IT City Research Online
UNIVEREIST%( ?qui)NDON

City, University of London Institutional Repository

Citation: Ayaz, F., Nekovee, M., Sheng, Z. & Saeed, N. (2025). Digital Twin based
Reinforcement Learning for Energy Exchange among Electric Vehicles and Base Stations in
a Disaster-affected Region. IEEE Transactions on Intelligent Transportation Systems,

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/35796/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Digital Twin based Reinforcement Learning for
Energy Exchange among Electric Vehicles and Base
Stations in a Disaster-affected Region

Ferheen Ayaz, Maziar Nekovee, Zhengguo Sheng, Nagham Saeed

Abstract—The cellular base stations (BSs) have backup bat-
teries to maintain uninterrupted power supply. Recent studies
have shown that a backup battery may have some spare energy
to act as a flexible resource in the power system. Similarly,
electric vehicles (EVs) are also capable to give surplus energy
stored in their batteries to other consumers or back to the grid.
Therefore, both BSs and EVs can also effectively share energy
among themselves through Telecom-to-Vehicle (T2V) and Vehicle-
to-Telecom (V2T) exchange. However, it is difficult for BSs and
EVs to exchange their energies in a disaster-affected region as
they may encounter challenges such as connectivity failures,
power disruption and damaged routes. This paper proposes
an energy exchange solution among BSs and EVs in a post
disaster situation. We propose a digital-twin (DT) based solution
which utilizes Artificial Intelligence (AI) algorithms to estimate
energy consumption of BSs and EVs and identifies their role
as energy buyers or sellers. It also models power disruption
and disaster-affected blocked routes as Markov processes with
parameters derived from real historic data of floods. Then, a
reinforcement learning (RL) algorithm is proposed to match BSs
and EVs which can feasibly take part in either T2V or V2T
exchange. Performance of the proposed solution is compared with
independent RL without DT and assisted by federated learning.
Simulations show that the DT-based RL results in averagely twice
the amount of energy being exchanged as compared to the only
RL algorithm run by EVs.

Index Terms—EYV, base station, backup batteries, disaster.

I. INTRODUCTION

HE frequency of disaster occurrence is globally increas-
Ting because of unprecedented environmental challenges
[1]. These disasters often bring destruction to power supply,
roads and communication systems due to which rescue oper-
ations become extremely difficult. Information and Commu-
nication Technology (ICT) have proposed promising solutions
to environmental, social and economic challenges of the world
including natural disasters. Recent 5G-empowered Internet-
of-Things (IoT) and Internet-of-Vehicles (IoV) networks are
particularly useful in disaster management [2] - [3]. They can
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help in providing seamless connectivity for both pre-disaster
warnings and post-disaster rescue operations [4]- [5].

Recent advancements in ICT also aim to contribute towards
environmental sustainability. For example, dispatchable capac-
ity of 5G base stations (BSs) is now being considered promis-
ing to achieve net-zero goal. It is based on the concept that the
backup battery of BS is under-utilized and should be used as an
energy supply for other consumers and power systems, thereby
balancing high demands [9]. The deployment of 6G is set
to bring significant advancements and increased infrastructure
density, including the installation of a vast number of BSs
throughout various regions. The global transition is already
underway. Looking ahead, the roadmap includes expanding
network coverage and initiating 6G commercialization by
2030, with standardization efforts beginning in 2025. By that
year, the number of BSs in only China is expected to reach
8.28 million, consisting of backup batteries with total capacity
over 121.06 GWh [6] - [7]. The trial to utilize backup batteries
of 200 BSs in Finland as virtual power plants has already
been successful and more than 20,000 tons of CO5 reductions
is expected to achieve if the framework is implemented for
the entire network of BSs in the country [8]. The mobile
consumer, i.e., electric vehicle (EV) can potentially benefit
from this situation by reaching towards a BS and undergoing a
Telecom-to-Vehicle (T2V) energy exchange. However, a T2V
energy exchange may not always be possible, particularly in
case of a disaster. If a disaster results in power disruption,
the backup battery is required to provide uninterrupted power
supply to a BS itself. Also, an extreme power outage situation
may lead to complete exhaustion of a backup battery of BS
and ultimately communication loss. On the other hand, if there
is no power failure, a BS can be effective to supply energy to
demanding EVs which cannot reach a charging station.

