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Duplicated Orders, Swift Cancellations, and Fast Market Making 

in Fragmented Markets 

Abstract 

Employing unique data from 91 stocks trading on their primary exchanges and three alternative 

venues, we show that liquidity suppliers post duplicate limit orders on competing trading venues 

and cancel the duplicated orders immediately after one of them is filled. This is consistent with 

liquidity suppliers engaging in cross-venue market-making. This Duplicated-then-Canceled 

Liquidity is predominantly used by high-frequency traders when their inventories are not 

excessive. It reduces execution costs of fast traders on alternative venues. It however has some 

adverse impact on execution costs on primary exchanges but those negative effects fail to outweigh 

the liquidity benefits of market fragmentation. 
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1. Introduction 

Recent developments in equity market structure have rendered the process of identifying and 

implementing optimal execution and market-making strategies significantly more complex. First, 

the fragmentation of modern equity markets and the use of multiple trading venues by market 

participants means that, to understand liquidity, one must aggregate across many venues and data 

feeds to obtain a ‘consolidated’ view of the market, while to execute efficiently often requires the 

use of a ‘smart order router’ (see, for example, Foucault and Menkveld, 2008). Second, the same 

market developments have led to changes in traders’ limit order submission strategies which imply 

that ‘consolidated’ liquidity (measured as the simple aggregate of shares available across all 

trading venues) is likely to overstate the actual liquidity that the average impatient market 

participant can access. This is because, in a world of fragmented market order flow, traders 

implementing market-making strategies may rationally choose to place duplicate limit orders on 

several venues, intending for only one of those orders to execute. In this work, we empirically 

evaluate the extent of this order duplication, the extent to which consolidated liquidity overstates 

true liquidity, and, more importantly, how it is related to cross-venue market-making activity. 

To illustrate the key issue, consider a simple scenario in which all participants involved in 

trading a stock have access to two venues. A patient investor who wishes to buy a unit of the stock 

might place a limit buy order on one of the two venues. She then executes if a matching market 

sell arrives at this venue. However, she misses out on trading opportunities if market sells are 

arriving at the other venue. Thus, to maximize her chances of execution, she is incentivized to 

place similar limit buy orders on both venues and intends, when one of the orders has executed, to 

cancel the other. 

On the one hand, this order duplication creates a difference between true and measured 

liquidity. Let us imagine that an impatient but unsophisticated trader places a market sell order to 

hit the limit buy order posted on one of the two venues but that, at the same time, the duplicate 

limit buy order submitted by the patient trader is executed on the other venue. If the seller’s trading 

technology is slower than that of the patient buyer, by the time her sell order reaches the market, 

the limit buy order she targets will have been canceled. As a result, the liquidity accessible to her 

is less than initially observed. We call this difference Duplicated-then-Canceled Liquidity (DCL). 
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On the other hand, DCL is likely to make the consolidated market more liquid. First, DCL is 

not necessarily inaccessible to all traders. One may fairly claim that DCL is genuine liquidity 

between its submission time and its cancellation time, not only for fast multi-market aggressive 

traders, but also for the small local traders of all venues. Second, DCL may favor liquidity 

provision in fragmented markets by contributing to more effective inventory management for 

traders who operate cross-venue market-making strategies. 

In brief, in a world of fragmented trading, the duplication of limit orders across venues may be 

a natural part of cross-venue market-making, but it may also lead measured liquidity to overstate 

true liquidity for the average trader. The core of this paper is an attempt to quantify the importance 

of DCL in equity markets, to identify its determinants and, in particular, how it relates to liquidity 

suppliers’ inventories, and to characterize its actual effects on liquidity. 

It is worth noting that order duplication is not without risk. If both of the passive trader’s limit 

buy orders in our example are hit simultaneously, she will have executed too great a quantity. This 

double execution may occur either because the duplicated orders are hit at each venue by two 

different traders or because a single trader using a smart order router intentionally and 

simultaneously executes the passive trader’s orders on both venues. This simple example implies 

that the incentive to duplicate limit orders across venues is greater for traders who have a trading 

speed advantage over the average trader, but the incentive is weakened by the presence of Smart 

Order Routers (SORs). Our analysis of the determinants of DCL takes those factors into 

consideration by clearly identifying trading speed levels and by building a measure of SOR 

activity. 

To conduct our empirical work, we take advantage of a unique dataset that covers 91 European 

stocks trading on their respective primary exchanges and the three largest alternative European 

trading venues for the month of May 2013. The data contain the usual order level and individual 

trade information that is common to many modern microstructure databases, but importantly the 

data also provide anonymized information on the market members who submitted each order. 

Thus, we can track market members across time, across stocks, and across trading venues. This 

identity information can also be used to characterize those participants in terms of trading speed 

and technology. 

With these data we measure DCL by computing a trader’s voluntary cancellations of liquidity 

on one venue following execution of one of that trader’s similar orders on another venue. Then we 
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aggregate across traders, venues, and time to assess the overall size of DCL. We then regress DCL 

measures on a set of trader characteristics, venue characteristics, and exogenous variables to 

characterize the determinants of duplication. Last, we analyze the impact of DCL on the trading 

costs of slow and fast liquidity takers. 

We find that DCL is an important driver of order cancellation activity. To a first approximation, 

execution of one of the average participant’s limit orders on a particular venue, leads her to cancel 

a quantity equivalent to roughly 19% of the size of that trade on each venue where she has posted 

similar orders. When consolidating across all venues where the participant has posted limit orders, 

the average DCL rises to 59% of the initial traded quantity. High-frequency traders (HFTs) and 

traders acting as a principal rather than as an agent, have the largest measures of DCL. This 

supports the idea that DCL is generated, at least in part, by high-speed market-making strategies. 

We proceed to a Tobit analysis of the determinants of DCL, based on data measured at a 15-minute 

interval. We find that, in addition to the results above, liquidity suppliers are marginally less likely 

to duplicate orders when their inventory level is large. This leads us to reject the hypothesis that 

duplication is used as a tool for rebalancing extreme inventories. Instead, it appears that traders are 

more comfortable submitting orders to multiple venues when inventories are not excessive. More 

explicitly, this indicates that limit order traders implementing liquidity-supplying strategies are 

more likely to use DCL in the first phase of those strategies, i.e. when they build trading positions, 

rather than in the second phase, i.e. when they unwind them. We also find that when the prevalence 

of smart order routing is particularly large, it tends to reduce DCL. This result is in line with the 

intuition presented earlier and the likelihood of multiple executions when smart order routers are 

a significant factor in the market. 

Finally, we present an analysis of the implications of DCL, focusing on the DCL activity 

generated by HFTs. We examine whether the level of duplication impacts upon the execution 

costs, measured by effective spreads, that various trader groups pay. We find that DCL on primary 

venues leads to increases in slow trader and algo trader (AT) execution costs. The effect is 

economically and statistically small for slow traders, though. On the other hand, there is strong 

evidence that the DCL activity of HFTs reduces the trading costs of algo traders on alternative 

trading venues. Finally, DCL reduces HFT trading costs on all venues. We interpret this as 

implying that DCL forms an important part of HFT market-making strategies which allows their 

counter-parties access to greater liquidity on non-primary trading venues. 
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Overall, our results indicate that order duplication is used by fast trading firms employing cross-

venue market-making strategies in fragmented markets. This interpretation is supported by the 

results that duplication is more heavily used by those trading as principal, by those who 

predominantly supply liquidity and that duplication is employed when trader inventory levels are 

not excessive. Further support comes from the result that duplication is greater in more fragmented 

markets and that it is smaller when smart order routing is prevalent. Overall, order duplication 

contributes to the formation of liquidity on all venues, with greater benefits on alternative venues. 

Its incidence does, however, raise questions about the use of simple consolidated liquidity 

measures to assess market quality. Indeed, we find that higher DCL is associated with greater 

execution costs for less sophisticated traders. Yet the low economic significance of this effect as 

well as the limited cross-market scale of DCL - around 4% of total cross-market consolidated depth 

– means that this positive effect on execution costs is unlikely to be sufficiently great to challenge 

the benefits of fragmentation found in earlier work. 

The rest of the paper is structured as follows. Section 2 contains a brief overview of relevant 

literature. Section 3 is an introduction to our data. Section 4 presents our measurements of DCL. 

Section 5 gives a description of how we classify market participants using our data and provides 

DCL statistics by member category. Section 6 contains our analysis of the determinants of DCL. 

We examine the impact of DCL on trading costs in Section 7 and Section 8 provides some 

conclusions from our work. 

2. Literature review and research objectives 

We are interested in measuring and characterizing the determinants of Duplicated-then-

Canceled Liquidity (DCL). By DCL, we mean liquidity that is supplied to markets but which is 

not intended to execute in full. The strand of the literature which is closest to our focus is that 

which investigates order cancellations related to liquidity over-supply, both in a single market and 

in a multi-market setting. 

2.1. Literature on liquidity over-supply and order cancellations 

DCL may occur in a single consolidated market, with a trader submitting multiple buy or sell 

orders to different levels of an order book (in order to gain time priority), only one of which is 

intended to execute. Recent work has demonstrated that there may be over-supply of depth on a 

single venue, resulting from the imposition of time priority and variations of trading speed across 
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participants. Yueshen (2021), for example, argues that following changes in asset prices, there may 

be a race by fast traders to be the first-in-line at the new equilibrium price leading to a temporary 

spike in depth before traders realize their actual position in the queue and, through subsequent 

cancellations, depth normalizes. Baruch and Glosten (2013) show that flickering or fleeting quotes, 

i.e., quoting of limit orders and their quick cancellation, can be an equilibrium strategy in a trading 

game on one venue. Limit-order traders then manage their undercutting exposure by rapidly 

canceling their quotes and replacing them with new randomly chosen ones. This behavior is often 

associated with HFTs given their speed advantage.  

Blocher et al. (2016) identify clusters of extremely high and extremely low limit order 

cancellation activity using data on all the S&P 500 stocks for the calendar year of 2012. They find 

that cancel clusters largely appear to be generated by HFTs sparring with one another to get to the 

front of the limit order queue, rather than HFTs trapping unsuspecting investors into bad 

executions. Dahlström et al. (2024) investigate the economic rationale behind limit order 

cancellations from the perspective of liquidity suppliers. They show that changes in common 

values affect the value of a limit order depending upon the queue position, but HFTs behave in a 

similar way to other traders. These papers suggest that competition between fast traders on the 

same venue can lead to ‘excess’ depth in the short-run that is eliminated by cancellation activity. 

Dahlström et al. (2024) further show that trades at competing venues lead to significant 

cancellations at the primary venue; the economic significance of this force relative to other 

determinants of cancellations however is low. 

DCL may also arise due to fragmentation in trading across venues, and there lies our research 

interest. Traders who are connected to many competing trading venues can benefit by accessing 

the separate liquidity pools on those venues. Chen and Duffie (2021) show that market 

fragmentation reduces market depth on each exchange but leads to more aggressive overall order 

submission. Empirical research indicates a strong link between fragmentation and measured 

liquidity. Foucault and Menkveld (2008) show that, due to the absence of time priority across 

markets, consolidated depth is larger after the entry of a new order book. O’Hara and Ye (2011) 

find that, for U.S. stocks, spreads are tighter and price efficiency is higher with fragmentation. 

Degryse, de Jong and van Kervel (2015) find that lit fragmentation (i.e., fragmentation across pre-

trade transparent venues) in Dutch stocks has increased liquidity through reductions in bid-ask 

spreads and increases in depth across markets. Gresse (2017) employs data for stocks listed on the 
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London Stock Exchange (LSE) and Euronext and finds that lit fragmentation improves bid-ask 

spreads and depth across markets. We will add to this literature by showing that, in fragmented 

markets, individual traders place duplicate orders on several exchanges. This challenges the result 

that fragmentation leads to larger measured, consolidated liquidity as, with duplicated limit orders, 

measured and real liquidity may differ. 

In a multi-market setting where some liquidity suppliers have a latency advantage, a reasonable 

market-making strategy may involve the posting of duplicate limit orders on more than one venue, 

intending for only one of the orders to execute and (partially) canceling the duplicates once an 

execution occurs. The latency advantage enjoyed by these traders who run market-making 

strategies means that they face limited asymmetric information risk and that the risk of being over-

filled is small. It is this order duplication across venues that we define as DCL and which implies 

that measured, consolidated liquidity is larger than real liquidity. It is worth noting, though, that, 

to the extent that it makes inventory management easier for those operating market-making 

strategies, it is likely to improve real liquidity. 

Our work is also related to other papers modeling the behavior of investors when markets are 

fragmented. Baldauf and Mollner (2021), for example, model trading in fragmented markets where 

HFTs are liquidity providers or arbitrageurs, and other investors are liquidity demanders. 

Fragmentation has two effects. First, fragmentation intensifies competition on trading fees. 

Second, it creates an exposure channel as HFTs standing orders can now be sniped on several 

venues by other fast traders. Malinova and Park (2020) also study “sniping” behavior by 

investigating the reactions of market participants following trades that simultaneously hit standing 

orders on multiple markets. Employing proprietary, trader-level data covering multiple equity 

trading venues in Canada, they document aggressive market reactions following those multi-

market trades: fast traders initiate “follower-trades” on the same side of the market and market 

makers race to avoid trading against these “sniping” orders by canceling standing limit orders. Our 

paper contributes to this line of work by studying how the liquidity provision of traders with 

different speed on a venue is modified when their standing orders are executed on other venues.  

From this literature review, our research agenda has three steps: (1) build an empirical measure 

of DCL that best approximates the actual magnitude of DCL in today’s markets; (2) identify the 

factors determining DCL as well as the role of DCL in cross-venue market making; and (3) 
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measure the impact of DCL on the trading costs of liquidity takers. We now develop a set of 

hypotheses to guide the empirical work related to research goal (2). 

2.2. Testable hypotheses 

The fundamental idea underlying our analysis is that, when the order flow in a stock is 

fragmented across several order books, optimal market-making strategies will likely entail posting 

duplicated orders on multiple venues. In this scenario, cancellations associated with duplicated 

orders are frictions associated with this market making activity. 

