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Transmit or Retransmit: A Tradeoff in Networked

Control of Dynamical Processes over Lossy

Channels with Ideal Feedback
Touraj Soleymani, IEEE, Member, John S. Baras, IEEE, Life Fellow, and Deniz Gündüz, IEEE, Fellow

Abstract—We study networked control of a dynamical process
over a lossy channel with a hybrid automatic repeat request
protocol that connects a sensor to an actuator. The dynamical
process is modeled by a Gauss–Markov process, and the lossy
channel by a packet-erasure channel with ideal feedback. We
suppose that data is communicated in the format of packets with
negligible quantization error. In such a networked control system,
whenever a packet loss occurs, there exists a tradeoff between
transmitting new sensory information with a lower success prob-
ability and retransmitting previously failed sensory information
with a higher success probability. In essence, an inherent tradeoff
between freshness and reliability. To address this tradeoff, we
consider a linear-quadratic-regulator performance index, which
penalizes state deviations and control efforts over a finite horizon,
and jointly design optimal encoding and decoding policies for the
encoder and the decoder, which are collocated with the sensor
and the actuator, respectively. Our emphasis here lies specifically
on designing switching and control policies, rather than error-
correcting codes. We show that the optimal encoding policy is
a threshold switching policy and the optimal decoding policy is
a certainty-equivalent control policy. In addition, we determine
the equations that the encoder and the decoder need to solve
in order to implement the optimal policies. More specifically, we
show that the encoder must solve the Kalman filtering equations,
a mismatch linear equation, and a Bellman optimality equation,
while the decoder must solve a linear filtering equation and an
algebraic Riccati equation.

Index Terms—communication channels, dynamical processes,
freshness, erasure channels, hybrid automatic repeat request
(HARQ), networked control, optimal policies, packet loss, team
decision making, reliability, retransmission.

I. INTRODUCTION

NETWORKED CONTROL systems are distributed feed-

back systems where the underlying components, i.e.,

sensors, actuators, and controllers, are connected to each other

via communication channels [2]. In these systems, wireless

communication can play an important role due to various key

reasons [3]. First, wireless communication eliminates the need

for extensive wiring infrastructure, reducing installation costs

of networked control systems and enhancing their flexibility

by enabling effortless reconfiguration of control devices. This

flexibility is especially advantageous in applications such

as industrial automation and smart grids. Second, wireless
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communication facilitates the placement of control devices in

remote or hard-to-reach locations, expanding the accessibility

and the coverage of networked control systems. This capability

is particularly valuable in infrastructure systems such as envi-

ronmental monitoring and emergency response systems. Third,

wireless communication can easily accommodate the addition

or the removal of control devices, providing networked control

systems with the ability to scale according to requirements.

This scalability is indeed beneficial in environments with

dynamic specifications or rapidly changing network topologies

such as smart cities and autonomous vehicles.

Notwithstanding the advantages, wireless communication

presents some challenges. In particular, wireless channels,

which serve to close the feedback control loops in networked

control systems, are prone to noise. A direct consequence

of the channel noise in real-time tasks is information loss,

which can severely degrade the performance of the underlying

system or can even lead to instability. It is known that reliable

communication close to the capacity limit can be attained with

error correction subject to infinite delay or with persistent

retransmission based on feedback. In networked control, where

data is real-time, any delay more than a certain threshold

is typically intolerable. Moreover, retransmission of stale in-

formation may not be favorable if fresh information can be

transmitted with the same success rate instead. In this situation,

the adoption of a hybrid automatic repeat request (HARQ)

protocol, which integrates error correction with retransmission,

seems to be highly promising. Note that an HARQ protocol is

able to effectively increase the successful detection probability

of a retransmission by combining multiple copies from pre-

viously failed transmissions [4]–[8]. Despite the substantial

research conducted on HARQ for enhancing transmission

reliability in wireless communication systems, its application

in networked control systems, however, has received very

limited attention in the literature.

In this article, we study networked control of a dynamical

process over a lossy channel with an HARQ protocol that

connects a sensor to an actuator. We suppose that data is

communicated in the format of packets with negligible quanti-

zation error. Note that, although the exact relationship between

the probability of successful packet detection and the number

of retransmissions in an HARQ protocol varies depending on

the channel conditions and the adopted HARQ scheme, it

has been observed that the probability of successful packet

detection generally increases with each retransmission. This

suggests that, whenever a packet loss occurs in our networked
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control system, there exists a tradeoff between transmitting

new sensory information with a lower success probability and

retransmitting previously failed sensory information with a

higher success probability. In essence, an inherent tradeoff

between freshness and reliability. To address this tradeoff, we

consider a performance index that penalizes state deviations

and control efforts over a finite horizon, and jointly design

optimal encoding and decoding policies for the encoder and

the decoder, which are collocated with the sensor and the

actuator, respectively.

A. Related Work

Previous research in the literature has investigated the severe

effects of packet loss on stability and the performance of

state estimation and feedback control [9]–[22]. The majority of

works have considered independent and identically distributed

(i.i.d.) erasure channels [9]–[14]. In the seminal work in [9],

mean-square stability of Kalman filtering over an i.i.d. erasure

channel was studied, where it was proved that there exists

a critical point for the packet error rate above which the

expected estimation error covariance is unbounded. This work

was extended to feedback control in [10], where it was shown

that there exists a separation between estimation and control

when packet acknowledgment is available. Moreover, several

works have employed Gilbert–Elliott channels to capture the

temporal correlation of wireless channels [15]–[18]. Notably,

peak-covariance stability of Kalman filtering over a Gilbert–

Elliott channel was addressed in [15], where it was proved

that there exists a critical region defined by the recovery

and failure rates outside which the expected prediction error

covariance is unbounded. The corresponding feedback control

problem was considered in [16], where it was shown that

the separation principle still holds when packet acknowl-

edgment is available. Furthermore, a number of works have

employed fading channels in order to take into account the

time variation of the strengths of wireless channels [19]–[21].

In particular, mean-square stability of Kalman filtering over a

fading channel with correlated gains was investigated in [19],

where a sufficient condition that ensures the exponential

boundedness of the expected estimation error covariance was

established. Stabilization of a dynamical process in the robust

mean-square stability sense over a fading channel was also

studied in [20], where a controller with the largest stability

margin was designed. Finally, it is worth mentioning that state

estimation and feedback control of a Gauss–Markov process

over an erasure channel was investigated in [22], where it was

demonstrated that transmitting the minimum mean-square-

error (MMSE) state estimate at the encoder at each time leads

to the maximal information set for the decoder, and a necessary

and sufficient condition for the packet-loss probability of an

i.i.d. erasure channel that guarantees the boundedness of the

expected estimation error covariance was found.

Earlier research has also considered status updating and

state estimation over communication channels with retrans-

mission [23]–[34]. In particular, status updating over a bi-

nary erasure channel was studied in [23], where the tradeoff

between the protection afforded by additional redundancy

and the decoding delay associated with longer codewords

was analyzed, and the optimal codeword length for a few

transmission schemes was obtained. This problem was further

examined in [24] for two specific HARQ protocols based on

finite-blocklength information-theoretic bounds, where it was

shown that there exists an optimal blocklength minimizing the

average age and the average peak age of information. Status

updating over a noisy channel with reactive and proactive

HARQ protocols was investigated in [25], where unified

closed-form expressions for the average age and the average

peak age of information were derived. Status updating over

a binary erasure channel with two specific HARQ protocols

was introduced in [26], where the effect of these schemes on

the transmission time of data was analyzed. Status updating

with the HARQ protocols used in [26] subject to random

updates was studied in [27], where it was proved that the

optimal encoding policy discards the newly generated update

and does not preempt the current one. Status updating over an

erasure channel with an HARQ protocol subject to a frequency

constraint was studied in [29], where the structure of the

optimal signal-independent encoding policy was determined

and a reinforcement learning algorithm was proposed for

the case in which the channel statistics are unknown. This

work was extended in [30] to a broadcast channel setting

with multiple receivers. More recently, state estimation over

an erasure channel with an HARQ protocol was studied in

[32]–[34]. In these works, loss functions were expressed as

nonlinear functions of the age of information, and optimal

signal-independent encoding policies were obtained. Note that

the above studies directly rely on the age of information, a

metric that quantifies the time elapsed since the generation of

the last successful delivery at each time. Although the age of

information is an appropriate instrument for shaping the infor-

mation flow in many networked real-time systems, it has been

shown in [35]–[40] that, for networked control systems, more

comprehensive instruments such as the value of information,

which measures the difference between the benefit and the cost

of a piece of information at each time, are required, and that

strategies that depend purely on the age of information can

lead to a degradation in the system performance.

