, when the robot goes
back to the same area, the matching is more difficult if the
odometry drifted [12]. The proposed algorithm minimizes this
issue by considering a smaller map, centered on the robot,
meaning that the whole map is constantly updated according
to the occupancy scheme. The long term odometry drift is then
less relevant, since there is no matching attempt between the
current map and former areas falling outside the current map.

Note that the two approaches to improve the quality of the
registration, by improving the matching process or by fusing
the consecutive NDTs, are compatible, even though combining
them is outside the scope of this paper.

A well known weakness of pure odometry methods, which
is the case of all NDT based algorithms described above
including NDT RC, is a drift over long trajectory, which has
been tried to be solved with loop closing mechanisms. Loop
closing with NDT has been done through pose graph opti-
mization [13], by accumulating partial NDTs resulting in the
accumulation of several scans. Each partial NDT is associated
with a vertex in a pose graph, and partial maps are registered if
an overlap is likely. In the work of Zaganidis, Zerntev, Duckett,
et al. [14], NDT are classified in 3 categories: planar, linear
or spherical. Histograms of those categories are then built
and used as descriptors. The close descriptors to the current
robot location are then considered, and if the central descriptor
and the considered one are close enough, a registration is
performed between the corresponding maps.

In this paper, we focus on the NDT family of algorithms
since it uses the same representation for modeling the en-
vironment and computing odometry. This is interesting for
applications that can make use of both features, such as

obstacle avoidance, where the sensor limited field of view and
resolution can be compensated by a mapping algorithm [15].

Other approaches having this same advantage have been
developed. In the work of Droeschel, Nieuwenhuisen, Beul, et
al. [16], the 3D points are aggregated to form surfels. Sets of
surfels are matched using an expectation-maximization to form
a multi resolution map, which is then used for navigation. This
map can then be shifted using a ring buffer strategy to maintain
the center on the robot. The work of Behley and Stachniss
[17] combines several interesting properties: a surfel map is
built from laser data, allowing odometry computation and map
update at every iteration. Moreover, loop closure is performed
to improve global map consistency. This method projects the
3D laser scan into 2D and computes normals, making it more
difficult to use with LiDARs exhibiting non regular patterns
(e.g., livox avia). It should be noted that although the method
runs in real time, it leverages the rendering pipeline of a GPU,
making it more costly to implement on hardware limited to a
CPU.

It is also possible to perform the odometry computation
separately from the map and obstacles representation. The cur-
rent most precise method on the KITTI odometry dataset [18]
using Laser data only is LOAM (LiDAR Odometry And
Mapping) [19], [20]. It divides the mapping task in two:
a coarse odometry step running at the sensor speed, and a
slower matching and registration step. This method uses 3D
features, corners and surfaces, to register scans together. The
fast odometry step can take advantage of an IMU if available.
While this method provides accurate odometry, the mapping
step cannot be performed for each scan in real time.

The contribution of this paper is twofold. First, an algorithm,
NDT RC, is proposed. It aims at solving the aforementioned
problem with fixed boundaries of NDT OM, without using
the disk as in NDT OM Fusion. The advantages compared
to NDT OM Fusion are faster processing and the absence of
a long term loop closure issue. The disadvantage is that the
full map is not available anymore, which is not an issue for
applications such as obstacle avoidance. In order to test the
proposed algorithm, the precision of the odometry is used
as a metric. This allows to compare NDT RC with NDT
OM Fusion, but also with the algorithms improving the scan
registration part, including the D2D NDT, which is used as a
baseline. The large scale datasets used are the Ford Campus
Vision and Lidar Data Set [21] (Ford dataset) and the KITTI
odometry dataset [18]. Second, an analysis of the sensitivity
of this algorithm to its tuning parameters and the density of
the lidar is carried out. The NDT RC, similar to the NDT OM,
depends on several parameters, and to the best of the authors
knowledge, the influence of those parameters on the precision
of the odometry has not been evaluated.

The NDT RC algorithm has been used in OAST [22],
an algorithm for obstacle avoidance during teleoperation of
UAVs. This paper focuses on the mapping algorithm, while
the aforementioned paper presents the obstacle avoidance
algorithm.

The theory behind NDT OM is described in Section II, then
NDT RC is described in Section III. NDT RC is tested on
two publicly available datasets in Section IV and the influence

3

of its tuning parameters and of the density of the LIDAR is
examined in Section V.

II. BACKGROUND: NDT OM

From a sequence of point clouds, the NDT OM maintains
a map representing the environment of the robot by a list of
normal distributions.

A. Fusion of two NDTs

The 3D NDT is a spatial representation of a scene built
from a point cloud [7]. The space is divided in cubic cells Ci
containing |Ci| 3D points p. Then for each cell, the 3 by 1
mean vector µi and the 3 by 3 covariance matrix Σi of the
points inside the cell are computed:

µi =
1

|Ci|
∑
p∈Ci

p, (1)

Σi =
1

|Ci| − 1

∑
p∈Ci

(p− µi)(p− µi)
T . (2)

For a given point x, the probability to belong to the obstacle
in cell Ci is defined by a normal distribution of mean µi and
covariance Σi: N (x|µi,Σi).

When a new point cloud is available, its NDT representation
is computed as described above. The D2D algorithm [9]
can then be used to register two NDT representations. Once
the rigid transformation between the two NDT representation
has been computed, they can be fused using the Recursive
Sampled Covariance (RSC) scheme [2]. The RSC scheme
aims to fuse two corresponding cells Ci and Cj of mean and
covariance (µi,Σi) and (µj ,Σj) respectively in a new cell
Cij with |Cij | points and mean and covariance (µij ,Σij). The
RSC computes µij , Σij and |Cij | as:

µi+j =
|Ci|µi + |Cj |µj

|Ci|+ |Cj |
, (3)

Σi+j =
1

|Ci|+ |Cj | − 1

[
(|Ci| − 1)Σi + (|Cj | − 1)Σj

+
|Ci| |Cj |

|Ci|+ |Cj |
(µi − µj) (µi − µj)

t

]
,

(4)

|Cij | = |Ci|+ |Cj | . (5)

A weakness of the RSC is the unbounded growth of the
number of points in a cell. In practice, those values will over-
flow with enough runtime. To solve this, Adaptive Recursive
Sample Covariance (ARSC) was developed [2], which applies
a sliding average to the mean and covariance of a cell when
the number of points hits a user defined threshold. The idea is
to define a threshold Mmax for the number of points. It is con-
sidered that above this threshold the influence of n additional
points, with n ≪ Mmax, bring small changes to the mean and
covariance of the cell. When the number of points in a cell
goes above Mmax by n, the mean and covariance are scaled
by Mmax/ (Mmax + n) and (Mmax − 1) / (Mmax + n− 1)
respectively, and the total number of point is then capped at
Mmax.

