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Does Speculation in Futures Markets Improve 
Commodity Hedging Decisions? 

 

Adrian Fernandez-Perez†, Ana-Maria Fuertes‡ and Joëlle Miffre§ 

Abstract 

This paper presents a comprehensive analysis of traditional versus selective hedging strategies in 
commodity futures markets. Traditional hedging aims solely to reduce spot price risk, while 
selective hedging also seeks to enhance returns by predicting movements in commodity futures 
prices. We construct selective hedges using a range of forecasting techniques, from simple 
historical averages to advanced machine learning models, and evaluate their performance based on 
the expected mean-variance utility of hedge portfolio returns. Out-of-sample results for 24 
commodities do not favor selective hedging over traditional hedging, as the former increases risk 
without delivering additional returns. These findings are robust across various hedge 
reformulations, expanding estimation windows, and rebalancing frequencies. 
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1. Introduction 

Although irrelevant in Modigliani-Miller frictionless capital markets, risk management is known 

to increase shareholder value in the presence of market imperfections because it can lower the cost 

of financial distress (Smith and Stulz, 1985; Stulz, 1996), increase the debt tax shield (Leland, 

1998), or reduce expected tax payments and agency costs (Smith and Stulz, 1985). Risk 

management is commonly implemented in practice (Rawls and Smithson, 1990; Géczy et al., 1997) 

as it is perceived to reduce cash flow variation, facilitate investment in growth opportunities, or 

increase sales and managerial ownership, inter alia. This article performs a comparative analysis 

of traditional and selective hedging strategies in commodity futures markets. The objective is to 

test empirically whether commodity firms are likely to achieve greater utility from traditional 

minimum-variance hedging that solely aims at covering spot price risk or from selective hedging 

with an additional speculative element that is constructed upon their market views. 

Selective hedging is endorsed theoretically as the equilibrium solution of rational expectations 

models of hedging (Anderson and Danthine, 1981, 1983; Stulz, 1984). It appears consistent with 

the risk management practices of commodity producers. For example, Adam and Fernando (2006) 

and Brown et al. (2006) argue that the hedge ratios of gold mining companies are too volatile to be 

explained by a pure hedging rationale. They must therefore contain a speculative component that 

hinges on predictions about the direction of the market. Likewise, Cheng and Xiong (2014) observe 

that the short futures positions of corn, cotton, soybeans and wheat producers move in sync with 

their futures prices, suggesting again some speculative trading based on current market conditions. 

Surveying the risk management practices of 6,896 firms across 47 countries, Bartram (2019) 

observes that corporations engage in speculation within their commodity derivatives trading 
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programs, which aligns with the notion that forecasting commodity price movements constitutes a 

competitive advantage to commodity firms’ risk management.  

Against this background, there is a dearth of empirical research on the relative merits of selective 

versus traditional hedging in practice. This article aims to fill in this gap. To do so, we compare the 

traditional minimum-variance hedging strategy that solely targets risk minimization and hence, 

assumes no futures price movement over the hedging horizon, and a wide spectrum of selective 

hedges that rely on diverse techniques to predict the futures return. We start by deploying a simple 

selective hedge where the futures return prediction is the historical average return. Next, we explore 

selective hedges that utilize futures return forecasts derived from autoregressive models (Cotter 

and Hanly, 2010, 2012), vector autoregressive models (Furió and Torró, 2020), combinations of 

univariate regression forecasts (Rapach et al., 2010), and style integration approaches similar to 

those developed by Brandt et al. (2009) and Barroso et al. (2022). Finally, we implement selective 

hedges based on cutting-edge machine learning (ML) forecasts to capture potential nonlinear 

relationships between commodity futures returns and a range of predictors (Fischer and Krauss, 

2018; Gu et al., 2020; Chen et al., 2023). To our best knowledge, selective hedges constructed from 

historical average returns, univariate regression forecast combinations, and ML-based forecasts 

represent novel contributions to the commodity risk management literature. By considering a broad 

spectrum of predictive models for commodity futures returns, we aim to equip the selective hedging 

framework with a diverse set of forecasts as inputs, giving it a fair chance to succeed. 

We implement the hedges on 24 commodities spanning various sectors (agriculture, energy, 

livestock, and metals). The effectiveness of the hedges is gauged in terms of the out-of-sample 

mean-variance utility gain of hedging versus no-hedging. Commodity by commodity, each 
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selective hedge is confronted with a traditional hedge and the statistical significance of differences 

in their expected utility gains is assessed via the McCracken and Valente (2018) test.  

The empirical findings suggest that selective hedging struggles to outperform traditional hedging 

in terms of expected utility gains. As a result, commodity producers are often better off assuming 

no changes in futures prices over the hedging horizon. The limited out-of-sample predictability of 

individual commodity futures returns hinders the ability of selective hedging to deliver superior 

utility gains: the speculative component tends to increase risk compared to traditional hedging, 

while failing to provide additional returns. This issue is further aggravated by transaction costs. 

These findings are reaffirmed by a range of robustness tests that consider alternative hedge ratio 

designs, time-varying risk aversion, expected utility gains over sub-samples, longer estimation 

windows to generate forecasts, long and short hedging strategies, different rebalancing frequencies, 

longer-dated futures contracts, and the hedging needs of a multi-commodity producer. 

The main takeaway from this paper is that, although selective hedging emerges as the optimal 

solution in theoretical models, it is challenging for commodity firms to obtain a higher utility from 

its practice compared to traditional hedging. Our study, therefore, strongly recommends that risk 

managers focus on hedging spot price risk without incorporating their market views into the 

strategy. Additionally, traditional hedging does not rely on return forecasts and is thus 

straightforward to implement, reinforcing its appeal. 

Our study speaks to the selective hedging literature that builds upon the theoretical models of 

Anderson and Danthine (1981, 1983) and Stulz (1984) with empirical implementations in Cotter 
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and Hanly (2010, 2012), Furió and Torró (2020) and Barroso et al. (2022).1 Our main finding on 

the difficulty of significantly and reliably outperforming traditional hedging aligns also with a 

selective hedging literature that documents the very small increase in firm value accrued from 

selective hedging (Adam and Fernando, 2006; Brown et al., 2006) and warns against the perils of 

poorly structured selective hedging programs (Chalmin, 1987; Pirrong, 1997; Carter et al., 2021; 

Westgaard et al., 2022).2  

Moreover, our work contributes to the literature on the time-series predictability of individual 

commodity returns. Bessembinder and Chan (1992) provide evidence that several predictors of 

stock and bond returns have in-sample predictive content for commodity futures returns, while 

Bjornson and Carter (1997) extend this evidence to additional predictors and agricultural 

commodity returns. Both papers argue that the observed predictability aligns with conditional 

pricing models. In contrast, the evidence on out-of-sample predictability of commodity returns is 

less conclusive. Hollstein et al. (2021) contend that business cycle and commodity characteristics 

can predict individual commodity returns. However, Ahmed and Tsvetanov (2016) and Guidolin 

and Pedio (2021) assert that the predictability of individual commodity returns is, at best, very low, 

 
1 The empirical studies on selective hedging in commodity markets focus solely on the energy 
sector, and their goal is to examine the impact on the hedging outcome of the assumed risk aversion 
level, the choice of utility function or seasonality (Cotter and Hanly, 2010, 2012; Furió and Torró, 
2020). More recently, Barroso et al. (2022) study the hedging problem of a global equity investor 
exposed to exchange rate risk and propose a selective hedging solution that predicts the currency 
expected return by optimally integrating currency characteristics. 
2 For example, Chalmin (1987) links Cook Industries’ 1978 bankruptcy to selective hedging and 
Pirrong (1997) attributes the $1.3 billion losses of Metallgesellschaft in 1993 to speculation in 
crude oil futures. Carter et al. (2021) examines Queensland Sugar Limited’s losses, concluding that 
selective hedging was the culprit. Westgaard et al. (2022) examine 14 commodity trading disasters 
which include those by China Aviation Oil (Singapore) or the State Reserves Bureau (China) where 
selective hedging led to dramatic losses. In 2022, Tsingshan Holding Group lost $8 billion on 
suspicion of selective hedging in the nickel futures markets (The Economist, 2022).  
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while Wang and Zhang (2024) find mixed evidence using sophisticated machine learning methods. 

Using a zero-return (no-predictability) expectation as the benchmark – which is appropriate for this 

study as it aligns with the assumptions implicit in traditional hedging – we confirm that individual 

commodity futures returns exhibit weak out-of-sample predictability. 

The rest of the article unfolds as follows. Sections 2 and 3 introduce the methodology and data, 

respectively. Section 4 discusses the expected utility gains of the various hedges and explains the 

failure of selective hedging. Section 5 presents robustness checks and Section 6 concludes.  

2. Hedging Framework 

2.1. Optimal hedging under mean-variance utility 

We consider the canonical problem of a single commodity producer that builds a hedge at time 

t and rebalances it at 𝑡 ൅ 1. As in prior studies, we abstract from uncertainty in the producer’s 

output. Following the theoretical framework of hedging laid out by Anderson and Danthine 

(1981), we assume a mean-variance utility function for the commodity firm formalized as 

𝑈ሺ∆𝑝௧ାଵሻ ൌ 𝐸ሺ∆𝑝௧ାଵሻ െ
1
2

 𝛾 𝑉𝑎𝑟ሺ∆𝑝௧ାଵሻ,                                     ሺ1ሻ 

where ∆𝑝௧ାଵ ൌ ∆𝑠௧ାଵ െ ℎ௧∆𝑓௧ାଵ is the time t to t+1 logarithmic return of the hedge portfolio, 

∆𝑠௧ାଵ is the spot return, ∆𝑓௧ାଵ is the futures return, ℎ௧ is the optimal hedge ratio that defines 

the number of short futures positions per unit of expected output or spot position, and the 

parameter 𝛾 is the coefficient of risk aversion of our representative hedger.  

The maximization of the hedger’s expected utility conditional on the information set available 

at time t, denoted Ω௧, gives the optimal selective hedge ratio as  

ℎ௧ ൌ
ఙೞ೑,೟

ఙ೑,೟
మ െ

ா೟൫∆𝑓௧ାଵหΩ௧൯
ఊఙ೑,೟

మ ൌ  𝛽௧ െ
ா೟൫∆𝑓௧ାଵหΩ௧൯

ఊఙ೑,೟
మ ,                               ሺ2ሻ  
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where 𝜎௦௙,௧  is the covariance between spot and futures returns, 𝜎௙,௧
ଶ  is the futures return 

variance, and 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ is the expected futures return from t to t+1 conditional on Ω௧.  

The selective hedge is made up of a minimum-variance component, 𝛽௧ , and a speculative 

component, 
ா೟൫∆𝑓௧ାଵหΩ௧൯

ఊఙ೑,೟
మ . Thus, a commodity producing firm who predicts a rise in the futures 

price over the hedging horizon (𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൐ 0) shall take less short futures positions than 

under pure hedging, ℎ௧ ൏ 𝛽௧. If the firm anticipates a fall in the futures price (𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൏

0), the number of short futures contracts will be higher than under pure hedging, ℎ௧ ൐ 𝛽௧. The 

utility-maximizing hedge ratio collapses to the minimum-variance hedge ratio, ℎ௧ ൌ 𝛽௧, if the 

hedger is infinitely risk averse, 𝛾 ൌ ∞, or the futures price is assumed to follow a pure random 

walk, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ 0. Using a window of past L observations at each hedge formation time 

t, we operationalize 𝛽௧ as the OLS slope coefficient from a regression of spot returns on futures 

returns (Ederington, 1979), which we refer to as the minimum variance, or MinVar, hedge. 

Other approaches for the traditional hedge ratio are considered in the robustness tests section. 

2.2. Competing selective hedging strategies 

Selective hedging requires a forecast of the futures return, as formalized in Equation (2). A simple 

approach is to use the historical average (HistAve) of the futures return, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ

ଵ

௅
∑ ∆𝑓௧ି௝
௅ିଵ
௝ୀ଴ , based on the assumption that the futures price follows a random walk with drift. To 

our knowledge, this form of selective hedging has not been explored in prior studies. In line with 

Cotter and Hanly (2010, 2012), we also utilize the autoregressive (AR) selective hedge where the 

forecast is given by 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝛼ො଴,௧ ൅ 𝛼ොଵ,௧∆𝑓௧  with 𝛼ො଴,௧  and 𝛼ොଵ,௧  representing the model 

parameters which are estimated at each time t using historical futures returns ሼ∆𝑓௧ି௝ሽ௝ୀ଴
௅ିଵ. Building 

on Furió and Torró (2020), we extend this to a vector autoregressive (VAR) selective hedge, 
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utilizing a futures return forecast derived from a bivariate VAR(p) model fitted to historical futures 

returns and roll yields. These selective hedging strategies rely on a limited information set, Ω௧. 