B. Contributions and Outline

In this study, we aim to contribute to the field of semantic1

communications [41], [42], a new communication paradigm

that focuses on exchanging the most significant part of data

by considering its contextual relevance. In particular, we

explore and assess the relative significance of two types of

data, namely new sensory information and previously failed

sensory information, sequentially in advanced communication

networks, with a specific emphasis on the regulation of dy-

namical systems. Our main contributions are as follows:

(i) We propose a novel framework for networked control

of a dynamical process over a lossy channel with an

HARQ protocol, where the objective is to minimize

state deviations and control efforts over a finite horizon.

1The word “semantics” is etymologically derived from the ancient Greek
word “semantikos”, which means “significant”.
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The dynamical process is modeled by a Gauss–Markov

process, and the lossy channel by a packet-erasure

channel with ideal feedback. We formulate the problem

mathematically, and derive the structural properties of the

optimal encoding and decoding policies. Our emphasis

here lies specifically on designing switching and control

policies, rather than error-correcting codes.

(ii) We show that the optimal encoding policy is a threshold

switching policy that depends on the system’s dynamics

and its realizations, and the optimal decoding policy is

a certainty-equivalent control policy with a switching

filter that depends on the encoder’s decision. In addition,

we determine the equations that the encoder and the

decoder need to solve in order to implement the optimal

policies. More specifically, we show that the encoder

must solve the Kalman filtering equations, a mismatch

linear equation, and a Bellman optimality equation, while

the decoder must solve a linear filtering equation and an

algebraic Riccati equation.

(iii) We show how the structural properties of the optimal

encoding and decoding policies alter when an automatic

repeat request (ARQ) protocol is used instead of an

HARQ protocol. In this case, we prove that, as ex-

pected, retransmitting previously failed measurements is

suboptimal, and corroborate that the optimal encoding

and decoding policies match the prior findings in the

literature (see e.g., [22], [43]). Finally, we conduct a

numerical performance comparison between the optimal

policies with HARQ and ARQ protocols to validate our

theoretical results.

Note that our study differs from [9]–[22], which investigate

the impact of channel conditions, given a stability constraint

or a performance index, in a setting where, at each time,

the encoder transmits new sensory information with some

success probability. We here examine the impact of an HARQ

protocol, given a performance index, in a setting where, at each

time, the encoder decides whether to transmit new sensory

information with a lower success probability or retransmit

previously failed sensory information with a higher success

probability. Besides, our study diverges from [23], [24], [26]–

[30], [32], [33], which look for an optimal signal-independent

codeword length or an optimal signal-independent encoding

policy by considering a performance index for status updating

or state estimation, which is expressible in terms of the age

of information. We here formulate a dynamic team game

with two decision makers, and search for the optimal signal-

dependent encoding and decoding policies simultaneously by

considering a well-established performance index for feedback

control, which cannot be expressed solely in terms of the age

of information.

The article is organized as follows. We formulate the prob-

lem of interest in Section II. We present our main theoretical

results in Section III, and provide the derivation of these

results in Section IV. Then, we present a numerical example in

Section V. Finally, we conclude the article and discuss future

research in Section VI.
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Fig. 1: Networked control of a Gauss–Markov process over a

packet-erasure channel with an HARQ protocol. The encoder,

collocated with the sensor, and the decoder, collocated with the

actuator, are the decision makers. An ideal feedback channel

connects the decoder to the encoder.

C. Preliminaries

In the sequel, the sets of real numbers and non-negative

integers are denoted by R and N, respectively. For x, y ∈ N

and x ≤ y, the set N[x,y] denotes {z ∈ N|x ≤ z ≤ y}. The

sequence of all vectors xt, t = p, . . . , q, is represented by

xp:q . For matrices X and Y , the relations X ≻ 0 and Y � 0
denote that X and Y are positive definite and positive semi-

definite, respectively. The logical AND and the logical OR are

represented by ∧ and ∨, respectively. The indicator function

of a subset A of a set X is denoted by 1A : X → {0, 1}. The

product operator
∏q

t=p Xt, where Xt is a matrix, is defined

according to the order Xp · · ·Xq, and is equal to one when

q < p. The probability measure of a random variable x is

represented by P(x), its probability density or probability mass

function by p(x), and its expected value and covariance by

E[x] and cov[x], respectively. We will adopt stochastic kernels

to represent decision policies. Let (X ,BX ) and (Y,BY) be

two measurable spaces. A Borel measurable stochastic kernel

P : BY × X → [0, 1] is a mapping such that A 7→ P(A|x) is

a probability measure on (Y,BY) for any x ∈ X , and x 7→
P(A|x) is a Borel measurable function for any A ∈ BY .

II. NETWORKED CONTROL OF A DYNAMICAL PROCESS

OVER A LOSSY CHANNEL WITH AN HARQ PROTOCOL

Consider a networked control system composed of a dy-

namical process, a sensor with an encoder, an actuator with

a decoder, and a lossy channel with an HARQ protocol that

connects the sensor to the actuator (see Fig. 1). At each time k,

a message containing a new measurement, represented by x̌k,

or a previously failed measurement, represented by x̌k′ for

k′ < k, can be transmitted or retransmitted over the channel

from the sensor to the actuator, where an actuation input

(i.e., control input), represented by ak, should be computed

causally in real time and over a finite time horizon N . We

assume that time is discretized into equal time slots, and the

measurement x̌k is chosen such that the best MMSE state

estimate is achieved at the controller.
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The lossy channel is modeled as a packet-erasure channel

with ideal feedback. The decision of the encoder at time k,

denoted by uk ∈ {tx, rtx}, can be either transmitting a new

measurement (i.e., uk = tx) or retransmitting a previously

failed measurement (i.e., uk = rtx). The packet loss in the

channel (i.e. failure in detection) is modeled by a random

variable γk ∈ {0, 1} such that γk = 0 if a packet loss occurs

at time k, and γk = 1 otherwise. Let us introduce the variable

τk such that if the communication at time k − 1 failed, τk is

equal to the time elapsed since the last tx decision was made;

otherwise, τk = 0. Note that τk satisfies the recursive relation

τk =











1, if uk−1 = tx ∧ γk−1 = 0,

τk−1 + 1, if uk−1 = rtx ∧ γk−1 = 0,

0, otherwise

(1)

for k ∈ N[0,N ] with initial condition τ0 = 0. The channel

satisfies the input-output relation

zk+1 =











x̌k, if uk = tx ∧ γk = 1,

x̌k−τk , if uk = rtx ∧ γk = 1,

F, otherwise

(2)

for k ∈ N[0,N ] with z0 = F by convention, where zk is the

output of the channel and F represents the occurrence of a

packet loss. Let ωk represent the number of communication

attempts before time k associated with the previously failed

measurement x̌k−τk . It is not difficult to observe that ωk is in

fact equal to τk. Let the packet error rate at time k associated

with a measurement after s retransmissions be denoted by

λk(s). Then, the packet error rate for communication of

the new measurement x̌k at time k is λk(0), and that for

communication of the previously failed measurement x̌k−τk

at time k is λk(ωk). It is assumed that the packet error rate

λk(ωk) for any ωk and k ∈ N[0,N ] is a random variable

forming a Markov chain; the packet error rates λk(0) and

λk(ωk) are estimated perfectly and known at the encoder at

each time k; the random variables γk for k ∈ N[0,N ] are

mutually independent given their respective packet error rates;

signaling effect [44] and measurement quantization error [2]

are negligible; a transmitted or retransmitted measurement is

received after one-step delay, which is fixed and independent

of the packet content; and packet acknowledgments are sent

back from the decoder to the encoder via an ideal feed-

back channel.

Remark 1: Note that the packet error rate λk(ωk) at time k

associated with a previously failed measurement after ωk

retransmissions depends on ωk, the channel conditions, and

the particular HARQ scheme used for combining multiple

copies from previously failed messages (see e.g., [7] for how

to estimate the packet error rate empirically when an HARQ

protocol is used). It has been observed that, in any reasonable

HARQ scheme, λk(ωk) is generally non-increasing in ωk, i.e.,

λk(ω
1
k) > λk(ω

2
k) for all ω1

k < ω2
k. Furthermore, note that

standard HARQ schemes impose a finite limit on the maxi-

mum number of retransmissions permitted, i.e., ωk ≤ ωmax.