B. Occupancy update

The lidar provides measurements, which are 3D points zt
at time t. The occupancy is the probability for a cell Ci to
be occupied given the available measurements z1:t at time t:
p (Ci|z1:t). Similar to the occupancy mapping theory [23], the
occupancy of each NDT cell on the path of a ray from the
LIDAR is reduced while the occupancy of a cell containing
a LIDAR point is increased. Using the log odd function
lodd (x) = log

(
x

1−x

)
, the log odd occupancy is updated

using:

lodd (p (Ci|z1:t)) = lodd (p (Ci|z1:t−1))+lodd (p (Ci|zt)) . (6)

Since each cell can contain a normal distribution, Saarinen,
Andreasson, Stoyanov, et al. [2] propose to compute the
probability p (Ci|zt) by estimating the compatibility between
the trajectory of the ray and the Gaussian inside the cell. The
occupancy is reduced by a greater amount when there is an
inconsistency between the map and the LIDAR scan. Let xM

be the point on the ray defined by the measurement zt that
maximizes the probability p (x|N (µi,Σi)). This point can
be computed analytically [2]. The occupancy update for cells
that contain a normal distribution then relies on two quantities:
the probability that xM can be explained by the distribution
inside the cell and the probability that xM can be explained
by the measurement zt (p (xM |zt)). This last probability is
computed by assuming that the distance between xM and zt
can be approximated by a Gaussian distribution centred on zt,
with a variance σ2

s coming from the sensor (p (xM |zt)) [2]:

p (xM |zt) =
1√

(2π)σ2
s

exp

(
−∥xM − zt∥2

2σ2
s

)
. (7)

For instance, a high probability p (xM |N (µi,Σi)) (the ray is
likely to go through an obstacle) paired with a low probability
p (xM |zt) (this obstacle is far from the endpoint of the ray)
means that the confidence in the presence of an obstacle in the
cell should be reduced. On the other hand, a high probability
p (xM |N (µi,Σi)) paired with a high probability p (xM |zt)
is coherent and indicates the likely presence of an obstacle in
the cell. The occupancy update of the cell Ci is then updated
as follows [2]:

p (Ci|zt) =

 α if the cell is empty (with α < 0.5), else
β if zt is in the cell (with β > 0.5), else
0.5− γp (xM |N (µi,Σi)) (1− p (xM |zt)) .

(8)
If the cell is empty or contains zt (thus is considered

occupied), the update is the same as standard occupancy
mapping. If the cell contains a distribution, but not zt, then the
log odd occupancy will be lowered by an amount that depends
on the consistency between the ray and the distribution inside
the cell. The more consistent they are, the closer the occupancy
will be to 0.5. The tuning constants α and β are positive
in the interval [0, 1] and dictate the speed at which the cell
occupancy changes. The tuning constant γ encodes the speed
at which a partially occupied cell is penalized. The quantity
lodd (p (Ci|zt)) is then clamped to the interval [−Kocc,Kocc]
before being used in (6), Kocc being a tuning constant. The

4

influence of those parameters, among others, is studied in
Section V.

The occupancy update should be performed for each point
from the point cloud, using a raytracing algorithm to find each
cell on its path. It is however possible to speed this part of the
algorithm considerably by using the NDT built from the new
point cloud [24]. Instead of considering each point zt from
the point cloud, the mean µi of each distribution is used |Ci|
times.

The result of this process is an updated NDT map containing
normal distributions in the occupied cells and a probability of
each cell being occupied.

III. THE RECENTERING ALGORITHM: NDT RC

The map resulting from the NDT OM algorithm as pre-
sented above is immobile. In order to allow unlimited move-
ment for a mobile robot either ground or aerial, we propose
to move the map with the vehicle. The idea is that each time
the robot moves further than a threshold dthrc from the center
of the map, the map is centered on the new location of the
robot. The map can only translate, it cannot rotate.

Three data structures are used to represent the environment:
the map M , the list of active cells Lac and the list of deleted
cells Ldc. An NDT structure built from a point cloud can then
be represented by a triplet (M,Lac, Ldc). The first element is
the map itself, which only hosts indices, but no actual data.
Initially, the map is full of zeros. Non-zero indices in the map
link each cell to a second array: the list of active cells. Each
active cell contains 11 parameters. A cell becomes active if
one of those two conditions is met: there is a 3D point to
add to the cell or the raytracing algorithm passes through the
cell. In the second case, the mean of the cell is set by default
to the center of the cell. The coordinates represented by the
mean enable the location of active cell on the map, even if
there are no 3D points associated to the cell. This creates a
bidirectional link between the map and the list of active cells.
Once a cell is active, it remains active until it goes out of the
map limits.

For performances reasons, it is better to keep the active
cells grouped in memory, meaning that they are stored in an
array and not a linked list. When an active cell is deleted, its
index in the array is added to the list of deleted cells. When
a new active cell is added, if the list of deleted cells is non
empty, then its first index is chosen to host the new data of
the active cell. If the list of deleted cells is empty, then the list
of active cells is extended. This allows to keep a list of active
cells that is dense. The usage of a list of active cells to store
the actual data reduces the memory requirements compared to
storing the data directly in the map: for standard sizes of 64
bits for a floating point number and 32 bits for an integer, the
proposed scheme is more efficient in memory until the map
reaches more than 85% of the cells occupied. In a realistic
environment, such a number is unlikely to be reached.