Next, we implement selective hedges utilizing a larger information set, Ω௧ , with K predictors. A 

novel approach involves the equal-weight combination (EWC) of univariate regression forecasts, 

as advocated by Rapach et al. (2010) for equities and Hollstein et al. (2021) for commodities. 

Specifically, the futures return forecast is computed as 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝝎௧
ᇱ∆𝒇෠௧ାଵwhere 𝝎௧

ᇱ ൌ

ቀ
ଵ

௄
, … ,

ଵ

௄
ቁ , and ∆𝒇෠௧ାଵ ൌ ൫∆𝑓መଵ,௧ାଵ, … ,∆𝑓መ௄,௧ାଵ൯

ᇱ
 with ∆𝑓መ௞,௧ାଵ ൌ 𝑎ො଴,௧ ൅ 𝑎ොଵ,௧𝑧௞,௧  denoting the 

individual forecasts conditioned upon each of the predictors 𝒛௧ ൌ ൫𝑧ଵ,௧ , 𝑧ଶ,௧ , … , 𝑧௄,௧ ൯′.  

Inspired by the optimal currency overlay strategy proposed by Barroso et al. (2022), we implement 

a selective hedge based on the seminal style-integration framework of Brandt et al. (2009) which 

blends multiple asset characteristics to proxy for expected returns. The hedger solves the problem 

max
𝝎೟

𝐸௧ൣ𝑈൫∆𝑝௧ାଵ
௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ห௧൧ ൌ max

𝝎೟
𝐸௧ሾ𝑈ሺ∆𝑠௧ାଵ െ ሺ𝛽௧ െ 𝝎௧′𝒛௧ሻ∆𝑓௧ାଵሻ|௧ሿ ,        ሺ3ሻ 

where ∆𝑠௧ାଵ, ∆𝑓௧ାଵ, and ∆𝑝௧ାଵ
௄ିூ௡௧௘௚௥ denote the spot, futures and K-Integr hedge returns from time 

t to 𝑡 ൅ 1 for the commodity in question. 𝛽௧ denotes the MinVar hedge ratio of the commodity 

estimated at time t, 𝝎௧  is a 𝐾 ൈ 1 vector of loadings estimated at time t, and 𝒛௧ ൌ

൫𝑧ଵ,௧ , 𝑧ଶ,௧ , … , 𝑧௄,௧ ൯′ are K predictors. For each predictor k = 1, …, K, we standardize the time-series 

data {𝑧௞,௧ି௝ሽ௝ୀ଴
௅ିଵ to have a mean of zero and a standard deviation of one. We adopt a tracking error 

constraint 𝜎൫∆𝑝௧ାଵ
ெ௜௡௏௔௥ െ ∆𝑝௧ାଵ

௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ ൑ 𝜍, where 𝜎ሺ∙ሻ denotes the standard deviation, 

∆𝑝௧ାଵ
ெ௜௡௏௔௥ is the traditional MinVar hedge return, and 𝜍 is the tracking error threshold. This ensures 

that the K-Integr portfolio does not deviate substantially from the benchmark MinVar portfolio. 

The K-Integr selective hedge represents a novel approach in the context of commodity hedging.  
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Lastly, by allowing for complex nonlinear relationships between candidate predictors and target 

futures returns, ML methods can be a fruitful approach to construct selective hedges. The ML 

forecast of the futures return is generated as 𝐸௧ሺ∆𝒇௧ାଵ|Ω௧ሻ ൌ 𝑔∗ሺ𝒁௧ሻ where 𝑔∗ሺ∙ሻ is the nonlinear 

function implicit in the ML method used. We deploy the ML methods with pooled data across 

commodities to increase the sample size. Accordingly, the 𝑁 ൈ 1  vector ∆𝒇௧ାଵ represents the 

futures return at time t+1 for each of the N commodities, while 𝒁௧ contains the values of the K 

predictors, ൫𝑧ଵ,௧ , 𝑧ଶ,௧ , … , 𝑧௄,௧ ൯, pooled across commodities. We standardize the time-series data for 

each commodity prior to pooling. Consistent with the empirical ML literature (Fischer and Krauss, 

2018; Gu et al., 2020; Chen et al., 2023; Rad et al., 2023), the nonlinear function 𝑔∗ሺ∙ሻ  is 

implemented using supervised ML algorithms. Random forests (RF) are used in the main analysis, 

while deep neural networks (DNN), either alone or in combination with long-short term memory 

(LSTM) units, are employed in the robustness section. To the best of our knowledge, these ML 

hedges are novel in the risk management literature. Table 1 lists all the selective hedging strategies.  

[Insert Table 1 around here] 

2.3. Hedging effectiveness 

We assess the effectiveness of the hedging strategies according to the expected utility gain, defined 

as the difference in expected utility between the hedge portfolio and the unhedged spot position 

Δ𝐸൫𝑈ு௘ௗ௚௘൯ ൌ 𝐸൫𝑈ு௘ௗ௚௘൯ െ 𝐸൫𝑈ௌ௣௢௧൯,                                           ሺ4ሻ 

where 𝑈ሺ∙ሻ represents the mean-variance utility function from Equation (1). By adopting the 

expected utility gain instead of other portfolio performance metrics, such as the Sharpe ratio, we 

can consistently measure hedging effectiveness using the same risk aversion assumption as in the 

hedge ratio construction (Equation (2)). Risk aversion is set to a constant value of γ = 5 in the main 

analysis, while a time-varying 𝛾௧ is used in the robustness tests. 
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To assess the statistical significance of the difference in hedging effectiveness between the MinVar 

and selective hedging (SH) strategies, we employ the McCracken and Valente (2018) test with the 

null hypothesis𝐻଴:Δ𝐸൫𝑈஽௜௙௙൯ ൌ Δ𝐸ሺ𝑈ௌுሻ െ Δ𝐸ሺ𝑈ெ௜௡௏௔௥ሻ ൑ 0  and the alternative hypothesis 

𝐻ଵ:Δ𝐸൫𝑈஽௜௙௙൯ ൐ 0 where Δ𝐸ሺ𝑈ሻ is the expected utility gain from Equation (4). The inference is 

based on the stationary bootstrap method of Politis and Romano (1994). Using a moving block 

bootstrap approach as in Patton et al. (2009), we generate 𝐵 ൌ 500 artificial samples of spot 

returns, futures returns and predictors, denoted as ሼ∆𝑠௧,௕ሽ௧ୀଵ
் , ሼ∆𝑓௧,௕ሽ௧ୀଵ

் , ሼ𝒛௧,௕ሽ௧ୀଵ
் , for 𝑏 ൌ 1, … ,𝐵. 

The demeaned distribution ൛∆𝑈஽௜௙௙,௕
∗ ൟ

௕ୀଵ

஻
 provides the bootstrap p-value for the test. 

3. Data  

The empirical analysis is based on weekly (Monday) spot prices and futures settlement prices for 

24 commodities spanning the agriculture, energy, livestock, and metal sectors, from Barchart 

(previously Commodity Research Bureau, CRB) and LSEG Datastream, respectively. The spot 

returns are measured as weekly changes in logarithmic (log) spot prices. Assuming full 

collateralization of futures positions, the futures returns are calculated as weekly log price changes 

plus the risk-free rate, 𝛥𝑓௧ାଵ ൌ ൫𝑓௧ାଵ,ெ െ 𝑓௧,ெ൯ ൅ 𝑟ி,௧ାଵ where 𝑓௧,ெ denotes the week t log price of 

the futures contract with maturity M, and 𝑟ி,௧ାଵ represents the 1-month U.S. Treasury bill rate, 

serving as a proxy for the risk free rate. We create time-series of futures prices per commodity 

using the front-end contract until the maturity month when we roll to the second-nearest contract. 

The summary statistics for spot and futures returns in Table 2 confirm various stylized facts: 

negligible expected returns, and large cross-sectional heterogeneity in spot price risk and basis risk 

as conveyed by the return variance and spot-futures correlation, respectively. 

[Insert Table 2 around here] 
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Additionally, we collect weekly data on 𝐾 ൌ 37 variables used as predictors in the EWC, K-Integr, 

and ML selective hedges. These variables pertain to two groups. The first group contains 10 

commodity futures characteristics identified in the literature as relevant for their pricing ability, 

primarily on a cross-sectional basis. The second group includes 27 financial, macroeconomic, and 

sentiment indicators that reflect the overall state of the economy, capturing financing costs and 

short-term imbalances between commodity demand and supply. Appendix A offers a detailed 

description of each of the 37 predictive variables, including data sources and key references. 

4. Main Empirical Results 

4.1. Commodity hedge ratios 

The hedging strategies are implemented sequentially out-of-sample (OOS) to simulate the real-

time hedging decisions of a representative single-commodity producer. At each sample week t, the 

covariance, 𝜎௦௙,௧, variance, 𝜎௙,௧
ଶ , and the futures return forecast, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ, are obtained from a 

𝐿-length window of past data to construct the hedge ratio, Equation (2). The hedge portfolio is held 

from week t to week t+1, after which the estimation window is moved forward by one week to 

form a new hedge portfolio at week t+1, and this process continues iteratively. 

In our primary analysis, hedges are rebalanced weekly using rolling L-length windows of historical 

data (L = 520 weeks) for parameter estimation. For the VAR(p) selective hedge, the optimal lag 

order p (with a maximum of 12) is determined by minimizing the Akaike Information Criterion 

(AIC) in each rolling window, following Furió and Torró (2020). For the K-Integr selective hedge, 

we begin by applying a strict tracking error threshold of ς = 2% p.a., as in Barroso et al. (2022). 

Following the approach of Gu et al. (2020), the RF forecasts are obtained as follows. First, we 

divide the sample into a training set, consisting of the first 60% of the L-week estimation window, 
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and a validation set, comprising the most recent 40% of the window. Within each set, we pool 

across commodities the standardized time-series for the K predictors and the target futures returns. 

Next, we optimize the RF for each of various hyperparameter3 combinations on the training set and 

evaluate its performance using the mean squared error (MSE) on the validation set. The 

hyperparameters yielding the lowest MSE are then used to optimize the RF over the entire 

estimation sample (training and validation). This optimized RF is subsequently employed to 

construct the OOS futures return forecast. The RF model is updated annually, with the first 

optimization carried out in the last week of September 2013 using the initial 520-week window, 

followed by updates on the last week of each September. 

Figure 1 illustrates the evolution of the resulting traditional and selective hedge ratios for cocoa. 

Figure 2 presents the standard deviations of the hedge ratios on average across commodities. The 

MinVar hedge ratio is rather stable as suggested by a standard deviation of 4% on average across 

commodities in Figure 2. The selective hedge ratios are far more volatile and prone to abrupt 

changes (c.f., Figure 1), especially those that hinge on RF forecasts (standard deviation of 56% on 

average in Figure 2), VAR forecasts (54%) and AR forecasts (32%) with the HistAve and K-Integr 

forecasts providing the least volatile selective hedge ratios (16% and 12%, respectively). The 

relatively low volatility of the K-Integr hedge ratios is not surprising given the stringent tracking 

error constraint. Naturally, more volatile hedge ratios will be penalized by higher rebalancing costs.  

[Insert Figures 1 and 2 around here] 

4.2. Hedging effectiveness  

 
3 The number of trees, S, is set to 300. Hyperparameters include the number of predictors per 
simulation, 𝑅 ൌ  ሼ3, 5, 10, 20, 30ሽ,  and the maximum number of branches or tree depth, D ൌ
ሼ1, 2, 3, 4, 5, 6ሽ.  
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Table 3 illustrates the hedging effectiveness of each commodity, as derived from Equation (4). 

Table 3, Panel E shows that the MinVar and K-Integr hedges achieve the highest average expected 

utility gains, at 16.27% per annum (p.a.) and 16.61% p.a., respectively. In contrast, the HistAve, 

EWC, AR, VAR, and RF hedges demonstrate lower hedging effectiveness, with average expected 

utility gains of 15.73%, 15.72%, 13.31%, 9.22%, and 7.28% p.a., respectively. 

[Insert Table 3 around here]  

Table 3 also includes the p-values from the McCracken and Valente (2018) test, which evaluates 

the difference in expected utility gains between selective and traditional hedging strategies. The 

generally sizeable p-values indicate that selective hedging often does not provide superior expected 

utility gains compared to the MinVar hedge. Given the simplicity of traditional hedging, along with 

the limited evidence in favor of selective hedging, we advise commodity producers to focus on 

hedging spot price risk without incorporating their market views into their hedging program. 

