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Abstract—In this paper, we study the remote estimation of
discrete-state Markov processes over costly point-to-point chan-
nels. We formulate this problem as an infinite-horizon optimiza-
tion problem with two players, i.e., a sensor and a monitor, that
have distinct information, and with a reward function that takes
into account both the communication cost and the estimation
quality. We show that the main challenge in solving this problem
is associated with the consideration of implicit information, i.e.,
information that the monitor can obtain about the source when
the sensor is idle. Our main objective is to develop a framework
for finding exact or approximate solutions to this problem without
neglecting implicit information a priori. To that end, we propose
three different algorithms, and discuss their properties. The first
one is an alternating optimization algorithm that converges to a
Nash equilibrium. The second one optimizes both players’ policies
jointly, and is guaranteed to find a globally optimal solution. The
last one is a heuristic algorithm that can find a near-optimal
solution. Finally, we compare the performance of these algorithms
through a numerical analysis.

Index Terms—Cyber-physical systems, implicit information,
Markov processes, Nash equilibria, Pareto optimality.

I. INTRODUCTION

Cyber-physical systems are distributed dynamical systems
that tightly integrate computation, communication, and con-
trol [1]. These systems, which can enable capabilities that
are far beyond those of today’s embedded systems, are en-
visioned to have various applications in smart cities, smart
factories, smart healthcare, and smart transportation. Note that
the dynamic and distributed nature of cyber-physical systems
necessitates persistent status updating of their components so
that changes in the environment can be reflected effectively [2].
This steady influx of real-time data empowers cyber-physical
systems to swiftly adapt to evolving conditions, ensuring that
control decisions are made based on the most pertinent and
up-to-date information [3]-[6].

In this paper, we study the remote estimation of Markov
processes over costly channels. In particular, we consider
a cyber-physical system composed of a sensor observing a
discrete-state Markov source and a remote monitor that needs
to be informed about the state of the source. The sensor
transmits observed information to the monitor over a costly
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point-to-point channel, and the monitor estimates the state of
the source in real time. The cost of transmission can be a real
fixed cost incurred at each transmission, or it can represent an
incentive to respect a constraint on the rate of communication,
due to, for example, limited transmitter battery capacity, or
using a shared communication channel. This problem can be
quite challenging when both the communication cost and the
estimation quality are taken into account. We show that the
main challenge in solving this problem is associated with
the consideration of implicit information. Nevertheless, we
aim at developing a framework that enables us to solve it
either exactly or approximately without neglecting implicit
information a priori.

A. Related Work

Note that in feedback control, the accuracy of the feedback
signal directly depends on the quality of the state estimates.
This implies that in order to tackle a remote control problem,
one should first address the corresponding remote estimation
problem, as the most foundational task. The remote estimation
of continuous-state Markov processes over costly channels
is addressed in [3], [4], [7]-[10]. These works characterize
the optimal policies rigorously, and shed light on the role
of implicit information. However, these results cannot be
generalized to discrete-state Markov sources and they make
restrictive assumptions on the form of the Markov processes.
The work in [11] shows the form of the optimal communication
policy for discrete Markov sources, without communication
costs and constrained to a finite set of communication symbols
in the finite horizon. This work is extended in [12]-[14] to
the infinite horizon, where an operational solution is provided.
The remote estimation of discrete-state Markov processes over
costly channels, the problem of interest in the present paper,
is addressed in [15]-[23]. Closed-form threshold polices are
derived in [15] for sources with a symmetric Toeplitz transition
matrix. It is shown in [16] that a piece-wise linear convex
decreasing function can represent the trade-off curve between
the estimation error and the transmission rate. Under similar
conditions, general properties of the optimal policies are dis-
cussed in [17]. The effect of channel noise in the context of
the remote control problem is studied in [18], where different
heuristic policies are compared. The effect of channel noise
is also studied in [19], where different policies for a two-
state Markov process are proposed, taking into account the
importance of these states on the actions to be taken by the



monitor. This work is extended in [20] to IN-state Markov
processes, where an optimization-based method is proposed
for finding the optimal parameter of a randomized stationary
policy. Other works, such as [21]-[23], propose solutions for
solving variations of Markov decision processes (MDPs) in
which the monitor needs to pay a fixed price to either observe
the current or the next state. Remote monitoring of two-state
Markov sources is studied in a multi-user scenario in [24] in the
context of random access protocols. Nevertheless, none of the
above works on discrete-state Markov sources take advantage
of implicit information.