The objective of the recentering algorithm is to move all
the cells in the map in an efficient way in order to maintain
the sensor at the center of the map. Since only translation of
the map is performed, this is done by sliding the cells one by

Map

0 0 4 0 2
1 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(4, 1)
(0, 0)

(2, 1)

(a) Before moving cell 1

Map

0 0 4 0 2
0 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(4, 1)

(2, 1)
1

(b) After moving cell 1

Map

0 0 4 0 2
0 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(4, 1)

(2, 1)
1

(c) Before moving cell 2

Map

0 0 2 0 0
0 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(2, 1)

(2, 1)
1

(d) After moving cell 2

Map

0 0 2 0 0
0 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(2, 1)

(2, 1)
1

(e) Before moving cell 4

Map

4 0 2 0 0
0 0 0 0 0

3
Deleted cells

y

x

List of active cells
1
2
3
4

(2, 1)

(0, 1)
1

(f) After moving cell 4
Fig. 1. Illustration of the recentering algorithm for a considered displacement
d of (−2, 0) and a map of 5 × 2 cells. The active cell to be moved is in
pink, the indices of deleted cells are in red, and the other cells are in blue.

one in a fixed direction. Let this direction vector be d. Such
a process is illustrated by Fig. 1.

The recentering algorithm operates sequentially on individ-
ual cells, in the order given by the index of the list of active
cells, by updating the values across M , Lac, and Ldc. First,
the algorithm checks whether the cell should be moved outside
of the current limits of the map and, if this is the case, adds
the cell index to the list of deleted cells. Then, there are two
possibilities: either the index in the map matches the index of
the considered active cell, or it does not. 1) If the index stored
in the map cell is the actual index of the considered active
cells, then it is moved at its new location in the map (note that
there can be a new index here, in this case it is overwritten, see
the second point). This new location is computed by sliding
the map index by d. If the new location is outside the map, the
index is instead added to the list of deleted cells. In both cases,
the former index in the map is deleted. 2) If the index stored
in the map cell does not match the active cell, this implies that
the index of this active cell was overwritten by the previous
displacement of another cell. In this case, the index of the
active cell is still copied to its new location, but the initial
value is not erased since it represents the index of a cell that

5

has already been moved. If the new location is outside the
map, the index of the active cell is added to the list of deleted
cells.

The recentering process is illustrated for the 2D case in
Fig. 1 for a map displacement of (−2, 0). Fig. 1a depicts
the initial state. There is already one deleted cell, and the
list of active cells contains, among others, the mean values
to go back to the map coordinates. In order to simplify the
depiction, the map coordinates are directly represented in the
list of actives cells. The active cell number 1 (Fig. 1a), due
to the displacement of the map, goes out of it. Since the cell
of coordinates (0, 0) in the map hosts the index 1, this index
can be erased. Because this index goes out of the map, it
is added to the list of deleted cells. The result is depicted in
Fig. 1b. Now, the next cell in the list is cell number 2 (Fig. 1c).
Since the cell of coordinates (4, 1) hosts the index 2, actual
index of the current active cell, it can be erased and moved to
its next destination, (2, 1) where it overwrites 4. The internal
coordinates of cell 2 are modified as well (see Fig. 1d). The
next active cell, 3 is skipped because the cell is deleted. The
remaining cell is the number 4 (Fig. 1e). This time, the map
coordinates of cell 4 are (2, 1), but at those coordinates, the
index in the map is 2, and not 4. Thus, the content of the map
cell (2, 1) is not erased, but 4 is still placed into the map cell
(0, 1), and the content of the active cell is updated accordingly
(see Fig. 1f).

The complete mapping algorithm is illustrated in Algo-
rithm 1. Upper indices indicate a reference frame: s for objetcs
in the sensor reference frame (e.g., a LIDAR), m for the
map reference frame or w for the world reference frame.
The map is always aligned with the world reference frame,
but can be translated due to the recentering algorithm shown
above, while the sensor reference frame is attached to the robot
body frame. A rigid transform Ts→m

t transforms a point xs
t

in the sensor reference frame into the map reference frame:
Ts→m

t xs
t = xm

t . For two times t1 and t2, the rigid transform
Ti→j

t1→t2 is defined as: Ti→j
t1 = Ti→j

t2 Ti→j
t1→t2 .

As future work, loop closure using NDT RC could be
implemented in a similar way to [13], using several locally
consistent small NDT maps. That would require storing the
discarded cells from the list of active cells and a global map
storing the location of each fragment. A specific case is to
assume that the operating environment of the robot is fully
known beforehand, which could be the case in industrial use
cases. Then, the NDT of the global map can be computed
beforehand, using the memory layout of NDT RC to reduce
the memory requirement ofr large areas. Drift can then be
avoided without loop closure by matching each new NDT
with the global map. This case is of particular importance for
applications where reliability and fixed runtime are required.

IV. VERIFICATION OF NDT RC

In this section, the odometry produced by the NDT RC
algorithm is tested on two publicly available datasets: the
Ford Campus Vision and Lidar Data Set [21] and the KITTI
odometry dataset [18]. The Ford dataset is chosen as the
competitor technique NDT OM [2] was already evaluated

Algorithm 1: The complete mapping algorithm: NDT
RC
Input : A point cloud Ps

t in the sensor reference
frame at time step t

Output: M , Lac, Ldc are updated and Tm→w
t ,

Ts→m
t , Ts→m

t→t−1 are created
// Compute initial guess using the

previous sensor displacement
1 P̃m

t = Ts→m
t−1 Ts→m

t−1→t−2Ps
t ;

2 Build M̃ and L̃ac from P̃m
t (see Section II-A for NDT

building and Section III for the map architecture);
3 Register {M̃, L̃ac} with {M,Lac} using D2D NDT,

the output is T∆;
// Update the position of the robot,

as well as the next inter frame
transform

4 Ts→m
t = T∆Ts→m

t−1 Ts→m
t−1→t−2;

5 Ts→m
t→t−1 =

(
Ts→m

t−1

)−1
T∆Ts→m

t−1 Ts→m
t−1→t−2;

// Create the actual point cloud that
will be added

6 Pm
t = Ts→m

t Ps
t ;

// Build an NDT representing the new
scan correctly aligned

7 Build Mm and Lm
ac from Pm

t ;
// Fuse {Mm, Lm

ac} with {M,Lac}
// Start with the raytracing to

update the occupancy
8 for all cells C∗ ∈ Ll

ac do
9 Get the number of points n and mean µ of cell C∗;