The use of EV on road is rapidly increasing due to its
positive contributions towards global net-zero goals. Further-
more, mobile energy storage feature of EVs makes it useful to
carry out post-disaster rescue operations [10]. The utilization
of EVs for post-disaster rescue operations has been discussed
extensively in existing literature [10]. Since EVs have battery
storage systems, they can also be used to implement Vehicle-
to-Telecom (V2T) energy exchange which refers to supplying
energy from an EV to a BS, which may be required for
reliable connectivity during a disaster. In a disaster-affected
region, it is important to consider that an EV has sufficient
energy and an unobstructed route, so it can reach a BS and
travel back. Utilizing surplus energy of EVs to power other



TABLE I: Opportunities in related works as motivation of solutions proposed in this paper

Related Works

Opportunity Motivation

Energy sharing by backup batteries of BS
(61, 91, [19] - [26]

Potential approach to

Optimization and Al algorithms

support grid will maximize

Post-disaster energy management by EV and BS
[10], [27] - [31]

Backup batteries of EVs
and BS enhance resilience

utilization of EVs and
BS backup batteries

RL for energy management of EVs
[15], [34] - [32]

Recommended

Suitable for T2V

approach and V2T energy management

DT based route and energy management
[16], [18], [36] - [47]

Suitable for real-time
situation awareness

Appropriate for monitoring and
prediction in a disaster situation

consumers or supplying back to the grid via Vehicle-to-Grid
(V2G) exchange has already been widely studied [11] - [12].
However, research gap lies in analyzing feasibility, suitable
situations and optimization for V2T and T2V energy exchange.

With prevalence of Artificial Intelligence (AI) in road
transportation [13] - [14], adaptive optimization algorithms,
such as, Reinforcement Learning (RL) are formulated to
effectively manage energy sharing by EVs [15]. Recently,
digital twin (DT) systems are also proposed for efficient energy
management of EVs and V2G exchanges [16]. A DT is an
emerging technology to model physical IoT networks in a
virtual setting. A DT based virtual model of a physical network
synchronizes activities of all physical entities and analyzes
their attributes and operational dynamics with regular real-time
data interaction. For IoV networks, a DT can simulate traffic
environment for all vehicles centrally, analyze the state of
vehicles and make more reliable decisions than the decisions
made by physical vehicles individually [17]. Therefore, DTs
are promising solutions for optimum energy management of
EVs and decisions related to energy trading between EVs and
other consumers [18].

This paper proposes a DT based RL algorithm to implement
both T2V and V2T exchange in a disaster-affected region. The
motivation of considering post-disaster situation is to assess
the resilience of the proposed solution in emergency situations
when power disruption, communication loss and road damage
are expected. A DT system predicts energy requirements of
BSs and EVs considering the likelihood of the damaging
effects of a disaster. It also estimates routes availability based
on previous data. Then, it utilizes RL to optimize energy
exchange. The main contributions of the paper are as follows

e We propose a DT based system to analyze the energy
requirements of EVs and BSs and propose T2V and V2T
exchange to meet energy demands.

e We design RL algorithm to maximize T2V and V2T
energy exchange in a disaster-affected region

o We evaluate the results of DT based RL algorithm and
compare them with independently run RL without DT
and RL supported by federated learning (FL). Simulations
show that the highest energy exchange is achieved by DT.

The rest of the paper is organized as follows. Section II
discusses related works. Section III defines system model.
Section IV explains DT based solution for energy exchange
and RL algorithm. Performance evaluation and conclusion are
presented in Section V and VI respectively.

II. RELATED WORKS
A. Energy sharing by backup batteries of BS

Backup battery utilization in BS is proposed in [19] and
the practical extent of utilization, i.e., dispatchable capacity
is theoretically analyzed in [9]. Existing literature is focused
towards designing optimization algorithms to enhance op-
erational economics. In [20], dispatcahable capacity of BS
is analyzed using stochastic modeling and distributed op-
timization algorithm is used for fully utilizing the backup
batteries of BSs. In [21], the investment cost and location of
energy storage systems are optimized by leveraging the full
potential of BS backup batteries to support power systems.
In [22], an incentive model is designed for 5G operators to
motivate them for sharing spare capacity of backup battery.
Artificial Intelligence (AI) algorithms have also been used
for optimization. For example, a deep Q learning algorithm
is proposed in [23] to maximize the utilization by managing
charging times. K-means++ clustering is used in [24] to cluster
5G BSs on the basis of geographical location and power
consumption, and evaluate the dispatchable capacity of each
cluster. Recent research has mostly explored the capacity of
BSs to support power systems and grids. T2V exchange is
proposed utilizing quantum optimization in [25]. Considering
the potential, the concept of distributed energy exchange be-
tween BSs and EVs to meet demands in post-disaster situation
is worth investigating. The generic frameworks of T2V and
Telecom-to-Grid (T2G) energy exchange are described in [6].
Besides EV, the backup battery of BS can also be effectively
utilized to charge other IoT devices, such as, Uncrewed Aerial
Vehicle (UAV) [26].