This limit is taken into account in our study.

Remark 2: Although the main focus of this study is on a

lossy channel with an HARQ protocol, as described above,

we will utilize our findings to draw conclusions also about

a lossy channel with an ARQ protocol. It is important to

note that unlike an HARQ protocol, which incorporates both

retransmission and error correction, an ARQ protocol relies

solely on retransmission. In particular, in an ARQ protocol,

failed messages are discarded, and each retransmission is

decoded as a new message. As a result, when an ARQ protocol

is adopted instead of an HARQ protocol, the packet error rate

for communication of the new measurement x̌k at time k is

λk(0), and that for communication of the previously failed

measurement x̌k−τk at time k is also λk(0).
The dynamical process, equipped with a sensor and an actu-

ator with computational capabilities, is modeled as a partially

observable Gauss–Markov process. This process satisfies the

state and output equations

xk+1 = Akxk +Bkak + wk, (3)

yk = Ckxk + vk (4)

for k ∈ N[0,N ] with initial condition x0, where xk ∈ R
n

is the state of the process, Ak ∈ R
n×n is the state matrix,

Bk ∈ R
n×m is the input matrix, ak ∈ R

m is the actuation

input, wk ∈ R
n is a Gaussian white noise with zero mean

and covariance Wk ≻ 0, yk ∈ R
p is the output of the sensor,

Ck ∈ R
p×n is the output matrix, and vk ∈ R

p is a Gaussian

white noise with zero mean and covariance Vk ≻ 0. It is

assumed that the initial condition x0 is a Gaussian vector with

mean m0 and covariance M0, and the random variables x0,

wt, and vs for t, s ∈ N[0,N ] are mutually independent.

Remark 3: Note that the adopted process model represents a

wide class of physical systems. Such a Gauss–Markov model

has been adopted extensively in control and communication,

as studying this basic model can provide a foundation for

development of more sophisticated systems. Moreover, the

time-varying nature of the model allows approximation of

nonlinear systems around their nominal trajectories, and the

partially observable nature of it respects the fact that in

reality only a noisy version of the output of the sensor can

be observed.

The information sets of the encoder and the decoder at

time k can be represented by

Ie
k =

{

yt, zt, λt, at−1, ut−1, γt−1

∣

∣

∣
t ∈ N[0,k]

}

, (5)

Id
k =

{

zt, λt, at−1, ut−1, γt−1

∣

∣

∣
t ∈ N[0,k]

}

(6)

for k ∈ N[0,N ], respectively. At each time k for k ∈ N[0,N ],

the encoder must decide about uk and the decoder about ak
based on the Borel measurable stochastic kernels P(uk|I

e
k)

and P(ak|I
d
k ), respectively. A coding policy profile (π, µ),

consisting of an encoding (i.e., switching) policy π and a

decoding (i.e., control) policy µ, is considered admissible if

π = {P(uk|I
e
k)|k ∈ N[0,N ]} and µ = {P(ak|I

d
k )|k ∈ N[0,N ]}.

We would like to identify the best possible solution, denoted

as (π⋆, µ⋆), to the stochastic optimization problem

minimize
π∈P,µ∈M

Υ(π, µ) (7)
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subject to the lossy channel model in (2), and the dynamical

process model in (3) and (4), where P and M are the sets of

admissible encoding policies and admissible decoding policies,

respectively, and

Υ(π, µ) :=
1

N + 1
E

[N+1
∑

k=0

xT
k Qkxk +

N
∑

k=0

aTkRkak

]

(8)

for Qk � 0 and Rk ≻ 0 as weighting matrices.

Remark 4: The optimization problem in (7) is a team

decision-making problem with a loss function that is expressed

in terms of state deviations and control efforts over a finite

time horizon. This loss function, which is widely used in the

literature, measures the performance of feedback control. The

main challenge in solving the optimization problem in (7) is

that optimal encoding and decoding policies must be designed

jointly based on an information structure that is specified

by (Ie
k, I

d
k ). In the subsequent section, we will proceed to

characterize a globally optimal solution (π⋆, µ⋆). This optimal

solution will play a crucial role in determining the fundamental

performance limit of the networked control system under

consideration. In fact, by finding a globally optimal solution,

we can establish the best achievable system performance.

III. MAIN RESULTS: STRUCTURAL PROPERTIES OF

OPTIMAL ENCODING AND DECODING POLICIES

In this section, we focus on presenting our theoretical find-

ings. However, before delving into the details, it is essential to

first establish several key definitions. We say a policy profile

(π⋆, µ⋆) associated with the loss function Υ(π, µ) is globally

optimal (i.e., team optimal) if

Υ(π⋆, µ⋆) ≤ Υ(π, µ), for all π ∈ P , µ ∈ M.

Note that globally optimal solutions express a stronger solution

concept than Nash equilibria.

We define two distinct value functions V e
k (I

e
k) and V d

k (I
d
k )

associated with the loss function Υ(π, µ) as

V e
k (I

e
k) := min

π∈P:µ=µ⋆
E

[ N
∑

t=k+1

sTt Λtst

∣

∣

∣
Ie
k

]

, (9)

V d
k (I

d
k ) := min

µ∈M:π=π⋆

E

[ N
∑

t=k

sTt Λtst

∣

∣

∣
Id
k

]

(10)

for k ∈ N[0,N ] given a policy profile (π⋆, µ⋆), where st = at+
(BT

t St+1Bt+Rt)
−1BT

t St+1Atxt and Λt = BT
t St+1Bt+Rt,

and St � 0 obeys the algebraic Riccati equation

St = Qt +AT
t St+1At −AT

t St+1Bt

×
(

BT
t St+1Bt +Rt

)−1

BT
t St+1At (11)

for t ∈ N[0,N ] with initial condition SN+1 = QN+1. Note that

this definition takes into account the fact that the encoder’s

decision at time k can affect the cost function only from time

k + 1 onward.

In addition, we define the innovation at the encoder

νk := yk − Ck E[xk|I
e
k−1], the estimation error at the en-

coder based on the conditional mean ěk := xk − E[xk|I
e
k],

the estimation error at the decoder based on the condi-

tional mean êk := xk − E[xk|I
d
k ], the estimation mismatch

based on the conditional means ẽk := E[xk|I
e
k] − E[xk|I

d
k ],

and the value residual from the perspective of the encoder

∆k := (λk(ωk) − λk(0))E[Vk+1(I
e
k+1)|I

e
k, γk = 0] −

(1 − λk(0))E[Vk+1(I
e
k+1)|I

e
k, uk = tx, γk = 1] + (1 −

λk(ωk))E[Vk+1(I
e
k+1)|I

e
k, uk = rtx, γk = 1], for k ∈ N[0,N ].

Note that νk, ěk, êk, ẽk, and ∆k are all computable at the

encoder at each time k.

Our main theoretical results are presented in the next theo-

rems, which specify the structural properties of the encoding

policy π⋆ and the decoding policy µ⋆ of a globally optimal

solution (π⋆, µ⋆).

Theorem 1: The optimal encoding policy π⋆ in networked

control of a Gauss–Markov process over a packet-erasure

channel with an HARQ protocol is the threshold switching

policy

u⋆
k =

{

tx, if ωk > ωmax ∨ τk = 0 ∨ Ωk ≥ 0,

rtx, otherwise
(12)

along with x̌k = E[xk|I
e
k ] for k ∈ N[0,N ], where Ωk =

(λk(ωk)−λk(0))ẽ
T
k A

T
k Γk+1Akẽk+(1−λk(ωk))ε

T
k Γk+1εk+

∆k, Γk = AT
k Sk+1Bk(B

T
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak, and

εk =
∑τk−1

t=0 (
∏t

t′=0 Ak−t′)Kk−tνk−t. This encoding policy

can be expressed at each time k as a function of ẽk, νk−τk+1:k,

τk, and λk . To apply this encoding policy, the following

equations need to be solved online:

x̌k = Ak−1x̌k−1 +Bk−1ak−1 +Kkνk, (13)

Pk =
((

Ak−1Pk−1A
T
k−1

+Wk−1

)−1

+ CT
k V

−1
k Ck

)−1

, (14)

ẽk = 1uk−1=tx∧γk−1=1Kkνk

+ 1uk−1=rtx∧γk−1=1

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Kk−tνk−t

+ 1γk−1=0

(

Ak−1ẽk−1 +Kkνk

)

(15)

for k ∈ N[1,N ] with initial conditions x̌0 = m0 + K0ν0,

P0 = (M−1
0 + CT

0 V
−1
0 C0)

−1, and ẽ0 = K0ν0, where

Kk = PkC
T
k V

−1
k .