// M is used to perform the
raytracing

10 Get all the cells C1, · · · , Ck in Lac traversed by the
ray from the sensor to µ;

11 for each cell Ci,i∈1:k do
12 Update the log odd occupancy of Ci with

equation (6) modified as follows:
lodd (occi (t)) =
lodd (occi (t− 1)) + nlodd (Ci|µ, lt) ;

13 end
14 end
// Then fuse the cells themselves

15 for all cells C ∈ Ll
ac do

16 Fuse C into Lac using RSC or ARSC (see
Section II);

17 end
// Performs recentering if needed,

see Fig. 1
18 recenter map (Ts→m

t , Lac, Ldc,M);

6

TABLE I
VALUES OF THE PARAMETERS USED FOR THE NDT RC

Parameter Value
Cell size 2.2m

α 0.45
β 0.9
γ 0.1

Map width and depth 250m
Map height 40m

dthrc 10m
Mmax 500

on it with a fusion mechanism to allow the robot to have
a greater movement range [12]. The KITTI dataset [18] has
been chosen because it is popular, allowing our results to
be compared to other methods. Both datasets are acquired
outdoors using a car. The Ford dataset was acquired in urban
conditions, while the KITTI dataset contains 11 sequences
acquired in various conditions. The LIDAR sensor used is a
Velodyne HDL-64E, with a range of 120m and a rotation rate
of 10Hz. The odometry from the D2D NDT [25] is shown as
a baseline. The D2D NDT is tuned by making the parameters
vary on a grid, similarly to our algorithm. However, the best
parameters for D2D NDT are chosen for each dataset, whereas
our algorithm uses a single set of parameters for the two
datasets. Moreover, to guarantee a fairness of evaluation, we
ensured that the results of D2D NDT were at least as good
as existing publications applying D2D NDT to those datasets
when available [11]. It is important to note that since our
algorithm and the D2D NDT are different, using the same
parameters would be unfair, which is why they were tuned
separately. Our testing indeed shows [26] that the optimal set
of parameters for each algorithm are different, thus we have
elected to evaluate each of them on the parameters giving the
best results and not on the same parameters.

The parameters used for the NDT RC are presented in
Table I. They are selected in accordance with the results of
the sensitivity analysis in Section V. Note that the results
reported on both the KITTI and Ford datasets are obtained
with those same parameters. The size of the map allows a
whole LIDAR scan to fit inside the map when the vehicle is
at the centre. Moreover, the recentering algorithm is called
when the vehicle is further than 10m from the centre. A
study of those parameters is proposed in Section V, where the
influence of each of them over the precision and runtime can
be seen. The initial guess for initializing the D2D matching
process [9] between the current NDT map and the NDT built
from the incoming point cloud is the last inter frame odometry
resulting from a successful match. The runtime shown is the
wall clock time to give a realistic representation of the speed
of the algorithm. NDT RC, implemented in C++, runs on a
single CPU thread. The computer used to run the tests has an
Intel Core i7-6700 CPU and 16GB of RAM.

A. Evaluation on the Ford dataset

The main error metric on this dataset is the absolute
trajectory error [27] (ATE) per frame. The ATE is obtained
after aligning the odometry trajectory obtained using the
registration of maps created by NDT RC and the ground truth

TABLE II
ERROR STATISTICS APPLIED TO THE ATE OF NDT RC ON THE FORD

DATASET (IN METERS)

Statistic Mean RMS Median Std dev Min Max
Value 1.42 1.49 1.49 0.45 0.55 2.38

TABLE III
AVERAGE RUNTIME OF NDT RC ON THE FORD DATASET (IN

MILLISECONDS)

Operation Duration
Scan importation 4

Matching 218
Map update 5
Recentering <1

Total 229

trajectory [27], and measures the absolute error in translation.
Different ATE statistics are shown in Table II. The runtime
averaged over the whole sequence is detailed in Table III.
The time needed by the recentering algorithm is negligible
(< 0.5%) compared to the total time. In the rest of
this section, the NDT RC algorithm is compared to other
algorithms on the Ford dataset. The NDT RC is compared to
the D2D NDT [25] as implemented on the Github repository
of the authors1. The following parameters are used for the
D2D NDT: a single 3D matching, a resolution of 1.5m, a
matching neighbourhood size of 2, a map width of 250m
and a map height of 40m. For both the D2D NDT and the
NDT RC, the initial guess for the matching is the result of
the previous successful matching. The comparison between the
resulting NDT RC, D2D NDT based odometry trajectories and
the ground truth trajectory is shown in Fig. 2a. The trajectory
computed by NDT RC is close to the ground truth as suggested
by the small ATE.

The second NDT based algorithm is the NDT OM Fu-
sion [12], which is based on NDT OM. The algorithm stores
the NDT maps on the disk when the robot leaves the zone, and
reload them when needed. Note that the Xsens MTi-G IMU
mounted on the car is used with the NDT OM Fusion [12]
to provide an initial guess, while our algorithm does not
use any additional sensor. The comparison is summarized in
Table IV. The runtime of the most precise result is 229ms
for our method and 263ms for D2D NDT. However, since the
cell size is the major parameter influencing the runtime, the
runtime cannot be compared directly, because the cell sizes
are different. In order to get a fair comparison, the runtime
with a fixed cell size of 1.5m is shown in Table IV. With
equal cell size, the D2D NDT is faster than NDT RC, which
is expected since NDT RC adds a costly raytracing operation
to D2D NDT. However, NDT RC is able to use higher cell size
while keeping a low ATE, making it faster than D2D NDT for
the most precise result.

