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Abstract  10 

A new coupled aero-servo-elastic method is developed to model unsteady loads and wakes of 11 

Floating Offshore Wind Turbines (FOWTs) with elastic blades, in which the actuator curve 12 

embedding (ACE) method is for the first time coupled with a nonlinear finite element rotating 13 

beam model, rotor speed and collective blade pitch control strategies in a lab code——HEU-14 

FOWT. The method is capable for efficient aero-servo-elastic simulation of FOWT(s) including 15 

wakes on relatively coarse Cartesian grids without requiring empirical tip loss corrections. Tests of 16 

an isolated blade and a rotating uniform cantilever beam indicate the static deformations, natural 17 

frequencies, modal shapes, and centrifugal stiffening effects are well predicted. Validations s of a 18 

bottom-fixed NREL 5MW wind turbine show good accuracy for various aero-servo-elastic results 19 

in a wide range of wind speed and the rotor thrust and blade tip out-of-plane (Oop) deformation 20 

are found significantly underpredicted by 10.5% and 15.0% at rated condition if aerodynamic 21 

center offset effects neglected. Aero-servo-elastic wake analyses of a NREL 5MW wind turbine 22 

under specified surge motion show the two control strategies (constant power and constant torque 23 

mode) significantly reduced the overall far wake deficit by 38.1% and 35.6%, while blade 24 

elasticity only reduced the same quantity by 2.7%. 25 
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1.Introduction 29 

Wind energy is one of the most fast-growing renewable and sustainable energy in the past two 30 

decades with the total installed capacity from 24GW in 2001 to 743GW in 2020[1]. To further 31 

driven down the levelized cost of electricity, the wind turbine rotor is continuously growing in size 32 

with diameter increasing from 126m for the well-known NREL-5MW reference wind turbine 33 

(RWT) [2]to 240m for the recent IEA-15MW RWT[3]. For these large-scale wind turbines, the 34 

blades are usually manufactured using light-weight and flexible composite materials which can be 35 

more susceptible to the influence of aeroelasticity. Proper control strategies are usually required in 36 

operation for safety and best performances. For example, generator torque control strategy is 37 

usually required to regulate rotor speed to maximize power extraction at below-rated conditions 38 

and maintain constant rotor speed at above-rated conditions. Blade pitch control strategy 39 

(collective blade pitch control[2] or individual blade pitch control[4]) is usually required to save 40 

turbine from overload at above-rated conditions. Detailed reviews on wind turbine control 41 

strategies are refer to Ha et al. [5] and Meng et al.[6].    42 

With the recent trend of deploying wind turbines from onshore and shallow waters to deep 43 

waters, modern variable-speed pitch-regulated FOWTs can experience additional six degree-of-44 

freedoms (DOFs) platform motions (surge, sway and heave for translations, pitch, roll and yaw for 45 

rotations), which leads to power fluctuations, increased fatigue loads, cyclic blade deformations, 46 

dynamic rotor speeds and varying blade pitch angles. The coupled aero-servo-elastic nature of 47 

flexible blades and floating motions complicate the FOWT wake characteristics, which can be a 48 

significant concern for wind energy industrial as the average power losses due to wake 49 

interactions can be 10%~20% of the total power for large offshore wind farms according to 50 

Barthelmie et al. [7]. Therefore, it is important to take the aerodynamics, structure dynamics and 51 

control effects all into consideration to design a compact floating offshore wind farm. For that 52 

purpose, an aero-servo-elastic method with acceptable accuracy and affordable efficiency is 53 

required. 54 

For structure modeling, a flexible slender structure can be directly modeled as 3D finite 55 

elements (solids or shells) or be simplified as 1D beam structure. The 3D solid or shell finite 56 
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element model has the potential to provide the most accurate and detailed results for structural 57 

dynamics, but it is computationally expensive as shown in Bazilevs et al. [8, 9]and the accuracy 58 

improvements for overall responses are limited when compared with nonlinear beam model as 59 

shown in Júnior et al [10]. Thus, the beam model, which includes Euler-Bernoulli beam theory, 60 

Timoshenko beam theory and Geometrically Exact Beam Theory (GEBT), is preferred for blade 61 

aeroelasticity analysis unless the local stress or buckling phenomena is concerned.  62 

The beam structure can be discretized using modal approach, multi-body dynamic (MBD) 63 

method and 1D finite element method (FEM). The modal approach represents the blade 64 

deformations as a linear combination of precomputed modal shapes, which significantly reduces 65 

the modeling DOFs. Although highly efficient, the accuracy of modal approach greatly depends 66 

on the number of modes considered and the important torsional DOF was usually neglected. For 67 

example, only three bending modes, two modes for flap and one for edge, are used in FAST 68 

ElastoDyn [2]. The MBD discretizes the flexible blade into a set of beam elements which are 69 

constrained by force or motion relationships[11]. In 1D FEM, the blade is discretized into a series 70 

of finite beam elements with shared nodal displacements and can be more accurate than modal or 71 

MBD method with slightly increased computational cost [12], so that it is adopted in this paper. 72 

For aerodynamics, many existing  aero-servo-elastic analysis tools , such as FAST[2], 73 

HAWC2[13] and DARwind[14], are mostly based on the Blade Element Momentum (BEM) 74 

method which combines the 1D momentum theory and blade element theory. It is highly efficient 75 

and accurate as long as the basic assumptions are valid and many semi-empirical models are well 76 

implemented, such as tip/hub loss corrections, dynamic inflow models, stall delay corrections, 77 

skewed-wake corrections and dynamic stall models. However, when a FOWT pitches or surges 78 

backward at a velocity similar with its ambient wakes, the rotor can operate in a so-called vortex 79 

ring state (VSR), a phenomena firstly observed for helicopters in descending flight [15]. In VRS, 80 

the tip and root vortices recirculate around the rotor and the basic momentum balance assumption 81 

breaks down, then the validity of BEM can be questionable as pointed out by Sebastian et al.[16]. 82 

In addition, the BEM-based aero-servo-elastic tools can not directly model turbine wakes unless 83 

coupled with other flow solvers. 84 

In recent decade, many endeavors were devoted to coupling high-fidelity geometry-resolving 85 
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CFD method with Computational Structural Dynamic (CSD) method for wind turbine 86 

aeroelasticity modeling, often referred as CFD-CSD or Fluid Structure Interaction (FSI) approach, 87 

wherein the aerodynamic loads are obtained by numerically solving the discretized Navier-Stokes 88 

equations with body-fitted meshes and the blade deformations are calculated based on efficient 89 

nonlinear beam theories. Additional mesh motion solver should be solved to handle volume mesh 90 

displacements. For examples, Yu et al.[17] coupled an in-house CFD code with a structural model 91 

based on non-linear flap-lag-torsion beam theory using the delta-airload loose-coupling 92 

strategy[18]. Coupled CFD-MBD approaches were proposed by Li et al. [19] Liu et al. [20] Guma 93 

et al. [21]. Heinz et al. [22]and Grinderslev et al. [23] coupled blade-resolving CFD code 94 

EllipSys3D with existed aero-elastic code HAWC2, and Dose et al.[24] implemented an inhouse 95 

structural code BeamFOAM in OpenFOAM. Although the CFD approach provides outstanding 96 

forecasts for wind turbine aerodynamic performance, wake flow, and vortex shedding, which 97 

cannot be achieved by other BEM-based codes as shown in the works of Alkhabbaz et al.[25, 26]. 98 

Regrettably, it demands significant resources in terms of cost, time, and high-performance 99 

computing.  As reported in Dose et al.[24], it takes approximately 1666 core*hours per rotor 100 

revolution using partitioned loose-coupling strategy with 36.38 million cells and parallelized with 101 

360 cores.  102 

Alternative to the low fidelity BEM method and high fidelity CFD-CSD method, the medium 103 

fidelity Actuator Line Method (ALM) [27] is a good trade-off between accuracy and efficiency for 104 

blade aerodynamics. In ALM, a blade is modelled as an actuator line with distributed aerodynamic 105 

forces which are projected to fluid domain as source terms in the discretized Navier-Stokes 106 

equations to model the effects of rotating blades on flow.  ALM facilitates the usage of relatively 107 

coarse Cartesian grids with significantly reduced computational cost comparing with geometry-108 

resolving method while the important wake features such as helical tip/root vortices are well 109 

captured, and can be directly extended for turbine-turbine interaction simulations without any 110 

theoretical limitations. Coupling the ALM with beam theory based structure model leads to the 111 

concept of Elastic Actuator Line Method (EALM), which has been used for evaluating wake 112 

effects on fatigue loads for wind farms[28, 29], investigating aeroelastic wake behaviors[30-32], 113 

turbine-turbine wake interaction analysis[33, 34] and aero-elastic-hydro-mooring-wake 114 
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analysis[35].  115 

However, several limitations exist for previous works in terms of EALM and some challenges 116 

should be well-treated. Many works were focused on bottom-fixed wind turbines with constant 117 

rotor speeds and blade pitch angles, which is not fully reflecting the real applications of FOWTs. 118 

Comprehensive validations of EALM models in terms of rotor performances and blade 119 

deformations in a wide range of wind speeds with satisfactory results are currently absent. Details 120 

required for accurate prediction of blade in-plane and torsional deformations which are closely 121 

related to the bend-bend coupling and aerodynamic center offset were less discussed. A major 122 

challenge for an EALM model is to design a suitable coupling strategy to communicate data 123 

between different sub models efficiently while avoiding numerical instabilities. 124 

In this paper, a new coupled aero-servo-elastic method for floating offshore wind turbine wake 125 

simulation is presented based on the in-house code HEU-FOWT[36]. The previous version of 126 

HEU-FOWT can perform aero-servo analysis of FOWTs via an advanced actuator line method 127 

with actuator curve embedding (ACE) concept[37] for rigid blade aerodynamics and including 128 

generator torque and full-span, rotor-collective blade pitch control strategies. We extend the 129 

capabilities of HEU-FOWT to model blade elasticities using a nonlinear finite element rotating 130 

beam theory for structural dynamics. Partitioned loose-coupling strategy is adopted for data 131 

communication. For simplicity, only specified platform surge motion is considered. To the best 132 

knowledge of the authors, this is the first work endeavored to couple ACE method with a 133 

structural model and a control model, and the advantage of this new method is its capability for 134 

efficient aero-servo-elastic simulations of FOWT(s) including wakes on coarse Cartesian grids 135 

without requiring empirical tip loss corrections.  136 

The rest of this paper is organized as follows: in section 2, the turbine geometries and 137 

numerical methods for the proposed coupled aero-servo-elastic framework are described. The 138 

computational domain layouts, mesh discretization and verifications are presented in Section 3. In 139 

section 4, the proposed method is carefully validated and then applied for aero-servo-elastic 140 

analysis of a NREL 5MW wind turbine under specified platform surge motions including wake 141 

features. The conclusions are summarized in section 5. 142 

  143 
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2. Theories and models   144 

2.1 Wind turbine geometry model 145 

The NREL 5MW wind turbine is adopted for simulation. It is a three-bladed variable-speed 146 

pitch-regulated horizontal axis wind turbine with diameter 𝐷 = 126 m and hub height 𝐻 = 90 m. 147 

Major properties are summarized in Table 1. The blade aerodynamic properties are defined by 17 148 

sections and 7 airfoils while the blade structural properties are given on 49 sections. Detailed 149 

airfoil aerodynamic coefficient tables and sectional material properties like mass, stiffness and 150 

inertial are publicly available in Jonkman et al.[2]. In this paper, only the blade aeroelasticity is 151 

considered by modeling the blades as rotating cantilever beams. The influences of hub, nacelle, 152 

tower on wake characteristics and the tower flexibility on blade structural responses are currently 153 

neglected, but the variations of rotor speeds and blade pitch angles under platform surge motions 154 

are considered. The NREL 5MW wind turbine with a OC4 submersible platform is shown in Fig. 155 