Proof: See Section IV.

Theorem 2: The optimal decoding policy µ⋆ in networked

control of a Gauss–Markov process over a packet-erasure

channel with an HARQ protocol is the certainty-equivalent

control policy

a⋆k = −Lkx̂k (16)

for k ∈ N[0,N ], where Lk = (BT
k Sk+1Bk+Rk)

−1BT
k Sk+1Ak.

To apply this decoding policy, the following equation needs to
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be solved online:

x̂k = 1uk−1=tx∧γk−1=1

(

Ak−1x̌k−1 +Bk−1ak−1

)

+ 1uk−1=rtx∧γk−1=1

(( τk−1+1
∏

t=1

Ak−t

)

x̌k−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

)

+ 1γk−1=0

(

Ak−1x̂k−1 +Bk−1ak−1

)

(17)

for k ∈ N[1,N ] with initial condition x̂0 = m0, where x̂k =
E[xk|I

d
k ].

Proof: See Section IV.

Remark 5: The structural results in Theorems 1 and 2 certify

the existence of a globally optimal solution composed of a

threshold switching policy that depends on the system’s dy-

namics and its realizations, and a certainty-equivalent control

policy with a switching filter that depends on the encoder’s

decision. Note that these policies can be designed completely

separately. Moreover, the results assert that the optimal en-

coding policy transmits the encoder’s current MMSE state

estimate, i.e., x̌k, only if ωk > ωmax ∨ τk = 0 ∨ Ωk ≥ 0,

and retransmits the encoder’s previously failed MMSE state

estimate, i.e., x̌k−τk , otherwise; and that the optimal decoding

policy is constructed by inserting the decoder’s current MMSE

state estimate, i.e., x̂k, into the corresponding optimal state-

feedback control policy.

Remark 6: Note that the computational complexity of the

solution (π⋆, µ⋆) is the same as that of solving (9). As

we will prove, Vk(I
e
k) is a function of ẽk, νk−τk+1:k, τk,

and λk. Now, if τk is bounded by τmax, and ẽk, νt for

t ∈ N[k−τk+1,k], and λk are discretized in grids with cn1 , c
p
2,

and c3 points, respectively, and the expected value is expressed

based on a weighted sum of c4 samples, the computational

complexity is then O(Ncn1 c
p×(τmax−1)
2 c3c4τmax). This can be

expensive especially when n and p are large. In practice, the

value residual Ωk can be approximated based on the one-step

lookahead algorithm (see, e.g., [45]). Applying this procedure,

we find Ωk ≃ (λk(ωk) − λk(0))ẽ
T
k A

T
k Γk+1Akẽk + (1 −

λk(ωk))ε
T
k Γk+1εk, which is quadratic in terms of ẽk and εk.

Following the definitions of ẽk and εk, we observe that, while

these variables are influenced by the age of information at

the decoder, they cannot be expressed solely in terms of

it, as they in general depend on the system’s dynamics and

its realizations.

The next propositions, which are direct applications of the

above theorems, show how the structural properties of the

optimal encoding and decoding policies alter when an ARQ

protocol is used instead of an HARQ one.

Proposition 1: The optimal encoding policy π⋆ in net-

worked control of a Gauss–Markov process over a packet-

erasure channel with an ARQ protocol is the uniform trans-

mission policy

u⋆
k = tx (18)

along with x̌k = E[xk|I
e
k] for k ∈ N[0,N ]. To apply this

encoding policy, the following equations need to be solved

online:

x̌k = Ak−1x̌k−1 +Bk−1ak−1 +Kkνk, (19)

Pk =
((

Ak−1Pk−1A
T
k−1

+Wk−1

)−1

+ CT
k V

−1
k Ck

)−1

(20)

for k ∈ N[1,N ] with initial conditions x̌0 = m0 + K0ν0 and

P0 = (M−1
0 + CT

0 V
−1
0 C0)

−1, where Kk = PkC
T
k V

−1
k .

Proof: See Section IV.

Proposition 2: The optimal decoding policy µ⋆ in net-

worked control of a Gauss–Markov process over a packet-

erasure channel with an ARQ protocol is the certainty-

equivalent control policy

a⋆k = −Lkx̂k (21)

for k ∈ N[0,N ], where Lk = (BT
k Sk+1Bk+Rk)

−1BT
k Sk+1Ak.

To apply this decoding policy, the following equation needs to

be solved online:

x̂k = Ak−1(γk−1ẽk−1 + x̂k−1) +Bk−1ak−1 (22)

for k ∈ N[1,N ] with initial condition x̂0 = m0, where x̂k =
E[xk|I

d
k ].

Proof: See Section IV.

Remark 7: The results of Propositions 1 and 2 indicate that,

as expected, retransmitting previously failed measurements is

indeed suboptimal when an ARQ protocol is adopted instead

of an HARQ protocol, i.e., when λk(ωk) = λk(0). This

finding suggests that the adoption of an ARQ protocol does not

provide any advantage for networked control systems. Note

that, in this case, the optimal encoding policy transmits the

encoder’s current MMSE state estimate, i.e., x̌k, uniformly;

and the optimal decoding policy is constructed based on the

decoder’s current MMSE state estimate, i.e., x̂k, which obeys

simple dynamics. These results match the prior findings in the

networked control literature (see e.g., [22], [43]).

IV. DERIVATION OF MAIN RESULTS

This section is dedicated to the derivation of the main

results, presented in Section III. Note that, given any op-

timal switching policy implemented, the optimal value that

minimizes the mean square error at the decoder at time k

is the conditional mean E[xk|I
d
k ]. Besides, the conditional

mean E[xk|I
e
k] combines all current and previous outputs

of the sensor that are accessible to the encoder at time k.

This implies that if this new message is transmitted by the

encoder at time k, from the MMSE perspective, the decoder

is able to develop a state estimate upon the successful receipt

of the message at time k + 1 that would be the same if

it had all the previous outputs of the sensor until time k,

which is the best possible case for the decoder. Moreover,

given an HARQ protocol, when the last transmitted message

fails, aside from transmitting a new message, the encoder at

time k has an additional choice to retransmit a previously

failed message. This message, following the definition of τk, is

in fact E[xk−τk |I
e
k−τk

]. Therefore, without loss of optimality,
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the encoder at each time k should decide to transmit either

x̌k = E[xk|I
e
k] or x̌k−τk = E[xk−τk |I

e
k−τk

].
We first characterize in the next two lemmas the recursive

equations that the optimal estimators at the encoder and the

decoder must satisfy.

Lemma 1: The optimal estimator minimizing the MMSE at

the encoder satisfies the recursive equations

x̌k = mk +Kk

(

yk − Ckmk

)

, (23)

mk = Ak−1x̌k−1 +Bk−1ak−1, (24)

Pk =
(

M−1
k + CT

k V
−1
k Ck

)−1

, (25)

Mk = Ak−1Pk−1A
T
k−1 +Wk−1 (26)

for k ∈ N[1,N ] with initial conditions x̌0 = m0 + K0(y0 −
C0m0) and P0 = (M−1

0 + CT
0 V

−1
0 C0)

−1, where x̌k =
E[xk|I

e
k], mk = E[xk|I

e
k−1], Pk = cov[xk|I

e
k], Mk =

cov[xk|I
e
k−1], and Kk = PkC

T
k V

−1
k .

Proof: Given the information set Ie
k , the optimal estimator

at the encoder must satisfy the Kalman filter equations for the

conditional mean and the conditional covariance. For detailed

derivation of these equations see e.g., [46].

Lemma 2: The optimal estimator minimizing the MMSE at

the decoder satisfies the recursive equation

x̂k = 1uk−1=tx∧γk−1=1

(

Ak−1x̌k−1 +Bk−1ak−1

)

+ 1uk−1=rtx∧γk−1=1

(( τk−1+1
∏

t=1

Ak−t

)

x̌k−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

)

+ 1γk−1=0

(

Ak−1x̂k−1 +Bk−1ak−1

)

(27)

for k ∈ N[1,N ] with initial condition x̂0 = m0, where x̂k =
E[xk|I

d
k ].