The NDT RC outperforms NDT OM Fusion in ATE and
is faster. The difference in runtime can be explained by
the recentering algorithm, which removes the need for disk
accesses. The fact that NDT RC, which discards the cells that
move out of the boundaries of the map results, achieves a

1https://github.com/OrebroUniversity/perception oru/tree/port-kinetic, last
pull done on Tuesday 27th November, 2018

7

TABLE IV
COMPARISON BETWEEN NDT RC AND OTHER METHODS ON THE

FORD DATASET

Method Mean ATE
(m)

RMS ATE
(m)

Runtime
(ms)

NDT RC 1.42 1.49 229 (360)1

D2D NDT [25] 10.8 11.65 263
NDT OM Fusion [12] 1.7 - <2000
SLAM method [28] - 4.48 <300
1 with 1.5m cell size.

more precise odometry compared to NDT OM Fusion, which
keeps all the cells, can appear surprising. This improvement is
considered to be partly due to the loop closure issue mentioned
in the work of Stoyanov, Saarinen, Andreasson, et al. [12].
Indeed, keeping all the cells mean that any drift in odometry
will make the matching more difficult for NDT OM Fusion
in case of loop closure. NDT RC does not have this problem
since it does not keep the cells outside the boundaries of the
map.

A SLAM method based on the extraction of planar segments
from the LIDAR data is proposed by Lenac, Kitanov, Cupec,
et al. [28]. The authors report the RMSE on this dataset. The
RMSE for their method is 4.48m. The mean runtime reported
are around 250ms for point cloud segmentation, 1.5ms for
relative pose computation, and less than 50ms for the global
map update. However, because this is a SLAM system, the
global map runtime can increase with time. A spike in runtime
of more than 600ms can be seen at the end of the trajectory
(Figure 33 [28]). NDT RC has a lower RMSE of 1.49m,
and a faster runtime of 229ms. This comparison is interesting
because it shows that a lower error is obtained with NDT RC
despite the absence of loop closure mechanism. Those results
are summarized as well in Table IV.

B. Evaluation on the KITTI dataset

The NDT RC is evaluated on the KITTI dataset as well.
The resulted odometry translation and rotation errors are
computed by using the code provided with the dataset [29].
The details can be found in the original publication [30]. To
summarize, the errors in rotation and translation are computed
over segments of varying lengths (from 100m to 800m by
increment of 100m) and then averaged over all segments in
all sequences. There are 11 sequences in this dataset.

The NDT RC is compared to the D2D NDT. The D2D NDT
is configured with a cell size of 0.5m. The error obtained with
this configuration is inferior to the error reported in the work
of Zaganidis, Magnusson, Duckett, et al. [11], which validates
this choice of parameters. A NDT variation has been proposed
with good results on the KITTI dataset: the SE-NDT [11],
described in the introduction. Since the SE-NDT has been
evaluated on the KITTI dataset by using the standard error
measures, the results are comparable to ours. Thus, the results
of the SE-NDT paper [11] are printed here. The runtime is
not reported directly since the comparison does not appear
to be valid. Indeed, in their paper, the SE-NDT algorithm
takes 2.82 s while the D2D NDT takes 4.15 s. In our case, the
D2D NDT, with the same set of parameters, runs in less than

TABLE V
RESULTS ON THE KITTI DATASET

Method et (%) er (mradm−1) Runtime (ms)

NDT RC 1.54 0.106 187
SE-NDT [11] 2.60 0.2 See comments
D2D NDT [25] 3.65 0.208 499
LOAM [20] 0.88 - <1000

0.5 s. Such a difference might be explained by hardware or
implementation differences, but this is impossible to validate
without access to SE-NDT implementation. For this reason,
it was chosen not to report a potentially misleading runtime
result. The results are compiled into Table V. The proposed
method outperforms both the D2D NDT and the SE-NDT
for translational and rotational error while being faster than
D2D NDT due to the higher cell size. In order to visualize
the results, the trajectory of the proposed method and the
D2D NDT are plotted against the ground truth in Figs. 2b
to 2l. It can be seen in Fig. 2 that NDT RC produces
noticeable improvements over D2D NDT on sequences 0,
1, 2, 3, 5, 8 and 10. NDT RC provides visually accurate
odometry for all sequences except the second one. The second
sequence contains a lot of large changes in direction, which
is challenging for the NDT registration since as it was shown
to be sensitive to the quality of the initial guess [25].

It is important to note that both D2D NDT and SE-NDT are
purely odometry methods: they do not maintain a consistent
map between each scan, while the NDT RC method does. It is
nonetheless fair to compare ourself to those methods since they
are applicable to the same scenarios. Indeed, the recentring
algorithm makes it possible to move the map with the robot.
NDT OM for instance, could not be applied directly to the
KITTI dataset because the map would not fit into memory.

The current top performing laser based method on the
KITTI odometry dataset is the LOAM method [20], which
achieves 0.88% of translation error. The drawback is the
runtime, since to achieve those precise results, the slow
mapping step was run with each new scan. We can also note
that this method uses 2 CPU threads, while NDT RC is entirely
monothreaded.

V. SENSITIVITY ANALYSIS

One weakness of the NDT OM algorithm [2], and by
extension, of NDT RC, is the numerous tuning parameters
involved, as seen in Section II. It might then prove challenging
to tune the algorithm for the best results: the precision of
the NDT OM Fusion was evaluated with regard to the sensor
cutoff distance [12], or the occupancy threshold [24], but to
the best knowledge of the authors, no evaluation regarding
the influence of the other parameters on the precision of
the odometry exists. To address this issue, an evaluation of
the precision of the odometry and runtime of the NDT RC
is proposed in this section with regards to the five main
parameters: the values of α, β, γ (see (8)), which govern the
occupancy update during raytracing, the clamping threshold
of occupancy per cell, Kocc and the limit number of points
Mmax inside a cell. The influence of the size of the map

8

1,100 1,200 1,300 1,400 1,500 1,600

−
1,
10
0

−
1,
00
0

−
90
0

−
80
0

x(m)

Ground truth
D2D NDT
NDT RC
Sequence Start

(a) Ford dataset

-100

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300
z

[m
]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(b) Sequence 0

-1500

-1000

-500

 0

 0 500 1000 1500

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(c) Sequence 1

 0

 200

 400

 600

 800

 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(d) Sequence 2

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(e) Sequence 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(f) Sequence 4

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(g) Sequence 5

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(h) Sequence 6

-100

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(i) Sequence 7

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC

Sequence Start

(j) Sequence 8

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
D2D NDT
NDT RC
Sequence Start

(k) Sequence 9

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
D2D NDT

NDT RC
Sequence Start

(l) Sequence 10
Fig. 2. Trajectory obtained by NDT RC (in blue) compared to the ground truth (in red) on the KITTI dataset and on the Ford dataset (Fig. 2a). Trajectories
obtained by NDT RC (in blue) and D2D NDT (in black) compared to the ground truth (in red) on the KITTI dataset (Figs. 2b to 2l)

kept in memory is examined as well. Those parameters are
all evaluated for different cell sizes. The Ford dataset [21] is
used. Then, the the KITTI dataset [18] is used to evaluate the
influence of the LIDAR point cloud density on the precision
and runtime of NDT RC. In both cases, the testing conditions
are described in Section IV.