1 (a) for demonstration, although the wave dynamics are currently neglected. 156 

Table 1 NREL 5MW turbine parameters. 157 

Parameters  values 
Diameter (𝐷)  126 m 
Number of blades(𝑁௕)  3 
Rotor tilt angle  5.0° 
Blade upwind precone angle  2.5° 
Averaged blade chord (cത)  3.487 m 
Cut-in, rated and cut-out wind speed  4m/s, 11.4m/s, 25m/s 
Rated rotor speed (Ω଴)    12.1 rpm 
Overhang, Hub height  5m, 90m 
Blade airfoils Cylinder1, Cylinder2, DU40,35, 

30,25,21 and NACA64 

 158 
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 159 
Fig. 1. Floating offshore wind turbine system geometries and kinematics description using different reference 160 

coordinate systems.  161 

2.2 Aerodynamic model   162 

2.2.1 Flow solver  163 

In HEU-FOWT, flow field simulation is based on Large Eddy Simulation (LES) wherein large 164 

scales are directly resolved using the spatially filtered unsteady incompressible Navier-Stokes 165 

equations and small scales are modeled as follows  166 

∂𝑢ത௜

∂𝑥௜
= 0 (1) 167 

∂𝑢ത௜

∂𝑡
+

𝜕𝑢ത௜𝑢ത௝

𝜕𝑥௝
= −

1

𝜌௔

𝜕𝑃ത

𝜕𝑥௜
+ 𝜈

𝜕ଶ𝑢ത௜

𝜕𝑥௝𝜕𝑥௝
−

𝜕𝜏௜௝

𝜕𝑥௝
+

1

𝜌௔
𝐹௜ (2) 168 

where 𝑢ത௜  
donate the filtered velocity vectors with 𝑖 = 1,2,3 corresponding to the 𝑥, 𝑦 and 𝑧 169 

directions in the global inertial coordinate system 𝑆଴ (Fig. 1 (a)). 𝜈 is kinematic viscosity. 𝜌௔ is air 170 

density. 𝜏௜௝ = 𝑢௜𝑢௝ − 𝑢ത௜𝑢ത௝ = −2𝜈௧𝑆௜̅௝ is the sub-grid scale (SGS) stress tensor modeling the 171 

effects of small scales. 𝑆௜௝ =
ଵ

ଶ
(

డ௨ഥ೔

డ௫ೕ
+

డ௨ഥೕ

డ௫೔
) is the symmetric part of the resolved velocity gradient 172 

tensor. 𝜈௧ is the sub-grid scale viscosity modeled by standard Smagorinsky SGS model as 𝜈௧ =173 

(𝐶௦𝛥)ଶห𝑆௜̅௝ห with 𝐶௦ = 0.15 is the Smagorinsky coefficient and Δ = ൫Δ௫Δ௬Δ௭൯
ଵ/ଷ

 is the filter 174 

width. Δ௫,Δ௬ and Δ௭ are grid resolutions in 𝑥, 𝑦 and 𝑧 directions in global inertial coordinate 175 
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system. The effects of rotating blades on fluid flow are modelled as the body force term  𝐹௜ which 176 

is detailed in Section 2.2.2, thus LES can be used on relatively coarse Cartesian grids as direct 177 

resolving of small-scale turbulences in near wall (blade surfaces) region is avoided.  178 

Eqs. (1) and (2) are numerically solved on staggered stretching Cartesian grids using fractional 179 

projection method with Constrained Interpolation Profile (CIP) method [38] including one 180 

predictor step and two corrector steps.  The CIP method, which consists of an advection step and a 181 

non-advection step, is used for the predictor step and the first corrector step. In the advection step, 182 

an intermediate velocity field is predicted by solving the advection equation 
డ௨ഥ೔

డ௧
+ 𝑢ത௝

డ௨ഥ೔

డ௫ೕ
= 0 using 183 

a semi-Lagrange approach which has low numerical diffusion and sub cell resolution with 184 

compact upwind scheme. Then, the velocity field is corrected by viscous and body force term in 185 

the non-advection step. A pressure Poisson equation is solved to update pressure field and the 186 

velocity field is corrected again by the new pressure field. More details on the implementation of 187 

CIP can refer to the work Hu and Kashiwagi[39]. The pressure gradient term and viscous term are 188 

spatially discretized by central difference scheme.  189 

2.2.2 Actuator curve embedding model  190 

The advanced actuator line method with actuator curve embedding concept (donated as 191 

Actuator Curve Embedding method in this paper ) proposed by Jha and Schmitz[37] is utilized to 192 

construct the body force term 𝐹௜ on the right-hand side of Eq. (2). Fig. 1(b) shows the actuator 193 

line representation of wind turbine blades with discrete actuator points. For the 𝑗௧௛ section of 𝑖௧௛ 194 

blade, the section aerodynamics are calculated in the local section coordinate system 𝑆௖೔,ೕ
 using 195 

quasi-steady 2D theory as in Fig. 2.  196 

 197 
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 198 
Fig. 2. Blade sectional aerodynamics.𝑎 is aerodynamic center and 𝑒 is the pitch axis positoin. 199 

Firstly, the relative velocity between each blade section and flow at sectional aerodynamic 200 

center (AC) is calculated as  201 

𝑽௥௘௟ = 𝑽௜௡ − 𝑽௥௢௧ − 𝑽௣௟௔௧௙௢௥௠ − 𝑽௘௟௔௦௧௜௖ (3) 202 

where 𝑽௜௡ is the flow velocity sampled at AC point; 𝑽௥௢௧, 𝑽௣௟௔௧௙௢௥௠ and 𝑽௘௟௔௦௧௜௖ is the velocity at 203 

AC due to rotor rotation, platform floating motions and blade elastic deformations, respectively. 204 

The velocities induced by blade pitch command and blade elastic torsional deformations are 205 

currently neglected in Eq. (3).  206 

Then, the local angle of attack is obtained as 207 

𝛼 = 𝜙 − 𝜃଴ − 𝜃௣ + 𝜃௘ (4) 208 

where 𝜙 = tanିଵ ൬
ି௏ೝ೐೗,೥  

ି௏ೝ೐೗,೤
൰ is the local velocity inflow angle; 𝜃଴, 𝜃௣ and 𝜃௘ is the initial twist 209 

angle, blade pitch angle and elastic torsional angle for each blade section, respectively. Positive 𝜃௘ 210 

indicates nose-up direction which points to the negative 𝑥 direction in section coordinate system 211 

𝑆௖೔,ೕ
. 212 

   Finally, the sectional aerodynamic loads are calculated as 213 

𝐹௅ = 𝐶௅(𝛼)
1

2
𝜌𝑐|𝑽𝒓𝒆𝒍|

ଶ (5) 214 

𝐹஽  = 𝐶஽(𝛼)
1

2
𝜌𝑐|𝑽𝒓𝒆𝒍|

ଶ (6) 215 

𝑀஺஼ =
1

2
𝐶ெ(𝛼)𝜌𝑐ଶ|𝑽𝒓𝒆𝒍|

ଶ (7) 216 

𝑀௉஺ =
1

2
𝐶ெ(𝛼)𝜌𝑐ଶ|𝑽𝒓𝒆𝒍|

ଶ + 𝐹௡ ∗ 𝑎𝑒തതത (8) 217 

where 𝑐 is local chord; 𝐶௅, 𝐶஽ and 𝐶ெ are sectional lift, drag and moment coefficients which are 218 
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interpolated from respective airfoil table according to local angle of attack 𝛼; 𝐹௅ and 𝐹஽ are 219 

sectional lift and drag forces; 𝑀஺஼ and  𝑀௉஺ are sectional aerodynamic moments against the 220 

aerodynamic center and pitch axis position, respectively. 𝑎𝑒തതത is the chordwise distance between 221 

aerodynamic center (𝑎) and pitch axis (𝑒). 𝐹ே = 𝐹௅ cos(𝛼) + 𝐹஽sin (𝛼) and 𝐹் = −𝐹௅ sin(𝛼) +222 

𝐹஽cos (𝛼) are normal and tangential forces relative to local chord line. 223 

The aerodynamic coefficients 𝐶௅, 𝐶஽ and 𝐶ெ in the airfoil tables are defined on sectional 224 

aerodynamic centers and the blade pitch axis is defined as the reference line in structural model.. 225 

Therefore, the aerodynamic moments used for aeroelastic simulations should be calculated using 226 

Eq. (8) instead of Eq. (7) to account for the AC offset effects which have been neglected by many 227 

previous works [30] [40] [41] [42], although it has been well addressed in the many BEM-based 228 

codes, such as FAST, and some vortex lattice code[43]. The positions of blade pitch axis and 229 

aerodynamic centers are schematically shown in Fig. 3 following the more physically consistent 230 

definitions in the post of [44] instead of the original one[2], but the relative chordwise distance 231 

between pitch axis and AC is identical at each section for the two definitions which will not bring 232 

different results for lifting line based methods, such as BEM and ACE.  233 

 234 
Fig. 3. Schematic of the NREL 5MW wind turbine blade with pitch axis and aerodynamic center line.  235 

ACE differs from ALM only in the force projection process (See Fig. 4 ). In ALM, the body 236 

force term 𝐹௜ at a grid point in fluid domain is obtained by accumulating the projected 237 

aerodynamic forces (using 3D Gaussian kernels) of all blade segments of al blades. This treatment 238 

leads to force overlapping and projecting body force beyond blade tips, so that the blade loads are 239 

usually overpredicted in tip regions and empirical tip loss corrections are always required for 240 

remedy. In ACE concept, the blade forces are only projected in the plane normal to the actuator 241 

curve. For a grid in fluid domain (see 𝑄଴ in Fig. 4) to be influenced by blade forces, it is first 242 

associated with an artificial section between two actuator points 𝑃௠ and 𝑃௠ାଵ of each actuator 243 

curve (see the point 𝐹 in Fig. 4), where point 𝐹 is determined by keeping  𝑄଴𝐹 normal to the 244 
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actuator curve. The blade forces at the artificial section are interpolated using neighboring 245 

information and then are project to grid point 𝑄଴ using 2D Gaussian kernels. Looping over the 𝑁௕ 246 

blades, the body force experienced by grid 𝑄଴ can be expressed as 247 

𝐹௜ = − ෍ 𝑓௞,௜
∗ ൤

1

𝜋𝜀∗ଶ 𝑒
ିቀ

௥೙
ఌ∗ቁ

మ

൨

ே್

௞ୀଵ

(9) 248 

where 𝑁௕ is the blade number, 𝜀∗ is the smooth length scale of the 2D Gaussian kernel at the 249 

artificial section, 𝑟௡ is the normal distance from the grid to the associated blade section. 𝑓௞,௜
∗  is the 250 

𝑖௧௛ component of the total aerodynamic force (vector sum of lift and drag in global inertial 251 

coordinate system) at the artificial section of  𝑘௧௛ blade. Both 𝑓௞,௜
∗  and 𝜀∗ are linearly interpolated 252 

using neighboring values as  253 

𝑓௞,௜
∗ = ൬1 −

𝑟௦

Δ𝑏௠
൰ 𝑓௞,௠,௜ +

𝑟௦

Δ𝑏௠
𝑓௞,௠ାଵ,௜ (10) 254 

𝜀∗ = ൬1 −
𝑟௦

Δ𝑏௠
൰ 𝜀௠ +

𝑟௦

Δ𝑏௠
𝜀௠ାଵ (11) 255 

where  Δ𝑏௠ is the distance between neighboring points 𝑃௠ and 𝑃௠ାଵ, 𝑟௦ is the tangential distance 256 

from point 𝑃௠ along actuator line.𝜀௠ and 𝜀௠ାଵ are smooth length scales at points 𝑃௠ and 𝑃௠ାଵ. 257 

𝑓௞,௠,௜ and 𝑓௞,௠ାଵ,௜ are 𝑖௧௛ component of total aerodynamic forces at actuator points 𝑃௠ and 𝑃௠ାଵ 258 

of the 𝑘௧௛ blade. For a curved actuator line, some fluid points on the concave and convex sides of 259 

the actuator curve may need special treatments to obtain the tangential and normal coordinates, 260 

which is addressed in Appendix A.  261 

 262 
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Fig. 4. Comparation of conventional Actuator Line Method (ALM)[27] and Actuator Curve Embedding (ACE)[37] 263 

approach in body blade force projection process. 𝑄଴ is an arbitrary grid point in fluid domain. 264 