We should highlight that this body of research falls within
the category of pragmatic (a.k.a. goal-oriented) communica-
tion [5], [6], [25], [26], where the state/context of the receiver
becomes relevant when deciding the communication policy.

II. PROBLEM FORMULATION

Consider a sensor observing the state of a source and a
remote monitor that needs to be informed about this state in
real time. The source is modelled by a discrete-time finite-
state Markov chain. At each time step, the sensor observes the
current state of the source, and decides whether to transmit
the state value to the monitor, incurring a fixed transmission
cost ¢, = 1 at time ¢ and guaranteeing the correct instantaneous
estimation of the state at the monitor; or not to transmit, which
incurs a zero cost ¢; = 0 but leaves the monitor to guess the
state of the source. Consequently, a unit common reward 7, = 1
is gained at time ¢ if the monitor’s guess matches the actual
state of the source, otherwise zero reward r; = 0 is gained. The
combined reward at time ¢ is therefore given by R, = ry—\-¢y,
where A is chosen depending on which point of the trade-off
curve we would like to operate on.

This remote estimation problem can be formulated for-
mally as a two-player team game denoted by M =
(Z,8, A, P,Z,0,R), where T = {i1,i2} is the set of players,
i.e., the sensor and the monitor, where the latter receives
observations and acts after the former has already acted; at
time ¢, s; € S is the state of the Markov chain, where S is
the state space; A = A' x A2 is the joint action space, where
the action of the sensor is aj € A" = {0,1} such that a} =1
means to transmit and a% = 0 means not to transmit, and the
action of the monitor is af € A% = S, which represents the
state estimated by the monitor; P is the transition probability
matrix such that the element P, i represents the probability of
transitioning from state s to state s’; Z = Z! x Z2 is the joint
observation space, where z} € S = Z! and 27 € SU{¢} = 22
and e is the empty observation that occurs when no message
is sent; O = {O', 0%} represents the set of the observation
functions, where O'(z},s;) = Pr(zt|s;) = 1z} = s
and O2(22,s,a}) = Pr(z2|sy,a}) = aflz? = s] + (1 —
at)1[z? = €); and finally R is the combined reward, which
is equal to 1 — A when the state is estimated correctly due
to a transmission, 1 when the state is estimated correctly
without a transmission, 0 for an incorrect estimation of the
state without transmission, and —\ for an incorrect estimation
despite a transmission. Note that the latter is not possible

with a reasonable estimation policy. Given a variable, we use
the notation x4+, to denote the sequence of values that the
variable takes between and including the time-steps ¢; and 5.

We are interested in finding the transmission and estimation
policies that jointly maximize the infinite horizon average
reward function, i.e., we would like to solve the following
optimization problem:

Problem 1:
T-1
ma}Tcrienﬁize Eby, P [Th_rgo T ; Ry, @))

where bg is the initial distribution of the source’s states, and
II is the set of joint history-dependent stochastic policies for
players 1 and 2. Note that I represents the most comprehensive
set of achievable policies. The optimal value of Problem 1 is
denoted by J*.

III. ROLE OF IMPLICIT INFORMATION

We refer to the information that the monitor obtains about
the state of the source when the sensor is idle as implicit
information. This information is relevant as the two players are
jointly optimized and they are aware of each others’ policies.
However, jointly optimizing the players in this context is not
trivial, as the optimal policy of the sensor depends on that of the
monitor, and vice versa. Note that Problem 1 can be simplified
if we neglect implicit information. This accordingly leads to
a decoupling in the design of the sensor and the monitor.
However, this approach, which neglects implicit information
a priori leads to a suboptimal solution in general as it does
not take full advantage of the available information.

In this study, we aim to devise methodologies that can
find exact or approximate solutions to this problem without
neglecting the implicit information. More specifically, we pro-
pose three different algorithms to solve Problem 1. The first
one deals with the interdependency of the transmission and
estimation policies by optimizing the policy of one player
while fixing the other, and then repeats this process until
convergence. The second algorithm aims to achieve global
optimality by recasting the original two-player problem into a
single-player occupancy MDP, and thus optimizes both policies
jointly. Finally, we propose a policy which does not require
parameter optimization and is the optimal solution whenever
perfect reconstruction at the monitor is required.