B. Energy management

a) Post-disaster energy management: The resilience and
sustainability of power distribution networks is largely affected
by disasters. Mobile energy storage systems including EVs are
considered as efficient resource to maintain demand-supply
balance in such situations [10], [27]- [28]. The backup battery
of 5G BS is proposed as power supply in emergency situations
in [29]. In [30] and [31], photovoltaic (PV) system is proposed
to be integrated with backup battery of BS for post-disaster
resilience. However, a PV system largely depends on weather
conditions and may not produce sufficient energy during floods
and rains. Therefore, EV can be a useful supplier in such case.
On the contrary, if a BS has adequate supply produced by
PV system, it can also share its energy with the demanding
EVs. Hence, a T2V and V2T exchange is a promising research
direction in both cases.



b) RL for energy management of EVs: The energy man-
agement of EVs is a complex problem with many uncertain
variables. For example, EV’s energy consumption is dependent
on multiple parameters including its motor power, varying
speed and route length. Additionally, clean energy sources
powering EVs have fluctuating outputs. In such scenarios, Ma-
chine Learning (ML) methods produce more efficient energy
management solutions than other algorithms. Specifically, RL
algorithms have great potential to achieve optimum results
without prior knowledge of environment as they dynamically
learn to design their action strategy to maximize expected
future rewards at each state. In [32], RL is suggested as a
promising technique for distributed EV charging systems. In
[34], Markov Decision Process (MDP) controls charging and
discharging strategy of EVs in a V2G exchange on the basis of
federated RL. A deep RL based approach to optimize charging
control strategy of EVs by MDP is proposed in [33]. Similarly,
peer-to-peer energy exchange involving EVs and other entities
including home and grid are controlled via MDP executed
by RL in [15]. RL based home energy management systems
including EV charging are also proposed in [35].

c) DT based energy systems: The ability of DTs to
perform real time analysis of physical world in a virtual
setup have immensely supported continuous decision making
in various applications. In context of EVs and energy systems,
DTs have been employed for distributed energy exchange [36],
battery modeling [37] and charging management at stations
[16], [18]. In [38], DT is proposed for the situation awareness
of modern energy systems including distributed resources and
EVs. A coordinated control of distributed energy resources
by a centralized DT is proposed in [39]. The combination of
DT and RL is recommended for Internet-of-Energy systems
in [40]. In [41], DT with RL outperforms DT without RL for
energy management and optimization in green cities.

C. DT based route management

The role of DT in evacuation planning after a flood disaster
is highlighted in [42], where DT is proposed to identify
optimal evacuation routes in real-time. A DT-based flood
monitoring system which utilizes combination of real-time
data and information of historically blocked routes is also
presented in [43]. DT backed by historical data has been
used to ensure water safety management and monitor traffic
in [44]. The DT of a transportation network is proposed to
optimize safe routes for ambulances and first responders in
[45]. Apart from flood disaster, DT is also suggested as an
effective approach to identify safe routes for rescue operations
in other emergencies and incidents [46]. In [47], DT predicts
lane traffic by utilizing natural driving data.

D. Limitations and Motivation

The backup battery of BS is recently studied as a use-
ful resource to supply energy and support grid in generic
situations only. Meanwhile, significant increase in disasters
and resulting damage on main grid and infrastructure is a
serious concern, which is usually tackled by utilizing the
readily available energy sources [48]. Therefore, we explore