The 2D Gaussian smooth length scale 𝜀 is proportional to the local chord (𝑐∗) of an equivalent 265 

elliptic wing of a real blade to approximate the primary mode of blade distributed load. The root 266 

chord (𝑐଴) and local chord (𝑐∗) distribution of the equivalent elliptic wing are given in Eq. (12) 267 

and (13). More details on the ACE implementation and the equivalent elliptic wing approximation 268 

can be found in Jha et al.[45]. In this paper, the 2D Gaussian smooth length scale is set as 𝜀 =269 

1.2𝑐∗ based on our previous work Yang et al.[36] and the work of Jha and Schmitz[37].  270 

𝑐଴ =
4

𝜋𝑅
න 𝑐(𝑟)𝑑𝑟

ோ

଴

=
4𝑐̅

𝜋
(12) 271 

𝑐∗(𝑟) = 𝑐଴
ඨ1 − ൬

2𝑟

𝑅
− 1൰

ଶ

(13) 272 

where 𝑅 is blade radius and 𝑐̅ =
ଵ

ோ
∫ 𝑐(𝑟)𝑑𝑟

ோ

଴
 is the averaged chord length of a real blade.  273 

2.3 Structural model  274 

The blade elasticity modeling is mainly referred  to the work of Ma et al.[30], in which the 275 

turbine blades are modeled as nonlinear rotating Euler-Bernoulli beams and the beam structures 276 

are further discretized by two-node, 12 degrees of freedom (DOF) finite elements ( Fig. 5). Blade 277 

element elastic deformations, including elongation (𝑢௫), torsion (𝜃௫) and bending deformations 278 

(𝑢௬ , 𝑢௭), are represented using nodal displacements and elemental shape functions as in Eq. (14) 279 

or in matrix format as Eq. (16). 𝒒𝒆 is the element nodal displacement. 𝐿 is the length of beam 280 

element. 𝑵𝟎, 𝑵𝟏, 𝑵𝟐, 𝑵𝟑 and 𝑵𝟒 are strain matrices. 281 
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൪ 𝑞௘(14) 282 

𝜂ଵ(𝑥) = 1 − 𝜉, 𝜂ଶ(𝑥) = ξ, 𝜂ଷ(𝑥) = 1 − 3𝜉ଶ + 2𝜉ଷ, 𝜂ସ(𝑥) = 𝐿𝜉(1 − 2𝜉 + 𝜉ଶ) 283 

𝜂ହ(𝑥) = 3ξଶ − 2𝜉ଷ, 𝜂଺(𝑥) = 𝐿𝜉ଶ(𝜉 − 1), 𝜉 =
௫

௅
 284 

𝒒𝒆 = ൣ𝑢௫
(ଵ)

𝑢௬
(ଵ)

𝑢௭
(ଵ)

𝜃௫
(ଵ) 𝜃௬

(ଵ)
𝜃௭

(ଵ)
   𝑢௫

(ଶ)
𝑢௬

(ଶ)
𝑢௭

(ଶ)
𝜃௫

(ଶ) 𝜃௬
(ଶ)

𝜃௭
(ଶ)

൧
்

(15) 285 



13 

 

൦

𝑢௫

𝑢௬

𝑢௭

𝜃௫
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𝑵𝟑

𝑵𝟒

൪ 𝒒𝒆 = ൤
𝑵𝟎

𝑵𝟒
൨ 𝒒𝒆 (16) 286 

 287 

Fig. 5. Schematic of blade elastic deformations and finite beam element representation.  288 

The blade elastic responses are obtained by solving the following discretized equations of motion 289 

for each rotating blade using Newmark method, 290 

𝑴𝑬𝒒̈ + 𝑪𝑬𝒒̇ + 𝑲𝑬𝒒 = 𝑭𝑬 (17) 291 

where 𝑴𝑬, 𝑪𝑬, 𝑲𝑬 are global mass, damping and stiffness matrix, and 𝑭𝑬 is the generalized loads 292 

for each blade, which are obtained by assembling the blade elemental matrices and r.h.s. By 293 

solving the eigen value problem of Eq. (17), the eigen values correspond to the circular natural 294 

frequencies and the normalized eigen vectors are modal shapes for each blade. The derivation of 295 

elemental matrices and r.h.s are detailed in Appendix B. 296 

2.4 Control strategies  297 

The control strategies in the current code are based on the work of Jonkman et al.[2] which 298 

consist of a generator torque controller and a full-span rotor-collective blade pitch controller. A 299 

low-pass filter is applied to the real-time rotor speed Ω to mitigate high frequency excitation with 300 

the filtered rotor speed Ω෩ in discrete formulation as  301 

Ω෩௡ାଵ = (1 − 𝛽)Ω෩௡ + 𝛽Ω௡ାଵ (18) 302 

where 𝛽 = 𝑒ିଶగ௙೎ఋ௧ and 𝑓௖ is corner frequency. 𝛿𝑡 is timestep size.  303 
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The dynamic rotor speed is determined through a single DOF equation with rotor aerodynamic 304 

torque (𝑇௔) (against rotor shaft) and generator torque (𝑇 ௘௡) as 305 

𝐼஽Ω̇ = 𝑇௔ − 𝑇 ௘௡ (19) 306 

where 𝐼஽ is the total drivetrain inertial cast to the low-speed shaft. The real-time generator speed 307 

(Ω௚௘௡) and filtered generator speed (Ω෩ீ௘௡) is proportional to real-time rotor speed and filtered 308 

rotor speed with gear box ratio (𝑁ீ௘௔௥), respectively. Namely, Ωீ௘௡ = 𝑁ீ௘௔௥Ω and Ω෩ீ௘௡ =309 

𝑁ீ௘௔௥Ω෩. 310 

The generator torque 𝑇 ௘௡ is calculated as a tabulated function of the filtered generator speed 311 

Ω෩ீ௘௡ according to five defined torque control regions: 1,11/2,2,21/2 and 3 (see Fig. 6). In region 1, 312 

the generator torque is set to zero as the effective wind speed is lower than cut-in wind speed. In 313 

region 2, the generator torque is proportional to the square of the filtered generator speed in order 314 

to maximize power extraction by maintaining a constant optimal tip speed ratio. In region 3, the 315 

effective wind speed exceeds the rated one and the pitch controller begins to work. The generator 316 

torque can be inversely proportional to the filtered rotor speed to maintain a constant generator 317 

power (constant power mode) or be maintained as constant nominal torque (constant torque mode). 318 

Region 11/2 and 21/2 are two linear transition regions. The output generator power is calculated as 319 

𝑃 ௘௡ = 𝜂𝑇 ௘௡𝛺ீ௘௡ where 𝜂 is electrical efficiency of generator while the rotor aerodynamic 320 

power is calculated as 𝑃௔௘௥௢ = 𝑇௔Ω.  321 

 322 

Fig. 6. Generator torque-speed plot. 323 

Based on gain-scheduled proportional-integral (PI) control, the blade pitch command 𝜃௣ has the 324 

general form of 325 
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𝜃௣ = ቆ𝐾௉଴𝛥𝛺 + 𝐾ூ଴ න 𝛥𝛺𝑑𝑡
௧

଴

ቇ 𝐺𝐾(𝜃)𝑁ீ௘௔௥ (20) 326 

where 𝐾௉଴ and 𝐾ூ଴ is the proportional and integral gains at zero pitch angles. 𝐺𝐾൫𝜃௣൯ =
ଵ

ଵାఏ೛/ఏೖ
 is 327 

a correction factor to account for the variations of proportional and integral gains at non-zero pitch 328 

angles. 𝜃௞ is the blade pitch angle where the power sensitivity 
డ௉

డఏ೛
 is doubled compared with rated 329 

conditions with zero pitch angle, namely: 
డ௉

డఏ೛
(𝜃 = 𝜃௞) = 2

డ௉

డఏ೛
(𝜃௣ = 0). ΔΩ = Ω − Ω଴ is rotor 330 

speed error. More details are provide in Jonkman et al. [2] and key parameters are summarized in 331 

Table 2.  332 

Table 2 Parameters of the NREL 5MW wind turbine controller. 333 

Parameters Symbols Values 

Rated generator torque 𝑇଴ 43,093.55 N•m 

Rated generator mechanical power 𝑃଴ 5.296610 MW 

Electrical efficiency of generator 𝜂 94.4% 

Rated generator output power  5.0 MW 

Gear box ratio 𝑁ீ௘௔௥ 97:1 

Generator Torque Constant in Region 2  0.0255764 N•m/rpm2 

Corner frequency for low pass filter 𝑓௖  0.25 Hz 

Rated rotor speed 𝛺଴ 12.1 rpm 

Default Proportional Gain at rated point 𝐾௉଴ 0.01882681 

Default Integral Gain at rated point 𝐾ூ଴ 0.008068634 

Pitch Angle with doubled power sensitivity  𝜃௞ 6.30° 

Total drivetrain inertial cast to LSS 𝐼஽ 43784725.44  kg · mସ 

2.5 Aero-servo-elastic coupling strategy  334 

The HEU-FOWT code is written in modern Fortran language with object-oriented programing 335 

and can be divided as four major modules: basic CFD solver, ACE module, control module and 336 

FEM module. The partitioned loose-coupling strategy is adopted for data communication between 337 

different modules while preserving code modularity and avoiding inner loop sub iterations 338 

between different sub problems. For each blade, the aerodynamic loads, blade elastic deformations 339 

and elastic velocities are communicated between ACE and FEM modules using cubic 340 

interpolations. The control module only receives rotor aerodynamic torque as input and output 341 

rotor speeds and collective blade pitch angles. Numerical stability of the coupling strategy is 342 
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maintained by introducing structural damping term as described in Appendix C.A flow chart 343 

describing the coupling procedures is shown in Fig. 7. 344 

 345 
Fig. 7 Flow chart of the current aero-servo-elastic model with partitioned loose-coupling strategy. 346 

3. Computational domain and mesh 347 

The computational domain is 6𝐷 in width, 𝐻 + 3𝐷 in height, 10𝐷 in length with the outlet at  7𝐷 348 

downstream. The domain is discretized by stretching Cartesian grids with a wake refinement 349 

region extending 5𝐷 downstream with finest grid resolution of 2m (approximately 32 grids per 350 

blade radius), which is donated as Grid #1 with a total grid number of 7.3 million (400 × 149 ×351 

122) as shown in Fig. 8 . However, if only the rotor loads or blade elastic deformations are 352 

concerned, the grid with a smaller wake refinement region extending only 1𝐷 downstream, which 353 

is donated as Grid #2 with a total grid number of 3.2 million (178 × 149 × 122), is used to 354 

reduce computational time as between using Grid #1 and Grid #2 are negligible (simulation 355 

results not shown in this paper). In this paper, Grid #1 is used for surge motion cases and Grid #2 356 

is used for verifications and validations. A mesh independence test is performed for a bottom-fixed 357 

NREL 5MW wind turbine with elastic blades without control (𝑉଴=11.4m/s, Ω=12.1 rpm, 𝜃௣ = 0°) 358 
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with the time averaged aeroelastic results (over rev. 22-24) are shown in Table 3. As shown, the 359 

relative errors between the grid resolutions of 2m and 1.5m are well below 1% for thrust, power, 360 

blade tip in-plane and out-of-plane deformations. The large relative error for blade torsion 361 

deformation is due to the very small absolute values, which should not introduce too much 362 

numerical errors. Therefore, the grid resolution of 2m in wake refinement region is used 363 

throughout this paper. 364 

The time step size is determined by restricting the blade to rotate 1° per step and all cases are 365 

currently simulated in serial mode without parallelization. The real computational time for each 366 

time step is approximately 25.3s for Grid #2 (3.2 M) and 58.6 s for Grid #1 (7.3 M), wherein the 367 

computational time introduced by the aero-elastic model is approximately 1.0s for both grids. 368 