IV. ALTERNATING OPTIMIZATION ALGORITHM

In this section, we propose an algorithm that finds a Nash
equilibrium to Problem 1. It is clear that for the sensor, the
state = (8,5,,n) € X = 8? x Z71 is a sufficient statistic
for the purpose of finding an optimal policy, where s is the
current state of the source, s,,, is the last transmitted state, and
n £t — 7, where t is the current time-step and 7 is the time
of the last transmission. Similarly, we set the monitor states
as y = (sm,n) € Y = S x Z™T, which is equivalent to the
state representation of the sensor without including the current
state, as it is not known by the monitor.



Algorithm 1 summarizes the alternating optimization algo-
rithm. Note that step k of the algorithm indicates a combined
optimization of both players. We fix the estimation policy
7% Y+ A? and initialize it as arg max,((P™)Tes,, )i, which
is the basic monitor policy that disregards implicit information.
The Markov chain and the monitor form an MDP denoted by
MY} = (X, A', RF, Py). The state space X is formed by states
= (85n,n) €S2x{1,2,..., Nmaz}. The action space A!
is still {0,1}. The reward function depends on the policy of
the monitor and is defined as R¥(z,0) = 1(75 (s, n) = 5)
and RY(x,1) = 1 — ), corresponding to the two possible
actions. The transition operator is P; € {P? Pl}, where
P(x,2") = P(s,s)1(sl, = su)l(n’ = n + 1) and
Pl(x,2") = P(s,s")1(s), = s)I(n’ = 0), corresponding
to the two possible actions. We constrain n to never exceed
a maximum value n,,,,. To do so, we modify the reward
and transition functions when n = n,,4,, so that they give
the results corresponding to a state transmission regardless
of the sensor’s action. The average reward infinite horizon
problem for this MDP can be solved using the relative value
iteration algorithm, as long we satisfy a sufficient condition for
convergence, such as having a state x € X that is reachable
for every other state in X under all policies [27]. If these
assumptions do not hold, an algorithm for multichain MDPs
or standard value iteration with a discount factor v ~ 1 can
be used instead. We initialize the value function v} (z) = 0,
Vx € X. At each step k, the algorithm repeatedly applies the
following operator to v¥ until a stopping condition is satisfied:

TRV (z) = max Ri(z,a) + By ope[V(2))] = V(zeer), (2)

where . is a fixed state in X'. From the resulting function v’f,
we extract the optimal transmission policy 7% that maximizes
the average reward, given the current policy n’;—l.
Afterwards, the transmission policy is fixed and the optimal
estimation policy is found. From the point of view of the
monitor, we have an MDP denoted by MY = (), A% RE, PF).
The state space ) is formed by the set of states y = (8;,,n) €
S x{0,1, ..., npmax — 1}. The action space A? = S. The reward

function outputs an expectation given the belief over states

b (S, m)a — A,

bk(sma n)a7

where the belief of the monitor, using the implicit information,
is b%(5,,,0) = es,, and b (s,,,m) o< PToF (s, m — 1) 0 (1 —
78 (-, 8m,n)), for n > 1, where “o” represents element-wise
multiplication. The transition function is P§ and is independent
of the action taken, but it depends on the transmission policy

and it is defined as

n =020,

n > 0, ®)

ng((smvn)7a) = {

= (PTbk(sm,n))T(]_—7-(-]£(.’Sm7n_|_1))7 (4)
Py ((3m,n), (57,,0)) =
:eILnPTbk(Sm7n)'Wli(S;mSm,n—l—l), )

Algorithm 1 Alternating Optimization Algorithm
1: 2 (8m,n)  (P™)Tes,,
2: k<0

3: while J;, 7& Ji_1 do

4: k+—k+1

5

6

> initialize monitor policy
> loop until convergence

m — RVI(D,73_))
72 (Sm,n) = argmax,e 42 (0% (Sm,1))a
monitor policy
7: end while

> improve sensor policy
> improve

with all other transitions having probability zero. The inde-
pendence of the transition probabilities from the action taken
confirms that, to maximize this MDP’s value function, it is
sufficient to maximize the immediate reward at each time step.
The relation in Eq. (3) suggests that we can do this by setting
75 (Sm,n) = argmax, ¢ 42 (¥ (81, 1)) -

The next theorem provides a convergence result for the
alternating optimization algorithm.