TABLE II: List of Key Notations

Notation Definition
1 Number of buyers
J Number of sellers
K Number of EVs (per km?)
L Number of BSs (per km?)
SoC State of Charge (%) in a battery
X State space
Ad Blocking rate of route d
nq Opening rate of route d
Apower Power disruption rate
Ipower Power availability rate
¢fr"ioute Set of routes
5k Working set for EV £ reach
6’; Failure set for EV k reach
A’ggg Transition probability density matrix for EV k
Pk g(1) Probability matrix at time ¢ for EV k
p=(t) Probability vector at time ¢ for EV k&
Ty Time for an EV k to reach BS (s)
a; Lower SoC threshold for buyer i (%)
;i Upper SoC' threshold for seller j (%)
R; Reward of buyer ¢
R; Reward of seller j
SW Social Welfare
e; Energy received by buyer ¢ (kWh)
c; Cost of e;
eq Energy used in traveling through route d (kWh)
cq Cost of eg
p Battery degradation cost (/kWh)
¥ Adjustment coefficient
S(t) State vector at time ¢ for RL
Acc Action set
a Action

the opportunity to avail dispatchable capacity of BS in post-
disaster situation. Furthermore, RL, DT and their combina-
tion are recommended approaches for energy management.
However, their applications in BS backup battery utilization
are not yet studied. Additionally, DT has been suggested as
an effective approach for both energy and route management,
Therefore, its maximum utilization can be attained by using
it simultaneously for both purposes. Keeping in view the
feasibility analysis of dispatchable capacity of BSs, suitability
of RL for distributed energy exchange and DT for continuous
monitoring and situation awareness in both energy systems and
disaster management, this paper combines all the approaches
to implement successful T2V and V2T energy exchange after
a disaster has occurred. Table I summarizes the related works
into four broad approaches, lists the potential opportunities and
novel research directions arising from related works which are
exploited by the solutions proposed in this paper.

III. SYSTEM MODEL

Consider a 5G vehicle-to-everything (V2X) network where
K = {1,2,.,K} EVs and £ = {1,2,...,L} BSs are
randomly distributed within a finite two-dimensional area. In
this system, there are some BSs and EVs with energy demands
while some others have capacity to provide a portion of energy
from their batteries. Therefore, the BSs and EVs are also
divided into two groups, i.e., Z = {1,2,...,1} buyers and
J = {1,2,...,J} sellers, depending on their demands and
surplus supplies. As shown in Fig. 1, we consider the following
conditions which can occur due to a disaster
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Fig. 1: The proposed DT based solution for energy exchange among BSs and EVs in a disaster-affected region.

o The routes from an EV to BS can be opened or blocked.
In case of a blocked route, an EV may reach a BS through
an alternate route.

o If communications with any BS is lost, it is assumed that
the BS has run out of power.

Table II defines the key notations used in the paper.

A. Ability of EVs to reach BS

The ability of an EV to reach a BS depends upon its route
and the State of Charge (SoC). It is defined as the remaining
charge available in its battery in relation to the total battery
capacity. SoC' = 100% implies a full battery state and SoC' =
0% refers to an empty state [49] .

Markov model has been thoroughly used to model road
damage due to various factors including flood in existing
literature [51]. The route d between BS and EV is represented
as a continuous-time Markov model [50]. Any route d can be
blocked due to a disaster. Let Ay and pg respectively represent
the number of times a route d is blocked or opened in a data
record. The Markov model is defined as follows.

Definition 1: State of route d is modeled as a continuous-
time Markov process {X< ,.(t),t > 0}. The state space is
defined as

Xd

route

() = 0, route d is blocked at time t, 0
1, route d is open at time .

The Markov process is homogeneous with blocking rate Ay
and opening rate 4. In case of an open route, an EV must
have sufficient SoC' to travel through it.

Definition 2: The ability of an EV k to reach BS [ is modeled
as a continuous stochastic process {X* . (t),t > 0}. The
state space is defined as

k
Xreach

0, EV cannot reach BS,
(t) = { 2

1, EV can reach BS.

Considering Definition 1 and 2, if X%, (t) = 1, there is
at least one route d open at time ¢ for EV to travel to a BS.
Let ¢2, ;. be the set of routes which connect an EV to a BS.
We aggregate the Markov process of routes in ¢Z, ;. to form

a new Markov process.

Definition 3: The Markov process {XF, (t),t > 0} is the

aggregation of Markov processes of routes in ¢, ,.. The state

space can defined as the binary code T1T2.Tgd |, and the
d'" bit represents the state of d'" route in ¢¢,,,, at time ¢.