 369 

Fig. 8 . Computational domain, boundary conditions and mesh discretization (Grid #1). 370 

 371 

Table 3 Time-averaged aeroelastic results from mesh independence test. 372 

(𝑉଴=11.4m/s, Ω = 12.1 rpm, 𝜃௣ = 0°) 373 

Δ୫୧୬ 𝑅/Δ୫୧୬ Thrust Power Inp Oop Torsion 

[m] [-] [KN] [MW] [m] [m] [deg] 

1.5 42 717.30 5.29 -0.59  5.71  0.09  

2.0 31.5 713.90 5.24 -0.59  5.70   0.07   

4.0 15.8 714.08 5.20 -0.59  5.76  0.08  

8.0 7.9 741.76 5.49 -0.62  5.98  0.15  

 374 
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4. Results and discussions  375 

Since the aerodynamic model and control model have been systematically validated in our 376 

previous work Yang et al. [36], we focus on the validation of structural model and coupled aero-377 

servo-elastic model in section 4.1. Then, the validated aero-servo-elastic model is applied for 378 

simulation of a controlled NREL 5MW wind turbine with elastic blades under specified surge 379 

motion in section 4.2. 380 

4.1 Validations  381 

4.1.1 Test of a static blade   382 

Prior to conducting more complicated aero-servo-elastic simulations, it is beneficial to first 383 

validate the structural model in static conditions. The in-plane, out-of-plane and torsional 384 

deformations of a single static NREL 5MW wind turbine blade under uniformly distributed loads 385 

are compared with results of BeamDyn (stand-alone version v1.01[46]) in Fig. 9. The first six 386 

natural frequencies are listed in Table 4 with the results using Modal methods[42], GEBT[41], 387 

BeamFOAM[24], BModes[47] and ABQUS[47]. The lowest three modal shapes are compared in 388 

Fig. 10 with FAST results[2].Excellent agreements are obtained, indicating that the structural 389 

model is well established.  390 

 391 

Fig. 9. Spanwise static deformations under uniform applied loads.  392 
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 393 

Fig. 10. Modal shapes validation for static NREL 5MW wind turbine blade. 394 

Table 4 Natural frequencies (Hz) of a single blade without applied loads and rotation. 395 

No. Current  Modal[42] GEBT[41] BeamFOAM[24] BModes[47] ABAQUS[47] 
𝑓௡ଵ 0.70 0.68 0.68 0.67 0.69 0.68 
𝑓௡ଶ 1.11 1.09 1.10 1.06 1.12 1.10 
𝑓௡ଷ 2.02 1.95 1.98 1.91 2.00 1.98 
𝑓௡ସ 4.12 4.00 3.99 - 4.12 3.99 
𝑓௡ହ 4.67 4.52 4.66 - 4.64 4.66 
𝑓௡଺ 5.58 5.58 5.53 - 5.61 5.53 

4.1.2 Stiffening of a rotating uniform cantilever beam   396 

Since the blades are modeled as rotating cantilever beams in this paper, a rotating uniform 397 

cantilever beam is herein used to partially validate the structural model in predicting rotation 398 

added centrifugal-stiffening effects. The mass density (𝜌௦) of the uniform beam is 7840 kg/𝑚ଷ, 399 

cross-section area (𝐴) is 2.0 × 10ିସ 𝑚ଶ, elastic modulus (𝐸) is 2.0 × 10ଵଵ 𝑃𝑎, cross-section 400 

moment of inertial (𝐼) is 2.0 × 10ଽ 𝑚ସ, and beam total length (𝐿) is 0.6𝑚. In simulation, the 401 

uniform beam is divided into 50 elements, and only the centrifugal-stiffening effects are 402 

considered in order to be consistent with the reference case setups. For better comparations, the 403 

dimensionless angular velocity (𝛾) and natural frequency (𝜇) are introduced as  404 

𝛾 = Ωඨ
𝜌௦𝐴𝐿ସ

𝐸𝐼
  and   𝜇 = ω ඨ

𝜌௦𝐴𝐿ସ

𝐸𝐼
, (21) 405 

where Ω is angular velocity (rad/s), ω  is circular natural frequency.  406 

The lowest three dimensionless natural frequencies for 𝛾 = 0, 1, 5 and the lowest three modal 407 

shapes for 𝛾 = 0 and 12 are compared in Table 5 and Fig. 11, respectively. The current results 408 
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agree well with the results of Gebhardt and Roccia[48] using nonlinear finite element beam 409 

method and the exact solutions from Wright et al.[49] using convergent power series, indicating the 410 

centrifugal stiffening effects are correctly modelled.  411 

Table 5 Comparation of dimensionless natural frequencies of a rotating uniform cantilever beam 412 

𝛾 Mode Current Gebhardt and Roccia[48] Wright et al.[49] 
 
0 

First 3.5159  3.5160 3.5160 
Second 22.0337  22.0345 22.0345 
Third 61.6951  61.6972 61.6972 

 
1 

First 3.6815  3.6816 3.6817 
Second 22.1802  22.1810 22.1810 
Third 61.8396  61.8418 61.8418 

 
5 

First 6.4490  6.4495 6.4495 
Second 25.4447  25.4460 25.4461 
Third 65.2023  65.2051 65.2050 

 413 

 414 

Fig. 11.  Modal shapes validation for a rotating uniform cantilever beam at 𝛾 = 0 ,12.  415 

4.1.3 Validations for coupled aero-servo-elastic model  416 

In this sub section, the coupled aero-servo-elastic performances of a bottom-fixed NREL 5MW 417 

wind turbine under uniform inflow conditions are validated. The significance of aerodynamic 418 

center offset effects on torsional deformation is particularly highlighted. The mean results are 419 

averaged over the last rotor revolution when the time histories reach steady states. Blade pitch 420 

control with constant power mode in region 3 (see Fig. 6 ) is used.  421 

In Fig. 12 , the rotor thrust, rotor power, blade tip Oop and Inp deformations at wind speeds 422 

ranging from 4 𝑚/𝑠 to 24 𝑚/𝑠 are cross validated with Jonkman et al.[2] using modal methods 423 

(FAST ElastDyn), Rodriguez and Jaworski[40] using free vortex wake method with nonlinear 424 
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finite element method (FVM-FEM), Ma et al.[30] using actuator line method with nonlinear finite 425 

element beam model(ALFBM) and Leng et al. [32] using actuator line method with geometrically 426 

exact beam theory(ALM-GEBT). The results of FAST with BeamDyn (open-FAST v2.3.0) are 427 

also added for comparation.  428 

429 

 Fig. 12 .  Azimuth-averaged rotor performances and blade tip deflections with varying wind speeds: (a) rotor 430 

thrust, (b)rotor power, (c) out-of-plane and (d) in-plane deformations. 431 

 Excellent agreements are observed for the current results with FAST BeamDyn in terms of 432 

rotor thrust and power. The constant power feature at above-rated wind speeds is well captured 433 

thanks to the inclusion of control module. The thrust overprediction in Jonkman et al.[2] is due to 434 

the definition of “RotThrust” in FAST which is the total force of rotor acting on the tilted shaft, 435 

including aerodynamic force, gravity component (approximately 94KN for tilt angle of 5°) and 436 

inertial effects. The blade tip Inp and Oop deformations are slightly varied between FAST 437 

ElastoDyn and FAST BeamDyn at above-rated wind speeds. This can be explained by the 438 

different modelling methodologies on blade torsion, wherein ElastoDyn totally neglects torsion 439 

effects, BeamDyn considers the coupling between torsion and bending shear while the current 440 
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method models torsion as an independent DOF.  441 

Since the blade torsional deformations and blade pitch angles directly impact the sectional 442 

effective AOAs, a detailed discussed is followed with an emphasize on aerodynamic center offset 443 

effects. The results from FAST with BeamDyn and Yu et al.[17] using CFD-CSD as well as Jeong 444 

et al.[47] using BEM-ABAQUS are compared in Fig. 13 , wherein the data with “No.AC” 445 

indicates no aerodynamic center offset.   446 

As shown, the current results agree well with FAST BeamDyn for conditions with and without 447 

AC offset. Significant discrepancies are observed for blade torsion near the rated wind speeds for 448 

cases with and without AC offset (Fig. 13 (a)). Without AC offset, the large (in terms of 449 

magnitude) nose-down torsional deformations can result in significantly reduced AOAs and 450 

consequently the rotor performances near rated wind speeds, and the blade pitch angles required to 451 

maintain rated power at above conditions are reduced (See Fig. 13 (b)). To further examine the 452 

AC offset effects, the spanwise torsional deformations at rated wind speeds are plotted in Fig. 14 453 

with additional results from Imiela et al. [50] and Dose et al.[24] using CFD-CSD, Li et al.[41] 454 

using BEM-GEBT, and Leng et al.[32] using ALM-GEBT. The current method reproduces the 455 

spanwise torsions well for cases without AC offset (Fig. 14 (a)). Although the predicted spanwise 456 

torsions are slightly varied for cases with AC offset (Fig. 14 (b)) which may due to different 457 

structural models and geometry preparations, the magnitudes are small and should not have 458 

considerable impact on rotor performances and wake features. The reason why the results of Yu et 459 

al. [17]using CFD-CSD show similar magnitudes with other results without considering AC offset 460 

is unclear. The azimuth-averaged spanwise blade deflections are also well predicted as shown in 461 

Fig. 15. 462 

   463 
Fig. 13.  Azimuth-averaged (a) blade tip torsional deformation, (b) rotor speed and blade pitch angle with varying 464 
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wind speeds. 465 

  466 
Fig. 14. Azimuth-averaged spanwise blade torsional deformations at rate wind speed. (a) without AC offset;(b) 467 

with AC offset.    468 

  469 
Fig. 15 Azimuth-averaged spanwise blade deflections at rated wind speed: (a) Out-of-plane deformations, (b) In-470 

plane deformations. 471 

A comprehensive comparation of rotor performances and blade tip deformations at rated wind 472 

speed is presented in Table 6, wherein the current results show the rotor thrust and Oop 473 

deformation are greatly influenced by AC offset effects which are decreased by 10.5% and 15.0%. 474 

Meanwhile, the current rotor thrust and power are only slightly decreased by 1.0% and 0.2% 475 

comparing with BeamDyn, which indicates the AC offset effects are far more significant than 476 

geometry nonlinearities and the usage of Euler-Bernoulli beam with various nonlinear effects is 477 

acceptable at least for the current 5MW-class wind turbine at rated condition.  478 

Table 6 Comparation of Azimuth-averaged rotor performances and blade tip deformations of  479 

the NREL-5MW RWT at rated wind speed. 480 

Study Model Year Inp  

(m) 

Oop 

 (m) 

Torsion 

(deg) 

Thrust  

(KN) 

Power  

(MW) 

Jonkman et al.[2] BEM-Modal 2009 -0.61 5.47 - 814.45 5.28 

Yu and Kwon[17] CFD-CSD 2014 -0.63 4.72 -3.04 656.43 5.22 

Li et al.[19] CFD-MBD 2015 -0.58 6.38 - 759 5.41 

Imiela and Wienke[50] CFD-CSD 2015 -0.65 5.98 0.28 808 5.62 

Ponta et al.[51] BEM-GTBM 2016 -0.56 3.85 - 660.19 5.19 



24 

 