Theorem 1: The infinite horizon average reward of the
system at the kth sequential policy improvement step J*¥ =
J(mk, 75) convergences to a fixed point as k — oo, and the
converged policies form a Nash equilibrium.

Proof: Fixing the monitor policy and applying relative
value iteration to the sensor policy finds the best response to
the fixed monitor policy. Fixing the sensor policy and setting
the monitor policy as above finds the best response to the
fixed sensor policy. Both lead to a non-negative change in
the expected average reward of the system. Combining this
with the fact that the rewards are bounded we get that the
algorithm will converge. As applying each policy improvement
step finds the best response to the other policy, once two local
improvement steps have made no changes, the two policies
must be already the best responses to each other, thus a
Nash equilibrium is reached. The detailed proof is provided
in Appendix A of the extended version [28]. [ ]

Remark 1: Note that Problem 1 might possess multiple
Nash equilibria, and Theorem 1 guarantees the convergence
to one of these equilibria. A question that arises in relation
to such a Nash equilibrium is whether it is globally optimal.
Answering this question requires developing further techniques
such as the one proposed in the next section. The current algo-
rithm’s complexity is given by iteratively solving discrete state
MDPs and it has the advantage of being less computationally
complex than the following.

It can also be shown that this algorithm can be adapted
to achieve a Nash equilibrium for any stationary memoryless
channel without receiver feedback.

V. JOINT OPTIMIZATION ALGORITHM

In this section, we propose an algorithm derived using
the notion of occupancy state [29] in decentralized partially
observable MDPs (dec-POMDPs) that finds a globally optimal
solution to Problem 1. Let an occupancy-state MDP be denoted
by M = (S,A,P,R), where S € A(S) is the state space
such that each state is a belief over states of the Markov



Algorithm 2 Joint Optimization Algorithm
7 < RVI Q — learning(Problem?2) > solve Problem 2 to
obtain the policy
b < bg; > initialize belief using initial state distribution
loop
s+ sample(PTes) > sensor observes the Markov state

m < 7(b) > obtain the decision rule from the policy
if 7(s) =1 then > if the sensor transmits
Yy=s > the monitor observes the state
b ey > the monitor updates its belief
else
y=c€ > the monitor does not receive a message

b < normalize(bo (1 — mw(s)))
of the monitor belief

> bayesian update

end if

a? = arg max; b; > monitor estimates state

b« PTb > account for new time-step transition
end loop

chain, given the monitor’s knowledge; A:S {0,1} is the
action space, where each action represents a decision rule of
the sensor, mapping from the observed state of the sensor to
the action taken; such a decision rule is represented by a vector
of dimensions |S| x 1, where the nth element of this vector
is the action taken by the sensor when the Markov state is n;
PeSxAxSm— [0,1] is the state transition probability
function given by P(3,a,3') = Y. g8 1(PTV, ;(s) = &)
and b7 ;(s) = ases+(1 765)% is the post-transmission
belief of being in state s given the pre-transmission belief s
and a known decision rule a; and finally RecSxA— R
is the reward function, mapping beliefs and sensor decision
rules to rewards, ie., R(5,da) = Y oses dslas(l —A) + (1 —
as)1(argmax; (b ;(7)) = s)|, where the argmax is the
optimal monitor action as shown in Section IV.

We can use this formulation to define the following problem,
the solution of which provides us with a solution to the original
Problem 1. We define

Problem 2:

lim

maximize _, 5 - Am

=
: 72 RG.7GE))| . (©)
well =0

where II is the set of stationary deterministic policies for M.
During each time-step at execution, the sensor obtains the
current decision rule by taking m; = 7(5;), and then acts
according to a} = (m;)s. Algorithm 2 summarizes the joint
optimization algorithm.

The next theorem shows that a global optimal solution can
be found by the joint optimization algorithm.

Theorem 2: The transformation of the original two-
player problem to the occupancy-state single-player problem
is without loss of optimality, and the generated policies are
also optimal for Problem 1.