The state space of X(’fgg(t) is divided into two sets: the

working set 6% and the failure set 5’;. For every state of

X7 ,(t), we check whether the EV k is reachable or not via

open route in ¢Z . . If EV k is reachable, it is included in

oy, otherwise in §%. The transition probability density matrix

Ak, of XF (t) can be constructed as [9]

o Ak (m,n) = Ag(m #n) : if the binary codes of states
m and n are equal except of the d'” bit. The d*" bit of
state m and n is 1 and O respectively.

o AL (m,n) = pg(m #n) :if the binary codes of states
m and n are equal except of the d** bit. The d** bit of
state m and n is 0 and 1 respectively.

. iggg(m,n) =0(m#n) : gther situations.

° agg (m’ m) == Zm7$n Aagg (m’ n) .

The transition probability matrix P¥__(¢) and the probability

agg
vector p*(t) of X (t) are defined as

Pk (t)(m,n) = Prob(Xk (t) = n|XC]fgg(0) =m), (3)

agg agg
p* (t) = Prob(X,’fgg (t) =m). 4
Xfeach(t) = 1if and only if X}, () is in the working state,
ie.,
PTOb(Xfeach(t) = 1) = Z pk(t)(m) 5
medk

B. Possibility for T2V or V2T exchange

A T2V or V2T exchange takes place when the energy buyer
has low SoC' and the seller is left with at least a threshold
amount of energy that it wants to keep for itself after the
energy exchange. For instance, an EV must have some energy
left to travel in unforeseen circumstances which may occur
due to a disaster. Also, a BS is originally powered by a
power distribution network. In case of a failure in distribution
network, its backup battery provides energy to a BS. Each
BS is equipped with a backup battery module. The power
distribution network failure affects the availability of energy
in a backup battery of BS, since the BS would prioritize to



power itself from the backup battery instead of providing it
to an EV. Therefore, the energy available to be exchanged is
represented as two-state model.

Definition 4: State of power distribution network is a
continuous time Markov process { Xpower(t), ¢ > 0}. The state
space is defined as

0, Power disruption state at time ¢, ©)

1, Power availability state at time ¢.

Xpo’wer (t) - {

The Markov process is homogeneous with disruption rate
Apower and availability rate fipower [9].

Each BS and EV available for energy exchange have one
of the two possible states, i.e., buyer (state 0) or seller (state
0). Therefore, available EVs and BSs are also represented as
two-state models.

Definition 5: State of available BS [ is defined as

! 0, SOCl(t + Tk) < «; and Xpower(t) =0,
Xps(t) =
1, SoCi(t+Tg) > a; and Xpouper(t) =1,
(N
where «; and «; respectively denote the lower and upper
threshold levels of SoC' which categorize a BS as a buyer
or seller and 7}, is the time required by EV k to reach a BS.
Definition 6: State of available EV k is defined as

Xpy(t) = {

a; and «; are considered as the safe limits to optimize lifespan
of a battery. For EVs, they also incorporate the energy required
to travel towards a BS. Their optimum values are defined in
[52].

0, SOCk(t + Tk) < «,

8
1, SoC(t+Ty) > Q;. ®

C. Reward and Social Welfare

Considering bidirectional energy exchange, the role of buyer
and seller is interchangeable between BS and EV. The reward
functions of both buyer and seller are formulated to make sure
T2V or V2T energy exchange is profitable for both EV user
and BS operator. The utilities of buyers and sellers are termed
as rewards for formulating a reward based RL algorithm. A
buyer 7 pays c; to a seller j for e; amount of energy attained.
For a fixed c¢;, the reward of a buyer depends upon its SoC
at the time of energy exchange. If the buyer is EV, its reward
also varies with the energy consumed in traveling towards a
seller BS. The reward of buyer ¢ when it buys e; amount of
energy is

_ 7
SOOi

where v > 0 is the adjustment coefficient, ¢; is the unit cost
of e; paid by buyer 4, p is the unit battery degradation cost
representing the loss of battery capacity over time and eventual
replacement , ey is the energy consumed by an EV while
traveling on a route d to reach BS and ¢y is the unit traveling
cost. Natural logarithmic function is used in (9) to express the
relationship between energy demand and buyer’s satisfaction
and to model R; as a concave non-decreasing term [53].

R; log(1 + e;) — cie; — pe; — cqed, )

Data Acquisition Estimations

(c22) lozzclé;i’rnemo rk traffti.c Estimate SoC;(t + Ty) and
h‘istoryggf?;:sr\u;pl fon determine Xi(t) of each BSI

,/‘ SoCy (t), speed, travel S\ Estimate SoCy(t + Ty) and

‘@ © | destinations of each EVk determine X[, (t) of each EV k

Historic data about
disaster-affected routes

Determine X%, (t) and
Xfeach(t) foreachEVk

Fig. 2: Data acquisition and estimation by DT.