Note that the influence of dthrc is not examined since this
parameters only affects how often the map is recentered. If
set accordingly with the speed of the vehicle and the size of
the map, it should have no influence on the precision of the
algorithm and as shown in Table III, a neglectible influence
on the runtime.

Fig. 3 shows the variation of the ATE and runtime with the
value of α and β. α is an indication of the confidence that the
cell is empty when a ray goes through it, while β quantifies
the probability that a cell is occupied when a point is detected
inside it. To keep the figure readable, errors of more that 9m

are omitted from the graph2. Those outliers are indicative of
tracking failure, which happens more often at low or high cell
sizes. In order for the matching to work reliably, the cell size
should be large enough to capture significant features of the
environment. However, if the cells are too large, the Gaussian
approximation for an obstacle inside the cell might not hold
anymore, resulting in matching errors. It is thus expected for
the error to diminish up to the optimal cell size, then increase
when the cell size is too large to represent the environment
accurately. The results show that increasing the cell size results
in a fast reduction of the error up to around 1.4m, with the
error starting to increase at a cell size around 2.4m. The
mean ATE is the lowest around a resolution of 2.2m. A good
combination of stability and performance seems to be a couple

2Errors occurred at (Resolution, α, β): (0.6, 0.39, 0.8), (0.6, 0.45, 0.9),
(0.8, 0.39, 0.7), (1.2, 0.39, 0.7), (1.6, 0.45, 0.8), (2.2, 0.39, 0.7),
(2.6, 0.39, 0.7), (2.8, 0.45, 0.8), (3, 0.45, 0.7), (3, 0.39, 0.8),
(3, 0.45, 0.8), (3.2, 0.39, 0.8), (3.4, 0.39, 0.9), (3.2, 0.45, 0.9)

9

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6
1

2

3

4

5

6

7

Map resolution (m)

M
ea

n
A

T
E

(m
)

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6
0

200

400

600

800

1,000

1,200

1,400

1,600

Map resolution (m)

R
un

tim
e

(m
s)

(0.39, 0.7)

(0.45, 0.7)

(0.39, 0.8)

(0.45, 0.8)

(0.39, 0.9)

(0.45, 0.9)

Fig. 3. Evolution of the mean ATE and runtime depending on parameters α
and β. The legend indicates a pair (α, β)

(α, β) of (0.45, 0.9), which gives a mean ATE of 1.42m for
a resolution of 2.2m. The runtime is shown to be a function
of the map resolution, although the values of α and β have
an influence as well. The lower α is, the more punitive the
raytracing is. Thus a lower α will tend to suppress more cells.
On the other hand, a higher β will tend to create more cells. It
is reasonable to consider that the runtime is a function of the
number of active cells. Thus, theoretically, a low α and low
β should have the lowest runtime, while a high α and high β
should have the highest. This is precisely what is observed in
Fig. 3.

Fig. 4 illustrates the influence of the parameter γ, which
governs how punitive the raytracing is when a ray passes
through a cell that is occupied by a Gaussian. There is no
visible trend between between the values 0.1 and 0.3 for
γ, except that a lower value of γ seems more stable: when
γ = 0.3, the algorithm failed at resolution 1.2m and 2.2m.
A higher value of γ means that cells hosting Gaussians are
penalised by a larger loss of occupancy when traversed by
a ray. Thus in theory, a lower runtime for higher values of
γ is expected since the number of active cells should be
reduced. This is however not the case, which indicates that the
difference in number of invalidated cells hosting Gaussians is
low between the two values of this parameter.

Next, the influence of the parameter Mmax is examined,
which governs the sliding average when points are added into
a cell: a higher Mmax indicates a map slower to adapt to
dynamic changes. The result is shown in Fig. 5. The difference

1 1.4 1.8 2.2

1.4

1.6

1.8

2

2.2

Map resolution (m)

M
ea

n
A

T
E

(m
)

1 1.4 1.8 2.2

200

300

400

500

600

Map resolution (m)

R
un

tim
e

(m
s)

γ = 0.1
γ = 0.3

Fig. 4. Evolution of the mean ATE and runtime depending on the γ parameter

1.2 1.6 2 2.4

1.4

1.6

1.8

2

2.2

Map resolution (m)

M
ea

n
A

T
E

(m
)

1.2 1.6 2 2.4

200

300

400

500

600

Map resolution (m)

R
un

tim
e

(m
s)

500
5000
10000

1× 105

Fig. 5. Evolution of the mean ATE and runtime depending on parameter
Mmax. The legend shows different values of Mmax

made by Mmax is shown to be resolution dependent, with
small values of Mmax preferable at higher cell sizes. It
can be hypothesized that smaller values of Mmax would
perform better in a dynamic environment such as the Ford
dataset, however this is not observed at lower cell sizes. This
parameter should have no influence on the runtime, which is
demonstrated in this figure.

The clamping occupancy threshold Kocc governs how fast
cells are created or eliminated in case of dynamic changes. The
influence of this parameters is shown in Fig. 6. The influence
of the error is resolution dependent, with no clear trend. The
higher value tends to show more stability across changes in
resolution. It is difficult to forecast the influence of Kocc on the
runtime since decreasing this parameter means that cells are
both created and deleted more often. Given the results, it looks
like this effect balances itself since no significant changes are
observed for different values of Kocc.