Incorporating transaction costs into the analysis, we calculate the net returns of the hedge portfolios 

as ∆𝑝௧ାଵ ൌ ∆𝑠௧ାଵ െ ℎ௧∆𝑓௧ାଵ െ  หℎ௧ െ ℎ௧ିଵ𝑒∆௙೟ห ൈ 𝑇𝐶 using the transaction cost (TC) estimate of 

8.6 basis points from Marshall et al. (2012). We then compute the net expected utility gain for each 

strategy using Equation (4). The results, presented in Table 3, Panel E, show that transaction costs 

have a minimal impact on the expected utility gain of the MinVar hedge, reducing it by only 0.05% 

p.a. In contrast, transaction costs decrease the expected utility gains of the HistAve, EWC, K-

Integr, RF, AR, and VAR hedges by 0.08%, 0.19%, 0.32%, 0.51%, 1.05%, and 1.61% p.a., 

respectively. Thus, the consideration of transaction costs reinforces our previous finding. 

4.3. Understanding the hedging effectiveness of traditional hedging 
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Next, we aim to understand why selective hedging does not significantly enhance the hedger’s 

utility. To do this, we adopt the 𝑅ைைௌ
ଶ  metric from Campbell and Thompson (2008) to assess the 

statistical accuracy of forecasts under a mean squared error loss function, defined as follows 

𝑅ைைௌ
ଶ ൌ 1 െ

∑ ൫∆𝑓௧ାଵ െ ∆𝑓෢௧ାଵ
ௌு൯

ଶ
௧

∑ ൫∆𝑓௧ାଵ െ ∆𝑓෢௧ାଵ
ெ௜௡௏௔௥൯

ଶ
௧

ൌ 1 െ
∑ ൫∆𝑓௧ାଵ െ ∆𝑓෢௧ାଵ

ௌு൯
ଶ

௧

∑ ∆𝑓௧ାଵ
ଶ

௧
,                   ሺ5ሻ 

where ∆𝑓෢௧ାଵ
ெ௜௡௏௔௥ ൌ 0 represents the no-predictability assumption (zero expected commodity 

futures return) underlying the traditional hedging strategy, and ∆𝑓෢௧ାଵ
ௌு  is the forecast used to 

determine the speculative component in Equation (2) and to form the selective hedge.4 A value 

𝑅ைைௌ
ଶ ൑ 0 indicates that the forecasts are not more accurate than the benchmark, while 𝑅ைைௌ

ଶ ൐ 0 

suggests they are more accurate. We test the statistical significance of these findings using the 

Diebold and Mariano (1995) test for the null hypothesis 𝐻଴:𝐸ሺ𝑑௧ሻ ൑ 0 against 𝐻ଵ:𝐸ሺ𝑑௧ሻ ൐ 0 

where 𝑑௧ ൌ ∆𝑓௧ାଵ
ଶ െ ൫∆𝑓௧ାଵ െ ∆𝑓෢௧ାଵ

ௌு൯
ଶ

 is the squared error differential. The evidence presented in 

Table 4 indicates limited predictability: the commodity futures return forecasts used in the selective 

hedges are not more accurate than the zero expected return assumed in the MinVar hedge. 

[Insert Table 4 around here] 

To investigate whether selective hedging captures additional returns beyond traditional hedging, 

we estimate spanning regressions of the selective hedge portfolio returns on the MinVar hedge 

portfolio returns. The regression intercept (alpha) reflects the extra return from incorporating the 

hedger’s view of the commodity futures market into the hedging strategy. Table 5 presents the 

annualized alphas along with Newey-West adjusted t-statistics. While the K-Integr and RF hedges 

 
4 The futures return forecast that is implied from the K-Integr selective hedge, Equation (3), is 
𝝎௧
ᇱ𝒛௧ ൌ 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൫𝛾 𝜎௙,௧

ଶ ൯⁄ , which can be rewritten as 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝛾 𝜎௙,௧
ଶ ሺ𝝎௧

ᇱ𝒛௧ሻ. 
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demonstrate some success with several positive alphas, the overall statistical significance of the 

alphas is, at best, very weak. This aligns with the limited predictability that we documented earlier, 

reinforcing the evidence that selective hedging struggles to consistently capture additional returns. 

[Insert Table 5 around here] 

How does the risk reduction ability of selective hedging compare with that of traditional hedging? 

To address this question, we compare the variance of the selective and traditional hedge portfolio 

returns. Following the approach of Wang et al. (2015), we use the Diebold and Mariano (1995) test 

to assess statistical significance. The null hypothesis is 𝐻଴:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெ௜௡௏௔௥ሻଶ൧ ൑ 0 and 

the alternative hypothesis is 𝐻ଵ:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெ௜௡௏௔௥ሻଶ൧ ൐ 0  where ሺ∆𝑝௧
ௌுሻଶ  and 

ሺ∆𝑝௧
ெ௜௡௏௔௥ሻଶ are the squared returns of the selective and traditional hedge portfolios, respectively.  

Table 6 presents the annualized hedge portfolio variances alongside with the p-values from the 

Diebold and Mariano (1995) test. The findings underscore that the MinVar hedge portfolio, with 

an average variance of 3.37% p.a. across commodities, provides the most effective risk reduction. 

In contrast, selective hedge portfolios exhibit higher variances, ranging from 3.45% (K-Integr 

hedge) to 8.46% (RF hedge) p.a. Moreover, the small p-values indicate that selective hedging 

substantially increases risk compared to traditional hedging.5 Thus, the primary goal of covering 

the risk of the spot position is undermined by selective hedging. Altogether, the combination of 

return benefits that are, at best, marginal (as shown in Table 5) and elevated risk (Table 6) renders 

selective hedging an unattractive and potentially hazardous strategy for commodity producers.  

 
5 We evaluated downside risk of the various hedge portfolios using maximum drawdown and 1% 
Gaussian Value at Risk (VaR) metrics. The MinVar hedge had the lowest maximum drawdown 
(11.67%) and least negative 1% VaR (-4.78%) on average across commodities. In contrast, the 
selective hedges had maximum drawdowns between 11.92% and 22.11%, with 1% VaR values 
ranging from -8.75% to -4.90%. 



16 
 

[Insert Table 6 around here] 

There is an exceptional commodity, natural gas, for which selective hedging (with the HistAve and 

EWC forecasts) improves upon the traditional hedging effectiveness significantly at the 5% level 

as borne out by the expected utility gains (Table 3). The increase in expected utility stems from the 

significant return capture of the selective hedges (Table 5) for the same level of risk (Table 6).6  

While selective hedging is theoretically optimal, its practical effectiveness compared to traditional 

hedging is challenging to achieve. This is primarily because it demands more accurate forecasts of 

commodity futures returns than the zero-return assumption that underlies traditional hedging. As 

the evidence shows, since the higher risks incurred are not accompanied by a significant increase 

in returns, selective hedging often fails to provide added value for commodity producers. Hence, 

we recommend that commodity producers adhere to the simpler traditional hedging approach.  

5. Robustness Tests  

We now modify elements of the empirical design to reassess the effectiveness of selective versus 

traditional hedging. Each modification alters one aspect, holding all else constant. For brevity, we 

present average results across commodities, with disaggregated results available upon request. 

5.1. Alternative designs of the traditional hedge ratio  

According to the theoretical framework developed by Anderson and Danthine (1981), the first 

component of the quadratic utility-maximizing hedge ratio, 𝛽௧ in Equation (2), is the traditional 

 

6 The natural gas industry has undergone a dramatic transformation during the sample period 
through the shale gas revolution that increased supply and induced a downward trend in prices. As 
shown in Table 2, by contrast with all other commodities, the expected return of natural gas futures 
contracts is not negligible but a significantly negative -33.62% p.a. which is more difficult to 
reconcile with the zero-return expectation, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ 0, that underlies the traditional hedge.  
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minimum variance hedge ratio. This ratio depends on two (co)variance parameters, 𝜎௦௙,௧ and 𝜎௙,௧
ଶ . 

Since Ederington’s (1979) seminal work, linear OLS regression has been widely employed to 

consistently estimate 𝛽௧ which is used as the MinVar hedge ratio in our main analysis. 

Wang et al. (2015) compare the naïve one-to-one hedge ratio, which serves as a proxy for 𝛽௧ under 

the assumption of no basis risk (𝜎௦௙,௧ ൌ 𝜎௙,௧
ଶ ሻ, with various estimates of the minimum-variance 

hedge ratio 𝛽௧. Their analysis shows that, in an out-of-sample setting, the risk reduction provided 

by the naïve one-to-one hedge ratio is difficult to surpass using estimated minimum variance hedge 

ratios, largely due to estimation error and model misspecification. We now operationalize 𝛽௧ in 

additional ways: (a) using the one-to-one hedge ratio, and (b) through various refinements of the 

OLS regression model, including the bivariate VAR model, bivariate VEC model, bivariate DCC-

GARCH model, bivariate BEKK-GARCH model, and Markov-switching regression model.7  

Table 7 presents the expected utility gains for both traditional and selective hedges based on the 

different specifications of 𝛽௧ .  The evidence that selective hedging struggles to consistently 

outperform traditional hedging remains compelling. The expected utility gain of traditional 

hedging is 16.33% p.a. on average across commodities and specifications of 𝛽௧. In comparison, the 

corresponding selective hedges show expected utility gains of 16.66% (K-Integr), 15.62% 

(HistAve), 15.60% (EWC), 13.48% (AR), 9.62% (VAR), and 7.15% (RF) p.a. also on average. 

[Insert Table 7 around here] 

 

7 Specifically, we estimate a bivariate VAR(1,1) model for spot and futures returns, a bivariate 
VEC(1,1) model, a bivariate DCC-GARCH(1,1) model, a  bivariate BEKK-GARCH(1,1), and the 
Markov regime-switching OLS hedge ratio that allows for high versus low volatility regimes.  
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Additionally, Table 7 shows that the expected utility gain of the MinVar hedge (16.27%) is 

comparable to that of the one-to-one hedge (15.97%). Unreported results, based on McCracken and 

Valente’s (2018) p-values for the null hypothesis 𝐻଴:Δ𝐸ሺ𝑈ெ௜௡௏௔௥ሻ ൑ Δ𝐸ሺ𝑈ை௡௘ି௧௢ିை௡௘ሻ versus 

the alternative hypothesis 𝐻ଵ:  Δ𝐸ሺ𝑈ெ௜௡௏௔௥ሻ ൐ Δ𝐸ሺ𝑈ை௡௘ି௧௢ିை௡௘ሻ , reveal that, for most 

commodities, the MinVar hedge does not significantly outperform the naïve one-to-one hedge. 

Therefore, consistent with the findings of Wang et al. (2015), commodity producing firms might 

favor the simplicity of the one-to-one hedging strategy. 

5.2. Alternative specifications of the selective hedging strategies 

To give selective hedging a fair opportunity to outperform traditional hedging, we explore 

alternative designs for the selective hedge ratios. First, we examine variations of the EWC selective 

hedge ratio employed thus far with K=37 predictors. We apply the EWC selective hedge using only 

the 10 commodity-specific characteristics that are well established for their pricing ability, as well 

as a narrower subset of three asset characteristics – roll yield, momentum, and value – highlighted 

by Barroso et al. (2022). It turns out that narrowing the information set reduces the expected utility 

gain of the EWC selective hedge, as shown in the “K=10” and “K=3” columns of Table 8, Panel 

A. Hence, the challenge of consistently surpassing traditional hedging remains. 

[Insert Table 8 around here] 

Drawing on the stock return forecasting literature (Rapach et al., 2010; Rapach and Zhou, 2022), 

we deviate from the equal-weighting approach used in the EWC hedge by exploring alternative 

methods to combine univariate regression forecasts. Specifically, we weigh the forecasts by the 

inverse of their past mean squared error (MSE) or employ an Elastic Net (E-Net) algorithm; see 

e.g. Hollstein et al. (2021) and Rapach and Zhou (2022). Appendix B provides further details on 

the MSE and E-Net approaches. As shown in Table 8, Panel A, the EWC selective hedge remains 
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highly competitive against the MSE and E-Net variants. Therefore, consistently outperforming the 

MinVar hedge remains a challenge with these two approaches as well. 

Following Neely et al. (2014), we extract the principal component(s) from the full set of predictors 

(𝐾 ൌ 37) and deploy two selective hedges which harness the predictive power of the first and first-

two principal components, respectively. The expected utility gains of these hedges, denoted PC1 

and PC1-2 in Table 8, Panel A, are not superior to those from traditional hedging either. 