The reward of seller j is

R; = cie; — cje; — cqeq, (10)

where c; is the unit cost of previously acquiring e;. cq = €g =
0, when the buyer or seller is BS in (9) and (10) respectively.
The social welfare of the system is

1 J
SW =Y Ri+> Rj
i=1 j=1

SW is used to map numeric individual rewards to collective
welfare. The motivation behind adopting SW in the system
is its approximation as the unanimity in a decision. It is
considered as the closest profile where all individuals agree
[54]. Its real-world application is presented in [S5], where SW
is defined as a metric to reflect incentives of all individuals
involved in streamlining urbanization for flood management.
An alternative societal metric is Pareto-optimality, which is
a state when it is impossible to make any individual better
off without making someone else worse off. However, unlike
SW, it does not represent fairness of a situation.

Y

IV. THE PROPOSED DIGITAL TWIN BASED T2V AND V2T
ENERGY EXCHANGE SOLUTION

The proposed DT based solution is illustrated in Fig. 1.
It formulates an energy maximization problem and solves it
through three stages explained below.

A. Energy exchange maximization problem

Our main objective is to maximize SW of the system by
optimally matching buyers and sellers and determining open
routes for EVs. We have the optimization problem as follows

P1:

max
€i,€d

I J
D Rit) Rj,
i=1 j=1
s.t. Clieg +eq < eéthe{1,2,3,....,J},

C2: R; >0Vie{1,2,3,.... T},

C3:R; >0Vje{l,2,3,....,J},
where constraint C1 limits the energy exchange by an upper
bound eE—h, and C2 and C3 guarantee the positive reward of
both buyer and seller.



B. Stage 1: Data Acquisition and Estimation

As shown in Fig. 2, the DT of the V2X network regularly
acquires data from real BSs and EVs including SoC; and
SoCy, network traffic load, energy consumption history, speed
and travel destinations of EVs to estimate their hourly energy
requirements and surplus supplies. An ML regression model
XGB is used to predict network load of a BS, followed by
a Deep Neural Network (DNN) to estimate SoCj(t + Ty).
Compared with other mathematical and regression models,
DNN achieves better accuracy [56]. SoCy(t+T}) is predicted
by kinematic calculations defined in [57], where the speed of
an EV £ is determined by ML regression model CatBoost due
to its better computing efficiency and less training times [12].
Disaster related historic data of the region is used to statisti-
cally model blocked or open routes and power disruption or
availability, as defined in Section III. It is noted that temporal
modeling of blocked routes in a road network is out of the
scope of this paper but can be carried out through various
methods other than estimation through historical data, such
as utilizing LiDAR data to analyze road inundation [58] or
employing UAVs for surveying disaster-affected region [59].
The data acquisition and estimation is used to model the
system defined in Section III.

C. Stage 2: Markov Decision Process (MDP) Model

In this subsection, we convert Problem P1 into an MDP
model with state space, action space and reward function
defined as follows.

1) State Space: The state space of K EVs and L BSs
available for energy exchange is realized according to the
buying or selling state of each EV and BS and the ability
of an EV to reach BS. Hence the state vector S(¢) at time ¢
can be represented as

...... XL (), X E (), XEs(t),
...... X2 (), X2 (1), XEs (1),

[Xieach(t)a X%V (t)’ XéS (t)7
Xfeach (t)7 X%V (t)’ XéS(t)v

X'rl‘ia(:h(t% Xg\/ (t)a XES(t)a """ ) Xﬁach(t)a ng (t)a Xé(Si(zt))]

The state of buying or selling EV and BS depends on their
corresponding SoC' and the state transition probability of
Xk ., defined in Section II.

2) Action Space: We use Acc = {1,2,..., L} to represent
the set of possible actions. The action is that an EV k can be

associated with one BS [ from available L BSs.

3) Reward Function: The reward function is the objective
function of problem P1, which denote the social welfare of the
system. The gain of the reward is determined by the actions of
EVs. If one or more EVs gain equal optimal ST with the same
BS or vice-versa, the algorithm decides the optimal buyer and
seller match according to maximum amount of energy being
exchanged.

Algorithm 1 RL based MDP for SW Maximization.
1: procedure RL BASED MDP.
2 Obtain SoC' of BSs and EVs.
3 For any stage t, acquire S(t).
4: while £ < K do
5
6

while ¢ < L do
For every state s e S compute state transitional
probability and SW as defined in (3) and (11) respectively.