Next, the influence of the size of the map on the mean ATE
is investigated. The LIDAR used has a range of 120m, so the

1.2 1.6 2 2.4

1.4

1.6

1.8

2

2.2

Map resolution (m)

M
ea

n
A

T
E

(m
)

1.2 1.6 2 2.4

200

300

400

500

600

Map resolution (m)

R
un

tim
e

(m
s)

Kocc = 100
Kocc = 255
Kocc = 400

Fig. 6. Evolution of the mean ATE and runtime depending on parameter
Kocc

10

1 1.2 1.4 1.6 1.8 2 2.2 2.4

1.5

2

2.5

3

Map resolution (m)

M
ea

n
A

T
E

(m
)

1 1.2 1.4 1.6 1.8 2 2.2 2.4

200

300

400

500

600

Map resolution (m)

R
un

tim
e

(m
s)

140m
190m
220m
250m

Fig. 7. Evolution of the mean ATE and runtime depending on the size of the
map. The legend shows different map sizes (the size is considered as width
and depth)

TABLE VI
INFLUENCE ON THE POINT CLOUD DENSITY ON NDT RC USING THE

KITTI DATASET

Method et (%) er (mradm−1) Runtime (ms)

Full cloud 1.54 0.106 187
Partial cloud 15.2 0.897 84

default size, 250m, should be large enough to host the whole
scan. Fig. 7 examines the loss of precision that occurs when the
whole LIDAR scan cannot fit into the map anymore. Note that
the method fails for a map size of 140m at the resolution 1.2m
and for the map size of 220m at the resolution 1.0m. Those
outliers are not including in the graph to keep it readable.
A map size of 140m leads to a larger error compared to
bigger sizes. The difference between 190m, 220m and 250m
depends on the resolution, with the lowest error achieved by
the 250m map which performs slightly better as the cell size
increases. The runtime is barely affected by the size of the map
in this dataset, meaning that the number of occupied cells at
the edge of the map is small since their disappearance does
not lead to a significant reduction in runtime.

Finally, it is interesting to look at the influence of the density
of the input point cloud on the quality of the results. The
KITTI dataset [18] is used to perform this investigation. It is
important to note that the Velodyne HDL-64E LIDAR used in
the KITTI datasets is adapted to automotive applications, but
not to small UAVs or robots: its weight is around 13 kg and
it consumes approximately 50W of power. A more realistic
sensor for small UAVs would be the Velodyne VLP-16 lite [31]
which weighs 590 g and draws around 8W of power. The
drawback is that the VLP-16 has only 16 vertical beams,
compared to the 64 of the HDL-64E, with a vertical resolution
going from 0.4◦ down to 2◦. In order to simulate a VLP-
16 output from the HDL-64E, a downsampling method is
implemented. Since the VLP-16 has a vertical resolution of
2◦ for a total vertical field of view of 30◦, it is not possible
to match exactly the vertical field of view of the HDL-64E,
which is 25.2◦. It was chosen to respect the vertical resolution
of the VLP-16, thus the downsampled cloud has only 13
beams, meaning that the point cloud obtained from an actual
VLP-16 would be denser compared to the results presented
in this section. The downsampling result is illustrated in
Fig. 8. Table VI shows the difference in precision and runtime
between the full and downsampled clouds. It can be seen

Fig. 8. LIDAR scan acquired from a Velodyne HDL-64E (in red) and a
downsampled version matching the characteristics of the Velodyne VLP-16
(in yellow)

that reducing the point density greatly decreases precision, it
can be hypothesized that the lower number of Gaussians is
not enough to effectively perform matching. The fact that the
runtime is only multiplied by 2.2 when the number of points
is multiplied by 4 highlights a strength of the algorithm: as
shown in Table III, the runtime is dominated by matching,
thus it does not scale with the number of points, but with the
number of created gaussians..

VI. CONCLUSION

In this paper, NDT RC, a recentering algorithm applied to
the NDT OM framework is proposed. This algorithm intro-
duces a novel recentering mechanism that allows unlimited
movement of the robot, therefore enabling usage on larger
datasets. A test of NDT RC on two publicly available datasets
shows that the recentering algorithm allows to reduce both
the registration error and the runtime when compared to other
NDT based methods. NDT RC achieves an RMS ATE of
1.49m on the Ford dataset and a translation error of 1.54% on
the KITTI dataset, with a runtime below 250ms. A sensitivity
analysis is carried out to show the influence of parameters
and point cloud density over the algorithm, both in terms of
precision and runtime. This analysis shows how the runtime is
mainly influenced by the map resolution, and allow a unique
set of parameters to be set for both the Ford and KITTI dataset.

For future works, combining the NDT RC with methods
improving the registration algorithm such as SE-NDT should
yield superior results. Testing could also be extended to
larger datasets as well as datasets using UAVs to explore
performances with 6 degrees of freedom. Investigation of the
application of loop closure methods to NDT RC could provide
accuracy benefits by reducing drift.

REFERENCES

[1] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W.
Burgard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[2] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d
normal distributions transform occupancy maps: An efficient repre-
sentation for mapping in dynamic environments,” The International
Journal of Robotics Research, vol. 32, no. 14, pp. 1627–1644, Sep.
2013.

11

[3] A. Elfes, “Occupancy grids: A probabilistic framework for robot
perception and navigation,” AAI9006205, PhD thesis, Pittsburgh, PA,
USA, 1989.

[4] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,”
AI Magazine, vol. 9, pp. 61–74, Jun. 1988.

[5] M. Herbert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade,
“Terrain mapping for a roving planetary explorer,” in Proceedings,
1989 International Conference on Robotics and Automation, May
1989, 997–1002 vol.2.

[6] P. Biber and W. Strasser, “The normal distributions transform: A new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003), vol. 3, Oct. 2003, 2743–2748 vol.3.

[7] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration
for autonomous mining vehicles using 3d-NDT,” Journal of Field
Robotics, vol. 24, no. 10, pp. 803–827,

[8] T. Stoyanov, M. Magnusson, and A. J. Lilienthal, “Comparative evalu-
ation of the consistency of three-dimensional spatial representations
used in autonomous robot navigation,” Journal of Field Robotics,
vol. 30, no. 2, pp. 216–236,

[9] T. Stoyanov, M. Magnusson, and A. J. Lilienthal, “Point set registration
through minimization of the l2 distance between 3d-NDT models,”
in 2012 IEEE International Conference on Robotics and Automation,
May 2012, pp. 5196–5201.