Proof: Writing xk in terms of xk−1 based on (3), and

taking expectation given the information set Id
k , we obtain

E
[

xk

∣

∣Id
k

]

= Ak−1 E
[

xk−1

∣

∣Id
k

]

+Bk−1ak−1 (28)

for k ∈ N[1,N ] as E[wk−1|I
d
k ] = 0. If γk−1 = 0, regard-

less of uk−1, we have zk = F. Note that E[xk−1|I
d
k ] =

E[xk−1|I
d
k−1, zk = F, λk, ak−1, uk−1, γk−1 = 0] =

E[xk−1|I
d
k−1] = x̂k−1. Therefore, using (28), when γk−1 = 0,

regardless of uk−1, we get

E
[

xk

∣

∣Id
k

]

= Ak−1x̂k−1 + Bk−1ak−1 (29)

for k ∈ N[1,N ].

However, if uk−1 = tx and γk−1 = 1, we have

zk = x̌k−1. In this case, we get E[xk−1|I
d
k ] =

E[xk−1|I
d
k−1, zk = x̌k−1, λk, ak−1, uk−1 = tx, γk−1 = 1] =

E[xk−1|x̌k−1, Pk−1] = x̌k−1 as {x̌k−1, Pk−1} is a sufficient

statistic of Id
k with respect to xk−1. Hence, using (28), when

uk−1 = tx and γk−1 = 1, we get

E
[

xk

∣

∣Id
k

]

= Ak−1x̌k−1 + Bk−1ak−1 (30)

for k ∈ N[1,N ].

Furthermore, writing xk in terms of xk−τk−1−1 based on (3),

and taking expectation given the information set Id
k , we obtain

E
[

xk

∣

∣Id
k

]

=

( τk−1+1
∏

t=1

Ak−t

)

E
[

xk−τk−1−1

∣

∣Id
k

]

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1 (31)

for k ∈ N[1,N ] as
∑τk−1

t=0 (
∏t

t′=1 Ak−t′)E[wk−t−1|I
d
k ] =

0. If uk−1 = rtx and γk−1 = 1, we have zk =
x̌k−τk−1−1. In this case, we get E[xk−τk−1−1|I

d
k ] =

E[xk−τk−1−1|I
d
k−1, zk = x̌k−τk−1−1, λk, ak−1, uk−1 =

rtx, γk−1 = 1] = E[xk−τk−1−1|x̌k−τk−1−1, Pk−τk−1−1] =
x̌k−τk−1−1 as {x̌k−τk−1−1, Pk−τk−1−1} is a sufficient statistic

of Id
k with respect to xk−τk−1−1. Hence, using (31), when

uk−1 = rtx and γk−1 = 1, we get

E
[

xk

∣

∣Id
k

]

=

( τk−1+1
∏

t=1

Ak−t

)

x̌k−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1 (32)

for k ∈ N[1,N ].

We obtain (27) by combining (29), (30), and (32). Note that

the initial condition is E[x0] = m0 because no measurement

is available at the decoder at time k = 0.

Lemma 3: The estimation error at the decoder satisfies the

recursive equation

êk = 1uk−1=tx∧γk−1=1

(

Ak−1ěk−1 + wk−1

)

+ 1uk−1=rtx∧γk−1=1

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

wk−t−1

+ 1γk−1=0

(

Ak−1êk−1 + wk−1

)

(33)

for k ∈ N[1,N ] with initial condition ê0 = x0 − m0, where

êk = xk − E[xk|I
d
k ]

Proof: Using (3), we can write xk in terms of xk−1 as

xk = Ak−1xk−1 +Bk−1ak−1 + wk−1 (34)

for k ∈ N[1,N ] with initial condition x0, and in terms of

xk−τk−1−1 as

xk =

( τk−1+1
∏

t=1

Ak−t

)

xk−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

wk−t−1 (35)

for k ∈ N[1,N ] with initial condition x0.

Moreover, from the law of total probability, p(uk−1 =
tx ∧ γk−1 = 1) + p(uk−1 = rtx ∧ γk−1 = 1) + p(γk−1 =
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0) = 1. Thus, using (34) and (35), we can get

xk = 1uk−1=tx∧γk−1=1

(

Ak−1xk−1 +Bk−1ak−1 + wk−1

)

+ 1uk−1=rtx∧γk−1=1

(( τk−1+1
∏

t=1

Ak−t

)

xk−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

wk−t−1

)

+ 1γk−1=0

(

Ak−1xk−1 +Bk−1ak−1 + wk−1

)

(36)

for k ∈ N[1,N ] with initial condition x0.

By definition, êk = xk − x̂k. Therefore, we obtain (33)

by subtracting (27) from (36). The initial condition ê0 is also

obtained by subtracting x̂0 = m0 from x0.

Lemma 4: The estimation mismatch satisfies the recursive

equation

ẽk = 1uk−1=tx∧γk−1=1Kkνk

+ 1uk−1=rtx∧γk−1=1

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Kk−tνk−t

+ 1γk−1=0

(

Ak−1 ẽk−1 +Kkνk

)

(37)

for k ∈ N[1,N ] with initial condition ẽ0 = K0ν0, where ẽk =
E[xk|I

e
k]− E[xk|I

d
k ]

Proof: From the definition of the innovation νk and the

state estimate x̌k, we find that

νk = yk − Ck

(

Ak−1x̌k−1 +Bk−1ak−1

)

(38)

with the exception ν0 = y0 − C0m0. Note that νk is a

white Gaussian noise with zero mean and covariance Nk =
CkMkC

T
k + Vk.

Using (23), (24), and (38), we can write x̌k in terms of

x̌k−1 as

x̌k = Ak−1x̌k−1 +Bk−1ak−1 +Kkνk (39)

for k ∈ N[1,N ] with initial condition x̌0 = m0 +K0ν0, and in

terms of x̌k−τk−1−1 as

x̌k =

( τk−1+1
∏

t=1

Ak−t

)

x̌k−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Kk−tνk−t (40)

for k ∈ N[1,N ] with initial condition x̌0 = m0 +K0ν0.

Moreover, from the law of total probability, we have

p(uk−1 = tx ∧ γk−1 = 1) + p(uk−1 = rtx ∧ γk−1 =

1)+ p(γk−1 = 0) = 1. Thus, using (39) and (40), we can get

x̌k = 1uk−1=tx∧γk−1=1

(

Ak−1x̌k−1 +Bk−1ak−1 +Kkνk

)

+ 1uk−1=rtx∧γk−1=1

(( τk−1+1
∏

t=1

Ak−t

)

x̌k−τk−1−1

+

τk−1
∑

t=0

( t
∏

t′=1

Ak−t′

)

Bk−t−1ak−t−1

+

τk−1
∑

t=0

( t
∏

t′=0

Ak−t′

)

Kk−tνk−t

)

+ 1γk−1=0

(

Ak−1x̌k−1 +Bk−1ak−1 +Kkνk

)

(41)

for k ∈ N[1,N ] with initial condition x̌0 = m0.

By definition, ẽk = x̌k − x̂k . Therefore, we obtain (37)

by subtracting (27) from (41). The initial condition ẽ0 is also

obtained by subtracting x̂0 = m0 from x̌0 = m0 +K0ν0.

We now present the proof of Theorems 1 and 2.

Proof: Let (πo, µo) denote a policy profile in the set of

globally optimal solutions. It is evident that this set cannot be

empty. We prove that the policy profile (π⋆, µ⋆) in the claim is

globally optimal by showing that Υ(π⋆, µ⋆) cannot be greater

than Υ(πo, µo). Our proof is structured in the following way:

Υ(πo, µo) = Υ(πn, µo) ≥ Υ(πn, µc) ≥ Υ(π⋆, µ⋆). (42)

In particular, we first find an innovation-based switching policy

πn such that Υ(πn, µo) = Υ(πo, µo). Then, we derive a

certainty-equivalent control policy µc such that Υ(πn, µc) ≤
Υ(πn, µo). Finally, we show that for the policy profile in

the claim we have Υ(π⋆, µ⋆) ≤ Υ(πn, µc). Throughout our

analysis, without loss of generality, we assume that m0 = 0.

Similar arguments can be made for m0 6= 0 following a

coordinate transformation.