7: Find optimal a*(k) according to maximum
SW.

8: q=k—1

9: while ¢ > 0 do

10: if a*(k) == a*(q) then Change a*(k) or
a*(q) according to higher e;.

11: end if

12: q<+q—1.

13: end while

14: end while

15: end while

16: return a* for every EV k.

17: end procedure

D. Stage 3: Reinforcement Learning (RL) Algorithm

RL algorithm is adopted to solve the proposed MDP model.
It analyzes all possible combinations of BSs and EVs to match
buyers and sellers for either T2V or V2T energy exchange
resulting in optimal ST.

1) RL with DT: In RL with DT, the state space, action
space and rewards are regularly updated through real time
data acquisition and estimations as shown in Fig. 2. Then,
the RL algorithm finds an optimal solution for all EVs and
BSs in a centralized manner. Each buyer and seller pair
formulated by RL algorithm is unique so that two or more
EVs do not travel towards the same BS for energy exchange.
Algorithm 1 defines the RL algorithm supported by DT. The
EVs regularly receive updated algorithm from DT so that they
are able to process the energy exchange after the disaster even
if they lose communication with the DT. In case of disaster,
if communication is not broken, DT acquires real-time status
of BSs and updates the RL algorithm accordingly for all EVs.

2) RL without DT: In subsequent section, performance
of the proposed solution is compared with RL without DT
utilizing two approaches described as follows. In both ap-
proaches, individual EVs execute their own RL algorithm in
a distributed manner. In RL without DT, it is possible that
two or more EVs are matched with the same BS. In this
case, the energy exchange takes place on first come first serve
basis. When an energy exchange of an EV is completed with a
certain BS, other EVs are notified via vehicle-to-vehicle (V2V)
communication so that they change the state of that BS and
update their algorithm.

a) RL with Federated Learning (FL): In this scenario,
Stage 1 is performed through FL. The BSs and EVs develop
their local models utilizing their private data to estimate
SoC(t+1T}) and SoCYy(t+T},) respectively. Instead of sharing
data with DT, They upload local models to a central cloud



Fig. 3: Simulation Map.
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which creates aggregated global models [60]. All EVs utilize
global models to create the state space, action space and
rewards for running RL algorithm.

b) RL only: In this setup, the EVs assume SoCj(t+T})
of BS as a random variable following lognormal distribution
in case of communication loss [12]. They utilize their local
data and Al estimation of SoCy(t + T},) instead of prediction
by global model.

V. PERFORMANCE EVALUATION
A. Simulation Settings

In this section, we discuss simulation results of the proposed
solution. The DT based RL algorithm is implemented in
Python and integrated with OMNeT++, which is used to
realize V2X communications [61]. The open-source dataset
of flooding and water rescue incidents in East Sussex is used
to model the working and failure rates of Markov processes
according to number successful rescue operations in the routes
[62]. The motivation of simulating East Sussex area is due to
high vulnerability to flood damages. Existing literature also
demonstrate IoV-based flood rescue systems in this region
[4]. The road traffic is simulated on the map of East Sussex,
as shown in Fig. 3. EV density represents light, medium
and heavy traffic scenarios [63]. The number of BSs are
aligned with deployment scenarios of 5G networks in existing
literature [64] . Simulation parameters are listed in Table III.
Evaluation results are averaged over 100 simulation runs and
time for each simulation is 2000s.

B. Energy Exchange

Fig. 4 shows that total amount of energy exchanged with
the RL algorithm. The energy exchange of RL with DT is
significantly higher than RL with FL and RL only. On an
average, the total energy exchanged by RL with DT is twice

o

Number of BSs, L

Fig. 5: Number of exchanges.

as that exchanged by RL only. RL with FL results in higher
energy exchange than RL only due to better estimations of
SoC by global models but a centralized RL algorithm formed
by DT outperforms FL. Furthermore, the energy exchange
with DT significantly rises when number of EVs and BSs
increase, unlike the trend observed in RL without DT, which
performs optimally with 1000 EVs and results in the larger
energy exchange than the same solution performed with 500
or 1500 EVs. It shows the scalability limitation of RL without
DT. It is because a decentralized energy management approach
is not suitable for number of EVs larger than 1000. On the
contrary, the proposed DT based solution is scalable and
particularly suitable for heavy traffic. With the 5G roll-out and
global inclination towards environment sustainability, both the
number of BSs and EVs are expected to increase. Therefore,
it is important to find solutions particularly important for high
density of BSs and EVs. The performance of the proposed
solution in heavy traffic is further demonstrated in Fig. 5,
which shows the number of exchanges, i.e., number of buyers
and sellers pair. The average number of exchanges is highest
with 1500 EVs per km?2.