To develop this idea, a basic high-speed market making strategy in an order book requires, first, 

the placing of limit orders on one side of the book (phase 1), and second, after execution of one of 

those orders, unwinding the position by placing limit orders on the other side (phase 2). Thus, one 

earns the bid-ask spread. It is valuable if the whole strategy is completed within a very short time 

interval so as to minimize risk and to enable repetition of the strategy as many times as possible 

within a day. Execution speed is thus key to maximizing the profits expected from such strategies. 

In fragmented markets, a trader operating a high-speed market-making strategy cannot know with 

certainty on which venue liquidity traders will appear first. Therefore, duplicating limit orders 

across books, with the intention to cancel residual orders as soon as the desired quantity is executed 

in one book (i.e., DCL), increases expected market-making profits by reducing both execution 

delays and non-execution risk. 

This improvement in execution speed and probability is effective if marketable orders actually 

arrive on several venues, i.e., if the order flow is sufficiently fragmented. Thus we expect DCL to 

increase with fragmentation (Hypothesis H1). 

The incentive to post duplicated orders and the resulting DCL is greater when other options to 

improve execution probability, such as competing on price, are not available. DCL should then be 

greater when the tick size is more likely to be a binding constraint on price competition (i.e., when 

a large tick size makes price undercutting expensive or impossible) and market making incentives 

to capture rents are greater (an argument similar to that in Yueshen, 2021). For that reason, we 

expect DCL to increase in the relative tick size (Hypothesis H2). 

As duplicated liquidity is a tool used to increase the profits of limit order traders in their market 

making activities, we expect frequent liquidity suppliers (Hypothesis H3) and traders acting as 

principal (Hypothesis H4) to post more DCL than otherwise similar traders. 
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The eagerness of a liquidity supplier to trade may also depend on her pre-trade inventory level. 

It is possible that a liquidity supplier might use DCL in an attempt to quickly reduce inventory 

when those inventory levels deviate significantly from the optimal level i.e. in the inventory 

management phase of market-making. An alternative view is that DCL is more extensively used 

when inventory is low and when posting duplicated liquidity carries little risk i.e. in the inventory 

building part of a market-making strategy. Ex ante, it is unclear which, if either, of these 

mechanisms might be employed. Thus, we can only hypothesize that the DCL posted by a market 

member is related to the deviation between her stock inventory and its normal level (Hypothesis 

H5) and the sign of the estimated inventory coefficient will tell us which of the preceding 

conjectures is consistent with the data.  

Fast traders are more likely to be actively making markets than slow traders through duplicated 

orders. To handle the possible friction of over-trading inherently linked to market making 

strategies (i.e., the risk of being executed at multiple locations such that total quantity traded 

exceeds desired quantity), we expect the DCL of a market member to increase with their trading 

speed advantage (Hypothesis H6). That is, we expect fast traders to exhibit greater DCL than slow 

traders. Their trading speed advantage also depends on the technology used by those they are 

trading against. In particular, the trading speed advantage they use for fast cancellations will not 

be effective if, on the other side of the market, sophisticated market order traders use SORs to hit 

limit orders on several platforms simultaneously as modeled in Chen and Duffie (2021).1 We thus 

posit that DCL decreases with the presence of SORs (Hypothesis H7). Finally, trading speed 

advantages are better exploited on platforms with lower latency, a feature shared by the alternative 

venues in our study as reported by Gresse (2014) and Menkveld (2013). This leads us to expect 

DCL to be greater on alternative platforms (Hypothesis H8). 

Testing those eight hypotheses allows us to identify several economic drivers of DCL, and thus 

to shed light on how cross-venue market-making strategies operate. Following this, the other major 

contribution of our work is to assess the impact of DCL on the execution costs of different groups 

of traders. 

 
1 Chen and Duffie (2021) show that market fragmentation leads to higher price efficiency as liquidity takers use SORs 
to tap liquidity at multiple venues at the same time. This highlights the limits of canceling at one venue following a 
trade at another venue. 
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3. Sample, data, and market organization 

We employ a proprietary dataset collected by ESMA and several National Competent 

Authorities for the month of May 2013. It consists of 91 stocks that are primary listed on the 

historically main exchanges of nine countries, these being Belgium, France, Germany, Ireland, 

Italy, the Netherlands, Portugal, Spain, and the United Kingdom. Those national exchanges will 

be referred to as “primary” exchanges and denoted PE in the empirical analysis.2 The dataset 

covers trading and quoting activity on the primary exchanges and on the three largest alternative 

exchanges on which the sample stocks were admitted for trading at that time, namely BATS, Chi-

X and Turquoise.3 These three venues will be referred to as “alternative” exchanges and denoted 

ALT in the rest of the paper. Together with the primary exchanges, they deal with the vast majority 

of trading activity for each stock.4 Bouveret et al. (2014) were the first to employ this dataset in 

their analysis of the extent of HFT in European stock markets. Further details on the construction 

and content of the dataset can be found there. 

All exchanges in our study are regulated under the Markets in Financial Instruments Directive 

(MiFID). Key provisions in MiFID include the abolition of trading concentration on main 

exchanges, pre-trade and post-trade transparency requirements for all trading venues, and best 

execution rules. A key difference between MiFID and Reg NMS in the U.S. is that MiFID defines 

best execution as not only a matter of the price of a trade, but also “costs, speed, likelihood of 

execution and settlement, size, nature or any other consideration relevant to the execution of the 

order” (Art. 21). While Rule 602b of Reg NMS obliges trading venues to execute orders at the best 

price or to re-route them to the venue quoting the best price to prevent trade-throughs, MiFID has 

softer requirements. Consequently, European exchanges do not route orders to each other, and 

order flow fragmentation might distort both time priority and, occasionally, price priority. 

In terms of market organization, all trading platforms considered in our study operate as open, 

transparent, and anonymous electronic order books on which buy and sell orders are continuously 

matched from the open to the close according to price/time priority rules. Primary exchanges 

commence and finish their trading sessions with call auctions while no call auctions are organized 

 
2 The primary exchanges are Euronext Amsterdam, Euronext Brussels, Euronext Lisbon, Euronext Paris, Deutsche 
Börse, Borsa Italiana, the London Stock Exchange, the Irish Stock Exchange, and the Spanish Stock Exchange. 
3 At the current date, Chi-X and BATS, renamed CXE and BXE respectively, are operated by CBOE Global Markets 
as a result of CBOE taking over Bats Global Markets in 2017. 
4 Some of the market operators running the trading venues considered in our study also run dark pools, but the trading 
activity of those dark pools is not included in our dataset. 
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on alternative venues either at the open or at the close. Further, alternative venues use a make/take 

fee structure that remunerates liquidity-providing orders and charges aggressive orders. 

The set of stocks in the dataset was built using a stratified sampling approach taking into 

consideration market capitalization, value traded, and fragmentation. For each country, stocks 

were split by quartiles according to their market value, value traded, and their level of 

fragmentation across venues, using December 2012 data. A random draw was performed to select 

stocks in each quartile. To account for the relative size of the markets, greater weight was put on 

larger countries, but at least five different stocks were selected from each country. This procedure 

yielded an original sample of 100 stocks from which nine stocks had to be excluded due to thin 

trading issues.5 As a result, we have only four stocks in two of our sample countries. The final 

sample includes stocks with very different features. The average daily value traded ranged from 

less than EUR 0.1mn to EUR 611mn. In terms of market capitalization, values ranged from EUR 

18mn to EUR 122bn. The breakdown of stocks per country and descriptive statistics for those 

stocks are provided in Table 1. 

Table 1 about here 

The entire dataset includes around 10.5 million trades and 456 million messages. Message types 

include transactions plus order entries, modifications, and cancellations. The unique feature of the 

dataset is that it contains information on the identity of the market participant behind each message 

allowing us (i) to follow a market participant across trading venues, and (ii) to categorize each 

participant as an HFT or non-HFT. There is also a capacity flag for each event which indicates 

whether the member in question is acting in a proprietary or agency capacity. We provide further 

details on the classification of members in Section 5. 

4. Assessing the level of Duplicated-then-Canceled Liquidity (DCL) 

Our definition of DCL above suggests an approach of measuring order duplication by 

identifying order cancellations on one venue in response to trades on another.6 However, van 

Kervel (2015) argues that one might also observe such cross-venue cancellations in response to 

 
5 Either those stocks were not traded over several days or they were not traded outside the primary exchange. 
6 This approach is used in ESMA (2016), who use the same data as we do to show that around 20% of all limit orders 
are duplicated, with the duplication strategy used more frequently by HFTs and for large cap stocks. They also show 
that following around 25% of all trades, the liquidity supplier cancels duplicate orders on other trading venues. We 
contributed to the development of the measures used in this ESMA report as independent experts. 
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trades on other venues, even in settings with no DCL (by our definition). He builds a model with 

multiple venues and in which HFT market-makers post quotes on all venues simultaneously. In 

the absence of any new information, those HFTs would be willing to trade at those quotes on all 

venues and would not choose, for example, to cancel or modify quotes on venue B in response to 

a trade on venue A. In this sense, those quotes reflect real depth and not duplicated orders. 

However, if there is asymmetric information then a trade on venue A will lead to quote updating 

through cancellations and modifications on all other venues. Again, this is not a result of order 

duplication, but it is rational updating of quotes in response to new information contained in the 

trade on venue A. Thus, one observes cross-venue cancels in a world without DCL. Employing 

data from the LSE and four competing exchanges, van Kervel (2015) finds that once a market 

order consumes liquidity on one venue, the depth available at other venues is reduced. Two 

takeaways from van Kervel’s work are that (1) it is important for us to account for asymmetric 

information effects if we want to understand cancellation activity; and (2) estimates of DCL simply 

based on cancellations, without tracking traders individually, would be biased as those 

cancellations might reflect the rational updating of dealers' quotes in response to information 

revealed by trades. Our research overcomes this identification challenge by following the same 

traders across venues. It is worth noting that previous research could not track individual traders 

across venues in their data.  

Subsection 4.1 describes the methodology we use to measure DCL and to aggregate it at 

different levels. Subsection 4.2 describes how we check whether the DCL we measure is genuine 

reduction in depth or whether it is immediately followed by re-supply of liquidity by the same 

trader on the same side of the market but at a different price point, thereby suggesting information-

based quote updating. In Subsection 4.3, we describe how we investigate whether DCL is 

immediately followed by liquidity provision by the same trader on the opposite side of the market, 

reflecting market-making activity. Subsection 4.4 then reports descriptive statistics regarding the 

previous steps. 

4.1. Measuring DCL 

Our DCL metric is based on the following simple intuition. Assume that a trader is posting limit 

sell orders, for example, on several venues simultaneously. Also assume that at a certain time the 

limit order they posted on the first venue is executed. If, after the execution of the order on the first 

venue, the trader’s limit orders on other venues are left in their respective order books, then those 
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orders constitute real liquidity. If, on the other hand, when the order on the first venue executes, 

the limit orders on other venues are swiftly canceled then those canceled orders represented DCL. 

As the simple example above makes clear, DCL has several dimensions. It is trader specific and 

it might be venue specific. Also, there are several parameters to be specified. How quickly does a 

trader’s order have to be canceled in response to the execution of another of that trader’s orders on 

a different venue to qualify as DCL? How similar does the canceled order have to be to the 

executed order to count as DCL? Any definition of DCL needs to be flexible enough to take 

account of all of the above. 

We begin with a specification of DCL as follows. Assume that, at time  a limit sell order 

posted by member m for stock i was executed on venue tv, the trade venue, and that member m 

had also posted a limit sell order for stock i on venue qv, the quote venue. Then the sell-side DCL 

posted by m on venue qv is measured by the following quantity: 

 
     

 
;

; ; ; ; ; ; ; ;

;

ask ask ask
tv qv qv qv

buy
qv

DCLQTY i m PREQTY i m POSTQTY i m

Volume i m
 

      

 
 (1) 

where  ; ;ask
qvPREQTY i m  is the total limit sell order quantity posted by trader m on venue qv at 

the last order book snapshot prior to the trade executed on venue tv and  ; ; ; ask
qvPOSTQTY i m  

is the total limit sell order quantity attributable to member m on venue qv at the order book snapshot 

that is exactly Δ seconds after the original snapshot. Thus, the first pair of terms on the right-hand 

side of the definition measures the reduction in quantity posted by trader m on venue qv over a 

small time window (i.e., Δ) around the time of the trade on venue tv. The final term on the right-

hand side consists of all executions against trader m’s limit sell orders on venue qv in that same 

window.  ;buy
qvVolume i m  is defined as the size of a market buy order, executing against one of 

market member m’s orders on venue qv for stock i at any time within the time window. Therefore, 

all that this definition does is to take the change in total quantity offered by trader m and deduct 

that part of the change that is due to execution activity. The remainder represents voluntary 

reduction in limit order provision on venue qv after the trade on venue tv and we count this as 

DCL. 

As order book snapshots have been built every 10 milliseconds in the database, the time interval 

over which we build this measure is always a multiple of 10ms. In our baseline specifications we 
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set the interval to be exactly 10ms but do some robustness analysis using longer windows.7 The 

fact that our order book data is on a 10ms sampling frequency and trades are sampled more 

frequently also means that there will be some noise in our DCL measure. Assume that we are 

measuring DCL over precisely a 10ms interval. A trade arriving just after an order book snapshot 

will see the majority of this 10ms interval coming after the trade, while a trade arriving just before 

an order book update will have most of the 10ms interval pre-trade. Thus, while in this example 

depth changes are always measured over a 10ms interval, there will be small variations across 

trades in the portion of that interval that comes before the trade and the portion that comes 

afterwards. 

In the definition above, depth measures  .ask
qvPREQTY  and  .ask

qvPOSTQTY  are quantities 

available in the order book of venue qv that lie in a range, specific to each stock, around the 

midquote. We set that range as follows. First we construct the time-series of differences between 

the third most competitively priced limit buy and limit sell orders from the consolidated order 

book. Then we compute the 90th percentile of the distribution of those differences. At each point 

where we compute DCL for a stock, that 90th percentile value is used to define a symmetric band 

centered on the current midquote and only orders that are inside this band are counted towards 

DCL. We have chosen the width of the band to ensure that our DCL measure captures a majority 

of order activity, focusing on cancellations of orders with prices close to the execution price on tv, 

while excluding orders that lie a long way from the stock’s midquote.  