Next, we explore several variants of the K-Integr selective hedge, which emerged in our main 

analysis as the closest competitor to the traditional MinVar hedge. We begin by using the two 

subsets of commodity characteristics (K=10 and K=3) as predictors. We then incorporate Elastic 

Net (E-Net) regularization into the objective function, as detailed in Appendix C. Additionally, we 

experiment with a softer tracking error constraint, 𝜍 ൌ ሼ 5%, 10%ሽ, which allows the K-Integr 

hedge to deviate more from the MinVar hedge than the former 𝜍 ൌ 2%  in Table 3, thereby 

increasing the role of speculation. As shown in Table 8, Panel B, the expected utility gain of these 

K-Integr variants is comparable to that of the MinVar hedge. This finding underscores the 

challenge of achieving strong and consistent outperformance with selective hedging compared to 

the simpler MinVar hedge. Notably, when we increase the tracking error constraint, 𝜍, to allow for 

a greater role of speculation, the expected utility gain of the K-Integr hedge decreases. 

We also examine a variant of the K-Integr hedge that, aiming to enhance the estimation efficiency 

of the 𝐾 ൈ 1 vector of loadings, 𝝎௧, involves pooling across commodities the standardized time-
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series of 𝐾 predictors.8  The resulting estimate 𝝎ෝ௧  utilizes a panel dataset, as opposed to the 

individual estimates 𝝎ෝ௜,௧ , 𝑖 ൌ 1, . . . ,𝑁, outlined in Section 2 for the commodity-by-commodity K-

Integr implementation. The results in the last column of Table 8, Panel B, indicate that the expected 

utility gain of the pooled K-Integr hedge averages 16.63% p.a. across commodities, which is nearly 

identical to the 16.61% p.a. average expected utility gain from the earlier K-Integr hedges shown 

in Table 3. Overall, the findings from the various K-Integr selective hedges suggest that it is 

generally not advantageous for commodity producers to abandon traditional hedging practices. 

Next, we implement additional selective hedges that leverage forecasts from ML methods. To 

maintain consistency, we first apply RF using smaller subsets of commodity characteristics (K=10 

or K=3) as predictors. Second, following Fischer and Krauss (2018), Gu et al. (2020), Chen et al. 

(2023), and Rad et al. (2023), we implement deep neural networks (DNN) with two hidden layers 

(DNN2, using 32 and 16 nodes per layer) and three hidden layers (DNN3, with 32, 16, and 8 nodes). 

These DNN architectures are then augmented with 4 or 8 long-short term memory (LSTM) units, 

designed to capture long-run nonlinear predictability patterns.9 Table 8, Panel C, presents the 

results. None of these advanced selective hedges achieves a higher expected utility gain than the 

 
8 We deployed the pooled K-Integr hedge with cross-sectional standardization of commodity-
specific predictors, following Brandt et al. (2009), and applied double (cross-section and time) 
standardization, yielding expected utility gains of 15.97% p.a. and 15.84% p.a., respectively. In all 
cases, the time-series of financial, economic, and sentiment predictors were also standardized. 
These results underscore that selective hedging struggles to significantly outperform the traditional 
MinVar hedging strategy.  
9 Following similar steps to the RF method described in Section 4.1, these ML methods are 
deployed with a maximum of 100 epochs, a batch size of 20% of the training sample, a patience 
level of 5, and learning rates of 0.001 or 0.01. Optimization is performed with the Adam optimizer 
and the Huber loss function (transition at the 99.9% quantile). Overfitting is controlled using early 
stopping, a 5% dropout layer, batch normalization, an ensemble of 500 networks, and l2 
regularization set at 10⁻⁵ or 10⁻³. The number of LSTM units is based on the specifications in Chen 
et al. (2023) and Rad et al. (2023). 
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MinVar hedge, which is unsurprising given that the (unreported) 𝑅ைைௌ
ଶ  measures for the ML 

forecasts are generally negative or zero, indicating no improvement over the zero-return forecast 

benchmark. This finding aligns with the mixed results from Wang and Zhang (2024) regarding the 

predictive ability of ML methods for individual commodity futures returns and echoes Cakici et al. 

(2023), who question the effectiveness of ML in predicting stock returns.10  

Since Bates and Granger's (1969) seminal paper, combining forecasts from different methods has 

been widely advocated to reduce out-of-sample mean squared error. Following this approach, we 

deploy a selective hedge (denoted Comb) that uses an equal-weighted combination of competing 

forecasts: HistAve, AR, VAR, EWC, K-Integr and RF. Although the Comb selective hedge shows 

some improvement, the traditional (MinVar) hedge remains difficult to beat. 

Next, we implement a selective hedge based on futures return forecasts derived from Fama-

MacBeth cross-sectional (CS) predictive regressions. First, we estimate each week the slopes from 

cross-sectional regressions of the commodity futures return at week t on commodity-specific 

characteristics at week t-1. The estimated cross-sectional slopes are then averaged over the 10 years 

preceding hedging decisions and these averages are used, alongside the most recent characteristics, 

to forecast commodity futures returns one week ahead. As shown in Table 8, Panel D, the CS 

selective hedge fails to outperform the MinVar hedge, regardless of the characteristics used. 

 
10 We compiled a comprehensive set of 140 predictors by combining financial, macroeconomic, 
and sentiment indicators used in the ML-based selective hedges (detailed in Appendix A, Panel B) 
with the FRED-MD variables from McCracken and Ng (2016), sourced from Prof. McCracken’s 
website. From this extensive dataset, we extract eight principal components and combine them 
with 10 commodity-specific characteristics (Appendix A, Panel A). The expected utility gains for 
the different ML-based hedges either decrease or increase minimally, and thus they are still unable 
to significantly outperform the MinVar hedge. 
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Lastly, under the assumption that the futures curve remains unchanged, the roll yield today lends 

itself as a naïve forecast of the expected futures return. Thus, we construct a Naïve Basis selective 

hedge using the forecast 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ
ோ௢௟௟ ௬௜௘௟ௗ೟

஽೟
ൈ 7 where 𝑅𝑜𝑙𝑙 𝑦𝑖𝑒𝑙𝑑௧ ൌ 𝑓௧,ଵ െ 𝑓௧,ଶ, with 𝑓௧,ଵ 

and 𝑓௧,ଶ representing the log prices of the front and second-nearest contracts, respectively, and 𝐷௧ 

the number of calendar days between their maturities. As shown in the last column of Table 8, 

Panel D, the Naïve Basis hedging strategy is not more effective than the traditional MinVar hedge.  

5.3. Are the findings sample specific? 

To assess whether our key finding is driven by a specific period within the sample, we classify the 

weeks into four subsamples: (i) pre- versus post-financialization (with January 2006 as the cutoff, 

as per Stoll and Whaley, 2010), (ii) backwardation versus contango (positive versus negative 

commodity-specific roll yields), (iii) U.S. recessions versus expansions (as defined by NBER), and 

(iv) high versus low volatility. The volatility split is determined relative to the median value of two 

volatility measures: the GARCH(1,1) volatilities of each commodity’s spot returns and the macro 

uncertainty index from Jurado et al. (2015). The expected utility gains of the hedging strategies 

across these subsamples, presented in Table 9, reinforce our main conclusion that selective hedging 

strategies struggle to outperform traditional hedging. Additionally, our analysis aligns with 

economic intuition, suggesting that the utility commodity producers derive from hedging is 

particularly high during recessions, contango conditions, and periods of high market volatility.  

[Insert Table 9 around here] 

5.4. Non-constant risk aversion 

Thus far, we have assumed a constant coefficient of relative risk aversion (𝛾 ൌ 5). We now 

generalize the selective hedge ratio to ℎ௧ ൌ 𝛽௧ െ
ா೟൫∆𝑓௧ାଵหΩ௧൯

ఊ೟ ఙ೑,೟
మ , using as 𝛾௧ the relative risk aversion 
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estimates from Bekaert et al. (2022), which average 3.0624 over our sample period. Accordingly, 

the speculative term plays a larger (smaller) role in periods of low (high) risk aversion. The 

expected utility gains of the hedging strategies, as shown in Table 10, confirm that commodity 

producers are often better off sticking with the traditional MinVar hedge. The expected utility gain 

for MinVar (9.41% p.a.) is comparable to that of the K-Integr hedge (9.83% p.a.) and above those 

of the HistAve, EWC, RF, and AR hedges (8.58%, 8.54%, 6.01%, and 4.70% p.a., respectively). 

Notably, the VAR hedge results in a negative expected utility gain of -1.71% p.a., indicating that, 

in this scenario, the representative commodity producer would be better off not hedging at all. 

[Insert Table 10 around here] 

5.5. Estimation window and rebalancing frequency 

Our investigation thus far has employed hedge ratios based on past rolling estimation windows of 

length 𝐿 ൌ520 weeks (10 years), rebalanced weekly. The expected utility gains inferred from 

expanding windows (starting at 520 weeks and incrementally adding one week at a time), shown 

in Table 10, are quite similar to those derived from the rolling window setup in Table 3. 

Given that the commodity hedging literature has predominantly utilized daily (Baillie and Myers, 

1991), weekly (Cotter and Hanly, 2010, 2012; Wang et al., 2015), or monthly (Cotter and Hanly, 

2010, 2012; Furió and Torró, 2020) hedging frequencies, our adoption of weekly rebalancing offers 

a reasonable middle ground.11 We now examine monthly and quarterly rebalancing. As shown in 

Table 10, lower rebalancing frequencies enhance utility for both traditional and selective hedging 

strategies. However, the selective hedges do not significantly outperform the MinVar hedge. 

 
11 Bodnar et al. (1998) document large firm heterogeneity in hedging frequency from surveys of 
399 non-financial firms; 28% revalue their derivatives portfolios daily or weekly, 27% monthly, 
21% quarterly and 5% annually. The remaining firms rebalance their hedges on an ad-hoc basis.  
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5.6. Alternative futures maturities 

We have implemented the hedges with front-end futures contracts. As a robustness check, we 

employ the second, third, fourth, fifth, or sixth maturity contracts along the futures curve. Each 

contract is held until the last day of the month preceding the maturity of the front-end contract, at 

which point the position is rolled to the then third, fourth, fifth, sixth, or seventh contract, 

respectively. The results shown in Table 10 corroborate across maturities the difficulty of 

outperforming the MinVar hedge. For a given hedging method, the expected utility gains tend to 

decrease with the maturity of the hedging instruments, likely due to an increase in basis risk. 

5.7. Long hedging 

Our representative firm thus far has been a commodity producer, with the traditional hedge being 

short. We now address the hedging problem from the perspective of a processor or consumer of 

the physical commodity (long hedger). In this case, the hedge portfolio return is given by ∆𝑝௧ାଵ ൌ

െ∆𝑠௧ାଵ ൅ ℎ௧∆𝑓௧ାଵ . The selective hedge ratio that maximizes expected utility is ℎ௧ ൌ 𝛽௧ ൅

ா೟൫∆𝑓௧ାଵหΩ௧൯
ఊ ఙ೑,೟

మ  where the first component, 𝛽௧  ൌ
ఙೞ೑,೟

ఙ೑,೟
మ , represents the traditional MinVar hedge ratio, 

and the second component caters for the speculative goal. 

The last row of Table 10 presents the expected utility gains for long hedges. Over the sample period, 

the expected utility gain from short hedging is, on average, 4.87 percentage points higher annually 

than that from long hedging across commodities and hedging strategies. However, this average 

conceals significant heterogeneity. For instance, unreported results reveal that for natural gas, the 

expected utility gain from short hedging exceeds that from long hedging by 53.47 percentage points 

on average across hedging strategies. Conversely, for unleaded gasoline, the expected utility gain 

from long hedging is 26.69 percentage points higher than that from short hedging. Despite this 
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variability, our main conclusion remains unchanged: selective hedging is not consistently superior 

to traditional hedging for commodity consumers either. 