Proof: The optimal monitor intuitively always estimates
the state corresponding to the highest belief. As a result, the
environment perceived by the sensor can be modelled by an
MDP where the state is a combination of the source’s state and
the monitor’s belief and as the sensor knows what the monitor
knows, the problem can be rewritten as a single agent belief
MDP problem. The detailed proof is provided in Appendix
B of the extended version, which starts from the concept of
occupancy state in dec-POMDPs to derive the single agent
belief state formulation. [ ]

Remark 2: As globally optimal solutions express a stronger
solution concept than Nash equilibria, the performance of the
solution obtained by Algorithm 2 is better than or equal to
that of the solution obtained by Algorithm 1. Nevertheless,
Algorithm 2 can be computationally expensive, as it involves
approximately solving a belief MDP which has a continuous
state space. The next section focuses on a policy that exploits
implicit information and can find a near-optimal solution
without requiring any parameter optimization.

It can be shown that this algorithm maintains optimality for
a stationary memoryless channel, as long as the information
structure is also maintained, i.e. the sensor knows the informa-
tion state of the monitor, requiring perfect feedback from the
monitor if the channel is imperfect.

VI. PERFECT ESTIMATION POLICY

In this section, we propose a joint communication and
estimation policy, which minimizes the average communication
frequency while guaranteeing no estimation error, and does not
require any parameter optimization. In this policy, at each time-
step, the sensor sends a message to the monitor if and only
if the state of the source is not the one with the highest pre-
transmission probability in the monitor’s belief. This is feasible
as the sensor knows the monitor’s belief. When a message con-
taining the state is sent, the monitor trivially guesses correctly,
otherwise, the monitor can exploit the implicit information.
This eliminates any ambiguity and allows the monitor to always
estimate the correct state. Algorithm 3 summarizes this policy.
In this algorithm, by € A(S) represents the initial distribution
over states of the Markov chain, s is the state of the Markov
chain, b is the pre-transmission belief, y is the message sent,
and a? is the monitor’s action.

The next theorem shows that this policy is optimal if perfect
reconstruction at the monitor is required.

Theorem 3: The proposed perfect estimation policy obtains
an optimal solution that minimizes the average communication
frequency subject to the perfect reconstruction constraint.

Proof: Perfect reconstruction requires that a transmission
occurs when there would otherwise be an error. As the optimal
monitor always estimates the state with highest belief, we
deduce that the optimal sensor transmits whenever the state
does not correspond to the highest pre-transmission (and thus
post-transmission) belief. The detailed proof is provided in
Appendix C of the extended version. [ ]

Remark 3: Note that in many safety critical applications it
is desired to have a perfect reconstruction at the monitor. The



Algorithm 3 Perfect Estimation Policy
1: b+ by
2: loop
3: s < sample(PTey)

State
4 if s # argmax; b, then > transmission only occurs if
the monitor would guess incorrectly otherwise

> initialize belief using initial state distribution

> sensor observes the Markov

5: y=s > the monitor observes the state
6: b ey > the monitor updates its belief
7: else

8: y =€ > the monitor does not receive a message
9: b < €arg max; b; > the monitor updates its

belief to the natural vector corresponding to the only state
that would not result in transmission

10: end if
11: a? = arg max; b; > monitor estimates state
12: b« PTb > account for new time-step transition
13: end loop

proposed perfect estimation policy achieves this optimally by
directly exploiting implicit information without requiring any
optimization of parameters. In the next section, we show that
this policy can be adapted for different communication rates,
achieving performance very close to the globally optimal one.

VII. NUMERICAL RESULTS

We compare our policies (called alternate, joint and
perfect est.) with two other policies adopted in [20],
i.e., a uniform policy in which the sensor transmits a mes-
sage every u € Z7% time steps (called uniform) and a
randomized stationary policy (called randomized), where
at each time-step, a transmission occurs with probability py,,
independently from the evolution of the system. Note that
[20] deals with Markov chains with transition matrices in the
form P = qI — p(J — I), where I is the identity matrix,
J is an all-ones matrix and p,q € [0,1]. In their setting,
the monitor keeps guessing the last state it received until it
receives a new one. The other policies in [20] are only coherent
with this assumption. We consider general Markov chains
without any restrictions, so we modify their policies so that
the monitor takes actions a?(s,,,n) = arg max,((P™)Tes,, );.
These policies do not exploit implicit information, as the
transmissions are not based on the state of the source. We also
compare our policies with a modified perfect estimation policy
(called heuristic) that neglects the implicit information,
and forces the monitor to take the same actions as above:
a%(sm,n) = argmax; ((P")Tes )).