The baseline DCL measure above, expressed in number of shares, is trader, trade time, stock, 

venue, and side specific, and we want to aggregate these data so that they can be compared across 

stocks and times. To make the data comparable across stocks, and to aggregate up to the daily 

level, we use two relative measures of DCL which we define precisely below: (1) a DCL measure 

that scales by trade size and (2) a DCL measure that scales by depth. These two different scalings 

of DCL allow us to focus on different research questions. We consider DCL scaled by trade size 

to be appropriate for assessing how DCL is used by members in their individual trading strategies, 

particularly for members who actively supply liquidity in multiple markets. For that reason, it will 

be our main variable of interest in our investigation of DCL determinants. DCL scaled by depth is 

 
7 Other time intervals considered are 20ms, 50ms, and 100ms. There are all below human reaction time. 
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of greater interest for assessing the overall cross-market magnitude of DCL, and it will be our main 

variable of interest when measuring the impact of DCL on trading costs at the market-wide level. 

4.1.1. DCL relative to trade size 

Our first approach to scale DCL is to divide it by the size of the original trade on venue tv. This 

allows us to ask, for example, if a trade on one venue leads to the removal of a similarly sized 

order on another venue. We therefore construct, in the following equation, a DCL measure where 

the numerator aggregates DCL quantities for a given day, a given stock, a given member, and a 

given quote venue, and the denominator of the computation aggregates the sizes of the trades of a 

given trade venue, which triggered the DCL measurements appearing at the numerator: 

  
   

   

1 1

1 1

; ; ; ; ; ;
; ; ;

; ; ; ;
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 
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tv qv S B
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tv s tv b
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DCLQTY i m DCLQTY i m
DCL i d m

TradeSize i m TradeSize i m

   


 
. (2) 

In Equation (2),  ; ; ;bid
tv qv sDCLQTY i m   and  ; ; ;ask

tv qv sDCLQTY i m   are DCL quantities 

computed as in Equation (1);  ; ;sell
tv sTradeSize i m    ; ;buy

tv bTradeSize i m  is the size of the sth 

sell trade (bth buy trade) executed against a bid (ask) limit order of member m on venue tv at time 

s  ( b ), and which triggered the measurement of  ; ; ;bid
tv qv sDCLQTY i m   

  ; ; ;ask
tv qv sDCLQTY i m   on venue qv on day d for stock i; s  and b  denote the respective 

times of the sth sell trade and the bth buy trade on venue tv, which triggered a DCL measurement 

for member m, on venue qv, on day d, for stock i, while tv
dS  and tv

dB  are the respective total 

numbers of those trades. All other items of notation are similar to those used in Equation (1). 

4.1.2. DCL relative to depth 

Alternatively, we scale DCL by pre-trade quantities displayed in the book in order to estimate, 

at market level, the fraction of depth which is duplicated and likely to be swiftly canceled following 

executions of duplicates on another venue. To that end, we construct an alternative DCL measure 

where, in the denominator of the computation, we replace the size of the trade that triggered the 

DCL measurement with the pre-trade depth contributed by member m on venue qv, as in the 

following equation: 
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

 
. (3) 

On the right-hand side of Equation (3),  .tv qvDCLQTY   and  .qvPREQTY  are summed for all 

trades within a given day to give aggregated DCL for member m on venue qv in response to 

executions on venue tv on day d for stock i. All items of notation are similar to those used in 

Equations (1) and (2). 

4.2. Measuring order book refilling in the 10ms immediately after duplicated order cancellations 

One may argue that our DCL measure is not necessarily capturing the cancellation of duplicated 

limit orders that traders have posted to optimize execution probabilities, but that it could reflect 

quote updates in reaction to information contained in trades on other venues. If these quote updates 

are due to orders being re-priced, we should observe order cancellations8 and then swift 

resubmissions at different prices but for roughly the same quantity in the quote venue’s order book. 

No such resubmissions should occur in the case of genuine DCL. Thus, to distinguish DCL from 

quote updating, we compute a book refill rate for the 10ms after the time window over which DCL 

is measured. For a given member whose order cancellation has contributed to our DCL calculation, 

this refill rate equals the liquidity added by that same member on the same venue where DCL is 

being measured.9 To be explicit about the calculation of the refill rate, let us return to the example 

we used when discussing the DCL calculation in Equation (1). At time t, a limit sell order 

submitted by member m is executed on venue tv for stock i. At the same time, m also has limit sell 

orders posted on venue qv for stock i. We measure the sell-side DCL of m on venue qv by looking 

at her cancellations inside a 10ms time window that starts at the closest 10ms timestamp preceding 

trade time . The refill rate is calculated over the next 10ms window in the following way: 

 
8 As market makers’ posted price schedules are supposed to be regret-free, such information-induced cancellations 
would be caused by trades against other members than the one for which we measure DCL. 
9 Order submissions are only counted towards the refill quantity if they are submitted within a certain distance of the 
midquote. This distance is the same as that defined above for the DCL computation and the midquote we use is that 
observed at the end of the DCL measurement window.  
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Refill  10 ; ; ask
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where  10 ; ;ask
qvPREQTY ms i m  is the total limit sell order quantity posted by trader m on venue 

qv at the first 10ms order book snapshot following trade time  (on venue tv) and 

 10 ; ;ask
qvPOSTQTY ms i m  is the total limit sell order quantity posted by member m on that 

same venue 10ms later.  
10

;
 
 buy

qv
ms

Volume i m  consists of all executions against trader m’s limit 

sell orders on qv in that same 10ms window starting after the initial trade. When the volume 

measure is added to the difference in quantities, it yields the amount of liquidity that member m 

has added to the quote venue book immediately after the duplicated order cancellations. This is 

then expressed as a percentage of the 10ms DCL measured for the same trade and the same member 

m on the quote venue. A positive refill rate indicates that members refill the book after canceling 

orders whereas a negative refill rate indicates that the members continued canceling liquidity after 

the end of the DCL window. Those refill rates are computed for all trades which generated positive 

DCL and are then averaged across time, members, and stocks, by countries, platforms, stock 

terciles, and member categories. 

4.3. Measuring opposite-side liquidity provision in the 10ms immediately after duplicated order 

cancellations 

In the same spirit, we look at whether DCL is followed by liquidity provision by the same 

member m over the next 10ms, on the same venue qv but on the opposite side of the market. We 

do so to check whether DCL could signal the turning point of a market-making strategy. In other 

words, the cancellations that underlie the DCL measurement might occur when the trader stops 

providing liquidity on one side and switches to the other side of the market. Returning to the 

example used to illustrate Equations (1) and (3), after measuring sell-side DCL by member m on 

venue qv over a given 10ms time window, we build a measure of liquidity provision by the same 

member m on the buy side of venue qv over the next 10ms window as follows: 
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where LiqProv  10 ; ; bid
tv qv ms i m  is the depth added by member m on the bid-side of qv in the 

10ms following the cancellation of duplicated limit orders on the ask side for a quantity of 

 ;10 ; ;ask
tv qvDCLQTY ms i m . The measure is then expressed as a percentage of 

 ;10 ; ;ask
tv qvDCLQTY ms i m . We refer to this measure as the opposite-side liquidity provision 

rate. Opposite-side liquidity provision rates are computed for all trades which generated positive 

DCL and are then averaged across time, members and stocks, by countries, platforms, and pairs of 

platforms. 

4.4. Descriptive statistics for DCL 

We present several descriptive statistics to assess the magnitude of DCL at the consolidated 

market level, and to understand whether this magnitude differs across stocks and trading venues. 

Those statistics are established for both DCL scaled by trade size and DCL scaled by depth, by 

averaging the measures of Equations (2) and (3) across stocks, members, pairs of venues, and 

venues, according to the following steps. 

Step 1. We aggregate DCL across members for a given stock, on a given day, for a given pair 

of venues. While this step is relatively straightforward for DCL as a fraction of trade size, for an 

aggregation of DCL as a fraction of depth across members on a given day for a given stock, we 

construct a weighted average DCL, where the weight for member m is equal to the average 

contribution of that member to the depth of stock i on the quote venue considered (qv) over the 

day considered. 

Step 2. We compute monthly averages of daily mean DCL for each stock and each pair of 

venues. 

Step 3. We compute cross-stock averages of DCL per pair of venues. For each pair of venues, 

this average reflects the mean level of DCL on the quote venue (qv) observed due to executions 

on the trade venue (tv). 
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Step 4. We compute a single number to summarize the scale of the DCL issue on a single venue. 

This entails averaging across trade venues to focus on a single quote venue. The weight used in 

this averaging for venue tv is equal to the total volume executed on tv over the sample divided by 

the sum of the volumes on all three trade venues. 

Step 5. We conduct a last aggregation of DCL across venues at the consolidated market level. 

Table 2 about here 

Table 2 presents the average of DCL as a percentage of trade size for DCL measurements within 

four different time windows ranging from 10ms to 100ms.10 Those figures measure how many 

shares a passive trader cancels on one venue, on average, after being executed for 100 shares on 

another venue. Panel A reports DCL means across all stocks, all member categories, and all trading 

venues. Panel B reports DCL mean levels by platform, by taking, for a given quote venue (where 

DCL is measured) the average DCL weighted across the trades that trigger our measurements. 

Panel C breaks down DCL by pairs of venues. The first column of the table gives the name of the 

venue where DCL is being measured (the quote venue) and the second column gives the name of 

the venue where the trade that triggers the measurement occurred (the trade venue). For example, 

a trade of 100 shares on Chi-X leads the passive trader of that trade to cancel outstanding limit 

orders on the primary exchange, for a quantity of nearly 23 shares on average, within a 10ms 

window. 

According to Table 2, at the 10ms horizon the average level of DCL as a proportion of trade 

size is 19% on average across all stocks, but reaches more than 30% in some cases. Thus, for 

example, after a trade on Turquoise, one subsequently sees nearly 31% of the trade quantity 

canceled on BATS by the same trader. The difference across venues in average DCL as a fraction 

of trade size is fairly small with, if anything, DCL being larger on the primary exchange. Looking 

at pairwise average DCL levels, it is clear that DCL is at its lowest level on alternative venues 

(between 13% and 17%) when the triggering trade occurs on the primary exchange, while DCL 

reaches its highest (around 30%) on BATS and Chi-X when the triggering trade is on a different 

alternative venue. 

 
10 For the statistics in Table 2, aggregated DCL is scaled by the trading activity corresponding to all the trades that 
triggered a DCL computation for a given member on a given trade venue on a given day. For simplicity, this trading 
activity is referred to as trade size and it should not be confused with the total trading volume of a given day on a 
given platform. 
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DCL means established at longer horizons, although slightly increasing with the length of the 

time window, remain similar in magnitude (21% at the 100ms horizon across all stocks). With 

regard to the differences between platforms and pairs of platforms, the same patterns are observed 

for all time windows. 

Table 3 about here 

Table 3 has the same structure as Table 2, except that it reports figures based on DCL as a 

fraction of pre-trade depth rather than trade sizes. It also includes figures on liquidity re-supply 

after cancellations of duplicated orders (i.e. order book refills). The DCL mean percentages of 

Panel A give a sense of the fraction of liquidity supplied to the consolidated market that is likely 

to disappear from one venue because of the execution of a duplicated limit order on another venue. 

According to those figures, the average level of DCL stands at 4.04% of the depth displayed in the 

consolidated market, a level that does not change much as one moves from a 10ms DCL 

measurement window to a 100ms window. Further, Panel A shows that the average refill rate for 

all stocks combined is negative. This suggests that our DCL measure is not contaminated by 

cancellations due to members repricing orders in response to trades on other venues. In contrast, 

the relatively low but strictly positive value of the opposite-side liquidity provision rate indicates 

that if any liquidity re-supply follows DCL, it rather happens on the other side of the market, 

suggesting that DCL could be related to the practice of cross-venue market making strategies. 

Panel B, which reports DCL by platform, shows that DCL is much smaller on primary 

exchanges than on the three alternative venues. When we break down DCL by pairs of venues in 

Panel C, we find that the proportion of limit order volume that is removed by the same member on 

another platform ranges from roughly 2% to almost 9%. The highest levels of DCL are observed 

for pairs of alternative venues where the quote venue is BATS and the trade venue is either Chi-X 

or Turquoise. As in Panel A, the average value of the refill rate is negative for almost all pairs of 

platforms, while the average opposite-side liquidity provision rates by pairs of platforms are all 

positive. Pairs of alternative venues, more specifically those involving Chi-X, exhibit the highest 

opposite-side liquidity provision rates. This again suggests that DCL plays a role in cross-venue 

market making strategies, especially on alternative venues. 

We have also computed the same measures as in Tables 2 and 3, but for a modified DCL 

measure. The DCL metric that we have worked with thus far, i.e., Equation (1), subtracts the 
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aggregate quantity traded in the interval from the difference between pre and post-trade liquidity 

outstanding, so as not to include involuntary reductions in liquidity associated with trades in the 

DCL measure. However, some of these trades may have been executions of genuine duplicated 

orders by counterparties with fast smart-order routing technology (i.e., by agents whose technology 

is fast enough to allow them to hit duplicate orders on multiple venues before the liquidity suppliers 

can remove them). Thus, our DCL measure represents a lower bound on true duplicated liquidity. 

To provide an upper bound, we also compute summary statistics for a DCL measure which is just 

the change in liquidity pre-trade to post-trade. This modified measure implicitly assumes that all 

executions against this member and in this stock in the interval were of duplicated limit orders. 