In the first step of the proof, we will show that, given the

control policy µo, we can find an innovation-based switching

policy πn that is equivalent to the switching policy πo. Note

that a switching policy in the context of our problem is

innovation-based if it depends on ν0:k instead of y0:k and

z0:k at each time k. From the definition of νk, we get

yk = νk + Ekx̌k−1 + Fkak−1 (43)

where Ek and Fk are matrices of proper dimensions. From

(23) and (24), we find that

x̌k = Gkνk +Hkak−1 (44)

where Gk and Hk are matrices of proper dimensions. Further-

more, from (2), we know that zk is a function of x̌k−1, uk−1,

and γk−1. As a result, it is possible to write

pπo(uk|I
e
k) = pπo

(

uk

∣

∣νk,λk,ak−1,uk−1,γk−1

)

,

pµo(ak|I
d
k ) = pµo

(

ak
∣

∣νk−1,λk,ak−1,uk−1,γk−1

)

.

Accordingly, any realizations of uk and ak can be ex-

pressed as uk = uk(ηk;νk,λk,ak−1,uk−1,γk−1) and ak =
ak(ζk;νk−1,λk,ak−1,uk−1,γk−1), respectively, where ηk
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and ζk represent random variables that are independent of any

other variables. Hence, it is possible to recursively construct

πn with pπn(uk|νk,λk, ζk−1,uk−1,γk−1) such that it is

equivalent to pπo(uk|I
e
k). This proves that Υ(πn, µo) =

Υ(πo, µo). It should be emphasized that the switching policy

πn, initially constructed associated with the control policy µo,

is now dependent solely on νk, λk, ζk−1, uk−1, and γk−1 at

each time k.

In the second step of the proof, given the switching policy

πn, we will search for an optimal control policy µc, and prove

that it is a certainty-equivalent control policy. We first present

three identities. From (3), we have

xT
k+1Sk+1xk+1 =

(

Akxk +Bkak + wk

)T

× Sk+1

(

Akxk +Bkak + wk

)

. (45)

From (11), we can write

xT
k Skxk = xT

k

(

Qk +AT
k Sk+1Ak

− LT
k

(

BT
k Sk+1Bk +Rk

)

Lk

)

xk. (46)

Moreover, through a simple algebraic calculation, we obtain

xT
N+1SN+1xN+1 − xT

0 S0x0

=

N
∑

k=0

xT
k+1Sk+1xk+1 −

N
∑

k=0

xT
k Skxk. (47)

Incorporating the identities (45) and (46) into the identity (47),

taking the expectation of both sides of (47), and using the facts

that wk is independent of xk and ak and that the terms xT
0 S0x0

and wT
k Sk+1wk are independent of the switching and control

policies, we find the loss function

Υ′(π, µ) := E

[ N
∑

k=0

sTkΛksk

]

(48)

for any π ∈ P and for any µ ∈ M. Note that Υ′(π, µ) is

equivalent to Υ(π, µ) in the sense that optimizing the former

over (π, µ) yields the same optimal solutions as optimizing

the latter over (π, µ).
Note that, at time k, the term E[

∑k−1
t=0 sTt Λtst] in (48) will

not be affected by the control policy executed from time k

onward. Associated with Υ′(πn, µ) for πn that was obtained

in the first step and for any µ ∈ M, we define the value

function V d
k (I

d
k ) as

V d
k (I

d
k ) := min

µ∈M
E

[ N
∑

t=k

sTt Λtst

∣

∣

∣
Id
k

]

(49)

for k ∈ N[0,N ] with initial condition V c
N+1(I

c
N+1) = 0. Build-

ing upon the prior findings in the literature (refer to, e.g., [22],

[36], [37], [43], [47]), it becomes evident that the separation

principle holds, and the minimizer in (49) is obtained by

a⋆k = −Lkx̂k . This establishes that Υ(πn, µc) ≤ Υ(πn, µo),
and completes the proof of Theorem 2.

In the third step of the proof, we will show that Υ(π⋆, µ⋆) ≤
Υ(πn, µc). Note that, at time k, the term E[

∑k

t=0 s
T
t Λtst] in

(48) will not be affected by the switching policy executed from

time k onward. Associated with Υ′(πn, µc) for any πn ∈ P
that is innovation-based and for µc that was obtained in the

second step, we define the value function V e
k (I

e
k) as

V e
k (I

e
k) := min

πn∈P
E

[ N
∑

t=k+1

sTt Λtst

∣

∣

∣
Ie
k

]

(50)

for k ∈ N[0,N ] with initial condition V e
N+1(I

e
N+1) = 0. From

the additivity of V e
k (I

e
k) and by using ak = −Lkx̂k, we obtain

V e
k (I

e
k) = min

p(uk|Ie

k
)
E

[

êTk+1Γk+1êk+1

+ min
p(uk+1|Ie

k+1
)
E

[

êTk+2Γk+2êk+2 + . . .
∣

∣

∣
Ie
k+1

]

∣

∣

∣
Ie
k

]

= min
p(uk|Ie

k
)
E

[

êTk+1Γk+1êk+1 + V e
k+1(I

e
k+1)

∣

∣

∣
Ie
k

]

= min
p(uk|Ie

k
)
E

[

ẽTk+1Γk+1ẽk+1 + tr(Γk+1Pk+1)

+ V e
k+1(I

e
k+1)

∣

∣

∣
Ie
k

]

(51)

for k ∈ N[0,N ] with initial condition V e
N+1(I

e
N+1) = 0,

where Γk = AT
k Sk+1Bk(B

T
k Sk+1Bk + Rk)

−1BT
k Sk+1Ak,

and in the third equality we used the fact that, by the tower

property of conditional expectations, E[êTk+1Γk+1êk+1|I
e
k] =

E[ẽTk+1Γk+1ẽk+1|I
e
k]+tr(Γk+1Pk+1). We will prove by back-

ward induction that V e
k (I

e
k) can be written in terms of ẽk,

νk−τk+1:k, τk, and λk. The claim is satisfied for time N +1.

We assume that the claim holds at time k+1, and shall prove

that it also holds at time k.

By the hypothesis, V e
k+1(I

e
k+1) is function of ẽk+1,

νk−τk+1+2:k+1, τk+1, and λk+1. Note that, from (37), we

can write ẽk+1 in terms of ẽk, νk−τk+1:k+1, uk, τk, and γk;

from (1), we can write τk+1 in terms of τk, uk, and γk; and

by the Markov property, we know that λk+1 depends on λk.

Moreover, we recall that 0 ≤ τk+1 ≤ τk + 1. Hence, there

exists a function g(.) such that

V e
k+1(I

e
k+1) = g

(

ẽk,νk−τk+1:k+1, uk, τk, λk, γk

)

. (52)

This implies that E[V e
k+1(I

e
k+1)|I

e
k, uk] is a function of ẽk,

νk−τk+1:k, uk, τk , and λk as νk+1 and γk are averaged out. In

addition, since we can write ẽk+1 in terms of ẽk, νk−τk+1:k+1,

uk, τk, and γk, there exists a function h(.) such that

ẽTk+1ẽk+1 = h
(

ẽk,νk−τk+1:k+1, uk, τk, γk

)

. (53)

This implies that E[ẽTk+1ẽk+1|I
e
k, uk] is a function of ẽk,

νk−τk+1:k, τk, and λk as νk+1 and γk are averaged out.

Therefore, the claim holds.

Lastly, we will need to obtain the switching condition of the

optimal switching policy. Note that, according to (37), when

uk = tx and γk = 1, ẽk+1 satisfies

ẽk+1 = Kk+1νk+1. (54)
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When uk = rtx and γk = 1, it satisfies

ẽk+1 =

τk
∑

t=0

( t
∏

t′=1

Ak−t′+1

)

Kk−t+1νk−t+1

=

τk−1
∑

t=0

( t
∏

t′=0

Ak−t′

)

Kk−tνk−t +Kk+1νk+1. (55)

Furthermore, when γk = 0, it satisfies

ẽk+1 = Akẽk +Kk+1νk+1. (56)

As a result, since νk+1 is a white Gaussian noise with zero

mean and covariance Nk+1 = Ck+1Mk+1C
T
k+1 + Vk+1, from

(54), (55), and (56), we can derive

E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = tx, γk = 1

]

= tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

, (57)

E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = rtx, γk = 1

]

= εTk Γk+1εk + tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

, (58)

E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, γk = 0

]

= ẽTkA
T
k Γk+1Akẽk + tr

(

Γk+1Kk+1Nk+1K
T
k+1

)

(59)

where in (58) we have εk =
∑τk−1

t=0 (
∏t

t′=0 Ak−t′ )Kk−tνk−t

and used the fact that E[εk|I
e
k] = εk, and in (59) we used the

fact that E[ẽk|I
e
k] = ẽk. Note that, since (56) holds regardless

of the value of uk, we have

E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = tx, γk = 0

]

= E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = rtx, γk = 0

]

= E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, γk = 0

]

.