Fig. 6 and 7 show the total energy transferred via T2V and
V2T exchange respectively. Since DT based RL centrally con-
siders the amount of energy being exchanged while optimally
matching all buyers and sellers, it results in larger amount
of energy transferred than RL without DT, where the energy
exchange takes place whenever first EV reaches a BS. The
energy exchanged through RL with FL is closer to RL with DT
in Fig. 6 (a) and Fig. 7 (a), when EV traffic is low. However,
the performances of both approaches do not match in heavy
traffic, as seen in Fig. 6 (c) and Fig. 7 (c), which particularly
shows the suitability of the proposed solution in dense urban
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scenarios. Furthermore, in both T2V and V2T exchange, there
is an optimum pair of number of BS which results in the
highest energy exchange. It is because with fewer BSs, there
are not many feasible buyer-seller pairs resulting in a profitable
T2V or V2T exchange. One the contrary, with highly dense BS
setup, there are not enough EVs to trade significant amount

upon energy costs, the number of BSs and EVs do not have
significant impact upon the individual rewards. However, there
is a notable difference between rewards attained with and
without DT. On an average, both BS and EV rewards are 1.7
times higher with DT. Also, in both cases, the BS rewards are
1.5 times higher than EV rewards because BS do not have to
pay traveling cost for an energy exchange.

Fig. 9 shows the SW of system. The SW of RL with DT
is averagely higher as compared to RL without DT. This is
because a DT optimally performs the algorithm for all EVs



TABLE IV: Asymptotic complexities of RL solutions

Approach Communication | Computation
RL with DT O(K?+ L) O(KL?)
RL with FL O(K?+1) O(K?L)

RL only O(KL) O(KL)

and BSs. Without DT, the EVs aim to maximize their own
reward and BS reward for maximizing SW and do not have
knowledge about the reward of other EVs. Also, when multiple
EVs are matched with the same BS, the energy exchange in
RL without DT takes place as soon as the first EV reaches the
BS which may result in a lower SW as compared to the EV
which could arrive later.

D. Asymptotic Complexities and Scalability

Table IV lists asymptotic communication and computation
complexities of all approaches. RL with DT regularly acquires
data from BSs and EVs and shares only RL algorithm to
EVs only. The communication complexity is equivalent RL
with FL, where BSs and EVs upload local model. The global
models of both EVs and BSs are shared with EVs only. In RL
only, the communication cost with central server is eliminated.
EVs only communicate with reachable BSs to get information
about their SoC and update other EVs only when the energy
exchange takes place. RL with DT trades off communication
and computation cost for a larger amount of energy exchange.

For evaluating computation complexity, we consider that
each available EV calculates the ST by matching itself with
each BS, as shown in Algorithm 1. Specifically in RL with
DT, the algorithm additionally checks if a BS selected by EV
for energy exchange has already been matched with another
EV, as shown in line 8 to line 13 of Algorithm 1. In RL
with FL, each BS and EV computes a local model and each
EV computes RL algorithm also. Considering K > L, the
computation complexity of RL with FL is the highest and RL
only has least computation complexity.

In a predefined region, the number of BSs and EVs cannot
increase beyond a certain extent. For better scalability, a
large transportation network can be divided into a number of
clusters, each with its own DT.

VI. CONCLUSION

This paper proposes to utilize surplus energy stored in bat-
teries of BSs and EVs to meet the energy demands in case of a
disaster. A bidirectional energy exchange is considered where
both BSs and EVs can either sell or buy energy to and from
each other. A DT based RL solution is formulated to optimize
the energy exchange in a 5G V2X network. Simulation results
show that BSs are able to sell larger amount of energy and
earn greater reward because they do not have to consume
energy for traveling and bear related costs. Furthermore, both
energy exchange and reward are reduced to half when RL
solution is performed individually by EVs. It concludes that
DT is effective for centrally managing the energy exchange
for all EVs by real-time data acquisition for better decision-
making. However, there is an increase in communication and
computation complexity of DT is employed.
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