5.8. Hedging problem of a diversified producer 

Our paper follows the commodity hedging literature in formalizing and examining empirically the 

hedging problem of a single-commodity producer (e.g., Ederington, 1979; Anderson and Danthine, 

1981, 1983; Pirrong, 1997; Cotter and Hanly, 2010, 2012; Wang et al., 2015; Furió and Torró, 

2020; Carter et al., 2021). Inspired by the cross-currency hedging setting of Barroso et al. (2022), 

we now consider a firm that produces all 𝑁 ൌ 24 commodities. Without loss of generality, we 

assume that the diversified commodity producer has equal exposure 1/𝑁 to the commodities. The 

cross-commodity K-Integr hedger solves the problem 

max
𝝎೟

𝐸௧ൣ𝑈൫∆𝑝෪௧ାଵ
௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ห௧൧ ,                                                ሺ6ሻ  

subject to the tracking error constraint 𝜎൫∆𝑝෪௧ାଵ
ெ௜௡௏௔௥ െ ∆𝑝෪௧ାଵ

௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ ൑ 𝜍. Here, the loadings 𝝎௧ 

are the solution that maximizes the expected utility of the cross-commodity hedge portfolio return 

∆𝑝෪௧ାଵ
௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ ൌ

1
𝑁
෍൭∆𝑠௜,௧ାଵ െ ൭𝛽௜,௧ െ෍𝜔௞,௧𝑧௜,௞,௧

௄

௞ୀଵ

൱∆𝑓௜,௧ାଵ൱ ൌ

ே

௜ୀଵ

                  ሺ7ሻ 

1
𝑁
෍∆𝑠௜,௧ାଵ െ ൥

1
𝑁
෍𝛽௜,௧∆𝑓௜,௧ାଵ

ே

௜ୀଵ

െ
1
𝑁
෍൭෍𝜔௞,௧𝑧௜,௞,௧

௄

௞ୀଵ

൱∆𝑓௜,௧ାଵ

ே

௜ୀଵ

൩ ,

ே

௜ୀଵ

 

where the ith commodity spot return and futures return are given by ∆𝑠௜,௧ାଵ and ∆𝑓௜,௧ାଵ, and the 

MinVar hedge ratio by 𝛽௜,௧ . The return of the cross-commodity MinVar portfolio is given by 

∆𝑝෪௧ାଵ
ெ௜௡௏௔௥ ൌ

ଵ

ே
∑ ൫∆𝑠௜,௧ାଵ െ 𝛽௜,௧∆𝑓௜,௧ାଵ൯
ே
௜ୀଵ  which can be derived from Equation (7) by setting 𝝎௧ ൌ

0 to exclude the speculative component. The cross-commodity K-Integr hedge constraints the 

parameters 𝝎௧ ൌ ሺ𝜔ଵ,௧ , … ,𝜔௄,௧ሻ′ to be equal across commodities. This approach resembles the 
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original parametric portfolio policies (PPP) method, where the vector of loadings on asset 

characteristics is common across assets over time (Brandt et al., 2009; Barroso et al., 2022).12  

Unreported results show that the cross-commodity K-Integr hedge marginally outperforms the 

cross-commodity MinVar hedge, with expected utility gains of 4.00% p.a. compared to 3.48% p.a., 

respectively. However, this difference is not statistically significant, as confirmed by the 

McCracken and Valente (2018) test (p-value of 0.26). Therefore, selective hedging does not offer 

a significant advantage over traditional hedging for a diversified commodity producer either. 

These results are not necessarily at odds with the commodity risk premia literature (e.g., Miffre 

and Rallis, 2007; Basu and Miffre, 2013; Szymanowska et al., 2014; Fernandez-Perez et al., 2018; 

Boons and Prado, 2019; Gu et al., 2023). In these studies, different characteristics rank a cross-

section of commodities into top and bottom quintiles, which determine the equally-weighted long 

and short positions. In contrast, the K-Integr hedge portfolio is governed by a pure hedge ratio and 

a speculative ratio, with point forecasts of futures returns, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ, and the futures return 

variance, 𝜎௙,௧
ଶ , per commodity as key drivers. 

6. Conclusions 

This article provides a comprehensive analysis of traditional versus selective hedging strategies in 

commodity futures markets. Our findings show that incorporating speculative elements into 

hedging does not yield significant improvements in expected utility gains compared to the 

 
12 Excluding the spot return, the cross-commodity K-Integr portfolio is comparable to the PPP 
portfolio, as both optimally tilt a benchmark portfolio. However, while K-Integr employs a broader 
set of predictors, including commodity characteristics, financial, macroeconomic, and sentiment 
variables, to determine the optimal deviations from the benchmark, the PPP framework relies 
exclusively on asset characteristics. 
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traditional minimum-variance approach. The main challenge of selective hedging is the need for 

accurate point forecasts of commodity futures returns, which is inherently difficult. As a result, the 

speculative component adds risk to the hedge portfolio without delivering additional returns. The 

findings are consistent across a wide range of commodities, forecasting methods, hedge ratios, 

estimation window lengths, sample periods, futures maturities, and rebalancing frequencies. 

The paucity of evidence supporting selective hedging over traditional hedging aligns with concerns 

raised in case studies of speculative-led commodity hedging fiascos (Pirrong, 1997; Carter et al., 

2021; Westgaard et al., 2022) and is consistent with findings showing modest gains in firm value 

from selective hedging (Adam and Fernando, 2006; Brown et al., 2006). While private information 

may improve selective hedging, the key takeaway is that firms without reliable access to such 

information are generally better off adhering to traditional hedging practices without speculation. 
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Appendix A. Commodity futures return predictors 
The table outlines the variables used as predictors for commodity futures returns, along with their data sources and original papers 
proposing each predictor. LH (SH) denotes the long (short) positions of large hedgers. A positive (negative) hedging pressure indicates 
net short (long) hedging, associated with backwardation (contango). An asterisk (*) indicates weekly interpolated data from monthly 
sources, while a double asterisk (**) denotes a two-month lagged variable to account for delays in data publication. 

  

Signal Data source References

Panel A:  Commodity futures characteristics
Roll yield Log price differential between front‐ and second‐nearest contracts LSEG Datastream Szymanowska et al. (2014)

Momentum Front‐end log excess returns averaged over the previous year  LSEG Datastream Miffre and Rallis (2007)

Value Average log front‐end futures price over the D days spanning the period 4.5 to 5.5
years before t  minus front‐end log futures price at time t

LSEG Datastream Asness et al. (2013)

Hedging pressure Net short weekly positions of large commercial traders (hedgers) over their total
positions averaged over the prior year

CFTC Basu and Miffre (2013)

Hedgers' net position change  Weekly change in net long position of hedgers, normalized by open interest CFTC Kang et al. (2020)

Basis‐momentum Difference in average excess returns between front‐ and second‐nearest contracts
over the prior year

LSEG Datastream Boons and Prado (2019)

Relative basis Difference in front‐ and second‐nearest roll‐yields LSEG Datastream Gu et al. (2023)

Illiquidity Absolute excess return of the front‐end futures contract per weekly dollar volume
as averaged over the W  weeks within the past two months

LSEG Datastream Szymanowska et al. (2014)

Change in open interest Change in average open interest along the futures curve LSEG Datastream Hong and Yogo (2012)

Definition at the time of portfolio formation t

Skewness Third moment of the D  daily front‐end excess returns within the past year LSEG Datastream Fernandez‐Perez et al. (2018)
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Appendix A.  Commodity futures return predictors  
(Cont.) 

 

Signal Data source References

Panel B:  Financial, macroeconomic  and sentiment indicators
Term spread St. Louis FED Gargano and Timmermann (2014)
Default spread St. Louis FED Gargano and Timmermann (2014)
TED spread St. Louis FED Gargano and Timmermann (2014)
T‐bill rate St. Louis FED Gargano and Timmermann (2014)
Bond yield St. Louis FED Hollstein et al. (2021)
Equity return Prof. Amit Goyal Hollstein et al. (2021)
Dividend yield Prof. Amit Goyal Gargano and Timmermann (2014)
Earning price ratio Prof. Amit Goyal Hollstein et al. (2021)
Industrial production St. Louis FED Gargano and Timmermann (2014)
Money supply St. Louis FED Gargano and Timmermann (2014)
Unemployment rate St. Louis FED Gargano and Timmermann (2014)
Inflation rate Prof. Amit Goyal Gargano and Timmermann (2014)
Foreign exchange rates LSEG Datastream Gargano and Timmermann (2014)
National activity index Chicago FED Cotter et al. (2023)
EPU Prof. Scott R. Baker
GPR Prof. Matteo Iacoviello
Baltic dry index LSEG Datastream Bakshi et al. (2014)
Real economic activity St. Louis FED Gargano and Timmermann (2014)
Business confidence index OECD Hollstein et al. (2021)
Consumer confidence index OECD Hollstein et al. (2021)
Sentiment index Prof. Jeffrey Wurgler
Uncertainty index Prof. Nancy Wu 
VIX LSEG Datastream Hollstein et al. (2021)

Definition at the time of portfolio formation t

US market excess return
Difference between the log of dividends and the log of lagged prices (*)
Difference between the log of earnings and the log of prices (*)
Log change in U.S. industrial production (*, **)

Yield difference between 10‐year Treasury bonds and 3‐month Treasury bills
Yield difference between Moody’s seasoned Baa and Aaa corporate bonds
Difference between 3‐month U.S. LIBOR rate and 3‐month U.S. T‐bill rate
3‐month U.S. Treasury bill rate

Households’ surveys regarding sentiment on economic and financial situation, unemployment and savings capability (*, **)
Sentiment index of Baker and Wurgler (2006)  (*)
Uncertainty index of Bekaert et al. (2022)
CBOE's volatility index

Log change in economic policy uncertainty index
Log change geopolitical risk index
Log change in the Baltic dry index: Weighted average freight price
(Change) real economic activity index of Kilian (2009)  (*, **)
Business's surveys on developments in production, orders and stocks of finished goods in the industry sector  (*, **)

Log change in M1 money supply (*, **)
Number of unemployed as a percentage of the US labor force (*, **)
US consumer price index (all urban consumers) (*, **)
Log changes in U.S. dollar vs. A.U. dollar, C.A. dollar, N.Z. dollar, S.A. rand, Indian rupee
Weighted average of 85 monthly indicators of national economic activity  (*, **)

Long‐term U.S. bond yield
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Appendix B. Alternative specifications of the EWC selective hedge 

The EWC hedge ratio is based on expectations of futures returns derived from the combination of 
univariate forecasts from K predictors; 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝝎௧

ᇱ∆𝒇෠௧ାଵ  with ∆𝑓መ௞,௧ାଵ ൌ 𝑎ො଴,௧ ൅ 𝑎ොଵ,௧𝑧௞,௧ , 

𝑘 ൌ 1, … ,𝐾, and 𝝎௧
ᇱ ൌ ቀ

ଵ

௄
, … ,

ଵ

௄
ቁ. We now entertain alternative weighting schemes. 

MSE weighting scheme 

The MSE weighting scheme is based on forecast accuracy, with higher weights assigned to the 
forecasts that have lower mean squared error (MSE). The weights are calculated as follows: at each 
hedge formation time t, the past window of 𝐿 ൌ 520 weeks is divided into an estimation window 

𝐿଴ and an evaluation window 𝐿ଵ of equal length 
௅

ଶ
 . The first 𝐿଴ weeks are used to generate the K 

out-of-sample univariate forecasts of futures returns for the first week of the evaluation period. The 
estimation window is then expanded by one week to generate forecasts for the second week of the 
evaluation period, and so forth. The MSE calculated over the entire evaluation window as 

𝑀𝑆𝐸௞,௧ ൌ ∑ ሺ∆𝑓௧ି௝ାଵ െ
௅భ
௝ୀଵ ∆𝑓መ௞,௧ି௝ାଵሻଶ 𝐿ଵൗ  is used to obtain the weights 𝜔௞,௧ ൌ

ெௌாೖ,೟
షభ

∑ ெௌாೖ,೟
షభ಼

ೖసభ
 to 

construct 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ. This procedure is repeated at hedge formation time t+1, and so forth.  