Dose et al.[24] CFD-CSD 2018 -0.64 5.98 0.29 768.60 5.46 

Sabel and Gopal[52] BEM-GEBT 2019 -0.57 4.41 -0.29 690.72 4.97 

Sabel and Gopal[53] BEM-GEBT 2019 -0.62 4.55 - 676.12 5.17 

Ma et al.[30] ALM-Beam 2019 -0.57 4.28 - 653 5.20 

Liu et al.[20] CFD-MBD 2019 -0.60 5.60 - 733.00 4.90 

Li et al.[41] BEM-GEBT 2020 -0.57 4.49 -2.97 678.44 5.30 

Leng et al.[32] ALM-GEBT 2023 -0.55 5.53 -0.12 728.50 5.26 

Zheng et al.[33] ALM-Beam 2023 -0.28 4.95 - 681.64 4.67 

BeamDyn(No.AC) BEM-GEBT 2023 -0.59 4.69 -2.80 651.51 5.08 

BeamDyn BEM-GEBT 2023 -0.60 5.43 -0.10 713.37 5.20 

Current (No.AC)   ACE-Beam-PI 2023 -0.53 4.80 -2.71 632.21 4.92 

Current ACE-Beam-PI  2023 -0.62 5.65 0.10 706.10 5.19 

For completeness, the results of different blade types and control configurations are 481 

summarized in Table 7. Blade elasticity is found to slightly reduce the rotor performances for no-482 

controller cases (case 1 and 3) and the controller responses (rotor speed and blade pitch) for with-483 

controller cases (case 2 and 4) which leads to an increase of rotor thrust is by 3.4%. For rigid and 484 

elastic blades, the controller tends to reduce rotor performances through positive blade pitch angle 485 

or reduced rotor speed.  486 

Table 7 Comparation of Azimuth-averaged rotor performances and blade tip deformations of the NREL 5MW 487 

RWT at rated wind speed.  488 

Case Study Wind speed 

(m/s) 

RotSpd 

(rpm) 

Pitch  

(deg) 

Thrust  

(KN) 

Power 

(KW) 

Inp  

(m) 

Oop 

 (m) 

Torsion  

(deg) 

 

1 Rigid blades 11.4 12.1 0 723.69 5.43 / / /  

2 Rigid blades + control  11.4 12.1 0.84 683.20 5.30 / / /  

3 Elastic blades 11.4 12.1 0 714.53 5.25 -0.59 5.70 0.08  

4 Elastic blades + control 11.4 11.8 0 706.10 5.19 -0.62 5.65 0.10  

The azimuthal variations of blade tip deflections over the last revolution are shown as polar-489 

theta plots in Fig. 16, where zero theta indicates blade vertical up. The maximum Inp deflections 490 

(in terms of magnitude) is observed at theta of 90° where the gravity-induced torque reaches 491 

maxima and acts in the same direction of aerodynamic torque, while the minimum Inp is observed 492 

at theta of 270° where the maximum gravity-induced torque and aerodynamic torque act in 493 

opposite directions.   494 

 495 
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 496 
  497 

Fig. 16.  Azimuthal variation of blade tip (a) in-plane (multiplied by -1) and (b) out-of-plane deformations at rated 498 

wind speed. 499 

Based on the above validations, it is evident that the proposed aero-servo-elastic method is well 500 

established and can be further applied for coupled aero-servo-elastic wake behavior analysis of 501 

controlled floating offshore wind turbine(s).  502 

4.2 Surge motion cases 503 

The platform surge displacement 𝑋ௌ is specified as sinusoidal functions as: 𝑋ௌ(𝑡) =504 

𝐴ௌ sin(2𝜋𝑓௦𝑡) and the platform surge velocity is therefore : 𝑉ௌ(𝑡) = 2𝜋𝑓௦𝐴௦ cos(2𝜋𝑓௦𝑡), wherein 505 

the 𝐴ௌ and 𝑓௦ are surge amplitude and surge frequency. The normal inflow velocity relative to the 506 

rotor plane is 𝑉௖ = 𝑉଴ − 𝑉ௌ. To better analyze the coupled aero-servo-elastic responses and wake 507 

features of a FOWT under specified surge motions, eight typical time instants (𝑇଴~𝑇଻) are 508 

introduced (see Fig. 17), wherein the platform moves toward downstream from the equivalent 509 

position at 𝑇଴ to the downstream-most position at 𝑇ଶ, and then moves back to the equivalent 510 

position at 𝑇ସ, and further reaches the upstream-most position at 𝑇଺. The minimum and maximum 511 

normal inflow velocity 𝑉஼ happens at 𝑇଴ and 𝑇ସ, respectively.  512 

Following the work of Lienard et al.[54] , the surge frequency 𝑓ௌ is chosen to allow the rotor to 513 

rotate two revolutions with rated rotor speed of 12.1 rpm during one surge period, so that the 𝑓௦ =514 

12.1/120 = 0.10083 Hz which falls in typical wave frequency range 0.05~2.0 Hz, while a 515 

smaller surge amplitude of 𝐴௦ = 4𝑚 is used. 516 

In this sub section, four cases (𝐴ଵ,𝐴ଶ,𝐴ଷ and 𝐴ସ) are performed to demonstrate the capabilities 517 

of the proposed aero-servo-elastic method for fluid-structure interaction simulations of a 518 
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controlled FOWT under specified surge motion. In case 𝐴ଷ and 𝐴ସ, the rotor speed control is 519 

combined two respective blade pitch control strategies, constant power mode and constant torque 520 

mode, wherein the first one seeks to maintain the rated generator power in region 3 while the 521 

second one maintains rated generator torque in region 3. The detailed case setups are listed in 522 

Table 8 with additional aims to quantify the effects of blade elasticity and control strategies on the 523 

aero-servo-elastic responses as well as wake characteristics. 524 

 525 
Fig. 17. Platform surge motion description[36]. 526 

 527 

Table 8 Platform surge motion parameters and rotor operating conditions. The values of 𝑉଴ , Ω , 𝜃௣ describe the 528 

inflow wind speed, rotor speed and blade pitch angle. The symbols 𝐴ௌ and 𝑓௦ represent the surge motion amplitude 529 

and frequency. 530 

Case Model 𝑉଴ [𝑚/𝑠] Ω [𝑟𝑝𝑚] 𝜃௣[°] 𝐴ௌ[𝑚] 𝑓௦ [Hz] 

𝐴ଵ Surge + rigid blades 11.4 12.1 0 4 0.10083 

𝐴ଶ Surge + elastic blades 11.4 12.1 0 4 0.10083 

𝐴ଷ Surge +elastic blades + constant power 11.4 dynamic dynamic 4 0.10083 

𝐴ସ Surge +elastic blades + constant torque 11.4 dynamic dynamic 4 0.10083 

4.2.1 Unsteady loads and responses 531 

In Fig. 18, the unsteady rotor thrust, rotor power, rotor speed and collective blade pitch angle 532 

are plotted as functions of platform surge displacement. Without control strategy (case 𝐴ଵ and 𝐴ଶ), 533 

the rotor loads show as elliptical hysteresis loops with the minima and maxima at 𝑇଴ and 𝑇ସ. For 534 

case 𝐴ଶ, the thrust varies from 493.64 KN to 904.20 KN while the rotor power varies from 2.50 535 

MW to 8.52 MW. The differences between case 𝐴ଵ and 𝐴ଶ are small, indicating limited effects of 536 

blade elasticity on rotor loads. In contrast, the control strategy significantly alters the rotor loads 537 
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not only in terms of extreme values but also the evolution patterns. For case 𝐴ଷ, the minimum 538 

thrust (31.70 KN) is observed at 𝑇଺ as the blade pitch angle reaches maxima of 8.97° while the 539 

maximum thrust between 𝑇ଶ and 𝑇ସ of 969.48 KN which coincides with the trigger of blade pitch 540 

controller. The constant torque control mode (case 𝐴ସ) predicts smaller blade pitch angle and thus 541 

higher rotor loads from 𝑇଺ to 𝑇଴ (excluding the range with zero blade pitch) than constant power 542 

mode (case 𝐴ଷ), leading to increased mean rotor thrust from 524.56 KN for case 𝐴ଷ to 539.42 KN 543 

for case 𝐴ସ. The results show it is important to include control strategies for aerodynamic analysis 544 

of floating offshore wind turbines.  545 

It should be noted that the blade pitch controller does not trigger and turn off immediately as the 546 

rotor speed exceeds or falls below the rated one since the control region identification is based on 547 

filtered generator speed (Ω෩௚௘௡ = 𝑁ீ௘௔௥Ω෩) instead of the real-time one which is proportional with 548 

real-time rotor speed (Ω௚௘௡ = 𝑁ீ௘௔௥Ω).For case 𝐴ଷ from 𝑇ଶ to 𝑇ସ, the rotor speed exceeds rated 549 

value at 𝑋ௌ = 2.45 𝑚 while the pitch controller starts to function at 𝑋ௌ = 1.06 𝑚, corresponding 550 

to a surge phase-lag of 22° which is introduced by the low-pass filter (see Eq. (18)). The pitch 551 

controller is always activated as the pitch angle is positive regardless of the value of filtered 552 

generator speed, and the minimum blade pitch angle is set to zero.  553 
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 554 
Fig. 18. Rotor performances and controller responses as functions of platform surge displacement: (a) rotor thrust, 555 

(b) rotor power, (c) rotor speed and (d) collective blade pitch angle. 556 

Platform surge and pitch motions are greatly influenced by rotor thrust in real applications so 557 

that a deeper investigation on thrust is presented. The unsteady rotor thrust can be approximated 558 

by first-order Taylor expansion as  559 

𝑇௫ = 𝑇଴ −
𝜕𝑇௫

𝜕𝑉௦
𝑋ௌ̇ (22) 560 

where 𝑇଴ is the reference thrust which is chosen as the mean aerodynamic thrust in this paper. 
డ்ೣ

డ௏ೞ
 561 

is thrust sensitivity against platform surge velocity which is a direct estimation of the platform 562 

surge aerodynamic damping. For small platform-pitch angles, the platform-pitch damping is 563 

𝐿ுு
ଶ డ்ೣ

డ௏ೞ
 as shown by Jonkman[55] wherein 𝐿ுு is the vertical distance between hub height and 564 

platform-pitch rotational center. The platform-surge aerodynamic damping 
డ்ೣ

డ௏ೞ
 can be estimated as 565 

the slope of the steady response of Δ𝑇 = −(𝑇௫ − 𝑇଴) versus 𝑉ௌ as in Fig. 19.  566 

    567 
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 568 

Fig. 19. The oscillating aerodynamic thrust versus platform surge velocity. 569 

An alternative to quantify the aerodynamic damping is using the energy dissipation coefficient 570 

following the work of Apsley and Stansby[56] as  571 

𝐶ௗ௜௦௦ = −
𝑊଴

1
2

𝜌𝐴𝑉଴
ଶ𝑉଴𝑇௦

(23) 572 

where 𝐴 = 0.25𝜋𝐷ଶ is rotor sweep area. 𝑉଴ is inflow velocity. 𝑊଴ is the energy transferred from 573 

airflow to the oscillating rotor during one surge period which can be calculated as  574 

𝑊଴ = − න 𝑇௫𝑉ௌ𝑑𝑡
௧ା ೞ்

௧

= − න (𝑇௫
௎ − 𝑇௫

஽)𝑑𝑥ௌ

஺ೄ

ି஺ೄ

(24) 575 

where 𝑇௫
௎ and 𝑇௫

஽ is the thrust when the rotor moves upstream and downstream, respectively. And 576 

𝑑௫ೄ
= 𝑉ௌ𝑑𝑡.The minus sign is introduced to keep the conventional concept that a system is 577 

positively damped if it dissipates energy to airflow. Eq. (24) further indicates the value of 𝑊଴ is 578 

exactly the area of thrust hysteresis loops in Fig. 19 where counterclockwise loops indicate 579 

positive aerodynamic damping. Combining Eq. (22), (23) and (24), a simple approximate 580 

relationship between 𝐶ௗ௜௦௦ and normalized thrust sensitivity (
డ஼೅

డ௏ഥೄ
) can be derived as 581 

𝐶ௗ௜௦௦ =
1

2

𝑉ௌ଴

𝑉଴

𝜕𝐶்

𝜕𝑉തௌ

(25) 582 

where 𝑉ௌ଴ = 2𝜋𝑓ௌ ∙ 𝐴ௌ is the maximum surge velocity. 𝑉തௌ = 𝑉ௌ/𝑉ௌ଴ is the normalized surge 583 

velocity and 𝐶் = 𝑇௫/
ଵ

ଶ
𝜌𝐴𝑉଴

ଶ is thrust coefficient.   584 

The 
డ்ೣ

డ௏ೞ
 and 𝐶ௗ௜௦௦ are listed in Table 9 together with statistical rotor thrusts and rotor powers. 585 