[10] A. Das and S. L. Waslander, “Scan registration using segmented
region growing NDT,” The International Journal of Robotics Research,
vol. 33, no. 13, pp. 1645–1663, 2014.

[11] A. Zaganidis, M. Magnusson, T. Duckett, and G. Cielniak, “Semantic-
assisted 3d normal distributions transform for scan registration in
environments with limited structure,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS, Vancouver, BC,
Canada, September 24-28, 2017, pp. 4064–4069.

[12] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Normal
distributions transform occupancy map fusion: Simultaneous mapping
and tracking in large scale dynamic environments,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nov.
2013, pp. 4702–4708.

[13] E. Einhorn and H.-M. Gross, “Generic ndt mapping in dynamic
environments and its application for lifelong slam,” Robot. Auton. Syst.,
vol. 69, no. C, pp. 28–39, Jul. 2015, ISSN: 0921-8890.

[14] A. Zaganidis, A. Zerntev, T. Duckett, and G. Cielniak, “Semantically
assisted loop closure in slam using ndt histograms,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 4562–4568.

[15] H. Courtois, N. Aouf, K. Ahiska, and M. Cecotti, “Oast: Obstacle
avoidance system for teleoperation of uavs,” Submitted to IEEE
Transactions on Human-Machine Systems (THMS).

[16] D. Droeschel, M. Nieuwenhuisen, M. Beul, D. Holz, J. Stückler, and S.
Behnke, “Multilayered mapping and navigation for autonomous micro
aerial vehicles,” Journal of Field Robotics, 2016.

[17] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments,” Jun. 2018.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[19] J. Zhang and S. Singh, “LOAM: lidar odometry and mapping in real-
time,” in Robotics: Science and Systems X, University of California,
Berkeley, USA, July 12-16, 2014, D. Fox, L. E. Kavraki, and H.
Kurniawati, Eds., 2014.

[20] ——, “Low-drift and real-time lidar odometry and mapping,” Au-
tonomous Robots, vol. 41, pp. 401–416, Feb. 2017.

[21] G. Pandey, J. R. Mcbride, and R. M. Eustice, “Ford campus vision
and lidar data set,” Int. J. Rob. Res., vol. 30, no. 13, pp. 1543–1552,
Nov. 2011, ISSN: 0278-3649.

[22] H. Courtois, N. Aouf, K. Ahiska, and M. Cecotti, “Oast: Obstacle
avoidance system for teleoperation of uavs,” IEEE Transactions on
Human-Machine Systems, vol. 52, no. 2, pp. 157–168, 2022.

[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005, ISBN:
0262201623.

[24] J. Saarinen, T. Stoyanov, H. Andreasson, and A. J. Lilienthal, “Fast 3d
mapping in highly dynamic environments using normal distributions
transform occupancy maps,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013,
pp. 4694–4701.

[25] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast
and accurate scan registration through minimization of the distance

between compact 3d NDT representations,” The International Journal
of Robotics Research, vol. 31, no. 12, pp. 1377–1393, 2012.

[26] H. Courtois, “Obstacle avoidance for unmanned aerial vehicles during
teleoperation,” PhD thesis, School of Defence and Security, 2020.

[27] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct. 2012, pp. 573–580.

[28] K. Lenac, A. Kitanov, R. Cupec, and I. Petrovic, “Fast planar surface
3d SLAM using LIDAR,” Robotics and Autonomous Systems, vol. 92,
pp. 197–220, 2017.

[29] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian Conference on Computer Vision (ACCV), 2010.

[30] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner, “On measuring the accuracy of slam
algorithms,” Auton. Robots, vol. 27, no. 4, pp. 387–407, Nov. 2009.

[31] Velodyne vlp-16 lite, http : / / velodynelidar . com / vlp - 16 - lite . html,
Accessed: 2017-05-05.

Hugo Courtois has received his Ph.D. degree from
the Centre for Electronic Warfare information and
Cyber in Cranfield University, U.K. in 2019. He is
currently working at Outsight on spatial intelligence
using lidars. His research interests include mapping,
sensor fusion, haptic and lidar technologies.

Nabil Aouf is currently the lead of the Robotics and
Machine Intelligence activities at City University of
London, U.K. He leads the Robotics, Autonomy
and Machine Intelligence (RAMI) group. He has
authored more than 180 publications in high caliber
in his domains of interest. His research interests
include aerospace, information fusion and vision
systems,guidance and navigation, tracking, and con-
trol and autonomy of systems. Prof. Aouf is an
Associate Editor of four journals including an IEEE
Transaction Journal.

Kenan Ahiska received B.S., M.S., and Ph.D. de-
grees in electrical and electronics engineering from
Middle East Technical University, Ankara, Turkey,
in 2010, 2012, and 2016, respectively. He has back-
ground on control theory and its applications. He has
works on modeling, guidance control and navigation
of unmanned vehicles, optimal and model predictive
control of robotic systems. Since 2018, he has been a
research fellow in guidance and control in Cranfield
University, Defence and Security at Shrivenham, the
U. K.

Marco Cecotti received the PhD degree in electrical
engineering from Oxford Brookes University, UK,
in 2013. He worked for Tata Motors and Dyson
on several automotive projects, focused on vehicle
control and driver assistance systems. He is now a
Lecturer with the School of Aerospace, Transport
and Manufacturing at Cranfield University, UK. His
research interests include vehicle trajectory control,
path planning, localisation and sensor fusion. He is
a member of the IEEE.

Cranfield University

CERES Research Repository https://dspace.lib.cranfield.ac.uk/

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

NDT RC: Normal Distribution Transform

Occupancy 3D Mapping with recentering

Courtois, Hugo

2023-02-28

Attribution 4.0 International

Courtois H, Aouf N, Ahiska K, Cecotti M. (2024) NDT RC: Normal Distribution Transform

Occupancy 3D Mapping with recentering. IEEE Transactions on Intelligent Vehicles, Volume 9,

Issue 1, January 2024, pp. 2999-3009

https://doi.org/10.1109/TIV.2023.3250326

Downloaded from CERES Research Repository, Cranfield University