E-Net weighting scheme  

The Elastic Net (E-Net) weighting scheme reduces the complexity of the predictive model by 
adding the elastic net penalty terms to the loss function of the forecast combination. The E-Net 
weights are obtained as follows: at each hedge formation week t, we divide the preceding window 

of 𝐿 ൌ 520 weeks into an estimation window and an evaluation window (𝐿଴ ൌ 𝐿ଵ ൌ
௅

ଶ
 ). We repeat 

the steps of the MSE weighting scheme to obtain the forecasts. Then, we solve the following 
minimization problem over the evaluation window 

min
௕ೖ,೟

෍ ൬∆𝑓௧ି௝ାଵ െ෍ 𝑏௞,௧∆𝑓መ௞,௧ି௝ାଵ
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ଶ
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൰, 

where ∆𝑓መ௞,௧ି௝ାଵ , 𝑘 ൌ 1, … ,𝐾, are the univariate forecasts, and 𝜆௧ and 𝛿 are the LASSO and Ridge 
regularization parameters, respectively. We set 𝛿 ൌ 0.5 and select 𝜆௧ using the adjusted AIC of 
Hurvich and Tsai (1989). The E-Net weighting scheme used to generate 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ is 𝜔௞,௧ ൌ

ூ൫௕ೖ,೟வ଴൯

∑ ூ൫௕ೖ,೟வ଴൯
಼
ೖసభ

 , with 𝐼ሺ∙ሻ an indicator variable. The selective E-Net hedge is thus based on what can 

be cast as a sparse combination of K univariate regression forecasts. 
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Appendix C. K-Integr (with E-Net regularization) selective hedge 

The K-Integr objective function with an Elastic Net (E-Net) regularization combines a LASSO 
penalty and a Ridge penalty for overfitting. The hedger solves the maximization problem  

max
𝝎𝒕

𝐸௧ൣ𝑈൫∆𝑝௧ାଵ
௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ห௧൧ ൌ 

max
𝝎೟

𝐸௧ൣ𝑈൫∆𝑠௧ାଵ െ ሺ𝛽௧ െ 𝝎௧′𝒛௧ሻ∆𝑓௧ାଵ െ 𝜆ଵ,௧ ∑ ห𝜔௞,௧ห
௄
௞ୀଵ െ 𝜆ଶ,௧ ∑ 𝜔௞,௧

ଶ௄
௞ୀଵ ൯ห௧൧, 

subject to the constraint 𝜎൫∆𝑝௧ାଵ
ெ௜௡௏௔௥ െ ∆𝑝௧ାଵ

௄ିூ௡௧௘௚௥ሺ𝝎௧ሻ൯ ൑ 𝜍, with ∆𝑠௧ାଵ, ∆𝑓௧ାଵ, ∆𝑝௧ାଵ
௄ିூ௡௧௘௚௥ and 

∆𝑝௧ାଵ
ெ௜௡௏௔௥ representing the spot, futures, K-Integr and MinVar returns for a given commodity i at 

time t+1, respectively. 𝛽௧ is the MinVar hedge ratio of commodity i at time t estimated using L past 
observations, 𝝎௧′ is a 1 ൈ 𝐾 vector of loadings, 𝒛௧ is the 𝐾 ൈ 1 vector of standardized predictors 
at time t, and 𝜆ଵ,௧ and 𝜆ଶ,௧ are the LASSO and Ridge penalty parameters, respectively, that we set 
to the same pre-specified value to speed up computation time, i.e., 𝜆ଵ,௧ ൌ 𝜆ଶ,௧ ൌ 𝜆௧.  

The estimation of the K-Integr is as follows. First, the rolling estimation window at hand (𝐿 ൌ
520 weeks) is divided into an optimization sample (first 60% weeks of the estimation window) 
and an evaluation sample (second 40% weeks of the estimation window). Second, the first sample 
is used to optimize the weights, 𝝎௧, based a pre-specified 𝜆௧, and the expected utility gain of the 
optimized portfolio is measured over the evaluation sample. This step is repeated for a range of 
pre-specified 𝜆௧ (i.e., twenty evenly-spaced values from 0.0073 to 0.00001). Third, we select the 
𝜆௧ value that generates the largest expected utility of the optimized portfolio over the evaluation 
sample. Finally, the selected 𝜆௧ is used to find the weights, 𝝎௧, by maximizing the K-Integr (with 
E-Net) objective function over the entire estimation (optimization and evaluation) sample. 
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Figure 1. Evolution of traditional and selective hedge ratios for a cocoa producer 

This figure plots the traditional MinVar hedge ratio (black color) and six alternative selective hedge 
ratios (grey) for a representative cocoa producer with assumed mean-variance utility function and 
coefficient of relative risk aversion  ൌ 5. The rebalancing frequency is weekly. 
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Figure 2. Standard deviation of the hedge ratios 

This figure plots the standard deviation of the traditional MinVar hedge ratio alongside six selective 
hedge ratios for a representative commodity producer, assuming a mean-variance utility and 
coefficient of relative risk aversion  ൌ 5. The reported statistics are averages across commodities. 
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Table 1. Selective hedging strategies 

This table lists the selective hedging strategies implemented in the main section of the paper, with 
variants thereof outlined in the robustness tests section. 𝛽௧ is the traditional MinVar hedge ratio 
that minimizes the variance of the hedge portfolio. 
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Table 2. Descriptive statistics of spot and futures returns 

This table presents summary statistics for the returns of spot and front-end fully-collateralized 
futures positions, as well as the spot-futures returns correlations. Mean, variance and expected 
utility are annualized. The utility function is mean-variance with coefficient of relative risk 
aversion 𝛾 ൌ 5. Newey-West t-statistics (with truncation lag ሾ4ሺ𝑇 100⁄ ሻଶ/ଽሿ where T is the sample 
size) for the significance of mean returns are in parentheses and p-values for the significance of 
correlations are in curly brackets.  

 

Variance Utility Variance Utility Start End

Panel A: Agriculture

Cocoa 0.0190 (0.33) 0.0688 ‐0.1531 0.0383 (0.61) 0.0854 ‐0.1753 0.82 {0.00} 29/09/2003 23/12/2019

Coffee 0.0551 (0.88) 0.0642 ‐0.1053 ‐0.0354 (‐0.49) 0.0967 ‐0.2771 0.69 {0.00} 29/09/2003 23/12/2019

Corn 0.0322 (0.44) 0.0904 ‐0.1938 ‐0.0516 (‐0.71) 0.0828 ‐0.2586 0.93 {0.00} 29/09/2003 23/12/2019

Cotton 0.0065 (0.09) 0.0859 ‐0.2083 ‐0.0107 (‐0.15) 0.0825 ‐0.2170 0.94 {0.00} 29/09/2003 23/12/2019

Frozen orange juice 0.0179 (0.23) 0.1192 ‐0.2801 ‐0.0082 (‐0.11) 0.1135 ‐0.2919 0.97 {0.00} 29/09/2003 23/12/2019

Soybeans 0.0234 (0.34) 0.0719 ‐0.1562 0.0704 (1.16) 0.0598 ‐0.0791 0.95 {0.00} 29/09/2003 23/12/2019

Soybeans meal  0.0206 (0.25) 0.1137 ‐0.2635 0.1206 (1.69) 0.0792 ‐0.0773 0.90 {0.00} 29/09/2003 23/12/2019

Soybeans oil  0.0186 (0.31) 0.0650 ‐0.1439 ‐0.0106 (‐0.19) 0.0590 ‐0.1582 0.97 {0.00} 29/09/2003 23/12/2019

Sugar 0.0437 (0.57) 0.0954 ‐0.1948 ‐0.0430 (‐0.55) 0.0947 ‐0.2798 0.91 {0.00} 29/09/2003 23/12/2019

Wheat 0.0369 (0.40) 0.1416 ‐0.3172 ‐0.0961 (‐1.27) 0.0974 ‐0.3397 0.83 {0.00} 29/09/2003 23/12/2019

Panel B: Energy

Crude oil 0.0495 (0.55) 0.1403 ‐0.3013 ‐0.0284 (‐0.32) 0.1145 ‐0.3146 0.94 {0.00} 29/09/2003 23/12/2019

Gasoline RBOB ‐0.1390 (‐0.73) 0.0846 ‐0.3504 ‐0.0332 (‐0.21) 0.0478 ‐0.1528 0.82 {0.00} 03/10/2011 02/03/2015

Heating oil 0.0651 (0.81) 0.1096 ‐0.2088 0.0270 (0.34) 0.0937 ‐0.2074 0.95 {0.00} 29/09/2003 23/12/2019

Natural gas ‐0.0431 (‐0.34) 0.4698 ‐1.2176 ‐0.3362 (‐3.25) 0.1806 ‐0.7876 0.60 {0.00} 29/09/2003 23/12/2019

Unleaded gas 0.2041 (0.82) 0.2038 ‐0.3053 0.2938 (1.38) 0.1342 ‐0.0417 0.89 {0.00} 29/09/2003 04/12/2006

Panel C: Livestock

Feeder cattle 0.0660 (1.14) 0.0398 ‐0.0336 0.0568 (1.20) 0.0239 ‐0.0030 0.41 {0.00} 29/09/2003 06/07/2015

Lean hogs 0.0197 (0.19) 0.0724 ‐0.1612 ‐0.0666 (‐0.89) 0.0579 ‐0.2114 0.30 {0.00} 29/09/2003 06/07/2015

Live cattle 0.0191 (0.45) 0.0314 ‐0.0594 0.0152 (0.40) 0.0267 ‐0.0514 0.53 {0.00} 29/09/2003 23/12/2019

Panel D: Metal and Lumber

Copper 0.0752 (1.02) 0.0685 ‐0.0961 0.0919 (1.25) 0.0701 ‐0.0834 0.98 {0.00} 29/09/2003 23/12/2019

Gold 0.0825 (2.05) 0.0306 0.0061 0.0758 (1.89) 0.0307 ‐0.0009 0.99 {0.00} 29/09/2003 23/12/2019

Lumber ‐0.0048 (‐0.06) 0.0973 ‐0.2482 ‐0.1083 (‐1.41) 0.1010 ‐0.3609 0.36 {0.00} 29/09/2003 12/08/2019

Palladium 0.1322 (1.72) 0.0951 ‐0.1055 0.1267 (1.64) 0.0965 ‐0.1146 0.96 {0.00} 29/09/2003 23/12/2019

Platinum 0.0173 (0.29) 0.0509 ‐0.1099 0.0202 (0.34) 0.0524 ‐0.1109 0.96 {0.00} 29/09/2003 23/12/2019

Silver 0.0736 (0.98) 0.0983 ‐0.1723 0.0636 (0.84) 0.0981 ‐0.1817 0.98 {0.00} 29/09/2003 23/12/2019

Spot Futures Correlation Sample period

Mean Mean
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Table 3. Expected utility gain 

This table reports the annualized expected utility gains from traditional MinVar and selective 
hedging strategies based on HistAve, AR, VAR, EWC, K-Integr and RF forecasts. The utility 
function employed is mean-variance with a coefficient of relative risk aversion 𝛾 ൌ 5. Positive 
numbers indicate that hedging the spot position provides greater expected utility to the hedger than 
not hedging (see Table 2). The numbers in parentheses represent bootstrap p-values for the 
McCracken and Valente (2018) statistic, with 𝐻଴:Δ𝐸൫𝑈஽௜௙௙൯ ൌ Δ𝐸ሺ𝑈ௌுሻ െ Δ𝐸ሺ𝑈ெ௜௡௏௔௥ሻ ൑ 0 
versus 𝐻ଵ:Δ𝐸൫𝑈஽௜௙௙൯ ൐ 0, where Δ𝐸ሺ𝑈ሻ is the expected utility gain as defined in Equation (4), 
and 𝑆𝐻 refers to the selective hedging strategy being analyzed. Panel E summarizes the average 
expected utility gains across commodities both before and after transaction costs (TC) of 8.6 basis 
points (Marshall et al., 2012). The sample period for each commodity is detailed in Table 2.  

 

  

Panel A: Agriculture

Cocoa 0.0836 0.0745 (0.88) 0.0668 (0.90) 0.0447 (0.86) 0.0662 (0.97) 0.0848 (0.63) 0.0454 (0.88)

Coffee 0.0936 0.0752 (0.96) 0.0341 (0.98) 0.0139 (0.82) 0.0781 (0.89) 0.1000 (0.26) 0.0588 (0.89)

Corn 0.2473 0.2261 (0.96) 0.1871 (0.98) 0.1682 (0.92) 0.2204 (0.97) 0.2495 (0.39) 0.2059 (0.82)

Cotton 0.1955 0.1784 (0.95) 0.1452 (1.00) 0.0782 (0.97) 0.1768 (0.94) 0.1981 (0.37) 0.1378 (0.89)

Frozen orange juice 0.2881 0.2704 (0.97) 0.2299 (1.00) 0.1369 (0.99) 0.2655 (0.99) 0.2816 (0.76) 0.2395 (0.89)

Soybeans 0.0893 0.0840 (0.63) 0.0507 (0.94) 0.0165 (0.90) 0.0783 (0.74) 0.0948 (0.28) ‐0.0109 (0.86)

Soybeans meal  0.1012 0.0956 (0.56) 0.0121 (0.99) ‐0.0492 (0.94) 0.0930 (0.61) 0.1082 (0.24) 0.0031 (0.86)

Soybeans oil  0.1658 0.1541 (0.88) 0.1387 (0.89) 0.1374 (0.79) 0.1462 (0.94) 0.1695 (0.34) 0.0736 (0.88)

Sugar 0.2372 0.2260 (0.87) 0.2070 (0.95) 0.1919 (0.97) 0.2260 (0.83) 0.2472 (0.18) 0.1911 (0.88)

Wheat 0.3426 0.3204 (0.93) 0.2929 (0.97) 0.2646 (0.99) 0.3219 (0.90) 0.3382 (0.69) 0.2604 (0.93)

Panel B: Energy

Crude oil 0.3468 0.3197 (0.95) 0.2966 (0.94) 0.1988 (0.94) 0.3464 (0.46) 0.3509 (0.31) 0.3333 (0.78)

Gasoline RBOB 0.1766 0.1647 (0.67) 0.2438 (0.52) 0.2211 (0.59) 0.1603 (0.74) 0.1855 (0.99) 0.1758 (0.45)