The adjustment roughly doubles the level of DCL measured as a fraction of outstanding liquidity 

from just over 4% (measured across all stocks) to almost 9%. On some markets and some venues, 

DCL reaches 15%. Thus, factoring volume executed on the quote venue into the DCL definition 

significantly increases the magnitude of DCL. Performing the same adjustment to our DCL 

measure based on trade size leads to statistics in which DCL rises from roughly 19% to 24%. Thus, 

there is an increase here too, but proportionately less big.11  

Table 4 about here 

Returning to the original DCL measure, we proceed to investigate the variation of DCL with 

stocks’ activity levels. Table 4 displays the average level of DCL by market value tercile, volatility 

tercile, and market fragmentation tercile. These levels are again expressed as a percentage of both 

trade size and depth. For each scaling factor, Table 4 provides two columns: one reporting the 

average DCL observed on a single quote venue as in Equations (2) and (3), and another reporting 

average DCL aggregated across all possible quote venues. 

Regarding our original DCL measures, which focus on a single quote venue at a time, 

differences in DCL expressed as a fraction of depth are in general not very large, but there is a 

tendency for DCL to rise with market capitalization. This tendency is much clearer when DCL is 

measured relative to trade size. The table also demonstrates that DCL is negatively related to 

volatility in a stock, likely because when volatility is high, a market-making strategy which leaves 

multiple orders exposed on various venues is very costly. Finally, as one would expect, the last 

 
11 Tables of summary statistics for the adjusted DCL measures, identical in structure to Tables 2 and 3, are available 
on request from the authors. 
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panel of Table 4 shows that DCL is larger on average for stocks with more fragmented trading. 

Presumably, when volume is dispersed across venues, liquidity suppliers find it profitable to 

provide consistent liquidity across those venues through order duplication.  

ESMA (2016) find that the cross-stock covariances of order duplication intensity with market 

cap, volatility, and fragmentation have the same sign as the covariances between our DCL measure 

and those variables. They also find that the likelihood of duplicate orders being canceled also tends 

to rise with market cap and fragmentation. Thus, their results and ours are consistent. 

In addition, to dig further, we also take an aggregate perspective and focus on the evolution of 

a member’s consolidated depth across all venues around a trade. In particular, we study how a 

member’s offering of market depth across all venues (i.e., all their outstanding limit orders on the 

relevant side of the market across all venues) evolves in the time window before (i.e, at ) to after 

(i.e., to +10ms) the trade taking place on a particular trade venue. We again scale this difference 

in depth either by a member’s pre-event consolidated depth, or by the size of the trade, and we 

control for trades against our member in the event window. Averages of this consolidated DCL 

are reported in the “consolidated book” columns of Table 4. We find that, on average, the liquidity 

withdrawn from all books immediately after a trade equals 6.62% of a member’s consolidated 

depth and 59.09% of trade size. Since these numbers are larger than our single-venue DCL 

measures (4.04% and 18.89%, respectively), we find that members are not shifting limit orders 

from the quote venue to the trade venue. Instead, further liquidity is being withdrawn from all 

venues. The consolidated DCL as a fraction of trade size is, on average, three times greater than 

the single-venue DCL across all cases considered in Table 4. This indicates that DCL as a 

percentage of traded quantities is expected to increase with the number of venues available for 

order duplication. 

Finally, we build on subsection 4.2 and study whether orders that are canceled in the 

consolidated order book are refilled within the 10ms following the time window over which DCL 

is measured (i.e., we analyze the “refill rate”). On average, we find a negative refill rate of -2.84% 

of the globally canceled liquidity of that member, indicating that members continued canceling 

liquidity in the 10ms after the trade interval. 

4.5 Alternative explanation: Is DCL really canceled? 

In this subsection, we discuss and rule out a possible alternative explanation for the magnitude 

of DCL. One possibility is that members move their orders from the quote venue to the “venue 
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where the action takes place”, i.e., the trade venue, in order to increase their execution probability. 

In that event, what we call duplicated-then-canceled liquidity would simply reflect a reshuffling 

of liquidity towards the trade venue. To study this alternative explanation, we first check whether 

orders canceled on the quote venue (DCL) are swiftly resubmitted on the trade venue in the same 

and the next 10ms windows. According to our observations this is not the case. On average, across 

all stocks, 15.6% of the DCL measured on the quote venue is also canceled by the same member 

on the trade venue and refill rates on the trade venue in the next 10ms are close to zero. 

5. Market member classification and DCL level by member category 

The ESMA dataset contains all market members active on each trading venue during May 2013. 

There are 388 members in total for our 91 sample stocks. For each message in the dataset, those 

market participants are identified by anonymized member IDs at several levels of granularity. First, 

each account for a particular member on a given venue is identified by a specific ID, which we 

call the Unique ID. Second, all accounts of a given member on a given venue are identified with a 

common venue-specific ID, designated as the Account ID. Last, if a market participant is a member 

of several venues, all the accounts of that member are identified on all venues with a common 

cross-venue ID, designated as the Group ID. This Group ID allows us to follow a market 

participant across venues. In addition, the dataset provides information about member capacities. 

For each message, a flag indicates whether the member submitted the message as principal or 

agent. 

From there, we establish and use three member classifications: (1) a slow/fast trader 

classification based on the HFT identification strategy established by ESMA, (2) a distinction 

between local members, that is members acting on a single venue, and global members, that is 

members trading across venues, and (3) a liquidity supplier/taker distinction. 

5.1. Slow/fast trader identification 

According to MiFID II (cf. Article 4(1)(40)), an HFT technique is “an algorithmic trading 

technique characterized by: (a) infrastructure intended to minimize network and other types of 

latencies, including at least one of the following facilities for algorithmic order entry: co-location, 

proximity hosting or high-speed direct electronic access; (b) system-determination of order 

initiation, generation, routing or execution without human intervention for individual trades or 

orders; and (c) high message intraday rates which constitute orders, quotes or cancellations”. As 
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HFT is a rather recent phenomenon, definitions are still evolving and the academic literature adopts 

a variety of methods to classify market participants as HFTs or non-HFTs, but none of them is 

perfect. 

Two main approaches are often used and sometimes combined. First, firms may be classified 

as either HFT or non-HFT based on public information about their primary business and the types 

of algorithms or services they use. This approach will be referred to as the direct approach. Second, 

an analysis of firms’ trading strategies (e.g., order placement and cancellation) can also allow a 

researcher to identify HFTs and we refer to this as the indirect approach. HFT strategies are often 

characterized by a very short order lifetime (Hasbrouck and Saar, 2013), a high order-to-trade ratio 

(Hendershott et al., 2011), and an inventory management policy that leads to traders carrying no 

significant positions over-night (Jovanovic and Menkveld, 2016; Kirilenko et al., 2016). In the 

search for a more precise HFT classification, these criteria are sometimes combined. For example, 

Brogaard et al. (2014) and Carrion (2013) use a dataset from Nasdaq and where Nasdaq defined a 

firm as an HFT based on both the quantitative properties of that firm’s order submissions and 

trading behavior and on more general information on the firm’s business model.  

Our approach to categorizing firms by speed consists of two steps. First, we identify a set of 

fast traders using the indirect approach of Bouveret et al. (2014) based on the lifetime of orders.12  

Bouveret et al. (2014) use the same data as we do and they classify members as fast traders if 

the 10% quickest order modifications and cancellations in a given stock occur no more than 100ms 

after the initial submission.13 Such a criterion indicates that the member under consideration 

possesses fast trading technology even if they do not use it at all times. We follow Bouveret et al. 

(2014) in choosing a fast trader identification based on the lifetime of orders because our main 

concern is trading speed, regardless of trading strategy. Criteria based on inventory management 

may identify fast traders implementing market-making strategies but not necessarily other fast 

traders. An identification based on order-to-trade ratios could also be biased as slow traders with 

very few trades could be wrongly identified as fast. It is worth noting that Bouveret et al. (2014) 

find that just over 40% of value traded is done by fast traders using this approach.14 

 
12 We contributed to the preparation of this report as independent experts. 
13 100ms is clearly below human reaction time. For purposes of comparison, the average duration for a single blink of 
a human eye is 0.1 to 0.4 seconds, or 100 to 400 milliseconds, according to the Harvard Database of Useful Biological 
Numbers. 
14 They also do some robustness checks, varying the 100ms threshold, and show that, while fast trading intensity and 
the threshold are obviously positively related, the slope of the relationship is fairly flat between 50ms and 250ms. 
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The fast trader flag is established by Group ID, separately by capacity (agent or principal), and 

separately by stock. Therefore, a member may be a fast trader for some stocks and not for others, 

and, for a given stock, a member may be defined as a fast trader when trading as principal but not 

when trading as agent. However, if a given market participant is flagged as a fast trader for their 

proprietary activity in stock i on venue v, they will be flagged the same way for proprietary activity 

on the other trading venues. 

Second, we subdivide the population of fast traders into two distinct groups, HFTs and other 

algorithmic traders. This second step to the identification process, based on the direct approach of 

Bouveret et al. (2014), results in a list of 21 HFT firms. This list is built using firms’ websites and 

the financial press to identify each firm’s primary business, the use of services to minimize latency, 

and membership of the European Principal Trader Association. Any fast-trading firm that is on 

this list and is trading as principal is defined as an HFT.  

We then define algorithmic traders (ATs) as the residual subset of fast traders who are not 

identified as HFTs. These firms are essentially investment banks. In common usage, algorithmic 

trading is any type of computer-based trading including HFT. In our paper, for clarity, ATs and 

HFTs are two non-overlapping groups of fast traders.  

5.2. Global/local member identification 

Not all market participants are active on multiple venues during our sample period. Of the 388, 

307 trade on only one venue while 81 trade on multiple platforms. The distinction between 

members trading at several locations, hereafter called global members, and members trading in a 

single market, hereafter referred to as local members, is instrumental to our study as DCL is 

defined as a consequence of multi-market trading strategies. We therefore classify global members 

as market participants who trade on at least two markets and execute more than 10% of their 

trading volume away from their main trading venue. Any member trading more than 90% of their 

volume in one market is classified as a local member. This classification is established by Group 

ID, capacity, and stock. 

5.3. Liquidity supplier/taker identification 

Duplicated limit orders are the outcome of trading strategies in which liquidity is offered at 

several locations in order to minimize non-execution risk or, equivalently, to capture fragmented 

market order flow. As such, DCL is expected to be mainly generated by traders implementing 

market making strategies. For that reason, it seems relevant to distinguish members who are mainly 
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passive in their trading strategies from those who are mainly active. The former will be referred to 

as liquidity suppliers (LS) and the latter will be referred to as liquidity takers (LT). A member is 

considered an LS (LT) if she is the passive (active) counterpart in more than 50% of her total 

consolidated trading volume when trading as principal. Finally, it is important to note that any 

member who is trading as agent is always considered a LT, as agents are executing position 

changes on behalf of clients rather than taking the other side of public orders and thus seeing their 

own account affected. This classification is again established by member, by capacity, and on a 

stock-by-stock basis. 

5.4. Member combined classification 

A particular member in our data may engage in both principal and agency trading. Where a 

member in a given stock engages in both, these activities are separated in the dataset via the 

previously mentioned capacity flag, resulting in distinct member/capacity pairings for that member 

and that stock. While Bouveret et al. (2014) argue that the capacity flag cannot be used without 

difficulty to identify HFTs when using a direct approach and looking across stocks, the capacity 

flag can still be used for analysis at the stock level. The AT, HFT, global, and liquidity supplier 

flags are then assigned to each member/capacity pairing, on a stock-by-stock basis. As a result, the 

classification applied to our 388 members produces 8,568 triplets of member×capacity×stock 

combinations. Further, for the sake of simplicity, in the remainder of the paper, when we use the 

term ‘member’ ‘or trader’, we mean a member/capacity pairing. 

The scheme described above generates 16 categories of traders. These are presented in Table 5, 

along with the number of member×capacity×stock combinations that falls into each category plus 

their market shares in trading. Note that there are 16, not 24, categories as those trading as agents 

are never classified either as liquidity suppliers or as HFTs. 

Table 5 about here 

Based on the "Number of member/stock combinations" column in Table 5, the largest 

subgroups (3,259 out of the total 8,568 combinations) correspond to slow local liquidity takers 

acting as agents, representing 38.04% of the member×capacity×stock combinations. The slow 

local liquidity takers acting as principals account for 14.48% (1,241 combinations). Fast traders 

(ATs and HFTs) collectively represent 20.28% of the combinations. Global traders, including both 

slow traders and ATs/HFTs, account for 34.48% of the combinations. Lastly, liquidity suppliers, 
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whether slow or fast, make up 18.83% of the total combinations, with 5.18% attributed to fast 

global liquidity suppliers, evenly split between ATs and HFTs. 

In terms of trading volume (see Table 5, "% in trading volume - Total" column), ATs and HFTs 

account for 22.98% and 22.21% of the total traded value, respectively. These percentages are 

calculated by summing the values shown in the "% in trading volume" column for the rows 

corresponding to ATs or HFTs. Trading volume from members acting as principals makes up 

73.99% of the total volume, equally distributed between slow and fast traders. Global traders 

account for 72.81% of the total traded volume, while liquidity suppliers capture 25.47% of the 

total traded value, distributed across the "slow", "AT", and "HFT" categories. 

5.5. Market fragmentation level and investor clientele segmentation 

In terms of trading volume distribution, as reported in Table 5, 64.35% of the total volume is 

traded on primary exchanges, and Chi-X is the main alternative venue with a volume share of 

20.91%. All platforms except BATS have venue-specific local traders. Of our 388 market 

members, 307 trade on only one venue, with 297 trading only on the primary exchange, eight 

trading only on Chi-X and two only on Turquoise. Those 307 single-market players represent about 

18% of total trading volume in our dataset. Most of them typically trade only a few stocks, but 11 

of the 307 are in the top 10% of market participants by activity. Those figures indicate that the 

market architecture is substantially fragmented, with more than a third of lit trading volumes 

executed outside primary exchanges, and with single-venue trading occurring on every venue. 

However, this level of fragmentation is less than that observed in U.S. stock markets, where the 

share of primary exchanges is less than 40%. The fragmentation level in our data, which is 

intermediate between consolidation and total fragmentation, is referred to as market segmentation 

in Harris (1993). 