The blade elasticity leads to the increase of 
డ்ೣ

డ௏ೞ
 by 7.84% (comparing case 𝐴ଶ to 𝐴ଵ) while the two 586 
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control strategies are shown to decrease the 
డ்ೣ

డ௏ೞ
 by 3.90% and 13.56% (comparing case 𝐴ଷ and 𝐴ସ 587 

to case 𝐴ଶ). The relative differences calculated using 𝐶ௗ௜௦௦ are not identical with those calculated 588 

using 
డ்ೣ

డ௏ೞ
 because Eq. (22) is just a first-order approximation to rotor thrust so that Eq. (25) is 589 

only valid for ideal conditions where the oscillating thrust is fully in-phase with surge velocity. 590 

Either 
డ்ೣ

డ௏ೞ
 or 𝐶ௗ௜௦௦ in this paper is just an overall estimation of the rotor aerodynamic damping 591 

effects during one surge period while the real aerodynamic damping can vary with time. 592 

Table 9 Rotor thrust, rotor power, thrust sensitivity and rotor energy dissipation coefficient for all cases. Results in 593 

parenthesis are relative differences between 𝐴ଶ to 𝐴ଵ, and between 𝐴ଷ and 𝐴ସ to 𝐴ଶ. 594 

Case Rotor thrust [KN] Rotor power [MW] డ்ೣ

డ௏ೞ
 [KN/m·s-1] 𝐶ௗ௜௦௦ [-] 

Min Max Mean Min Max Mean  
𝐴ଵ 514.26 891.96 713.39 2.60 8.61 5.53 73.93 0.02118 
𝐴ଶ 493.64 904.20 709.25 2.50 8.52 5.42 79.73 (+7.84%) 0.02257 (+6.56%) 
𝐴ଷ 31.70 969.48 524.56 -0.06 10.00 4.50 76.62 (-3.90%) 0.02171 (-3.81%) 
𝐴ସ 81.57 961.31 539.42 0.41 9.95 4.59 68.92 (-13.56%) 0.01952 (-13.51) 

The rotor power variation range of case 𝐴ଷ (-0.06 MW to 10.00 MW) is much wider than that 595 

of the no-controller case 𝐴ଶ (2.50MW to 8.52MW), which may be counterintuitive as most control 596 

strategies are initially designed to save turbine from overloads at above-rated conditions. To 597 

clarify this, the concepts of rotor power and generator power should be distinguished. Rotor power 598 

is the energy extracted by rotor from airflow in unit time while generator power is the energy 599 

absorbed by generator from rotor in unit time, which are calculated as 𝑃௥௢௧௢௥ = 𝑇௔Ω and 𝑃௚௘௡ =600 

𝜂𝑇 ௘௡Ωீ௘௡, respectively. The aerodynamic torque 𝑇௔ is calculated in ACE module while the 601 

generator torque 𝑇 ௘௡ is obtained through the tabulated relationship (see Fig. 6). It is the generator 602 

power not the rotor power that is directly regulated by control strategies. Fig. 20 shows the time 603 

histories of rotor power and generator power wherein the maximum generator power of case 𝐴ଷ 604 

and 𝐴ସ are well regulated to near the rated 5.0 MW. 605 

 606 
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 607 
Fig. 20. Time histories of rotor power and generator power. 608 

The blade tip out-of-plane (Oop) and torsional deformations show as similar steady hysteresis 609 

loops (Fig. 21). The minimum Oop and torsional deformations of case 𝐴ଷ and 𝐴ସ are observed at 610 

𝑇଺ with minimum rotor thrusts and the aerodynamic center offset induced sectional aerodynamic 611 

moments. The mean Oops and blade torsions are consistent with the trends of mean rotor thrust. 612 

Moreover, the maximum Oops are 6.96m, 7.56m and 7.52m for cases 𝐴ଶ, 𝐴ଷ and 𝐴ସ, indicating 613 

the surge motion and control strategies can possibly lead to stronger blade-tower interactions and 614 

increase the risks of tower strike. The high-frequency oscillations in Fig. 21(b) relate to the 615 

natural frequencies of blade torsion. The blade tip in-plane deformations with control strategies 616 

are not strictly periodic steady so that they are plotted as time histories in Fig. 22. It shows the 617 

control strategies only slightly influence the maximum and minimum in-plane deformations but 618 

allow for the high-order frequencies to be excited.  619 

    620 

Fig. 21. Blade tip out-of-plane and torsional deformations as functions of platform surge displacement: (a) Out-of-621 

plane deformation and (b) blade torsion. 622 
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 623 

 624 

Fig. 22. Time histories of blade tip in-plane deformations. 625 

4.2.2 Wake characteristics  626 

In Fig. 23, the wake vortex structures are visualized via the 𝑄-criterion[57, 58], wherein 𝑄 is 627 

the second invariant of velocity gradient tensor and is defined as 𝑄 = −
ଵ

ଶ
(𝑢௜,௜

ଶ − 𝑢௜,௝𝑢௝,௜). The 628 

helical tip vortices in near wake regions are transitioned and merged into a set of vortex rings. 629 

This is due to the fact that the tip vortices are released from blade tips with different initial 630 

streamwise velocities during one surge period, so that the vortex-vortex interactions lead to the 631 

formation of vortex rings. The vortex ring structures are greatly impacted by the inclusion of 632 

control strategies while the differences between two control types are negligible. Fig. 24 shows 633 

blade elasticity accelerates the formation of the fist vortex ring structure (see the dashed boxes in 634 

Fig. 24  (a) and (b)) due to blade elastic vibrations, and control strategies significantly reduce the 635 

core size of the vortex rings. The rapid diffusion of wake vortices in far wake is due to the large 636 

streamwise grid resolution as the wake refinement region only extends to 5𝐷 downstream.  637 

 638 
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 639 

Fig. 23. Wake vortex structures at 𝑇଴ (visualized by 𝑄 = 0.01 and colored by normalized streamwise velocity). 640 
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 641 

Fig. 24. Instantaneous 𝑄 field in 𝑥𝑦 plane at hub height at 𝑇଴ for cases 𝐴ଵ, 𝐴ଶ, 𝐴ଷ and 𝐴ସ. 642 

To further quantify the wake characteristics, the streamwise velocities (𝑉௫) are probed along 643 

lateral directions (𝑦 direction) at hub height (𝑍=90m) for five downstream positions 𝑥/𝐷 =644 

1, 2,3, 4, 5  and time averaged over the last two surge periods (19-20) in order to calculate the 645 

dimensionless mean velocity deficits as 
୼௏ഥೣ

௏బ
= 1 −

௏ഥೣ

௏బ
 which are plotted in Fig. 25. The 

୼௏ഥೣ

௏బ
 at 646 

𝑥/𝐷 = 5 is further transversely averaged between −0.7 < 𝑦/𝐷 < 0.7 to assess the overall far 647 

wake deficit and the results for case 𝐴ଵ, 𝐴ଶ, 𝐴ଷ and 𝐴ସ are 0.370, 0.360, 0.223 and 0.232, 648 

respectively. The overall far wake deficit is decreased by 2.7% from 0.370 for case 𝐴ଵ to 0.360 for 649 

case 𝐴ଶ,  showing the blade elasticities slightly accelerate the far wake recovery. While the two 650 

control strategies were found to significantly reduce the overall far wake deficits by 38.1% and 651 

35.6% comparing case 𝐴ଷ and 𝐴ସ to case 𝐴ଶ. This is because the minimum blade pitch angle is set 652 

as 0° for the current pitch controller. When the filtered rotor speed is above rated value, the pitch 653 
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controller introduces positive pitch angle and thus less power extraction. However, when the 654 

filtered rotor speed is below the rated value, the blade pitch angle is maintained as 0° instead of 655 

being negative ones to increase power extraction. As a result, the rotor extracts much less energy 656 

during one surge period compared with the no controller cases, thus the mean wake deficits are 657 

greatly reduced.  658 

 659 

Fig. 25. Time-averaged dimensionless streamwise velocity deficit (ΔVഥ௫/𝑉଴) at hub height along lateral direction at 660 

downstream positions of 𝑥/𝐷 = 1, 2, 3, 4, 5. 661 

5. Summary and conclusion  662 

In this paper, a new numerical method is proposed for coupled aero-servo-elastic analysis of 663 

floating offshore wind turbines including wakes. The method is based on solving incompressible 664 

Navier-Stokes Equations on stretching Cartesian grids using finite difference method. The effects 665 

of rotating blades on flow are modeled as body force terms using Actuator Curve Embedding  666 

method and a nonlinear finite element rotating beam theory is adopted for blade elasticity 667 

modeling. Both generator torque control and collective blade pitch control strategy are considered. 668 

The novelty of this method is that it is capable for efficient aero-servo-elastic simulations of 669 

FOWT(s) including wakes on coarse Cartesian grids without requiring empirical tip loss 670 

corrections.  Systematic validations were performed and the aero-servo-elastic loads and wakes of 671 

a NREL 5MW wind turbine under platform surge motion were analyzed using the current new 672 
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method. The major conclusions are as follows:  673 

 The proposed aero-servo-elastic method is well-established and can accurately predict 674 

rotor performances, blade natural frequencies, modal shapes, elastic deformations and 675 

controller responses with affordable computational cost.  676 

 Aerodynamic center offset effects are essential for accurate aero-servo-elastic predictions.  677 

If neglected, the magnitude of blade tip torsion can be overpredicted by 26.1 times 678 

(comparing −2.71° to 0.1°) for the NREL 5MW wind turbine at rated conditions, leading 679 

to the rotor thrust and blade tip out-of-plane deformation being underpredicted by 10.5% 680 

and 15.0%, respectively.  681 

 The two control strategies (constant power and constant torque mode) were found to 682 

significantly reduce the overall far wake deficit by 38.1% and 35.6%, while blade 683 

elasticity only slightly reduces the same quantity by 2.7%. These findings indicate control 684 

strategy can be much more influential than blade elasticity on far wake deficits for a 685 

floating turbine in particular conditions. 686 

 Compared with the constant power mode, the pitch control with constant torque mode 687 

slightly increased the overall far wake deficit by 4.0% which may have some negative 688 

effects on downstream turbines. 689 

In future works, more modern IEA 15MW wind turbine, which have more realistic offsets 690 

and more significant blade torsional deformations, should be used and the method can be 691 

coupled with a floating body dynamic code to establish an aero-hydro-servo-elastic-mooring 692 

framework with inflow shear and turbulence in more realistic sea states. With the increasing 693 

tower height and blade span, the inclusion of tower flexibility and modeling flexible blades with 694 

more advanced geometrically exact beam theory are natural next-steps. Due to the cyclic nature 695 

of blade pitch angles and blade elastic vibrations, it would be beneficial to include a dynamic 696 

stall model to account for the hysteresis effects of sectional aerodynamic coefficients, especially 697 

for a FOWT operating in harsh sea states or wind gust conditions where the current quasi-698 

steady aerodynamic model may fail to predict the high dynamic lift due to the delay of stall.  699 

  700 
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Appendix A. Special region treatment in ACE 701 

Theoretically, the blade forces are projected in planes normal to the actuator curve. However, 702 

the actuator curve is usually represented by a set of discrete segment lines instead of a smooth 703 

curve. Thus, the fluid region influenced by an actuator curve can have two special regions on the 704 

concave and convex side, which are donated as concave region and convex region with the rest 705 

region donated as normal region as shown in Fig. A.1. In the concave region, a fluid point can find 706 

multiple planes normal to the blade segment lines. While for the fluid points in the convex region, 707 

no plane normal to any blade segment line can be find. Therefore, special treatments are required 708 

in the two special regions to obtain the required tangential and normal coordinates (𝑟௦ and 𝑟௡) for 709 