Heating oil 0.2132 0.2085 (0.58) 0.1895 (0.85) 0.1549 (0.91) 0.2172 (0.38) 0.2166 (0.40) 0.1841 (0.84)

Natural gas 0.7132 0.7743 (0.05) 0.7559 (0.17) 0.6564 (0.81) 0.7749 (0.04) 0.7224 (0.20) 0.7269 (0.30)

Unleaded gas 0.0445 0.1197 (0.13) 0.1129 (0.19) 0.0026 (0.69) 0.1201 (0.14) 0.0459 (0.46) 0.0977 (0.09)

Panel C: Livestock

Feeder cattle ‐0.0129 ‐0.0178 (0.48) ‐0.0810 (0.96) ‐0.0953 (0.94) ‐0.0159 (0.45) ‐0.0078 (0.32) ‐0.3550 (0.92)

Lean hogs 0.0415 0.0443 (0.36) 0.0575 (0.32) 0.0504 (0.46) 0.0437 (0.39) 0.0516 (0.18) 0.0400 (0.71)

Live cattle 0.0137 ‐0.0091 (0.99) ‐0.0762 (1.00) ‐0.0711 (0.95) ‐0.0131 (1.00) 0.0237 (0.14) ‐0.0891 (0.85)

Panel D: Metal and Lumber

Copper 0.0740 0.0599 (0.76) 0.0386 (0.85) ‐0.0173 (0.88) 0.0738 (0.41) 0.0763 (0.46) ‐0.0971 (0.89)

Gold 0.0002 ‐0.0033 (0.48) ‐0.0219 (0.80) ‐0.0665 (0.86) ‐0.0149 (0.79) ‐0.0075 (0.81) ‐0.5253 (0.93)

Lumber 0.0752 0.0631 (0.80) 0.0527 (0.93) 0.0662 (0.62) 0.0586 (0.89) 0.0840 (0.13) 0.0629 (0.80)

Palladium 0.0961 0.1058 (0.27) 0.1127 (0.31) 0.0483 (0.75) 0.1096 (0.24) 0.1034 (0.88) 0.0480 (0.89)

Platinum 0.1029 0.0783 (0.94) 0.0373 (0.98) ‐0.0044 (0.96) 0.0842 (0.85) 0.0958 (0.74) ‐0.0451 (0.89)

Silver 0.1752 0.1614 (0.94) 0.1122 (0.99) 0.0643 (0.99) 0.1556 (0.97) 0.1734 (0.55) ‐0.0148 (0.93)

Panel E: All commodities

Before TC 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

After TC 0.1622 0.1564 0.1227 0.0760 0.1553 0.1629 0.0677

MinVar

HistAve AR VAR EWC

Selective hedges

K‐Integr RF
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Table 4. Statistical forecast accuracy  

This table reports the 𝑅ைைௌ
ଶ  statistic that assesses the accuracy of the forecasts underlying a given 

selective hedge relative to the zero-return forecast underlying the MinVar hedge. A negative or 
zero 𝑅ைைௌ

ଶ  value suggests that the futures return forecast at hand is not more accurate than the 
zero-return forecast. p-values of the Diebold and Mariano (1995) test are shown in parentheses. 
The sample period for each commodity is detailed in Table 2. 

 

  

Panel A: Agriculture

Cocoa ‐0.32% (0.95) ‐0.52% (0.98) ‐1.32% (1.00) ‐0.46% (0.98) 0.05% (0.37) ‐0.87% (0.84)

Coffee ‐0.34% (0.97) ‐1.14% (0.99) ‐1.66% (0.97) ‐0.25% (0.91) 0.16% (0.11) ‐0.69% (0.87)

Corn ‐0.31% (0.90) ‐0.72% (0.89) ‐0.93% (0.89) ‐0.38% (0.91) ‐0.01% (0.54) 0.72% (0.38)

Cotton ‐0.45% (0.93) ‐0.85% (0.99) ‐2.07% (1.00) ‐0.46% (0.89) 0.03% (0.42) ‐0.53% (0.75)

Frozen orange juice ‐0.32% (0.99) ‐0.66% (0.91) ‐1.76% (0.98) ‐0.35% (0.97) ‐0.09% (0.81) ‐0.23% (0.81)

Soybeans ‐0.06% (0.57) ‐0.35% (0.74) ‐0.97% (0.89) ‐0.13% (0.63) 0.13% (0.15) ‐0.35% (0.75)

Soybeans meal  0.06% (0.46) ‐0.73% (0.81) ‐2.13% (0.98) 0.08% (0.45) 0.17% (0.12) ‐0.89% (0.85)

Soybeans oil  ‐0.24% (0.91) ‐0.48% (0.94) ‐0.36% (0.75) ‐0.32% (0.92) 0.08% (0.26) 0.11% (0.58)

Sugar ‐0.23% (0.85) ‐0.54% (0.91) ‐0.81% (0.95) ‐0.24% (0.85) 0.20% (0.10) ‐0.70% (0.91)

Wheat ‐0.20% (0.76) ‐0.66% (0.92) ‐1.22% (0.97) ‐0.17% (0.72) ‐0.04% (0.63) ‐0.50% (0.72)

Panel B: Energy

Crude oil ‐0.30% (0.72) ‐0.76% (0.85) ‐2.52% (0.99) 0.08% (0.43) 0.07% (0.31) 0.70% (0.31)

Gasoline RBOB ‐0.53% (0.71) 2.61% (0.05) ‐1.22% (0.62) ‐0.88% (0.79) ‐1.04% (0.70) 0.09% (0.43)

Heating oil ‐0.29% (0.71) ‐0.56% (0.77) ‐1.26% (0.92) 0.04% (0.46) 0.12% (0.20) 0.71% (0.34)

Natural gas 0.45% (0.20) 0.08% (0.45) ‐1.95% (0.95) 0.63% (0.14) 0.09% (0.26) 0.62% (0.15)

Unleaded gas 0.88% (0.27) 0.50% (0.39) ‐0.93% (0.67) 0.92% (0.27) 0.02% (0.47) 0.70% (0.08)

Panel C: Livestock

Feeder cattle ‐0.19% (0.64) ‐0.49% (0.66) ‐1.02% (0.80) ‐0.15% (0.61) 0.11% (0.26) ‐2.37% (0.96)

Lean hogs 0.00% (0.50) 0.21% (0.33) ‐0.47% (0.78) 0.05% (0.45) 0.24% (0.18) 0.50% (0.59)

Live cattle ‐0.36% (0.89) ‐0.98% (0.89) ‐0.76% (0.84) ‐0.35% (0.86) 0.24% (0.03) ‐0.76% (0.91)

Panel D: Metal

Copper ‐0.32% (0.72) ‐0.68% (0.87) ‐0.69% (0.82) ‐0.10% (0.57) 0.08% (0.26) ‐0.20% (0.64)

Gold ‐0.12% (0.59) ‐0.39% (0.74) ‐1.42% (0.98) ‐0.28% (0.69) ‐0.21% (0.95) ‐3.53% (0.97)

Lumber ‐0.16% (0.64) ‐0.37% (0.78) ‐0.09% (0.57) ‐0.17% (0.64) 0.16% (0.11) 0.31% (0.36)

Palladium 0.00% (0.51) 0.08% (0.40) ‐1.58% (0.99) 0.06% (0.43) 0.20% (0.19) ‐1.03% (0.91)

Platinum ‐0.23% (0.63) ‐0.79% (0.80) ‐1.81% (0.96) ‐0.16% (0.60) ‐0.13% (0.72) ‐1.04% (0.78)

Silver ‐0.27% (0.77) ‐0.82% (0.95) ‐1.30% (0.97) ‐0.36% (0.83) ‐0.06% (0.68) ‐1.09% (0.93)

RFHistAve VAR EWC K‐IntegrAR
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Table 5. Abnormal return of the selective hedges  

This table reports the abnormal return of selective hedging measured as the (annualized) intercept 
or alpha of a spanning regression of the selective hedge portfolio returns on the returns of the 
MinVar hedge portfolio. Newey-West t-statistics (with truncation lag ሾ4ሺ𝑇 100⁄ ሻଶ/ଽሿ where T is 
the rolling estimation window length) for the significance of abnormal returns are in parentheses. 
The sample period for each commodity is detailed in Table 2. 

 

 

  

Panel A: Agriculture

Cocoa ‐0.0108 (‐1.34) ‐0.0173 (‐1.57) ‐0.0292 (‐1.37) ‐0.0160 (‐1.71) 0.0028 (0.48) 0.0044 (0.11)

Coffee ‐0.0127 (‐1.59) ‐0.0374 (‐1.63) ‐0.0164 (‐0.40) ‐0.0092 (‐1.00) 0.0079 (1.33) 0.0001 (0.00)

Corn ‐0.0110 (‐0.69) ‐0.0107 (‐0.26) ‐0.0040 (‐0.08) ‐0.0119 (‐0.67) 0.0051 (0.68) 0.1068 (1.45)

Cotton ‐0.0110 (‐0.68) ‐0.0294 (‐1.35) ‐0.0710 (‐2.23) ‐0.0086 (‐0.42) 0.0050 (0.55) 0.0252 (0.43)

Frozen orange juice ‐0.0145 (‐1.63) ‐0.0108 (‐0.32) ‐0.0158 (‐0.28) ‐0.0139 (‐1.05) ‐0.0044 (‐0.70) 0.0297 (0.68)

Soybeans 0.0134 (0.78) 0.0144 (0.54) 0.0226 (0.61) 0.0124 (0.64) 0.0067 (1.04) 0.0470 (0.68)

Soybeans meal  0.0377 (1.26) 0.0080 (0.19) ‐0.0021 (‐0.04) 0.0394 (1.25) 0.0081 (1.07) 0.0003 (0.01)

Soybeans oil  ‐0.0090 (‐1.07) ‐0.0193 (‐1.25) 0.0006 (0.02) ‐0.0123 (‐1.08) 0.0053 (0.88) 0.0700 (1.04)

Sugar ‐0.0070 (‐0.65) ‐0.0159 (‐0.79) ‐0.0212 (‐0.86) ‐0.0060 (‐0.54) 0.0122 (1.65) 0.0058 (0.18)

Wheat ‐0.0062 (‐0.35) ‐0.0186 (‐0.62) ‐0.0237 (‐0.60) ‐0.0023 (‐0.12) ‐0.0022 (‐0.29) 0.0251 (0.42)

Panel B: Energy

Crude oil ‐0.0065 (‐0.25) ‐0.0080 (‐0.22) ‐0.0557 (‐1.26) 0.0224 (0.90) 0.0058 (0.85) 0.0963 (1.42)

Gasoline RBOB ‐0.0062 (‐0.31) 0.0749 (1.90) 0.1744 (1.43) ‐0.0092 (‐0.38) 0.0073 (0.23) 0.0029 (0.16)

Heating oil 0.0074 (0.36) 0.0104 (0.33) ‐0.0083 (‐0.21) 0.0182 (0.95) 0.0049 (0.75) 0.0524 (1.03)

Natural gas 0.0715 (2.56) 0.0610 (2.02) 0.0165 (0.38) 0.0769 (2.75) 0.0069 (1.17) 0.0418 (1.88)

Unleaded gas 0.0939 (1.07) 0.0934 (0.89) 0.0313 (0.26) 0.1013 (1.11) 0.0022 (0.16) 0.0446 (1.62)

Panel C: Livestock

Feeder cattle 0.0121 (0.42) 0.0358 (0.55) 0.0216 (0.31) 0.0147 (0.50) 0.0084 (0.84) 0.0941 (0.85)

Lean hogs 0.0074 (0.49) 0.0271 (1.27) 0.0345 (1.36) 0.0134 (0.66) 0.0128 (1.24) 0.0926 (1.73)

Live cattle ‐0.0085 (‐0.54) ‐0.0212 (‐0.50) 0.0276 (0.65) ‐0.0081 (‐0.46) 0.0140 (1.98) 0.0959 (1.29)

Panel D: Metal

Copper 0.0100 (0.36) ‐0.0045 (‐0.15) 0.0194 (0.40) 0.0263 (0.87) 0.0037 (0.62) 0.0535 (0.49)

Gold 0.0259 (1.03) 0.0195 (0.66) 0.0061 (0.17) 0.0200 (0.74) ‐0.0055 (‐0.86) ‐0.0350 (‐0.40)

Lumber 0.0165 (0.70) 0.0094 (0.38) 0.0270 (0.94) 0.0162 (0.67) 0.0106 (1.54) 0.0522 (1.31)

Palladium 0.0147 (1.14) 0.0246 (1.55) ‐0.0090 (‐0.32) 0.0224 (1.44) 0.0100 (1.13) ‐0.0106 (‐0.43)

Platinum 0.0192 (0.58) 0.0096 (0.22) ‐0.0229 (‐0.50) 0.0236 (0.73) ‐0.0025 (‐0.23) 0.0239 (0.31)

Silver 0.0007 (0.04) ‐0.0336 (‐1.16) ‐0.0312 (‐0.75) ‐0.0021 (‐0.10) 0.0004 (0.05) ‐0.0144 (‐0.27)

RFK‐IntegrHistAve AR VAR EWC
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Table 6. Risk of the hedge portfolios 

This table reports the annualized variance of the traditional MinVar and selective hedge portfolios. 
The p-values of the Diebold and Mariano (1995) test for 𝐻଴:𝐸ൣሺ∆𝑝௧

ௌுሻଶ െ ሺ∆𝑝௧
ெ௜௡௏௔௥ሻଶ൧ ൑ 0 

versus 𝐻ଵ:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெ௜௡௏௔௥ሻଶ൧ ൐ 0 are shown in parentheses. The sample period for each 
commodity is detailed in Table 2.  