In segmented markets, global traders in general, and global liquidity suppliers in particular, who 

respectively represent 72.81% and 23.50% of the total traded volume in our sample, play a crucial 

role in partially reconsolidating the order flow and synchronizing prices. Among our 388 market 

members, 81 members trade on multiple platforms: 39 trade on all four platforms, 17 trade on three 

platforms only, and 25 trade on two platforms only. The 39 market participants trading on all 

venues account for about 71% of all trading volume. 20 of the 39 are in the top 10% of market 

participants as measured by total trading activity. 
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The statistics of Table 5 also show that primary exchanges and alternative venues attract 

different trader clienteles. First, fast traders are much more active on alternative venues. The 

relative weight of ATs and HFTs is greater on BATS, Chi-X, and Turquoise, where their respective 

volume shares are 26.40% and 32.47%, versus 21.09% and 16.53% on primary exchanges. BATS 

and Chi-X have the highest shares of volume traded by HFTs (respectively 34.83% and 33.40%) 

while Turquoise has the highest share of volume traded by ATs (34.14%). Second, the weight of 

global traders is greater on alternative platforms, where they account for 96.02% of the volumes. 

On the contrary, primary exchanges have the highest level of local trading volumes (25.77% versus 

4.90% on Chi-X and 3.52% on Turquoise). Third, liquidity suppliers are more active on alternative 

venues, where they trade 37.45% of the volume. 

In markets segmented both in terms of order flow and trader type, understanding to what extent 

and how duplicated limit orders are used in liquidity providing strategies is of great interest. On 

the one hand, the swift cancellation of duplicates may adversely impact the execution costs of 

some traders, but on the other hand, limit orders duplicated across venues may be a source of 

liquidity for the local traders of all venues. 

5.6. DCL level by member category 

It is important to understand whether DCL is mainly due to some categories of members. Table 

6 decomposes average DCL by members according to their trading scope (local trader and global 

trader) and trading aggressiveness (liquidity taker and liquidity supplier). We further distinguish 

according to their trading speed (Slow, AT, and HFT) and their capacity (Agent or Principal). The 

most interesting differences arise in two cases: (1) when comparing traders by speed and (2) when 

comparing members acting as principal with those acting as agents for their clients. 

Table 6 about here 

When comparing traders by speed, as we would expect, the average DCL for HFTs is, at 5.75% 

of their total pre-trade depth, about 1.5 times the average DCL associated with algo traders (AT) 

which is, in turn, around 1.4 times the DCL from slow traders. Thus, HFT trading strategies involve 

greater duplicated liquidity. ESMA (2016) report a similar finding for their direct analysis of order 

duplication. 
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When comparing members by trading capacity, DCL is typically higher when members are 

acting as principal rather than agent. Again, this supports the intuition that DCL activity is related 

to market-making strategies. 

Let us recall that the starting point of a DCL calculation is a trade on a given venue. At the time 

of the trade, the passive counterparty may or may not have duplicated limit orders on the venue 

where DCL is measured. For that reason, we also provide, in Table 6, the percentage of trades for 

which there is order duplication on the quote venue. By definition, this percentage is extremely 

low for local traders (3.31%), but in those few cases where they duplicate orders, the average value 

of their DCL is more than half of that of global traders. Another striking case is that of members 

trading as agent. They duplicate limit orders far less often than members trading as principal 

(16.78% vs. 51.23%), but when they do so, their level of DCL reaches one half of that of members 

trading as principal. 

The fact that, on average, DCL differs systematically across member categories suggests that it 

may be important to control for such categories in our multivariate analysis. 

6. Determinants of DCL 

In this section we set out to identify the determinants of DCL by testing the hypotheses 

developed at Subsection 2.2. As a reminder, those hypotheses posit that: (H1) DCL increases with 

fragmentation; (H2) DCL increases in the relative tick size; (H3) frequent liquidity suppliers and 

(H4) traders acting as principal post more DCL; (H5) the DCL of a given member is related to the 

deviation of her inventory from its normal level, and (H6) with her trading speed advantage; (H7) 

DCL decreases with the presence of SORs; (H8) DCL is greater on alternative platforms. We test 

those eight hypotheses by conducting a panel regression analysis of data measuring the DCL of 

global members on a set of control variables. We aggregate data to a 15-minute sampling frequency 

before running the regressions. We then refine the analysis by analyzing data for specific sub-

populations of the set of global members. We finish by providing evidence that DCL is not the 

result of shifts in liquidity by the same member from the quote venue towards the trade venue. We 

do so by computing the added liquidity on the trade venue as well as a DCL consolidated across 

platforms. 
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6.1. Determinants of global members’ DCL 

The left-hand side variable in our regression analysis is the stock, time and member-specific 

DCL measure scaled by trade size defined by Equation (2) and we compute this measure for time 

intervals ranging from 10ms to 100ms. As mentioned above, for this analysis we have aggregated 

DCL to a 15-minute sampling frequency. 

Our regression model is 
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 ; ; ;
tradesize
tv qvDCL t i t m  is the aggregated DCL on venue qv resulting from a trade on venue tv, for 

stock i, in 15-minute period t, and for member-capacity m. It is expressed as a percentage of the 

size of the triggering trade. As suggested by the hypotheses above, our key explanatory variables 

of interest are the fragmentation level in the stock, the relative tick size, member characteristics, 

the presence of SORs, and the characteristics of the trading platforms. We control for the DCL of 

other members, the usual determinants of liquidity (including volume, volatility, and price level), 

as well as some order flow characteristics, namely trade imbalance and trade size. We further 

include stock -fixed effects and intraday time fixed effects identifying each 15-minute period of 

the trading session. 

FRAGi,t, the degree of fragmentation of stock i in period t, is the reciprocal of a Herfindahl-

Hirschman index based on the market shares in volume of the four trading platforms.15 TICKi,t is 

the tick size of stock i divided by the closing price of the day.  

The market member characteristics consist of four dummy variables, HFTi,m, ATi,m, AGENTi,m, 

and LSi,m, identifying HFTs, ATs, those trading as agent and liquidity suppliers respectively. The 

inventory variable INVi,t-1,m is the absolute value of the member’s inventory over the preceding 15 

 
15 This type of measure is commonly used in the literature on market fragmentation (see Degryse et al., (2015) and 
Gresse (2017)). In terms of interpretation, our FRAG index ranges from one to four, one indicating no fragmentation, 
or in other words, a consolidation of volumes on a single venue, and four indicating maximum fragmentation, that is 
volumes equally distributed across the four venues. A FRAG index of two would mean that the level of fragmentation 
is equivalent to the maximum level of fragmentation between two markets, i.e., 50% of the volumes on each. 
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minutes. As in Hansch, Naik and Viswanathan (1998), we compute member m’s inventory in stock 

i in each interval, then standardize (by subtracting by the mean level of the inventory for member 

m and stock i and scaling by the standard deviation of that member’s inventory in that stock) and, 

finally, take the absolute value. The measure thus represents the distance between current 

inventory and its ‘normal’ level for that member and stock. If the simultaneous submission of 

orders to multiple venues is used by traders to manage extreme inventories towards zero, then we 

would expect a positive relationship between our inventory variable and DCL. If DCL is used to 

build inventory when inventory levels are low, we would expect this coefficient to be negative.  

SORi,t is a proxy for the intensity with which smart order routing algorithms are being employed 

in the trading of stock i in period t. We judge a member to be using smart order routing when she 

is engaged in aggressive trading in the same stock on multiple venues simultaneously. By 

aggressive trading, we mean trading generated by market orders or marketable limit orders at 

prices within the quote range that we used to measure DCL (cf. Section 5.1). For stock i, member 

m and a particular pair of trading venues, we compute the quantity simultaneously aggressively 

bought in an interval of 10ms as; 

      ; ; 2 min : ; , : ;    SOR i m buy volumebuy i m A volumebuy i m B  (7) 

where A and B are the two trading venues. We compute a similar quantity for sell volumes. We 

then aggregate across members and the buy and sell sides of the market to give aggregate smart-

order routing trading in stock i for the chosen interval of time and for the pair of venues A and B 

and, finally, we scale this measure by total buy and sell volume in the stock in the interval. We 

expect an increase in smart order routing to be associated with a decrease in the supply of 

duplicated liquidity to venues, as the risk of multiple executions and thus over-filling is increased. 

Both the FRAG and the SOR variables are introduced with a lag in the regression to limit 

endogeneity issues and the square of SOR is also included to allowed for non-linearity in its 

relationship with DCL. 

The platform characteristics capture whether tv and qv are the primary exchange (PE) or one of 

the alternative venues (ALT). PEtoALTtv,qv is equal to one when trade venue tv is PE and the venue 

on which we measure DCL (i.e., quote venue qv) is ALT, zero otherwise. ALTtoPEtv,qv has a similar 

interpretation. The base case is where tv and qv are both ALT. 
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We further control for the DCL by other HFT members ( \ , ,
Others
HFT i t mDCL  ), other AT members (

\ , ,
Others
AT i t mDCL  ), and other slow traders ( \ , ,

Others
Slow i t mDCL  ) excluding member m (denoted by -m) in 

period t for stock i. We also include a set of stock-time characteristics that are determinants of 

liquidity. Volatility ,i t  is a price range computed as the difference between the highest and the 

lowest prices of stock i over a 15-minute interval t scaled by the midpoint between the high and 

low values. VOLUMEi,t is the logarithm of the total euro volume traded in stock i on the four 

venues over period t. PRICEi,t is the last cross-venue log midquote on the day of period t for stock 

i. 

Finally, we control for past and contemporaneous order imbalance, denoted IMBi,t-1 and IMBi,t 

respectively, to make sure that DCL is not driven by trade-conveyed informational effects. IMBi,t 

is the absolute value of the difference between aggressive buy and sell trading volumes, expressed 

as a percentage of the total traded volume on all platforms for stock i in period t.  

Table 7 about here 

The first four columns of Table 7 display the results for our empirical model that measures DCL 

as a percentage of the size of the triggering trade, employing different time windows ranging from 

 = 10ms to 100ms. We employ a Tobit model as our dependent variable has truncation at zero 

i.e., in many instances there is no withdrawal of duplicated liquidity (DCL=0). The last column in 

Table 7 presents the results where we scale DCL by pre-trade liquidity. Here we use a Tobit model 

with truncations at zero and one, as the upper limit in this case is where all pre-trade liquidity is 

withdrawn (i.e., DCL=1). For the model that uses DCL scaled by pre-trade liquidity, we include 

trade size on the trade venue as an explanatory variable. We denote this variable by 

TRADESIZEi,t,m, and it equals the average size of the trades executed on tv and triggering DCL on 

qv for member m, stock i, and period t. Size is measured as the log of the euro value of the trade. 

We first examine the impact of member characteristics – our key variables of interest. 

Consistent with H6, all columns of Table 7 show that trades where limit orders posted by fast 

traders (both HFTs and ATs) are executed lead to significantly more DCL than otherwise similar 

trades against slow trader liquidity (the base case), and that HFTs post much more DCL than ATs, 

with a statistical significance at the 1% level.  
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Results in the first four columns show that HFTs on average withdraw 22 percentage points 

more of the size of the triggering trade compared to slow members (the reference case), and around 

15 percentage points more when compared with AT members. ATs withdraw on average 5.5 

percentage points more than slow traders. This is consistent with H6, and one interpretation of this 

is that fast traders are more active in making markets across venues than slow traders. Members 

acting as agent and liquidity suppliers withdraw 5 percentage points less and 8.5 percentage points 

more than principal traders and liquidity takers respectively, consistent with hypotheses H3 and 

H4. All of those effects are significant at the 1% level. 

The final column of the table shows that an HFT (AT) member withdraws 7.88 (2.80) 

percentage points more of their outstanding limit order quantity on venue qv following the 

execution of one of their limit orders on venue tv compared with a slow member in a similar 

situation. HFT members thus post just over five percentage points more DCL than AT members. 

In line with the results where DCL is expressed as a fraction of trade size, DCL as a percentage of 

pre-trade liquidity is also more pronounced when a member (i) behaves as a liquidity supplier 

(2.58 percentage points), and (ii) acts as principal (2.03 percentage points, i.e., AGENT=0).  

The standardized absolute inventory variable has a significant and negative coefficient in our 

regressions. Hence there is support for our hypothesis H5. The economic magnitude implied by 

the estimated coefficients is relatively modest, though, with a one standard deviation increase in 

inventory leading to a fall in DCL of around 0.4 percentage points of the size of the triggering 

trade or 0.1 percentage points of pre-trade liquidity. So more extreme inventory positions are 

associated with a slightly smaller DCL. Thus, members do not use DCL to manage inventory in 

times when inventory is extreme, instead they use DCL strategies when their inventories are 

relatively small. In other words, limit order traders are more likely to use DCL in the first phase 

of their market making strategy, i.e., when they are happy to build trading positions, rather than in 

the second phase, when they are actively trying to unwind large positions. In that second phase, 

probably because of over-execution risk, it is likely that DCL is more costly. 

We now turn to all other characteristics. The trade size estimate is only available for the 

regression where DCL is expressed as a fraction of pre-existing liquidity supply (the final column 

of the table) and shows that larger trades are associated with greater DCL. Members have greater 

incentive to cancel resting orders when trade size on the trade venue is larger. Results show that 

when trade size doubles, DCL increases by 1.2 percentage points. 



 

33 
 

The next rows in Table 7 show the results for the “platform characteristics”. Based on column 1 

( = 10ms), the PEtoALT coefficient shows that DCL is less pronounced when the trade takes 

place on the primary exchange and the quote venue (where DCL is measured) is another venue, 

compared with the base case ALTtoALT. The coefficient on ALTtoPE is significant, positive and 

larger in magnitude than that on PEtoALT across all columns. In sum, DCL is least pronounced 

when trades take place on the primary exchange and most pronounced for trades occurring on 

alternative venues and where the liquidity is then canceled on the primary exchange. This is in line 

with H8 and with cross-platform market making. 

Our regression model controls for other member groups’ DCL activity on that day for that stock. 

In general, we find that a member’s DCL seems to co-move with the DCL of other members. This 

effect is most pronounced when other ATs are active posters of DCL. 