ACE implementation. The tangential coordinate is normalized as 𝑝௦,௠ = 𝑟௦,௠/Δ𝑏௠ for better 710 

following discussions.  711 

 712 

Fig. A.1 Concave and convex cases for ACE. 713 

In HEU-FOWT code, the region type identification and the treatments for each fluid point 𝑄 714 

based on the following criterions: 715 

 If only ONE element satisfies 𝑝௦ ∈ (0,1] (see 𝑄଴ in Fig. A.1), then 𝑄 is in the normal 716 

region, and the 𝑟௦ and 𝑟௡ are calculated using this element;  717 

 If Multiple elements satisfy 𝑝௦ ∈ (0,1] (see 𝑄ଵ in Fig. A.1), then 𝑄 is in the concave 718 

region, but only the element with minimum 𝑟௡ is used for calculating the final 𝑟௦ and 𝑟௡; 719 
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 If 𝑝௦ ∉ (0,1] for all elements but have the properties of  𝑝௦,௠ > 1 and  𝑝௦,௠ାଵ ≤ 0 (see 𝑄ଶ 720 

in Fig. A.1), then 𝑄 is in convex region, and it is associated with the 𝑚௧௛ element. Special 721 

treatments are performed as 𝑝௦ = 1.0 and 𝑟௡ = 𝑄ଶ𝑃௠ାଵ. 722 

     A uniformly-loaded (1000N/m) quarter arc curve with four actuator points is used to 723 

demonstrate the capabilities of the ACE method in HEU-FOWT code on treating the special 724 

regions for an actuator curve with very large deformation. The different regions are well identified 725 

(primary values located at the lowest-indexed cell corners) as shown in Fig. A.2, and the projected 726 

body force field (with 𝜀 = Δ = 4m) in different regions are shown in Fig. A.3. 727 

 728 

Fig. A.2 Region identification for a quarter arc.  729 

(Yellow: convex region; Green: convex region; Blue: normal region) 730 

 731 
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  732 

Fig. A.3 Body force field in different regions. 733 

Appendix B. Derivation of the elemental equations of motion  734 

The equation of motion for each blade beam element is derived using Lagrange’s equations, 735 

−
𝑑

𝑑𝑡
൬

𝜕𝒯

𝜕𝑞̇௜
൰ +

∂𝒯

∂𝑞௜
+

∂𝒰

∂𝑞௜
= 𝒫௜ (B. 1) 736 

where 𝒯 is total kinetic energy, 𝒰 is total strain energy, 𝑞௜ is the 𝑖௧௛ degree-of-freedom and 𝒫௜ is 737 

the 𝑖௧௛ generalize load of the finite beam element. 𝑞̇௜ is the time derivative of 𝑞௜. 738 

The total kinetic energy (𝒯) of a Euler-Bernoulli beam element is simply  739 

𝒯 =
1

2
න 𝜌௦𝐴൫𝑢̇௫

ଶ + 𝑢̇௬
ଶ + 𝑢̇௭

ଶ൯
ଶ

𝑑𝑥 +
1

2
න 𝜌௦ 𝐽𝜃̇௫

ଶ𝑑𝑥

௅

଴

௅

଴

(B. 2) 740 

where 𝜌௦ is mass density, 𝐴 is cross-sectional area and 𝐽 is rotational inertial around local 𝑥 axis. 741 

The total strain energy (𝒰) due to axial displacement, transverse bending, torsion and axial 742 

tension can be modelled using classic rod, beam, shaft and pretensioned cable models as  743 
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(B. 3) 744 

where 𝐸 is elastic modulus, 𝐺 is shear modulus, 𝐼௬ and 𝐼௭ is the cross-section moment of inertial 745 

relative to local 𝑦 and 𝑧 axis, respectively. 𝑇௫
∗ is axial tension mainly resulting from the 746 

accumulated centrifugal force and gravitational force as  747 

𝑇௫
∗(𝑥) = න 𝜌௦𝐴[𝛀𝛀(𝒓 + 𝒙𝒆) + 𝑻𝐠]𝑑𝑥

ோ

௫

∙ [1, 0, 0]் (B. 4 ) 748 

where 𝑻 is the coordinate transformation matrix from global inertial coordinate system to local 749 

blade coordinate system. 𝐠 = [0, 0, −9.81]் is gravitational acceleration. 𝒓 and 𝒙𝒆 are the initial 750 

undeformed elemental nodal position and elemental nodal elastic deformation, respectively. The 751 

dot product with vector [1, 0, 0]் is intended to extract the 𝑥 component. 𝛀 is the skew symmetric 752 

matrix of the rotor angular speed vector 𝝎 = ൣ𝜔௫, 𝜔௬, 𝜔௭൧
𝑻
 (represented by 𝑆௕೔

) as  753 

𝛀 = ቎

0 −𝜔௭ 𝜔௬

𝜔௭ 0 −𝜔௫

−𝜔௬ 𝜔௫ 0
቏ (B. 5) 754 

 755 

Inserting Eq. (16), (B.2) and (B.3) into Eq. (B.1), the elemental mass matrix (𝑴𝒆), structural 756 

stiffness matrix (𝑲𝒆) and stress stiffening matrix (𝒔𝒕𝒓𝒆𝒔𝒔𝒆) can be obtained as 757 

𝑴𝒆 = න 𝜌௦𝐴𝑵𝟎
𝑻𝑵𝟎𝑑𝑥

௅

଴

+ න 𝐽𝑵𝟒
𝑻𝑵𝟒𝑑𝑥

௅

଴

(B. 6) 758 

𝑲𝒆 = න 𝑩𝟎
𝑻𝑺𝑩𝟎𝑑𝑥

௅

଴

(B. 7) 759 

𝒔𝒕𝒓𝒆𝒔𝒔𝒆 = 𝑇௫
∗ න 𝑩𝟏

𝑻𝑩𝟏𝑑𝑥

௅

଴

(B. 8) 760 

where 𝑩𝟎 = ൣ𝑵𝟏
ᇱ , 𝑵𝟐

" , 𝑵𝟑
" , 𝑵𝟒

ᇱ ൧
்
is strain matrix. 𝑩𝟏 = [𝑵𝟐

ᇱ , 𝑵𝟑
ᇱ ]். 𝑺 is the 4 × 4 matrix of structural 761 

properties. 𝑁ଵ
ᇱ = 𝜕𝑵𝟏/𝜕𝑥 and 𝑁ଷ

" = 𝜕ଶ𝑵𝟑/𝜕𝑥ଶ. 762 

Wind turbine blades are subjected to various applied loads, such as gravitational force, 763 

centrifugal force, Coriolis force, aerodynamic loads. Using the principle of virtual work, these 764 

applied loads can be generalized as  765 
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𝑭𝐠
𝒆 = න 𝜌௦𝐴𝑵𝟎

𝑻𝑑𝑥 ∙ 𝑻𝐠

௅

଴

(B. 9) 766 

𝑭𝐜𝐞𝐧
𝒆 = − න 𝜌௦𝐴𝑵𝟎

𝑻𝛀𝛀𝑵𝟎(𝒙𝒆 + 𝒒𝒆)𝑑𝑥

௅

଴

= 𝑭𝒄𝒆𝒏
ᇱ + 𝒔𝒐𝒇𝒕𝒆 ∙ 𝒒𝒆 (B. 10) 767 

𝑭𝒄𝒐𝒓𝒊
𝒆 = −2 න 𝜌௦𝐴𝑵𝟎

𝑻𝛀𝑵𝟎𝑑𝑥 ∙

௅

଴

𝒒̇𝒆 = 𝒄𝒐𝒓𝒊𝒆 ∙ 𝒒̇𝒆 (B. 11) 768 

𝑭𝐚𝐞𝐫𝐨
𝒆 = න 𝑵 

𝑻𝑵 𝑭𝒂
𝒆𝑑𝑥

௅

଴

(B. 12) 769 

where 𝑭𝒂
𝒆 = ൣ𝑭𝒙

𝟏, 𝑭𝒚
𝟏, 𝑭𝒛

𝟏, 𝑴𝒙
𝟏, 𝟎, 𝟎, 𝑭𝒙

𝟐, 𝑭𝒚
𝟐, 𝑭𝒛

𝟐, 𝑴𝒙
𝟐, 𝟎, 𝟎൧

𝑻
 is the elemental nodal 770 

aerodynamic loads. 𝒔𝒐𝒇𝒕𝒆 and 𝒄𝒐𝒓𝒊𝒆 are spin softening matrix and generalized Coriolis matrix, 771 

respectively.   772 

Combining the structure related and rotation added terms, the final form of the discretized 773 

equation of motion for a rotating blade element is 774 

𝑴𝒆𝒒̈𝒆 + (𝑪𝟎
𝒆 − 𝑪𝒐𝒓𝒊𝒆)𝒒̇𝒆 + (𝑲𝒆 + 𝒔𝒕𝒓𝒆𝒔𝒔𝒆 − 𝒔𝒐𝒇𝒕𝒆)𝒒𝒆 = 𝑭𝐠

𝒆 + 𝑭𝒂𝒆𝒓𝒐
𝒆 + 𝑭𝒄𝒆𝒏

ᇱ (B. 13) 775 

where 𝑪𝟎
𝒆 is the structural damping matrix. 776 

For the current aero-servo-elastic method, direct usage of partitioned loose-coupling strategy 777 

with elastic velocity feedbacks can lead to numerical instabilities, so that a structural damping is 778 

adopted to maintain numerical stability where the sectional damping force (𝑭 
𝑫𝒂𝒎𝒑) is proportional 779 

to the strain rate (𝜺̇) as 780 

𝑭 
𝑫𝒂𝒎𝒑 = 𝜇௜𝑺𝛆̇ (B. 14) 781 

The damping forces can be generalized using the principle of virtual work and lead to a stiffness 782 

proportional damping matrix for blade beam element as 783 

𝑪𝟎
𝒆

 

 
= [𝜇]𝑲𝒆 (B. 15) 784 

where [𝜇] = diag( 𝜇ଵ, 𝜇ଶ, 𝜇ଷ, 𝜇ସ) is the diagonal damping coefficient matrix. 𝑪𝟎
𝒆

 

  is the structural 785 

damping matrix for a beam element. 𝑺 is 4 × 4 sectional stiffness property matrix which is 786 

detailed in Appendix C.   787 

The damping coefficient 𝜇௜ is determined based on the analysis of a single DOF mass-damper-788 

spring system: 𝑚௜𝑥̈ + 𝑐௜𝑥̇ + 𝑘௜𝑥 = 0, of which the circular natural frequency is 𝜔௜ = 2𝜋𝑓௜ =789 
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ඥ𝑘௜/𝑚௜ and critical damping is 𝑐௜
଴ = 2ඥ𝑚௜𝑘௜. Therefore, the damping ratio (𝜉௜) for a stiffness 790 

proportional damping (𝑐௜ = 𝜇௜𝑘௜) is  791 

𝜉௜ =
𝑐௜

𝑐௜
଴ =

𝜇௜

2
ඨ

𝑚௜

𝑘௜
=

1

2
𝜇௜𝜔௜ = 𝜋𝜇௜𝑓௜ (B. 16) 792 

Eq. (B. 16) reveals the damping coefficient for each degree-of-freedom of a flexible blade can 793 

be determined by giving a target damping ratio 𝜉௜ for the target 𝑖th mode with natural frequency 794 

𝑓௜(HZ), for which the high modes are more damped. In this paper, the damping ratio coefficients 795 

of 𝜇௜ = 1 × 10ିଷ are adopted following the default values in FAST BeamDyn. Fig. B.1 shows the 796 

aeroelastic responses of a NREL 5MW wind turbine at rated conditions (𝑉଴=11.4m/s, Ω =797 