 

 

  

MinVar

Panel A: Agriculture

Cocoa 0.0230 0.0225 (0.84) 0.0230 (0.45) 0.0273 (0.00) 0.0236 (0.16) 0.0236 (0.00) 0.0402 (0.01)

Coffee 0.0344 0.0375 (0.00) 0.0443 (0.00) 0.0605 (0.00) 0.0377 (0.00) 0.0351 (0.02) 0.0490 (0.02)

Corn 0.0116 0.0150 (0.00) 0.0300 (0.00) 0.0427 (0.00) 0.0169 (0.00) 0.0120 (0.04) 0.0699 (0.03)

Cotton 0.0106 0.0125 (0.00) 0.0188 (0.05) 0.0289 (0.00) 0.0140 (0.01) 0.0115 (0.05) 0.0424 (0.01)

Frozen orange juice 0.0068 0.0077 (0.00) 0.0253 (0.01) 0.0591 (0.00) 0.0098 (0.00) 0.0075 (0.00) 0.0371 (0.01)

Soybeans 0.0076 0.0139 (0.00) 0.0245 (0.00) 0.0445 (0.00) 0.0154 (0.00) 0.0083 (0.00) 0.0725 (0.02)

Soybeans meal  0.0221 0.0378 (0.00) 0.0560 (0.02) 0.0811 (0.00) 0.0393 (0.00) 0.0227 (0.03) 0.0663 (0.02)

Soybeans oil  0.0032 0.0049 (0.00) 0.0067 (0.00) 0.0157 (0.00) 0.0069 (0.00) 0.0039 (0.00) 0.0665 (0.03)

Sugar 0.0166 0.0183 (0.00) 0.0233 (0.00) 0.0276 (0.00) 0.0187 (0.00) 0.0176 (0.00) 0.0371 (0.03)

Wheat 0.0442 0.0518 (0.00) 0.0570 (0.00) 0.0655 (0.00) 0.0524 (0.00) 0.0452 (0.04) 0.0839 (0.00)

Panel B: Energy

Crude oil 0.0167 0.0300 (0.00) 0.0367 (0.00) 0.0495 (0.00) 0.0270 (0.00) 0.0168 (0.35) 0.0482 (0.02)

Gasoline RBOB 0.0281 0.0298 (0.01) 0.0311 (0.02) 0.0785 (0.09) 0.0304 (0.02) 0.0292 (0.22) 0.0292 (0.05)

Heating oil 0.0110 0.0143 (0.00) 0.0230 (0.00) 0.0293 (0.00) 0.0158 (0.00) 0.0115 (0.00) 0.0457 (0.01)

Natural gas 0.3031 0.3052 (0.41) 0.3085 (0.31) 0.3314 (0.00) 0.3075 (0.30) 0.3019 (0.85) 0.3146 (0.01)

Unleaded gas 0.0438 0.0582 (0.01) 0.0645 (0.00) 0.0795 (0.00) 0.0609 (0.00) 0.0443 (0.26) 0.0430 (0.68)

Panel C: Livestock

Feeder cattle 0.0337 0.0400 (0.00) 0.0746 (0.00) 0.0747 (0.00) 0.0404 (0.00) 0.0350 (0.04) 0.2095 (0.01)

Lean hogs 0.0661 0.0679 (0.03) 0.0706 (0.00) 0.0762 (0.00) 0.0706 (0.00) 0.0672 (0.06) 0.1043 (0.02)

Live cattle 0.0228 0.0286 (0.00) 0.0501 (0.02) 0.0674 (0.00) 0.0305 (0.00) 0.0244 (0.00) 0.1023 (0.01)

Panel D: Metal

Copper 0.0024 0.0119 (0.00) 0.0147 (0.00) 0.0478 (0.02) 0.0142 (0.00) 0.0030 (0.00) 0.0935 (0.01)

Gold 0.0009 0.0130 (0.00) 0.0177 (0.00) 0.0309 (0.00) 0.0151 (0.00) 0.0017 (0.00) 0.1958 (0.03)

Lumber 0.0854 0.0970 (0.00) 0.0984 (0.00) 0.0999 (0.00) 0.0988 (0.00) 0.0861 (0.07) 0.1113 (0.02)

Palladium 0.0076 0.0096 (0.00) 0.0108 (0.00) 0.0232 (0.00) 0.0109 (0.00) 0.0086 (0.01) 0.0225 (0.02)

Platinum 0.0039 0.0218 (0.00) 0.0344 (0.00) 0.0380 (0.00) 0.0211 (0.00) 0.0058 (0.00) 0.0725 (0.03)

Silver 0.0032 0.0088 (0.00) 0.0152 (0.00) 0.0347 (0.00) 0.0097 (0.00) 0.0039 (0.00) 0.0719 (0.02)

RF

Selective hedges

K‐IntegrHistAve AR VAR EWC
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Table 7. Alternative specifications of the traditional hedge ratios 

The table reports the annualized expected utility gain of various traditional hedges and their 
selective hedge counterparts. The traditional hedges are defined through the OLS regression model 
(referred to in the rest of the paper as MinVar hedge ratio), the naïve one-to-one ratio, VAR(1,1), 
VEC(1,1), bivariate BEKK-GARCH(1,1), DCC-GARCH(1,1) and Markov regime-switching OLS 
regression model. The reported statistics are averages across commodities.  

 

 

  

HistAve AR VAR EWC K‐Integr RF

MinVar 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

One‐to‐One 0.1597 0.1485 0.1249 0.0845 0.1481 0.1628 0.0626

VAR(1,1) 0.1628 0.1576 0.1335 0.0944 0.1575 0.1662 0.0725

VEC(1,1)  0.1627 0.1576 0.1335 0.0944 0.1575 0.1661 0.0724

BEKK‐GARCH(1,1)   0.1710 0.1654 0.1503 0.1176 0.1646 0.1744 0.0769

DCC‐GARCH(1,1)   0.1701 0.1584 0.1433 0.1048 0.1580 0.1730 0.0775

Regime Switching‐OLS 0.1541 0.1488 0.1248 0.0854 0.1490 0.1575 0.0660

Average 0.1633 0.1562 0.1348 0.0962 0.1560 0.1666 0.0715

Traditional 

hedge

Selective hedges
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Table 8. Alternative specifications of the selective hedge ratios 

This table reports annualized expected utility gains from selective hedging strategies: EWC (Panel 
A), K-Integr (Panel B), ML (Panel C), and miscellaneous (Panel D). The first column of Panels A 
to C corresponds to the baseline in Table 3. ‘K=10’ refers to 10 commodity-specific predictors, 
while ‘K=3’ denotes 3 predictors (roll yield, momentum, and value). In Panel A, MSE and E-Net 
use the inverse of mean squared errors or elastic net weights (see Appendix B). PC1 (PC1-2) 
utilizes the first (two) principal components of the information variables. In Panel B, K-Integr E-
Net includes an elastic-net penalty for overfitting (see Appendix C), 𝜍  is the tracking error 
threshold, and Pooled K-Integr is based on pooled data across commodities. In Panel C, DNN 
stands for deep neural networks with specified hidden layers, and LSTM refers to long-short term 
memory networks with indicated units. Panel D includes Comb, which uses equal-weighted 
combinations of predictions from the six selective hedging models in Table 3, CS employs Fama-
MacBeth cross-sectional forecasts, and Naïve Basis uses the roll yield at time t as a futures return 
forecast. Expected utility gains are averages across commodities.  

 
  

Panel A: EWC and its variants

Baseline K=10 K=3 MSE E‐Net PC1 PC1‐2

0.1572 0.1534 0.1430 0.1568 0.1328 0.0993 0.0785

Panel B: K‐Integr and its variants

Baseline K=10 K=3 E‐Net ς = 5% ς = 10% Pooled

0.1661 0.1608 0.1608 0.1643 0.1658 0.1351 0.1663

Panel C: Machine learning variants

Baseline K=10 K=3 DNN2 DNN3 LSTM4‐DNN2 LSTM4‐DNN3 LSTM8‐DNN2 LSTM8‐DNN3

0.0728 0.1529 0.1388 0.0231 0.1039 0.1436 0.1107 0.1508 0.1326

Panel D: Miscellaneous models

Comb CS (K=10) CS (K=3) Naïve Basis

0.1630 0.1335 0.1456 0.0465
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Table 9. Subsample analysis 

The table presents the annualized expected utility gains of hedging strategies deployed in various 
subsample periods: pre- and post-financialization of commodities (using the January 2006 cutoff 
suggested by Stoll and Whaley, 2010), backwardation and contango phases, NBER expansions and 
recessions, high versus low commodity market volatility (defined using a GARCH model fitted to 
weekly spot returns), and high versus low macroeconomic uncertainty (based on the 
macroeconomic uncertainty index from Jurado et al., 2015). The subsamples are determined ex-
post. The reported expected utility gains represent averages across commodities. 
 

 

 

MinVar

HistAve AR VAR EWC K‐Integr RF

Financialization

Pre 0.0825 0.0958 0.0494 0.0328 0.0898 0.0878 0.1088

Post 0.1922 0.1797 0.1528 0.1116 0.1807 0.1948 0.0758

Backwardation and contango phases

Backwardation ‐0.0085 0.0024 ‐0.0229 ‐0.1303 0.0009 ‐0.0069 ‐0.0909

Contango 0.2473 0.2276 0.2139 0.1858 0.2284 0.2502 0.1539

NBER business cycle

Expansion 0.1311 0.1310 0.1113 0.0801 0.1297 0.1342 0.1276

Recession 0.4808 0.4206 0.3469 0.2118 0.4322 0.4878 ‐0.4446

Spot volatility

Low 0.0748 0.0826 0.0794 0.0545 0.0841 0.0767 0.0638

High 0.2506 0.2320 0.1869 0.1296 0.2303 0.2554 0.0818

Macro uncertainty index

Low  0.0829 0.0893 0.0655 0.0328 0.0895 0.0901 0.0866

High 0.2346 0.2229 0.2140 0.1603 0.2227 0.2380 0.0792

Selective hedges
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Table 10. Risk aversion, estimation window, rebalancing, maturities and long hedging 

This table presents the annualized expected utility gains for various hedging strategies, accounting 
for time-varying risk aversion, using expanding windows, with monthly or quarterly rebalancing, 
for different futures maturities ranging from the second (F2) to the sixth (F6) contract along the 
curve, and for a long hedger. The first row provides the baseline results from Table 3. Unless 
otherwise specified, the coefficient of relative risk aversion is set to 5. The reported expected utility 
gains are averages across commodities 

 

 

MinVar

HistAve AR VAR EWC K‐Integr RF

Baseline 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

Time‐varying risk aversion 0.0941 0.0858 0.0470 ‐0.0171 0.0854 0.0983 0.0601

Expanding windows 0.1609 0.1617 0.1321 0.1113 0.1593 0.1632 0.0471

Monthly rebalancing 0.1984 0.1869 0.1708 0.1124 0.1840 0.1819 0.1093

Quarterly rebalancing  0.1975 0.1985 0.1973 0.1668 0.1982 0.1887 0.1604

Maturity F2 0.1573 0.1520 0.1303 0.0920 0.1525 0.1603 0.0205

F3 0.1484 0.1427 0.1218 0.0913 0.1440 0.1514 ‐0.0087

F4 0.1260 0.1236 0.1058 0.0705 0.1260 0.1289 0.0493

F5 0.1334 0.1289 0.1046 0.0609 0.1318 0.1361 ‐0.1381

F6 0.1223 0.1242 0.1026 0.0712 0.1253 0.1258 ‐0.0395

Long hedging 0.1172 0.1088 0.0839 0.0409 0.1085 0.1197 0.0215

Selective hedges