Employing (57), (58), and (59), and applying the law of total

expectation for the quadratic mismatch terms in (51), we get

E

[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = tx

]

= λk(0)ẽ
T
kA

T
k Γk+1Akẽk

+ λk(0) tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

+
(

1− λk(0)
)

tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

= λk(0)ẽ
T
kA

T
k Γk+1Akẽk

+ tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

(60)

and

E
[

ẽTk+1Γk+1ẽk+1

∣

∣Ie
k, uk = rtx

]

= λk(ωk)ẽ
T
k A

T
k Γk+1Akẽk

+ λk(ωk) tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

+
(

1− λk(ωk)
)

εTk Γk+1εk

+
(

1− λk(ωk)
)

tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

= λk(ωk)ẽ
T
kA

T
k Γk+1Akẽk

+
(

1− λk(ωk)
)

εTk Γk+1εk

+ tr
(

Γk+1Kk+1Nk+1K
T
k+1

)

. (61)

Besides, applying the law of total expectation for the cost-

to-go terms in (51), we get

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = tx

]

= λk(0)E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = tx, γk = 0

]

+
(

1−λk(0)
)

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = tx, γk = 1

]

(62)

and

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = rtx

]

= λk(ωk)E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = rtx, γk = 0

]

+
(

1−λk(ωk)
)

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = rtx, γk = 1

]

. (63)

Observe that since no measurement can be detected correctly

at time k + 1 when γk = 0, in (62) and (63), we can use the

equalities

E

[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = tx, γk = 0

]

= E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = rtx, γk = 0

]

= E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, γk = 0

]

.

Inserting (60), (61), (62), and (63) in (51), we deduce that

u⋆
k = tx if
(

λk(ωk)− λk(0)
)

ẽTkA
T
k Γk+1Ak ẽk

+
(

1− λk(ωk)
)

εTk Γk+1εk

+
(

λk(ωk)− λk(0)
)

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, γk = 0

]

−
(

1− λk(0)
)

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = tx, γk = 1

]

+
(

1− λk(ωk)
)

E
[

V e
k+1(I

e
k+1)

∣

∣Ie
k, uk = rtx, γk = 1

]

≥ 0.

We also know that u⋆
k = tx if ωk > ωmax or τk = 0. The

condition ωk > ωmax comes from the HARQ scheme, and the

condition τk = 0 from the fact that the previous transmission

was successful. In both cases, no retransmission is taken place.

This completes the proof of Theorem 1.

Finally, we present the proof of Propositions 1 and 2.

Proof: We will specialize the results of Theorems 1 and 2

for a packet-erasure channel with an ARQ protocol, where the

packet error rate for communication of the new measurement
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x̌k at time k is λk(0), and that for communication of the

previously failed measurement x̌k−τk at time k is also λk(0).
To that end, we need to convert λk(ωk) in the results of

Theorem 1 to λk(0). Aside from this observation, we will

prove by backward induction that V e
k (I

e
k) can be written as

V e
k (I

e
k) = Eλk+1:N

[ẽTkΦkẽk + φk|I
e
k], where Φk � 0 and φk

is independent of ẽk. The claim is satisfied for time N + 1.

We assume that the claim holds at time k+1, and shall prove

that it also holds at time k.

Note that, from (51) and by the hypothesis, we can write

V e
k (I

e
k) = min

p(uk|Ie

k
)
E

[

ẽTk+1Γk+1ẽk+1 + tr(Γk+1Pk+1)

+ V e
k+1(I

e
k+1)

∣

∣

∣
Ie
k

]

= min
p(uk|Ie

k
)
E

[

ẽTk+1Γk+1ẽk+1 + tr(Γk+1Pk+1)

+ ẽk+1Φk+1ẽk+1 + φk+1

∣

∣

∣
Ie
k

]

= min
p(uk|Ie

k
)
E

[

ẽTk+1Θk+1ẽk+1 + θk+1

∣

∣

∣
Ie
k

]

(64)

where in the second equality we used the tower property of

conditional expectations, and in the third equality we have

Θk+1 = Γk+1 + Φk+1 and θk+1 = tr(Γk+1Pk+1) + φk+1.

Note that θk+1 is independent of uk. Employing operations

analogous to those resulted in (60) and (61), we get

E
[

ẽTk+1Θk+1ẽk+1

∣

∣Ie
k, uk = tx,λk+1:N

]

= λk(0)ẽ
T
kA

T
k Θk+1Akẽk

+ tr
(

Θk+1Kk+1Nk+1K
T
k+1

)

(65)

and

E
[

ẽTk+1Θk+1ẽk+1

∣

∣Ie
k, uk = rtx,λk+1:N

]

= λk(0)ẽ
T
kA

T
kΘk+1Akẽk

+
(

1− λk(0)
)

εTkΘk+1εk

+ tr
(

Θk+1Kk+1Nk+1K
T
k+1

)

. (66)

Inserting (65) and (66) in (64), we deduce that u⋆
k = tx if

Eλk+1:N

[

(

1− λk(0)
)

εTkΘk+1εk
∣

∣Ie
k

]

≥ 0.

This condition is always satisfied because 1 − λk(0) ≥ 0
and εTkΘk+1εk ≥ 0. Consequently, we can write V e

k (I
e
k)

as V e
k (I

e
k) = Eλk+1:N

[ẽTkΦkẽk + φk|I
e
k] with Φk =

λk(0)A
T
k Θk+1Ak and φk = tr(Θk+1Kk+1Nk+1K

T
k+1) +

θk+1. Therefore, the claim holds. This completes the proof

of Proposition 1.

Furthermore, since u⋆
k = tx for all k ∈ N[0,N ], the dynamics

Fig. 2: An inverted pendulum on a cart with an external sensor.

The sensory information is communicated to the actuation

point over a wireless channel.

of the decoder’s MMSE state estimate gets simplified as

x̂k = 1γk−1=1

(

Ak−1x̌k−1 +Bk−1ak−1

)

+ 1γk−1=0

(

Ak−1x̂k−1 +Bk−1ak−1

)

= Ak−1(γk−1ẽk−1 + x̂k−1) +Bk−1ak−1

for k ∈ N[1,N ] with initial condition x̂0 = m0. This completes

the proof of Proposition 2.

V. NUMERICAL RESULTS: AN INVERTED PENDULUM ON A

CART WITH AN EXTERNAL SENSOR

In this section, we present a numerical example to illustrate

the theoretical results discussed in the previous sections.

Consider an inverted pendulum on a cart (see Fig 2). For this

dynamical process, the continuous-time equations of motion

linearized around the unstable equilibrium are given by

(M +m)ẍ+ bẋ−mlφ̈ = a,

(I +ml2)φ̈−mglφ = mlẍ

where x is the position of the cart, φ is the pitch angle of the

pendulum, a is the force applied to the cart, M = 0.5 kg is

the mass of the cart, m = 0.2 kg is the mass of the pendulum,

b = 0.1 N/m/sec is the friction coefficient for the cart,

l = 0.3 m is the distance from the pivot to the pendulum’s

center of mass, I = 0.006 kg.m2 is the moment of inertia of

the pendulum, and g = 9.81 m/s2 is the gravity. There is an

external sensor that measures the position and the pitch angle

at each time. In our example, the state and output equations of

the dynamical process of the form (3) and (4), the input-output

relation of the channel of the form (2), and the loss function

of the form (7) are specified by the state matrix Ak = 10−4×
[10000, 100, 1, 0; 0, 9982, 267, 1; 0, 0, 10016, 100; 0,−45, 3122,
10016], the input matrix Bk =
[0.0001; 0.0182; 0.0002; 0.0454], the output matrix

Ck = [1, 0, 0, 0; 0, 0, 1, 0], the process noise covariance

Wk = 10−4 × [6, 3, 1, 6; 3, 8, 3, 4; 1, 3, 7, 6; 6, 4, 6, 31], the

sensor noise covariance Vk = 10−4 × [20, 0; 0, 10] for
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SWT+CE UNI+CE UNI+HI UNI+ZI

24.08 25.41 28.02 28.84

TABLE I: Comparison of the performance of four different

coding policy profiles: SWT+CE represents the optimal coding

policy profile with an HARQ protocol, UNI+CE represents

the optimal coding policy profile without an HARQ protocol,

UNI+HI represents the uniform transmission policy and the

hold-input control policy, and UNI+ZI represents the uniform

transmission policy and the zero-input control policy. Each

value indicates the associated system loss, measured in terms

of Υ according to a Monte Carlo simulation.

k ∈ N[0,N ], the mean and the covariance of the initial

condition m0 = [0; 0; 0.2; 0] and M0 = 10Wk, the maximum

number of retransmissions ωmax = 1, the packet error rates

λk(0) = 0.5 and λk(1) = 0.05 for k ∈ N[0,N ], the weighting

matrices Qk = diag{1, 1, 1000, 1} for k ∈ N[0,N+1] and

Rk = 1 for k ∈ N[0,N ], and the time horizon N = 500.