The significant positive coefficients on trading volume and fragmentation imply that DCL is 

greater for stocks that are traded more heavily and on a dispersed set of platforms (in line with 

H1). Absolute order imbalance has a consistent and significant negative effect. We were concerned 

that the cancellation activity behind DCL might be generated by members revising stock valuations 

due to the information contained in trades. Neither past order imbalance nor contemporaneous 

order imbalance positively impacts DCL, which is not in line with an information-based 

interpretation. There is weak evidence that DCL increases with an increase in the price range for 

stock i but much stronger evidence that DCL is smaller for stocks with larger tick sizes. The second 

result is inconsistent with our hypothesis H2, which suggested that DCL might be more intensively 

used when undercutting by price is more difficult. 

Finally, there is a concave relationship between smart order routing and DCL. This generates 

small increases in DCL when smart order routing is scarce but rising, but very large negative 

effects when smart order routing is large and rising (e.g., using the results from the final column, 

if smart order routers made up 20% of the trade population, DCL as a fraction of liquidity would 

be 4 percentage points greater than if SOR was zero, while if SOR was at 60% of trading, DCL 

would be almost 8 percentage points lower than if SOR was zero). So, when smart order routers 

are used extensively, we see low use of DCL, likely due to the multiple execution risk that SOR 

technology exposes the users of DCL to (in line with H7.) 
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6.2. DCL determinants by member category 

Table 8 shows the results of Equation (6), where t = 10ms, for subsamples that focus on 

various member categories. This allows us to study whether specific explanatory variables are 

more important for some member categories: column (1) focuses on all members that are “fast 

traders”; columns (2) and (3) separate the fast traders into ATs and HFTs; Columns (4) and (5) 

display results for “Liquidity suppliers” and “Fast liquidity suppliers”.  

Table 8 about here 

The coefficient on HFT in column (1) shows that HFTs withdraw 2.6 percent more of the trade 

size on the quote venue than do ATs (i.e., the base case) following a trade on the trade venue. 

Liquidity suppliers exhibit substantially more DCL than other traders, in particular when they are 

HFTs. Compared with the first column of Table 7, which presents results for all member 

categories, some interesting differences in the coefficient signs and magnitudes can be observed. 

First, the positive coefficient on ALTtoPE in the regressions in Table 7 appears to be driven by the 

behavior of ATs (column (2) shows a positive coefficient of 0.83 for ALTtoPE) as the coefficient 

is largely negative and around the same magnitude as PEtoALT for HFTs (column (3)). The 

negative coefficients of both PEtoALT and ALTtoPE in the case of HFTs (Column (3) of Table 8) 

indicate that the level of DCL posted by HFTs is the highest when neither exchange involved in 

the duplication strategy is the primary market. Second, co-movement of DCL is most pronounced 

among own-member types with Others
ATDCL  and Others

HFTDCL  being significant in columns (2) and 

(3), respectively.  

Regarding order flow characteristics, trader inventory, and stock volatility, the coefficients of 

Table 8 are consistent in sign with those of Table 7. The coefficients on tick size are significantly 

negative for ATs and (fast) liquidity suppliers.  

7. Impact of the cancellation of duplicated limit orders on trading costs 

Finally, we analyze how strategies involving the cancellation of duplicated orders affect the 

trading costs of liquidity takers (LTs). More specifically, we investigate the impact of DCL on 

effective spreads for various LT groups. We choose to focus our analysis on the DCL of HFTs, 

since our preceding results imply that HFTs are the main drivers of DCL. On the one hand, we 

might expect markets where more duplicated orders are submitted to be those in which ‘genuine’ 
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liquidity is harder to measure and so execution cost management might be more difficult. This 

may result in additional costs of trading. But on the other hand, given that DCL has been shown 

to contribute to more efficient cross-venue market making, it may help to reduce trading costs. 

We test these hypotheses by running panel regressions of the effective spreads paid by LTs on 

the level of DCL submitted by HFTs in the previous period. The analysis is conducted on measures 

of spreads and DCL aggregated by 15-minute period, stock, and venue. For each 15-minute period 

and stock, we compute the average DCL of HFTs, for a particular venue, by taking the measures 

computed earlier for pairs of trade venues and quote venues, fixing a particular quote venue and 

aggregating across trade venues. The specification is as follows: 
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In this equation, the dependent variable , ,i t kES  is the average effective spread expressed as a 

percentage of the midquote for stock i in 15-minute period t on venue k. Our variable of interest is 

,
, 1,

ˆ


HFT depth
i t kDCL , which represents the amount of duplicated orders that are voluntarily canceled by 

HFTs for stock i, on venue k, over the previous 15-minute period. We take the DCL of the previous 

period with the intention of identifying causal effects of DCL on spreads. We may however still 

have an endogeneity problem as the decision to duplicate limit orders across venues in period t1 

might be determined by liquidity factors at play at both t1 and t. To address this concern, we 

estimate a two-stage least squares (2SLS) regression model. In the first stage, we model the DCL 

of HFTs for stock i, on venue k, at period t in a first-stage regression specified as follows: 
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 (9) 

Following Hasbrouck and Saar (2013) and Degryse et al. (2015), we use two instrumental 

variables in Equation (9): (1) the DCL of HFTs of all stocks in the same size tercile, stock i 

excluded , on the same venue, over the same period, denoted ,
, ,

HFT depth
i t kDCL ,16 and (2) the lagged 

 
16 This is very similar to what other authors have done in the microstructure literature. For example, in their analysis 
of how low-latency activity affects market quality, Hasbrouck and Saar (2013) use the average low latency trading in 
other stocks during the same time period as an instrument for low latency trading in a given stock. Very similar 
approaches were also used by Degryse et al. (2015) and Buti, Rindi and Werner (2022). 



 

36 
 

DCL of HFTs for stock i on the same venue. Other variables are factors that have been 

demonstrated to determine DCL in Section 6, namely order flow fragmentation, tick size, SOR 

activity, total trading volume, price range, and price level, respectively measured by variables 

FRAG, SOR, VOLUME, , and PRICE in the same way as in Equation (6). We include stock fixed 

effects and intraday time fixed effects identifying each 15-minute period of the trading session. 

The values of ,
, ,

HFT depth
i t kDCL  predicted by Equation (9), denoted ,

, ,
ˆ HFT depth

i t kDCL , are then used with 

a lag as the main regressor in Equation (8). The first-stage regression shows highly significant 

estimates for both instrumental variables.17 We believe that our approach, albeit imperfectly, 

considerably limits endogeneity issues and allows us to identify causal effects. 

In Equation (8), we control for widely acknowledged determinants of spreads, such as: 

volatility, ,i t , measured as in Equation (6) as the 15 minute price range; log trading volume 

, ,i t kVOLUME  , computed as the log of euro trading volume for stock i on venue k over period t; 

and the same price level measure, ,i tPRICE , that we used in Equation (6). We also control for 

trade size and exchange type by introducing , ,i t kTRADESIZE , the average size of the trades that 

were used to construct the effective spread variable, and PEi,k, a dummy equal to one when the 

venue for which we are computing effective spreads is the primary exchange, zero otherwise. 

Furthermore, in order to examine whether the impact of the DCL of HFTs on effective spreads 

differs between the primary exchange and alternative venues, we modify Equation (8) by 

interacting ,
, 1,

ˆ


HFT depth
i t kDCL  with exchange dummies in the following way: 
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 (10) 

where dummy ALTi,k equals one when venue k, where effective spreads are measured, is an 

alternative exchange, zero otherwise. In other words, ALTi,k simply equals 1PEi,k. g1, the 

coefficient of the product of the DCL measure and the primary exchange dummy, identifies the 

impact of the DCL of HFTs on the effective spreads of the primary exchange, while g2, the 

coefficient of the product of DCL and ALT, identifies the impact on the spreads of alternative 

exchanges. 

 
17 First-stage results are not reported here for sake of brievity but they are available on request. 
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In both equations (8) and (10), autocorrelation is accounted for by including the first lag of the 

dependent variable, and intraday time fixed effects identifying each 15-minute period of the 

trading session are included. We run three versions of those two regressions by computing average 

effective spreads for three groups of LTs, differentiated by trading speed. Those three groups are 

slow liquidity takers, algorithmic liquidity takers, and HFT liquidity takers, respectively.  

Table 9 contains estimates of our second-stage regressions (8) and (10). There are several 

familiar results in the table (e.g., spreads decrease with volume and price level, increase with 

volatility and trade size, and are positively autocorrelated). We also see that they are, on average, 

larger on the primary exchange. 

Table 9 about here 

As for the coefficients on DCL, we find that, when looking at all venues combined, greater 

DCL from HFTs leads to larger effective spreads for slow LTs and smaller effective spreads for 

fast LTs at a 1% level of statistical significance. The adverse effect on the trading costs of slow 

LTs is most severe on the alternative venues and is smaller on the primary exchange, where its 

economic significance is greatly reduced, and its statistical significance is at the 10% level only. 

Presumably, the DCL of HFTs is less detrimental to the effective spreads of slow traders on the 

primary exchange because slow traders themselves form a greater part of the trader population 

there, and thus the DCL of a subgroup of traders has smaller impact. Further, slow traders are 

typically less active on alternative exchanges. We should therefore consider the g1 coefficient as 

more relevant than the g2 coefficient for this group of traders. In this regard, the adverse effect of 

HFTs’ DCL on the trading costs of slow LTs can be seen as small in both economic size and 

statistical significance. 

Regarding the magnitude of the beneficial effect for fast traders, the economic impact, all 

venues considered, is similar for ATs and HFTs, with the g coefficient having similar values for 

both trader categories. However, when differentiating between the primary exchange and 

alternative venues, the picture changes. Whereas HFTs benefit from DCL everywhere, be it on the 

primary exchange or on alternative venues, ATs benefit from it on alternative exchanges only. On 

the contrary, their trading costs increase with the DCL of HFTs on the primary exchange. Thus, 

taken together, ATs may benefit or not depending upon their activities across primary and 
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alternative exchanges. Weighing up algo LTs’ costs and benefits, the economic significance of the 

benefits on alternative exchanges is still larger than that of the cost increase on primary exchanges. 

All in all, these findings, in conjunction with those of Sections 5 and 6, suggest that DCL makes 

market-making strategies more effective on the exchanges where HFTs are the most active relative 

to other traders, i.e., the alternative venues. Those more effective market-making strategies benefit 

all fast traders on alternative exchanges while they only benefit HFT liquidity takers on primary 

exchanges. The DCL of HFTs on primary exchanges adversely impact the trading costs of both 

slow and algo LTs, with ATs being more significantly affected than slow LTs. Considering that 

slow traders mainly trade on primary exchanges and that the significance of the adverse effect of 

DCL on their trading costs is weak there, we can conclude that the adverse effect of the cancellation 

of duplicated orders by HFTs is somewhat limited for slow LTs. In contrast, the fact that the 

cancellation of duplicated limit orders by HFTs on primary exchanges is more harmful for the 

trading costs of algo LTs than for those of slow traders comes, to some extent, at a surprise. It 

opens questions for future research on the differences between algo and HFT trading strategies 

and their interactions on primary exchanges. 

8. Conclusion 

The objective of this paper is to assess the scale of Duplicated-then-Canceled Liquidity (DCL) 

on equity markets and to examine its determinants. Our DCL measure is related to limit order 

duplication across venues. We define it to exist when, in response to the execution of a limit order 

on a particular venue, the submitter of that order swiftly cancels similar limit orders on other 

venues. Such liquidity provision strategies are natural and valuable in a fragmented trading 

landscape where some liquidity suppliers are market-making across venues. Thus, on the one hand, 

duplicating orders across venues may benefit cross-market liquidity by improving execution 

probabilities and by bringing liquidity to the single-market players of all venues, but on the other 

hand, DCL may lead some market participants to over-estimate the true liquidity available in the 

marketplace. 

By drawing on a unique dataset that covers 91 European stocks listed in nine different countries, 

and their trading on their respective primary exchanges plus the three main alternative trading 

venues in Europe, i.e., Chi-X, BATS, and Turquoise, we find that DCL is an economically 

significant phenomenon that deserves attention from market participants and regulators. In the 
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presence of duplicated limit orders, for 100 shares traded on one venue, the submitter of the passive 

order removes on average around 19 shares from the order book of each competing venue.  

In the cross-section, DCL is greater for larger, more fragmented stocks, and for less volatile 

stocks. Further, DCL increases with trading volumes and trade size. It decreases when smart order 

routing is particularly prevalent. HFTs, traders acting as principal, and traders implementing multi-

venue market-making strategies post more DCL than others. Further, regarding HFTs, their use of 

DCL is the highest when they duplicate limit orders across alternative platforms. The preceding 

results are robust to changes in the time window used to measure DCL, and they are not 

significantly impacted by cancellations due to information-based quote updating in response to 

trades. These results together suggest that DCL is generated, in part at least, by liquidity-supplying 

traders (acting as principal) implementing market-making strategies to serve disconnected 

liquidity pools (e.g., when fragmentation is large), that HFTs contribute substantially to this 

activity, and that, when market conditions do not favor duplication (e.g. when volatility is high), 

the use of the strategy declines. Further, when the liquidity demand side of the market is using 

tools that allow them to access all venues simultaneously, e.g. smart order routing, DCL reduces 

as it becomes risky, and potentially costly, for liquidity suppliers. More specifically, we provide 

evidence of a negative relation between a member's DCL and its stock inventory. This suggests 

that DCL is used to build inventory rather than to rebalance extreme inventories.  

At the market level, over 4% of the consolidated depth is DCL, this average percentage being 

greater on alternative venues (between 6% and 7%) than on primary exchanges (3.43%). Those 

figures are unlikely to be large enough either to counterbalance the depth improvement related to 

fragmentation reported in previous literature (e.g., Degryse et al. (2015), Foucault and Menkveld 

(2008), and Gresse (2017)), or to create significant ‘noise’ in total liquidity measures. Furthermore, 

DCL does not necessarily affect all traders in the same way, as fast traders using properly 

calibrated smart order routers may catch DCL before it is withdrawn. 