12.1 rpm, 𝜃௣ = 0), wherein the value of  𝜇௜ = 1 × 10ିହ leads to case blow up while other values 798 

of 𝜇௜ predict very similar results. 799 

 800 

Fig. B.1 Blade tip deflections with different damping ratio coefficients 𝜇௜: (a) In-plane deformations, (b) Out-of-801 

plane deformations. 802 

Appendix C. Bend-Bend coupling  803 

In current method, blade elastic deformations are solved in the blade coordinate system for each 804 

blade, while the input sectional stiffness properties, such as flap stiffness and edge stiffness, are 805 

defined respective to the sectional principal axis (See Fig. 2 for the edgewise and flapwise 806 

definitions).  In sectional coordinate system, the force-deformation relationship has a simple form 807 

of 808 
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ቈ
𝐹௬೛

𝐹௭௣
቉ = ቈ

𝐾௬೛
0

0 𝐾௭೛

቉ ൤
𝑢௬೛

𝑢௭೛
൨ (C. 1) 809 

where 𝐾௬೛
 and 𝐾௭೛

 are sectional edgewise and flapwise stiffnesses. The [𝑢௬೛
𝑢௭೛]் and 810 

[𝐹௬೛
𝐹௭೛]் are respective elastic deformation vectors and force vectors in sectional coordinate 811 

system.   812 

Eq. (C.1) can be further represented in the blade coordinate system as 813 

𝑻𝟏 ൤
𝐹௬

𝐹௭
൨ = ቈ

𝐾௬೛
0

0 𝐾௭೛

቉ 𝑻𝟏 ቂ
𝑢௬

𝑢௭
ቃ (C. 2. a) 814 

or equivalently   815 

൤
𝐹௬

𝐹௭
൨ = 𝑻𝟏

𝑻 ቈ
𝐾௬೛

0

0 𝐾௭೛

቉ 𝑻𝟏 ቂ
𝑢௬

𝑢௭
ቃ = ൣ𝐾෩൧ ቂ

𝑢௬

𝑢௭
ቃ (C. 2. b) 816 

where 𝑻𝟏 is the coordinate transformation matrix as shown in Eq. (C.3) and 𝜃 is the total angle 817 

from rotor plane to sectional chord line, namely, 𝜃 = 𝜃଴ + 𝜃௣ − 𝜃௘ (See Fig. 2). 818 

𝑻𝟏 = ൤
cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)
൨ (C. 3) 819 

The sectional stiffness property matrix ൣ𝐾෩൧ in blade coordinate system is therefore  820 

ൣ𝐾෩൧ = ൤
𝐾௬௬ 𝐾௬௭

𝐾௬௭ 𝐾௭௭
൨ (C. 4) 821 

where 822 

𝐾௬௬ = 𝐾௬௣ cosଶ(𝜃) + 𝐾௭௣ sinଶ(θ) (C. 5. a) 823 

𝐾௭௭ = 𝐾௬௣ 𝑠𝑖𝑛ଶ(𝜃) + 𝐾௭௣ 𝑐𝑜𝑠ଶ(𝜃) (C. 5. b) 824 

𝐾௬௭ = ൫𝐾௬௣ − 𝐾௭௣൯ sin(𝜃) cos(𝜃) (C. 5. c) 825 

The off-diagonals of ൣ𝐾෩൧ are usually non-zero which introduce bend-bend coupling effects 826 

unless 𝐾௬௣ = 𝐾௭௣ or 𝜃 = 0. Considering blade elongation and torsion, the total sectional structural 827 

stiffness property matrix in blade coordinate system is 828 

𝑺 = ൦

𝐸𝐴 0
0 𝐾௬௬

0 0
𝐾௬௭ 0

0 𝐾௬௭

0 0

𝐾௭௭ 0
0 𝐺𝐽

൪ (C. 6) 829 

The bend-bend coupling effects on blade tip deflections are shown in Fig. C.1, wherein the 830 

mean in-plane deformation is substantially decreased by 227.8% while the mean out-of-plane 831 

deformation is slightly increased by 2.5% for a NREL 5MW wind turbine at rated conditions 832 

(𝑉଴=11.4m/s, Ω = 12.1 rpm, 𝜃௣ = 0°). Bend-bend coupling effects are essential for accurate 833 

predictions of blade in-plane deformation. 834 
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 835 

Fig. C.1 Bend-bend coupling effects on blade tip deflections: (a) In-plane deformations, (b) Out-of-plane 836 

deformations (Dashed lines indicate mean values). 837 

  838 
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Nomenclature  839 

𝐷 Rotor diameter [m] 𝜌௔ Air density [kg/𝑚ଷ] 
𝑅 Rotor radius[m] 𝐹௜ Body force term [N/𝑚ଷ] 
𝑟 Blade radial distance[m] 𝑉଴ Streamwise inflow velocity [m/s] 
𝐻 Hub height [m] Ω , Ω଴ Rotor speed, Rated rotor speed [rpm] 
𝑁௕ Number of blades 𝑐̅ Averaged blade chord 

Δ௠௜௡ Finest grid resolution  𝑐 Chord length [m] 
𝑆଴ Global inertial coordinate system 𝑆௧, 𝑆௛ Hub, tower coordinate system 
𝑆௕೔

 Blade coordinate system for the 𝑖௧௛ 
blade 

𝑆௖೔,ೕ
 Section coordinate system for the 𝑗௧௛ 

section of 𝑖௧௛ blade  
𝑂଴, 𝑂ଵ, 𝑂ଶ Origin of 𝑆଴, 𝑆௧, 𝑆௛ Θ Blade azimuth angle [°] 

𝑐଴ Root chord of equivalent elliptic 
wing[m] 

𝑐∗ chord of equivalent elliptic wing[m] 

𝐹௅,𝐹஽ 
 

Lift and Drag forces [N/m] 𝑽௥௘௟ Sectional relative velocity [m/s] 

𝑀஺஼ , 𝑀௉஺ Sectional aerodynamic moments 
against aerodynamic center and pitch 
axis position [Nm/m] 

𝑽௜௡ flow velocity at aerodynamic 
center[m/s] 

𝑽௣௟௔௧௙௥௢௠ Sectional velocity due to platform 
motions [m/s] 

𝑽௥௢௧ Sectional velocity at aerodynamic 
center due to blade rotation [m/s] 

𝐶௅, 𝐶஽, 𝐶ெ lift, drag and moment coefficients [-] 𝑽௘௟௔௦௧௜௖ Sectional elastic velocity [m/s] 
𝐹் , 𝐹ே Tangential and normal force [N/m] 𝛼 Effective angle of attack [°] 

𝜀  Gaussian smooth length scale [m] 𝜙 Inflow velocity angle [°] 
𝜀∗ Interpolated Gaussian length [m] 𝜃଴ Initial twist angle [°] 

𝑟௦, 𝑟௡ Tangential and normal distance [m] 𝜃௣ Blade pitch angle [°] 
Δ𝑏  Elemental length [m] 𝜃௘ Elastic torsional angle [°] 

𝑓௞,௠,௜ 𝑖௧௛ component of total aerodynamic 
force at 𝑚௧௛ section of  𝑘௧௛ blade 
[N/m] 

𝑓௞,௜
∗  𝑖௧௛ component of the interpolated total 

aerodynamic force from 𝑘௧௛ blade 
[N/m]  

𝑵𝟎, 𝑵𝟏, 𝑵𝟐, 𝑵𝟑, 𝑵𝟒 Strain matrices 𝝎 Blade angular velocity vector in 𝑆௕೔
 

𝜂௜(𝑥) Shape functions 𝜔௫ , 𝜔௬ , 𝜔௭ 𝑥, 𝑦, 𝑧 components of blade angular 
velocity 𝝎 

𝐿 Blade beam element length [m] 𝛀 skew symmetric rotational matrix 
𝒒𝒆 Beam element displacement  𝒃𝒊𝒆𝒙,  𝒃𝒊𝒆𝒚,  𝒃 Vectors in local 𝑥, 𝑦, 𝑧 directions of 

blade coordinate system 𝑆௕೔
 

𝑢௫, 𝑢௬ , 𝑢௭ Translational displacements in local  
𝑥, 𝑦, 𝑧 directions of elastic beam 
structure [m] 

𝒯 Total kinetic energy 

𝑢̇௫, 𝑢̇௬ , 𝑢̇௭ Translational velocities in local  
𝑥, 𝑦, 𝑧 directions of elastic beam 
structure [m/s] 

𝒰 Total strain energy 

 

𝜃௫, 𝜃௬, 𝜃௭ 
Rotational displacements in local  
𝑥, 𝑦, 𝑧 directions of elastic beam 
structure [m] 

𝒫 Generalized applied load 

𝜃̇௫, 𝜃̇௬, 𝜃̇௭ Rotational velocities in local  𝑥, 𝑦, 𝑧 
directions of elastic beam structure 
[rad/s] 

𝜌௦ Mass density of blade section [kg/𝑚ଷ] 

𝑇௫
∗ Axial tension force [N] 𝐴 Cross-sectional aero [𝑚ଶ] 

𝑻 Coordinate transformation matrix 
from global to local blade coordinate 
system. 

𝐽 Sectional rotational inertial 

𝐠 Gravitational acceleration [𝑚ଶ/s] 𝐸 Elastic modulus  
𝒓 Initial radial position  𝐺 Shear modulus 

𝒙𝒆 Elastic deformations of beam 
element  

𝐼௬, 𝐼௭ sectional moment of inertial relative to 
local 𝑦 and 𝑧  directions  

𝑴𝒆, 𝑪𝟎
𝒆 , 𝑲𝒆 Elemental mass, damping, and 

stiffness matrices. 
𝑭𝒂𝒆𝒓𝒐

𝒆  Generalized aerodynamic loads. 

  𝑭𝐠
𝒆 Generalized gravity loads 
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𝒔𝒕𝒓𝒆𝒔𝒔𝒆 Stress stiffening matrix  𝑭𝒄𝒆𝒏
𝒆  Generalized centrifugal force 

𝒔𝒐𝒇𝒕𝒆 Spinning softening matrix 𝑭𝒄𝒐𝒓𝒊
𝒆  Generalized Coriolis force 

𝒄𝒐𝒓𝒊𝒆 Coriolis force matrix 𝑭𝒂
𝒆  Elemental aerodynamic loads 

𝑺 Structural property matrix  𝑴𝑬, 𝑪𝑬, 𝑲𝑬 Assembled mass, damping and 
stiffness matrices for each blade 

𝑩𝟎, 𝑩𝟏 Strain matrices 𝑭𝑬 Assembled generalized loads for each 
blade 

Ω෩ Filtered rotor speed ΔΩ Rotor speed error 
𝑓௖  Corner frequency for low pass filter 𝜉௜ Damping ratio 
𝑇௔ Rotor aerodynamic torque [Nm] [𝜇] Damping coefficient matrix 

𝑇 ௘௡ Generator torque [Nm] 𝐾௬೛
, 𝐾௭೛

 Sectional edgewise and flapwise 
stiffness. 

𝐼஽ total drivetrain inertial cast to the 
LSS 

𝜔 Circular natural frequency [-] 

Ω̇ Rotor acceleration 𝛾 Dimensionless rotor speed 
𝑁ீ௘௔௥ Gear box ratio 𝜇 Dimensionless natural frequency 

𝑃 ௘௡ , 𝑃௔௘௥௢ Generator power and rotor power 
[W] 

𝑋௦ Surge displacement [m] 

𝜂 Generator electric efficiency 𝑉௦ Surge velocity [m/s] 
𝐾௉బ

, 𝐾ூబ
 Proportional and integral gains at 

zero pitch angle 
𝑓௦ Surge frequency [HZ] 

𝜃௞ blade pitch angle where the power 
sensitivity is doubled. 

𝑉௖  Normal inflow velocity relative to 
rotor plane 

𝑇଴ Reference rotor thrust [N] 𝑇௫ Rotor thrust in global coordinate 
system [N] 

𝐶ௗ௜௦௦ Energy dissipation coefficient [-] 𝑊଴ Energy transferred from air flow to 
surging rotor in one surge period 

FOWT Floating Offshore Wind Turbine AC Aerodynamic Center 
ACE Actuator Curve Embedding PI Proportional Integral 
Inp In Plane Oop Out of Plane 

GEBT Geometrically Exact Beam Theory FVM Free Vortex Method 
MBD Multi-Body Dynamic CSD Computational Structural Dynamic 
FEM Finite Element Method FSI Fluid Structure Interaction 
BEM Blade Element Momentum ALM Actuator Line Method 
VRS Vortex Ring State EALM Elastic Actuator Line Method 
CIP Constrained Interpolation Profile LES Large Eddy Simulation 
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