Fig. 1 shows the trade-off between the average correct recon-
struction probability and the average rate of communication.
Each line represents a different algorithm and each point a
specific solution, obtained by a different \. randomized
performs the worst for all average channel utilization values.
uniform is slightly better at medium average channel uti-
lization values. The only way to obtain a point with perfect
reconstruction with average channel utilization < 1 is for

the sensor to always transmit when the monitor would have
otherwise been wrong, as perfect est. and heuristic
do, while uniform and randomized do not reason about
the monitor’s state to decide whether to transmit. Then, the
average channel utilization at perfect reconstruction depends
on the quality of the monitor’s beliefs, where a more ac-
curate belief reduces the average channel utilization needed.
heuristic achieves a point that is not the most leftwards
in the plot as its monitor calculates the beliefs sub-optimally,
neglecting the implicit information. perfect est. adopts
the optimal belief, leading to the most leftwards point. These
two algorithms only have one point (policy) each in the graph
as they do not have adjustable parameters (in the figure we
connect those points to the leftmost zero-transmission point
as the other points on the connecting line can be achieved
through time-sharing). alternating matches heuristic
in performance for perfect reconstruction. We can show that
such point is a Nash equilibrium of the player’s policies, but it
is not the globally optimal solution. At lower average channel
utilization, this algorithm performs better than heuristic as
the dynamic programming-based policy of the sensor sched-
ules samples optimally, given the estimation policy and the
transmission cost parameter A. joint achieves the best trade-
off boundary. joint and perfect est.’s performance
at perfect reconstruction is the same, which is compatible
with our theoretical result. joint provides slightly better
performance at lower channel utilization, which is attributed
to a more intelligent scheduling.

The algorithms can be grouped into 3 classes in terms
of performance. The first one includes randomized and
uniform, for which the sensor does not reason about the be-
havior of the monitor. Then, heuristic and alternating
transmit information more intelligently, being more likely to
transmit when this adds more information to the monitor,
though the implicit information is not used or used sub-
optimally as alternating is not guaranteed to converge
to a global optimum. Lastly, perfect est. and joint
use the implicit information optimally and achieve the best
performance. Note that some algorithms are only able to find
policies corresponding to very few points on the trade-off
curve. This is because the objective function is the average
reward minus transmission cost. We are not directly targeting
the trade-off between reward and communication in a way that
would allow us to find a continuous Pareto optimal boundary.
In our formulation, different values of transmission cost can
lead to the same policy and so the same point in Fig. 1.
However, we can achieve any point on the line joining any two
points on the graph via randomized time sharing. It should be
noted that when dealing with different Markov processes, we
can obtain a different number of points for each curve. Also,
the distance between joint’s and perfect est.’s curves
varies and the point of alternating at average correct
reconstruction =1 can be anywhere between that of perfect
est. and uniform, depending on which local maximum the
algorithm converges to.



1 T a T T
g
= 09} -
Q
=
£ 08| .
g .
Q
(9]
[a'4
g 0T —— joint ||
25; —— alternating
o 0.6 perfect est. | |
s heuristic
:tﬁ 0.5 —%— uniform |
& —o— randomized
0.4

| | \ | | ] I I T
0 010203 04 05 06 07 08 09 1

Average Channel Utilization

Fig. 1. Trade-off curves between estimation quality and communication cost.

VIII. CONCLUSION

We developed a framework for finding solutions to the
problem of remote estimation of Markov processes over costly
channels without neglecting implicit information a priori. First,
we proposed an algorithm that alternates between optimizing
the transmission and estimation policies, and guarantees a Nash
equilibrium. We showed that this algorithm performs vastly
better than other policies previously explored in the literature.
Then, we proposed the occupancy state formulation, which
transforms the original two-player problem into a single-player
MDP, and guarantees a globally optimal solution. Lastly, we
proposed the perfect estimation policy, in which the messages
are sent when the monitor would have otherwise guessed
incorrectly, which is optimal in the sense of minimizing com-
munication cost subject to the perfect reconstruction constraint.
In future work, we will study the scenario in which the monitor
takes actions based on its knowledge about the source state to
maximize the total reward it accumulate over time, where the
instantaneous reward depends on the current state of the source
process and the action taken by the monitor.
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