In our final piece of analysis, we find that while DCL is associated with slow traders suffering 

marginally increased trading costs, at times when DCL is high the execution costs of fast liquidity 

takers (i.e. ATs and HFTs) on alternative trading venues are significantly smaller. We interpret the 

latter as evidence that DCL contributes to the efficiency of market-making strategies that HFTs 

and others run on alternative exchanges, allowing counterparties access to better prices on average. 
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Overall, we show that duplicated-then-canceled liquidity is a significant phenomenon in 

European equity markets. A downside of its use is that naive measurement of consolidated liquidity 

may overestimate true liquidity in fragmented electronic markets. However, our final results 

suggest that it is an important tool in facilitating cross-venue market-making, leading to improved 

realized liquidity on alternative venues and greater true consolidated liquidity. 
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Table 1. Descriptive statistics on sampled stocks 

Country 
Number 

of 
stocks 

 Market value 
(EUR Mn) 

Value 
traded 

(EUR Mn) 

Cross-market 
bid-ask spread 

Market share of 
the primary 

exchange 

Belgium 6 Mean 24,327 2,012 0.0465% 72.13% 
  Min. 843 86 0.0181% 62.44% 
  Max. 118,942 8,134 0.0956% 88.78% 

France 15 Mean 7,957 1,632 0.0362% 74.73% 
  Min. 195 2 0.0063% 62.35% 
  Max. 55,979 12,658 0.1006% 97.30% 

Germany 13 Mean 10,039 1,997 0.0962% 74.80% 
  Min. 242 10 0.0084% 59.25% 
  Max. 71,713 15,074 0.4480% 95.63% 

Ireland 4 Mean 4,551 291 0.0450% 86.20% 
  Min. 1,599 46 0.0010% 79.97% 
  Max. 7,898 709 0.0951% 93.07% 

Italy 11 Mean 6,495 1,454 0.0305% 86.84% 
  Min. 292 7 0.0015% 79.01% 
  Max. 27,628 6,234 0.1609% 98.31% 

Portugal 4 Mean 6,035 944 0.0047% 74.92% 
  Min. 2,080 612 0.0010% 63.14% 
  Max. 10,857 1,090 0.0135% 85.44% 

Spain 12 Mean 9,650 1,884 0.0098% 85.02% 
  Min. 801 299 0.0024% 78.77% 
  Max. 40,712 10,613 0.0238% 92.35% 

The Netherlands 11 Mean 7,747 1,771 0.0181% 75.43% 
  Min. 383 54 0.0014% 64.80% 
  Max. 50,233 9,036 0.0607% 87.64% 

The United Kingdom 15 Mean 8,529 1,228 0.0189% 65.27% 
  Min. 395 16 0.0028% 53.47% 
  Max. 69,843 6,969 0.0480% 79.80% 

Total 91 Mean 9,481 1,468 0.0340% 77.26% 
  Min. 195 2 0.0010% 53.47% 
  Max. 118,942 15,074 0.4480% 98.31% 

This table reports the number of stocks sampled by country and, for each country, the average, the minimum, and the 
maximum values of the market value in million euros, the total traded value in May 2013 in million euros, the cross-
market bid-ask spread, and the market share of the primary exchange. Four markets are considered: the primary 
exchange, Chi-X, Bats, and Turquoise. 
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Table 2. Average level of DCL as a percentage of trade size 
  10ms 20ms 50ms 100ms 

Panel A      
All platforms  18.89% 20.11% 20.34% 21.07% 

Panel B - By platform      
Primary exchange  20.54% 21.83% 21.61% 22.31% 

Chi-X  18.26% 19.54% 21.35% 22.14% 

Turquoise  18.62% 19.63% 20.34% 21.54% 
BATS 

 
16.82% 18.41% 20.74% 21.31% 

Panel C - By pair of platforms     

Quote venue Trade venue 
 

   

Primary exchange Chi-X 22.87% 24.11% 22.61% 23.49% 
 BATS 19.02% 21.32% 21.91% 22.28% 
 Turquoise 19.43% 20.16% 21.13% 21.78% 

Chi-X Primary exchange 16.62% 17.81% 19.53% 20.31% 
 BATS 30.67% 32.38% 35.42% 36.10% 
 Turquoise 25.91% 27.85% 29.54% 31.25% 

BATS Primary exchange 12.84% 14.41% 16.89% 17.30% 
 Chi-X 30.29% 33.05% 34.93% 35.60% 
 Turquoise 30.81% 31.69% 33.76% 35.90% 

Turquoise Primary exchange 16.60% 17.48% 18.31% 19.55% 
 Chi-X 26.62% 28.38% 29.04% 30.48% 
 BATS 27.30% 28.58% 27.38% 30.26% 

This table reports statistics on DCL measured as a percentage of the size of the trade that triggers the DCL 
measurement. Means of DCL are presented across all platforms (Panel A), by platform (Panel B) – the 
platform under consideration being the quote venue (qv), and by pair of platforms (Panel C), for different 
time windows (10ms, 20ms, 50ms, and 100ms). DCL is first estimated for each member and each stock on 
a daily basis. Then, for each stock and each day, weighted averages across members are constructed, where 
the weight for a member is equal to that member’s average contribution to order book depth over the day. 
Finally, those daily weighted DCL values are averaged for each stock over the entire month and equally-
weighted means across stocks are calculated. 
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Table 3. Average level of DCL as a percentage of quantities available in the book 

  10ms 
Liquidity re-supply in 

the next 10ms 
20ms 50ms 100ms 

   
Same side 
(Refill rate) 

Opposite 
side 

   

Panel A        
All platforms  4.04% -0.34% 0.73% 4.20% 4.26% 4.34% 

Panel B - By platform        

Primary exchange  3.43% -0.55% 0.61% 3.54% 3.48% 3.54% 

Chi-X  6.58% -0.78% 1.58% 7.06% 7.47% 7.61% 

Turquoise  5.98% 0.58% 0.82% 6.22% 6.54% 6.72% 
BATS 

 
6.92% -0.54% 0.56% 7.56% 8.19% 8.51% 

Panel C - By pair of platforms       

Quote venue Trade venue 
 

     

Primary exchange Chi-X 3.74% -0.48% 0.69% 3.87% 3.92% 4.02% 
 BATS 1.96% -0.19% 0.37% 2.00% 1.69% 1.50% 
 Turquoise 3.30% -0.57% 0.49% 3.38% 3.34% 3.37% 

Chi-X Primary exchange 6.61% -0.86% 1.31% 7.11% 7.58% 7.80% 
 BATS 5.25% -1.03% 0.98% 5.56% 5.48% 4.97% 
 Turquoise 6.31% -0.31% 1.90% 6.51% 6.63% 6.60% 

BATS Primary exchange 6.19% -0.68% 0.46% 6.82% 7.54% 7.93% 
 Chi-X 8.50% -1.41% 1.00% 9.39% 9.77% 9.72% 
 Turquoise 8.55% -0.86% 0.66% 8.79% 9.02% 9.21% 

Turquoise Primary exchange 5.86% 0.65% 0.67% 6.07% 6.45% 6.73% 
 Chi-X 5.99% -0.33% 1.27% 6.28% 6.34% 6.30% 
 BATS 4.94% -0.89% 0.99% 5.13% 5.03% 5.17% 

This table reports statistics on DCL measured as a percentage of quantities available in the order book of the quote venue 
prior to executions on the trade venue. Means of DCL are presented across all platforms (Panel A), by platform (Panel B) – 
the platform under consideration being the quote venue (qv), and by pair of platforms (Panel C), for different time windows 
(10ms, 20ms, 50ms, and 100ms). For DCL at the 10ms horizon, the table also reports average rates of liquidity re-supply 
within the next 10ms (refill rates on the same side of the market and liquidity provision on the opposite side). Those rates are 
expressed as a percentage of DCL and winsorized at the 99% level. DCL and liquidity re-supply rates are first estimated for 
each member and each stock on a daily basis. Then, for each stock and each day, weighted averages across members are 
constructed, where the weight for a member is equal to that member’s average contribution to order book depth over the day. 
Finally, those daily weighted values are averaged for each stock over the entire month and equally-weighted means across 
stocks are calculated. 
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Table 4. Average level of DCL per market value tercile, volatility tercile, and 
fragmentation tercile 

  
Average DCL as a % 

of trade size 
(10ms) 

Average DCL as a % 
of pre-trade liquidity 

(10ms) 

  
On the 
quote 
venue 

In the 
consolidated 

book 

On the 
quote 
venue 

In the 
consolidated 

book 

Market value tercile Market value range 
(EUR Mn) 

 
 

 
 

1 195 to 1,833 16.17% 51.11% 3.45% 5.93% 

2 1,989 to 5,846 17.98% 56.92% 3.86% 6.61% 

3 6,152 to 118,942 22.42% 68.91% 4.79% 7.31% 

Volatility tercile Daily volatility range     

1 
0.0706% to 
0.1253% 

22.74% 58.03% 4.96% 6.40% 

2 
0.1266% to 
0.1549% 

18.78% 51.60% 3.97% 6.02% 

3 
0.1549% to 
0.3266% 

15.04% 67.36% 3.17% 7.42% 

Fragmentation 
tercile 

Fragmentation index 
range 

 
 

 
 

1 1.0604 to 1.5520 7.18% 40.18% 1.68% 4.88% 

2 1.5553 to 2.0663 15.10% 50.59% 3.35% 6.14% 

3 2.0831 to 3.0714 33.90% 85.61% 7.00% 8.78% 

All stocks  18.89% 59.09% 4.04% 6.62% 

This table reports statistics on DCL by market value tercile, volatility tercile, and fragmentation tercile. DCL is 
here measured as a percentage of both the pre-trade quantity posted by a member in the order book and as a 
percentage of the size of the trade that triggers the measurement of DCL. In each case, DCL is computed in two 
ways: first by considering the cancellations on a single venue (the quote venue), as in Tables 2 and 3, and second 
by aggregating cancellations across all venues where the member may have posted duplicate orders (consolidated 
book). DCL is first estimated for each member and each stock on a daily basis. Then, for each stock and each day, 
weighted averages across members are constructed, where the weight for a member is equal to that member’s 
average contribution to order book depth over the day. Finally, those daily weighted values are averaged for each 
stock over the entire month and equally-weighted means across stocks are calculated. 
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Table 5. Market shares by member categories 

Trading 
scope 

Trading 
aggressiveness 

Trading 
speed 

Capacity 
Number of 

member/stock 
combinations 

% in trading volume 

Total 
Primary 
exchange 

BATS Chi-X Turquoise 

Local 
trader 

Liquidity taker 

Slow 
A 3,259 15.80% 15.72% 0.01% 0.06% 0.01% 

P 1,241 4.88% 4.31% 0.02% 0.37% 0.18% 

AT 
A 247 3.79% 3.78% 0.00% 0.01% 0.00% 

P 105 0.39% 0.30% 0.00% 0.03% 0.06% 

HFT P 34 0.35% 0.19% 0.00% 0.16% 0.00% 

Liquidity 
supplier 

Slow P 545 0.99% 0.81% 0.01% 0.10% 0.07% 

AT P 122 0.50% 0.36% 0.01% 0.12% 0.02% 

HFT P 61 0.48% 0.29% 0.01% 0.18% 0.01% 

Global 
trader 

Liquidity taker 

Slow 
A 527 3.23% 1.87% 0.24% 0.89% 0.22% 

P 817 20.22% 11.70% 1.13% 5.27% 2.12% 

AT 
A 189 3.18% 1.82% 0.18% 0.63% 0.55% 

P 231 7.37% 4.19% 0.42% 1.59% 1.18% 

HFT P 305 15.31% 8.34% 0.94% 4.11% 1.93% 

Liquidity 
supplier 

Slow P 441 9.69% 5.73% 0.57% 2.42% 0.98% 

AT P 218 7.75% 3.13% 0.64% 2.44% 1.55% 

HFT P 226 6.06% 1.81% 0.76% 2.54% 0.94% 

Total 8,568 100% 64.35% 4.92% 20.91% 9.82% 

This table displays the relative market size of each member category. Our member classification is established on a stock-by-stock basis and based on three criteria: 
local vs. global traders, liquidity suppliers vs. liquidity takers, and slow traders vs. ATs/HFTs. Flags for a given member on a given stock can also differ according 
to the member capacity (agent or principal). As a result, column “Number of member/stock combinations” displays numbers of member×capacity×stock 
combinations. The right-hand side of the table reports the percentages of each category in total trading volumes with a breakdown by exchanges. 
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Table 6. Average DCL as a percentage of pre-trade liquidity by member category 

  
Average DCL 

as a % of 
pre-trade liquidity 

(10ms) 

% of cases with 
duplication 

Average DCL 
as a % of 
trade size 

(10ms) 

Trading aggressiveness 
Liquidity Taker 3.69% 34.42% 13.53% 

Liquidity Supplier 3.81% 54.84% 18.43% 

Trading scope 
Local 2.11% 3.31% 11.59% 

Global 3.80% 57.81% 16.50% 

Trading speed 
Slow 2.70% 32.60% 12.32% 

AT 3.76% 56.84% 12.52% 

 HFT 5.75% 53.65% 16.87% 

Capacity 
Agent 1.94% 16.78% 5.48% 

Principal 3.93% 51.23% 17.56% 
This table reports statistics on DCL by member category. It also provides the proportion of trades for which pre-trade 
liquidity is duplicated. DCL is first estimated for each member and each stock on a daily basis. Then, for each stock and 
each day, weighted averages across members in the considered category are constructed, where the weight for a member 
is equal to that member’s average contribution to order book depth over the day. Finally, those daily weighted values are 
averaged for each stock over the entire month and equally-weighted means across stocks are calculated. 
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Table 7. Tobit regressions of DCL for global market members 

DCL measure DCLtradesize  DCLdepth 

Time window for DCL 10ms 20ms 50ms 100ms  10ms 

Member characteristics 
  

    

HFT 0.2197*** 0.2266*** 0.2394*** 0.2066***  0.0788*** 
 (0.0040) (0.0042) (0.0044) (0.0046)  (0.0014) 