The simulation results corresponding to a realization of

the described networked control system based on the optimal

coding policy profile with an HARQ protocol are illustrated

in Fig. 3. In particular, in the top diagram, the solid curve

represents the stage cost trajectory2, the black dots represent

the transmission time instants, the blue dots represent the

retransmission time instants, and the red dots represent the

packet loss time instants. In this experiment, the total number

of transmissions was 404, the total number of retransmissions

was 97, and the total number of packet losses was 210.

In the middle diagram, the blue curve represents the cart’s

position trajectory and the red curve represents the cart’s

velocity trajectory. We can observe that the cart’s position

and velocity remained satisfactorily bounded within the ranges

[−0.17 m, 2.43 m] and [−0.69 m/s, 1.88 m/s], respectively.

Finally, in the bottom diagram, the blue curve represents the

pendulum’s pitch angle trajectory and the red curve represents

the pendulum’s pitch rate trajectory. We can again observe

that the pendulum’s pitch angle and pitch rate remained

satisfactorily bounded within the ranges [−0.27 rad, 0.40 rad]
and [−2.39 rad/s, 1.71 rad/s], respectively.

Note that, apart from a certainty-equivalent control policy,

which has been shown to be optimal, one can resort to a

less complex control policy such as a hold-input policy, in

which the previous actuation input is executed if a packet

loss occurs, or a zero-input policy, in which the actuation

input is set to zero if a packet loss occurs [48]. We compared

the performance of four different coding policy profiles for

the above networked control system through a Monte Carlo

simulation with 1000 experiments (see Table I). We found out

that the system loss, measured in terms of Υ according to

the Monte Carlo simulation, is equal to 24.08 for the optimal

coding policy profile with an HARQ protocol, is equal to

25.41 for the optimal coding policy profile without an HARQ

protocol, is equal to 28.02 when the uniform transmission

policy and the hold-input control policy were adopted, and

2Note that the stage cost at each time k is defined as (xT

k
Qkxk +

aT
k
Rkak)/(N + 1).

is equal to 28.84 when the uniform transmission policy and

the zero-input control policy were adopted. This outcome

reaffirms the effectiveness of our framework.

VI. CONCLUSIONS

In this article, we developed a framework for networked

control of a Gauss–Markov process over a packet-erasure

channel with an HARQ protocol. We observed that, in this net-

worked control system, whenever a packet loss occurs, there

exists an inherent tradeoff between transmitting the encoder’s

current MMSE state estimate with a lower success probability

and retransmitting the encoder’s previously failed MMSE

state estimate with a higher success probability. Our objective

was to obtain the optimal encoding and decoding policies

that minimize a linear-quadratic-regulator performance index,

penalizing state deviations and control efforts over a finite

horizon. We derived the structural properties of the optimal

policies, and determined the equations that need to be solved

for the implementation of these policies. In addition, we

examined how these results change when an ARQ protocol

is used instead of an HARQ one. Our results confirmed the

intuition that the adoption of an HARQ protocol is essential

for retransmissions to be beneficial in a networked control

system. Future research should explore the application of

learning algorithms for networked control systems equipped

with HARQ protocols in scenarios where the parameters

and the statistics of dynamical processes and communication

channels are unknown.
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[42] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.
Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,
and task-oriented communications,” IEEE Journal on Selected Areas in

Communications, vol. 41, no. 1, pp. 5–41, 2023.
[43] A. Khina, V. Kostina, A. Khisti, and B. Hassibi, “Tracking and control

of Gauss–Markov processes over packet-drop channels with acknowl-
edgments,” IEEE Trans. on Control of Network Systems, vol. 6, no. 2,
pp. 549–560, 2018.

[44] T. Soleymani, J. S. Baras, and K. H. Johansson, “State estimation over
delayed and lossy channels: An encoder-decoder synthesis,” IEEE Trans.

on Automatic Control, vol. 69, no. 3, pp. 1568–1583, 2024.
[45] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.

Athena Scientific, 1995.
[46] R. F. Stengel, Optimal Control and Estimation. Courier Corporation,

1994.
[47] V. Kostina and B. Hassibi, “Rate-cost tradeoffs in control,” IEEE Trans.

on Automatic Control, vol. 64, no. 11, pp. 4525–4540, 2019.
[48] L. Schenato, “To zero or to hold control inputs with lossy links?,” IEEE

Trans. on Automatic Control, vol. 54, no. 5, pp. 1093–1099, 2009.

Touraj Soleymani received his B.S. and M.S. degrees both in aeronautical
engineering from Sharif University of Technology, Iran, in 2008 and 2011,
respectively, and his Ph.D. degree in electrical and computer engineering from
the Technical University of Munich, Germany, in 2019. He is currently a
research associate at the Department of Electrical and Electronic Engineering,
Imperial College London, United Kingdom. He was a research associate at
the School of Electrical Engineering and Computer Science, Royal Institute
of Technology, Sweden, from 2019 to 2022; and was a research scholar at the
Institute of Artificial Intelligence, University of Brussels, Belgium, from 2012
to 2014, at the Institute for Advanced Study, Technical University of Munich,
Germany, from 2014 to 2017, and at the School of Electrical Engineering and
Computer Science, Royal Institute of Technology, Sweden, from 2017 to 2019.
His research interests include control, learning, communication, optimization,
game theory, multi-agent systems, cyber-physical systems, and swarm robotics
systems. He received the Outstanding Student Award from Sharif University of
Technology in 2011, the Best Paper Award at the International Conference on
Intelligent Autonomous Systems in 2014, and the Best Paper Award Finalist
at the International Workshop on Discrete Event Systems in 2018.

John S. Baras received the Diploma degree in electrical and mechanical
engineering from the National Technical University of Athens, Athens,
Greece, in 1970, and the M.S. and Ph.D. degrees in applied mathematics
from Harvard University, Cambridge, MA, USA, in 1971 and 1973, respec-
tively. He is a Distinguished University Professor and holds the Lockheed
Martin Chair in Systems Engineering, with the Department of Electrical
and Computer Engineering and the Institute for Systems Research (ISR), at
the University of Maryland College Park. From 1985 to 1991, he was the
Founding Director of the ISR. Since 1992, he has been the Director of the
Maryland Center for Hybrid Networks (HYNET), which he co-founded. His
research interests include systems and control, optimization, communication
networks, applied mathematics, machine learning, artificial intelligence, signal
processing, robotics, computing systems, security, trust, systems biology,
healthcare systems, model-based systems engineering. Dr. Baras is a Fellow
of IEEE (Life), SIAM, AAAS, NAI, IFAC, AMS, AIAA, Member of the
National Academy of Inventors and a Foreign Member of the Royal Swedish
Academy of Engineering Sciences. Major honors include the 1980 George
Axelby Award from the IEEE Control Systems Society, the 2006 Leonard
Abraham Prize from the IEEE Communications Society, the 2017 IEEE Simon
Ramo Medal, the 2017 AACC Richard E. Bellman Control Heritage Award,
the 2018 AIAA Aerospace Communications Award. In 2016 he was inducted
in the A. J. Clark School of Engineering Innovation Hall of Fame. In 2018
he was awarded a Doctorate Honoris Causa by his alma mater the National
Technical University of Athens, Greece.
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