AT 0.0547*** 0.0536*** 0.0553*** 0.0534***  0.0280*** 
 (0.0039) (0.0040) (0.0043) (0.0045)  (0.0014) 

Agent -0.0522*** -0.0554*** -0.0635*** -0.0534***  -0.0203*** 
 (0.0072) (0.0075) (0.0079) (0.0083)  (0.0025) 

Liquidity supplier 0.0851*** 0.0937*** 0.0994*** 0.0935***  0.0258*** 
 (0.0034) (0.0036) (0.0038) (0.0040)  (0.0012) 

Average inventory t-1  -0.0041*** -0.0037*** -0.0044*** -0.0036***  -0.0009*** 
 (0.0029) (0.0030) (0.0032) (0.0033)  (0.0010) 

Trade characteristics       

Trade size t      0.0119*** 
      (0.0006) 

Platform characteristics       

PE-to-alternative -0.0611*** -0.0626*** -0.0624*** -0.0623***  -0.0183*** 
 (0.0040) (0.0041) (0.0044) (0.0046)  (0.0014) 

Alternative-to-PE 0.1100*** 0.1142*** 0.1221*** 0.1138***  0.0267*** 
 (0.0039) (0.0040) (0.0043) (0.0045)  (0.0014) 

Other market member 
DCL       

DCL(other, HFT) t 5.28E-06*** 5.01E-06*** 4.52E-06** 0.00E+00**  0.0472*** 
 (0.0000) (0.0000) (0.0000) (0.0000)  (0.0023) 

DCL(other, AT) t 3.48E-05*** 3.99E-05*** 2.17E-05*** 0.00E+00***  0.0540*** 
 (0.0000) (0.0000) (0.0000) (0.0000)  (0.0021) 

DCL(other, Slow) t 1.39E-05*** 1.39E-05*** 9.84E-06*** 0.00E+00***  6.40E-06 
 (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000) 

Order flow characteristics       

Volume t 0.0165*** 0.0174*** 0.0178*** 0.0162***  0.0047*** 
 (0.0023) (0.0023) (0.0025) (0.0026)  (0.0008) 

Order imbalance t -0.0383*** -0.0403*** -0.0428*** -0.0393***  -0.0092*** 
 (0.0100) (0.0103) (0.0110) (0.0115)  (0.0034) 

Order imbalance t-1 0.0009 0.0001 0.0006 0.0001  -0.0009 
 (0.0094) (0.0098) (0.0103) (0.0109)  (0.0032) 
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Fragmentation t-1 0.0060*** 0.0071*** 0.0072*** 0.0070***  0.0020*** 
 (0.0037) (0.0038) (0.0041) (0.0043)  (0.0013) 

SOR t-1 1.2192*** 1.3062*** 1.3998*** 1.1862***  0.3755*** 
 (0.0850) (0.0897) (0.0955) (0.1005)  (0.0275) 

(SOR t-1)2 -3.1961*** -3.5307*** -3.8082*** -3.4107***  -0.8473*** 
 (0.4605) (0.4934) (0.5260) (0.5550)  (0.1388) 

Stock characteristics       

Price range t-1 0.0473* 0.0344 0.0333 0.0334  0.0266*** 
 (0.1378) (0.1456) (0.1558) (0.1637)  (0.0499) 

Price 0.0092 0.0198 0.0158 0.0197*  -0.0053 
 (0.0579) (0.0601) (0.0638) (0.0670)  (0.0201) 

Tick -128.66*** -124.45*** -123.66*** -123.35***  -15.1442*** 
 (86.0085) (89.4588) (94.9390) (99.1710)  (27.8036) 

Fixed effects       
stock fixed effects YES YES YES YES  YES 

15-min period fixed effects YES YES YES YES  YES  
      

Pseudo R² 8.35% 7.94% 7.52% 7.38%  9.69% 

This table reports the conditional marginal effects estimated from Tobit regressions of 15 minute DCL by member, stock, and pairs of 
platforms on various factors. DCL is computed in several ways, first as a fraction of trade size over four different time intervals (10ms, 
20ms, 50ms, and 100ms), and then as a fraction of pre-trade depth on the quote venue at the 10ms horizon. DCL is computed only using 
trades of global members. Each pair of platforms consists of the trade venue, i.e., the venue where the member was passively executed, 
and the quote venue, i.e., the venue where the member’s liquidity is potentially withdrawn. Reported coefficients are the marginal effects 
of the explanatory variables on DCL, conditional on DCL being positive. The independent variables of interest comprises an HFT dummy 
equal to one for HFT members; an AT dummy equal to one for AT members; an agent dummy equal to one for a member trading as 
agent; a liquidity-supplier dummy equal to one for members identified as liquidity suppliers; the member’s lagged average standardized 
absolute inventory, a PE-to-alternative dummy equal to one when the trade venue is the primary exchange and the quote venue an 
alternative platform; an alternative-to-PE dummy equal to one when the trade venue is an alternative platform and the quote venue is the 
primary exchange, a lagged fragmentation index, the lagged value of a SOR proxy, and its squared value. The control variables include a 
lagged price range; the lagged and the contemporaneous values of the imbalance between buy and sell orders as a percentage of the total 
traded volume; the log of the contemporaneous total traded volume; the log of the closing price; the relative tick size; the contemporaneous 
DCL measured for other HFT members; the contemporaneous DCL measured for other AT members; and the contemporaneous DCL 
measured for other slow traders. When DCL is measured as a fraction of pre-trade quantities in the book of the quote venue, the average 
size of the trades triggering the DCL observation is also controlled for, and the Tobit specifications are double-censored with a lower 
bound set to 0 and an upper bound set to 1. DCL as a percentage of trade size is winsorized at the 99% level. Standard errors are reported 
in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level respectively. 
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Table 8. Tobit regressions of DCLtradesize by member sub-samples 

  (1) (2) (3) (4) (5) 

  

  
Fast traders 

only 
ATs only  HFTs only 

Liquidity 
suppliers 

only 

Fast 
liquidity 
suppliers 

only 
Member characteristics      

 HFT 2.6085***   3.0612*** 2.3394*** 
  (0.0867)   (0.094) (0.1043) 

 AT    1.0864***  
     (0.091)  

 Agent -0.5097*** -0.1170***    
  (0.2095) (0.1430)    

 Liquidity supplier 1.7480*** 1.2700*** 2.1791***   
  (0.0909) (0.0856) (0.1645)   

 Average inventory t-1 -0.0847*** -0.0546*** -0.1056*** -0.0401*** -0.1078*** 
  (0.0733) (0.0655) (0.1250) (0.0629) (0.0864) 

Platform characteristics      

 PE-to-alternative -1.0315*** -0.3109*** -2.4181*** -0.2572*** -0.3579*** 
  (0.1037) (0.0874) (0.1902) (0.0914) (0.1300) 

Alternative-to-PE -0.1231*** 0.8394*** -3.0341*** 0.6400*** -0.9881*** 
  (0.1021) (0.0862) (0.1863) (0.0866) (0.1215) 

Other market member DCL      

 DCL(other, HFT) t 0.0001** -0.0002 0.0004*** 0.0001* 0.0002*** 
  (0.0002) (0.0010) (0.0004) (0.0002) (0.0003) 

 DCL(other, AT) t 0.0007*** 0.0007*** 0.0002 0.0004*** 0.0006*** 
  (0.0005) (0.0004) (0.0010) (0.0005) (0.0006) 

 DCL(other, Slow) t 0.0000 0.0000 0.0000 0.0001*** 0.0000 
  (0.0004) (0.0005) (0.0006) (0.0003) (0.0004) 

Order flow characteristics      

 Volume t 0.4610*** 0.2877*** 0.5493*** 0.2839*** 0.3633*** 
  (0.0587) (0.0493) (0.1069) (0.0500) (0.0693) 

 Imbalance t -0.7223*** -0.3034*** -1.2870*** -0.6422*** -0.7402*** 
  (0.2617) (0.2152) (0.4873) (0.2178) (0.3045) 

 Imbalance t-1 -0.1642*** -0.1223*** -0.1578 -0.1286*** -0.2252*** 
  (0.2477) (0.2031) (0.4633) (0.2057) (0.2880) 

 Fragmentation t-1 0.2308*** 0.2010*** 0.1933*** 0.1235*** 0.1912*** 
  (0.0963) (0.0804) (0.1756) (0.0828) (0.1151) 

 SOR t-1 21.4296*** 14.5770*** 15.9104*** 20.8824*** 23.3098*** 
  (2.3603) (1.8987) (4.5371) (1.8534) (2.9374) 

 (SOR t-1)2 -70.5661*** -42.9978*** -59.0154*** -55.4877*** -83.2212*** 
  (13.6432) (10.5246) (27.2590) (9.8539) (17.4226) 
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Stock characteristics      

 Price range t-1 1.9024** 1.1281* 2.8186* 1.5944** 2.0064** 
  (3.3980) (3.1389) (5.5449) (3.1042) (4.0091) 

 Price -0.0517 -0.3779 1.6374** 0.9892*** 0.2949 
  (1.4374) (1.1921) (2.6526) (1.3278) (1.7417) 

 Tick -661.95 -921.15*** -383.75 -1611.68*** -1519.43*** 
  (1934.42) (1736.65) (3292.96) (2005.26) (2421.38) 

Fixed effects  
 

 
 

 

stock fixed effects YES YES YES YES YES 

15-min period fixed effects YES YES YES YES YES   
  

 
  

Pseudo R² 2.90% 2.66% 2.45% 3.27% 3.12% 

This table reports the conditional marginal effects estimated from Tobit regressions of 15 minute DCL by member, stock, and pairs of 
platforms on various factors. DCL is computed, at the 10ms horizon, as a fraction of the size of the trade that triggered the DCL 
observation. DCL is computed only using trades of global members. The Tobit regressions are run for five different subsamples of 
members with double-censoring, the lower bound being set to 0 and the upper bound being set to 1. Each pair of platforms consists of 
the trade venue, i.e., the venue where the member was passively executed, and the quote venue, i.e., the venue where the member’s 
liquidity is potentially withdrawn. Reported coefficients are the marginal effects of the explanatory variables on DCL, conditional on 
DCL being positive. The independent variables of interest comprises an HFT dummy equal to one for HFT members; an AT dummy 
equal to one for AT members; an agent dummy equal to one for a member trading as agent; a liquidity-supplier dummy equal to one 
for members identified as liquidity suppliers; the member’s lagged average standardized absolute inventory, a PE-to-alternative dummy 
equal to one when the trade venue is the primary exchange and the quote venue an alternative platform; an alternative-to-PE dummy 
equal to one when the trade venue is an alternative platform and the quote venue is the primary exchange, a lagged fragmentation index, 
the lagged value of a SOR proxy, and its squared value. The control variables include a lagged price range; the lagged and the 
contemporaneous values of the imbalance between buy and sell orders as a percentage of the total traded volume; the log of the 
contemporaneous total traded volume; the log of the closing price; the relative tick size; the contemporaneous DCL measured for other 
HFT members; the contemporaneous DCL measured for other AT members; and the contemporaneous DCL measured for other slow 
traders. Standard errors are reported in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level respectively. 
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Table 9. Impact of the DCLdepth of HFTs on the effective spreads of liquidity takers 

 Effective spreads of slow LTs Effective spreads of ATs/LTs Effective spreads of HFTs/LTs 

Price range t 0.0694*** 0.0692*** 0.0494*** 0.0500*** 0.0643*** 0.0642***  
(0.0121) (0.0121) (0.0132) (0.0132) (0.3417) (0.0078) 

Volume t -0.0034*** -0.0034*** -0.0032*** -0.0032*** -0.0028*** -0.0028***  
(7.23E-05) (7.24E-05) (8.85E-05) (8.85E-05) (5.17E-05) (5.17E-05) 

Price -0.0068*** -0.0068*** -0.0072*** -0.0072*** -0.0006*** -0.0006***  
(9.18E-05) (9.18E-05) (0.0001) (0.0001) (6.98E-05) (6.98E-05) 

Trade size t 0.0011*** 0.0011*** 0.0007*** 0.0007*** -0.0005*** -0.0005***  
(8.60E-05) (8.60E-05) (9.78E-05) (9.80E-05) (6.38E-05) (6.38E-05) 

PE 0.0063*** 0.0077*** 0.0022*** -0.0006 0.0050*** 0.0061***  
(0.0003) (0.0004) (0.0003) (0.0005) (0.0002) (0.0003) 

ˆDCL (HFT) t1 0.0111***  -0.0082***  -0.0087***   
(0.0012)  (0.0015)  (0.0008)  

ˆDCL (HFT) t1 × PE  0.0036*  0.0052**  -0.0141***  
 (0.0021)  (0.0026)  (0.0015) 

ˆDCL (HFT) t1 × Alternative  0.0137***  -0.0131***  -0.0070***  
 (0.0014)  (0.0017)  (0.0009) 

Effective spread t1 0.6992*** 0.6987*** 0.5696*** 0.5690*** 0.3140*** 0.3139*** 
(0.0022) (0.0022) (0.0030) (0.0030) (0.0034) (0.0034) 

Fixed effects       
15-min period fixed effects YES YES YES YES YES YES 
       
Adjusted R² 64.32% 64.23% 45.79% 45.82% 16.15% 16.17% 

This table reports the 2nd-stage OLS regression results of effective spreads by stock-venue combination on the DCL of HFTs, by 15-minutes period, for alternatively slow liquidity 
takers, algo liquidity takers, and HFT liquidity takers. The DCL considered is the DCL of HFTs as predicted in a 1st-stage regression in which the instruments are the 
contemporaneous DCL of HFTs in other stocks of the same size tercile and the DCL of HFTs for the same stock in the previous 15-minutes period. Dummies “PE” and 
“Alternative” indicate whether the observation stems from respectively the primary exchange or an alternative venue. The control variables include price range, traded volume, 
closing price, average trade size, and the lagged effective spread for that stock and trader group. Standard errors are reported in parentheses. ***, **, * indicate statistical 
significance at the 1%, 5%, and 10% level respectively. 
 


